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The following generalized generating functions, having the form

oo

F(x, t) = fn(x)tn,

n=0

x and t real, are utilized in obtaining recurrence formulas,

which are then applied to selected generated sets;

F(x, t) = 4)(x, t)4,(xt

F (x, t) = exg(t),

F(x, t) = 4)(x, t)G(2xt-t2),

F(x, t) = cl)(x, t)(1+at)m

Methods for obtaining F(x, t) from a knowledge of the generated set



n
(x)} are considered. These include recurrence relations, both

pure and mixed, theorems based on the F-equation [9], contour inte-

gration, and integral representations. If a polynomial generated set

satisfies the pure recurrence relation

(5) fn(x) + [An 3 +Bn2+Cn+D+Ex]fn- 1(x) + [Fn 3+Gn
2 +Hn+K+Lx]fn-

2(x)

+ [Mn3+Nn2+Pn+R]fn_3(x) = 0, n = 3, 4, 5, . . . ,

the generating function satisfies the differential equation

6 5 4 d3F
3 d

2F
(6) (M

1
t +F

1
t +A

1
t ) + (Nit5 +Git4+Bit )

dt dt

3 2 3
+ (P

1
t4+H t +C t )dF +(t R+Lxt 2

+K
1
t2

+D
1
t+Ext+1)F

1 1 dt

- [K1t2 +Lxt2+D1 (x )t 2+C
1c1)

(x )t
2

+Ex4:(x )t
2
+ip(x )t

2
+Ext+c1)(x)t+D

1
t+ 1]

= 0,

where f0(x) = 1, f
1
(x) = c)(x), and f2(x) = 4i(x). Various proce-

dures are discussed for obtaining the set {fn(x)} from knowledge of

F(x, t). In particular, if F(x, z) is analytic in a circular neighbor-

hood about z = 0 for all valid x,

(7)
1 -n- l

27ri
fn(x) = F(x, z)z dz, n = 0, 1, 2, ...

for a sufficiently small contour encircling the origin. If the generated



set is orthogonal over [a, b], having a weight function w(x),

(8)
b

Km = S fn(x)f m(x)w(x)dxa

b
= t-m S' F(x, t)fm(x)dx, t # 0,

a

whenever the integral exists. A table of selected generating func-

tions, some properties of uniformly convergent series in two vari-

ables, and a uniqueness theorem relating generating functions with

their generated sets are found in the Appendices.
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AN INVESTIGATION OF SELECTED
GENERATING FUNCTIONS

I. INTRODUCTION

The generating function concept leads to a very concise and

convenient means of representing many of the special functions of

mathematics, especially those encountered in mathematical physics.

Many useful and valuable relationships among these functions can be

determined by utilizing the properties inherent in the generating

function representation.

Consider first a sequence of numbers fl, f2, ... defining

the power series

00

G(t) = fntn ,

n=0

G(t) real and continuous. This is known as the Maclaurin series ex-

pansion of G(t) with coefficients fn. Now consider a function

F(x, t), x and t complex, which has the formal series expansion

00

(1) F(x, t) = fn (x, t)tn.

n=0

In most cases of interest fn(x,t) is a continuous function of x

only. When this condition is met for all n, F(x,t) is said to be a



2

generating function for the generated set {f
n(x)}. If, for some sim-

ple closed domain in the complex x-plane, the function F(x,t) is

analytic at t = 0, the generating series converges in some neighbor-

hood about t = 0 [7, p. 129]. However, it is not necessary that the

series converge in a finite circular region for the {f
n (x)} to be de-

fined and investigated. In some cases parameters al' a2'.." ar may

be present, both in the generating function F(x,t) and the sequence

{fn(x)}.

(2)

This can be acknowledged by rewriting the equation as

F(x, t; , ar) = f
n '
(x a . , a r)tn .

n=0

There are only rare examples in the literature when the number of

parameters exceeds two.

Sometimes the F and {fn} are functions of several vari-

ables xl, x2, x say, and a relation of the form
1' 2 p'

(3)

00

F (x1' . . . , x
13'

t ) = fn (x1' . . . , xp)tn

n=0

exists. Then F is called the generating function of the set

{fn(xl, , x )}, in analogy with the one variable case.

It should be pointed out that generating functions and their

attendant series are subsumed under the subject of polynomial
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expansions of analytic functions. Boas and Buck [3] give an extended

treatment of this subject. Suffice it to say that a polynomial expan-

sion of an analytic function G(z, w) in two variables, where z

and w are assumed complex, is given by

00

(4) G(z, w) = L Qn(w)pn(z)
n=0

Comparison with a generating function of two independent variables

shows that pn(z) = zn.

Unless explicitly stated this report will treat only generating

functions having continuous real variables x and t. It will also

be assumed the set {f
n

(x)} is continuous over the closed interval

D : [a < x < b] for all n. A selected list of generating functions is

given in Appendix A. An investigation of that section will indicate the

wide variety and forms possessed by F(x,t) and {fn(x)}. In

many cases fn(x) = cn g n(x) where cn is a constant for each n,

dependent on n but independent of x and t, while gn(x) is

called a special function.

There is some question as to what constitutes a "known" spe-

cial function. As Rainville [7] points out;

...It is, of course, a matter of opinion or convention.
We consider as known any function which has received in-
dividual attention in at least one research publication.
In this terminology we follow the late Harry Bateman
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(1882-1946). Bateman, who probably knew more about
special functions than anyone else, is said to have known
of about a thousand of them [7, p. 130].

A given special function can be expressed by more than one

generating function. For example the set of Legendre polynomials of

the first kind, {Pn(x)}' can be given by

00

(5) (1-2xt+t 2
)
_1/2

=

n=0

or by

00

xt j----
(6) e J (t 1 -x2) =

0 n1 P
! n

(x)tn Ref. 9].

n=0

Another example concerns the set of Tchebicheff polynomials of the

first kind, {Tn(x)}. The most common expression is

(7)

00

(1-xt)(1-2xt + t2)-1 = Tn(x)tn.

n=0

However, an equally valid relation is given by

00

(8) (1-t)(1-2xt+t2)-1 = enTn(x)tn; co = 1; en = 2, n = 1,2,3,...

n=0

(En is known as the Neumann constant. )



5

An examination of the expressions within each example lends

support to the following statement: There exists a one-to-one cor-

respondence between a generating function F(x, t) and a generated

set {fn(x)} = {cngn(x)} if

F(x, t) = fn(x)tn.

n =0

This uniqueness property is proved in Appendix C under certain re-

strictions on the set {fn(x)}, the generating function F(x, t), and

the variables x and t. Appendix A contains the F(x,t) most

commonly found in the literature generating a desired set of special

functions {gn(x)}.

Several generating functions listed in Appendix A have a

Laurent series representation in powers of t. For example, the

Bessel functions of the first kind, {Jn(x)},

(9)
lx(t-1)

(x)tn.e
2 t

n=-00

are given by

For convenience such expressions are included in the Appendix.

Appendix B is a synopsis of the properties inherent in a series
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co

F(x, t) = / fn(x)tn
n=0

which is uniformly convergent in x and t separately. Through-

out the text of the report this property will be tacitly invoked to

justify operations such as term-by-term differentiation and integra-

tion of the series. Most cases found in the literature satisfy the re-

quirement of uniform convergence in all orders of n.
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II. GENERAL RECURRENCE FORMULAS

Many generating functions can be treated under more general

classifications by considering the functional dependence between

x, t, and F(x, t). For example the form

(10) F(x, t) = cl)(x, t)G(2xt-t2)

oo

= fn(x)tn

n=0

00

= / cngn(x)tn
n=0

is shared by Hermite polynomial sets {Hn(x)}, Legendre poly-

nomial sets {Pn
m

(x)}, and Gegenbauer polynomial sets {Cvn (x)}.

By treating these general forms it is frequently possible to derive

general recurrence formulas applicable to many generating sets

simultaneously. A recurrence relation is said to exist for a set

{fn(x)} if there exists an equation or a set of equations relating two

or more members of the set or their derivatives. In deriving these

relations it will be assumed that the equation

00

F(x, t) = / fn(x)tn
n=0
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obeys the requirements of Property 4 for k = 2 as listed in Appen-

dix B. Only then can assurance be given to twice termwise differen-

tiation of both the series and the generating functions leading to rigor-

ously valid results. Throughout the remainder of this chapter such

requirements on the generating equation will be assumed.

Functional forms considered below will include

(11) F(x, t) = 4)(x, t)Lp(xt),

(12) F(x, t) = exg(t),

(13) F(x, t) = 4)(x, t)G(2xt-t2),

and

(14) F(x, t) = 4)(x, t)(1+at)m.

1. F(x, t) = 4)(x, t)4,(xt)

If

(15)

(16)

oo

fn(x)tn
n=0

F(x, t) = 4)(x, t)4(xt) =

00

fn(x)tri,

n=0

aF
= + 44%ax x

aF
(1)t4'
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(17)

and

(18)

2F
= + 2t43c41 + t2

(1)4,",
xxax

28 F - + 2x4)t4,' + x244"
at 2

tt

4)(x, t)It is understood that 4 = 4)(x, t), etc. ; =
3

x ax
chp(xt)i(xt) = d(xt) From Eqs. (15)-(18) it is found that

3F(19) x 8F - t -Ft = oxLpx
`I't44

and

etc. ; and

2 a 2F 2 a 2F
2 2

(20) x - t = x 2
4)3c4i + Ztx

2
4)3(4,1 - t c)tt4) 2xt

ax2 at

In the special case 4)(x, t) = C, a constant, Eqs. (19) and (20)

reduce to

(21) aF = ox
8F - tax at

and

2 a 2F
Z a

2F
(22) x _ t = 0.

ax at

Since

F =

it follows that

oo

fn(x)tn

n=0



oo co

(23) / xf ' (x)tn - fn(x)ntn = 0

n=0 n=0

and

00

(24) n
x 2f " (x)tn - fn(x)n (n- 1 )t =n 0 .

n=0 n=0

CO

Eq. (23) can be rewritten

oo

(25) / [xfqx) - nfn(x)itn = 0.

n=0

In order for (25) to hold for all valid t and n, the coefficients

must vanish and therefore

(26) xf '(x) = nfn(x), n > 0.

