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GEOMETRIC COMPUTER GRAPHICS PACKAGE WITH
APPLICATIONS TO STEINER'S PROBLEM

INTRODUCTION

Seeing is believing. This might have been one of the major.

motivations for the development of computer graphics, which is a rapidly

growing field. At the present time, interactive computer graphics is an

extremely effective medium for communication between man and computer.

It has become a major facilitator of man/machine interaction.

Our interest here is to see how interactive computer graphics ful-

fils its promise in a particular application. It can enhance our

understanding of complex phenomena and also provide us with pictorial

communication to design or improve methods to solve difficult problems.

In this thesis, an interactive computer graphics package was

developed for the purpose of solving certain geometric problems in the

Euclidean plane. These are of practical importance because in many

applications the real physical objects are arranged in the Euclidean

plane. Our Geometric Graphics Package serves the purpose of modeling

the Euclidean plane, and it contains many useful functions. Two of

these functions find two important geometric structures. These structures

can be used to solve various geometric problems and a number of practical

problems. One such geometric structure is the Euclidean Minimal Spanning

Tree(MST), an interconnecting tree of minimum total Euclidean length

whose vertices are the given points in the plane. The MST is a common

component in applications involving networks, and has been used as a
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tool in clustering [Zahn (71)], in pattern recognition [Qsteen (74)],

and in minimizing wire length in computer circuitry [Loberman (57)].

Another powerful geometric structure is the Voronoi diagram in the

Euclidean plane, a graph containing the proximity information defined

by the given point set in the plane. The Voronoi diagram can be used

to solve a number of geometric problems, such as finding a nearest

neighbor of each given points, the smallest circle enclosing the set,

and the largest circle containing no points of the set [Shamos (78)] .

Also the Voronoi diagram gives rise to other useful geometric structures,

such as (1) a triangulation with property that the circumcircle of

every triangle is empty, called the Delaunay triangulation (DT), (2)

the MST, (3) the relative neighborhood graph, a proximity graph like

DT and MST [Supowit (81)] , and (4) the Gabriel graph, the least square

adjacency graph with Euclidean distance [Matula (80)]. Numerous

applications of the solutions to these geometric problems and of

geometric structures can be found in [Shamos (78)], [Urquhart (82)],

[Toussaint (80)], [Matula (80)], [Smith (81}], and [Dasarathy (80)].

Besides providing a useful geometric graphics package for many

practical applications, our specific goal was to develop an alogorithm

for fiTiding the Euclidean Steiner Minimal Tree (SMT) using the Geometric

Graphics Package as a tool. The problem of finding the SMT is known as

Steiner's Problem. The SMT is a spanning tree with the shortest possible

total length whose vertices contain the given points. The SMT differs

from the Euclidean Minimal Spanning Tree(see the definition above) in

that the SMT may contain other points besides the given fixed points

as its vertices in order to reduce the total length. An extra vertex
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which is added to a tree to reduce its length is called a Steiner point.

The simplest form of Steiner's Problem was first posed by Fermat early

in the 17th centry. It is as follows: "Given three points in the plane,

find a fourth point such that the sum of its distances to the three

given points is a minimum[Kuhn (75)]" Steiner's problem with three points

is exactly solved (The answer is shown in Chapter 2). However, Steiner's

Problem with any number of given points, a generalization of Format's

Problem has been proved to be at least as difficult as any of the NP-

complete problems [Carey (77a)]. In Chapter 3 we present an iterative

heuristic using fixed tension physical relations for the problem. The

Geometric Graphics Package is to be used to visualize the behavior of

the heuristic, to understand the natural phenomena simulated by our model,

and finally to guide us to improve the heuristic.

Chapter 1 introduces the Geometric Computer Graphics Package. Its

7 major functions are described. Also we study the problem of constructing

the Voronoi diagram and the Euclidean Minimal Spanning Tree, which are two

important functions in the package. Efficient algorithms due to [Shamos

(78)]are presented along with their applications. We give an example of a

sequence of function invocations to illustrate the role of each function.

Finally, the data structures used in the package are explained.

In Chapter 2 we review Steiner's Problem. Known facts and various

properties of the optimal solution for the problem are listed along with

their consequences and implications.

In Chapter 3 we present the heuristic algorithm for Steiner's Problem.

Experimental results for the heuristic on certain point sets are included.

This demonstrates how the graphics package can be used as a tool.
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CHAPTER 1

GEOMETRIC COMPUTER GRAPHICS PACKAGE

In this Chapter, we introduce the Geometric Computer Graphics

Package developed in this thesis. Its major functions are described.

In section 2, we study two important functions, the Voronoi diagram

and the Euclidean Minimal Spanning Tree. In section 3, we show an ex-

ample of a sequence of function invocations. The data structures for

the graphics package are explained in the last section.

The Geometric Graphics Package follows the principal concepts

of interactive graphics programming using the Core System, as described

in [Foley(82)] and [Bergeron(78)]. The Core System is a proposed stand-

ard graphics package developed by the ACM/SIGGRAPH Graphics Standards

Planning Committee. It is designed as a general purpose subroutine

package that provides an interface between an application program and

graphics hardware. The major goal of the Core System is to have the

interface be independent of the specific hardware available so that the

application program is portable [Bergeron(78)].

The Gemetric Graphics Package provides the basic application-

independent facilities for creating arbitrary views of two-dimensional

objects and for supporting interaction between an application program

and its user. The principal application of the graphics package is to

help in the solutions of various geometric problems in the Euclidean

plane (see the appendix for specific implementation of the package).
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1.1 Main Functions in the Geometric Graphics Package

In this graphics package, the main objects that are created and

represented pictorially are points and graphs in the Euclidean plane.

The interactive application program contains 7 major functions which

can be applied to a set of points or a graph. These functions are:

1. ADD

This function adds a points to the set of points.

