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ERRORS IN LINEAR NONHOMOGENEOUS ALGEBRAIC SYSTEMS

CHAPTER I
INTRODUCTION

STATEMENT OF THE PROBLEM. The purpose of this thesis is to
consider a system of linear nonhomogeneous algebraic equations in n
unknowns, Xy, Xp, =~ = = =, X,

% :

gltijxjayi’ i=1,2,-~-==,n,
where the n° coefficients a;4 are subject to error, and to £ind by how
much the solutions Xj, Xp, -~ -~ ~ =, X,,, of the approximating equations

n

T (a35+€35) X3=y3,1=1,2,-==~=, n,

o
may differ from the original xj' 8. BErrors in the coefficients
frequently occur in the application of mathematics to natural phe-
nomena, where they may appear as errors of observation; they may also
arise when decimal coefficients are "rounded off."

EETHOD OF INVESTICATION. This problem has been solved before and
partial or complete solutions may be found in papers by Etherington(3),
Lonseth(5) and Moulton(6). The results of Lonseth and Moulton are
compared with the results of this paper in a numerical example in
Chapter four.

The method of this paper is quite different from those mentioned
above. It follows Tricomi's solution(8) of the analogous problem with
respect to a linear integral equation of Fredholm type and second kind.



Tricomi considered the integral equation for x(s)

1) x(s) - Rr K(s,t)x(t)dt = y(s), 0< s 51,
°

where K(s,t) and y(s) are known functions. Also, K(s,t) is continu-
ous on the square 0 < s,t <1 and y(s) is continuous on 0 < s ¢ 1. The
parameter A is restricted to values such that the Fredholm formula
(95 pe21L) for x(s) holds. If the kernel K(s,t) is replaced by K(s,t),
where

| R(s,t) - K(s,8)|< € , €7 0, and nema11,n
on the square O £ s,t = 1, and if A is correctly réstricted, the

equation
2) Xx(s) - hf K(s,t)x(t)dt = y(s), 0<s <1,
0

is solvable for X(s) by Fredholm's formula. Tricomi derives an expres-
sion which limits the maximum value of

| %(s) -x(s)l s Bty x L,
Suppose D( A ) is the Fredholm denominator for K(s,t), D{ ) ) that for
K(s,t) and

0 (=)= n);o i‘;"; e
If K and Y are upper_bounds for IK(a,t)I and |y(a)| s respectively,
and L= |} [(K + € ), € being some "small" positive mmber, then
Tricomi proves the following theorem:

Tricomi's Theorem. If € is a positive number such that

D

EYry¢? and |K(s,t) - K(s,t)[< € ,

€ <



= Q0w + Llo3(w) + o(L)on
%) - o)l < (3 I SR = s @ €] ©

ﬂnmfﬁdmummﬁwwmmwhmm
in the form | :

833 = S35 =kyg » where
{11:1-3
413 0if 1 # 3.

wmmku'ammm,tmmm

n
N x-L ey

n
k) ;1“:‘;;13;3“71 si=1,2, ===, n,

where By = kyg + €33, €44 "small," are algebraic analogues of the
two integral equations 1) and 2), with A =1,

. It is supposed that the determinants D,(k) and D, (k) of the two
systems are not sero so that both systems can be solved uniquely. In-
stead of the transcendental integral functiom () (x), two polynomials
P n(x) and @ (x) are used, where '

8 nl l'/ 2
5) yalx) 'Z’; (——-33———(“ ("“)z'
and
6 - 2 ni (l*ll(‘*lﬁ 2
T e B );s(m)’f(n-)z 3

When [kys|<Ky; |€35|<€ and |y;|< Y, the principal result of this
paper may be stated as



Theorem 1., If € is a positive number such that

|5, (k)|

MR ST

and if |k'13-k13|<e, then

= n¥ e [ oK) ¢'o(K +€) + Yo(K) otp(k +€)]
1% -=) < =5 @) [T = € ¥y + )]

Corollary 1. If
(a) the coefficients in equation L) satisfy

1-E,42§1|E13|,fw1=1,2,—-,n;
(1 = Byq) T, (k) e < 3
o 6<m¥aﬁ‘—"““"n‘*”ﬂ“m"’§"”ﬂ’

then '
2 w€ [ 5(K) yialK +) + YE) (K + )]
1% = x| < TETmW Fﬁmmn - Eyin(K +¢ )]

