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Previous research in program understanding has been hampered by the

lack of an easy tool to measure the degree of that understanding. The cloze

procedure, suggested by Cook, Bregar, and Foote (1984) was an attempt to find

a simple, reliable, and valid measure of program understanding. In this

procedure, tokens are systematically removed from a computer program; it is

the task of the subject to fill in the missing tokens with their correct values.

The current study was an extension of this procedure; instead of filling in the

blanks for the missing tokens the subjects were asked to match each blank with

a token from a complete list of all missing tokens. The presentation of the

matching cloze procedure was controlled by a computer; thereby making it

possible to record a great deal of detail about the experimental session.

The matching cloze procedure was given to beginning, intermediate, and

advanced Computer Science students using two different levels of program

difficulty. The results of Adelson (1981, 1984) and Chase and Simon (1973)

would predict an interaction between these independent variables. In fact, the

task seemed too easy and few statistical differences were found between the

groups. Interestingly, reaction time data strongly indicated that some of the

tokens were not treated independently of one another.
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An Experimental Investigation Of The Cloze Procedure As
A Measure Of Program Understanding

Introduction

Program understanding is crucial to the two most time consuming and

costly phases of the software life cycle: program testing and maintenance.

Numerous controlled experiments have attempted to assess the effect of

various program and programmer qualities on understanding. The dependent

variables used to define program understanding in these experiments have

included measures such as the comprehension quiz, the time to locate a bug or

perform a modification, the accuracy of reproducing a functionally equivalent

program without notes, as well as subjective reports. In each of the cases the

operational definition of program understanding was not derived from any

theoretical basis or validation procedure. The lack of justification and validation

raises serious questions about meaningfulness and usefulness of the results of

these experiments.

The goal of the present research was to find a theoretically sound

measure of program understanding which is reliable, valid, and easily utilized in

experimental research. A potential candidate for this measure the 'cloze' score.

In the cloze procedure subjects are presented a program listing with some of

the tokens (operands, operators, reserved words, etc.) replaced with blanks and

are required to fill in the blanks. The cloze score is the proportion of blanks

filled in correctly.

In a preliminary experiment (Cook, Bregar, and Foote, 1984), the cloze

procedure was compared with the most commonly used and accepted measure

of program understanding--the comprehension quiz. Insofar as the cloze
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procedure has been used in reading comprehension research it appears on

theoretical grounds to tap an important cognitive component of understanding

in an analogous research area. Cook, Bregar, and Foote gave computer science

students of varying levels of programming experience either a doze version of

a Pascal sorting program or a comprehensive quiz over the program. Results

for the doze procedure closely approximated those of the comprehension

quizzes for both programs and for each level of experience. The doze

procedure shows promise over the comprehension quiz in that it is not as

subject to experimenter bias, it is not as dependent upon the skill of the author,

and it is not as dependent upon the skill of the person doing the scoring as the

comprehension quiz. The reliability, validity, and objectivity of the doze

procedure are discussed in this paper.

Cook, Bregar, and Foote (1984) used a paper and pencil version of the

doze procedure in which subjects filled in blanks with what they thought were

the missing tokens. Their task permitted the measurement of accuracy but did

not permit either the measurement of the time between nor the order of the

responses. In the present study, a computer is used to present the stimuli and

record the responses. With this apparatus, it is possible to investigate not only

the correctness of the match but also the interresponse times and the order in

which the subjects completed the task. The recording of this level of detail

provides for an extremely rich set of dependent variables available for a

posterori "data snooping" with attendant hypothesis formation.

In the present study, program complexity and subject experience are

factorially varied to determine if the doze procedure is experimentally sensitive

and if it is related to theoretical predictions. Almost any theory of programing

understanding would predict that a more complex program would be more
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difficult to understand. Similarly, it is difficult to imagine a situation in which

the experienced subjects do not perform better than novices (Adelson, 1984

provides a counter example). In fact, an interaction would be expected between

subject experience and program complexity. This interaction may be

demonstrated by noting that on a very easy task, both beginners and experts

would do very well, whereas on a very difficult task, only the experts would do

well.

The presence of an interaction between experimental and subject variables

is well known in the psychological literature. For example, Chase and Simon

(1973) have found an interaction between experience and stimuli in the ability of

novice and master chess players to recall chess configurations. This interaction

was interpreted as reflecting the ability of chess players to perceptually

organize configurations of chess pieces. In the present context, the

understanding of a program almost certainly involves knowledge of the syntax

and semantics of the program. Experts almost certainly will have more of both

types of knowledge whereas novices may well only have knowledge of the

syntactic structure. Behaviorally, novices may well "bounce" around the

program filling in those tokens which only require syntactic knowledge of the

program. Experts may be able to progress through the program sequentially

using both types of knowledge. Similarity, Chase and Simon were able to

identify different chunking strategies in the perception of chess configurations

between novice and master chess players.

These differences between the cognitive representations of programs

formed by experts and novices was explored extensively by Adelson (1981). She

found that in the free recall of small computer programs novices tended to

organize around syntactic categories and that experts tended to organize around
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semantic categories. In another study Adelson (1984) novices were able to

answer concrete questions about programs better than experts and that experts

were able to answer abstract questions about these same programs better than

novices. In these two studies as well as the Chase and Simon (1973) study,

experts were found to favor abstract representations of complex problems and

novices were found to favor concrete representations. These differences are

manifest in interactions between the subject variable (expertise) and task

difficulty in each of these experiments.

In the present experiment, subjects varying in experience are presented

with a matching version of the cloze task with programs varying in difficulty.

The subjects are asked to fill in the missing tokens from a list of the actual

missing tokens; the elapsed time and the order of the responses are recorded.

The findings of previous research suggests that there should be a significant

interaction between programmer expertise and program difficulty. On easy

programs, both experts and novices should be able to proceed though the

program in a straight forward manner; on the difficult programs, novices are

expected to match "bounce" around the programs to a much greater degree.
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Previous Studies of Program Understanding

Definitions of reliability, validity, and sensitivity

It is appropriate to formally define what is meant by the terms reliability,

validity, and sensitivity. A reliable variable is one in which repeated

observations will yield the same value. Correctness of an answer in the cloze

procedure is a reliable variable insofar as repeated observations by the same or

different observers will yield the same numerical result; "goodness" of code may

be an unreliable variable in that different people may have different criteria of

"goodness." A dependent variable without the property of reliability is, of

course, of little value.

A dependent variable is sensitive if it is reliable and if experimental

manipulations produce variations in its value. Some variables such as time to

complete a task may be too sensitive in that the effects of an experimental

variable may be masked by individual differences in programmer ability or other

factors. Other variables may not be sensitive enough because manipulations

which are theoretically and practically important may not produce differences

between groups. For example, measuring the length of a program by the

weight of paper might be an example of a dependent variable which is too

insensitive, even though it is highly reliable. The sensitivity and reliability of

measurements are obviously dependent upon experimental controls.

Validity is a more difficult construct to define. First, a variable must have

face or construct validity insofar as it must appear to tap that which is of

theoretical interest. Time to fix an error in a program may be an appropriate

measure of some constructs, but it probably does not capture the essence of

the low- and high-levels of program understanding. A valid measure of a
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construct must reflect variations in that construct. Thus, a measure of program

understanding must surely be higher for more skilled programmers than for

novices.

Previous Experimental Manipulations

Numerous studies have attempted to assess the influence of the various

aspects of a program and the programming process on understanding by using

a variety of dependent variables. A partial list of these manipulations includes

modularization (Woodfield and Dunsmore, 1981), comments (Woodfield and

Dunsmore, 1981; Sheppard, Borst and Curtis, 1978), indenting (Weissman, 1974;

Shneiderman and McKay, 1976; Curtis, Sheppard, and Milliman, 1979), structured

coding (Weissman, 1974; Love, 1977), mnemonic variable names (Curtis,

Sheppard, Milliman, Borst and Love, 1979; Weissman, 1974), program length

(Curtis, Sheppard, Milliman, Borst and Love, 1979), flowcharts (Shneiderman,

Mayer, McKay and Heller, 1977), documentation (Sheppard, Kruesi and Curtis,

1979), control flow (Weissman, 1974; and Shneiderman, 1982) , and data flow

(Weissman, 1974). The following paragraphs contain brief critiques of a number

of these studies and their experimental measures.

The comprehension quiz or "question-answer" technique was used by

Shneiderman (1982), Woodfield and Dunsmore (1981), Sheppard, Kruesi and

Curtis (1981) and by Weissman (1974). The use of the comprehension quiz is

highly suspect in that it is difficult to use objectively. It is very dependent upon

the skill of the author, it is difficult to compare between experiments, and is

subject to experimenter bias.

Time measures, such as the time to perform a modification (Curtis,

Sheppard and Milliman, 1979) and time to locate a bug (Curtis, Sheppard and
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Milliman, 1979; Sheppard, Curtis and Milliman, 1979) have also been utilized in

investigations of program complexity. Brooks (1980) has criticized time

measures in noting that irrelevant behavior may form a significant and highly

variable portion of the total time. For example, the amount of time spent on

irrelevant sections of code may dominate the measure.

Halstead's measure of programming effort, E (Gordon, 1979) and McCabe's

v(G) (Curtis, 1986) have received considerable attention in the research

literature. These are metrics defined upon a program; not behavioral measures

of the understanding of a program by a programmer. As such they cannot be

used a priori as a measure of program understanding.

Reproduction of functionally equivalent program without notes was used

as a measure by Shneiderman (1976), Shneiderman (1977), and Curtis, Sheppard,

Milliman, Borst and Love (1979). This measure is limited to very small

programs. Even though a programmer may be extremely familiar with, say, a

typical compiler, he or she will be unable to reproduce it exactly. Furthermore,

the procedure is difficult to score and may be subject to experimenter bias.