Similar reasoning from Eq. (24) leads to the corresponding result

(27) x 2f
n"(x) = n(n- 1)fn(x), n > 0 .

These results ((26) and (27)) are seen to hold in the trivial case for

which

00

F(x, t) -
1

1

-xt = fn(x)tn

n=0

10



with fn(x) = xn.

11

Suppose cp(x, t) = A(t). Then

00

A(t)Lp(xt) = fn(x)tn,

n=0

the Brenke polynomial class of generating functions. Equations (19)

and (20) respectively become

aF(28) x
8x at- t 8F

= -Aitpt

and

2 82F 2 a 2F
(29) x 2- - t - -t 2

A" t.p - 2xt 2
A'kp' .

ax at

By making more specific choices for A(t) and tp(xt), gen-

uine recurrence relations can be derived. For example let A(t) = eat.

Then A'(t) = aeat = aA(t) so that (28) becomes

(30) x aF OF- t = -aFt.

As before substitute

00

F = fn(x)tn

n=0

into Eq. (30). Then,
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oo co oo

(31) xf '(x)tn - fn(x)ntn = -a fn(x)tn+1
n

n=0 n=0 n=0

oo

= -a / fn-1 (x)tn.

n=1

The resulting recurrence formula is

(32a) xf '(x) - nfn(x) = - afn - 1 (x)' n > 1,

with

(32b) f '(x) = 0.

Other recurrence relations can be found for other forms of 4)(x, t).

2. F(x, t) = A(t)exg(t)

This generating function form is said to be of the Sheffer class;

the polynomial set it generates is called the Sheffer polynomial set of

zero type [7]. The procedure is the same as before. Differentiation

leads to the equations;

(33) aF
= Aexgg,

8x

= Fg

(34) aF
= A'exg + Aexgxg'at

= A'exg + Fxg' ,
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(35)

and

a2F - Agexgg
2

ax
2= Fg

2

(36) a F
_ A"exg + 2A'xg'exg + Fx 2

g'
2 + Fxg"..

at
2

Consider the case when g = t. Sets generated from this class

are said to be Appell polynomial sets. Then Eqs. (33) and (35) be-

come

(37)
aF = Ft
ax

and

(38)

Since

a2F
= Ft2.

ax
2

oo

F = / fn(x)tn,
n=0

Eqs. (37) and (38) can be further simplified to the following:

oo

(39) / fni(x)tn = fn(x)tn+1
n=0 n=0

00

00

= f (x)tnn-1
n=1

and



co

(40) f "(x)tn fn(x)tn+2

n=0 n=0

GO

co

= f (x)tn.n-2
n=2

After equating coefficients the equations reduce to

(41a) fn(x) = fn -1(x), n > 1,

with

(41b) f 1(x) = 0;
0

and

(42a)
fnn(x) fn- 2(x), n 2'

with

(42b) fo"(x) = f
1
"(x) = 0.

These are well-known formulas for Appell sets. For example, the

Bernoulli polynomials form an Appell set; they are given by

00

text B (x)tn .

et-1 n! n
n=0

Bn(x)
Here fn(x) =

n!
. Substitution into Eqs. (41) and (42) leads to

(43a)
Bn(x) Bn_1(x)

n! (n-1)!

14



or

(43b) Brix) = nBn_i (x ), n > 1,

with

(43c) B '0 (x) = 0;

and
B

n
"(x) Bn-2(x)

(44a)
n! (n-2)!

or

(44b) B
n
"(x) = n(n-1 )Bn_ 2(x), n > 2,

with

(44c)

= (n 2 -n)Bn-2 (x)

BO "(x)"(x) = B "(x) = 0.

15

These results are verified in any discussion of the Bernoulli poly-

nomial set [1].

Another example concerns the generating function for the Euler

polynomials;

2ext
_

et+1

00

n=0

1 n
.

n! n

Since it is of the same functional form as the F(x, t) producing the

Bernoulli polynomials, the Euler generating function leads to the

same recurrence formulas. Replace fn(x) in Eqs. (41) and (42) by
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En(x)
The equations reduce to

n!

(45a) E '(x) = nEn-1 (x)' n > 1,
n

with

(45b) E
0
'(x) = 0;

and

(46a) Et.'11(x) = n(n-1)En 2(x)

with

(46b) E" (x) = E
1
"(x) = 0.

Another important form is given by g(t)
t -1

which is

possessed by the generating functions found in the Laguerre class.

Then Eqs. (33) and (35) become

aF t
(47)

ax t -1

or

(48) (t- 1 ) ax = tF,
8x

and

2F t 2
(49)

2
= t1 ) F

8x

or
a

2F
2

(50) (t
2-2t+1) - t F.

ax

Substitute
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oo

F = J fn(x)tn.
n=0

Equation (48) is reduced to

00 00 00

(51)
n

f ' (x)tn --1 fn(x)tn = / fn_1(x)tn,
n=1 n=0 n=1

while Eq. (50) leads to

co oo oo oo

(52) / f
n"-2 (x)tn - 2 /f

n"-1 n
(x)tn + / f "(x)tn = / fn-2 (x)tn.

n=2 n=1 n=0 n=2

It follows that

(53a) fn-1(x) gx) fn-1(x), n >
1,

with

(53b) f 1(x) = 0;

and

(54a) f "-2 n
(x) - 2f "

-1
(x) + f "(x) = fn-

2(x),
n > 2,

with

(54b) f
0
"(x) = f

1
"(x) = 0.

Equation (53) is given in Rainville [7].

For the associated Laguerre polynomials of the first kind, the

generating equation is given by
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xt
(1-01-ae- 1-t

oo

n=0

L (a) (x)tn.

From the recurrence relations derived above, the equations

(55a) Ln1(a)(x) - L 1(a)(x) = L (a) (x), n> 1,
1

with

(55b)
0

Lt(a)(x) = 0;

and

(56a) L (x) - 2L-1(x) + Ln
T(a)

(x) = L (a) (x), n > 2,
nn-2 n-2

with

(56b) Lo (x) = L
ii(

(x) = 0,
1

a)

follow.

For the special case a = 0 these become equations relating mem-

bers of the polynomial set known as the Laguerre polynomials of the

first kind, {Ln(x)}.

An interesting form for g(t) involves the expression

g(t) = 1 - et. Equations (33) and (35) reduce to

(57)

and

ax= (1-et )Fax

a
2F

(58) - (1-2e t+e2t)F.
2

ax

Since
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00 00

tnF = / fn(x)tn and et =
n!

n=0 n=0

Eq. (57) becomes

oo Go oo oo

tn
(59) fn(x)tn = fn(x)tn - n!

n=0 n=0 n=0 n=0

For two absolutely convergent series, Mertens' theorem [2, p. 376-

377] guarantees that the Cauchy product will converge to the product

of the series. Under these conditions Eq. (59) reduces to

00 00 oo n

( 6 0 ) fni(x)tn = fn(x)tn - fk (x)
(n

1

k)! tn.

n=0 n=0 n=0 k=0

So, the recurrence relation is

1
(61) fr'i(x) = fn(x) fk(x) (n-k)!

k=0

Similarly, Eq. (58) leads to

(62)

co

f (x)tn =

n=0

00

fn(x)tn -

n=0

00

n=0

fn(x)t

00 00

+ fn(x)tn

n=0 n=0

00

n=

(2t)n
n!

00 oo n oo n n-k
= fn(x)tn - 2/ / fk(x)(n-k)!tn

fk(x) (n
2

-k)!tn'
n=0 n=0 k=0 n=0 k=0



Or
n

2
n-k

f(x) = fn(x) - 2 / fk(x) (n-k)! (n-k)!
1

(63) (x)

k=0 k=0

The Toscano polynomial set is generated by the equation

00

eat+x(1-et) 1 (a)(x)tnn! n
n=0

g
(a)

(x)with fn(x) = . Substitute into Eqs. (61) and (63) to obtain

(64)

or

(65)

and

(66)

or

'(a)( (a)(
gn xi gn

n! n!

(gka) (x)

k!(n-k)!
k=0

k=0

n

'(a) (a) (a)
gn (x) gn (x) L( in dgk (x),

k=0

"(a), (a)(
gn xi gn 1

(
,n (a) 2- 2 )g (x) +n! n! n! k k n!

(67)
"

x'
(a)

( g
(a)

( )

k=0

n

k=0

(a) n
gk (x) + 2

n

n

k=0

k=0

20

g
(a) (x)2-k

(a) kgk (x)2
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3. F(x, t) = 4)(x, 0G(2xt-t2)

(68)

(69) OF = cptG + (2x-204)G1,

The appropriate partial derivatives are

aF
ax

= cpxG + ,

2F
(70)

ax
2

= + 4t4)3cGl+ 4t24)G" ,

and

2F
(71)

at 2
= tt G + 4(x-04)tG' -24G' + (2x- 2024)G" .

Consider the case 4 = 1, applicable to the generating func-

tions of the ultraspherical polynomials, the Hermite polynomials, the

Legendre polynomials, and the Tchebicheff polynomials of the second

kind. Equations (68) to (71) reduce to

(72) OF = 2tG' ,ax

F
(73)

O = (2x- 2t)G ' ,at

a2F
(74) - 4t2G"

ax
2

and

a
2F

(75) - -2G' + (2x-2t)2G"
.

2at



Equating the coefficients of G' in Eqs. (72) and (73) leads to

aF(76) (x-t) -57c =t aF
, (t # o, t x)

and the recurrence relation which follows is

(77a)

with

(77b)

xf '(x) - Pn-1 (x) = nfn(x), n > 1,

f '(x) = 0,
0

22

a result given in Rainville [7, p. 131-132].