Corollary 2. If
(a) the coefficients in equation L) satisfy

n
1-1:‘113%&‘13], for i = 1, 2y ==, n}

Ll %’;{;—%7 , where €,(K) = (1-K)(1-2K).. . (1~(n-1)K),

(n=1)K < 1;

then
51 - w040 910 ) +y(m) pry( +¢)]
1 HCTR®) [ o) - eyl + )

A table of values for (VB(x) s Y 3(1) s @ 3(1) and ¢'3(x) will

be found at the end of Chapter IV.
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AN INBQUALITY OF K.O. FRIEDRICHS.® This thesis includes a proof
of an inequality of K.O. Friedrichs which specifies a positive lower
bound for a certain type of determinant., It is the belief of the
writer that a proof of this incquality has never been published and
the one given in this paper may be new,

REIATED INVESTIGATIONS. JMrs. Adams(l) considers the homogeneous
case, y(8) = 0, of equations 1) and 2) and derives bounds for the
msinﬁaehﬁummmmdecmum
associated with the problem.

Lanseth derives the inequality

7N |R - =< = i gllal 1+ ZI*JI /{" ] ;&I‘yzl}

where A is the nonvanishing determinant of the system
ﬁ. =74 » i=1,2, ==, n,
ﬂ‘ﬁ‘d
X; satisfies the system
n
g(‘ij *eij)xj =y +13, 1=1, 2, ==, n,

thﬁncetactmnflnm'a s and

e 23] | af<e < —iAl—-.

}; gl‘u

1. Suggested by Dr. A. T. Lcmath, Professor of Mathematiecs,
Oregon State College.



CHAPTER II
UPPER AND LOFER BOUNDS FOR A DETERMINANT

In order to prove Theorem 1 essential use is made of an
inequality of Hadamard which specifies an upper bound for a
determinant. A proof is presented below. Also shown in this chapter
is a sufficient condition for a determinant to be not zero and a
sufficient condition for a determinant to be positive or zero. This
enables the writer to prove Friedrichs inequality which gives a
positive lower bound for a certain type of determinant.

INEQUALITY OF HADAMARD. Theorem 2, If D is the determinant
whpse elements are 8534 i,j=1, 2, ===, n, then

P I

i=1 k=1

n
Proof (L, p.3L): Suppose that i:jﬂcnxixj s Where Ci3 = €345
2

is a positive definite quadratic form® and let A be the determinant
whose elements are Cije Then the determinant

€33~ A ©32 - €35
2 €22 ++e Cop
=0

LA I

"
.
.

cnl cnz soe cm_N

is a polynomial of degree n in A ,P,( A). It can be shown (2, p.171)

1. Positive for all real values of the variables x; except for
X) TXp = w00 =X =0,



that Py( A) has n positive roots, Ay, A2, ==, A, and that

n n n
] A3=) eiy and T 3, = 4 . Making use of the fact that the
= = 1=

geometric mean of n positive numbers is less than or equal to the

arithmetic mean, it follows that

n n
2cu
8§ a |-

n

If e44 ) O for all i, then the form

n n
c
 §
e e Bl B T
i, i,J=1
is also positive definite. Applying 8) to this form it follows that
A B s 1,

where AB is the determinant consisting of elements

Bij’ 1’:’ = 1’ 2, R— N NW

Now suppose that the form
n n
Lo, o1 = I eum +aamp + e+t
where

all cee 31n

.

. gD’
31 ++e 3y
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so that cyy =afy +ady + ... +83,. Also, if D# 0, D2 = A is the
determinant of a positive definite form and

43 n
Dz ﬁ ace = 2 2 'R S A 2
€11%22 ®nn Zk;l‘:uc E} J‘Zk i‘:ank

P t 2
D"Tr ‘1]‘0
i=1 =1

SUFFICIENT CONDITION THAT A DETERMINANT BE NOT ZERO. Lemma 1.
If D is the determinant whose elements are 833 i,j =1, ===, n, and

n
o SR =4; ,
| 214 | k#il'ik\ i

then D # 0.
Proof (7, p.672): assume that D = 0, then the system of equations

899Xy * eee tagx, =0

.
L]

R

has a nontrivial solution X1s Xg; ===, X,. Let |x,.| be the
m |%4] 1 =1, 2, ===, n, and consider the rth equation in the
system:

B1X] + eou ¥ By + wus + BpgXy =0

n

%hgﬂm&s
whence

|orr ||%e| = ; (2 || 2| 3 |Ap]| %l

But since |x|> O, this contradicts the hypothesis. Therefore D # O.