Speed of hand execution of program was used as a dependent measure

by Weissman (1974). There is no easy way to insure that hand execution of a

program involves knowledge of the overall structure or organization of a

program (Brooks, 1980).

The many different measures and the lack of formal procedures for

validation makes any comparison or interpretation of the experimental results

difficult and suspect. Program understanding must include both low-level (each

statement of program) and high-level (module or overall program)

comprehension. It is not clear that time to perform a modification, time to

locate a bug, and speed of hand execution require high-level program
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comprehension. Therefore, these dependent variables lack necessary construct

or face validity. Some studies (Curtis, Sheppard, Milliman, Borst and Love, 1979;

Curtis, Sheppard and Milliman, 1979) have shown varying correlations between

Halstead's E measure and understanding measured by time to locate a bug. The

interpretation of these studies is difficult because the experimenters performed

the statistically indefensible operation of correlating an independent variable and

a dependent variable. Specifically, these authors calculated correlation

coefficients between the time to locate a bug (dependent variable) and

Halstead's E for a number of programs (independent variable). It is well known

that the magnitude of correlation coefficients can be manipulated by the

restriction or expansion of the range of the independent variable.

Originally Shneiderman (1977) required a subject to reconstruct a program,

verbatim, after studying it for a period of time. This was later relaxed by

requiring the subject to reproduce a functionally equivalent program. He

assumed a strong relation between the ability to memorize program statements

and the ability to understand their intended function. His measure is only

feasible for toy or small programs because in large programs understanding

may be confounded with subjects long term memory skills.

Of these measures of program understanding, the comprehension quiz

seems to be the most generally used and accepted. The comprehension quiz

includes fill-in-the-blank, multiple-choice, as well as open ended type

questions. Many examinations assessing classroom performance are of this

type; indeed it has almost become a defacto standard in colleges and

universities. A well constructed comprehension quiz can have many

advantages: it can measure low-level and high-level understanding, it is not

limited by program length, it is flexible, and it has been shown to be sensitive
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to experimental manipulations. it does however have a number of limitations;

these include, but are not limited to:

1. Accurate, reliable, and valid questions are difficult to write. Much
success depends upon the skill of the person or persons writing the
questions. The questions must cover all aspects of a program, the
content of one question must not provide the answer to another.

2. It is difficult to operationalize. How does one compare the
questions written by two different people for the same material?
How can one compare the results about different experimental
material? This essential problems is getting and scoring comparable
questions of unequal quality...comparing "apples with oranges."

3. The accuracy and reliability are severely limited by the ability of the
person or persons doing the scoring (if the questions are not
multiple choice or true/false).

4. Questions about the reliability and validity of each set of questions
must be answered anew for each new experiment. It is difficult to
"standardize" a series of questions between experiments.

5. And, importantly, the questions may be subject to experimenter bias.
It is well known in the psychological literature that the experimental
milieu and the subtle phrasing of questions can and frequently do
have an effect upon the demand characteristics of an experimental
situation. These, in turn, can influence the outcome of the
experimentation.

In all of the above studies no attempt was made to validate the measure of

understanding by comparing different behavioral measures or by a theoretical

justification.

Since measurement and experimentation are complementary processes,

the results of an experiment are limited by the measures used. One study

(Shepard, Curtis, Milliman and Love, 1979), used the ability to reconstruct a

functionally equivalent program without notes as the measure of program

understanding, and found that meaningful variable names were not significant.

This is surprising because it is contrary to one of the basic tenets of
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programming that has been reaffirmed in practice over many years and almost

certainly reflects the power of the measures and statistical tests employed by

these authors. The (lack of) results in this study underscores the need to

validate and demonstrate the sensitivity and reliability of a proposed measure of

program understanding before it is used as a standard measure.
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Cloze Procedure

The word "cloze" refers to the human tendency to complete a familiar but

not quite finished pattern. In a cloze procedure certain parts of the text are

replaced by blanks and the subject is required to fill in the blanks. The cloze

score is the proportion of the number of blanks filled in correctly. The cloze

procedure was originally developed to measure comprehension in English

readability studies (Taylor, 1953). Shneiderman (1980, page 27) mentioned the

cloze procedure as a measure of program composition tasks as well as

comprehension, but cited no studies of program comprehension which

employed it.

The cloze procedure almost certainly taps both the syntactical and the

semantic understanding of a program. Many tokens which could be eliminated

from a program are those which are determined by the syntax of a language.

For example, if the left bracket, were eliminated, the syntax of the language

would demand a match for the corresponding right bracket, '1' remaining. On

the other hand, there are semantic constraints within a program. If the deleted

token is the increment to a variable in an assignment statement, the semantics

of a program might dictate that the increment be unity instead of some other

constant. Thus, the cloze procedure could be sensitive to knowledge of both

the syntax and the semantics of a program.

In adapting the cloze procedure to study programs, subjects are presented

a program listing with some of the tokens (operands, operators, reserved words,

etc.) replaced with blanks and are required to fill in the blanks. Norcio (1979)

has proposed using the cloze procedure to measure program understanding.

But he used a different approach than that described here. Instead of tokens,
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he replaced entire statements with blank lines and required subjects to supply

the correct statements for the blank lines. Soloway, Ehrlich and Bonar (1982)

have also used this version of the cloze procedure in experiments comparing

the programming plans for novice to expert programmers.

In a preliminary experiment Cook, Bregar, and Foote (1984) compared the

cloze procedure to a comprehension quiz. The participants in the experiment

were computer science students in a sophomore Pascal programming course

(CS 212), a junior data structures course (CS 318), and a senior operating

systems course (CS 415). CS 212 is a prerequisite for CS 318, and CS 318 is a

prerequisite for CS 415. The courses defined three levels of programming

experience.

Each subject was randomly given one of two versions of a Pascal program

and either a cloze version of the program or a comprehension quiz over it. Two

versions of a Shell sort were used for the Pascal program. Very few errors (5%)

were made by any of the students in filling in the blanks when the tokens were

reserved words, parentheses or brackets; these tokens were called "giveaways".

The presence of giveaways suggested counting only the usual operators and

operands in future cloze procedure experiments. These authors compared the

three main effects (class, test method and program version) using an analysis of

variance. The results indicated that the class and program version were

significant, but the test method was not significant. The more experienced

groups of programs had fewer errors on the cloze procedure and the

comprehension quiz. Thus, these results strongly suggest that for each

program version and each class the cloze scores give a close relative

approximation to the comprehension quiz scores. This study is important

because it demonstrated that the cloze procedure can measure some of the
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things measured by a comprehension quiz and that it is sensitive to

experimental manipulations.

The cloze procedure is very easy to construct and score in that it is only

necessary to identify the individual tokens and recognize if answer provided by

the subject is the missing token. Cook, Bregar, and Foote eliminated every fifth

token from their Pascal programs. Indeed demonstration programs have been

written to identify each token in a COBOL or a Pascal program. In general the

cloze procedure has none of the limitations of the other measures of program

understanding.
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The Present Study

The goal of this research is to find a measure of program understanding

which is reliable, valid, and easily utilized. Many different and varied measures

of program understanding have been used in experiments designed to assess

the impact of various program characteristics and programming techniques on

software quality. Frequently these techniques have been based upon personal

programming experience and intuition and have not been systematically

compared with other measures. It is proposed to investigate the viability of the

cloze procedure as a reliable and valid measure of program understanding by

using the technique in a variety of experimental conditions which are widely

believed to affect program understanding.

To reduce variability and facilitate the determination of the correctness of

a response, a "matching" procedure was used instead of the "fill in the blank"

procedure used by Cook, Bregar, and Foote. With this modification, the subjects

were presented with a sorted list of the deleted tokens as well as the programs

with the tokens deleted; their task was to match the blanks in the program with

the tokens. There was a one to one mapping of blanks and tokens which

produce a correct program.

The matching cloze procedure has a great deal of face and construct

validity in that its completion involves both semantic and syntactic knowledge

of the program; and it is easy to use and easy to score. Other questions of the

validity of this procedure remain--does it correlate highly with other measures

and is it sensitive to experimental manipulations which are widely believed to

affect program understanding. The matching cloze procedure provides a rich

set of observations for protocol analysis in the spirit of Newell and Simon
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(1972), for analysis of interresponse times, for analysis of particular tokens, etc.

This study was designed as a factorial one in which program complexity

and subject experience would be varied. Pascal programs, varying in complexity

was presented to three different strata of students ("Novices" , "Intermediate",

and "Experienced"). Program complexity was the "within subjects" factor;

subject experience was the "between subjects" factor (Kirk, 1968; Winer, 1971).

Each subject was scorred for performance on the cloze procedure.
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Methods

Design

This study utilized a split plot factorial design in which there were three

between subjects factors and a single within subject factor with a sample size

of two. Kirk (1968) classifies this design as a SPF 3 2 2 . 53 with an n of 2.

The three between subjects factors were level of experience, type of apparatus,

and order of presentation. The single within subject factor had fifty-three

levels, the first twenty-one of which corresponded to missing tokens from an

easier program and the last thirty-two of which corresponded to missing tokens

from a longer, more difficult program. Under the conditions of this design,

there was a total of twelve different groups of subjects for each of the possible

combinations of level of experience (3), type of computer (2), and order of

presentation (2).

Subjects

The subjects were volunteers from classes at Oregon State University in

the summer of 1985. They were recruited from CS212 (Techniques for

Computer Programming), CS317 (Data Structures and Programming) CS411

(Assemblers and Compilers). Membership in one of these classes was the

operational definition of level of experience; it was assumed that the students

from CS212 were less experienced than those from CS317 who were in turn

less experienced then those from CS411. This definition seems reasonable in

that CS212 is a prerequisite for CS317 which in turn is a prerequisite for CS411.

