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ERRORS IN LINEAR NONHOMOGENEOUS ALGEBRAIC SYSTEMS 

CHAPTER I 

INTRODUCTION 

STATENT OF THE PROBLßM. The purpose of this thesis is to 

consider a system of linear nonhomogeneous algebraic equations in n 

unknowns, x1, X2, - - - -, Xn, 

31 

where the n2 coefficients are subject to error, and to find by how 

much the solutions X1, - - - -, , of the approxinating equations 

j=1 

may differ frau the original x's. rors in the coefficients 

frequently occur in the application of mathematics to natural plie- 

niiena, where they may appear as errors cf observation; they may also 

arise when decimal coefficients aro "rounded 0fft 

THOD OF INVESTIGATION . This problem has been solved before and 

partial or complete solutions may be found in papers by Etherington(3), 

Lonseth() and Moulton(6). The results of Lonseth and Moulton are 

compared with the results of this paper in a numerical example in 

Chapter four. 

The method of this paper is quite different fri those mentioned 

above. It follows Tricomi's solution(8) of the ar.1ogous problem with 

respect to a linear integral equation of Frociholm type and second kind. 
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Tricorni. considered the integral equation for x(s) 

1) x(s) - K(s,t)x(t)cit = y(s), O s 1, 

wilere K(s,t) and y(s) are known functions. Also, K(s,t) is continu- 

oils on the square O s,t i and y(s) is continuous on O s 1 The 

parameter A is restricted to values such that the Fredholm f orrnula 

(9, p.211) for x(s) holds. If the kernel K(s,t) is replaced by (s,t), 

where 

I 

(s,t) - K(s,t)k , E o, and "small," 

on the square O s,t 1, and if is correctly restricted, the 

equation 

2) i(s) - (s,t)(t)dt y(s), O s 1, 
Jo 

is solvable for 5(s) by Fredho].m's formula. Triconii derives an expros- 

sion which limits the maximum value of 

Ji(s) -x(s)I , O s 

Suppose D( \) is the Fred.holnì denontinator for K(s,t), ( ) that for 

(s,t) and 

n/2 
xn * 

If K and Y are upper bounds for K(s,t)J and y(s) 
J 

, respectively, 

and L 
J 

?.. 
J(K + ), E being sorne "small" positive number, then 

Tricorni proves the following theorem: 

Tricorni' s Theorem., If E is a positive nuirber such that 

E 
and !(s,t) -K(s,t)< E 
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then 

XL(L)i1'(L) + La'2(L) +í1(L)c1n(L)] 
Ji(s) -x(s)J (f y -II'(L) E] 

ïhe coerricieflt3 aj.z in the algebraic systern can always be written 

in the £oxa 

ajj = - 

Ii ir = 

gij 
{ i s i. 

?hen tze s are real mribcrs, tim the ïstems 

3) Xj-EkjXjYj 

1) 

where ijj = "ii ± E j , 
E "sìil,' are algebraic ana1oes of the 

two integral eçation i) arxï 2 ) , with ¿1 1. 

it is supposed that the detei,ninants D,(k) and (k) of the two 

systems are not zero se that both systcs can be solved uniquely. In- 

stead of the transcendental integral functiri fl (z) , two polyniials 
(j) (x) and Q are used, where 

n 
s ) ( ) = (Ïmn t ) 

and 
n i 

6) ¿p (x) x(( n t)2() I I 

When !kjjJ<s IEijI< e.nd IYil< Y, the rrincipal reu1t of this 

paper rw be stated as 



Theorem 1. If is a positive number such that 

(k)I 
6< 

and il' 
- 

[<E , then 

- + )(K)cpt(K+e)] 
(Xj - xj 

< J(k)I [IUnOc)I - e + E)] 

Coroflary 1. If 

(a) the coefficients in equation L) satisfy 

I - , for i 1, 2, -, n; 

r i-1 (1 - ku)ÌT11(k) 
where TT(k) rrki - ) - (b) 6 

) 

J 

then 

- i-iYE [K "(K +) + 9)(JÇ) q'(K + 
I 

Xj xii (1-i11)T7(k) [1_iiirk - E + )] 

Corollary 2. 12 

(a) the coefficients in equation Li.) satisfy 

1-1jl1JIjjI,fori1,2, 

(b) e (K) 
E '(K+ () ' 

where e(K) = (1-K)(1-2K)...(1-(n-1)K), 

(n-1)K ' 1; 

then 
i 

- Jj(K)çt(K +) +q(K) q'(K +e)J 
xi - xj< 

e(K) 
[ 
%(K) -c'(K + L)] 

A table of values for 9)3(x), q"3(x), p3(x) and '3(X) villi 

be found at the end of Chapter IV. 
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LN INEÇULLITY O? K.O. FR1Ltt1CHS.1 This tbesi inc1uìes a proof 

of an inoquality of K.O. Fridrchs hieh specifies a positIve lower 

bound for t certain typo or detriant. It is the belief of the 

writer that a proof of this in uality has never been published and 

the ie given in this paper ry be new. 