2. DELETE

This function deletes a point from the set of points.

3. GEOMETRY

This function has subfunctions which are used to display geometric
structures which arise from the given point set (details in the
next section).

a. VORONOI D: Display the Voronoi diagram, a graph in
which every edge defines a nearest
neighbor of each given point.

b. DUAL : Display the Delaunay triangulation, the
planar straight line dual graph of the
Voronoi diagram.

c. MST

4. SKETCH MST

: Display the Euclidean Minimal Spanning
Tree, an interconnecting tree of minimum
total length whose vertices are the given
points.

This function displays the Euclidean Minimal Spanning Tree,
as in 3.c.

5. CHANGE VIEW

This function is to used to show the graph on the screen with
different views. It consists of 6 subfunctions:
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a. ZOOM : Set a new window and display the graph with
the new window.

1) NEW BOX : This allows the redefinition
of a window.

2) BOX done: Display the graph with the
new window.

b. TRANSLATE: Translate the graph.

c. ROTATE : Rotate the graph.

d. OVERVIEW : Display the original graph.

e. EARTHVIEW: Display the previous graph with the current
window (This is only to be used after OVERVIEW).

f. GEOMETRY : Same functions as above in (3). The graph in
the EARTHVIEW is used as input.

Note that each function can be applied to point sets or graphs.
An example of a sequence of operations is given in section 1.3.

6. LIBRARY

This function allows the user to access and store various point
sets and graphs. It consists of 3 subfunctions:

a. GET POINTSET : Get a new point set with the name
provided by the user.

b. RETRIEVE GRAPH: Retrieve a graph which has been saved.
The user provides the name of the graph.

c. SAVE GRAPH : Save the graph on the screen with the
name provided by the user.

7. EXIT

Terminate the application program.

All functions are contained in menus so that the invocation of each

function is done by selecting a menu entry. The function displaying

the MST was set up in two menus for convenience' sake. A grah G =

(V, E) consists of a finite, nonempty set of vertices V and a set of

edges E. Figure 1.1 shows a module hierachy for MENU LAYOUT and



the interconnections between the menus. The function, HEURISTIC SMT

in the Main menu is to invoke the heuristic algorithm for Steiner's

Problem (see Chapters 2 and 3).

Start

Library

Library MENU

GET POINTSET
RETRIEVE_ GRAPH

SAVE GRAPH
DONE Geometry MENU

I\ Main MENU

--->

VORONOI D
DUAL
MST
GO ON

ADD
DELETE
GEOMETRY
SKETCH MST
HEURISTICSMT
CHANGE VIEW
LIBRARY
EXIT

Change_View MENU

ZOOM 4
L.; TRANSLATE <

ROTATE
OVERVIEW
EARTHVIEW
GEOMETRY
DONE

terminate the application program

Figure 1.1 Module Hierarchy for MENU_LAYOUT

7

NEW_BOX
BOX DONE
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1.2 Voronoi Diagram and Euclidean Minimal Spanning Tree

In this section, we give the definitions of the Voronoi diagram

and the Euclidean Minimal Spanning Tree, which are two important func-

tions in our Geometric Graphics Package. Then we briefly introduce

efficient algorithms for these functions, along with their applications.

The algorithms are due to [Shamos(78)] and represent a break-through

in computational geometry.

Given a finite set S of n points in the plane, for each point

pi there is a convex polygon VP(i), called the Voronoi polygon

associated with the point pi. This polygon has the property that the

polygonal region encompasses the locus of points closer to pi than any

other point in S. It is formally defined as the intersection of half-

planes determined by the perpendicular bisector of the straight lines

joining Pi and all other points in S. If H(i,j) denotes the half-plane

determinedbytheperperldicularbisectorofpointshen

VP(i) = n H(i,j) .

j

This shows that VP(i) is a convex polygonal region having at most

n-1 sides. The collection of Voronoi polygons VP(i), for each pi in

S, partitions the plane into n regions, some of which may be unbounded.

This collection is referred to as the Voronoi diagram V(S) for the

set S (Figure 1.2).
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Figure 1.2 Voronoi Diagram

As we see in Figure 1.2, each of the original n points belongs

to a unique Voronoi polygon, and thus any point inside the polygon

VP(i) has P. as its nearest neighbor. The Voronoi diagram having all

the proximity-information defined by the given set S turns out to be

a single geometric structure which can be used to solve efficiently

a number of seemingly diverse geometric problems, such as (1) finding

a Euclidean Minimal Spanning Tree, (2) finding the convex hull of S,

(3) finding the large empty circle inside the convex hull of S, (4)

finding all nearest neighbors, and (5) finding a triangulation with

the property that the circumcircle of every triangle is empty.
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Shamos [Shamos (78)] has shown that the Voronoi diagram can be con-

structed in 0(nlogn) time in the worst case, and obtained 0(nlogn)

algorithm for all these problems using the Voronoi diagram.

Even though the Voronoi diagram appears to be a complex object,

a Voronoi diagram on n points has only 0(n) vertices and 0(n)

edges joining them. Thus the construction of the Voronoi diagram can

be done in linear space, and it is elegantely solved by the "Divide and

Conquer" technique. The algorithm [Shamos (78)] first divides the n

points into two sets L and R, each of equal size, by a vertical

medium line so that every point of L lies to the left of every point

in R, and every point of R lies to the right of every point in L.

Find the Voronoi diagrams VD(L) and VD(R) recursively. The various

structural properties [Shamos (78)] of the Voronoi diagram enables the

algorithm to merge VD(L) and VD(R) in 0(n) time to get the Voronoi

diagram of the whole set. Thus this is an 0(nlogn) algorithm.

Shamos and Hoey [Shamos (75)] have collected a group of problems

in computational geometry which they refer to as closest point problems.