Repeating the procedure with the coefficients of G" in Eqs. (74)

and (75), and noting that Eqs. (72) and (73) give expressions for G',

leads to the following results:

(78)

with

2
2

at2

F aF 2 a
2F

t = -t ax 2
+ (x 2-2xt+t )

ax

1
GI =

aF t 0,2t 8x

and the recurrence relation

(79a) n (n- 1 )fn(x ) = fn' _1(x ) + x2 f "(x) - 2xfn"_1(x) + fn" 2(x ), n > 2,

with

(79b) f" (x) = f
1
"(x) = 0;



(80)

with

2
2 3 a

zF 2 aF 3 2 2 3 a F(xt -t ) = -t + 1(x -3x t+3xt -t )
2 atat axe

G' - 2x -2t at'
aF

and the recurrence relation

x t,

(80a) n (n-1 )xfn(x) - (n- 1 )(n- 2)fn_i (x) = - (n-1 )fn_i (x) + lx3f "(x)

- 3x 2f
n"-1 (x) + 3xfn-2 (x)

with

(80b)

- lfn-3 (x), n > 3,

2xf2(x) = -f
1 2
(x) + lx 3f "(x).

23

For the Tchebicheff polynomials of the second kind, {fn(x)} = {Un(x)};

the Hermite polynomials,
Hn(x)

{f (x) } = ;n n!

the Legendre polynomials of the first kind, {fn(x)} = {Pn(x)}; and

the ultraspherical polynomials,

(1 +2a) (a,(a, a)
{fn(x)} { (1-Ec) n

001.

4. F(x, t) = 4)(x, t)(1+at)ni

Another interesting form of generating function occurs when
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F(x, t) = t)(1+at)m, a and m arbitrary constants. Taking

derivatives leads to the following;

(81) ax
=

x
(1+at)m,

(82) =c,t(i+at)m +,:.ma(i+at)m -1
at

a
2F

(83) = c)xx(l+at)m,
ax 2

and

a
2F

(84) - m(m_1)az4)(1+at)m-2 + 2am(Ot (1+at)m-1 + tt (1+at)m.
atz

(85)

and

Suppose 4 = cp(x) only. Then Eqs. (82) and (84) become

(1+at) aF = maFat

2 a
2F

(86) (1+2at+a
2t ) = m(m-1)a 2F,

at

respectively, knowing that F = c(x)(1 +at)m. The recurrence rela-

tions are

(87a) (n+1 )fn+1 (x) = a (m-n)fn(x), n > 1,

with

(87b) f
1

(x) = maf0(x);

and

(88a) (n+2)(n+1 )fn+2(x) + 2an(n+1 )fn+1 (x) = a2[m(m -1 )-n(n- 1 )1fn (x ) ,

n > 2,



with

(88b) 6f3(x) + 4af
2

(x) = a 2
m (m -1 )f

1
(x)

and

(88c) 2f2(x) = a2m (m- 1 )f
o

(x).

(89)

and

Let (0 = 4(bxt). Then Eqs. (81) and (82) lead to

aF
ax = bt(l+at)mV

aF m maF 1
.(90) = xb(l+at) + , t -

at l+ta a

aF
Since (1)1 = tb (1+at) -m

ax when tb # 0 and at # - 1, Eq. (90)

becomes

(91) t(l+at) aF = x(l+at) 8F + matF.ax

The derived recurrence relation is

(92a) nfn(x) = xfn.' (x) + axfrit_1(x) + a(m-n+l)fn_1(x), n > 2,

with

(92b) f
0
'(x) = 0

and

(92c) f
1

(x) = xf 11(x) + maf0(x).

As an example consider the CeAro polynomials generated by

25
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00

(1-t)k-1(1-xt) -1
= g

(k) n
(x)t .

n=0

Here m = -k-1, b = -1, and a = -1. Substitution into the formula

leads to the result

(k) '(k) '(k) (k)
(93a) ngn (x) = xgn (x) - xgni (x) + (k+n)gn (x), n > 2,

with

(93b) g
0

'(k)(x)
= 0

and

(93c) gl(k)(x)
= xgl'(k)(x) + (k+1 )g

(0 k)(x).

bxt

As the final consideration let 4(x, t) = el+ct c and b

arbitrary. This form encompasses the class of Laguerre polynomials

and the set of Sonine polynomials. Equations (81) and (82) reduce to

(94)

and

ax(1+ct)ax = btF

(95) (l+ct) 2 (1+at) aF = bx(l+at)F + ma(l+ct)2F.at

The recurrence relations are found to be

(96a) fn'(x) + cf 'n-1 (x) = bfn-
1
(x), n > 1,

with

(96b) f '(x) = 0;
0



and

(97a)

with

27

(n+1 )fn+1 (x) + [(2c+a)n-bx-ma]fn(x)

+ [c (c+2a)(n- 1 ) - abx - 2cma]fn_ (x) + [ac2(n- 2)-mac2Jfn- 2(x) = 0,

n > 3,

(97b) 3f3(x) + 2(2c+a)f2(x) + c(c+2a)f 1(x)

= bxf
2

(x) + abxf
1

(x) + maf
2
(x) + 2mcaf

1
(x) + mac 2

f0(x),

(97c) 2f2(x) + (2c+a)f (x) = bxfi (x) + abxf0(x) + maf (x) + 2mcaf0(x),

and

(97d) f
1

(x) = bxf0(x) + maf0(x).

The Sonine polynomial set is determined by the generating function

xt

(l+t)-m- le l+t
= m+n)!Smn (x)tn

Co

n=0

with {fn(x)} = {(m+n)!Smn (x)}, b = 1, c = 1, and m = -m-1. Eq.

(96) is reduced to

(98a)

with

(98b)

(m+n)S
'n(x)

+ S
'n- 1 (x) = Sn- 1

(x), n > 1,
m m m

50(x) = 0.m

A corresponding expression holds for the second recurrence relation.
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III. METHODS FOR DETERMINING
F (x, t) FROM {fn(x)}

co

F(x, t) = fn(x)tn.

n=0

28

Consider the situation in which the set {f
n

(x)} is known for all non-

negative n and the generating function F(x, t) is not. If such

a function exists, there are several ways in which it can be formally

determined.

The first method to be discussed is very elegant, yet simple in

nature. It involves the concept of a pure recurrence relation; that

is, equations relating two or more members of the generated set,

n(x)}, containing no derivatives. Such relations are guaranteed

for most polynomial sets by the researches of Fasenmyer [7], who

has proved that if the polynomial set {fn(x)} can be described by a

set of hypergeometric functions of the form F , there exist con-
s

stants A, B, C, D, and E, which may be functions of n, such

that

(99) fn(x) + (A+Bx)fn_1(x) + (C+Dx)fn_2(x) + Efn_3(x) = 0.

The majority of well-known and commonly used polynomial sets can

be given by hypergeometric functions; examples include
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(100) Ln(x) =
1
F

1
(-n;

the Laguerre polynomial,

(101) Zn(x) =
2
F

2
(-n, n+1;

Bateman's Zn(x) polynomial, and

(102) Hn(x) = (2x)
12F0(-

1; x),

1,1; x),

1 1
--2-

1

x

the Hermite polynomial.

Other representations are found in [1].

Given that a pure recurrence relation can be established among

members of the generated set, the technique consists of multiplying

over the recurrence formula by the power variable tn, summing

over n, and manipulating the resulting expression to obtain the

desired generating function. This method requires knowledge of the

first two or three members of the polynomial set in order that a

unique generating function can be established; the phrase "initial

values" points to the analogy such conditions have with initial value

problems in ordinary differential equation theory. It should again be

emphasized that this method assumes a priori that a generating func-

tion
co

F(x, t) = fn(x)tn

n=0

exists with a uniformly convergent series in x and in t.
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Furthermore, this property is assumed to be in effect through the

third partial derivatives in x and in t, as required by the

hypotheses of Property 4 (Appendix B) for k=2 and as mentioned

generally in the Introduction.

An example should clarify the concepts involved. Suppose the

following recurrence relation holds for the {fn(x)} under consider-

ation;

(103a) nfn(x) - 2xfn-1 (x) + 2fn-2(x) = 0, n = 2, 3, 4, .. .

with

(103b) f
0

(x) = 1

and

(103c) f1(x) = 2x,

the "initial values."

Replace n by n+2 in Eq. (103a). The result is

(104) (n+2)f
n+2

(x) - 2xfn+1(x) + 2fn(x) = 0, n = 0, 1, 2, ... .

Multiply by to and sum. It follows that

co co

(105) (n+2)fn+2(x)tn - 2x fn+1(x)tn + 2 fn(x)tn = 0.

n=0 n=0 n=0

00

Let
co

F [fn (x )] = fn(x)tn,

n=0
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where it is understood x is held constant throughout. Then,

assuming Property 4 can be applied,

(106)

or

(107)

dF
dt

nfn(x)tn1,

dF
t dt

n=1

00

nfn(x)tn

n=0

= F[nfn(x)].

Now, the first term of Eq. (105) can be rewritten as

co

(108) (n+2)fn+2(x)tn = nfn(x)tn- 2

n=0 n=2

00

= t-2

co

nfn(x)tn

n=2

n=0

nfn(x)tn-0f
0
(x)t0 -1 f

1
(x)tl]

= t2{F[nfn(x)]-0-1 2xt}

- 2
= t

dF -2xt)
dt

- dF
-2xt

-1
t

1

c 7i



32

if t 0. Similarly, the second term of Eq. (105) can be reduced to

oo

(109) fn+i(x)tn = fn(x)tn-1

n=0 n=1

00

fn(x)tn

n=1

00

= t -1 fn(x)tn - f0(x)t0]

n=0

= t -1F
- t-1

if t 0. Thus, the recurrence relation becomes

-
(110) t

1 - 2xt - 2x(t1 F-t 1) + 2F = 0,
dt
dF 1

or

t dt1
dF 2xt

1F + 2F = 0,

dF
at 2xF + 2tF = 0,

dF
at (2x-2t)F = 0.

The solution is seen to be

(111) In F = (2xt-t 2)
+ C1,

Or

(112) F = C1e 2xt-t2



Since f0(x) = 1 = F(x, 0),

(113)
2x 0- 0 2

1 = C le

= C
1

e

= C
1

2

Therefore, the formal generating function is F(x, t) = e2xt-t A

check with Appendix A will show that this result is the generating
H (x)

function for the set Further investigation will reveal
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that it satisfies the given pure recurrence relation. This technique

is briefly discussed in [5].