L&T1) ThUSIOATIOiS. tra. Adazs(1) considers the hcxogeneou8 

caso, :ì() = O, of equa tions 1) nd 2) and derives bounds for the 

errors in the characteristic values aìd characteristic functions 

associated With the prcblen. 

Lonseth derives the inequality 

7) -x< th fAjjI + 
- l 

where ¿ is the nonvanishing deterrriinant of the eyste 

. 

ajjxj = , i = 1, 2, , n, 

i satisíiee the systen 

n 

: (ajj + jj)xj = yj + li' i = I, 2, , n, 

Lij is the co.factor f &jj in L , and 

I 

ijl;IiiI< 
4t 

:pAii 
il j]. 

1. 5uested by Dr. A. T. Lonseth, ?rofeasor or athentics, 
Oregon State College. 



CHAPTER II 

UPPER AND LVER BOUNDS FOR A DETErth1INANT 

In order to prove Theorem i essential use is made of an 

inequality of Hadarnard which specifies an upper bound for a 

determinant. A proof is presented below. Also shown in this chapter 

is a sufficient condition for a determinant to be not zero and a 

sufficient condition for a determinant to be positive or zero. This 

enables the writer to prove Friedrichs inequality which cives a 

positive lower bound for a certain type of determinant. 

INEQUALITY OF HADARD. Theorem 2. If D is the determinant 

whose elements are a.1, i,j 1, 2, , n, then 

D2 TT ;t a 
i=l k1 

Proof (, p.3l): Suppose that cxjx , where Cii caj, 
i , 3=1 

is a positive definite quadratic forni1 arrì let ¿ be the determinant 

whose elements are c1 . Then the determinant 

c- ¿i c . . . 

C21 C22- ... C2 

. . =0 

C1 c ... C,_ 

is a polynomial of degree n in , ,P( It can be shown (2, p.171) 

1. Positive for all real values of the variables x except for 
xl = X2 = . . . = Xrl O. 
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that P( ?) has n positive roots, -, , 
and that 

E = Ecu and . Laking use of the fact that the 

geometric mean of n positive nunibers is less than or equal to the 

arithmetic mean, it foliovfs that 

n 

8) 
) 

If cil ) O for all i, then the form 

n n 
') 

cii 

L__ ii - L_ 
i,j=l i,j=l 

is also positive definite. Applying 3) to this form it follows that 

L B 

where 
B 

2. the determinant consisting of elements 

i,j = 1, 2, --, n. Now 

¿1 = L1l, B c11c22 ... 

therefore 

¿X . 1122 Cirn 

Now suppose that the form 

n n 
:: = J(ax1 + a2x + ... + ax)2, 

i,j=l 

where 

a11 ... a 

... 



so that Cj1 a1 + a2 + ... + a. Also, if D O, D = is the 

determinant of a positive definite form and 

or 

n n n 
D2 c11c22 .., c = Ea ,IIa2k 

k1 k1 k1 

D2 ft 
i=1 k1 

SUFFICIENT CONDITION THAT A DEThRJOENANT B NOT ZFJtO. Lengia 1. 

[.1 

L!] 

If D is the determinant whose elements are ajj, i,j = 1, , n, and 

laul 7 II)a A 

then D O. 

Proof (7, p.672): assume that D O, then the system of equations 

a11x1 + . + ax = O 

+ ... + O 

has a nontrivial solution x, x2, ---, x1.. Let be the 

lxii , i = 1, 2, , n, and consider the rth equation in the 

system: 

or 

ax1 + . . . + arrxr + . . . + ax = O 

arrxr - axk 

whence 
n 

I3rrIIcr( 
: jaIx.1 )Ar\\X. 

But since XrI> , this contradicts the hypothesis. Therefore D O. 