They show how the Voronoi diagram can be used to solve all the closest

point problems efficiently (some of these problems are mentioned above)

Also recent applications can be found in [Matula (80)], [Supowit (81)],

and [Smith (81)]. Here we illustrate how the Voronoi diagram is used to

find the Euclidean Minimal Spanning Tree. The definition follows first.

Given n points in the plane, the Euclidean Minimal Spanning

Tree ( MST) is an interconnecting tree of minimum total Euclidean length

whose vertices are the given points. The MST is the one of the classical

examples in computational geometry showing that certain problems in graph
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theory can be solved with substantially lower time complexity when

restricted to the Euclidean plane. The problem for finding the MST is

usually solved by regarding the points as vertices of a complete n-graph

whose edge weights are the Euclidean distances. The usual algorithm,

Kruskal's algorithm [Aho (74)], finds the EMST in 0(n2logn). Shamos

showed that the MST can be constructed in 0(nlogn) time using the

Voronoi diagram [Shamos (78)].

Given a finite set S of n points in the plane, we first con-

struct the Voronoi diagram for S, VD(S). Every edge of the Voronoi

diagram is a segment of the perpendicular bisector of a pair of given

points, and is thus common to exactly two polygons (see Figure 1.2).

Consider the straight-line dual of VD(S); that is, join pi and pi

by a line segment if and only if VP(i), the Voronoi polygon of pi

and VP(j) share an edge. One of the important properties of the Voro-

noi diagram is that the straight-line dual of VD(S) is a triangulation

[Shamos (78)], called the Delaunay triangulation (Figure 1.3). The

Delaunay triangulation is a planar graph on the given n points con-

sisting entirely of triangles. Hence, it has at most 3n-6 edges [Harary

(71)]. One of the important consequences of this triangulation is that

the corresponding Voronoi diagram has at most 2n-4 vertices and 3n-6

edges. Also, every Euclidean Minimal Spanning Tree of the given points

is a subgraph of the Voronoi dual. Hence the MST must also be a

Minimal Spanning Tree of the dual graph [Shamos (78)]. Since the dual

graph has at most 3n-6 edges, the MST can be constructed in 0(nlogn)

time if we use Kruskal's algorithm on the dual graph. Since the

Voronoi diagram can be constructed in 0(nlogn) time and the dual graph
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Figure 1.3 Delaunay Triangulation

can be found in 0(n) time, the overall time to construct the MST is

0(nlogn).

The MST problem is a common component in geometric minimization

problems. Some of these problems are: (1) designing a network of

minimum cost for a communication system, (2) minimizing wire length

for connecting terminals [Loberman (57)], (3) calculating the tariff

for private telephone line service (proportional to the length of the

minimal network containing the customer's stations), (4) clustering

(detecting and describing the structure of point clusters) [Zahn (71)],

(5) pattern recognition [Osteen (74)], (6) obtaining approximate
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solutions to the Traveling Salesman problem [Shamos (78)], and (7)

developing a heuristic for Steiner's Problem [Chang (72)], [Smith (81) ] .

We investigate (7) further in Chapter 3.

1.3 Example Of A Sequence Of Function Invocations

The Geometric Graphics Package contains a function, LIBRARY which

enables us to work with various point sets and graphs. The LIBRARY

command has three primitives; one for saving a graph, the second for

retrieving a new point set, and the third for retrieving a graph which

has been saved. This command can be easily implemented on most machines.

The main purpose of this function is to build a library containing

various graphs and point sets identified by their names. At the beginning

of the session, the user is directed to the library to retrieve a point

set or retrieve a graph (see Figure 1.1).

The purpose of this section is to guide the reader through a typical

sequence of commands, which will illustrate the power of the Geometric

Graphics Package.

Suppose we get a point set from the library (Figure 1.4a). Then

the Main menu is displayed, and the user should select a function. For

example, one.can add or delete a point (Figure 1.4b). In orddr to see

the geometric structures of the given point set, select GEOMETRY; its

menu will appear, and the user can select one of the sub-functions:

VORONOI D, DUAL, MST in any order (Figure 1.4c,d). After examining the

geometric structures, select GO ON, control returns to the main program,

and the Main menu is displayed. If we want to see part of the MST more
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closely, select SKETCH MST (Figure 1.4e), CHANGE VIEW, and ZOOM in

that order. The user is allowed to specify a new window (Figure 1.4f)

by giving the lower left and upper right corners of the box and re-

define a window until the user picks BOX DONE. The new picture is

displayed (Figure 1.4g). Now if the user wants to see the original

graph, select OVERVIEW (Figure 1.4h). In OVERVIEW, the current window

for the 'earthview' is showed to indicated where the new window has

been located relative to the original picture. At this point, we have

two choices: go back to the ' earthview' by selecting EARTHVIEW or

select another item (ZOOM, TRANSLATE, ROTATE etc). Suppose we pick

EARTHVIEW (Figure 1.4i) and we want to rotate the graph. Select

ROTATE and provides a point, say the center of the screen, and a 60

degree angle of rotation. Then the graph is rotated 60 degree about

the point (Figure 1.4j). To see the Voronoi diagram and the Delaunay

triangulation with the current window, select GEOMETRY followed by

VORONOI D and DUAL (Figure 1.4k). Finally, suppose we want to save

the original graph for later use and try some other operations on a

new point set. Go back to the original window to see the entire graph

by selecting OVERVIEW (Figure 1.4Z), and then pick DONE. When the

Main menu is displayed select LIBRARY to save the graph and get a new

point set (Figure 1.4m). Then the user will manipulate the new point

set in same fashion as the old point set.
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a