Let a more general case be considered. As was stated earlier

any polynomial set {f
n (x)} described in terms of a hypergeometric

function has a pure recurrence formula of the form of Eq. (99) where

A, B, C, D, and E are constants independent of x but not nec-

essarily of n. It is empirically found that the majority of poly-

nomial sets have recurrence relations of the form

r r
(114) fn(x) + 'An3+Bn 2+Cn+D+Ex]fn_1(x) + iFn3

+Gn
2+Hn+K

+Lx]fn- 2 (x) + [Mn 3
+Nn

2+Pn+R]fn- 3(x) = 0, n= 3,4,5, ...

where A, B, . ,R are independent of x and n, although they

may be individually composed of terms with other parameters. Most

of these constants are zero for specific polynomial sets. It is de-

sired to obtain the equation from which the generating function can be



34

found for a given set {fn(x)} satisfying Eq. (114). In addition it is

assumed f0(x) 1, fl(x) ti)(x),

initial conditions normally used.

(115)

and f 2(x) = Lp(x),

Replace n by n+3 in Eq. (114) to get

fn+3(x) + [A(n+3)3+B(n+3)
2+C (n+3)+D+Ex]fn+2(x)

+ [F (n+3)
3+G(n+3)

2+H (n+ 3)+K+Lx]fn+1 (x)

which are the

+ [M(n+3)3+N(n+3)2+P(n+3)+R]fn(x) = 0, n = 0, 1, 2, ... .

Multiply by to and sum over n. The expression becomes

(116)
co

fn+3(x)tn

n=0

00

n=0

00

[A (n+3)3+13 (n+ 3)2+C (n+ 3)+D+Ex] fn+ 2(x )t
n

[F(n+3)3+G(n+3)2+H(n+3)+K+Lx]fn+1(x)tn

n=0

CO

n=0

M(n+3)
3
+N(n+3)

2+P(n+3)+R]fn(x)tn = 0.

Each expression bounded in brackets remains a cubic polynomial in

n after the transformations. A theorem [8, p. 40] from the calcu-

lus of finite differences exists which asserts that a polynomial ex-

pression in n of degree r can be represented by a unique
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factorial series of the form A'n(r) + B'n(r1) + + P

where n(k) = n(n-1) (n-k+1 ). These new coefficients involve

Stirling Numbers of the Second Kind. Consequently, Eq. (116) can be

rewritten as

(117)
co

-3t fn(x)tn + t -2

n=3

+t

00

n=2

00

,
n (3)+B n(2)+Cl

n
(1)

+D
1
+Ex]fntx)tn

1

0)+G
1
n(2)+H

1
n(1)+K

1
+Lx]fn(x)tn

n=1

oo

+ LIVI
1
n

(3)
+N

1
n

(2)+P
1
n (1)

+R]fn(x )t = 0,,

n=0

if t 0. The first term can be reduced to

00 00

(118) fn(x)tn = (3( / fn(x)tn-f0(x)0-fi(x)t1-f2(x)t2]
n=3 n=0

= t 3{F[fn(x)]-14(x)t-4,(x)t2}.

By repeating the procedure used in deriving Eq. (107), it can be

shown that

(119)
2 d

2 F
t =

dt 2

n=0

(2)fn(x)tn
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and

t3 d3F
(120) -

d
3

00

n=0

n
(3)fn(x)tn.

With these results the second term of Eq. (117) becomes

oo

(121) t 2 {/ Ain(3)fn(x)tn-A10(3)f0(x)O-A1(1)(3)f1(x)ti

n=0

oo

+ B
1 n(2)fn(x)tn-B 1(0)(2)f0 (x)t°-B 1(1)(2)f 1

(x)ti

n=0

oo

C n(1)fn(x)tn-Ci (0) (1) fo(x)t0
-C (1)(1)f

1
(x)t

1

n=0

oo

+ D
1
fn(x)t

n-D
1
f
0

)t
0-D

1
f

1
(x )t

1 + Ex L fn(x)tn

n=0 n=0

00

- Exf0(x)t 0 -Exf
1
(x)ti

3 d 3 2d F dF -Ci= t
2 [Ait +Bit 2 --2- +Cit c1)(x)t+DiF-Di-Dic)(x)t

dt

F

dt

+ ExF -Ex-Excl)(x)t].

The third term reduces to
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00

(122) F
1
n(3)fn 1 0(x)t0+(0)(3)f (x)t°+ G

1
n(2)In(x)tn

n=0 n=0

00

G (0) (2) 0 (1)f(x)t + H
1
n In(x)tn-H (0)

(1)
fo(x)t°

o1 1

00

n=0

K
1
fn(x)tn-K

1
f
o (x)t°+Lx

n=0

00

fn(x)tn-Lxfo(x)t
n=0

0}

3 d3F
2 d2F dF

= t -1 [F
1 2
t +G,t +H

1 dtt +K
1
F -K

1
+LxF -Lx].

dt 3 dt

The last term can be rewritten as

co

(123) Mln(3)fn(x)tn N1 n
(2)fn(x)tn

n=0 n=0

00

00

+ n (1)f (x)tn
1 n Rfn(x)tn

n=0 n=0

00

2F= M t 3 d3F +Nt2 d +P tdF +RF.
1 1 2 1 dt

d.t3 dt

Equation (117) is found to be
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3 2 2 3 d3F 2 d2F dF
(124) t [F-1-4)(x)t ] + t [A

1 3
t +B

1 2
t +C

1 dtt
dt dt

- C 14) (x)t+D1F - D1 - D4) (x)t+ExF -Ex- Ex4) (x)t]

1 3 d F3 2
dF

+ t [F t +G t2 d F +H t +K F-K +LxF-Lx]
1 3 1 2 1 dt 1 1

dt dt

3 d3F
2

2F
ddtF

+ M1 t +N t +P
1
t +RF = 0,

2
dt3 1 dt

or

6 5 4 d3F
5 4 3 d 2F

(125) (M
1
t +F

1
t +Alt ) + (Nit +G +Bit )

dt dt

4 3 2 dF 3 2 2
+ (P

1
t +H

1
t +C t ) + (t R+Lxt +K t +D t+Ext+1)F

1 dt 1 1

- [K
1
t 2 +Lxt2

+D
1

4)(x)t
2

+C
1
4)(x)t

2
+Ex4)(x)t

2+4i(x)t +Ext

+ 4)(x)t+D1t+1] = 0.

Thus, the generating function, if it exists and has the requisite prop-

erties, is a solution of the third-order homogeneous linear differen-

tial equation given by Eq. (125).

Sometimes the technique can be extended to mixed recurrence

relations. Here, a partial differential equation will be obtained be-

cause of the presence of derivatives in x, for if

F(x,t) =

00

n=0

fn(x)tn = F[fn(x)];



(126)
aF
ax

00

f '(x)tn

n=0

F[f'(x)].
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Corresponding results hold for higher order derivatives. In general

the resulting partial differential equation can not be solved by utiliz-

ing the Bernoulli, or separation of variables, method since the pro-

jected solution, the generating function, is not usually separable in

x and t. For this reason the equation is reduced to an ordinary

differential one by using transforms, the most common being Laplace.

The disadvantage of this method, as a whole, is that more

information about the initial conditions is required. Besides know-

ledge of f0(x) and its derivatives, F(0, t) is also needed in

order to obtain a unique solution. Of course it is understood that the

generating functions transforms, as well as their inverses, exist,

which may not always be true. An example should make these objec-

tions apparent.

Consider the mixed recurrence relation given as follows;

(127a) frti(x) fn.-1(x) -fn-1(x), 2" 3"

with

(127b) f0(x) = 1

and
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(127c) f '0 (x) = 0.

Furthermore, assume that

(127d) F(0, t) = (1-t) 1.

Replace n by n+1 in Eq. (127a) to obtain

(128) fn' (x) - fnt(x) = -fn(x), n = 0, 1, 2, .

Multiply by to and sum over n. The result is

oo Go Go

(129) ci(x)tn-1 - f'(x)tn + fn(x)tn = 0

n=1 n=0 n=0

Or
Co

aF
(130) t

i
fr'i(x)tn - fd(x)t o

-
ax + F = 0,

n=0

if t 0,

-1 al- art [ax ax- 0] -ax +F = 0,

aF 8F- t + tF = 0,

(1_0
ax

+ tF = 0.

Let f(s) = t{F[fn(x)] }, the Laplace transform over x. Take

Laplace transforms of Eq. (130);



(131) (1-t) 1,1(} + t S,,{F} = 0,

(1-t)[sf(s) - s°F(0,t)] + tf(s) = 0,

(1-t)[sf(s) - 1 ilt 1+ tf(s) =

(1-t)sf(s) - 1 + tf(s) = 0,

[ (1-t)s+t]f(s) = 1,

1 1f(s) = [(1-t) t
s+

1 -t

or

(132) F(x, t) -
(11

1

-t) t
1-t

From a table of Laplace transforms it is found that

(133)

xt
1 1 -tF(x, t) - 1-t e
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the generating function for the Laguerre polynomial set {Ln(x)}.

Investigation into any book on special functions [1,5,7] will show that

{Ln(x)} obeys the recurrence equation (127).

The requirement that F(0, t) be known is a consequence of

the relation existing between aF and its Laplace transform. Nor-

mally,mally, this "initial value" information about F is not available.

However,



F(0, t) =

00

f
n

(0)tn

n=0

42

is a real Maclaurin series in t. It may be possible to identify the

series in a closed form by inspection or by looking into a series

table.

Of course the mixed recurrence problem gets correspondingly

worse as higher order derivatives are introduced into the relation.

In particular, if a polynomial set is under consideration, an equation

uniting second and first order derivatives with members of the set is

as difficult to solve as the differential equation members of the set

satisfy. It is much easier to first solve the original ordinary dif-

ferential equation by techniques such as the method of Frobenius and

then obtain a pure recurrence formula from the solution. The gen-

erating function can be found much more easily by this approach.