Each subject was a volunteer and was paid ten dollars for his or her

participation in this experiment.
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Program materials

Two programs were selected for stimulus materials; the easier (MILL178)

was the same as selected by Cook, Bregar, and Foote (1984). This shell sort

procedure was originally obtained from Miller (1981, p. 178). The second

program (GROG202) was a concordance to count the occurrences of words

within a text file; it was obtained from Grogono (1983, p. 202). It was identical

to that used in the Soloway, Bonar, and Ehrlich (1983) study of indentation.

As in the Cook, Bregar, and Foote (1984) article, a token was defined to be

...a variable indentifier name, a constant, an operator (arithmetic or
logical), a single parenthesis, or a single bracket. A single colon (not
part of an assignment operator), a semicolon and a comma were not
counted as tokens.

Every fifth token was deleted from the entire MILL178 program segment, and

every fifth token was deleted from the center of the GROG202 program. A total

of twenty-one and thirty-two tokens were deleted from the MILL178 and

GROG202 programs, respectively. A copy of each of the programs is presented

in Appendixes III and IV; the deleted tokens are presented in a bold typeface.

The MILL178 program is easily judged to be easier to comprehend than

the GROG202 program; it is shorter, 50 lines in contrast to 123 lines. In

addition the GROG202 program involves the more advanced topics of sets,

packed words, buffers, and character manipulations which the MILL178 program

did not.

Apparatus

The matching cloze procedure was presented to the subjects on either an

IBM XT or an IBM AT personal computer; each of which was equipped with an

AMDEX 310A monochrome video monitor.
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The screen of each of the monitors was divided into three windows for

presentation of the program with the missing tokens, for presentation of the

tokens, and for presentation of information reflecting which window was active.

The task of the subject was to match a blank in the left hand window with one

of the missing tokens in the right hand window and insert that missing token

into the blank. In a paper and pencil version of this task, this would correspond

to the subject writing in the answer into a blank and scratching out answer just

used. Figure 1 contains an example of a typical screen display.

The window for the presentation of the programs was presented in the

upper left portion of the screen and was twenty six columns in width by twenty

two lines in length. The programs were presented in this window, with the

missing tokens indicated by five underscore characters. When the subject filled

in one of these blanks the indicated token was illustrated in reverse video. The

subject could choose the slot in which to insert the token by manipulating

cursor control keys.

In the right hand section of the screen there was a window nine

characters wide by twenty two lines deep which contained a lexical sorting of

the tokens, one per line. The subject could choose which token to insert by

manipulating cursor control keys. After a token was used, it was displayed in a

lower intensity to enable to subject to see which token had already been

selected.

On the screen this task was quite simple; the subjects viewed a computer

program in the left screen with blanks for missing tokens; the missing tokens

were sorted and presented in the right screen. The subject manipulated cursor

keys to position the cursor on a blank indicating a missing token in the left

screen and on a token in the right screen; then she or he pushed the "Ins"
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(insert) key to move the token from the right window to the left window. The

cloze program then replaced the blank in the left window with the indicated

token in reverse video and the intensity of the display of the chosen token was

decreased to show it has been used. The subject could then move the cursor

to the next blank and next token to be selected and repeat the procedure.

Insofar as the size of the windows was limited, it was not possible to

display an entire program to the subjects. Accordingly, the controlling program

provided for the scrolling of programs in the left window and scrolling of tokens

in the right window whenever appropriate keys were pressed.

The task of learning to use the cloze program and completing the task

was judged to be a difficult one by the experimenter. To reduce potential

confounding of the variable of practice on the task of manipulating the cursor

controls, inserting the tokens, etc. with that of the topic of interest -the Pascal

programs, the subjects were given two training tasks. In the first task, the

subjects were presented with instructions on how to complete the task via the

cloze procedure itself. The instructions in English were presented in the left

screen with occasional key words replaced by blanks; the missing key words

could be found in the left screen. With this technique, the subjects read the

instructions and learned to operate the apparatus in a single step; by actively

executing the instructions all subjects seemed to have little difficulty learning

the mechanics of the computerized cloze procedure. The specific directions are

provided in Appendix I with the missing words presented in a boldface typeface.

In the second task, the subjects were asked to insert missing tokens into

a short greatest common divisor algorithm; in this fashion they were asked to

complete a small task that was quite similar to that used in the actual test. The

greatest common divisor program is presented in Appendix II, again with the
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missing tokens presented in boldface. The experimenter was available to

answer occasional questions during the two training tasks. The procedure of

training the subjects with the directions about how to operate the apparatus

and with a small Pascal program was judged to be an effective one; the only

difficulty experienced was two or three subjects for whom English was not their

native language had occasional difficulty with the English instructions.

Figure 1 presents an example of the appearance of the screen in a middle

of a hypothetical experimental session. In this example, one can see that the

token PROCEDURE has been inserted into the first line of the program in the

left hand window, the underscoring indicates that this was one of the tokens

which had been deleted. In addition, the intensity of that token has been

reduced on the ninth line of the right hand window, also indicating that this

token has been utilized. The hypothetical subject has just inserted the token

done into the eight line of the left hand screen; since the cursor has not been

moved, the token is presented in inverse video. As before, the intensity of the

token just inserted is reduced on line thirteen of the right hand window. The

current location of the cursor is always indicated by reverse video, and missing

tokens in the left window by underscores.

The use of the computerized version of the matching task made it

possible to record a great deal of detailed information about an experimental

session. In particular, every keystroke and the time to the nearest hundredths

of a second were recorded. With this level of detail, it is possible to reproduce

a virtually identical description of what transpired on the monitor of the

personal computers. In practice, only the keystrokes which inserted tokens and

their corresponding times were analyzed.

A complete copy of the cloze program is presented in Appendix V; it is
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written in TURBO Pascal, Version 3.0.
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Results

Reaction time data

By using computers to present the cloze matching task to the subjects

and to record the time and key of each keystroke of the subjects it is possible

to tabulate a huge number of dependent variables for analysis. The data were

considerably simplified by examining only the first insertion of a token into a

blank slot; those keystrokes which lead to manipulations of the two windows,

deletion of tokens from slots and their subsequent corrections were discarded.

Additional analyses which are not included in this thesis indicated that this

simplification did not affect the results of the study. With this data reduction, it

was possible to calculate the time since the beginning of the experiment, t; the

time since the previous insertion or deletion, At, and the sequential number of

the insertion, trial. The trial numbers were incremented for each insertion and

deletion made by the subject. Each of these variables were subjected to a SPF

3 2 2 . 53 and a SPF 3 2 2 . 2 analysis of variance (Kirk, 1968) in which there

were three levels of experience E, two levels of computer C (IBM AT vs. IBM

XT), two levels of order 0 (MILL178 first vs. GROG202-first). The single within-

subjects variable was program P (MILL178 vs. GROG202) or the fifty-three

specific tokens T within the two programs. There were twenty-one tokens in

the MILL178 program and thirty-two tokens in the GROG202 program. In one

sense, the SPF 3 2 2 .2 ANOVAs were redundant, the results of these analyses

could have been derived from the other ANOVAs by appropriate definitions of

contrasts among means; performing a second ANOVA was considerably easier

insofar as the appropriate statistical program was readily available. Both

analyses had a sample size of two. The Ullrich-Pitz ANOVA routine (Ullrich and
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Pitz, 1977) was used for all analyses of variance.

When the first analysis of variance on t, the elapsed time since the

beginning of the experiment was performed, only tokens (T), and the triple

interaction between computer, order, and tokens (COT) were statistically

significant; F(52,624) = 45.379, p < 0.000000 and F(52,624) = 1.446, p < 0.02448,

respectively. When an ANOVA on the mean elapsed time across all tokens

within a given program was performed (the SPF 3 2 2 .2 design), only the factor

reflecting the two computer programs (P) was statistically significant, F(1,12) =

136.208, p < 0.00000. The mean elapsed time for all insertions on the MILL178

program was 497.3 seconds and 1187.3 seconds for the GROG202 program. No

other main effects or interactions were statistically significant at the 0.05 level

in either analysis.

Realizing that the variability of t for tokens early in a program was likely

considerably less than the variability of t for tokens late in a program, and since

this heterogeneity of variances might affect the interpretation of the ANOVAs,

the analyses were repeated with a logarithmic transformation. The results were

very similar to the ANOVA without the transformation; T, F(52,624) = 77.204 p <

0.00000, and COT, F(52,624) = 1.443, p < 0.02559 were statistically significant.

When the elapsed times were collapsed into a single score for each program,

only the program factor was significant, F(1,12) = 201.375 p < 0.00000.

When ANOVAs were performed on the time since the last insertion or

deletion, At, T and P were significant, F(52,624) = 6.386 p < 0.0000 and F(2,12) =

33.769 p < 0.00020, respectively. In addition, the OP interaction was significant,

F(1,12) = 5.016 p < 0.04286 when the tokens were collapsed for each of the

programs. The mean At for the MILL178 program were 45.5796 and 35.1367,

when that program was presented first and second respectively. The mean At
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for the GROG202 programs were 56.7852 and 60.3962 when that program was

given to the subjects second and first, respectively. It is apparent that the

mean reaction time on an individual token is longer when that token is

embedded in a more complex program (GROG202) than when that token is in an

easier program (MILL178).

To further analyze the time since the previous insertion or deletion, At,

with respect to the type of tokens; the tokens were dichotomized into groups

reflecting whether that token was syntatically or semantically required. Those

tokens which were classified as required by the syntax of Pascal were primarily

key words whereas those classified as required by the semantics of the

program were primarily variable names. The tokens labeled with asterisks in

Table 3 are those which were classified as syntatically required, the remainder

are classified as semantically required. The first token, "PROCEDURE" in each

program was ignored for this analysis. Averages were computed for each

dichotomy and each program, collapsing the 53 scores down to four for each

subject. When SPF 3 2 2 . 4 ANOVA was performed on this data only the

repeated measure variable reflecting the token classifications for the two

programs was significant, F(3,36) = 9.689, p < 0.001. For the MILL178 program

the average At scores were 46.68 and 44.46 seconds for the syntatically

required and semantically required tokens, respectively. These are not

significantly different from each other using Tukey's HSD test (Kirk, 1968). For

the more difficult GROG202 program, the average At scores were 50.52 and

66.10 seconds for the syntatically required and semantically required token,

respectively. Tukey's HSD test indicated that this difference was significant at

the 0.01 level.