Get another point-set? IF not, type (d) to go on

Figure 1.4a A Point-Set from the Library

Select a function by typing a first letter

Figure 1.4b Add a point

GET_POINTSET
Mett(teVt_INWH
SAVE_GRAPH
BONE

ADD

DELETE
GEOMETRY
SKETCH_MST
HEURISTIC_SMT
CHANGE_VIEW
LIBRARY
EXIT

Figure 1.4 A Sequence of Function Invocations
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DUAL_GRAPH
MST
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Figure 1.4d Voronoi diagram and Delaunay Triangulation



000.04.041...00.0.0.000.0.0,000.00.114100.111.1.111.1.0.4.1.,

Select a MENU

Figure I.4e Minimal Spanning Tree

40.......000,00.0a..N.1.MOV.E.M00.000o.s.00,

Satisfied? Then Pick BOX_DONE

Figure 1.4f Window Box
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DELETE
GEOMETRY
SKETCH_MST
HEURISTIC_SMT
CHANGE_VIEW
LIBRARY
EXIT

NEW_BOX
BOX_DOW
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Figure 1.4g MST with the New Window
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Figure 1.4h MST with the Original Window
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GEOMETRY
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EARTHVIEW
GEOMETRY
DONE
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Figure 1.4i Go Back to 'Earthview'

ROTATE

ZOOM
TRANSLATE
ROTATE
OVERVIEW
EARTHVIEW
GEOMETRY
DONE

ZOOM
TRANSLATE
ROTATE
OVER! I EW
EARTHVIEW
GEOMETRY
DONE

Figure 1.4j Rotate 60° about the center of the screen
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Figure 1.4m New Point-Set from the Library
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CET_POINTGET
RETRIEVEGRAPH
SAVESPAPH .
DONE

1.4 Data Structures

In this graphics package, the main objects that are created and

represented pictorially are sets of points and graphs in the Euclidean

plane. The data structures of the application program is very simple.

Point sets, the lowest level sub-objects, are represented as a

linked-list of structures, each structure containing the (x,y) coordi-

nates of a point and a pointer pointing to the next point. This data

structure makes it easy to alter points individually (Figure 1.5a).

For a graph the data structure consists of an array of structures,

one for each vertex in the graph and a linked list containing a list
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of edges for the topology of the graph (Figure 1.5b and 1.5c). Each

structure in the array has the (x,y) coordinates for a vertex and an

attribute of the vertex which can be used to treat points differently,

for example, draw a vertex with different color or shape. The indices

of the array are used as names of vertices in the graph so that the

topology of a graph is represented as a set of integer pairs. This

representation of a graph is easily transformed into an adjacency list

representation of graph by a single scan of the list of edges.

For the purpose of clean and compact programming, a set of points

is regarded as a graph with no edges. Thus procedures in CHANGE VIEW

function operate on the data structure of a single object, a graph.

The followings are the declarations of data structures in the C

language:

(a) Struct Z.-point {

float xcord, ycord;
struct *next;

} *org header;

(b) Struct vertex {

float xcord, ycord;
unsigned code;

} org v [MAXV];

(c) Struct graph {

int vl, v2;
double length;
structure graph *next;

} *org graph

First (a) is for point sets, and (b) and (c) for graphs. MAXV is
the maximum number of vertices in a graph, and 'length' in (c) is
the Euclidean distance between vertices, vl and v2.
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End of list

Figure 1.5a Linked list of structures for a set of points

1 2 3 n

X
1

Y1

Codel

x
2

Y2

Code2

X
3

Y3

Code3

1 X
n

Yn

Code n

Figure 1.5b Array of structures for the vertices

,
Head of list Vil

Vim
V. V. V.

Jm
Ll L2 L

m

Figure 1.5c Linked list of structures for the edges

> End of list

Figure 1.5 Data Structures of the Geometric Graphics Package.
Figure 1.5a is for point sets, and Figure 1.5b and
Figure 1.5c for graphs. In Figure 1.5c, V

jk
is the

name of a vertex which is the index of the array
in Figure 1.5b.
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CHAPTER 2

STEINER'S PROBLEM IN EUCLIDEAN PLANE

In previous chapter, for given n points in the plane we con-

structed a spanning tree having these points as its vertices and having

the minimum total length (the MST) in O(nlogn) time with Shamos'

algorithm. A fundamental condition of the problem finding the EMST

is that edge intersections in the tree may only occur at the given n

points. What happens when this basic condition is relaxed; that is,

suppose new vertices may be added to the original set in order to

reduce the total length of a tree connecting the given n points. Is

the solution to this new problem_still practical to compute? It has

been shown [Garey (77a)] that the new problem becomes at least as hard

as any of the NP-complete problems. In this Chaper we study this hard

(computationally) problem. It is known as Steiner's Problem. First

we give some definitions and formally define the problem. Then we study

a number of basic known properties of the problem.

2.1 Problem Definitions

Given n points, Al, A2, ..., An in the plane, n>l, the Euclidean

Steiner Minimal Tree (SMT) is a spanning tree with the shortest

possible total length whose vertices contain the given n points. The

length of the tree is the sum of the Euclidean length of its edges.

The same questions we consider in this thesis can be asked for other

metrics, for example the rectilinear metric [Hwang (76)] [Garey (77b)]

[Hwang (79)]. Henceforth the length will always refer to the Euclidean
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metric. In order to achieve the minimum length, the SMT often con-

tains other vertices besides Al, An. For example, if Al, A2,

A
3
are three vertices of an equilateral triangle, then the shortest

tree consists of 3 lines from Al, A2, A3 to an extra vertex S inside

the triangle (Figure 2.1).