Several methods for finding the generating function are dis-

cussed by Truesdell in his book [9]. He discusses functions F(z, a)

satisfying the F -equation;

(133) F(z, a) = F(z, a+1).

The variable z and parameter a are allowed to be complex.

Truesdell has amassed a table of special functions which satisfy the

F-equation by attaching to them suitable coefficients in z and a.
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There are exceptions, such as the generalized Bernoulli polynomials

and Jacobi functions, which are not amenable to this treatment, but

their number is small.

The first method he advances for determining generating func-

tions is based upon the following theorem and corollary [9, p. 82-83];

Theorem 1. If the function F(z, a) satisfies the F-equation

and if F(z+y, a) possesses a Taylor series, then this series may

be put into the form

(134) F (z+y, a) =

00

n=0

1

!
F(z, a+n)yn.

Corollary 1. 1. If for some value z
0

of z, IF(zo, <

when Re a > a
0

then for all values of z and y, (134) is valid

when Re a > a .
0

(See his monograph [9] for proofs of these asser-

tions. )

( (For example F(z, a) = e ia.Tr
e

-zLba)
(z), where Lb a) i(z) is

the associated Laguerre polynomial, satisfies the F-equation. It

can be shown [9, p. 83] that F(z+y, a) = eian e-z-yL (a) (z+y) pos-

sesses a Taylor series and satisfies Corollary 1. 1. By Eq. (134)

the equation above can be written as



(135)
-z-y (a)

e e Lb (z+y) =

00
.

y
n

e
in(a+n)

e
-z Lb(a+n)(z)

n!
n=0

=eian -z
e

Equation (135) can be rewritten as

(136) a,e YL
b

( )(z+y) =

00

n=0

00
n

iy nn, (a+n)(z).
n!

n=0

yn (-1)nL(a+n)(z).n!
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Here, L b
(u)(x) is found in the generating function and in the gener-

ated set while the summation over n occurs in the superscript.

Usually the expressions which arise from the application of the the-

orem are of this form, which may be undesirable. Sometimes, how-

ever, cancellations and judicious choices of parameter values will

lead to more tractable expressions. If

a+1

F(x,a) = (a-b)!(x2 2
+1) Pb (-

2
),a

where Pb(r) is the associated Legendre function, is used in Eq.
a

(134), the result turns out to be

a+1
x

(137) (t
2 -2tx+1) 2 Pb( -t

)
a tjt2-2xt+1

co

n=0

a-b+n)Pb (x)tn
n a+n
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If b = a is chosen Eq. (137) reduces to

CO

(138) (t
2 -2tx+1)-a

= > C
a

(x)t
n,

n=0

the generating function for the Gegenbauer polynomial set {Can(x)}.

TruesdelPs second method is a consequence of the following two

theorems [9, p. 117-118 and p. 57-58].

Theorem 2. Suppose F(z, a) is a solution of the F-equation

and suppose the functions F (z, a) form a set of solutions of the

F-equation. Let 0 be an operator which

(i) associates itself with the variable

and

Y;

(ii) commutes in Eq. (140) below, with D = a
,

Ef(z, a) = f(z, a+1), and the operation of replacing z by
a

z
Suppose, for some value

z o
of z

(139) F(z
0
, a) = 0[F

y
(z

0
, a)], Re a. > a0.

Then, for all values of z such that the expression below

has a meaning,

(140) F(z, a) = 0[F (z, a)], Re a > a
Y Y

0.
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Theorem 3. Suppose the complex function c(a) = F(z0, a) is

absolutely bounded; 11)(0-)1 < Re a > a
0

. Then a solution F(z,a)

of the F-equation such that F(z0, a) = Oa), Re a > a0 exists, is

unique, is an integral function of z for each fixed value of a

such that Re a > a0, and is represented by

00

(141) F(z, a) = 1 4)(a+n)(z-zo)n.

n=0

As an example let

A(z,w) =

00

(a) (z)w {L (a)(z)}

y=0

is the associated Laguerre polynomial set, and A(z,w) is to be

lan.
efound. Multiply by e-z to obtain

(142)
iair -z

e e A(z, w) =

co

y= 0

eiaTre-zL (a)(z)wy.

By comparing the coefficient of wY with Truesdell's table it is

found to equal F (z, a) in the context of Theorem 2 with

o[..
CO

y=0

]w y.
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Thus, eialre-zA(z) is a solution F(z, a) of the F-equation such

that

(143)

since

is a geometric series.

F(0, a) = 0 [F (0, a)]
Y Y

=

00

y=0

eian r ( a+ y+ 1 ) wyr(a+1)y!

ian -a-1= e(1-w)

00

1
r ( a+ y+ 1 ) wy
r(a+1)y!

y=0

As a consequence of Theorem 3,

(144) F(z, a) =

=

CO

n=0

00

n=0

(z-zo )n
F(0, a+n) n!

ei(a+n)Tr(1-w) -a-1-n zn
(z = 0),

n! 0

=
ian

e (1-

00

n=0

z

z In
1-w i

= eian(1-w)-a-le 1-w

Comparison of Eqs. (142) and (144) leads to
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(145) F(z, a) = A(z, w)eialTe-z

that is,

z

= e iaTr
(1 -w)

-a- le 1-w

zw

(146) A(z,w) = (1-w) -a-le 1-w

is the desired generating function for the set {L (a) (z)}.

The next method to be considered for determining F(x,t) is

applicable to a set {fn(x)} which is assumed orthogonal and poly-

nomial, of degree n for each element, and the solution of the

second-order differential equation

(147a)

with

(147b)

(147c)

and

(147d)

r(x)y" +g(x)y' + Xy = 0

r(x) = ax 2 + bx + c,

g(x) = hx + k,

X = (1-n)r"(x) - ng'(x)

= n[ (1-n)a-h] for n = 0, 1, 2, .

It is further assumed at least one of a, b, or h is not zero and

r, g, and X / 0. Such sets are the ones normally encountered in

physical problems.

It can be shown [5] that multiplying. Eq. (147a) by
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1
p. (x) - exp g(t) dt]r (t)

will make it self-adjoint, having a polynomial solution of degree

given by

(148) y fn(x)

Cn
-

µ(x)
Dnllr(x)ini.).(x)},

where Cn is a constant dependent on n and D is the differ-

ential operator dx
. Such a solution is known as the Rodrigues

formula.

Under these conditions a generating function of the form

co

F(x, t) = bnfn(x)tn

n=0

may be found if recourse to analytic function theory is made. By

Cauchy's integral formula [5, 10];

n! C F(z)
(149) DnF(x) 2ni (z-x)n+1

dz, n = 1, 2, 3, ... ,
C

where C is a closed contour in the Argand (x, y) plane that en-

closes x but does not enclose singularities of F(z). C is taken

in the usual counterclockwise sense while F(z) is assumed to be
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analytic throughout the domain containing C. Substitute Rodrigues'

formula into Cauchy's integral formula. Equation (149) reduces to

!Cn n n n.
rn(z)R(z) dz(150) D [r -

p.(x) p.(x)2Tri
C (z-x) n+-

Since,

(151)

F(x, t) =

= fn(x) .

oo co

hn(x)tn = bnfn(x)tn,

n=0 n=0

00

F(x, t) = bnfn(x)tn

n=0

00

n=0

Cn n!

Usually bn is chosen so that

(152)

2Tri

B = bn!C
n n

rn(z)p. (z) dz t
(z-x)n+1

where B is independent of n. If this choice is made,

00

(153) F(x,t) =
p.(x)2Tri

Bn ril(z)}1(z) dztn.
C (z-x)n+1

n=0

Assume that the integration and summation can be interchanged.
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Then

00

1 ES11 dz Br(z)t
L Z -X(154) FOCI t) z-x

n

n=0

For Br(z)t I < 1 the convergent series is summable since it isz-x
geometric. It gives

Therefore,

1 z-x

1- Br(z)t z-x-Br(z)t
Z -X

1 z-x
(155) F(x,t) = 2Triii(x) Sc z-x [z-x-Br(z)t] dz

1 p.(z)
2Trit.i(x) z-x-Br(z)t dz.

Many times the integral can be evaluated by appealing to

Cauchy's residue theorem. If the integrand can be expanded in a

Laurent series,

oo

m = -00

mcm (z-z )
0

where not all the c vanish, there is a singularity at z = z0.
0'

c -1
is called the residue of the series. If a finite number of
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singularities zk, k = 1, 2,...,m lie inside the contour C, the

integral has the value

Then,

(156a)

2Tri

m

-1, le
k=1

m

F(x, t) -
p.(x) c-1, k

k=1
where

(156b) - 1 , k k(x, t), k = 1, 2, .. , m.

An example will demonstrate the efficacy of this method. Con-

sider the following differential equation;

(157a) xy" + (1-x)y' + ny = 0,

the Laguerre differential equation. Here, r(x) = x, g(x) = 1 - x,

and X = n with r and g # 0 if the open interval (0, 1) is

taken for x. So,

(157b) µ(x)- r(x)exp[exp [ glt-1 dt](x) r(t)

= 1 exp [ J 1-x dt]

=
1 x exp (-x)

= exp (-x).
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Cn is chosen to be 1 so thatn!

(157c) B = b C n!n n

= b
1

n n!

= bn

An obvious choice is bn = 1 for all n; this makes B = 1.

Therefore,

1 µ (z )dz
(158) F(x,t) -

2rrip.(x) z-x-Bf(z)t

-z
e

2rri. exp (-x) z-x-zt- .

1 dz.

The integrand has a singularity at zl - x - zlt = 0 or zl 1-t

Thus, the contour C must enclose x and be such that

Br(z)t zt
I I- I < 1.Z - X Z - X

The requisite contour can be found when t is sufficiently small.

Let 4 (z) - e-z Since the integrand has a simple pole atz-x-zt
z = z c -1 = lilira (z-zi)(1)(z) [6]; that is,

e-z
(159) c_i = lira (z-zl) z-x-zt

x

= (1-t) 1
e

1-t



So,

(160)
1F(x,t) - c-1

x
lx -t)- le 1 -t

e
-x

xt

= (1-01e 1-t

co

fn(x)tri.
n=0
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Of course restrictions are placed on t and x according to the

preceding developments, but Eq, (160) is the correct generating

function for the Laguerre polynomial set of the first kind.