The analyses of variance on the integer variable trial produced significant
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interactions for EC, EO, T, and COT when analyzed for each token and EC, EO,

and P when collapsed across tokens for each program. The F values, degrees

of freedom, and p values are presented in Table 1; Table 2 presents the means

for each of the significant interactions for the second analysis. When ANOVAs

were performed on these data with logarithmic transformations, the same

pattern of results emerged. Examination of the means in Table 3 fails to yield a

conclusion which can be easily summarized verbally; at best the interpretation

is quite difficult.

SPF 3 2 2 . 53

Source df F p

EC 2,12 6.366 0.01299

ECO 2,12 5.560 0.01926

T 52,624 42.921 0.00000

COT 52,624 1.406 0.03520

SPF 3 2 2 . 2

Source df F p

EC 2,12 6.091 0.01480
EO 2,12 6.011 0.01539

P 1,12 248.525 0.00000

Table 1: Statistically significant effects on the variable trial

CS212 C5317 CS411

14.3484 14.4006 15.1230 IBM AT

14.9775 15.4159 14.1801 IBM PC

14.8263 14.4747 15.1449 IBM AT

14.4996 15.4418 14.1518 IBM PC

Table 2: Mean trial number of an insertion

The At scores for each individual token in each program is presented in

Table 3. An informal observation of these scores is quite interesting; consider

the 16th and 17th missing tokens in the MILL178 program, i and j. These two
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tokens control the direction of the sort, whether it is ascending or descending;

they occur as part of that a semantic entity. The i token had a mean At score

which was double that of any other token in that program, the score for the j

token was the lowest. It is clear that subjects spent time on the the pair of

tokens, and answering the two in rapid succession. A similar, but less

pronounced phenomenon occurred in the GROG202 program; consider the 7th

and 8th missing tokens REPEAT and UNTIL. The REPEAT had one of the

longest times, the UNTIL one of the shortest. Again, the explanation is that

subjects spent time on the pair, and answering in rapid succession. It is clear

that programs cannot be considered to be a linear sequence of tokens, each

independent of its neighbors.
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MILL178 Program

Number Token Time Errors Errors (CBF)
1 PROCEDURE 33.1737 0 1

2 ary 57.2483 7 14

3 done 47.9175 1 0

4 integer; 40.6179 1 0

5 p 47.3508 1 2

6 hold 29.8292 1 2

7 p 26.8858 2 1

8* .-- 28.5050 0 0

9* .-- 50.9171 0 0

10 1 67.7600 3 13

11 jump 36.6967 1 12

12* := 47.0079 0 0

13 1 28.6050 0 2

14* DO 22.6117 0 1

15 + 39.7058 1 5

16 j 100.075 9 3
17 i 12.7088 9 3
18* ( 37.8267 0 0

19 a 17.6729 1 0

20 done 26.5104 0 0

21* UNTIL 47.8950 0 1

37

Table 3: Time since previous insertion or deletion, At
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Table 3, continued

GROG202 Program

Number Token Time Errors
1 PROCEDURE 139.103 0

2 wordtype 148.407 2

3 ' ' 69.8638 2

4 charindex 96.7296 8

5 0 61.8888 1

6* BEGIN 52.6471 1

7* REPEAT 91.2887 0

8* UNTIL 14.2879 3

9* IN 56.6758 3

10 eof 63.4846 2

11 0 35.7421 3

12* DO 45.7033 0

13 maxwordlen 61.4229 4

14 charcount 27.5404 0

15 charcount 59.1342 1

16* IF 67.9446 2

17 blank 68.1688 4

18 ch 42.9792 2

19* := 31.9529 1

20 maxwrdlen 62.7604 1

21* ] 44.4792 0

22 buffer 51.6579 2

23* END 53.1600 0

24 wordtype 82.0804 0

25* VAR 56.3100 0

26* ] 41.1388 1

27* .. 24.2133 0

28 packword 55.3404 4

29 charpos 44.5421 5

30* DO 28.6408 0

31 charpos 13.8738 2

32 letters 81.7400 1

Total 55

Table 3: Time since previous insertion or deletion, At
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Number of errors

When an examination of the number of errors made by the subjects was

made it was discovered that only 92 errors were made on the first insertion by

all subjects under all conditions of this experiment. Table 3 presents the

number of errors broken down by the specific tokens for each of the two

programs. Table 4 presents the total number of errors for each of the

experimental groups in the study.

Group Errors

CS212 39
cs317 32
CS/111 33

IBM AT 411

IBM PC 48

Easy-Hard 53

Hard-Easy 39

Table 4: Number of errors for each group

The number of errors made by individual subjects varied from a minimum of

zero to a maximum of nine. No formal statistical tests on these data were

made because any tests would be suspect because of the low error rate. The

only differences in error rate among the various experimental conditions seems

to exist were between the two programs and the order in which the programs

were presented. Using error rate as a criterion, the MILL178 program does

seem to be easier than the GROG202 program; and there seem to be more

errors when the easier program is presented first.

The MILL178 program was nearly identical to one of those used by Cook,

Bregar, and Foote (1984); the comments in the Pascal program had been deleted
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and the name of a procedure was changed (from SWAP to Miller), and some

variable names had been changed to something which was less meaningful.

While there was a total of 37 errors made on this program by the twenty-four

subjects in this study, 60 errors were made by Cook, Bregar, and Foote's

thirteen subjects. These errors are also reported in Table 3 under the heading

CBF errors. It is readily apparent that the matching cloze procedure with

comments is considerably easier than the traditional cloze procedure without

comments. Nevertheless, the two groups of subjects tended to make errors on

the same tokens; the Pearson product moment correlation coefficient on the

number of errors made across the twenty-one tokens was 0.42, p < 0.05.

Order of token insertions

A major tenent of the present investigation was that more experienced

programmers would progress through the programs in a straight-forward or

linear fashion and that less experienced programmers would move through the

programs in a more scattered manner. To test this hypothesis, scatter plots of

each insertion and deletion were made for each subject and for each program;

the abscissa was the trial number of that response, the ordinate was the ordinal

number of the missing token within the particular program. Extensive visual

inspection of these scatter plots failed to reveal any consistent pattern. As a

further check, Pearson product moment correlations were computed for each

scatter plot; this statistic is a crude measure of the degree to which the scatter

plot followed a straight line. Those subjects who filled in the first token on first

trial, the second token on the second trial, etc. would have a correlation near

1.0; those subjects who bounced around the program in their answers would

have correlations much closer to zero.
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There were 48 correlation coefficients computed, one for each subject

under each experimental condition; these coefficients were then subjected to a

SPF 3 2 2 .2 ANOVA. The only statistically significant effects were the CO

interaction (F(1,12) = 7.258 p < 0.01868) and the CP interaction (F(1,12) = 6.459

p < 0.02468). Inspection of the average correlation coefficients indicated that

the IBM-AT, MILL178-first combination and the IBM-XT, GROG202-first

combinations were more highly correlated then their counterparts. Similarly, the

IBM AT, MILL178 program and the IBM XT GROG202 program combinations were

more highly correlated then their counterparts. It is difficult to relate these

findings to the major experimental hypotheses.
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Discussion

Three results seem to follow from this experimentation: 1) the GROG202

program was more difficult than the MILL178 program, 2) the subjects made

very few errors on the task, and 3) the reaction time on some tokens is much

longer than that on other tokens. On the more difficult program, those tokens

which were required by the syntax of Pascal were inserted faster than those

tokens for which semantic knowledge was necessary; there was no difference in

the speed of insertion of these two types of tokens for the easier program. The

first result is hardly surprising insofar as the programs were selected so as to

vary in difficulty.

The fact that the overall difficulty of the task, as judged by the number of

errors, was not great was somewhat surprising; particularly when pretesting of

students at Lewis and Clark College had indicated a much higher error rate.

Cook, Bregar, and Foote reported a much higher error rate on the MILL178

program than was found in the current experimentation. There are a number of

factors which could account for the low error rate; there is no reason to favor

one explanation over another without additional data.

1. The subjects in the present experimentation were likely more
motivated than those used by Cook, Bregar, and Foote. The present
subjects were paid volunteers whereas the Cook, Bregar, and Foote
subjects were unpaid volunteers who participated during part of a

regularly scheduled class. In addition, the computerized nature of
this task may have been more impressive to the computer science
students who served as subjects. The experimenter's subjective
impression of these subjects was that he had never seen subjects
that were as motivated as were those in the present experiment.

2. Inclusion of comments and mnemonic names for variables in the
programs used in present study undoubtedly made the task easier;
Cooke, Bregar and Foote's version of the MILL178 program had
comments removed and some variable names changed.
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3. The 1-1 matching version of the cloze task is simply much easier
than the corresponding fill-in-the-blank version. The subjects must
merely recognize, perhaps through a process of elimination, which
token goes in a given slot in contrast to generating the needed
token.

4. It is possible that the subjects in this experiment were considerably
more sophisticated than those in Cook, Bregar, and Foote; casual
observation suggests that current Oregon State University students
in Computer Science classes have a greater familiarity with Pascal
than those students only a few years earlier.

5. Finally, it may be that the computerized version of the matching task
is not a sensitive, reliable, and valid tool which can be used in the
investigation of program understanding. The evidence gathered in
the current experimentation suggests that this may be the case.
This interpretation is supported by the fact that experimental
manipulations which had an extremely high a priori chance of
producing differences failed to do so.

