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NOMENCLATURE

a absorption coefficient

a Planck mean absorption coefficient (Eq. 4.3)

A area

An spatial coefficients in the spherical harmonic angular

distribution of intensity

nondimensional emissive power (Eq. 4.10)

C speed of propagation of light

Cp specific heat

D diameter

eb blackbody emissive power

I radiation intensity

Ib blackbody intensity

I
o zeroth moment of intensity (Eq. 2.19)

Li first moment of intensity (Eq. 2.20)

Iii second moment of intensity (Eq. 2.21)

k thermal conductivity

k turbulent (eddy) thermal conductivity

Li direction cosine (Fig. 2.2)

L participating media thickness

N Stark number (Eq. 5.1)

P
n

associated Legendre polynomials

q heat flux

Q heat transfer rate

QR nondimensional radiation heat transfer rate (Eq. 4.5)

OT nondimensional total heat transfer rate (Eq. 5.3)

r aspect ratio

R intensity location (Figure 2.2)

S radiation path length

T temperature

U x-direction velocity component

V y-direction velocity component



W z-direction velocity component

x- spatial coordinate in i direction

Greek Symbols

nondimensional emissive power (Eq. 4.4)

Sid Kronnecker delta

E.
1

emissivity of surface i

Eg total gas emittance (Eq. 4.2)

nondimensional optical distance

0 elevation angle (0 < 0 < n)

H nondimensional temperature (Eq. 5.2)

K extinction coefficient

X wavelength

a Stefan-Boltzmann constant

a
s

scattering coefficient

ti nondimensional optical distance

T
o

optical thickness (Eq. 2.9)

0 azimuthal angle (0 < 4 < 2n)

scattered intensity phase function

w solid angle-scattered radiation

wi solid angle-incoming radiation

o
scattering albedo (Eq. 2.8)



IMPLEMENTATION AND EVALUATION OF A PARTICIPATING

MEDIA RADIATION MODEL IN THE TEMPEST

THERMAL-HYDRAULIC COMPUTER CODE

1.0 DESCRIPTION OF PROBLEM

1.1 INTRODUCTION

The study of energy transfer through media that can absorb,

emit, and scatter radiation, otherwise known as participating

media radiation, has received increased attention in the past two

decades. This interest stems from complicated phenomena

associated with such diverse fields as rocket propulsion,

combustion chambers, energy conservation, nuclear fusion, and

cyrogenics. The mathematical difficulties involved in solving

problems in these areas are substantial, since the basis for

analyzing a radiation field in participating medium is the

equation of radiative transfer (Sparrow and Cess 1978), which is

an integro-differential equation written in terms of the radiative

intensity. Simplifying assumptions must be made before a

tractable problem is obtained.

The problem is further complicated when it is considered that

most practical engineering problems do not involve radiation as

the only mode of heat transfer but in combination with conduction

and convection. In addition, the geometries involved in many

practical problems must be modeled in three dimenisions to provide



reasonable results. Therefore, a need exists for a method which

will solve thermal-hydraulic problems involving participating

media radiation in three dimensions.

1.2 OBJECTIVE

The objective of this study is to implement a method for

solving the differential form of the radiative transfer equation

into an existing three-dimensional thermal-hydraulic computer

program. The results of this model for both radiative transfer

and combined mode problems are then compared against analytical

solutions and experimental data to determine the level of accuracy

and limits to its applications. The radiative transfer equation

is simplified by using a differential approximation to make it

compatible with the formulation of the thermal-hydraulic code

equations. The resulting expression is cast in a finite-

difference form which is solved numerically. The TEMPEST computer

program was selected as the base thermal-hydraulic computer code

to be modified.

To accomplish the above objectives, the following chapters

will be presented as two basic subsections: 1) the approximate

radiative transfer equation formulation and implementation in

TEMPEST, and 2) comparison of code results with existing

solutions.
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2.0 DEVELOPMENT OF THE SOLUTION METHOD FOR RADIANT

ENERGY TRANSFER

2.1 INTRODUCTION

A description of the problem of radiative transfer in an

absorbing, emitting, and scattering medium along with possible

methods of solution are presented in this chapter. Included in

this chapter are: 1) the development of the equation of radiative

transfer, 2) a discussion of the possible approximations used to

simplify the radiative transfer equation, and 3) a description of

the formulation resulting from the P-1 approximation.

2.2 EQUATION OF RADIATIVE TRANSFER

The transfer of radiant energy is described in terms of

radiation intensity, Ix, which is defined as the radiation energy

per unit time, per unit of projected area and per unit solid

angle. The subscript x indicates a dependency on wavelength. An

equation of transfer describes the intensity of radiation at any

position along its path through an absorbing, emitting and

scattering medium. The derivation given here is similar to that

found in Siegel and Howell (1980). Figure 2.1 illustrates the

geometry used in the derivation.

As thermal radiation passes through the medium, the intensity

may change due to several different effects:
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Intensity
Absorbed by av

Intensity Scattered
into S Direction

I(S + OS)

Intensity Emitted from ay
into S Direction

I(S)
Intensity in S Direction

Scattered into Other Directions

Absorbing, Emitting and
Scattering Medium

Figure 2.1. Geometry for derivation of equation of transfer

a) The intensity is reduced due to absorption of radiant

energy by the medium.

b) The intensity is reduced as a result of scattering by

the medium in other directions.

c) The intensity is increased because of emission of

radiation from the medium.

d) The intensity is increased by energy scatterd by the

medium into the direction of interest.
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As radiation passes through a medium, the reduction in

intensity due to absorption and scattering has been found to

depend on the magnitude of the local intensity, Ix. If a

coefficient of proportionality, KX, is used which is dependent on

the local properties of the medium, the decrease in intensity per

increment as of path length S is given by

dI
XK

= -K (S)I (S)dS (2.1)

The coefficient KX, also known as the extinction coefficient, is

the sum of an absorption coefficient, ax, and a scattering

coefficient, as.

If the radiation is in local thermodynamic equilibrium, the

spontaneous emission contribution by the medium along the path

length dS to the intensity in the S direction is given by

dI
Xe

= aX(S)IXh(S)dS (2.2)

where I
Xb

is the black-body intensity.

The increase in intensity due to incoming scattering in

direction S can be written as
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asxdS
dIxs f VS .WX.,w )dwi

4n
$wi (2.3)

wherewand
wi

are the solid angles for scattered and incoming

radiation and the phase function cm (X,w,wi) has the physical

interpretation of being the scattered intensity in a direction

divided by the intensity that would be scattered in that direction

if the scattering were isotropic.

When these terms are combined in the form of a radiant energy

balance and include transient effects, the following integro-

differential equation is obtained

1
dI
x

dI
X

a
sX

at dS KXIX aXIXb 47 I dwi

m 4n A.

(2.4)

For most engineering applications the complexity of this

equation is prohibitive. An exact solution may require

integrations with respect to time, position, wavelength, and

direction. Usually, steady-state conditions may be assumed since

the speed of propagation, c, is very large and the intensity field

can adjust almost instantaneously for most practical problems. To

further simplify the analysis, the medium properties may be
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assumed independent of wavelength (i.e., gray medium) and also

independent of position (i.e., temperature and pressure). The

radiative properties of most materials vary as a function of

wavelength, therefore the gray medium assumption implies that

calculated average values of these properties will adequately

describe the associated physical phenomenon. In addition, it is

often assumed that the scattering mechanism is isotropic. With

these assumptions it is therefore obtained:

a
x
(S) = a

a (S) = a
ssx

D (7, ,w ,w = 1.0

Applying these simplificatons, Equation 2.4 becomes

dI Jus- s
j- KI + alb + Idw.

14n

(2.5)

(2.6)

Sometimes it is more convenient to write this equation as
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0
oI dI

Ts- = - I + (1-00)% 4 T. f Idw4

n n

where Q
o

is the scattering albedo defined as

Qo = as /(a + a
s
).

(2.7)

(2.8)

2.3 APPROXIMATE METHODS OF SOLUTION

As stated in Section 2.2, the equation of radiative transfer

is an integro-differential equation and, therefore, exact

solutions for all but the most simple problems are nearly

impossible to obtain. Therefore, some additional simplifying

assumptions must be made before this equation can be used to solve

practical problems. Two simplifications have already been made in

the derivation presented in Section 2.2, the gray-medium and

steady-state assumptions. Other assumptions which may further

simplify the equation are made with regard to the optical

thickness of the problem or the angular distribution of the

intensity within the medium.

One of the most important dimensionless parameters associated

with radiation-participating medium is the optical thickness of
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the medium. Letting L be the characteristic physical dimension of

a particular problem and K the extinction coefficient of the

medium, the optical thickness is defined as

'co = KL (2.9)

The optical thickness is a measure of the ability of a given path

length of gas to attenuate radiation.

One of the limiting cases with regard to optical thickness is

the case where T >>1, also known as the optically thick or

diffusion approximation. The assumption is that the optical depth

of the medium is sufficiently large, and the temperature gradients

sufficiently small, that the local intensity results only from

local emission. In other words, every element of the medium is

directly affected only by its neighbors and, as in the case of

thermal conduction, the radiation transfer within the medium is

assumed to be a diffusion process. More specifically, the

radiation flux in a particular direction is given by the

expression (Siegel and Howell 1980)
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4a 4N 4

(IR 3K
V(T = - grad eb

e
b

= aT
4

(2.10)

where eb is the black-body emissive power.

