Collective Share Quotas and Fishermen Organizations Role in Ex-Vessel Price Determination

Julio Peña-Torres, Jorge Dresdner, **Felipe Quezada** & Ivan Luzardo IIFET 2018 Seattle, WA

Department of Resource Economics University of Massachusetts, Amherst

- Chilean Austral hake small-scale fishery
- First fishery in Chile to be managed with collective share quotas assigned to Fishermen Organizations (FOs).

- Chilean Austral hake small-scale fishery
- First fishery in Chile to be managed with collective share quotas assigned to Fishermen Organizations (FOs).

- Collective catch share effect on distribution
- FOs performance

- Collective catch share effect on distribution
- FOs performance

- Collective catch share effect on distribution
- FOs performance

- Collective catch share effect on distribution
- FOs performance

Background on the Chilean Austral

Hake Fishery

Figure 1: Southernmost area of Chile.

 Table 1: Austral Hake Artisanal Fishery Statistics

Region	Number of Fishermen Organizations			Number of registered fishermen (2007)			Number of boats in operation	Annual Landings (tons)
	2001	2006	2012	# boat owners	# crew members	Total	2004-2006	Average 2000-2011
X	135	180	208	1952	1654	3606	1535	7268.5
XI	24	60	69	631	758	1389	177	3837.9
XII	n.a.	4	10	120	322	442	45	1767.0
Total		244	287	2703	2734	5437	1757	12873.4

- Acute fall in catch yields started since the late 1980s and early 1990s
 - Weak enforcement of the fishery (TACs to areas, entry restriction, season/catch-size limits)
 - Race for fish and lower ex-vessel prices.

- Acute fall in catch yields started since the late 1980s and early 1990s
 - Weak enforcement of the fishery (TACs to areas, entry restriction, season/catch-size limits)
 - Race for fish and lower ex-vessel prices.

- Acute fall in catch yields started since the late 1980s and early 1990s
 - Weak enforcement of the fishery (TACs to areas, entry restriction, season/catch-size limits)
 - Race for fish and lower ex-vessel prices.

- In 1997 representatives of fishermen and catch buyers approached the Government
 - More effective enforcement of entry and quota
- This led to the creation of two new **regulatory schemes**.

- In 1997 representatives of fishermen and catch buyers approached the Government
 - More effective enforcement of entry and quota
- This led to the creation of two new **regulatory schemes**.

- In 1997 representatives of fishermen and catch buyers approached the Government
 - More effective enforcement of entry and quota
- This led to the creation of two new **regulatory schemes**.

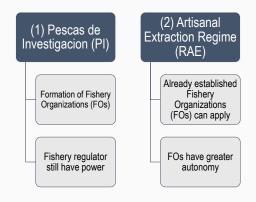


Figure 2: Regulations schemes

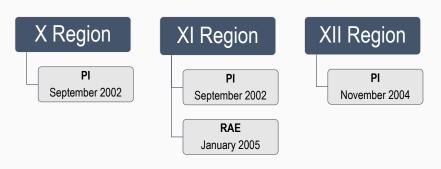


Figure 3: Regulation periods

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

- Harvest sector:
 - Enhance collective fishing rights
 - Formation of price bargaining associations (between FOs)
 - Bargaining power
- Buying sector:
 - Started to behave as a monopsony.
- Bilateral monopoly price bargaining (region-specific).

 We test the overall impact of regulations on ex-vessel prices using region-specific dummy variables in a reduced-form model

• Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)

• We used cointegration analysis:

- Endogenous variables: Regional ex-vessel prices; Regional landings
- Exogenous variables: Fish size, export price, HHI and fueller price.
- Base period: First years of operation of imperfectly-enforced Plograms.

Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)
- We used cointegration analysis:
 - Endogenous variables: Regional ex-vessel prices; Regional landings
 - Exogenous variables: Fish size, export price, HHI and fueles price.
 - Base period: First years of operation of imperfectly-enforced Plograms.

Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)
- We used **cointegration analysis**:
 - Endogenous variables: Regional ex-vessel prices; Regional artisanal landings
 - Exogenous variables: Fish size, export price, HHI and fuel price.
 - Base period: First years of operation of imperfectly-enforced PI Programs.

• Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)

• We used cointegration analysis:

- Endogenous variables: Regional ex-vessel prices; Regional artisanal landings
- Exogenous variables: Fish size, export price, HHI and fuel price.
- Base period: First years of operation of imperfectly-enforced PI Programs.

• Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)
- We used cointegration analysis:
 - Endogenous variables: Regional ex-vessel prices; Regional artisanal landings
 - Exogenous variables: Fish size, export price, HHI and fuel price.
 - Base period: First years of operation of imperfectly-enforced PI Programs.

• Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)
- We used cointegration analysis:
 - Endogenous variables: Regional ex-vessel prices; Regional artisanal landings
 - Exogenous variables: Fish size, export price, HHI and fuel price.
 - Base period: First years of operation of imperfectly-enforced PI Programs.

Methodology

Data:

- Monthly data for most of the variables.
- January 2000 to December 2011 (132 observations; August excluded)
- We used cointegration analysis:
 - Endogenous variables: Regional ex-vessel prices; Regional artisanal landings
 - Exogenous variables: Fish size, export price, HHI and fuel price.
 - Base period: First years of operation of imperfectly-enforced PI Programs.

- Three cointegration vectors were identified.
 - Regional catch market.
 - Simultaneous system ⇒ Markets are interconnected

- Three cointegration vectors were identified.
 - Regional catch market.
 - Simultaneous system ⇒ Markets are interconnected

- Three cointegration vectors were identified.
 - Regional catch market.
 - ullet Simultaneous system \Rightarrow Markets are interconnected

Table 2: Long-run coefficients (cointegrated vectors)

Variable	P_X	P_{XI}	P_{XII}
Q_X	0.458***	0.779***	-0.100
Q_{XI}	-0.139***	-0.070	0.199***
Q_{XII}	0.152**	0.189**	0.391***
PI_X	-0.052	0.167**	
RAE		-0.027	
PI_{XII}			-0.001
Constant	3.980***	1.303**	4.449***

^{*}Test (p-value): β_{RAE} = 0.483; β_{PI} + β_{RAE} = 0.087

Table 2: Long-run coefficients (cointegrated vectors)

Variable	P_X	P_{XI}	P_{XII}
Q_X	0.458***	0.779***	-0.100
Q_{XI}	-0.139***	-0.070	0.199***
Q_{XII}	0.152**	0.189**	0.391***
PI_X	-0.052	0.167**	
RAE		-0.027	
PI_{XII}			-0.001
Constant	3.980***	1.303**	4.449***

^{*}Test (p-value): β_{RAE} = 0.483; β_{PI} + β_{RAE} = 0.087

Why we get these differences between regions?

- Large scale operation and more FOs at X region
 - X region: 6 artisanal fishermen federations;
 - XI region: Only one artisanal fishermen federation;
- Allocation of quotas
 - XI region: Crew members and boat owners.
 - X and XII region: Only to boat owners ⇒ distributive disputes

Why we get these differences between regions?

- Large scale operation and more FOs at X region
 - X region: 6 artisanal fishermen federations;
 - XI region: Only one artisanal fishermen federation;
- Allocation of quotas
 - XI region: Crew members and boat owners.
 - X and XII region: Only to boat owners ⇒ distributive disputes

Why we get these differences between regions?

- Large scale operation and more FOs at X region
 - X region: 6 artisanal fishermen federations;
 - XI region: Only one artisanal fishermen federation;
- Allocation of quotas
 - XI region: Crew members and boat owners.
 - $\bullet~$ X and XII region: Only to boat owners \Rightarrow distributive disputes

 Table 3: Short-run coefficients (VEC estimation)