POSITIVE DETERKINANTS.. Lemma 2. If D is a determinant whose

elements are a4 49 i,j=1, 2, ==~=, n, and

n
>
a33 =) |agl
. S 84k,
then D Z 0,
Proof (7, p.6Tk): The lemma is obviously true if aj5 = 0 for

i# jJ. Since D is a continuous function of n® variables, D { O by

lemma 1,

INEQUALITY OF FRIEDRICHS. Theorem 3. If D, is a determinant

whose elements are 8i5s i,j=1, ===, n, and

7 n
m-"gl |84 | »
then
N n=1
Dy = a31(a22 = [821]) <eeens (‘nn‘g lank () -

Proof: Consider the determinant

1‘11. ve@yp I‘n a12 QIB- . o..ln a1 ‘12 3130 . olln

. 0 ‘22"‘,‘21’ ‘23.0% ‘21 ,‘21' 0 vea O
< Gl =L:‘.31 2 Yyetiitn “m Yutt

An1***8pnl| 1Pn1 "n2 ans...am 8.n1 anz an3...am

By lemma 2. the second determinant in the sum is positive or zero.
Therefore a7 812 833 eee 3y

2 oy 2227 [321] 223 -+ 22n

&1 %2 2n3 ++* 8nn
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By repeating the step outlined above to the remaining n-2 rows, the
point is reached, after a finite number of steps, where

217 &8s a3 ces By
0 aprlnl % .
" > 0 ¢] ayy-lagpf~[a32]| ... a3
0 0 0
§ : i
0 0 0 % am-glﬂnkl

Q«EDe



CHAPTER III
THE ALGEBRAIC CASE

FORM OF SOLUTION OF ALGEBRAIC SYSTEMS. By Cramer's Rule, if
D (k) #0 and D, (k) # O, then

3 - élkux; =¥
and
— R —
B x - ngl‘:’idxj =y, 1=1,2, =, n,

have unique solutions of the form

i I3Py5 t 3'1513

mey i
e Y ,,(k)
where
1-kyqy  =k3p <es =k3n 1=k, k32 «o. =K1n
1 . ~k.
a0 = "‘21 "‘22 kon m’”n(k)j 21 1‘Ezz » ~Kon
"knl 'knz seol=l, " Enl ’Enz Ak,

Dy) and Djy are the cofactors of 4 = ky) in Dp(k) and 43 - Ky
in D, (k) respectively.

To repeat, the purpose of this paper is to find a bound for

Batksy) p D (k,y)
Dp(k) Dp(k)

9 |%-ml=

where
3 n -
Dh(kyy) = %;.yinia and Eg(k,Y) - E_yiﬁij .



Inequality 9) may be written as

'Dxi:(k:ﬂ lﬁn(k)"nn(k)ll* Dh(k) IDn(k,y)-ﬁi(k,y)I
I'ﬁn(k)I, [Ba(k) | = [Ba(x) - nn<k)||

10) % - x[*

To find a bound for the maximum value of 1k) it will be necessary
to determine bounds for the expressions |D(k,y)]y | T, (k) = D (k)] [0
and | Dy(k,y) = Ba(k,y)|. The following material will develop these
bounds and complete the proof of Theorem 1, Corollary 1, and
Corollary 2.

ERROR IN A DETERMINANT. Theorem L. If D (a) is a determinant
whose elements are a; 5 and ﬁn(a) is a determinant whose elements are
aj + € iy 3 if further

|21« K» |€35] <€ »

then
|Bata) = Do(a)| < n“/"’[(x +e)-x"]

Proof':

B (a) =

By contimuing the decomposition started above, the point is reached

where

€21 320%€gp v Bppt €y

L .
L d .

€nl 2+ €pg +++ 3t Epn

S Syt Cag - Mgt $3p
81 ®29* €2 - Bt Egy

8n) 8ot €pp eee At €y
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Ex My vl a1 +** 3,01 €1n
€g1 8zp ++e 2 :
D (a) =Dy(a) + + oo | . +
énl anz eee ann anl see ln,n_l €m
€ll ]2 ‘13 eee .ln 6 n ese éln
el B G| g :
€ml  n2 %3 *** m € nl *** €

That is, 5n(a) is equal to D (a) plus n determinants in each of which
Just one column of a's has been replaced by the corresponding
€ -colum, plus n(n-1)/2 determinants in which two columns of a's

have been replaced by € 's, etec., Consequently, with the aid of
Theorem 2,

m
[Dp(a)=Dy(a)f < nn/2[nKn- % +‘i‘2‘.'il-)xn-26 2 +...+n(n'1)";(!n“l"’1) € ]
[Ba(a)-Dn(a)] < nn/z[(K +€) - x“] :