Consider the opposite extreme of To<<1 which is referred to

as the optically thin approximation. The medium in this case is

assumed to have such a low extinction coefficient that the

intensity does not vary along a path within the field. Therefore,

every element of the medium exchanges radiation directly with the

bounding surfaces, such that there is no radiative interaction

between adjacent elements.

For most practical problems involving participating media,

the optical thickness lies in the intermediate range between these

two extremes. Therefore, use of either of these assumptions would

severely limit the generality of the solution method.

An alternate method for simplifying the radiative transfer

equation is to assume a given angular distribution of the

intensity within the medium. This assumption essentially reduces

the integro-differential equation of transfer to a differential

form while retaining all the terms in the equation. Typical
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approximations for the intensity distribution include the Milne-

Eddington and Schuster-Schwarzschield approximations (Ozisk 1973),

the discrete ordinate approximation (Chandrasekhar 1960), and the

spherical harmonics approximation (Siegel and Howell 1980).

The Milne-Eddington and Schuster-Schwarzschield

approximations divide the intensity field into hemispherical

components which are each assumed to be isotropic but which may be

of different magnitudes. The discrete ordinate approximation

extends this method by dividing the intensity into mean components

from several discrete directions. In the spherical harmonics

method, the angular distribution is represented by an infinite

series of spherical harmonics. The series representation is

terminated after a finite number of terms depending upon the

desired order of approximation.

The method chosen for this study to simplify the integro-

differential Equation 2.7 is to specify the angular distribution

of intensity using the spherical harmonies method. Experience has

shown that the spherical-harmonics method can produce reasonably

accurate results with a relatively simple solution procedure

(Siegel and Howell 1980; Ratzel 1981; and Bayazitoglu and Hiegenyi

1979).

2.4 FORMULATION OF THE P-1 APPROXIMATION

The equation for radiant energy transfer derived in

Section 2.2 is
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1 dI 0
- I + 1-0 I + f Id1 w.

0) b 4/t
4n

(2.7)

The total derivative for the direction R can be transformed

into three orothogonal spatial components for a three-dimensional

representation using the expression

d/dR = /
1

o/ox
1

1
2
Vox

2
+ /

3
Vox

3
(2.11)

A A A

where x1, x2, x
3
are the coordinate directions and / /

2'
/
3

are

the direction cosines.

For instance, in a Cartesian system this would be

d/dR = cos e Vox]. + sinecos(0 8 /8x2 + sine sin 8 /ox3 (2.12)

where the direction cosines are defined in Figure 2.2.

Using this notation, Equation 2.7 becomes
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xi
A /

/ R

/
/
/ Direction Cosines

x3 2 = cos()0.
Reference
Coordinate

22 = coscOsino

x2 System 23 = sincOsine

Figure 2.2. Cartesian coordinate system and direction cosines

3

1 1i 8I/8x.
1

+ I = (1-52 0) I

b
+ Q /4n

iw
f Id

i=1 4n
(2.13)

with I = I(R,e,4) , Ih = Ih(R).

An expression for the angular distribution of intensity is

required to solve Equation 2.13. In the spherical harmonics

expansion technique used here the intensity distribution is

expanded in an orthogonal series of spherical harmonics of the

form:
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n

I(R,0,4) = X X PkII(R)Yrit0,0)

n=0 m=-n

where A
n
(R) are a set of position dependent coefficients

and Y
m
(0,4) are the normalized spherical harmonics given by

4n

2
r14-1

(n
m)!11 /2 eim4)Pm (coSe)

(n+m)!-

(2.14)

(2.15)

The P
n

(coso) are the associated Legendre polynominals of the

first kind (Wylie 1960), defined by

1 2*
1 , m 1n4m0-1 7 r(m4-1/2)k(n+mi-l)kPm (cos(); 1/9 \Sine) r Rf3/2 ku(114-3/2)1(

It."" ' k=0

* sin [(ni-mi-2k+1)e1} (2.16)

where r(c) is the gamma function, and the notation (a)k is

Pochhammer's symbol



15

(a)0= 1 a A 0

(a)k= a(m41)(a4-2)...(a+k-1).

Table 2.1 defines the associated Legendre polynominal expressions

for positive n=0 through n=3.

Since the expression for the angular distribution of

intensity is an infinite series, it must be truncated after a

finite number of terms to obtain a usuable expression. The P-N

approximation follows when one terminates the series such that:

AT1(R) = 0 for n > N (2.17)

In the limit as n+., the P-N representation for the intensity

becomes exact. However, for practial problems, the number of

terms in the expansion multiplies dramatically with increasing N

so that a small value for N is required to obtain a manageable

expression. As discussed in Chapter 1, work in the field of

radiant energy transfer has generally involved the P-1 and P-3

approximations. The even P-N approximations have not been used

because of the difficulty in obtaining usable boundary conditions

(Marshak 1946).
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n

Table 2.1. Associated Legendre Polynominals

(P.11 (cos 0)

m=0 m=1 m=2 m=3

0 1.0

1 cos() sine

2
3cos

2
0 - 1

2
3cosesine 3sin

2
0

3
5cos

3
0 - 3cose 3 2

2
(5cos 0 - Usine 15cosesin20 15sin3

2
0

The amount of computational effort required and the

complexity of the numerical formulation are strongly dependent on

the P-N approximation selected. If the P-1 approximation is

selected, the solution of one second-order differential equation

with the appropriate boundary conditions is required. If the P-3

approximation is selected, four coupled second-order differential

equations with more complex boundary conditions must be solved

simultaneously. This model will be used primarily to calculate

the contribution of radiant heat transfer to problems where

conduction and convection heat transfer modes are dominant, and

computational speed is an important consideration. The P-1



approximation was therefore selected. With this approximation,

the radiative intensity is assumed to have an angular distribution

of the form

I(R,04
1

) [A°° /3A
o

cose - /3/2 sine (A
1

- A
-1

) cost
2n 1 1 1

-
+ j (A11 + Al

1
sins)] (2.18)

where A
n
(R) are the coefficients expressed as functions of

position.

In applying the P-1 intensity distribution it is useful to

express the spatially dependent coefficients erli(R) in terms of

moments of intensity. This is achieved by multiplying both sides of

Equation 2.18 by powers of the direction cosines (/i, i=1, 2, 3)

individually or in a combination and integrating the resulting

expression over a solid angle of 4n. The moments are defined as

follows:

I (R) = f I(R,w)dw
0

w=47c

(2.19)

17



18

Ii(R) = f i4I(R,w)dw
w=4n

A

I..(R) = f /414I(R,w)dw
ij

w=41E

I
ij...K

(R) = f xi /j .../
K
I(R,w)dw

w=4n

(i= 1,2,3)

(i,j=1,2,3)

(i,j...K=1,2,3)

(2.20)

(2.21)

(2.22)

The change from using coefficients eri to moments of intensity

is made because the first three types of moments have physical

significance. The zeroth order moment, Io(R), divided by the

speed of light, gives the radiation energy density. The first

moments, Ii(R), are the radiative fluxes in the i coordinate

directions. The second moments, Iij(R), divided by the speed of

light, comprise the radiation stress and pressure tensor,

analogous to the elements of the stress tensor in fluid dynamics

(Siegel and Howell, 1980). The higher order moments have no

specific physical significant and are generated by analogy with

the first three.
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The relationships between the coefficients Am and the moments

of intensity are obtained by substituting Equation 2.18 into the

expressions defining the moments of intensity and integrating.

This procedure is described in Appendix A. The resulting

expression for intensity in terms of moments is

I(R,0,0) = 1/4n [I0+3I1cose+3I
2
sine cost ) + 31

3
sinOsin4] (2.23)

The equation of transfer is transformed into a series of

partial differential equations in terms of the moments by

multiplying the equation of radiant transfer (Equation 2.13) by

powers of the direction cosines (9.1,i= 1,2,3) and integrating over

all solid angles w. By simply integrating Equation 2.13 and

noting that Ib is independent of angle, the definitions for To and

Li are used to obtain

3

01./8x. = a [4nIb- 1o]
i=1

(2.24)

Multiplying Equation 2.13 by /i(j=1,2,3) and integrating

gives the first-order moment equation



20

3

f i4i0i/oxdw = a [I f i.Idw]
'kg 4n ' '

1 b 4n j

which can be written as

3

1 oI..(R)/ax. = -a I.(R)
i=1 13

1 3

(2.25)

j=1,2,3 (2.26)

This procedure is continued to generate, for example, the nth

order moment equation of the form

3 6'
k
n

i

(R)

1 - -a Ikn(R)
i1 u 1

k=1,2,3 (2.27)

By continuing the process an infinite set of moment equations can

be generated as n÷..