Variable	ΔP_X	ΔP_{XI}	ΔP_{XII}	ΔQ_X	ΔQ_{XI}	ΔQ_{XII}
Endogenous Lagged						
$\Delta P_{X,t-1}$	0.487***	0.259***	_	-1.163***	_	_
$\Delta P_{XI,t-1}$	_	0.421***	0.128**	_	_	_
$\Delta P_{XII,t-1}$	_	_	0.412***	_	_	_
$\Delta Q_{X,t-1}$	-0.032**	-0.065***	_	0.389***	_	_
$\Delta Q_{XI,t-1}$	_	_	_	_	0.214***	_
$\Delta Q_{XII,t-1}$	_	_	_	_	_	_
Exogenous						
$\Delta Size^{X}_{t-1}$	0.831***			-0.526		
$\Delta Size^{XI}_{t-1}$		-0.232			1.121	
$\Delta Size^{XII}_{t-1}$			-0.036			1.110
ΔHHI_{export}	-0.005	-0.148***	-0.095**	-0.788***	-0.198	0.075
ΔP_{diesel}	0.032	0.201**	0.016	-0.680**	0.354	0.147
ΔP_{FOB}	0.032	0.096	0.056	0.129	-0.222	-0.186

 Table 3: Short-run coefficients (VEC estimation)

Variable	ΔP_X	ΔP_{XI}	ΔP_{XII}	ΔQ_X	ΔQ_{XI}	ΔQ_{XII}	
Endogenous Lagged							
$\Delta P_{X,t-1}$	0.487***	0.259***	_	-1.163***	_	_	
$\Delta P_{XI,t-1}$	_	0.421***	0.128**	_	_	_	
$\Delta P_{XII,t-1}$	_	_	0.412***	_	_	_	
$\Delta Q_{X,t-1}$	-0.032**	-0.065***	_	0.389***	_	_	
$\Delta Q_{XI,t-1}$	_	_	_	_	0.214***	_	
$\Delta Q_{XII,t-1}$	_	_	_	_	_	_	
Exogenous							
$\Delta Size^{X}_{t-1}$	0.831***			-0.526			
$\Delta Size^{XI}_{t-1}$		-0.232			1.121		
$\Delta Size^{XII}_{t-1}$			-0.036			1.110	
ΔHHI_{export}	-0.005	-0.148***	-0.095**	-0.788***	-0.198	0.075	
ΔP_{diesel}	0.032	0.201**	0.016	-0.680**	0.354	0.147	
ΔP_{FOB}	0.032	0.096	0.056	0.129	-0.222	-0.186	

 Table 3: Short-run coefficients (VEC estimation)

Variable	ΔP_X	ΔP_{XI}	ΔP_{XII}	ΔQ_X	ΔQ_{XI}	ΔQ_{XII}	
Endogenous Lagged							
$\Delta P_{X,t-1}$	0.487***	0.259***	_	-1.163***	_	_	
$\Delta P_{XI,t-1}$	_	0.421***	0.128**	_	_	_	
$\Delta P_{XII,t-1}$	_	_	0.412***	_	_	_	
$\Delta Q_{X,t-1}$	-0.032**	-0.065***	_	0.389***	_	_	
$\Delta Q_{XI,t-1}$	_	_	_	_	0.214***	_	
$\Delta Q_{XII,t-1}$	_	_	_	_	_	_	
Exogenous							
$\Delta Size^{X}_{t-1}$	0.831***			-0.526			
$\Delta Size^{XI}_{t-1}$		-0.232			1.121		
$\Delta Size^{XII}_{t-1}$			-0.036			1.110	
ΔHHI_{export}	-0.005	-0.148***	-0.095**	-0.788***	-0.198	0.075	
ΔP_{diesel}	0.032	0.201**	0.016	-0.680**	0.354	0.147	
ΔP_{FOB}	0.032	0.096	0.056	0.129	-0.222	-0.186	

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quotastion)

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quota
 - allocation)

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quota allocation)

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quota allocation)

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quota allocation)

- We estimated the **overall** effect on ex-vessel price resulting from the regulatory reforms under analysis.
- Right-based fishery management cannot be separated from its institutional background.
 - Price gains were significant at only one region
 - More stable and better organized FOs
 - Initial conditions were more favorable
 - But also better policy choices were made (e.g. quota allocation)

Thank you for your attention!

I gratefully acknowledge CONICYT-BecasChile/Doctorado Extranjero/2016-72170142