The final method to be discussed is based on the assumption

that any element of the generated set can be represented by means of

a definite integral, which is already known. Symbolically, this can

be written as

(161) fn(x) = J gn(x, 0)d0, n = 0, 1, 2, ... ,
a

Usually, such a representation, if it exists, is found from integrating

an appropriate, unknown function in the complex plane. All the vari-

ables involved in Eq. (161) are assumed real. If a generating series

of the form
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(162)
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oo

fn(x)tn

n=0

oo

fn(x)tn
n=0

00

gn(x, 0)detn
a

n=0

co

gn(x, 0)tnd6,
a n=0

if uniform convergence in the variables is assumed,

= 0(x, e; t)d0,
a

if the series is summable in closed form,

= F(x, t),

if the function is integrable over [a < 0 < b]. These restrictions

are relatively severe when taken together, and few functions gn(x' 0)

are as serviceable as this when they exist.

Some functions gn(x, 0) do exist, however, For example,

1 c10(163) P (x) =
n n

0 x2+42-7 cos 0]n+1



56

If

has a generating function,

co

Pn(x)tn

n=0

co co

(164) / Pn(x)tn =
SIT

de t .

n=0 n=0 0 [x+fix -1 cos e] n+1
n

If integration and summation interchange is assumed valid,

(165)

when

co co

1Pn(x)tn =
Tr
rI,x+ TT, cos ernitnde

n=0 0 n=0

t

cos

1 C 1

Tr j0 X-t+42- 1 cos
de

< 1. The integral can be evaluated since

Y

1a -b tan x
1 2

(166) de - tan-1a+bcos0 a+b + C,
a2 -b

lal > Ibl
So,

00 -1/2
(167) Pn(x)tn = 1

2
(1-2xt+t 2)

2
IT

n=0
= (1-2xt+t2)1/2

the generating function for the Legendre polynomial set {Pn(x)}.
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IV. MISCELLANEOUS TOPICS

F(x, t) =

00

fn(x)tn.

n=0
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Consider the situation in which F(x, t) is known and it is desired

to find the set {fn(x)}. If the assumption is made that F(x, t) is

differentiable in t, and the series is uniformly convergent and

continuous in both x and t for all orders n, then by Property

4, Appendix B;

an
(168) fn(x) = TIT [F(x, I n = 0,1, 2, ... .

at

This result is not surprising since the generating equation can be con-

sidered a Maclaurin series in t having a parameter x.

If

(169a)

00
2

F(x, t) = e2xt-t = fn(x)tn,

n=0

, 1 an r 2xt-t2."
fn (x = Le jit=0

n! atn

The first three values are

(169b)
1 2xt-t2

f
0
(x) = --[e 11 t=0 = 1,



(169c)

and

(169d)

1 a 2xt-t 2

fl (x) TT at (e )1 t=0 = 2x,

1 a2 2xt-t 2
2

f
2
(x) = --(e ) = x 1.2! 2at
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Comparison with a table of special functions will show that these
Hn(x)

terms are members of the set with Hn(x) the ordinary

Hermite polynomial of order n. Further differentiation of Eq.

(169a) will confirm this conjecture for higher n.

As the example demonstrates, formula (168) is difficult to

apply in practice because of the laborious and tedious calculations

that are usually required in finding the t-derivatives of F(x,

Other methods are normally much easier to use.

Suppose F(x, t) is an expression which can be easily ex-

panded in an infinite series involving expressions containing powers

of t. By suitable manipulations and substitutions it may be pos-

sible to separate and collect the factors so that a power series in t

is achieved. By comparing the coefficient expression with fn(x),

an explicit expression for the latter can be found.

Consider

co

(1-2xt+t 2 -v
= > fn(x)tn,

n=0
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v a real parameter. By the binomial theorem;

00

(170) (1-2xt+t2)-v = -nv)(-1)n(2xt-t2)nl-v-n

n=

oo n

n=0 k=0

co [n/2]

n =0 k=0

if n+k is replaced by n,

(-1)k(2x)n-k (v)ntn+kk!(n-k)!

) (v)n-k(2x)
n- 2k

tn,

co

= fnv(x)tn.

n=0

k!(n-2k)!

Comparison of coefficients of to leads to the implication

(171a)

k=0

This series defines the set of Gegenbauer polynomials {Cnv(x)}.

1
If v = -2. Eq. (171a) becomes

1 2

[n/2] 1
1)

k
(-2/

(171b) Cn (x) = k!(n-2k)! = Pn(x)

k=0



the Legendre polynomial of the first kind of order n.

Let

F(x, z) =

00

fn(x)zn

n=0
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with z a complex variable while x is real. Assume, initially,

that F(x, z) is analytic in a finite circular neighborhood about z = 0

for all valid values of the parameter x. Then,

00

x, z)zk-1 n-k-1
(172) F( fn(x)z

n=0

Integrate Eq. (172) along a simple closed contour C that incloses

z = 0 and is contained within the analytic neighborhood. The result

is,

00

fF(x, z)z-k-ldz = f dn(x)zn-k-1(173) z

n=0

00

= fn(x)
l(32

n=0

= 2Trifk(x)

by Cauchy's integral formula and Cauchy's theorem. Therefore,
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(174)
1

fn(x) 2ni

For Appell polynomials,

xz
e A(z) =

00

n=0

F(x, z)z -n- ldz.

an(x)zn .

If A(z) is analytic in a neighborhood about z = 0,

(175) an(x) = 21Tri e
xzA(z)z -n-ldz, n = 0, 1, 2, ... .

For Legendre polynomials

00

(1-2xz+z2)-1/ 2 P (x)zn.
n=0

The generating function is analytic in a neighborhood of z = 0 if

-1 < < 1. Then,

(176) (1-2xz+zPn(x) = 2T.
-1/ -n-11

2z dz, n = 0, 1, 2, ...

Formula (174) applies even if F(x, z) is expressed by a

Laurent series since Cauchy's theorem will force the additional terms

to give no contribution. If a generating function is given by a
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Laurent series, it may possess essential singularities about, or at,

z = 0 yet the generated set may still have an integral representation

given by Eq. (174). For example if

00
-

F(x, z) = e

n=_oo

it can be shown [6] that

nJn(x)z,

x 1(z- )

Jn(x) = 1

2Tri

2 zfe
z
-n-1 dz.

Another method, which is sometimes used to obtain a general

expression for the set {fn(x)} from F(x, t), is based on the tech-

nique of power series inversion. It is found [6] that if a power series

of the form

(177) w = f(z)

= wo

n=1

a (z-z
0

)n a1 / 0'

is given, the inverse function z = z(w) can be also obtained in a

power series with the form

(178a) Z = z0

CO

bn(w-wo)n

n=1



where
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1 do -1 (z-z0)n I

(178b) b -
n n! dzn-1 [f(z)-w0] lz=z0

Formula (178) is known as the Lagrange expansion.

This result can be applied to F(x, t), for if it is possible to

find a function y = G(t, x, y) such that

00

=
8x

F(x, t) = fn(x)tn,

n=0

it may be possible to apply the Lagrange expansion to y in powers

of t if the original function can be converted to the form

t = G1(x, y), a power series in y.

1For example, y = x +
2

t(y2 -1) gives

dy -= (1- 2xt+t 2 1/2
dx

the generating function of

oo

Pn(x)tn.

n=0

Then,



(179a)

with

(179b)

and

(179c)

2x 2yt - 1-y2 1-y2

= 2x

00

00

n=0

00

2n 2n+1
Y

an(x)yn

n=0

n evenan = 2x,

an = -2, n odd.

n=

Applying Eq. (178b) to Eq. (179), the result [6] is

00

(180a) y = x + bntn

n=1

with

(180b) b - 1 do -1
(x

2-1)n.
n 2n n -1

n!

So,
00

(181a) 121r- = 1 +
d

ax dxn

.) 1 t(x2 -1)ntn
J2 n!

n=1

00

= P
0
(x) + Pn(x)tn

n=1

= F(x, t).

64



65

Compare coefficients to obtain the result

(181b)

and

(181c)

P
0

(x) = 1

Pn(x) = 1 d
(x2 -1 )n, n = 1, 2, 3, ... ,

2nni dxn

the Rodrigues formula for {Pn(x)}.

Normally generated polynomial sets are not obtained from

F(x, t); they are initially determined as series solutions to ordinary

second-order differential equations about some ordinary or regular

singular point, usually zero.

Generating functions are sometimes useful in solving special

integral equations. Consider the following Fredholm equation,

(182) f(x) = K(x, t)(1)(t)dt.
a

f(x) and K(x, t) are known; c(t) is to be found. If

co

K(x, t) = F(x, t)w(t) = fn(t)xnw(t),

n=0

where {fn(t)} is an orthogonal polynomial set with a weight function

w(t) over the interval [a, b], the following statements can be

made, assuming, of course, that f(t) is continuous over [a, b]



and that appropriate interchanges of summation and integration are

allowable;

00

(183) f(x) = J fn(t)xnw(t)cI)(t)dt
a n=0

00

fn(t)w(t)(i)(t)dtxn .

n=0 a
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If If (t)} form a complete set over the interval [a, b], then for

any continuous function (I)(t) over [a, b],

(184)

00

4(t) = amfm(t).

m=0

Thus, if this further assumption is made,

(185) f(x)

00

an=0 m=0

00

fn(t)w(t) / amfm (t)dt xn

00 00

am
S fn (t)fm(t)w(t)dtxn
an=0 m=0

00 00

ambmnKnx

n=0 m=0

00

n=0

n
a nKnx.
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If f(x) has derivatives of all orders and a < 0 < b,

(186)

Therefore,

(r)
(0)a - f

r r!K

00

r

(187) cl)(t) =
f(m) (0)
m!Km fm (t).

m=0

The obvious disadvantages of this method are the specialization of the

kernel K(x, t) and the large number of restrictive conditions and

assumptions present. Very few integral equations are so tractable.