The next step is to approximate the infinite set of moment

equations by a finite set. When such a truncation is carried out,

there will in general be fewer equations than unknowns. The

governing equations for the P-1 approximation are



3I
1
/ox

1
+ 61

2
/ox

2
+ aI

3
/ox

3
= a 14.11I - I

6I
11

/ax
1
+ al

21
/ax

2
+

31
/ox

3
= -KI

1

3/12/3x1 aI22/ax2 oI32/ox3 = -KI2

13
tax

1
+ 6'

23
/ox

2
+ aI

33
/ox

3
= -KI

3

(2.28)

(2.29)

(2.30)

(2.31)

To close the set of equations, the expression for intensity

in terms of Am is substituted into the first three moment

equations to give

I
o = 2/it A°

I = 2/3 in A
o

8.Iii
0 ij

(2.32)

(2.33)

21
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where sij is the Kronecker delta. Eliminating A
o

by combining the

two expressions gives the closure condition

I
ij

= 1/3 8ij I
0 2.34

When the closure condition is applied to the governing

Equations 2.28 through 2.31, the equations simplify the four

first-order partial differential expressions in terms of I0,

I
2'

and I
3.

aIl/axi + aI2/ax2 + a13/ax3 = a [4nIb - 10] (2.35)

I1 = 1/3K aI /ax
1

(2.36)

I? = 1/3K 610/ax2 (?..37)

1
3
= 1/3K aIo /ax3 (2.38)
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Note that the radiative heat transfer in the xl, x2, and x3

directions are defined by Equations 2.36 through 3.38.

A single second-order partial differential expression in

terms of I
o is obtained by substituting Equations 2.36-38 into

Equation 2.35 to obtain

1
a.

2
I
o

6
2

1 a
2

Ir
L 2

2 + 2] = - a 14nIb- I
o
]

ox
1

8x
2

8x
3

(2.39)

This equation is specifically for the Cartesian coordinate

system. If vector notation is used the equation takes the general

form

1/307
2
10 = -a [411Ib- 1o] (2.40)

This equation is the approximate form of the radiant transfer

equation applicable to participating media, simplified using the

P-1 approximation.

Solution of Equation 2.40 requires a set of appropriate

boundary conditions. Several approaches have been developed to

obtain boundary conditions for the spherical harmonics method

(Davison 1958). The method chosen was proposed by Marshak (1946),



who suggested that the exact boundary condition should be

satisfied in an integral sense.

The appropriate boundary conditions are derived by

considering a gray boundary Aj that is perpendicular to the xj

direction as shown in Figure 2.3. The net radiative energy

leaving Aj in the positive xj direction is

4
q
w J J

= e.aT. + (1-e
j
)q

1
q
i

= e.III - e.qi
j b J 1

(2.41)

that is, the sum of the emitted energy plus the reflected energy

minus the incoming flux, qi. to use this expression the incoming

flux must be expressed in terms of intensity or its moments. This

is done using the expression

ci- = .f I 40
1

51.j

.

where 1.
J

is the cosine of the angle between I and the x

direction.

(2.42)
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Xj 0

Xj

q Incoming
q Emitted = EjuTj4

q Reflected = (I-Ej) qi

qw = q Emitted + q Reflected - q Incoming
= Ejo-Tj4 + (I-Ej) qi - qi

Aj, Ej, Tj

Figure 2.3. Coordinate system showing heat fluxes in the boundary
condition

The expression for the intensity in terms of its moments is

I = 1/4n + 3I1cose + 3I2sinocoso + 3I3sinesin4l (2.23)
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As an example, assume the boundary surface is normal to the

xl direction. The integral expression for qi then becomes

1
qi = ff 7r;. Do + Eicoso + 3I2sinecos4 + 3I3sinesino] cososinededo

Substituting this into Equation 2.41 yields

qw = ejlab - ej [I0/4 - 11/2]

= ern [I
b

- I
o 3
/4n] + e. I1 /2

(2.43)

(2.44)

Recall that I
1

is defined as the radiative flux in the xl

direction. Therefore
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qw = ern [I - I /4n1 + E.J q

w
/2

q [1 - e./2] = ern [I
b

- I
0
/4n]

2e .n
q =
w 2 -e.

/

b
- I0 /4n]

-
2(2-e.)

[4nI
b
- I

0
]

(2.45)

Note that the boundary condition is stated in terms of the

first moment of intensity, 10, and is therefore compatible with

the approximate form of the radiant transfer equation

(Equation 2.40).
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3.0 IMPLEMENTATION OF THE RADIATION MODEL

3.1 INTRODUCTION

This chapter describes the implementation of the radiation

model derived in Chapter 2 into a three-dimensional thermal-

hydraulic computer code. Included in this chapter are: 1) a

description of the TEMPEST computer code, 2) a derivation of the

numerical equations used to represent the radiation model and 3) a

description of the numerical methods used to solve the equations.

3.2 A BRIEF DESCRIPTION OF THE TEMPEST CODE

3.2.1 General Description

The computer program which was selected to incorporate the

participating medium radiation model was the TEMPEST(a) code

(Trent, Eyler and Budden, 1983), developed by the Pacific

Northwest Laboratory for the U.S. Department of Energy. TEMPEST

is a transient, three-dimensional, hydrothermal computer program

that is designed to analyze a broad range of coupled fluid dynamic

and heat transfer problems. The equations governing mass,

momentum, and energy conservation are solved using finite-

difference techniques. Analysis may be conducted in either

cylindrical or Cartesian coordinate systems. The TEMPEST

(a) Transient Energy, Momentum and Pressure Equation Solution in
-Three dimensions
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cylindrical or Cartesian coordinate systems. The TEMPEST

technical approach is based on techniques standard to

computational fluid mechanics; however, it contains the unique

feature of fully coupled hydrodynamic and solid material heat

diffusion solutions. The energy equation is treated implicitly in

time using an implicit continuation procedure, and the code can be

used specifically to solve heat conduction problems.

A large amount of testing, assessment, and validation has

been conducted using TEMPEST, which was performed to assure that

solution logical procedures are working correctly and that the

physics are modeled properly (Eyler, Trent and Rudden, 1983).

This work represents an extensive assessment and validation of the

TEMPEST code.

Because TEMPEST is structured with considerable generality,

is user oriented, and is applicable to a wide range of

hydrothermal problems, it is a valuable hydrothermal design

analysis tool for many areas of practical interest. However, the

usefulness of the TEMPEST code would be considerably enhanced with

the addition of a general thermal radiation model.

3.2.2 Description of the Energy Solution

The equation used in the TEMPEST code to describe the

conservation of thermal energy for incompressible flow is:
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where

c ri..1. L.A._ (ROUT) + 1--- (WT) + A (VT)]
t'o Lot Rp aR

Rs bx
az

. L L__ (,RP Lr) .1. _L t_ t, OTI 5 I OTN , A

RP aR
oR

R
20 ox \- oZi R ka -677 w

a = k+ kT

k = thermal conductivity

k
T

= turbulent (eddy) thermal conductivity

c = specific heat

1!) = volumetric heat generation rate

U,V,W = velocity components in the x, y, and z directions

S = 1 for cylindrical coordinates

S = 0 for Cartesian coordinates

Since this equation and all the other scalar transport equations

have the same form, a general solution procedure is developed and

implemented in TEMPEST. The method chosen to solve these

equations is the Douglas and Gunn three-step algorithm (Douglas

and Gunn, 1964).

The expression derived in Chapter 2 to describe the transport

of radiant energy was formed in terms of radiation intensity and



its moments. Since the intensity has units of temperature to the

fourth power and the thermal energy equation is expressed simply

in terms of temperature, an implicit treatment of the radiant

energy absorbed by the fluid is not possible. Therefore, a

separate solution of the radiant energy equation is performed

sequentially with the thermal energy equation using the most

recent fluid temperature field. The resulting energy absorbed by

the fluid in each cell is then explicitly added to the source

term, Q, of the thermal energy equation before proceeding further

with the thermal solution.

3.3 IMPLEMENTATION OF THE SOLUTION METHOD

3.3.1 Description of the Numerical Equations

As mentioned before, the equations which are numerically

solved in the TEMPEST code are cast in a finite-difference form.

For the two solutions to be fully compatible, the differential

equation derived to represent the transfer of radiant energy in

participating medium must be expressed using similar differencing

procedures. The same is also true for the boundary conditions.

Recall that the final equation derived in Chapter 2 was

1/30
2

I
o

= -a [4.7tI
b
- I

o
]

where Io is the zeroth-order moment of the intensity.

(2.40)
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Remember also that the first moments, 1i, are the radiative

fluxes in the i coordinate direction, and are related to I0 by the

expressions

Ii = -1/3K 5'
o 1
/ox. = -1/3KvI

o

(2.36-38)

Note that Equation 3.1 is simply a form of Poisson's

equation, which describes a diffusion process with a source

term. A familiar analogy would be that of energy transport by

means of thermal conduction,

q = - kvT (3.2)

The temperature gradient in Equation 3.2 is replaced in

Equation 2.36 by the spatial derivative of Io as the driving force

and the thermal conductivity, k, is replaced by the term 1/3K.

This is significant because extensive effort has gone into the

development of conventional numerical solution schemes for

problems of this form in three dimensions.

To derive numerical equations representing this differential

equation, the medium of a particular problem is divided into a

finite number of control volumes or cells. An example of such a



cell in the Cartesian coordinate system is shown in Figure 3.1. A

radiant energy balance is performed on the cell and the

derivatives in each term are replaced by finite-difference

formulations. For example, the amount of radiant energy leaving

the face of the cell in the positive x-direction is

1
asI

o]
Qx = dA = dydz [Tc

The derivative is replaced by

OI
o

[I0 - I .]
1+1 0

ax 1/2 LAx
i+1

+ Ax j

therefore

2 AyAz
Q
x 3k [6x1.

+1
+

[-I
o 1+1 o i

= K. [I
1.