A
2 A

3

Figure 2.1 Steiner Minimal Tree with 3 points of equilateral triangle

Any extra point S which is added to a tree to reduce its length

is called a Steiner point, after Jacob Steiner, the famous geometer

at the University of Berlin in the early 19th century. By adding

extra Steiner points, a tree of shorter length than the MST is almost

always obtainable. The problem of finding the shortest possible tree

is called Steiner's Problem.
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The Steiner Problem is one of the oldest optimization problems.

in Mathematics. It starts with Fermat's Problem (see next section)

early in the 17th century. Since the Fermat Problem has been widely

popularized by Courant and Robins [Courant (41)] under the name

"Steiner Problem", the problem has appeared in numerous places due to

its potential applications to practical situations. The SMT arises

frequently in problems concerning network design [Werner (69)], optimal

location of facilities [Soukup (75)], and in locating processors with

minimum line cost in distributed computer system [Chang (76)].

1.2 Basic Properties

When any number of extra Steiner points may be added at will

to the given set of points, the problem of finding a shorest tree(SMT)

appears an infinite problem. But in 1961, Melzak [Melzak (61)] gave

an algorithm for finding the SMT using a number of basic properties

of the SMT. Though his algorithm is effective, it is extremely ineffi-

cient. We outline his algorithm in this section.

By the topology we shall mean an adjacency matrix, or any equivalent

description specifying the connections between points in the given set of

points and the Steiner points. The difficulty of the Steiner Problem is

in finding the optimal Steiner tree topology. There are too many topol-

ogies for even small n that one has to consider in order to find the

optimal solution even though many known properties of the SMT rule out

a large number of possibilities. Before we study some key properties of

the SMT, we give the solution for the simplest case of the Steiner

Problem and show the construction of the SMT for that case.



The simplest case of the Steiner Problem is posed as Fermat's

Problem:

Given a triangle T with vertices A, B, C in the plane,

find a fourth point S which minimizes the sum of the

Euclidean distances

ISAI + ISBI + ISCI .

The 4th points may coincide with one of A, B, C.
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This problem is always exactly solvable. If an angle of T is greater

than or equal to 120° at a vertex, then S is that vertex. Otherwise

S lies inside of T, and S is the point at which the sides of T

subtend an angle of 120° (The proof can be found in [Gilbert (68)],

[Coxeter (61)], or try it yourself). Thus, if given a triangle with

no angle greater than or equal to 120°, then the unique Steiner point

S exists, and S can be constructed as follows.

Let ABC' denote the equilateral triangle exterior to given triangle

ABC. Draw a circle circumscribing ABC'. The point S is the inter-

section of the circle and the line segment CC' (Figure 2.2a). [Coxeter

(61)] gives an alternate construction for S. Draw any two of three

equilateral triangles ABC', ACB', and BCA' outwards on the sides of

ABC. Then S is the common intersection point of any two of the three

lines AA', BB', and CC' (Figure 2.2b).

From the proof of Fermat's Problem [Coxeter (61)] it follows

directly that the length of the Steiner Minimal Tree on three points

is ICC11 (or IBB'l or IAA' I in the latter case) if S exists.

(Note that this fact together with above construction is used to find
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C'

A'

(b)

Figure 2.2 The Construction of the Stainer point S for n=3.

the Steiner Minimal Tree with a given topology in general case, n>3.

Imagine for a moment we have more than 3 given points. From Figure

2.2a, ICC'l allows the replacement of two given fixed points, A and

B by a new point C'. Then we have one less given point and one less

Steiner point. This simpler problem has the same length as the old one!)

Let an Euclidean Steiner Minimal Tree have A
l'

A2, A
n'

n2t.3, given points and Sl, S2, ..., Sm, Steiner points. We study

7 key properties of a SMT.

(Property 1) In the SMT, two lines (edges) which intersect, whether

at a fixed point or a Steiner point, form an angle which is always

greater or equal to 120 .
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The proof can be found in [Gilbert (68)], [Werner (69)]. From

this property the followings are self-evident:

(1) Each original point Ai, 1 < i < n, has at most degree 3.

(2) Each Steiner point Si, 1 < j < m, has exactly degree 3.

If a Steiner point has two incident lines, then they can be

replaced with a straight line by eliminating the Steiner

point.

(3) Each Steiner point S., 1 < j < n is the Steiner point of
J

the triangle formed by the points which are directly

adjacent to S. in the SMT. Thus if we know that 3 points

should be connected to a Steiner point, we can find this

Steiner point by the above construction.

(Property 2) The number of Steiner points in the SMT is at most n-2;

that is, Omn-2.

Proof: Let E be the number of edges in the SMT. Then from Property 1

2E = 3m + n
1

+ 2n
2
+ 3n3, where n

k
is the number of given points with

degree k. Since a tree of x vertices has x-1 edges, E = (nl+n2+n3+m)-1.

Thus,
m = n - 2 n

2
- 2n

3
.

In particular,
m4:11 - 2,

with equality holding if and only if each Ai is of degree 1. Q.E.D.

This is the key property which is used to show the SMT can be constructed

in a finite number of steps.

(Property 3) the SMT is planar; that is, its edges do not cross.

A tree satisfying Properties 1, 2, and 3 is called the Steiner tree.

Before preceeding to Property 4, we need some definitions. The convex
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hull of a set is the intersection of all convex set containing it.

A line L is a line of support of a set S if it meets the boundary

of S and S lies entirely on one side of L [Shamos (78)].

(Property 4) In the SMT , every Steiner point lies in the convex hull

of the given fixed points, Al, A2, ..., An. That is, no supporting

line L of the convex hull separates certain Steiner points, S
1,

S2,

... from the given points Al, A2,...,An.

The proof is in [Gilbert (68)]. Because of this property, we

do not consider any possible Steiner points outside of the convex hull

of given n points. For example, for the case n = 3 the Steiner

point lies inside of the triangle formed by three given points - if

it exists.

(Property 5) For every n, a SMT can be constructed in a finite

number of steps.

This says that the Steiner problem is at least a finite problem.