One such is

1

(188) f(x) = J (1-2xt+x2)-I/241(t)dt, -1 < x < 1.
-1

Here

00

K(x, t ) = (1 - 2xt+x 2 1/2
) Pn(t)xn.

n= 0

Using the procedure above leads to the result

00 e
m !
m)(0) 2m+1(189) (t) = Pm(t).

m=0

Other examples are given in [6].
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As usual assume

00

F(x, t) = / fn(x)tn
n=0

with the orthogonal set {fn(x)} possessing a weight function w(x)

over the x interval [a, la]. Then

oo

(190) F(x, t)fm(x)w(x) = fn(x)fm(x)w(x)tn.

n=0

If the left side is integrable over [a, b] and Property 2 of Appendix

B holds,

b
(191) Sb F(x,t)fm(x)w(x)dx =

a

So,

sa
fn(x)fm(x)w(x)tndx

n=0

00

= Sbfn(x)fm(x)w(x)dxtn

n=0 a

m= K t .m

b
-Km = t m F(x,t)fS* (x)w(x)clx, t / 0.

a
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V. OBSERVATIONS

This report has limited itself to techniques which, hopefully,

the applied mathematician can utilize when he comes in contact with

generating functions or series. For this reason theoretical discus-

sion has been kept to a minimum while topics of interest directed

mainly to the pure mathematician, such as the Sheffer classification

scheme, the group theoretic approach to special functions, or analy-

tic properties of polynomial expansions, have been neglected. Cer-

tainly a rigorous development of the generating function field is to be

encouraged and perhaps could be the subject of further research.

Yet, for the sake of limitation, a choice had to be made. Personal

prejudice dictated the selection of techniques instead of theory.

Lack of space prevented discussion of generating functions in

three or more variables. Several examples are given in Appendix

A. It certainly appears that an approach similar to the one taken in

the second chapter could be profitably employed in gaining useful

recurrence relations between the elements of the generated sets in-

volved.

Another subject little touched upon was the description of a

generated set as a complex-valued contour integral. Truesdell [9]

has developed some new contour formulas for expressions which

satisfy the F-equation. Another approach found in the literature [6]
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relies on forcing an integrand to satisfy certain auxiliary conditions

which the {f
n

(x)} fulfill. If the set is a solution of an ordinary dif-

ferential equation having a parameter n, the contour representa-

tion may be obtained by finding the explicit form of an unknown func-

tion, found in the integrand, which satisfies the equation. Such an

approach is in some ways analogous to taking transforms for real

variable differential equations.

As a final consideration, some generated sets can be expressed

in terms of generating functions containing other special functions.

Again, Truesdell [91 has obtained a systematic procedure to find such

relations. Although these results are of mostly academic interest,

they do reveal surprising dependencies. It would seem that other

such relations not covered by Truesdell's scheme could be investi-

gated.
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APPENDIX A

A List of Selected Generating Functions

(A legend showing the reference sources for the more obscure gener-

ating functions is given at the end of the list. )

Expression Generated Set

00

1. F(x, t) = bnfn(x)tn General generated set

n=0
{fn(x)}

00

1 xntn2. 1-xt

3. F(t) =

n=0

oo

4. (l+t)x =

00

oo

5. (1-t-t2)-1 = cl)ntn

n=0

Bessel Class

1 1 00x(t-- )
6. e

2 t 3n(x)tn

n=-oo

Geometric series

Taylor series coefficients

Binomial polynomials

Fibonacci numbers (J)

Bessel functions of the first
kind
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Expression Generated Set

2
x(t+1t )

00

n
7. = In(x)t

n=-00

00

8. cox x2-2xt =
1TX n!

1
i(x)tn Spherical Bessel functions

of the first kind

Modified Bessel functions
of the first kind

n=0

00/2 sin x +2xt =
1TX n!

1 (x)tn

n=0

Legendre Class

! (1-x )
2 m/2 m

(21-n )
9 _ Pm(x)tn Associated Legendre poly-

2
mm

! (1- 2xt+t2

t

)
n

n=0
nomials of the first kind

00

00

2 -1
10. (1-2xt+t ) 2 = Pn(x)tn

n=0

11. (1- 2xt+t2)2 cosh 1 t-x

Qn(x)tn

n=0

Laguerre Class

xt 00

4-7---x-1

12. (1-t) 1-a
e

1-t (a) nLn (x)t
n=0

Legendre polynomials of
the first kind

Associated Legendre poly-
nomials of the second kind

Associated Laguerre poly-
nomials of the first kind
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Expression Generated Set

xt

13. (1 -t )
-le 1 -t L(x)tn

00

Jacobi Class

14.

n=0

Laguerre polynomials of
the first kind

(x- 1 ), r (x-F 1) , .-; 1-1-ct; t - i+p, t Jacobi polynomials
2 0 1 2

00

1

P (a, 3) (x)t(14-a) (1+(3) n1
n=0 n n

2 -1
15. (1-2xt+t )

2 -a=
00

(1+2a)n
(a ,a)

(1+a)
Pn (x)tn Ultraspherical polynomials

n=0 n

00

16. (1-2xt+t 2
)
-v

= Cin'(x)tn

n=0

Hermite Class

17. e2xt-t2

00

n=0

oo
He

toxt t
18. e 2 = n!

n=0

Hn(x)
tn

n!

Tchebicheff Class

19. (1 -xt )(1- 2xt+t 2)-1
=

00

Tn(x)tn

n=0

Gegenbauer polynomials

Hermite polynomials
(common form)

Hermite polynomials
(alternative form)

Tchebicheff polynomials of
the first kind
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Expression Generated Set

00

20. (1-2xt+t2)-1 Un(x)tn

n=0

Boas and Buck Class

00

Tchebicheff polynomials
of the second kind

21. A(t)4[x1-1(t)] = > pn(x)tn Boas and Buck polynomials
(generalized Appell poly-

n=0 nomials)

Brenke Class

oo

22. A(t)qi(xt) = pn(x)tn Brenke polynomials

n=0

Appell Class

00

ext.A. ,(t) = an(x)tn Appell polynomials

n=0

00i
24.

ext
4.

t (i)(x)tn

(e
t -1) Q !

n=0

00
xt

25.
te

= 1 B (x)tn
et-1 n! n

n=0

00

26.
(1-a) ext 1 (R, a) (x)tn

t(1-ae)/ n!
n=0

Generalized Bernoulli
polynomials (E)

Bernoulli polynomials

Generalized Euler poly-
nomials (E)
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Expression Generated Set

text
27.

et+1

CO

1 n
n! n

n=0

00

28. extIo(t) =
n1

*
! n(x )t

n

n=0

Sheffer Class

29. exg(t)A(t) = pn(x)tn

n=0

30. fa(t)ext+k(t)

31. e-t (1+t)x=
a

32. ex(l+t-et)

33. eat+x(1-et)

co

oo

n=0

00

n=

co

-2
n 1

!

IIn
p

n
(x)tn

1

n g
n

(x)tn
!

n=0

00

n=0

00

1 (a) n
n! gn (x)t

34. (l+t)x(1-t)x = gn(x)tn

n=0

Euler polynomials

Reversed Rainville poly-
nomials (B)

Sheffer polynomials of
zero type

Generalized 4 polynomials
(E)

Poisson-Charlier poly-
nomials (E)

Mahler polynomials (E)

Toscano polynomials (E)

Mittag-Leffler polynomials
(E)
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Expression Generated Set

35.

36.

37.

38.

oo
tx(e -1)

= pn(x)tn

n=0

00

(1-3xt+t 3) -v hn(x)tn

n=0

xt

Touchard polynomials (E)

Humbert polynomials (E)

Sonine polynomials (E)

Koshliakov polynomials (E)

(1+0-m-lel+t

CO

(m+n+1 )Smn (x)tn

n=0

xt p+t 2t -12te ( e -1)p-t
oo

p) 1 n
+ con (x)n! t

p+1
n=1

00

39. (1-t)k-1(1-xt) 1=
g(tik)(x)tn CesS.ro polynomials (E)

n=0

CO

40. (1-t)-xext = (x)tn Sylvester polynomials (E)
n=0

41. (1_t2) Tl+) t x
e
-2xt

) = Tn(x)tn Tricomi polynomials (E)

n=0

00
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Expression Generated Set

42.

43.

e
-t x-1

co

= 1+ (x+1)/ Iin(x)tn+1

n=0

4xt

Stirling polynomials (E)

Pseudo-Laguerre poly-
nomials (R)

(1 )

(2'
2 (141...-4t) 2

(1-40 1+41-4ti e

co

= R
n

(a, x)tn

n=0

44. e
tIo (xt) =

00

1 R (x)tn! n
n=0

2xt
2

45. (1-t)-1 e
(1_t) I0[- 2xt

2]
oo

= Zn(x)tn

n=0

46. [1 -xm+ (x-t )mr v =

00

Rainville polynomials (B)

Bateman's Zn(x) poly-
(1-t) nomials (R)

n=0
mCn v(x)tn

1 1

47. (1- 2xt)-2[-2 + 2 (1- 2xt)2]2-a

X e-abx1[1-(1-2tx)2])
00

yn(x, a, b) n1
!

tn

n=0

ndDevisme 2 olynomials (E)

Generalized Bessel poly-
nomials (Krall and Frink)
(E)
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2i +2ixt
48. e

00

1
(-1 )tnn! n-1 ix

n=0

Simple Bessel polynomials
(Krall and Frink) (J)

1 4xt
49. (1-t) pFq[ar ...,ap;b1'...,bq, -2] Sister Celine polynomials

(1-0
00

=Y fn[al,...,ap;b
1
,...,b

q;
n=0

-1
50. (1-4t) 2(1.-- 2=)a-1

+ 4t'

4xt ,X F [a ; p ,..,p ; 2JP q 1 P 1 q (1+NrTt)
00

Sn(x)tn

n=0

Shively's first polynomials
(R)

t_rixt7 t+/4:t-Ft7
51.