I .1
0 +1 o 1-

(3.3)

(3.4)

(3.5)
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Y, j

Z, k

Figure 3.1. Computational cell in the Cartesian coordinate system

where

2 AyAz
K. ,--

1 ..11C

1

LAX.
+1

+ Ax.J

Equivalent expressions can be derived in the y and z

directions.

A separate expression is required when the medium cell is

bounded by a wall cell. Recall that the new radiative energy flux

leaving a particular wall is given by the expression

e.

q2(2 ) [4"Ib" '01'1w -E.
J

(2.45)

where I
o
* is the value of the first moment of intensity

immediately adjacent to the wall. In this case, there is no



derivative to be represented and the expression is analogous to a

wall heat transfer coefficient. To calculate the total heat

entering the cell from the wall, the radiative resistance from the

cell boundary to the centerpoint must be accounted for.

Therefore,

where

AyAze.

x 2(2-e.)
4TEI

b
-I

o
*1

= H
i
* [411I

b
- I

0
*]

AyAze.
H.

2(z-e)

nyAz
0 = ri * - 1
x Ax' . o 0-

= K
i
* [I

0
* - I 1

o-

(3.6)

(3.7)
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where

K.* nyAz
3KAx.

Combining Equations 3.6 and 3.7 we obtain:

where

Qx = Ki
b
- I

o
] (1.8)

K. = + I
-1

H.* K.*-

3KAxi 2(2 -s.) -1

AyAz [ 2 e ]
J

The source term in the equation has the form

q ' = -a [4nI
b
- I

o
] (3.9)

where a is the absorption coefficient and lib is the blackbody

intensity of the medium. This term represent the volumetric rate

of radiant energy absorbed by the medium and converted into

thermal energy. Therefore, this is the connection between the
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radiant energy solution and the subsequent thermal energy solution

for the medium. The amount of radiant energy absorbed, as

calculated by this term, is added to the source term of the energy

equation before solving. If the absorption coefficient is zero,

the two equations are independent for the participating medium

portion of the problem. The total amount of radiant energy

absorbed by a cell is given by the expression

where

QA = qA V = a [4nIc Io] AxAyAz (3.10)

= K
A

[47a
b
- I ]

KA = a AxAyAz

When a radiant heat balance is performed on each

participating medium cell, a set of n linear equations are

obtained, where n is the number of cells in the medium. These

equations may be expressed in the matrix form

[K]{ I0} = {S} (3.11)
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where [K] represents the radiant energy connections and

{S} includes all the terms involving the blackbody intensity,

3.3.2 Solution Procedure

The solution to the P-1 form of the radiant transfer equation

is performed in subroutine PRAD, specifically designed for the

TEMPEST code. A flowchart of subroutine PRAD is shown in

Figure 3.2. The subroutine can be divided into three sections.

a) setting up the matrix equation (Equation 3.11)

b) solution of the equation to obtain the [Is] array

c) calculation of the source term contributions to the

thermal energy equation

In the first section Equations 3.5, 3.8, and 3.10 are used to

set up the matrix equation

[ K] = {S} (3.11)

Unless temperature dependent radiation properties are used, the

array [K] will remain constant for a particular problem. The

array {S}, however, is highly temperature dependent and must be

recomputed each time the thermal solution is updated. The
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Flow Chart

Call Prad

Calculate
Connection
Coefficients

Set up
Connection

Matrix

Begin
Iterative

Procedure

Yes (Every 5th Iteration)

Perform LSOR
Iteration in
all Three
Directions

Calculate
Energy Contribution

to Each Cell

4
Return

Calculate
Residual

Errors

4
Set up

Rebalancing
Solution

Add Corrections
to Solution

Figure 3.2. Flowchart for Subroutine PRAD
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subroutine has the capability of setting up the problem in both

Cartesian and cylindrical coordinate systems.

As mentioned earlier, one attractive feature of the P-1

approximation radiation model is that the resulting governing

equation takes the form of Poisson's equation. For a problem in

three dimensions, this equation may be solved by several different

numerical methods. A description of some of these methods is

found in Trent and Welty (1974). The numerical solution procedure

selected for use in subroutine PRAD is the line successive

overrelaxation (LSOR) method (Ames 1977). The LSOR method

proceeds by dividing the region of interest into lines pointing in

one direction. Each line is solved for separately using a

tridiagonal matrix. The region is then divided into lines in

another coordinate direction and solving as before. One iteration

consists of completing this procedure in all three coordinate

directions. For this reason, the LSOR method is designated as an

alternating direction implicit (ADI) method. The acceleration

factor selected for use in PRAD is 1.20.

Once the problem has converged, the array 001 is used to

calculate the source term contributions to the thermal energy

equation. The radiant energy absorbed by each fluid cell is

calculated using Equation 3.10. The energy transfer at the

boundary wall cells is calculated using Equation 3.8.
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4.0 EVALUATION: RADIANT ENERGY TRANSFER

4.1 INTRODUCTION

In Chapter 2 a method was developed which represents radiant

heat transfer in a participating medium. Chapter 3 describes how

this model was incorporated into a three-dimensional thermal-

hydraulic computer code. To determine the accuracy and the limits

of this model, a comparison must be made between the results and

existing analytical solutions or experimental data. In Chapter 4

this is done for the case of pure radiation. In Chapter 5 the

effectiveness of the model is evaluated for the combined modes of

radiation and conduction heat transfer. In Chapter 6 the model is

evaluated for radiation, conduction and convection heat transfer.

4.2 REVIEW OF LITERATURE

A great deal of literature exists in the area of thermal

radiative equilibirum. The term equilibrium indicates that energy

is not being absorbed by the medium and the equation of radiant

transfer is, therefore, independent of the thermal energy

solution. The simplest problem which may be considered is the

calculation of heat transfer and temperature distribution between

infinite parallel gray plates at different temperatures separated

by a participating gray gas. One of the first solutions of this

problem was obtained by Viskanta and Grosh (1961) using the method

of undetermined parameters. The problem was also solved by
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numerical integration of the basic equation by Usiskin and Sparrow

(1960), but was limited to black walls and values of optical

thickness less than two. The case for gray walls and moderate to

large optical thickness was treated by Deissler (1964) using a

modified diffusion approximation with jump boundary conditions.

In all these cases the analysis involved some approximations and

limitations which render them inexact. A procedure developed by

Heaslet and Warming (1965) showed that the solutions may be

expressed in terms of functions that had previously been tabulated

to a considerable degree of accuracy and may be considered

exact. Therefore, the results of this analytical solution will be

used for comparison. It should be noted that a numerical solution

procedure using a Monte Carlo technique was developed by Howell

and Perlmutter (1964) that gives results which compare very well

with that of Heaslet and Warming.

Another problem which is of interest is the calculation of

heat transfer and temperature distrihution between infinite

concentric gray cylinders separated by a gray gas. This problem

was treated by Deissler (1964) using the diffusion approximation

with a jump boundary condition. Beyond this, very few analytical

approaches have been attempted and no exact analytical solution

has been obtained due to the complexity of the problem. However,

numerical solutions for this problem have been obtained by

Perlmutter and Howell (1964) using a Monte Carlo solution.

Although the results may not be considered exact, the accuracy of
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these calculations are such that they may be used as a standard

against which other results may be compared. For example, results

from a similar Monte Carlo solution for the parallel plate case

compare very well with the exact solution (Howell and Perlmutter,

1964).

A modest amount of work has been done in the area of two-

dimensional radiant energy transfer. The major portion of this

work is concerned with a two-dimensional rectangular enclosure

containing a gray participating gas. Glatt and Olfe (1973)

calculated temperature distributions in a rectangular enclosure

bounded by black walls using a modified moment method, and

compared results with those obtained by Hottel's zonal method.

Modest (1975) used the differential approximation as the basis for

his work and applied geometry correction factors to improve

boundary and medium-to-medium exchange effects for optically thin

geometries. Despite the fact that the work by Modest is not an

exact solution, comparison with detailed numerical solutions using

Hottel's zone method indicates that the results are accurate

enough to he used for comparison.

Before a radiant energy transfer problem is characterized,

the values for two material properties, the scattering

coefficient, andand the absorbtion coefficient, a, must he

specified. As mentioned in Chapter 2, these quantities are

generally functions of wavelength, X. Therefore, some method must

be used to calculate a mean value which will adequately represent



44

the property for all wavelengths. For example, the absorption

coefficient, ax, is extrapolated from gas emittance data using the

expression

a = 1 [ eq71
X 2 L L*0

(4.1)

where L is the media slab thickness. A total gas emittance,

e , is calculated by

CO

dx

o qx ebx
e
g

-
e
b

(4.2)

The Planck mean absorbtion coefficient, ap, is then calculated

using the expression

a = [E._9,-

p 2 L
]
L*0

(4.3)

Some representative values of a are illustrated in Figure 4.1 for

carbon dioxide, water and carbon monoxide. The data was taken

from Tien and Abu-Romia (Sparrow and Cess 1978).
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Figure 4.1. Planck mean absorption coefficients at one atmosphere
pressure for carbon dioxide, water, and carbon
monoxide
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4.3 EVALUATION OF RESULTS

4.3.1 One-Dimensional Geometries

The first case considered is the calculation of heat transfer

and emissive power distribution between infinite parallel gray

plates at different temperatures. Nondimensional parameters will

be used to represent both the emissive powers and heat transfer

rates. The emissive powers will be represented by the

parameter, r, which is defined as
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e,() eb2

(4.4)
ebl - eb2

where e
bl

and e
b2

are the black body emissive powers of the hot

and cold walls, respectively, and r is the dimensionless distance

in terms of optical length. The heat transfer rate is represented

by the parameter, QR, which is defined as

n r

e
bl

- e
b2

(4.5)

where qr is the radiation heat transfer rate.