This was first proved by [Melzak (61)]. His algorithm basically tries

(enumerates) all the possible topologies for given n fixed points

and m Steiner points, 0 < m < n-2. We now outline the proof of

Melzak.

Given n points, Al, A2,...,An, n > 3 together with m Steiner

points, Sl, 52,..., Sm and a topology, the (unique) relatively minimal

tree (minimal tree relative to a given topology) is found by induction

on m, the number of Steiner points. The construction of a tree with

m = 0 is trivial. Just construct an MST. Consider the case m > 1.
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The first step is to find a Steiner point S which the topology connects

to two vertices A., A.. Such an S exists for if no such S exists, then

every Steiner point has at least 2 adjacent Steiner points for deg(S)=3

and thus n<m. But we know mi).11-2. Thus at least one Steiner point S

must connect to two given points. As in the case n = 3, find the sub-

stitution point C' by drawing the quilateral triangle with A.A.. We

must try 2 choices for C'. Using Property 4 or else we may not consider

the other possibility for C'. C' is added as a new fixed point in place

of A.
1
and A., and we remember the connection of A., A. with S. The

3 1 j

remaining topology is same as before and we have n-1 fixed points

and m-1 Steiner points. The tree for the smaller problem is found

by the inductive procedure. Then the location of the point C is known

if it were a Steiner point. Now using the same construction as n = 3,

the S is located and we simply replace the line CC' by AiS, AiS and CS

to get the desired tree (also see the note in the case when n = 3).

When the relatively minimal tree is found, we check whether the

tree is a Steiner tree, a tree satisfying Properties 1,2, and 3.

The reason for this is that a SMT is a Steiner tree of minmum total

length. To find a SMT by exhausting all possible relatively minimal

trees one needs a way of listing the topologies. Gilbert and Pollark

[Gilbert (68)] gave a way to enumerate the topologies and derived

the formula for the number of different topologies for Steiner trees

with n given points and m Steiner points. With their conventions

used in counting topologies:

2
-m (

m+2
) (n+m-2)!

m!
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Some representative values for this formula are shown in Table 1.

This completes the outline of the proof of Property 5.

Table 1

Number of Possible Topologies for Steiner Trees
with n Given Vertices and m Steiner points

3 4 5 6 7

0 3 12 60 360 2520

1 1 12 120 1200 12600

2 3 75 1350 22050

3 15 630 17640

4 105 6615

5 945

Total 4 27 270 3645 62370

Source: Gilbert and Pollak (1968)

Although a number of geometric properties [Gilbert (68)] of the

SMT could be used to rule out a large number of topologies, there

are still too many cases. We are told that with present technology

the problem with more than about 15 points cannot be solved [Boyce

(75)]. For the moment, there appears to be little hope for finding

the optimal solution for the problem. Indeed the following property

destroys any hope for finding an efficient algorithm for the Steiner

Problem.
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(Property 6) The Steiner Problem in the Euclidean plane is inherently

at least as difficult as any of the NP-complete problems.

The proof is in [Garey (77a)]. For technical reasons, which

involve the possibility of Steiner points of irrational coordinates

and because of the irrationality of the Euclidean metric, they dis-

cretize every point appearing in the problem to integer coordinates.

Then they use the discretized Euclidean metric and show that the

Discrete SMT problem is NP-complete, by a transformation from X3C

(Exact cover by 3 sets), a known NP-complete problem.

Thus finding the optimal solution for the Steiner Problem is com-

putationally hopeless unless P = NP and the emphasis on heuristics and

special case algorithms for the problem is well justified, In next

Chapter we present an interative heuristic using fixed tension physical

relations for the Steiner Problem. Other heuristics can be found in

[Chang (72)],[Smith (81)].

(Property 7) Conjecture: The lower bound on the length of the SMT was

conjectured as i-g/2 (.8660254...) times the length of the MST by Gilbert

and Pollark[Gilbert (68)].

Since the length of the MST (an upper bound) can be easily

computed, if we know the exact lower bound on the ratio of the SMT/

MST, then it would be very useful in determining the accuracy of an

approximate solution. The conjecture has been shown to be true for

n = 3 [Gilbert (68)] and n=4 [Pollark (78)], [Du (82)]. In fact,

equality is achieved. The known lower bound on the ratio of the
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SMT/MST has been improved from 1/1-- (.5771...) [Graham (76)] to

1/3(21/T + 2 i7+2V3)(.74309...) [Chung (78)].
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CHAPTER 3

A HEURISTIC FOR STEINER'S PROBLEM

In this Chapter, we present an iterative heuristic using fixed

tension physical model for Steiner's Problem. We have already men-

tioned on Chapter 2 that the difficulty with Steiner's Problem is in

finding an optimal Steiner tree topology. One approach to find such

a topology is motivated by a physical interpretation of the Steiner

Minimal Tree. If a tree is interpreted as a mechanical system in

which the potential energy is a sum of distances between adjacent

vertices, then the mechanical system described by the Steiner Minimal

Tree is in stable equilibrium. Consider the following mechanical model:

given fixed points are represented by fixed pegs, and Steiner points

are represented by movable pegs on a board. A string is looped about

each peg according to the desired topology. By pulling the string with

a fixed tension, the movable pegs approach an equilibrium positions

which minimizes the length of strings. This model assumes that the

topology is given. Thus the equilibrium position will be a relatively

minimal tree (A detailed description of this model can be found in

[Miehle (58)]). The idea behind this model is that the resultant of

the forces in the strings acts on each point to drive the system to

equilibrium. Our heuristic is based on the same idea and uses the

the Euclidean Minimal Spanning Tree as a guide for obtaining an approx-

imate solution for Steiner's Problem. It should be mentioned that

the heuristic algorithm is in an experimental stage. The Graphics

Package developed in this thesis is to be used as a tool to help in
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the further development of the heuristic algorithm described in this

chapter. We will illustrate the behavior of the heuristic on certain

point sets after we formally describe the algorithm in Section 1.