The occasional and difficult to understand higher order interactions which

were found the analysis of variance are interpreted as random variations; there

were a large number of F tests performed in the analysis of the current data

and about five percent would be expected to show statistical significance. A

number of other statistical tests were performed on that data which were not

discussed; these failed to show a consistent and statistically significant pattern.

The conclusion seems inescapable; the matching cloze procedure is too easy to

be a sensitive tool. Cook, Bregar, and Foote (1984) and Soloway, Bonar, and

Ehrlich (1983) used similar programs as the current study (MILL178 and

GROG202, respectively) and these authors found differences between groups.

It is disappointing not to find that the matching version of the cloze

procedure was not a more viable tool for the investigation of program

understanding. This is particularly true insofar as the mechanics of setting up,

scoring, and analyzing an experiment using this procedure are extremely

straightforward. Once the program and the starting point are selected, the
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selection of tokens, presentation, scoring, and analysis can be largely automatic.

The conventional cloze procedure requires considerably greater effort in scoring.

Future research is suggested utilizing techniques to make the task more

difficult. These techniques could include introducing more tokens than answers,

allowing multiple uses of a given token, removing comments, and making

variable names less meaningful.

The third conclusion that there were substantial differences in the reaction

times of some of the tokens is particularly interesting. Chase and Simon (1973)

used reaction times to identify differences in the perceptual organization of

expert and novice chess players. Casual observation of subjects in the present

investigation did reveal there there were indeed differences between subjects.

Further analysis of a larger number of programs for a smaller group of subjects

which are more diverse might substantial differences akin to those reported by

Chase and Simon (1973) and by Adelson (1981). Systematic analysis of these

reaction times should prove to be fertile ground for further research into the

cognitive aspects of program understanding.
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Appendix I

Directions Given to Subjects

Missing tokens are in boldface type

Thank you for participating in this
study. The task we are about to
give you is a computerized matching one.
You can see that some of the words
of this text in the left screen have
been deleted and replaced with blank lines or
slots. The actual deleted words appear in
alphabetical order in the right screen.

Your task is to correctly match the
deleted word in the right screen with
the appropriate slot in the left screen.

This is essentially a computerized version
of the standard matching task in which
you match one item on the right
screen with one slot on the left screen.
There is an exact match between items and slots
in both number.

To move the cursor around, you may use
the LEFT and RIGHT arrow keys (4 and 6)
on. To move the screen up or down, you
may use the UP or DOWN arrows (2 or 8
on the keypad). Additionally, you may
use the HOME key to go to the top,
the END key to go to the end,
and the PAGE-UP and PAGE-DOWN keys to move
the text up or down one half page.
Try the keys.

To change screens, enter the "C" key
(for "C"hange). When the C key is pressed,
the cursor switches between screens.
The currently active screen is indidated by
an X at the bottom of the screen.

To INSERT one of the words on the right
screen into a slot in the left screen
press the INSERT key after you have
matched the blank slot in the left screen
with the blank slot in the right screen.
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The matching is done by moving the cursor
left and right with LEFT-ARROW and RIGHT-ARROW
keys. The LEFT-ARROW key moves the cursor
to the left and up, the RIGHT-ARROW key
moves the cursor to the right and down.
To insert a word into a blank slot,
the cursor in the desired position by
pushing the right or left arrow keys for each
window. It is likely that you will have
to do several moves and screen changes
to indicate the answer in the blank slot.
You actually do the insert, you press the
INSERT key at the top of the numeric keypad.
When you do the insert, you will notice that
the intensity of the word changes.

If you change your mind about an answer
you can erase or delete a word by matching
the answer with the blank and pressing the
DELETE key at the top of the keypad.
You must have an exact match in order to
delete an answer.

You finish the session by hitting the E
key for EXIT.
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Appendix II

Greatest Common Divisor Program

Missing tokens are in boldface type

PROGRAM gcd (input,output);

VAR
r,m,n: integer

BEGIN
readln(m,n);
REPEAT

r := m MOD n;
m := n;
n := r;

UNTIL n = 0;
writeln(m);

END.
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Program MILL178

Missing tokens are in boldface type

PROCEDURE (* shell *) SORT (VAR a: ary; n: integer);

(* Shell-Metzner sort *)
(* Adapted from 'Programming in Pascal',

P. Grogono, Addison Wesley, 1980 *)

VAR
done : boolean;
jump, i, j: integer;

PROCEDURE swap (VAR p,q: real);

VAR
hold: real;

BEGIN
hold := p;
p := q;
q := hold

END (* swap *);

BEGIN
jump :=-- n;
WHILE jump > 1 DO

BEGIN
jump := jump DIV 2;
REPEAT

done := true;
FOR j := 1 TO n jump DO

BEGIN
i := j + jump;
IF a[j] > a[i] THEN

BEGIN
swap(a[j],a[i]);
done := false

END (* IF *)
END (* FOR *)

UNTIL done
END (* while *)

END (* sort *);
{ Count occurences of each word in a text. }

42
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Appendix IV

GORG202 Program

Missing tokens are in boldface type

PROGRAM concordance (input,output);
CONST

tablesize = 100;
maxwrdlen = 20;

TYPE
charindex = 1..maxwrdlen;
counttype = 1..maxint;
tableindex = 1..tablesize;
wordtype = PACKED ARRAY [charindex] OF char;
entrytype =
RECORD

word : wordtype;
count: counttype

END;
tabletype = ARRAY [tableindex] OF entrytype;

VAR
table : tabletype;
entry, nextentry : tableindex;
tableful! : boolean;
letters : SET OF char;
{ Read one word from the text. A word is a string of letters.
Words are separated by characters other than letters. }
PROCEDURE readword(VAR packdword: wordtype);
CONST

blank = ";
VAR

buffer : ARRAY [charindex] OF char;
charcount : 0..maxwrdlen;
ch : char;
BEGIN

IF NOT eof
THEN
REPEAT
read(ch)

UNTIL eof OR (ch IN letters);
IF NOT eof

THEN
BEGIN

charcount := 0;
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WHILE ch IN letters DO

BEGIN
IF charcount < maxwrdlen

THEN
BEGIN

charcount := charcount + 1;
buffer [charcount] := ch

END;
{ then }

IF eof
THEN ch := blank
ELSE read(ch)

END;
{ while }
FOR charcount := charcount + 1 TO maxwrdlen DO
buffer [charcount] := blank;
pack (buffer, 1, packdword)

END { then }
END;

{ readword }
{ Print a word. }
PROCEDURE printword (packdword : wordtype);
CONST

blank = ";
VAR

buffer : ARRAY [charindex] OF char;
charpos : 1r..nmaxwrdlen;
BEGIN

unpack (packdword,buffer,1);
FOR charpos := 1 TO maxwrdlen DO
write (buffer Icharposl)

END;
{ printword }

BEGIN { concordance }
letters := ['a' .. 'el;
tableful! := false;
nextentry := 1;
WHILE NOT (eof OR tablefull) DO

BEGIN
readword (table [nextentry].word);
IF NOT eof

THEN
BEGIN
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entry := 1;
WHILE table [entry].word <>

table [nextentryl.word DO
entry := entry + 1;
IF entry < nextentry

THEN table [entry].count :=
table [entry].count + 1

ELSE
IF nextentry < tablesize

THEN
BEGIN

nextentry := nextentry + 1;
table [entry].count := 1

END { then }
ELSE tableful! := true

END;
{ then }

END;
{ while }
IF tableful!

THEN writeln ('The table is not large enough.')
ELSE
FOR entry := 1 TO nextentry 1 DO
WITH table [entry] DO

BEGIN
printword (word);
writeln (count)

END { else, for, and with }
END.

{ concordance }



{*****************************************************************************}
{Input/output to con:

{C+} {Control char interupt during execution
{I+} {All I/O checked for errors
02+1 {Range checking
{V+} {Type checking on string passed as VAR
{U +} {User may interrupt program anytime
{*****************************************************************************}

James R. Ullrich

{*****************************************************************************}
PROGRAM Cloze;
CONST

{Screen Positioning Constants
LeftUpperLeftX = 2; LeftUpperLeftY = 2;
LeftLowerRightX = 68; LeftLowerRightY = 23;
RightUpperLeftX = 70; RightUpperLeftY = 2;
RightLowerRightX = 79; RightLowerRightY = 23;
MaxString = 70;
BottomLine = 25;
MaxRTlndex = 1000;
MaxRSPindex = 100;

{Cursor movement keyboard constants:
CursorHome = 71; CursorUp = 72; CursorPgUp = 73;
CursorLeft = 75; CursorRight = 77;
CursorEnd = 79; CursorDown = 80; CursorPgDwn = 81;

{Other Keyboard Command Input Constants
SelectAnswer = 'S'; InsertAnswer = 'I'; EraseAnswer = 'E';
ChangeScreen = 'C'; Quit = 'Q';

TYPE

DisplayType =
(N,NF_NC,NF_C,F_NC,FC, [ <--left screen only

NS NC,NS C,S NC,S C); <--right screen only}
{Normal, Filled in or not, Current or not, Selected or not}



LeftRight = (Left,Right);
UpDown = (Up,Down);
WindowBound = ARRAY[1..4] of integer;
StringType = STRING[70];
DateStr = STRING[10];
TimeString = STRING[11];
Ptr = ^cell;
PtrArray = ARRAY[Left..Right] of Ptr;
RTRange = 1 .. MaxRTlndex;
RSPRange = 1 .. MaxRSPlndex;
Cell = RECORD

Display: DisplayType; [display characteristics)
Rowld,ColId: INTEGER; [unique identifier)
Data: String[MaxString]; [the string displayed)
Lines: Integer; [number lines from top
Up,Down,Left,Right: Ptr;
TokenLeft,TokenRight: Ptr;
Match: Ptr;

END;
RTData =

RECORD
Char: Char;
Time: TimeString;

END;

RSPData =
RECORD

Char: Char;
Correct: Char;
Time: TimeString;
LRowId,LColID,RRowID,RColID: INTEGER;

END;
CONST

LeftWTable : WindowBound =

(LeftUpperLeftX,LeftUpperLeftY,
LeftLowerRightX,LeftLowerRightY);

RightWTable : WindowBound =



(RightUpperLeftX,RightUpperLeftY,
RightLowerRightX,RightLowerRightY);

VAR
Wata Structure Pointers
UpperLeft,LowerRight,

LowerLeft

[Screen and Cursor pointers
TopScreen,BottomScreen,
LinePointer,CursorPoint
FirstToken
LastToken

CurrentScreen

I,J,Temp
Data

RT: ARRAY[RTRange] of RTData;
RSP: ARRAY[RSPRange] of RSPData;
RTIndex
RSPIndex

FV

RTFile
RSPFile

.