LIMITATION OF |B,(k) - Dp(k)|. It can be shomn (9, p.21k) that
Dn(k) may be expanded in the following manner,

-kn voe "’kln
n 1 B k4 ki .
Dp(k) =1 =7 kyg +37 L__ +oeee ¥ 1
i=1 =51 |ky3 kyy .
=Ky eee =kpp |-

Let [k;;| < K, then by Theorem 2,

2
[Pgk)] < 1+ mi + a(p-1)2K  nln=l) ... (n-m%llm‘lzxm
(2) (m?t)

SinceHn‘/z % 1 we may define 072 to be 1, and write



n m/2
nt
[2a)| < ;((nz)ﬁ_‘mn) ;3

or, by 5)
1) an(k” 5 LVn(x)'

In the same manner, expand the determinant Bn(k) to get

n |kijg+ €33 kijr €35 [kig kij

+.Q’

1
D (k) =D (k)| =) €.: +
) = 0,00 = Lesy 47 2

kygt €31 kyg* € 53) [kga k33

-kll‘en see .kln.eh .kn e e -kln
+ L d -

-knrenl see -km-em

Let |k | < K and |€44]< € , by Theorem L,

, 2
D (k) = D(k)| < me + n(n-1) 2 gx%e =] +

(21)
, 2(n=1) ... (o)l 2 (5 )P - ]
(m1)

With the aid of the mean value theorem of differential calculus, write
(K+€e)® - = em(k+6,€)™L, 0<g, <1
(K+€)® - ¥ ¢ em(K +€ )L

to get

m/2

nim

n
[Ba(k) = D) < € g(m) m(x + €)™

or

12) |D,(k) = Dy(k)| < ¢ ok +€) .
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+ The determinants Dik may be

LIMITATION OF |D,(k,¥) = Dylk,y)
expanded (9, P-21)4) as

T 2 kyp kyj Ky,
1
D = - d — k k k - sese
R R A TR
il ko K3 Ky

to a finite number of terms. Since lkijl < K, by Theorem 2,

n(n-1) 332 3

: . znxz 4 . vee
I i.k, <k+ (2‘)} +
, nle-d) ... (n—u+1)§3+1)(n+1)/2xm+1
(m?)
P < % go ((M?{(n-n)g

or, by 6)
13) [Dye| < P plE)-

! n
Since D‘;(k,y) = iZ=:1 Yipij 5y 1f lyi]< Y, then

W) |pitey))< nrdp(x).

In a manner analogous to that of deriving inequality 12),
Kin*t €3 Kyt €33] |kik kij
kot € Eygt €3] |k Ky

n

R

=

+ vee

[Dix = Dixe| < (€] +

to a finite number of terms. Now [kij}< K, }613)46 s S0 by
Theoren L,
Dy = Dype|< € + 20 {(K+€)2~K2}+

, nlo-d) ... (n-(-n:}).%(nﬁ-l)(‘ﬂ)/z {w eyl _ x‘*l}
m
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nt (1) @1)/2
(m1)%(n-m)

'ni;'nik|< ;( )<(K+ eyl _ Knﬂ-l) .

Again, with the aid of the mean value theorem of differential calculus,
write

(o €)™ - 1 = € (m1)(k+0,€ )%, 0<@ <1

(k+ €)1 o g™l ¢ ¢ (me)(k+ €)™ .

Therefore

n (m+l)
Dige = Dage| < }__ (’“ {=r1) /2> € (m#l)(Kk+ € )B

w5 | (m8)Z(n-m)1
Pix = Dyx[ < € 'l e).
If |y3j< Y, then
15) |Bylksy) = Dy(k,y)| < oY € 1 (K +€).

LIMITATION OF |Xj = Xj|. The inequalities which will establish
the proof of '.l'heoren 1 are,