3.1 The Heuristic Algorithm

Let A be the set of given points, P1, P2, ..., Pn, 1\123. First

we construct an Euclidean Minimal Spanning Tree for A. From the MST

of A, we obtain a set S
I
of Steiner points in the following manner.

ForeachvertexP.,ifP.is of degree greater than 1, then a new

Steiner point is introduced in the direction of the resultant force

on the point Pi, where each component force on Pi is given by applying

a fixedunittensimmtheedgeseminatingfromP..Let R.
1

denote

the resultant vector, then

d Pjk Pi
R.=E
1

k=1 Hp. 13.11
11 Jk 111

(1)

where p. is the adjacent vertex of P., k = 1, 2, ..., d, and d =

deg(Pi). Each vertex Pi is considered to be two component vectors

andl1P.-PilistheEuclideannorm.WithR.we define a new Steiner
1 1

point s. by

S. = Pi + XR. (2)

where A is the step size, a constant. It is not necessary that the

step size be a constant, but we assume so for the purpose of simplicity.
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We now have a set S
1

of Steiner points. Let Al be a new set

of points containing the given fixed points in A and the Steiner

points in S1. We construct a MST of Al. From the MST of Al, we

obtain a new set of Steiner points in somewhat the same manner as above.

To those vertices in the MST of Al which are the given fixed points in

A, we apply the same process as before. But now each point will have an

adjacent Steiner point. With a vertex which is a Steiner point, we do

one of several things depending on the degree of the Steiner point. Let

s denote a Steiner point in the MST of Al. If s is of degree 3, then

we simply move the Steiner point to a new location obtained by the

formulas (1) and (2) with s. If s is of degree greater than or equal

to 4, we introduce a new Steiner point by applying the formulas (1) and

(2) with s, and keep the old Steiner point s as it is. If s is of

degree 2; that is, it has two incident lines, then they are replaced with

a straight line by eliminating the Steiner point. We do this process

for each Steiner point in the MST of Al. At the end, we combine the

fixed points in A and a new set S
2

of Steiner points. Then we con-

struct a MST with A
2

and the process continues as in previous step.

Because the algorithm is iterative in nature, the process can be

terminated at any stage. Currently, we use two stopping criteria.

First, we stop when the maximum change of magnitude from an old Steiner

point to a new Steiner point becomes small. Second, we stop if the

number of iterations exceeds a given bound. Before we discuss more

about the heuristic, we formally state the algorithm.
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[Step 1] Construct a MST with A', A' = {A U s}, where

A = ip1,p2,..., thethe set of given points, n>3, and

S = {si,s2,..., sin}, the set of Steiner points, for some m.

Initially, m = 0.

[Step 2] With the MST of A' do the following.

Set S' = 0 .

For each vertex vi in the MST of A', i = 1,2,..., IA'I.

If v. GA and deg (vi) > 1 Then

Introduce a new Steiner point, using the formulas

(1) and (2). Add the Steiner point s to S'.

If v. e S Then

(Case 1) deg(vi) = 3

Apply (1) and (2) to vi to get a new

Steiner point s. Add s to S'.

(Case 2) deg (vi) > 4

Apply (1) and (2) to vi to get a new

Steiner point s. Add vi and s to S'.

[Step 3] Check the termination conditions. Halt if so indicated by

the stopping criteria.

[Step 4] Set S to S', and go to Step 1.
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The basic idea of this heuristic algorithm is that with the

appropriate step size A in formula (2), say small enough or big

enough, the algorithm will halt at a desired solution. By introducing

appropriate Steiner points in each stage of the algorithm, we use the

Euclidean Minimal Spanning Tree on the given points and new Steiner

points to prescribe an overall topology. If, for each iteration, the

topology never changes, the algorithm reduces to the peg and string

model. At this stage we do not have a good way to compute the step

size for a given point set. Thus we initially set the step size to

a constant, but the algorithm is set up in such way that we are able

to change the step size at any iteration step. Experimental studies

indicate that a good choice of the step size is needed not only for

fast convergence, but also in changing the overall topology of the

newly computed point sets. We conjecture that the step size should

vary in each iteration and at each point. Right now the algorithm

only converges successfully on certain point sets, and it fails to

converge on others. In next section, we will illustrate some of these

cases.

By simply visualizing the behavior of the heuristic, using the

Graphics Package developed in this thesis, we were able to get desired

solutions to certain point sets and also draw many inferences needed

for refining the heuristic in future studies. Also the further studies

should indicate how the known properties of the MST (in previous

Chapter or elsewhere) can be fully exploited. Using the geometric

structures, the Voronoi diagram and the Delaunay triangulation,
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available in our Graphics Package should help in improving any

heuristic for Steiner's Problem.

3.2 Experimental Results

In order to use the Graphics Package, the Heuristic algorithm

was implemented as a function in the Main-menu. It was set up in such

a way that the MST for given fixed points and a new set of Steiner

points at each iteration is displayed on the screen.

We know that a MST has at most n-2 Steiner points where n is

the number of given points. A Steiner tree with n-2 Steiner points

is called the full Steiner tree. In the full Steiner tree, each of

given points has one incident edge and it leads to a Steiner point.

We mainly illustrate the experiments with certain point sets of which

the optimal solutions are the full Steiner trees. We conjectured that

since our heuristic introduces a new Steiner point when a given point

in the MST is of degree greater than 1, it should perform relatively

well on those point sets. It turned out that it is true for small n,

n = 3,4,5, but it is not so when n gets large. One advantage with

those point sets was that we were able to compare the experimental

results and the exact answers.