POSITIVE DETIHttNTS. Lemma 2 If D is a determinant whose 

eleluent$ are ajj, i,j = 1, 2, - , n, and 

ajj a 
1 

i 

then D - O. 

Proof (7, p.6Th): The lemma is obviously true if ajj = O for 

i j. Since D is a continuous function of n2 variables, D . O by 

lemma 1. 

INEQUALITY OF FRIEDRICHS. Theorem 3. If D is a deterrilnant 

whose elements are ajj, i,j 1, , n, and 

then 

Ja , 

n-1 
a11(a - 1a211) ..... . (a -E Ia,l) 

k1 

Proof: Consider the determinant 

alI...aTh a11 a12 a13...a & 

. O a22-I2i) a23...a2 a21 

D = a31 a32 a33...a3fl + a31 

a . . .aun a1 a2 &3 .aun a 

By lemma 2 the second determinant in the sum i 

Therefore Ian, a1 a, ... a1,j 

T 

-Jn 

_i_J.. -- _&._i - 

O a22-a21) a23 ... a2n 

. . 

a a1 a3 . . . aun 

a12 a13...aTh 

la21! O ... O 

a32 a33...a3 

. . 

a a ...a 
n2 n3 nfl 

3 positive or zero1 



By repeating the step outlined above to the remaining n-2 rows, the 

point is reached, after a finite number of steps, where 

>1 

n 

ej.A ..U. 

a11 a12 a13 ... a3 

O a2-aj a23 ... a2 

O O a33-1a3Jj--Ia32L ... 

o o O 

n-1 
O O O . .. a-E Ea 

k1 

lo 



CHAPTER III 

TE ALGEBRAIC CASE 

FORE OF SOLUTION OF ALGEBRAIC SYSTE&S. By Cramer' s Rule, if 

D(k) O and O, then 

3) x1-Ekjx=y 
j=1 

and 

) i - = Yj, i = 1, 2, - 

J=l 

have unique solutions of the form 

yD 
Xj 

= D(k) 

where 

D(k) = 

and 
:l 

l-k11 l2 .. -k 

l-k ... -k 

n2 ''nn 

i-1 l2 

- 2l l'422 2n 
andD(k) 

- 
Cnl 4n2 "nn 

D and Uj are the cofactors of - kj in D(k) and 1k kik 

:in (k) respectively. 

To repeat, the purpose of this oaper is to find a bound for 

\ - .- 
(k,y) D(k,y) 

9) X. -Xj- - _____ 
(k) D(k) 

where 

D1( k ,y) = EyDj and ( k ,y) 

II 
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Inequality 9) may be written as 

I(k,1) n(k)-1)n(k)I k kOc) JD(k,y)-U(k,y) 
lo) - 

(k)Il (k) 
J 
- (k) - (k)II 

To find a bound for the maximum value of lL) it will be necessary 

to determine bounds for the expressions ID(k,y)J, JU(k) -D(k)),JD)I 

and 1D(k,y) - (k,y). The following nìteria1 will develop these 

bounds and cOEnpiete the proof of Theorem 1, Corollary 1, and 

Corollary 2. 

ERROR Th A DTERThANT. Theorem 1. If Da(a) is a determinant 

whose elements are a. . and (a) is a determinant whose elements are n 

ajj + E ; if further 

then 

IaiiV K, 

Proof: 

U(a) = 

-D(a)J flW2[(K + )fl 

E a12+ 
l2 aTh+ Ein 

E21 a22+ E22 a2+E2 

E nl an2+ E n2 a+ Eun 

a11 a12+ E12 . . . aTh+ 

+ 
a21 a22+22 ... a2+ E2 

. 

. . 

a1 an2n2 ayml Eun 

By continuing the decomposition started above, the point is reached 

where 



Da(a) + 

E a12 

621 a22 ... 

. 

s 

a .. 

+ ... + 

a11 ... a1,1C 

. 

ari1 ... a,_i E1 

6ii 12 a13 .. a E .. 

e s C t + . t t.. t. . 

Ep n2 a113 . a E nl 

+ 

13 

That is, (a) is equal to Da(a) plus n determinants in each of which 

just one column of a's has been replaced by the corresponding 

£-coluxnn, plus n(n-1)/2 determinants in which two co1unns of a's 

have been replaced by 's, etc. Consequently, with the aid of 

Theorem 2, 

¡(a)-D(a)J <. 
nfh2[n:fl 

n(n-l)..2 2 n(n-l) . . . (ri-m+1) 
E+...+ mt 

(a)-D(a)J n2[(k: + )fl 

]. 