1) |0, < W (K),

12) |Dy(k) = Dplk)| < ey (K +€),

) D))< nre (K) and

15) |BX(k,¥) - Di(k,¥)| < n¥ €@ (K +¢€).
b5 2

[Bn(k) |

substitution of 11), 12), 1L) and 15) in 10) results in

%) B« e [Da0) pralie ) + ) g1y iv o)
e T ATS] [|n,,(k)| - GW'n(K"*e)l X
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which is the inequality of Theorem 1.
To prove Corollary 1, assume that Un(k) is a determinant that

satisfies the inequality of Friedrichs, i.e.
17) Tp(k) = (1 = kyq) 7T (k) , where

i-1
0 = 77 [0 - B -1 Ryl

and that

(1 = kyq) TT,(K)
Y 'nlk +€)

then replace D (k) in 16) by the right hand side of 17) to get

ny € [CP oK) ¢+ €) + Yu(K) @'p(k+ ej
(1‘&11) ﬂn(k{l—ﬂ)m(k) - ¢ wln(K-y e)-l

&<

s

18) | % = x3) <

which is the inequality of Corollary 1.
To prove Corollary 2, assume that En(k) is a determinant that

satisfies the inequality of Friedrichs, rkij\< K, (n~1)K <1, and

(K) :
€ <-—:—x(‘f——)- s where €,(K) = (1 - K)(1 - 2K) ... (1 - (n-1)K),

then
19) D (k) 2 e,(K).
Now replace D,(k) in 16) by the right hand side of 19) to get

o ny € [<D nlk) (Kt e) + ¢ (k) ¢ (K+e)]
20) % - x| < T g (k) ECRITR Hq

which is the inequality of Corollary 2.



CHAPTER IV
NUMERICAL EXAMPLE

EXAMPIE. Consider the system of equations,
3.99%7 = 2.01xp + .99!3 =]
2,00xy + 3.01xp = 3.01x3 =1
1.01xy + 2.00xp + 3.99x3 =1
Rewrite this system as
L.00xy ~ 2,00x3 + 1.00x3 = 1
2.00x; + 3.00xp - 3.00x3 = 1
1.00%; + 2.00%y + L.00K3 = 1
Then, n =3, K =3.99, Y=1, and € =107,
The solutions, by Cramer's rule, to four places are;

X, = .3263 X, = .1894 Xy = .0736

and
|%; - xp| = .0012
Lonseth's inequality gives,
|%; = x| < 0052
|%; - x5) < o111
Ix3 = X,| < L0075
For n = 3, and first approximation, Moulton writes,

e~ gifoe s ) [ 2 ).
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where € is the largest error in the system, A is the non-
vanishing determinant of the system and Aji is the ct{f&cter of 843
in A,

For this example,

| % = xq| ~ ,0052

| %, = xp| ~ 0067

| %5 = x3| ~ .00LS.

By Theorem 1, i.e. inequality 20), of this paper, and the table
on the following page,

I'x'i-xil< HUb6, i =1, 2, 3.

The example indicates that inequality 20) of this paper does not
give as close a bound for the maximum value of |X; - x;| as the one
derived by Lonseth, nor the approximation of Moulton. However, if a
table of values for the polynomial functions y (x), ¢n(x) and their
derivatives were made available, the calculation of 16) would be quite
easily done. The methods of Lonseth and Moulton require the
calculation of the determinant of the coefficients in the approximating
system in addition to n® cofactors, in Lonseth's, and n in Moulton's,
of this determinant. Also, the method of this paper gives a bound for
the maximum value of [X; - x3|, for all 1 =1, 2, = - -, n, in a single

computation.
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= A nt n“/ 2
va® = ()
ni (ml)("" 1)/ 2) .
X)) =X
Pulx) Z ( (m !)2(n-u) 1

i 3(x) ¢' 3(x) ¢ 5(x)
1.0000 3.0000 0.0000
1.1576  3.3065 <0657
1.3309  3.6260 .1655
1.5204 3.9585 .3039
1.7269 L.3039 11858
1.9531 L.6624 . 7166
2.2401 5.0338 1.0018
2.L5h6 5.1183 1.3478
2.7354 5.8157 1.7608
3.036L 6.2261 2.6979
3.2608 6.6L95 2.8162
3.7016 7.0860 3.4735
L.0671 7.5353 4.2280
L.1553 7.9977 5.0880
4.8670 8.L4730 6.0626
5.3029 8.961L 7.1609
5.763L 9.4627 8.3927
6.2493 9.9771 9.7681
6.7613  10.50L4kL 11,2976
7.3000  11.0L47 12.9921
7.8660  11.5980 1);.8628
25.5282  25.3923 110.2359
59.0325  L4.3826 113.2961
113.2253 68.5691 1115.220L
193.0025  97.9518  2L471.1855

TABLE OF VALUES

¢'5(x)
1.0000
.2598

L. h206
5.6281
6.992L
8.5220
10.2243
12,1070
14.1790
16.L4479
18.9218
21.6085
2L.5162
27.6527
31.0262
3L.6LL7
38.5160
L2.6L82
L7.0493
203.86L40
53h.4LL0
1105.7896
2978.9003

20
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