A comparison of nondimensional emissive power distributions

from Heaslet and Warming (1965) and the P-1 approximation are

presented in Figure 4.2 for different optical thicknesses. The

results from Heaslet and Warming were obtained by solving two

uncoupled integral equations for the temperature distributions and

radiative transfer by means of tabulated functions used by

Chandrasekhar (1960). Results from these studies predict the

emissive power distributions near the walls more accurately than

do numerical techniques.
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The calculated emissive power distributions exhibit a

discontinuity between the wall temperature and the medium

temperature at the wall. This discontinuity, known as the "slip"

condition, is a result of the heat transfer boundary condition at

the wall. Recall that in Chapter 3 the boundary condition which

was derived included a term similar to a heat transfer coefficient

in the thermal conduction analogy. As the optical thickness

approaches zero, the emissive power becomes flat with a value

equal to the arithmetic average of the wall emissive powers. For

this case, the boundary condition terms dominate the problem. For

large optical thicknesses, the slip condition is reduced and a

linear conduction-like solution for the emissive power

distribution is obtained.

Figure 4.2 shows that the ability of the P-1 approximation to

predict the emissive power distribution is strongly dependent on

the optical thickness. As the medium becomes optically thick, the

P-1 approximation results approach the Heaslet and Warming

solutions. For an optically thin medium (r0 < 1.0), the results

deviate from those by Heaslet and Warming near the boundary

surfaces because the boundary conditions do not account for

unattenuated radiative transfer from the opposite wall. In all

cases, the P-1 approximation tends to underestimate the emissive

power at the hot surface and overestimate the emissive power at
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the cold surface. Note, however, that the "exact" results are

obtained when the optical thickness approaches the transparent

limit (T0 = 0).

The effects of varying the cold wall emissivity on the

emissive powers of the medium at the cold wall are shown in

Figure 4.3. The effects of varying the cold wall emissivity on

the heat transfer are shown in Figure 4.4. As discussed earlier,

the maximum deviation from the emissive power profile occurs at

the walls. As the wall emissivity decreases or the optical

thickness increases, the P-1 approximation emissive power profile

approaches the exact solution. The same trend is found in

Figure 4.4 where the heat transfer rate approaches the exact

solution. Note that, as the cold wall emissivity decreases, the

emissive powers approach that of the hot wall and the heat

transfer rate approaches zero.

A more detailed comparison of the P-1 results and the

analytical solution is presented in Tables 4.1 and 4.2. Table 4.1

summarizes heat transfer results for both walls having the same

emissivity. Table 4.2 summarizes results for a wall one

emissivity of unity and variable wall two emissivity. In all

cases the P-1 approximation tends to overestimate the radiant heat

transfer rate. The percent error was calculated using the

expression:
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Table 4.1. Nondimensional Heat Transfer for Walls Having the Same
Emissivity (To = 1.0, El = E2)

Wall

Emissivity P-1 Analytical(a)
(e) Approx. Solution % Error

1.0 0.5714 0.5532 3.29

0.5 0.2667 0.2626 1.56

0.1 0.0506 0.0505 0.20

Table 4.2. Nondimensional Heat Transfer for Different Wall Two
Emissivities (To = 1.0, El = 1.0)

Wall Two
Emissivity P-1 Analytical(a)

(E) Approx. Solution % Error

1.0 0.5714 0.5532 3.29

0.5 0.3636 0.3562 2.08

0.1 0.0930 0.0925 0.54

a) Reference Heaslet and Warming 1965.



X -

1% Error
X
reference'

x 100%! 1 P-1

Xreference
(4.6)

The maximum error for the P-1 approximation was less than 4

percent. For the parallel plate geometry, the P-1 approximation

and diffusion theory solutions are identical.

Another problem which is of interest is the evaluation of

heat transfer between infinite concentric gray cylinders separated

by a gray gas. A comparison of nondimensional heat transfer rates

for the P-1 approximation, diffusion theory, and the Monte Carlo

numerical solution is shown in Figure 4.5 as a function of optical

thickness. The results are for black concentric cylinders with a

two-to-one diameter ratio and the parameter QR is defined using

the inside cylinder heat flux. In this case, a dramatic

difference in heat transfer rates is evident, especially for small

optical thicknesses. To understand the difference in the three

methods, compare the expressions for nondimensional heat transfer

in the case of T
o
= 0. The expression for the exact solution

(with T
o
= 0) is

1

QR
1

D
1 rl

- 11
cl -n-Z -2

(4.7)
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where e
1

and e
2
are the inside and outside wall emissivities,

respectively. For the case of black cylinders, QR is unity. The

expression resulting from diffusion theory using a second-order

slip boundary condition is

QR
1

3
Di

(4.8)

7 EK Ditng) +
1 - 01/D2)2] 1

1
K D

1 c1 2 D2
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Note that, as K approaches zero,the second term in the denominator

drives the solution to zero. As a result, only when the optical

thickness is very large does the diffusion theory method provide

reliable results.

The expression for nondimensional heat transfer using the P-1

approximation for the case of To = 0 is derived in Appendix B and

takes the form

1

QR
1

D
1 1 1 1 3K

D
2

Cl
7
2 62

- 7] - Ty-

1

1 01 [1_

61 D2 62

D1
1 31c

E - - + D 2n
2D

2
2 8 -1-

(4.9)

where E represents the terms in the denominator which do not match

those of the exact solution. As K approaches zero the third term

in E disappears. It appears that the maximum error in the heat
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transfer rate is dependent on both the geometry and wall

emissivities. This is more clearly seen in Figure 4.6, which

shows the ratio of predicted to actual heat transfer rates at

T
o

= 0 as a function of diameter ratio and wall emissivity. As

the diameter ratio approaches unity, the cylindrical solution

becomes that for parallel plates, which is exact at To = 0. As the

diameter ratio increases, the predicted heat transfer rate

asymtotically approaches twice the actual rate. The limit is

reduced as the wall emissivity decreases.

4.3.2 Two-Dimensional Geometry

The first case considered is a simple two-dimensional

rectangular enclosure consisting of four isothermal black walls

containing a gray participating gas. It is assumed that three of

the walls have a temperature and emissive power of zero and the

other wall (designated as wall one) has a higher temperature. It

is important to note that temperature dicontinuities exist at the

intersection of wall one with adjacent walls. At these corners

the assumption that higher-order moments may be neglected is not

valid. Therefore, this problem will be more severe than most

practical problems where discontinuities do not exist.

The results presented for this problem are given in terms of

nondimensional parameters. The optical thickness in the xl

(perpendicular to wall one) is assumed to be unity. The optical

thickness in the x2 direction is dependent on the aspect ratio of
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the rectangular enclosure. The variables n and x signify the

optical distance in the xl and the x2 directions, respectively.

The nondimensional emissive power is represented by the parameter

B, which is defined as

eb
(x,n)

B(x,n)

ebl

where ebl is the black body emissive power of wall one.

(4.10)
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The P-1 results are compared with those obtained by Modest

(1975) using the differential approximation and correcting for

moderately thick and optically thin medium by introducing a number

of geometrical parameters. The governing energy and emissive

power equitions with the included correction factors reduce to the

exact solution for the optically thin and thick limits with good

accuracy for all intermediate optical thicknesses. This approach

was verified by comparison with detailed numerical solutions using

Hottel's zone method.

The centerline emissive power profiles resulting from the P-1

solution method are compared with those from Modest in Figure 4.7

for different aspect ratios. The comparison of emissive powers at

the walls is not as good as in the one-dimensional case. This is

partly due to the temperature discontinuity at the corners. Since

the walls are black, the hot wall infinitesimally near the corner

is emitting and absorbing and the cool walls infinitesimally near

the corner are only absorbing. Neglecting the higher moment terms

essentially assumes that they are zero. This reduces the

resistance to radiant energy transfer and results in a higher heat

transfer rate and more moderate emissive powers at the walls.

Therefore, the P-1 results underestimate the emissive power near

the hot surface and overestimate the emissive power near the cool

surface. Note that as the aspect ratio (r) increases, the effect

of the corners become less important and the solution approaches

that of the one-dimensional case for an optical thickness of

one.
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The effect of varying the hot wall emissivity in a square

enclosure with an optical thickness of unity in both directions is

shown in Figure 4.8. The cool walls are blackbody surfaces and

the hot wall surface emissivity is varied between

e
1

= 1.0 and e
1
= 0.1. Note that, as in the one-dimensional case,

the comparison of results improve as the emissivity decreases.
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5.0 EVALUATION: RADIATION AND CONDUCTION

5.1 INTRODUCTON

In the previous chapter the results of the P-1 radiation

model for purely radiant heat transfer problems was evaluated

using existing analytical and numerical solutions. However, for

most practical problems the heat transfer through a participating

medium will be affected by both conduction and radiation heat

transfer. In this case, thermal radiative equilibrium does not

exist and energy is passed between the radiative transfer solution

and the thermal energy solution. To evaluate the interaction of

the two solution procedures, the results for combined radiation-

conduction problems will be compared with existing analytical

solutions.