.

.

.

.

.

.

.

.

.

.

PtrArray;

PtrArray;
PtrArray;
PtrArray;

LeftRight;

INTEGER;
StringType;

RTRange;
RSPRange;

Text;
Text;
Text;

i

{*****************************************************************************1
[*****************************************************************************1

Function Date: DateStr;

[Procedure to return the date; uses DOS call 2A hex
[Returns a string of the form 1984/07/20
type

regpack = record



var
recpack:
month,day:
year:
dx,cx:

ax,bx,cx,dx,bp,si,ds,es,flags: integer;
end;

regpack;
string[2];
string[4];
integer;

begin [Date]
with recpack do
begin

ax := $2a shl 8;
end;

MsDos(recpack);
with recpack do
begin

str(cx,year);
str(dx mod 256,day);
str(dx shr 8,month);

end;

date := year + '/' + month + '/' + day;
end; [Date]

[record for MsDos call]

[ call function

[convert to string]
11 }

{ I

[*****************************************************************************}
Function time: TimeString;
[Returns a string of the form 18:03:03.23, HH:MM:SS.TH T=tens H=Hund of sec I
type

regpack = record

ax,bx,cx,dx,bp,di,si,ds,es,flags: integer;
end;

var
recpack: regpack;
ah,al,ch,cl,dh: byte;
hour,min,sec,hund: string[2];

[assign record}



begin { Time
ah := $2c;
with recpack do

begin
ax := ah shl 8 + al;

end;

intr($21,recpack);
with recpack do

begin
str(cx shr 8,hour);
str(cx mod 256,min);
str(dx shr 8,sec);
str(dx mod 256,hund);

end;
time := hour+':'+min+':'+sec+'.'+hund;

end; { Time }

{initialize correct registers}

{call interrupt}

{convert to string}

{*****************************************************************************}
{*****************************************************************************}
Procedure InsertNewToken(LorR: LeftRight; VAR NewToken: PtrArray);
BEGIN

IF FirstToken[LorR] = NIL THEN
BEGIN

FirstToken[LorR] := NewToken[LorR];
LastToken[LorR] := NewToken[LorR];
FirstToken[LorR]-.Display := SUCC(FirstToken[LorR]-.Display);
FirstToken[LorR]-.TokenRight := NIL;
LastToken[LorR]-.TokenLeft := NIL;

END ELSE
BEGIN

LastToken[LorR]-.TokenRight
NewToken[LorR]-.TokenLeft
IF LorR = Left THEN

NewToken[LorR]-.Display

:= NewToken[LorR];
:= LastToken[LorR];

:= NF NC



ELSE

NewToken[LorR]-.Display
LastToken[LorR]

END { if }:
END { InsertNewToken };

:= NS NC;
:= NewToken[LorR];

{*****************************************************************************}

PROCEDURE InsertDown(Dsply: DisplayType; R,C: Integer;
Dta: StringType; LorR: LeftRight);

{Procedure to insert a new node at the lower left of the graph
{This procedure is invoked when a new line of the input program is read

VAR Old: Ptr;

BEGIN

}

Old := LowerLeft[LorR];
NEW(LowerLeft[LorR]);
LowerRight[LorR] := LowerLeft[LorR];
IF Old = NIL THEN
BEGIN

UpperLeft[LorR] := LowerLeft[LorR];
LowerLeft[LorR]^.Lines := 1;

END

ELSE LowerLeft[LorR]^.Lines := ole.Lines + 1;
WITH LowerLeft[LorUA DO
BEGIN

Display := Dsply;
Rowld := R;
ColId := C;
Data := Dta;
Up := Old;
Down := NIL;
Left := NIL;

unRight := NIL;



TokenLeft := NIL;

TokenRight := NIL;
Match := NIL;

END { with };
WHILE Old <> NIL DO
BEGIN

Old-.down := LowerLeft[LorR];
Old := Ole.Right;

END while 1;
IF (Dsply = NF_NC) OR (Dsply = NS_NC) THEN
BEGIN

InsertNewToken(LorR,LowerLeft);
END;

END [ InsertDown };

{*****************************************************************************}
PROCEDURE InsertRight(Dsply: DisplayType; R,C: Integer;

Dta: StringType; LorR: LeftRight);
{Procedure to insert a new node at the lower right of the graph }

{This procedure is invoked when a new token string in input

VAR Old: Ptr;

BEGIN
Old := LowerRight[LorR];

NEW(LowerRight[LorR]);
WITH LowerRight[LorR]^ DO
BEGIN

Display := Dsply;
Rowld := R;
ColId := C;
Data := Dta;

Up := Old-.UP;
Down := NIL;

umLeft := Old;



Right := NIL;
TokenLeft := NIL;
TokenRight := NIL;
Match := NIL;

END with };

OldA.Right := LowerRight[LorR];
IF DSPLY = NF NC THEN InsertNewToken(LorR,LowerRight);

END InsertRight };

{*****************************************************************************}
PROCEDURE Bubble;
Procedure to perform a bubble sort on the right hand data structure
(this changes the row and col id's, and data
(all pointers are left unchanged
VAR

I,J,Temp: Ptr;

BEGIN
I := Upperleft[right];
IF IA.TokenRight = NIL THEN ELSE

WHILE IA.TokenRightA.TokenRight <> NIL DO
BEGIN

J := IA.TokenRight;
WHILE J <> NIL DO
BEGIN

IF IA.Data > JA.Data THEN
BEGIN

{interchangel
TempA.RowId := IA.RowId;
TempA.ColId := IA.ColId;
TempA.Data := IA.Data;
IA.RowId := JA.Rowld;
IA.ColId := JA.ColId;
IA.Data := JA.Data;

umJA.RowId := TempA.RowId;



JA.ColId := Temr.ColId;
J-.Data := Temp-.Data;

END;
J := J-.Tokenright;

END { while...] 1;
I := I-.TokenRight;

END { while...I };
END { Bubble };

{*****************************************************************************}
PROCEDURE OutputDataStructure(LorR: LeftRight);
VAR

LRTemp,LLTemp Ptr;

BEGIN
floop to march down the data structure)

LLTemp := UpperLeft[LorR];
WHILE LLTemp <> NIL DO
BEGIN

{loop to march across the data structure)

LRTemp := LLTemp;
WHILE LRTemp <> NIL DO
BEGIN

WITH LRTemp- DO
BEGIN

WRITELN ('Row Identification: ', Rowld);
WRITELN

i/o won't work WRITELN
('Col Identification:
('Display Char:

', ColId);
Display);)

WRITELN ('Data: $', Data,'$');

WRITELN;
END { with };

LRTemp := LRTemp-.Right;
END while workig across the data structure );



LLTEMP := LLTemp-.Down;
END [ while working down the data structure );

END [ Outputing the data structure 1;

f*****************************************************************************1
PROCEDURE ReadData;
[Procedure to read the data source (modified pascal source) and place it in I

[the global structure 'prog'
I

[The manditory format for the data source is:
I

{ # To signify start of string }

[ RowId,ColID Unique row and column identifies for the
I

[ particular string
I

f Type N or R for normal or blank
I

t String The actual string itself
I

[Note the string may be a single token or a series of tokens
I

{An example, the sequence
}

{ #3 1 N for i := #3 2 B Start #3 3 N to Term #3 4 B do #3 5 N ; }

[would represent the following screen display }
{ for i := to Term ,

)
[where the blank fields contain the hidden tokens Start and do

I

CONST
Pound: CHAR =

VAR C: CHAR; {a character read on input}
IdRow,IdCol: INTEGER;
Display: DisplayType;
CurrStr: STRING[MaxString]; {Token(s) string}
First: ARRAY[Left..Right] of BOOLEAN; {First token String}

[in a line of program}
BEGIN

First[Left] := True;



First[right] := True;
REPEAT
BEGIN

READ(FV,C);
REPEAT
BEGIN

CurrStr := ";
READ(FV,IdRow);read(FV,IdCol);
read(fv,c); {throw this one asway}
READ(FV,C);
CASE UpCase(C) of

'N': Display := N;
'R': Display := NF NC;
ELSE

WRITELN ('Input Display of Wrong Type', C);
Delay(3000);
OutputDataStructure(Left);

END { case };
READ(FV,C);
WHILE (C <> Pound) AND (NOT EOLN(FV)) DO [form current string}
BEGIN

CurrStr := CurrStr + c;
READ(fv,C);

END { WHILE };

IF EOLN(FV) THEN CurrStr := CurrStr + C; {get the last character}

[Here we build the left data structure }
IF First[Left] THEN

InsertDown(Display,IdRow,IdCol,CurrStr,Left)
ELSE

InsertRight(Display,IdRow,IdCol,CurrStr,Left);
First[Left] := false;
IF Display = NF NC THEN { build right data structure }