LI1ITATION OF 1D(k) -D(k)l. It can be shown (9, p.211i) that 

D(k) may be expanded in the following marner. 

-k11 .. 
n k1k1 

D(k) = 1 - + 
kj 

_1 
Let I i . . K , then by Theorem 2, 

{ 

Dn(k)1 < i + nl( + 
n(n-1)2K2 n(n-l) ... (n+1)m/2K 

(21)2 + e (,)2 

Since mm/2 i we may define o0/2 to be 1, and write 



iL 

n ' \ 

< (mt)2(n_m)) 
fl 

or, by ) 

U) V)n(c) < (-j)Oc). 

In the same manner, expand the determinant (k) to et 

n k1+ E jj k+ jj kj kj 
-D(k) LE41 + i1 k+ E k+ k1 

-k11-E11 .. -k11 ' in 
+ . - 

nfn1 -k- -k1 ... -k 

Let )k K and E < , by Theorem 

n(n-l) 2 [(KE)2 .23 

-JJ(k)I < n + 
- (21)2 + 

n(n-l) (n_m+1)mm/2[(K )m - km] 
+ (mt)2 

With the aid of the mean value theorem of differential calculus, write 

(K + E )m = 
E m( K + E. 

)XTh.1 o < < i 
(K+E.)m_Kl< Em(K+6)m 

to get 
m/2 \ n i ntm I 

I 

(k) -D(k)JK E((mI)2 )ii(K 
+)m_1 

m=O\ 
(n-ni) 1/ 

12) jD(k) 



is 

LflITATION OF I(k,y) -D(k,y). 
expanded (9, p.2114) as 

n 

3=1 

kjkkjj 1 

jk ji 3--- 

The determinants Dik may be 

kik k1 

kik k k41 
h- 

kk k1 

to a finite number ol' terris. Since IkI< K, by Theorem 2, 

1) 
33/2 

K3 
K + 2nJ(2 

+ (202 + 

n( n-1) . (n-m+1) (m+1) 
(m+1 )/2m+1 

+ (,)2 

n 

jDikt<KE((nit)2(n_m)t 
J 

or, by 6) 

13) (DikI <4(K). 

Since £(k,y) yD , if lyj< Y, then 

iL') ID(k,y))< YP(x). 

In a nanner analogous to that of deriving inequality 12), 

n k+ Eik kj+ kik k1 

t ik - Dik < 
i Elk / L * + s . 

j=1 kjk+Ejk k3+E kik k4 

to a finite number of terms. 

Theorem !, 

Now ¡k 
) 

': K, ¿e 
) 

E , so by 

J ;.k D1K + 2n ((K)2 y2}+ 

+ n(n-1) . . i (nm+1)(m+1)(1)/2 )m+1 .3a±1] 

(t)2 
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n mt_(i)(11»'2 E (rnt)(n) )+ 
)l - K 

j 

Again, with the aid of the mean value theorem of di'ferential calculus, 

write ( £)" - Km (m+].)(K+6E )m, o < i 
e (m+l)(Ke)m 

Therefore 

n (r+1)/2\ 
TSik - E mo( (m')2(n-m)1 I) 

(m+1)(K+6)m 

jDik_Dikl< £j'(KE). 

If jjÎ< Y, then 

1) J(k,y) -Lj(k,y)J< n!EP'(K+). 

LThITATION OF - xj. The inequalities which will establish 

the proof of Theorem i are, 

11) ID(k)I < l) n' 
12) I(k) -D(k)I< t(K+E), 

lL) tD(k,y)I4 nYp(K) and 

i) IU(k,y) -D(k,y) <. ny q'(K i- E). 

If 

< ,- e1 

substitution of U), 12), iLi) and i) in 10) results in 

6[(K)ys(i+) + (K) '(+ 
16) Ii - x 

1Un( [I(k)I _ '(K 
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which is the inequality of Theorem 1. 

To prove Corollary 1, assume that U(k) is a determinant that 

satisfies the inequality of Friedrichs, i.e. 

17) lrì(k) (1 - k11) 77(k) , where 

TT(k) = i - k11) 

and that 

(1 - k11) TT(k) 
< 9'(k+e) 

then replace (k) in 16) by the right hand side of 17) to get 

+ (i) 
18) 

J 

- 
< (1-k11) ( k)[.)( k) - G ' ( ' 

which is the inequality of Corollary 1. 