5.2 REVIEW OF LITERATURE

A significant amount of literature exists for one-dimensional

radiation-conduction problems. The simplest problem which may be

considered is the calculation of heat transfer and temperature

distribution between infinite parallel gray plates of different

temperatures separated by a conducting and participating medium.

The earliest "exact" solutions to this problem were performed by

Viskanta (1965) and Viskanta and Grosh (1962) using a numerical

iterative solution of the governing nonlinear integral equation.

Later, Crosbie and Viskanta (1971) expanded the Viskanta work to
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include nongray medium effects. More recently, Yuen and Wong

(1980) have extended the successive approximation method for use

in radiation-conduction problems. They have shown good agreement

with work reported by Viskanta and Crosbie for the higher

approximation solutions.

To date, there has been little work in the area of two-

dimensional problems involving combined radiation-conduction.

Most work has incorporated either the optically thin or thick

approximations. One notable exception is the work done by Ratzel

(1981), who used the P-1 and P-3 approximations to obtain

solutions for a square enclosure. However, no exact solution has

been found in the literature.

To characterize a heat transfer problem where both radiation

and conduction are involved, the relative importance of the two

heat transfer modes must be specified. This is done using the

conduction-radiation parameter, also known as the Stark number,

which is defined as

ka
Ni =

3
Tj

(5.1)

based on the jth temperature. This dimensionless parameter is an

approximate ratio of the heat transfer rate by conduction to that

by radiation. For N = ., heat transfer within the medium is only
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by conduction. The opposite extreme of N=0 corresponds to the

case in which heat transfer is solely due to radiation. For most

gases of practial engineering interest, the value for N falls in

the region of 0.01-0.1, which indicates a radiation dominant

problem. For example, values of N (based on the Planck mean

absorption coefficient) are illustrated in Figure 5.1 for ammonia,

carbon dioxide and water vapor.

5.3 EVALUATION OF RESULTS

The first case considered is the calculation of heat transfer

and temperature disbribution between infinite parallel gray plates

at different temperatures separated by a conducting and

participating medium. Dimensionless temperatures will be

represented by the parameter, 0, which is defined as

T(
0 (T) T

T)

1

(5.2)

where t is the optical depth from the hot wall and T1 is the peak

wall temperature. The heat transfer rate is represented by the

dimensionless parameter, QT, which is defined as
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c1R(T) qc(T)

QT(T) e
bl

(5.3)

where qR and qc are the radiation and conduction heat transfer

rates and e
bl

is the emmissive power of the hot wall.
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Figures 5.2 and 5.3 show the effects of decreasing Stark

number on the temperature distribution in a medium in which the

optical thickness is moderate (t0 = 1.0) and the absolute wall

temperature ratios are H = 0.1 and 0.5. The limiting radiation

solution N1 = 0 is from Heaslet and Warming (1965), as described

in Chapter 4, and the result for N1 = . is the one-dimensional

conduction solution. The P-1 results for intermediate values for

N are compared with those obtained by Viskanta and Grosh (1962).

Note that, when the Stark number decreases, the temperature

distribution attempts to approach the radiative solution in the

interior of the medium. However, since conduction is involved,

there can be no "slip" at the walls, as there was for the radiant

heat transfer results presented in Chapter 4, and the medium

temperature must approach that of the walls in the vicinity of the

wall.

A more detailed comparison of the P-1 results and analytical

solutions is presented in Tables 5.1 and 5.2. Table 5.1

summarizes heat transfer results for the three optical thicknesses

(T
o

= 0.1, 1.0, 10.0) with the Stark numbers ranging from strongly

radiation-dominated to conduction-dominated. As in the radiative

transfer studies, the P-1 approximation tends to overestimate the

total heat transfer for the cases considered. The percent error

was calculated using the expression:
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Table 5.1. Nondimensional Heat Transfer Comparison
(el = e2 = 1.0, 0 = 0.5)

Optical

Thickness

(To)

Stark

Number

(N)

P-1

Approx. Analytical Solution(a) % Error

0.1

0.0

0.01

0.1

1.0

10.0

1.097

2.898

20.90

200.97

0.8585

1.080

2.880

20.88

200.88

1.57

0.63

0.10

0.04

1.0

0.0

0.01

0.1

1.0

10.0

0.5934

0.8079

2.614

20.62

0.5188

0.5675

0.7694

2.572

20.57

4.56

5.00

1.63

0.24

10.0

0.0

0.01

0.1

1.0

10.0

0.1140

0.1344

0.3164

2.117

0.1095

0.1131

0.1335

0.3150

2.115

0.80

0.67

0.44

0.09

a) Reference Crosbie and Viskanta 1971.
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Table 5.2.

Stark
Number

(N1)

Nondimensional Temperature Distribution Comparison
(To = 1.0, el = e2 = 1.0, 0 = 0.5)

Optical
Depth P-1

(E) Approx. Analytical Solution(a) % Error

0.0 1.0000 1.0000 0.00

0.1 0.9234 0.9313 0.85

0.2 0.8986 0.9046 0.66

0.4 0.8640 0.8657 0.20

0.01 0.5 0.8461 0.8456 0.06

0.6 0.8265 0.8232 0.40

0.8 0.7678 0.7548 1.72

0.9 0.6939 0.6762 2.62

1.0 0.5000 0.5000 0.00

0.0 1.0000 1.0000 0.00

0.1 0.9472 0.9504 0.34

0.2 0.9085 0.9105 0.22

0.4 0.8429 0.8407 0.26

0.1 0.5 0.8085 0.8032 0.66

0.6 0.7691 0.7611 1.05

0.8 0.6636 0.6538 1.50

0.9 0.5910 0.5838 1.23

1.0 0.5000 0.5000 0.00

0.0 1.000 1.000 0.00

0.1 0.9504 0.9508 0.04

0.2 0.9027 0.9027 0.00

0.4 0.8084 0.8073 0.14

1.0 0.5 0.7605 0.7588 0.22

0.6 0.7115 0.7095 0.28

0.8 0.6092 0.6074 0.30

0.9 0.5556 0.5544 0.22

1.0 0.5000 0.5000 0.00

a) Referenced in Ratzel 1981.
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X - X
'= P-1

X

reference
1% Error' x 100%

reference
(5.4)

The maximum errors for the P-1 approximation rarely exceeded 5

percent in predicting the heat transfer rates.

Table 5.2 presents temperature distributions in a moderate

optical thickness medium (To = 1.0) for three Stark numbers

(N1 = 1.0, 0.1, 0.01). The exact results were obtained from

Crosbie, as reported in Ratzel (1981), and are from work which he

completed with Viskanta. As in the case of pure radiant heat

transfer, the P-1 approximation tends to underpredict the

temperature near the hot surface and overpredict near the cool

surface. The errors were calculated at selected points in the

profile and the maximum error rarely exceeded 2 percent in

predicting the temperature distribution.

In addition to solutions for problems with black walls,

analytaical solutions have been obtained for walls with various

emissivities. Table 5.3 shows a comparison of heat transfer

results for wall emissivities of 1.0, 0.5, and 0.1. As the

emissivity is reduced, the amount of reduction in the heat

transfer is strongly dependent on the Stark number. The errors

are similar to those obtained for the black wall case.

Temperature distributions are not presented since, with the no-

slip boundary conditions, the temperature profiles are similar to
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Table 5.3. Nondimensional Heat Transfer Comparison for Different
Wall Emissivities (To = 1.0, 0 = 0.5)

Optical
Emissivity

(e
1
=e

2
)

Stark
Number

(N)

P-1

Approx. Analytical Solution(a) % Error

1.0 2.614 2.572 1.63

1.0 0.1 0.8079 0.769 5.00

0.01 0.5934 0.567 4.56

0.0 0.5186

1.0 2.400 2.364 1.52

0.5 0.1 0.5816 0.5704 1.96

0.01 0.3393

0.0 0.2462

1.0 2.259 2.221 1.71

0.1 0.1 0.4284 0.403 6.30

0.01 0.1625 0.158 2.85

0.0 0.0474

(a) Reference Yuen and Wong 1980.

those presented in Table 5.2 and Figures 5.2 and 5.3 for the black

case.

For all previous results presented it has been assumed that

the extinction coefficient, K, consisted entirely of the

absorption coefficient, a. Recall that the scattering

albedo, Q0, is defined as
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as as

Q =
0 a+ as

(2.8)

where a
s

is the scattering coefficient. For Q
o

= 0.0, which

corresponds to the results presented so far, the radiative

resistance is due solely to absorption by the medium.

For Q
o

= 1.0, there is no absorption and the radiant and thermal

solutions are totally independent of each other. The

nondimensional temperature profiles for varying scattering albedo

are shown in Figure 5.4. The temperature profile is independent

of the Stark number for 52
o

= 1.0 and is in fact identical to the

conduction solution.

The effect of the scattering albedo on the combined heat

transfer is shown in Table 5.4. In all cases, the heat transfer

decreases with increasing scattering albedo, which indicates that

the conduction and radiation modes of heat transfer are more

efficient at removing heat when they interact with each other.