InsertDown(N3 NC,IdRow,IdCol,CurrStr,Right);
END;

UNTIL EOLN(FV);

{until eof}

{first # in a line}
{read/process a line }

[read row and column id's}

{'N'ormal, 'R'everse }



READLN(FV);
First[Left] := True;

END; {repeat reading lineS }
UNTIL EOF(FV);
CLOSE(FV);

END { ReadData };

{Swallow cr /lf}
{Next token string first in line}

{*****************************************************************************}
{*****************************************************************************}
Procedure WriteString(Element: Ptr);
{Procedure to write out a string with diffrential display characteristics }

BEGIN
WITH Element- DO BEGIN
CASE Display OF

N : BEGIN

TextColor(15); TextBackGround(00);
WRITE(Data)

END;
NF NC : BEGIN

TextColor(09); TextBackGround(31);
WRITE(' 1)

END;
NF _C : BEGIN

TextColor(08); TextBackGround(31);
WRITE(' 1)

END;
F C : BEGIN

TextColor(08); TextBackGround(31);
WRITE(Match".Data)

END;
F NC : BEGIN

TextColor(09); TextBackGround(31);
Write(MatchA.Data)

END;
NS NC : BEGIN

TextColor(15); TextBackGround(00);
cn
.1



Write(Data)
END;

NS _C : BEGIN

TextColor(08); TextBackGround(31);
Write(Data)

END;
S NC : BEGIN

TextColor(07); TextBackGround(31);
Write(Data)

END;
S C : BEGIN

TextColor(08); TextBackGround(31);
Write(Data);

END;
END { case }
END { with };
TextColor(15); TextBackground(00);

END;

f*****************************************************************************1
Procedure WriteLine(LorR: LeftRight;CurrentPtr: Ptr);
[procedure to write a line from beginning to end with the current display
{types in force...this is called after the cursor is moved
VAR

ScreenPosition: Integer;
Index: Integer;

BEGIN

{First find the beginning of the line }
WHILE CurrentPtr^.Left <> NIL DO CurrentPtr := CurrentPtr^.Left;

}

I

{Then we write out the new line }
IF LorR = Left
THEN

Window (LeftUpperLeftX,LeftUpperLeftY,
co
u,



LeftLowerRightX,LeftLowerRightY)
ELSE

Window(RightUpperLeftX,RightUpperLeftY,
RightLowerRightX,RightLowerRightY);

ScreenPosition := CurrentPtr-.Lines TopScreen[LorR]-.Lines + 1;
IF (ScreenPosition >= 1) AND (ScreenPosition <= 22) THEN
BEGIN

GoToXY(1, ScreenPosition);
[ code to clear line

IF CurrentScreen = Left THEN
FOR INDEX := 1 TO LeftLowerRightX LeftUpperLeftX +1

DO Write(")
ELSE

FOR INDEX := 1 TO RightLowerRightX RightUpperLeftX + 1
DO Write (");

} WHILE CurrentPtr <> NIL DO
BEGIN

WriteString(CurrentPtr);
CurrentPtr := CurrentPtr-.Right

END { while };
END [ if };

{ %%%%% GoToXY(1,1);}
END [ WriteLine };

{*****************************************************************************}

Procedure MoveScreen(LorR: LeftRight; UorD: UpDown);
{Procedure to move the left or right screens either up or down }

[Up means the screen moves up and cursor is at bottom left
[Down means the screen moves down and the cursor is at the top left
BEGIN

IF LorR = Left
THEN

Window (LeftUpperLeftX,LeftUpperLeftY,LeftLowerRightX,LeftLowerRightY)
ELSE

}

}



Window(RightUpperLeftX,RightUpperLeftY,RightLowerRightX,RightLowerRightY);
GoToXY(1,1);
IF UorD = Up
THEN BEGIN

DelLine;

GoToXY(1,LeftLowerRightY - LeftUpperLeftY + 1);
{same values for RightLowerRightY and RightUpperLeftY}
{ie go to the bottom of the current window}

END ELSE

InsLine;

END { MoveScreen };

f*****************************************************************************1
Procedure WindowUpDown(LorR: LeftRight; UorD: UpDown);
VAR

LRTemp : Ptr;

BEGIN

IF (UorD = UP) and (TopScreen[LorR]^.up <> Nil)
THEN BEGIN

TopScreen[LorR] := TopScreen[LorR]-.Up;
If BottomScreen[LorR]-.Up <> Nil THEN

BottomScreen[LorR] := BottomScreen[LorR]^.Up;

MoveScreen(LorR,Down);
LRTemp := TopScreen[LorR];
WHILE LRTemp <> NIL DO
BEGIN

WriteString(LRTemp);
LRTemp := LRTemr.Right;
{ working across the data structue};

END { while };
END

ELSE IF (UorD = Down) and (BottomScreen[LorR] A.Down <> Nil)
THEN BEGIN



BottomScreen[LorR] := BottomScreen[LorR]-.Down;
IF TopScreen[LorR]-.Down <> Nil THEN

TopScreen[LorR] := TopScreen[LorR]-.Down;
MoveScreen(LorR,Up);
LRTemp := BottomScreen[LorR];

WHILE LRTemp <> NIL DO
BEGIN

WriteString(LRTemp);
LRTemp := LRTemp-.Right;
{ working across the data structue };

END { while };
END;

{ %%%%% GoToXY(1,1);}
END { WindowUpDown ];

{*****************************************************************************}

Procedure CursorLeftRight (Window,LorR: LeftRight);
{procedure to move the Cursor Left or Right within a window
{jumping from one token slot to another
BEGIN

IF (LorR = Left) and (CursorPoint[Window]-.TokenLeft <> NIL)
THEN BEGIN

CASE CursorPoint[Window]-.Display OF
NF C: CursorPoint[Window]-.Display := NF NC;
F C: CursorPoint[Window]-.Display := F RC;
NS_C: CursorPoint[Window]-.Display := 413_NC;

S_C: CursorPoint[Window]-.Display := S_NC;
END Case };
WriteLine(Window,CursorPoint[Window]);
CursorPoint[Window] := CursorPoint[Window]-.TokenLeft

END;

IF (LorR = Right) and (CursorPoint[Window]^.TokenRight <> NIL)
THEN BEGIN

CASE CursorPoint[Window]^.Display OF



NF_C: CursorPoint[Window]^.Disolay := NF NC;
F_C: CursorPoint[Window]^.Display := F_NC;
NSC: CursorPoint[Window]^.Display := NS_NC;
S_C: CursorPoint[Window]^.Display := S_NC;_

END { Case };

WriteLine(Window,CursorPoint[Window]);
CursorPoint[Window] := CursorPoint[Window]^.TokenRight

END;
CASE CursorPoint[Window]-.Display OF

NF NC: CursorPoint[Window]^.Disolay := NF C;
F_NC: CursorPoint[Window]-.Display := F_C;

NS NC: CursorPoint[Window]-.Display := NS_C;_
S_NC: CursorPoint[Window]^.Display := S_C;

END { Case };

WriteLine(Window, CursorPoint[Window]);
END { CursorLeftRight };

{*****************************************************************************}
Procedure ClearRTMemory;
BEGIN

FOR i := 1 to RTlndex - 1 DO
BEGIN

Writeln(RTFi1e,RT[i].char:5,RT[i].time:10);
END;
RTlndex := 1;

RT[RTIndex].char := 'Z';
RT[RTIndex].time := Time;
RTlndex := RTlndex + 1;

END;

f*****************************************************************************1
Procedure ClearRSPMemory;
BEGIN

FOR i := 1 to RSPIndex - 1 DO
BEGIN

WITH RSP[i] DO
BEGIN



write(RSPFi1e,Char, Correct, Time, LRowId:5, LColId:3);
write(RSPFi1e,RRowID:5, RColId:3);

END { with };

writeln(RSPFi1e);
END;
RSPIndex := 1;
WITH RSP[RSPIndex] DO

BEGIN
Char := 'Z'; P for Pause while writing to disk }
Correct := 'Z';
Time := RT[RTIndex].Time;
LRowID := 0;
LCo1ID := 0;
RRowID := 0;
RCo1ID := 0;

END { with };

RSPIndex := RSPIndex + 1;

END;

f*****************************************************************************1
FUNCTION Consolelnput: Char;
{This function receives input from the console keyboard
{The input character and its time stamp is written in memory
[The character is edited and passed back to the calling program

VAR C : CHAR;

BEGIN

READ(KBD,C);
IF C = char(27) THEN READ(KBD,C); [use extended char set if necessary)
RTlndex := RTlndex + 1;
IF RTlndex <= MaxRTlndex THEN ELSE ClearRTMemory;

RT[RTlndex].char := C;
RT[RTlndex].time := Time;
CASE C of

am
'e','E' : C := UpCase(C) Exit 1; (.4



'c','C'

'R'

'S'

: C := UpCase(C) f Change Screen };
: f Insert--82 1;
: f Delete--83 };

'G' : f Home--71 1;
'H' : { Cursor Up--72 1;
'I' : { Page Up--73 };
'K' : f Cursor Left--75 };
im,

: { Cursor Right--77 };
'0' : { End--79 };
'P' : { Cursor Down--80 };
IQ'

: { Page Down--81 };
ELSE

Sound(Round(3000));Delay(200);NoSound;
C := Consolelnput; {recurse until good character };

END;

Consolelnput := C;
END { Consolelnput };

i*****************************************************************************1
PROCEDURE Delete;
{Procedure which 'undos' a previous insert }

BEGIN
IF (CursorPoint[Left1-.Display = F_C) AND

(CursorPoint[Right]-.Display = S_C) AND
(CursorPoint[Left]-.Match = CursorPoint[Right]) AND
(CursorPoint[Right]-.Match = CursorPoint[Left]) THEN

BEGIN
{ ok to switch }
CursorPoint[Left]-.Match := NIL;
CursorPoint[Right]-.Match := NIL;
CursorPoint[Left]-.Display := NF C;
CursorPoint[Right]-.Display := NS_C;
WriteLine(Left,CursorPoint[Left]);
write (' 1)

WriteLine(Right,CursorPoint[Right]);
{ check to see if same and record output here 1

4E.