To prove Corollary 2, assume that (k) is a determinant that 

satisfies the inequality of Friedrichs, kj< K, (n-l)K < 1, and 
ê( K) 

E <t(y + e) ' 
where 8(K) (1 K)(l - 2K) ... (1 - (n-1)K), 

then 

19) (k) 

Now replace ri(k) in 16) by the right hand side of 19) to get 

- nY + 

2O)Ix_xjI< %(K)[6(K)- Eq)'(K+ 

which is the inequality of Corollary 2. 



N1J1ERIG&L EXMAPL1 

EXU1PI. Consider the system of equations, 

3.99x1 - 2.01x2 + .99x3 = i 

2. 00x1 + 3. O1x - 3. Oli3 = i 

+ 2.00x2 + 3.99x3i 

Rewrite this systeni as 

Ii.. oc1 - 2. OO2 + 1. OQx3 = i 

2.OQ1 + 3.00x2 - 3.oaE3 i 

1.O1+2,OQx+1.OÇ.bc3-1 

Then,n3,K3.99,Yz1,and=102. 

The solutions, by Craners rule, to four places are; 

= .3272 = .1882 X3 .O731 

- .3263 - .189t X3 - .0736 

and 

I j. 
- xii = .0009 

Ix2 " x2J .0012 

k3 - X31 .0002 

Lonsetht s inequality gives, 

Iii-xii < .0052 

i; - x2J < .OlU 

k33I < .0075 

For n = 3, and first approximation, (ouiton writes, 

Ii-xiH [l+ IAiiIJ 



where E is the largest error in the system, A is the non- 

vanishing determinant of the system and is the cofactor of a1 

inn. 

For this example, 

Ik-xiIi' .0052 

Ix2 - 2H .0067 
Ix3 X31 .00LS. 

By Theorem 1, i e. inequality 20), of this paper, and the table 

on the following page, 

I±_xiI< .6)366,i=l, 2, 3 

The example indicates that inequality 20) of this paper does not 

give as close a bound for the maximum value of - xii as the one 

derived by Lonseth, nor the approximation of 1oulton. However, if a 

table of values for the polynomial functions i1(x), P(x) and their 

derivatives were made available, the calculation of 16) would be quite 

easily done. The methods of Lonseth and Moulton require the 

calculation of the determinant of the coefficients in the approximating 

system in addition to n2 cofactors, in Longet, and n in Moulton's, 

of this determinant. Also, the method of this paper gives a bound for 

the maximum value of 
j 

- xjj, for all i 1, 2, - -, n, in a single 

computation. 



TABLE OF VALUES 

)(x) 

(x) X 
(ni (m+1)(m+1'2) 

=o(mt) (n-ni)t 

X 4)3(X) (f)13(X) /23(X) 

. 00 1 0000 3 . 0000 O 0000 1 0000 
o; 1.1576 3.3065 0657 2.298 
.10 1.3309 3.6260 .16% 
.15 1.2Olj 3.985 .3039 3.3621 
.20 1.7269 Li.3039 I8S8 !.I2O6 
2 I.9S31 L.6621 .7166 .6281 
.30 2.2L01 .O338 1.0018 6.9921k 

.3!; 2.15h6 S.La83 1.3h78 3.5220 

.140 2.7351k 5.8157 1.7608 1O.221j3 

.145 3.O36i 6.2261 2.6979 12.1070 

.50 3.2603 6.6195 2.8162 1L.179O 

.55 3.7016 7.0860 3.L735 16.1479 

.60 Li.0671 7.5353 .228O 18.9218 

.65 L..)3%3 7.9977 5.0880 21.6085 

.70 L.867O 8.L73O 6.0626 2Lt.162 

.75 5.3029 8.96]J4 7.1609 27.6527 

.80 5.76314 9.14627 8.3927 31.0262 

.85 6.21493 9.9771 9.7681 314.614147 

.90 6.7613 10.501414 11.2976 38.5160 

.95 7.3000 11.014147 12.9921 142.61482 
1.00 7.8660 11.5980 114.8628 147.01493 

2.00 25.5282 25.3923 110.2359 203.86140 
3.00 59.0325 1414.3826 1413.2961 5314.1414140 

14.00 113.2253 68.5691 1115.22014 1105.7896 
5.00 193.0025 97.9518 21471.1855 2978.9003 
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