The value for the scattering albedo becomes more significant as

the Stark number decreases. The P-1 approximation tends to

overestimate the heat transfer, but the maximum error is less than

four percent.
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Table 5.4. Nondimensional Heat Transfer Comparison for Different
Scattering Albedo (el = e2 = 0.1, 0 = 0.5)

Optical
Thickness

(T)

Stark
Number

(N )

P-1

Approx. Analytical Solution(a) % Error

0.0 0.163 0.158 3.16

0.01 0.5 0.133 0.130 2.31

1.0 0.067 0.067 0.00

0.0 0.428 0.403 6.20

0.1 0.5 0.357 0.346 3.18

1.0 0.248 0.247 0.40

0.0 2.259 2.221 1.71

1.0 0.5 2.167 2.154 0.60

1.0 2.048 2.047 0.05

0.0 0.307 0.305 0.66

1.0 0.5 0.301 0.299 0.66

1.0 0.235 0.235 0.00

0.0 2.108 2.106 0.09

10.0 0.5 2.103 2.101 0.09

1.0 2.035 2.035 0.00

0.0 20.109 20.105 0.02

100.0 0.5 20.104 20.100 0.02

1.0 20.035 20.035 0.00

(a) Referenced in Yuen and Wong 1980.
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6.0 EVALUATION: RADIATION, CONDUCTION, AND CONVECTION

6.1 INTRODUCTION

In previous chapters the results of the P-1 radiation model

were evaluated for problems involving only radiation heat transfer

or both radiation and conduction. There are many problems where

participating media radiation and conduction are the only modes of

heat transfer. A good example of this is heat transfer through

solid glass. However, in most practical problems where the medium

absorbs, emits, and scatters radiation, the medium is generally in

the form of a gas. Therefore, convection is potentially an

important mode of heat transfer. To evalute the effect of

convection on the thermal energy solution, the results for

problems involving all three modes of heat transfer will be

compared with existing analytical solutions.

6.2 REVIEW OF LITERATURE

A limited amount of literature exists for one-dimensional

problems involving radiation, conduction, and convection. The

simplest problem which may be considered is the calculation of

heat transfer and temperature distribution between infinite

parallel gray plates separated by a steady flow of conducting and

participating medium. Various velocity profiles were

considered. Solutions for slug flow velocity profile were

obtained by Viskanta (1964) and Chen (1964) by expanding the
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emissive power in a Taylor series and solving the resulting

equations. Similar solutions were obtained for Couette flow by

Viskanta and Grosh (1961) and later by Viskanta (1965). One of

the most complete analyses of flow between plates was performed by

Viskanta (1965) for a parabolic velocity profile which is

representative of fully developed laminar flow. In this analysis

it is assumed that both plates are the same temperature, and the

fluid enters at a significantly higher or lower temperature. The

resulting temperature profiles are obtained as a function of the

Stark number, N, and the dimensionless fluid centerline

temperature. The results of this analysis will be used for

comparison.

Very little work has been done in the area of two-dimensional

radiation, conduction, and convection heat transfer. Two analyses

have been presented by Einstein for slug flow through parallel-

plate (Einstein 1963) and circular tube (Einstein 1963) channels

of finite length. However, in both studies the

integrodifferential energy equation was replaced by a system of

algebraic equations using Hottels zonal method and are not

sufficiently accurate to use for comparison.

6.3 EVALUATION OF RESULTS

The case being considered is the calculation of temperature

distribution between infinite parallel gray plates separated by a

steady flow of conducting and participating medium. In this
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analysis it is assumed that both plates are the same temperature

and the fluid enters at significantly higher or lower

temperature. The temperatures will be represented by the

dimensionless parameter, 0, which is defined as

TTti)) (6.1)

where T is the optical depth from either wall and Tw is the wall

temperature.

This analysis is one-dimensional and it is assumed that

fully-developed temperature profile is established. The condition

used by Viskanta to define this profile is an expression given by

Seban and Shimazaki (1951) for fully developed flow at distances

far away from the entrance to describe the axial temperature

gradient

61. (Tw - dT
) m-Ti c

w m

where Tm is the mixing cup temperature. This expression simply

states that the axial temperature gradient at any point is

directly proportional to the temperature difference between that

point and the wall. However, this expression was developed for

situations involving only conduction and convection. Since



radiation is highly nonlinear in temperature, this expression

would only be valid where the contribution of radiation is very

small. Therefore, to provide a direct comparison between TEMPEST

results and the analytical solution, the inlet temperature profile

was artificially adjusted until the condition specified in

Equation 6.2 was satisfied.

Figure 6.1 shows the effect of decreasing Stark number on the

temperature distribution in the medium for a moderate optical

thickness (T
o
= 1.0) and a dimensionless centerline temperature

of 0 = 0.5. Since the channel has half symmetry, only half of the

profile is shown. The exact temperature profiles for the case

when energy is transported only by conduction and convection

(n = and the computed profile for convection and radiation

(N = o) are included for comparison. As N decreases, the

temperature field departs more and more from that of pure

conduction and convection.

Note that the P-1 results tend to deviate from the analytical

solution for lower values of N. This is especially noticeable

near the wall. One reason for this is the boundary conditions

used in the two methods. The boundary condition used by Viskanta

is defined by the expression

T A

eH4 + 2(1-0 f °0-(T) E2(T)dT

B(o) = B(To) 1 - 2(1-e) E3(To)

En(T)
flo

1ln-2 exp (-T/04.

(6.3)
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where B is the dimensionless radiosity and e is the emissivity of

the wall. For the situation where c = 1, the radiosity at the

wall simply becomes the emissive power of the wall. This is

evident in the convection and radiation (N=0) temperature

profile. As discussed in the previous two chapters, when there is

no conduction and a small or moderate optical thickness, a

temperature slip should exist at the boundary. The reason given

by Viskanta for this discrepancy is that only the first three

terms of the Taylor series expansion of 84(T) were used in

deriving the equations. In comparison, the P-1 results show a

sharper drop near the wall indicating the effect of the "slip"

condition at the wall. Therefore, an improved comparison could be

expected when consistent boundary conditions are used.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

In this work, a method for solving the differential form of

the radiative transfer equation was implemented into an existing

three-dimensional thermal-hydraulic computer program known as

TEMPEST. The method used was the P-1 approximation, where the

angular distribution of the radiation intensity is represented by

a truncated series of spherical harmonics. When this series is

substituted into the radiant energy transfer equation, and closure

conditions are applied, a single second-order partial differential

equation results. The appropriate Marshak boundary conditions

were also developed.

Once the P-1 formulation had been developed, it was

implemented in the TEMPEST computer program. The governing

partial differential equation was cast in a three-dimensional

finite-difference form. The equation is solved using the line

successive overrelaxation (LSOR) method with occasional

rebalancing to enhance convergence. The existing energy equations

in TEMPEST were also modified to account for the thermal energy

emitted or absorbed in each cell due to thermal radiation.

To determine the accuracy and limits of the P-1 formulation,

a series of comparisons were made between TEMPEST results and

existing solutions. Evaluations were made for problems involving

thermal radiation only, radiation and conduction, and finally,

radiation, conduction, and convection.
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In the pure radiation case, comparison of results were made

for three different geometries. The P-1 results for heat transfer

and emissive power distribution between infinite parallel gray

plates was compared with the exact formulation of Heaslet and

Warming (1965) for different optical thicknesses. For large

optical thicknesses (T0 > 1.0), there was good agreement between

differential and exact results. As the optical thickness

decreased (T
o

< 1.0) the P-1 results deviated from the exact

solution with the exception of an optical thickness of zero, where

the P-1 solution is exact. When the surface emissivities of the

walls were lowered, the agreement between the P-1 and exact

results is improved. The maximum heat transfer error for an

optical thickness of one was less than four percent.

The second problem considered was the calculation of heat

transfer between infinite concentric gray cylinders. The P-1

results were compared with a Monte Carlo numerical solution by

Perlmutter and Howell (1964). As in the parallel plate case, the

comparison between the P-1 and Monte Carlo results improved as the

optical thickness increased and the surface emissivity

decreased. The heat transfer rate comparison was also highly

dependent on the diameter ratio, ranging from no error for a

diameter ratio (D
o
/D.) approaching one (parallel plate solution)

to a factor of two overprediction for a diameter ratio approaching

infinity and zero optical thickness. The results were acceptable

for large optical thicknesses (T0 > 1.0).
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A simple two-dimensional rectangular enclosure consisting of

four isothermal walls was evaluated for different aspect ratios.

The centerline emissive power distributions resulting from the P-1

method were compared with those obtained by Modest (1975) using a

modified differential method. The comparisons of results were

acceptable for higher optical thicknesses but were not as good as

in the parallel plate problem, due partly to the temperature

discontinuity at the corners. As the aspect ratio increased, the

results approached those of the parallel plate solution.

For the case of combined radiation and conduction heat

transfer, both the P-1 method and the interaction with the TEMPEST

thermal energy solution were evaluated. The P-1 results for heat

transfer and temperature distributions between infinite parallel

gray plates was compared with those obtained by Viskanta and Grosh

(1962) using a numerical solution of the governing nonlinear

integral equation. There was good agreement between results for

optical thicknesses ranging from 0.1 to 10.0 and Stark numbers

ranging from 0.01 to 1.0. The maximum deviation of the heat

transfer rates rarely exceeded five percent and the temperature

profiles differed by less than three percent in all cases. The

best comparisons were obtained at the highest Stark numbers and

optical thicknesses. A study of the effect of the scattering

albedo indicated a decrease in total heat transfer with increasing

scattering albedo.
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The case of combined radiation, conduction, and convection

was evaluated using the problem of parabolic flow between infinite

parallel gray plates. The temperature distributions resulting

from the P-1 method were compared with those obtained by

Viskanta (1963) using a Taylor series approximation of the

emissive power. Good agreement was obtained for larger Stark

number values but the temperatures near the wall deviated as

conduction decreased. This was due to the Taylor series

approximation used in the boundary condition by Viskanta.