Gilbert and Pollark [Gilbert (68)] showed full Steiner tree with

the number of Steiner points up to 7. We illustrate the experiment

on six of those trees with S = 1,2,3,4,5. The set of fixed points for

each tree is the input point set. Figure 3.1 shows three trees for

each point set: first the full Steiner tree, second the MST of given
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fixed points, which the heuristic algorithm constructed at the

beginning, and third the tree to which the heuristic algorithm

converged with the specified step sizes. For the first three cases

when s = 1,2,3 (Figure 1.3 a,b,c), the heuristic algorithm converged

to the optimal solution. For the case of s = 4 (Figure 1.3d), we do

get the full Steiner tree topology, but the heuristic did not converge

to the desired tree. We have another full Steiner tree with s = 4

(Figure 1.3e). This time the heuristic reduced to the peg and string

model represented by the MST of given fixed points. For the case of

s = 5 (Figure 1.3f), the heuristic again fails to converge to the full

Steiner tree. Figure 4.1 also shows the total lengths of the MST and

the resulting tree and the ratio of two trees.

At present, the heuristic algorithm is in experimental stage.

We did not exploit fully the geometric properties of the optimal

solution for the Steiner Problem. Many inferences drawn from the

experiments must be analyzed to find their places. Having the Geo-

metric Graphics Package containing many useful functions at hand, the

refined version of our somewhat crude heuristic algorithm should come

in the near future.
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Full Steiner tree with s=1 MST

Step size: 0.6

TOTJIST : 7.610861i TOT_ST : 6.622595; TOT_ST/10131ST : 0.8701506

Figure 3.1a
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Figure 3.1 Experiments on 6 full Steiner trees with s Steiner

points. First tree is the full Steiner tree with s

Steiner points. Second tree is the MST of given fixed
points. Third tree is the resulting tree from the heuristic
algorithm.
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MST

Step size: 0.5

TOT_MST : 14.500000; TOT_Si-: 0.26744; ToLiT/TOT_MST : 0.9149961

Figure 3.1b



Full Steiner tree with s=3

......................................................

0

fouiii.7 14.477351; TOUT : 14.062178; TOT_ST/TOTIMST : 0.9713226

Figure 3.1c

MST
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Step size: 2.2,0.3
1.0 in that
order



Full Steiner tree with s=4
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MST

Step size: 0.8, 0.4 in that order

TOT_RT7E977351; TOT_ST : 17.865610; TOT_ST/TOT_MST : 0.9937844

Figure 3.1d
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00.., 
MST 

Step size: 0.5 

TOT_MST : 17.392444; TOT_ST : 17.405538iTOT_ST/TOT_MST : 1.0008794 

Figure 3.1e 
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Full Steiner tree with s=5 MST

Step size: 1.5,0.6,0.3 in that
order

TOT_MST: 16.353974; TOT ST : 16.321743; TOT_ST/TOT_MST : 0.9980291

Figure 3.1f
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CONCLUSION

Computer graphics is used today in many different areas of

industry, business, education, entertainment, and even in the home. The

list of applications is enormous and growing rapidly with the develop-

ment of technology. In this thesis an interactive computer graphics

package was developed for a particular application; namely, the purpose

of solving certain geometric problems in the Euclidean plane.These are of

practical importance because in many applications real physical objects

or data or some variables are commonly mapped onto a set of points in the

plane. Thus by simply visualizing them and dynamically varying pictures

on the screen, interactive computer graphics provides a useful means of

communicating information.

The application program in our Geometric Graphics Package contains

not only general-purpose graphics subroutines for creating arbitrary

views of two-dimensional objects, but it also has a number of functions

for our specific purpose. These functions are to find useful geometric

structures arising from the given point set efficiently. They are the

Voronoi diagram, the Delaunay triangulation, and the Euclidean Minimal

Spanning Tree. We have mentioned their numerous practical applications

as well as problems in computational geometry.

The Geometric Graphics Package provides an interface between the

application program and graphics hardware. And it defines the interface

to be independent of the specific hardware available so that the appli-



49

cation program is portable. Also higher level functions that use our

Geometric Graphics Package functions as subroutines are easily devel-

oped to serve the needs of specific application areas.

Our specific application using the Geometric Graphics Package

was to develop a heuristic algorithm for finding the Euclidean Steiner

Minimal Tree, known as Steiner's Problem. We have developed an iter-

ative heuristic algorithm using a fixed tension model. At present, the

heuristic is in an experimental stage. By visualizing the behavior of the

heuristic we were able to draw many inferences needed for refining the

heuristic in the future studies and to enhance our understanding of

the complexity of the problem. Also the function finding the Euclidean

Minimal Spanning Tree in our graphics package played an important role

in the heuristic algorithm. Future studies on improving the heuristic

will explore the approach utilizing the Voronoi diagram and the

Delaunay triangulation, which are available in our Geometric Graphics

Package.
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The package was written in the C language for the VAX in Computer

Science Department at Oregon State University. The graphics hardware

used was GIGI made by DEC. The GIGI is a raster-scan display terminal

which supports a graphics language called ReGIS. There are a set of

ReGIS commands that allows you to control the video monitor screen and

draw pictures on the screen with lines, curves, and circles. Also ReGIS

provides commands to include text characters in pictures.

Some of the ReGIS commands used in the package are the commands for:

(1) writing text strings with different colors,

(2) drawing lines with different patterns,

(3) drawing circles with shading option on,

(4) reporting screen locations to a host program, and

(5) erasing the entire screen or the part of screen.

Their usages were respectively:

(1) displaying the menus and the screen-feedbacks,

(2) drawing edges in a graph or showing the window,

(3) drawing points or vertices in a graph,

(4) specifying the location of a point to be added or deleted and

the location of a new window, and

(5) erasing the screen or the menus or the screen-feedbacks.