RSPIndex := RSPIndex + 1;
IF RSPIndex <= MaxRSPlndex THEN ELSE

{ out of memory--write data to disk and clear array
ClearRSPMemory;

WITH RSP[RSPIndex] DO
BEGIN

Char := 'D';
Correct := 'D';
Time := RT[RTlndex].Time;
LRowID := CursorPoint[Left]^.Rowid;
LCo1ID := CursorPoint[Left]-.Colid;
RRowID := CursorPoint[Right]A.RowId;
RCo1ID := CursorPoint[Right]-.Colid;

END [ with }

END
ELSE BEGIN

one or more tokens already assigned }

Sound(Round(3000));Delay(200);NoSound;
END;

END;

{*****************************************************************************}
PROCEDURE Insert;
[Procedure which takes a token from the right screen and inserts it into the I

[left screen after doing some inital error checking
BEGIN

IF (CursorPoint[Left]A.Display = NF_C) AND

(CursorPoint[Right]-.Display = NS_C) THEN
BEGIN

ok to do the insert }

CursorPoint[Left] A.Match := CursorPoint[Right];
CursorPoint[Right]-.Match := CursorPoint[Left];
CursorPoint[Left]^.Display := F C.,

CN
CursorPoint[Right]^.Display := S_C; um



WriteLine(Left,CursorPoint[Left]);
write (' 1);

WriteLine(Right,CursorPoint[Right]);
i record output }

RSPIndex := RSPIndex + 1;
IF RSPIndex <= MaxRSPlndex THEN ELSE

[ out of memory--write data to disk and clear array 1
ClearRSPMemory;

WITH RSP[RSPIndex] DO
BEGIN

Char := 'I';

IF CursorPoint[Left]-.Data = CursorPoint[Right]-.Data
THEN Correct := 'C' ELSE Correct := 'U';
Time := RURTIndexl.Time;
LRowID := CursorPoint[Left]-.Rowid;
LCo1ID := CursorPoint[Left]-.Colid;
RRowID := CursorPoint[Right]-.RowId;
RCo1ID := CursorPoint[Right]-.Colid;

END [ with };
END
ELSE BEGIN

1 one or more tokens already assigned 1
Sound(Round(3000));Delay(200);NoSound;

END;
END;

{*****************************************************************************1
Procedure Manager;
CONST

HalfMaxLines = 12; [ Half the maximum lines on one screen 1
VAR

NoQuit: Boolean;
Index: Integer;

BEGIN
NoQuit := True;



GoToXY(1,25); Write ('X');

While NoQuit DO BEGIN
CASE Consolelnput of

'E' : f Exit }
BEGIN

RSPIndex := RSPIndex + 1;
NoQuit := False;

END;
'C' : { Change Screen }

If CurrentScreen = Left THEN
CurrentScreen :=Right ELSE CurrentScreen := Left;

'R' : { Insert--82 } Insert;
'S' : { Delete--83 } Delete;
'G' : { Home--71 }

WHILE

TopScreen[CurrentScreen] <> UpperLeft[CurrentScreen]
DO WindowUpDown(CurrentScreen,Up);

'H' : { Cursor Up--72 } WindowUpDown(CurrentScreen,Up);
'I' : I Page Up--73 }

FOR INDEX := 1 TO HalfMaxLines DO

WindowUpDown(CurrentScreen,Up);
'K' : { Cursor Left--75 } CursorLeftRight(CurrentScreen,Left);imi

: { Cursor Right--77 } CursorLeftRight(CurrentScreen,Right);
'0' : { End--79 }

WHILE

BottomScreen[CurrentScreen]<>LowerLeft[CurrentScreen]
DO WindowUpDown(CurrentScreen,Down);

opi
: { Cursor Down--80 } WindowUpDown(CurrentScreen,Down);IQ)
: { Page Down--81 1
FOR INDEX := 1 TO HalfMaxLines DO

WindowUpDown(CurrentScreen,Down);
ELSE

(impossible to get here is Consolelnput working properly}
Sound(Round(750));Delay(1500);NoSound;

END { case };



Window(1,1,80,25); TextColor(15);TextBackGround(0);
IF CurrentScreen = Left THEN
BEGIN

GoToXY(RightUpperLeftX,25);
Write (");
GoToXY(1,25);
Write('X');

END
ELSE BEGIN

GoToXY(1,25);
Write (");
GoToXY(RightUpperLeftX,25);
Write ('X');

END { if };
END while 1;

END { Manager 1;

f*****************************************************************************1
{*****************************************************************************}
Procedure Frame(WTab : WindowBound);
{Procedure to draw a frame around a window
{Frame is drawn in cells one unit outside of the window boarder

var

UpperLeftX, UpperLeftY, LowerRightX, LowerRightY: Integer;
i: Integer;

begin
UpperLeftX := WTab[1]-1; UpperLeftY := WTab[2]-1;
LowerRightX := WTab[3]+1; LowerRightY := WTab[4]+1;
GotoXY(UpperLeftX, UpperLeftY); Write(chr(218));
for i:=UpperLeftX+1 to LowerRightX-1 do Write(chr(196));
Write(chr(191));
for i:=UpperLeftY+1 to LowerRightY-1 do
begin

GotoXY(UpperLeftX , i); Write(chr(179)); Ch
CO



GotoXY(LowerRightX, i); Write(chr(179));
end;
GotoXY(UpperLeftX, LowerRightY);
Write(chr(192));
for i:=UpperLeftX+1 to LowerRightX-1 do Write(chr(196));
Write(chr(217));

end Frame };

[*****************************************************************************1

PROCEDURE InitialScreen(LorR: LeftRight);
{Procedure to initialize the windows with text from data structure
{Leaves global pointers: TopScreen and BottomScreen assigned

VAR
MaxLines,NLines : Integer;

LRTemp,LLTemp : Ptr;

BEGIN
IF LorR = Left THEN

MaxLines := LeftLowerRightY LeftUpperLeftY + 1

ELSE
MaxLines := RightLowerRightY RightUpperLeftY + 1;

{loop to march down the data structure}
LLTemp := UpperLeft[LorR]; TopScreen[LorR] := UpperLeft[LorR];
NLines := 1;
WHILE (LLTemp <> NIL) AND (NLines <= MaxLines) DO
BEGIN

{loop to march across the data structure}
LRTemp := LLTemp; BottomScreen[LorR] := LLTemp;
MoveScreen(LorR,Up);
REPEAT

WriteString(LRTemp);
LRTemp := LRTempA.Right;
I working across the data structue);

UNTIL LRTemp = NIL;



LLTEMP := LLTemp-.Down; {go down one more line}
NLines := NLines + 1; {and count it}

END { while working down the data structure };
WHILE NLINES <= MaxLines DO
BEGIN

Writeln;
NLines := Nlines + 1;

END { while }
END { Initial Screen };

f*****************************************************************************1
PROCEDURE DemographicsOpenFiles;
VAR

FileName: STRING[14];
OK: BOOLEAN;

BEGIN
REPEAT

BEGIN

clrscr;
write('Enter name of source program: ');readln(FileName);

assign(FV,FileName);
{$I -} reset(FV) {$I.+};
OK := (I0Result = 0);
IF NOT OK THEN writeln('Cannot find file named ',FileName);

END

UNTIL OK;

write('Enter name of output file w/o filetype: '); readln(FileName);

assign(RTfile,FileName+1.RT'); rewrite(RTfile);
assign(RSPfile,FileName+'.RSP');rewrite(RSPfile);

END { DemographicsOpenFiles I;

{*****************************************************************************}



PROCEDURE Initialize;
[It does just what it says
VAR

LorR : LeftRight;
BEGIN

FOR LorR := Left to Right DO [Initialize Pointers to Nil}
BEGIN

UpperLeft[LorR] := NIL;
LowerLeft[LorR] := NIL;
TopScreen[LorR] := NIL;
LinePointer[LorR] := NIL;
FirstToken[LorR] := NIL;

END;

DemographicsOpenFiles;
ReadData;
Bubble;

ClrScr;
Window(1,1,80,25);
Frame(LeftWTable);
Frame(RightWTable);

CurrentScreen
CursorPoint[Left]
CursorPoint[Right]

LowerRight[LorR] := NIL;

BottomScreen[LorR] := NIL;
CursorPoint[LorR] := NIL;
LastToken[LorR] := NIL;

(Collect Demographics & Open Files}
[Read Data and build structure }
[Sort right hand window}

(Clear Screen}
[open main window}
{draw left frame }
[draw right frame)

:= Left; {define screens}
:= FirstToken[Left];
:= FirstToken[Right];

InitialScreen(Left); [ draw the left screen }
InitialScreen(Right); { draw the right screen
Window(1,1,80,25); TextColor(15);Textbackground(0);

RTlndex := 1;
RT[RTIndex].char := 'B';
RT[RTlndex].time := Time;
RSPIndex := 1;

{ mark the beginning }



WITH RSP[RSPIndex] DO
BEGIN

char := 'B';
correct :=";
time := RT[RTlndex].time; same starting times
LRowID := 0; LCo1ID := 0; RRowID := 0; RCo1ID :=0;

END with };
END Initialize};

{*****************************************************************************}
{*****************************************************************************}
{*****************************************************************************}
BEGIN Main Program j

Initialize;

Manager;
Window(1,1,80,25);
ClrScr;
ClearRTMemory; ClearRTMemory; close(RTFile);

{we clear memory twice to save the RT for E response}
ClearRSPMemory; CLearRSPMemory; close(RSPFile);

END main program I.