In general, the P-1 method yielded acceptable results for

radiation problems with large optical thicknesses (t0 > 1.0) or

combined radiation and conduction problems with participating

media. The accuracy of results for radiation problems involving

little or no optical thickness are highly dependent on the

geometry of the problem.

7.2 RECOMMENDATIONS

The P-1 approximation to the radiant energy transfer equation

was selected to minimize the computational effort required to

obtain a solution. However, if accuracy for problems involving

small optical thicknesses is a major consideration, the P-3

approximation should be used. A significant improvement in

accuracy has been demonstrated by Bayazitoglu and Higenyi (1979)

for one-dimensional problems and Ratzel (1981) for two-dimensional

problems. No attempt to extend the P-3 approximation to three-
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dimensions has been found. The resulting P-3 numerical method

would involve solving four coupled second-order differential

equations as opposed to one second-order differential equation for

the P-1 method. It would be valuable if both the P-1 and P-3

methods would be included as options in TEMPEST with the P-3

method being selected only in the case of small optical

thicknesses.

Another approximation which was made to simplify the analysis

was the assumption that the medium was gray. In reality, the

radiative properties of the medium are generally dependent on

wavelength. A more accurate approximation would he to use medium

energy band models and solve the P-1 equation for each energy

band. The modification would result in a large increase in

computational effort. An alternate approach would be to examine

ways to better represent the radiative properties of the medium,

such as a(x).

A major limitation of utilizing the P-1 method in the TEMPEST

computer code is that the model is explicitly tied to the thermal

energy equation. This could potentially limit the time step of

certain problems where radiation is an important mode of heat

transfer. A time step limit should be defined in terms of the

thermal and geometrical problem parameters.
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APPENDIX A

P-1 APPROXIMATION COEFFICIENTS An IN TERMS OF
n

THE MOMENTS OF INTENSITY

The P-1 approximation of the expansion of the expression for

the angular distribution of intensity is given by

where

1 n

I(R,0,0) = ): 1 ArITII(R)1(0,0)

n=0 m=-n

2
I_11...11/2r

4n
1

(nw9)i, e
jmo

pm (cose)

(2.14)

(2.15)

Using the definitions for the associated Lengendre

polynominals, Par: (coso) given in Table 2.1 the double series

represented by Equation 2.14 may be expanded to yield

1

n 1

o

1
I(R,0,0)

2/
[A

0
/3A

o
cos® - /3/2 sino(A

1
A

1
)coso

1 1 .

+ j(Al + Ai slno)] (2.18)



92

The coefficients A
n
can be expressed in terms of the moments of

intensity by substituting Equation 2.18 into Equations 2.19

through 2.22 which define the different moments of intensity, and

performing the appropriate integrations. For the P-1

approximation, expressions derived from the first three moment

equations are required.

The resulting equations are albegraically solved to yield the

following definitions for the An coefficients

A
o
= 1/2n I

o

Ai 3/2n I1
1

A11 = 13/2n (I
2
+ jI3)

Ai - 13/22n (12 - jI3
1

(A.1)

(A.2)

(A.3)

(A.4)



When these definitions are substituted back into

Equation 2.14 the intensity is then expressed in terms of the

moments.

I(R,04) = 1/4n + 3I1cose + 3I2sinecoso + 3I3sinesin4]

93

(A.5)
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APPENDIX B

ANALYTICAL SOLUTIONS FOR THE P-1 APPROXIMATION FORM

OF THE RADIANT ENERGY TRANSFER EQUATION

The radiant energy transfer equation, when simplified using

the P-1 spherical harmonics approximation, yields a single second-

order partial differential equation of the form

1/3K v
2
Io = -a [4nIb - Io] (2.40)

where Ib is the black-body intensity and I0 is the zeroth moment

of intensity. When this expression is applied to simple one-

dimensional geometries and absorption is assumed negligible (i.e.,

radiative equilibrium), an analytical solution may be obtained for

the heat transfer between surfaces.

8.1 PARALLEL PLATE GEOMETRY

The first case considered is the heat transfer between

infinite parallel gray plates at different temperatures. If

absorption is assumed negligible, Equation 2.40 reduces to



d
2

I
o

0
d
x
2

The solution to this expression is

1
o

= -B - A

where A and R are constants of integration.

The boundary condition at the surface is given by

e.

[41E113 - 1o]
qw 2(2-e.J )
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(B.1)

(B.2)

(4.45)

To be compatible with Equation B.2, the term qw, which is

identical to II in the x-direction, must be defined in terms of

I o'
This is done using the expression

q = 1 =
1

61
co

w 1 3K aix

(2.36)



Therefore, the boundary conditions at surfaces 1 and 2 are

3KE,

@ x = xl; (dIo/dx)
1

= 2(2-1) (I
o

- = C1 (I0-47cIol)

3Ke,
6@ x = x2; (dIo/dx)2 2(2-e2)

(I
o

- 4nIh = C
2

(I
o

4nI
b2

)

where C1 = 3Ke1/2(2-e1) and C2 = 3KE2/2(2-62).

Substituting in Equation (B.2), the expressions become

@x=x
1'

- A = C
1

(-B-Ax
1

-
bl

)

@ x = x2; -A = C2 (4nTh2 + B + Ax2)
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(B.3)

(B.4)

(B.5)

(B.6)
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To determine the constants A and B, cast Equations B.5 and B.6 in

matrix form.

(1 - C
1
x
1
)A - C

1
B = -C

1
4II

bl

(1 + C
2
x
2
)A + C B = C

2
4nI

b2

Therefore,

C1C2 4n (Ib2 1bl)
A

[C2(1 - C
1
x
1

) + C1(1 + C
2
x
2
)]

4n [C2 1b2 (1 - C.x.) ClIbl
(1 + 0x2)1

B 17C2 (1 - Col) + C1 (1 + C
2
x
2
)1

(8.8)

(B.9)

Substituting Equation R.9 into the definition of Il expressed in

Equation 2.36, the solution for heat transfer rate between

parallel plates is



1 f
dI

0) A
I =
1 3K -37

C
1
C
2

4n (I
b2

- I
b1

)

31( [C2(1 - Col) + C1(1 + C2x2)1

4n
(I

b2
- I

b1
)

= _
31c 1 1

+ +x2 -xl
1 2

Back substituting for C1 and C2, the expression becomes

' (ibl '132)
I
1 L1 /e

1
+ 1/E

2
- 1 + 304 (x

2
- x

1
Ll

The Stefan-Boltzmann law states that itIb aT4 for a given

surface. Therefore,

a -

= q
Li /el i/E2 - 1 + 3K/4 (x2 - x1)
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(B.11)

(B.12)

(8.13)

For the case of K = 0, this reduces to the exact expression for

heat transfer rate hetween parallel plates with no participating

medium.



a (Ti - 1-2)

q [Wei + 1/e2 - 1]
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(B.14)

B.2 CONCENTRIC CYLINDER GEOMETRY

The second case considered is the heat tranfser between

infinite concentric gray cylinders at different temperatures. If

absorption is assumed negligible, Equation 2.40 reduces to

1/r d/dr (r dIo/dr) = 0 (B.15)

The solution to this expression is

Io = - B - A xn r (B.16)

where A and B are constants of integration.

The boundary conditions at the inner and outer surfaces are
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3Kei

@ r = ro (dIo/dr)i
k

(I0- 4nIbi) = Ci (Is- 4nIbi)

(8.17)

3Ke

@ r = ro (dI
i

/dr)
i 2(2-E )

= (I0 - ikabo) = C
o

(I
o
- 4uI bo )

'

(8.18)

where C1 . = 3Ke./2(2-e.) and C
o

= 3Ke
o
/2(2-e

o
),

1

Using the same method of solution as before, the expressions for A

and B are determined to he

A -
[C

o
(1/r

1
- C

i

/nr
i

) + C.(1/r
o

+ C
oInro

)i

Ci Co (I
bo

- I
bi

)

[C
o

I
bo

(lir. - C.2nr.) + C
i

I
bi

(1/r
o
+ C

o
Inr

o
)]

B [Co Oki - Cilnri) + Ci (1/ro + Co/nro)]

(8.19)
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Substituting Equation B.19 into Equation 2.36, the solution for

heat transfer rate between concentric cylinders is

= 1/3K (dydr)i = = 1/3K A/ri

4n
(I

bi
I
bo

)

ITZF.
1 11 r

Ci ri Coro

(B.21)

Back substituting for Ci and Co and using the Stefan-Bolzmann law,

the expression becomes

a (1-4 - T)
o

1
= q

r. .r

lei
l

1 3K r. 2n
r
ol

2 eoro ?r
o

4 1 r.

(B.22)

Notethat,asr.+r
o'

the expression approaches the parallel

plate solution

Q -
q r1 , 1 11L

ei e2

(8.14)