0
F

1
[-, 1;

2 0
F

1 2
[-,1, ] Shively's second polynomials

(R)
00

1
cr

(x)tn
(2n)! n

n=0

52. e
t

1
F 1[1+x; 1; -t(1-e l`)]

00

n1
cl)

! n
(x; X )t

n=0

Gottlieb polynomials (R)
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53. 2F 1[a, P; a+P; 2xt-t 2]

oo

= Gn(a, 13; x)tn

n=0

2
P r54. (1- 2xt) F L, y _p; y; -
2 1 1-

t
2xt

oo

=
n

((3, y; x)tn

n=0

1 rl 1 1
1;

4t ,55. (1-t)
2
F

1
L--2-,+x; i; 21(1-t)

oo

= Fn(x)tn

n=0

-
2

1 1 4vt
56. (1-t) F

1
[p, =, ;p; ]

(1-t) 2

oo

= Hn(p; p, v )tn

n=0

57. (1-xt)a(1-yt)

00

58. (1-3xt+3yt
2-t3) v

gn(x, y)tn

n=0

co

HV(x, y)tn

n=0

Bedient's G (a, P; x) poly-
nomials (R )n

Bedient's Rn((3, y; x) poly-
nomials (R)

Bateman's Fn(x) polynomials
(R )

Rice polynomials (R)

Lagrange polynomials (E)

1stDevisme 1 polynomials (E)
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Expression Generated Set

2

59. (1-4t 2 )2exp[y 2
-
(y-2x2)] Hermite polynomials

1- 4t
oo

(common form) (E)

1

n! Hn(x)Hn(y)tn

n=0

60. (x1+yt)t Laguerre polynomials (E)(1_01-aexp[-

X 0F1 [ -; 1+a, xYt ]

(1-t)2

co

n! (a) (a) n
(1+a)

Ln (x)Ln (y)t

nn=0

Legend

B - [Boas and Buck, 3]

E - [Erdelyi, 4]

J - [Johnson and Johnson, 5]

R - [Rainville, 7]
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APPENDIX B

Properties of Uniformly Convergent Series of the
co

Form F(x, t) = fn(x)tn

n=0

co

F(x, t) = fn(x)til

n=0

82

with the continuous generating set {fn(x)}, n = 0, 1, 2, ... being de-

fined over the real closed interval [a, b]. Also, let t be defined

over the real closed interval [c, d]. The series is then said to con-

verge uniformly to F(x, t) with respect to x if given any

t1 E [c, d] and any El > 0, a an integer N , independent of
t1E1

x E [a, b], 3 I F(x, ti ) - Sk(x, ti )1 < El, whenever k > Nt where
1 1

Sk(x' t 1) = fn(x)tn,

n=0

the first k+1 terms of the series. A similar definition with ap-

propriate modifications in nomenclature describes the uniform con-

vergence of the series with respect to t to F (x, t) for a given

x
1

[a, b].

Several interesting properties of uniform convergence are
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given below for the series under consideration. These results are

utilized in discussions on the preceding pages.

Property 1. Uniform and separate convergence of x and t

in the series

oo

F(x, t) = fn(x)tn

n=0

implies joint uniform convergence of x and t.

Proof. From the definition of uniform convergence givenbefore,

given any E > 0 and any t E [C, d] , a an integer N, , in-
1 1 Il El

dependent of x E [a, b] 3IF(x,t 1) - Sk (x, t1) I < Ei, whenever
1

k
1

> N . Also, given any £2 > 0 and any x
1

E [a, b], a antlel
integer N , independent of t E [c, d], 3 IF(Xl, t) - Sk (Xi,t) I < £2,

X1E2
2

whenever k2 > Nxc2. Choose N = max {N, ,N } and
1 11E1 x1E2

£ = min {el' E 2}. For all k > N,

(B-1) F(x, t) - Sk(x, < E

independently of any x E [a.,13] or t E [C, d], which is the condition

of joint uniform convergence of x and t.

Property 2. If F(x, t) is integrable in x over a finite in-

terval [a, b], is integrable in t over a finite interval [c, cl],

and fn(x) is integrable over [a,13] for all n, then



(B-2)

and

(B-3)

.b
A. F(x,t)clx = J fn(x)dxtn

a an=0

B. F(x, t)dt =
a

oo

n
(x)f t

ld n
dt

n=0

Co

= f (x)()[d n+1 -cn+1
n n+1

n=0

Proof. For A: Since the series is assumed to be uniformly

convergent in x over [a, b], for a given e > 0 and a given

t1 E [c, d] a an integer N independent of x 3
1 t

1

(B-4) I F(x, ti) - Sk(x, ti )1 < E

for all k > Nte. Thus,
l

(B-5)

= I

b b

y F(x,

k

F(x,ti)dx_ sb fn(x)dxtrill
a a

n=0

F(x, )dx -
a a

f
n

(x)tndx I

n=0

84
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b
< S IF(x

'
t

1
) - S

k '
(x t

1
)1 dx

a

< £(b -a),

which can be made arbitrarily small, implying A.

The proof of B developes in a similar manner. It should be

noticed that to is integrable over any finite interval [c, d] for

all n > O.

Property 3. If each fn(x) is continuous on [a, b], then

F(x, t) is continuous in x on (a, b) for any t E [c, d]. F(x, t) is

continuous in t on (c, d) for any x E [a, b]. If fn(x) is con-

tinuous on [a, b] for each n, then F(x, t) is jointly continuous

over the interior of the domain [a < x < b, c < t < cl].

Proof. By definition of uniform convergence in x, a N 3
tl E t

1for all k > N and for x in (a, b),
tl Et

1

E t
1(B-6) IF(x,td - Sk(x,t1)1 < 7

Similarly, for xo E (a, b),

(B-7)



Since Sk(x, t
1)

is a finite sum for all x in the interval and thus

continuous at x0, a a

6t > 0 3 I Sk(x, t 1) - S
k(x0, t 1)1 < 7

for all x 3 I x -x0I < 6t. Then,

(B-8) IF(x, ti)-F(xo,ti)I

= I F(x, t1)-Sk(x, t1)+Sk(x, ti )-Sk(xo, t1)+Sk(xo, t1)-F(xo, t1 )

< I F(x, t 1)-S k(x, t 1
)1+ I Sk(x, t 1)-Sk (x0, t 1)1

+ ISk
(x , t

1
)-F(x

0 ,t 1)1

E E E
t

1
t

1
t

1
< + + = E

1

86

If x0 is chosen to be a or b the proof must be appropriately

modified, for I x- s I < 6 t only when x> a and I x-b I< St only
1 1

when x < b. Otherwise, the proof is the same and the results be-_

come

and

lim F(x, ) = F(a, ti)
x--a+

lim F(x, ) = F(b, ti).

The second statement is proved in the same manner, utilizing
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the fact that to is continuous for all n > 0. Finally, the last

statement is similarly proved after Property 1 is invoked for the last

step.

Property 4. If for x E [a, b] and t1 E [c, d],

converges,
aF(x, t1)

ax

Do

F(x, ti ) = / fn(x)ti
n=0

exists, each f '(x) is continuous, and
n

converges uniformly, then

(B-9)
aF(x, t1)

ax

oo

f
n
'(x)tn

1

n=0

oo

- fri(x)ti,

n = 0

a < x < b.

Similarly, if t E [c, d] and x
1

E [a, b],

oo

F (x1' t) = / fn(x
1

)tn

n=0

aF(x1, t)
converges, at

exists, and



00

nfn (x
1

)tn-1 =

n=1

converges uniformly, then

(B-10)
aF(xl, t)

at

00

n=0

00

n+1 )fn+1 (xl )tn

n=0

n+1 )fn+1(xl )t n, c < t < d .

Furthermore, the appropriate results hold for

a
kF(x, t1) a F (x1' t)

k and
k

i.e.,
ax at

If each f(k)(x) is continuous,

converges, and

a

k-

k-1F(x

1

, t
1

) k-1) nfn (x)ti
ax n=0

00

akF(x, tl)

ax

oo

(k ) n
fn (x)ti

n=0

converges uniformly in [a, b], then

(B-11)
a
kF(x, t )

00

1 (k) n
k = fn (x)t

1,
a < x < b.

ax n=0

exists,

88



is

Under the corresponding conditions for
akF(xl, t)

atk

89

, the result

co
a
kF(x t)

k
_ fn+k(xl )(n+1) ktn' c < t < d,

at n=0

where (n+ 1)k = (n+ 1) (n+2). . . (n+k), Pochhammer's symbol.

Proof. Let

aF(x, t1)

ax

CO

f (x)tn
n 1

n=0

Since the series is assumed to converge uniformly, Property 2 allows

it to be written as

(B-12)

00aF(x, ti)
ax

dx = ccf 1(x)dxt x E (a, b)
a a

n=0

By Property 3
aF(x, t1)

ax

co

n=0

fn(x)-fn(anti

oo

fn(x)tni - f
n

(a)tn
1

n=0 n=0

is continuous so that



(B-13) a
x aF(x, t 1)

dx - axax

aF(x, ti))'
a

oo

= / f
n
1(x)tn

1

n=0

90

The other statements are proved by the same method. For the

last sentence,

(B-14)
a
kF(x

1
, t) 00

a
ktn

at n -0

f
n

(x
1

)
k

n=0 at

co
(k) n-k

= f
n

(x
1)(n)

t

n=k

co

= / fn+k (xl )(n+1 ) ktn, c < t < d.

n=0

It should be noted that if
co

1 (k) n
fn(x)t

n=0

is uniformly convergent for all n and k, the requirement that

oo

f(k-1)(x)tn
n

n=0

converges can be dropped since uniform convergence implies con-

vergence. A similar result holds for the last step.
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APPENDIX C

A Uniqueness Theorem Linking Generating Functions
with Their Generated Sets

The following theorem is established to ensure that a one-to-

one correspondence exists between a given generating function,

F(x, t), and the set it generates, {f
n(x)},

when they satisfy the

hypotheses.

Uniqueness Theorem. Let

oo

F(x, t) = fn(x)tn

n=0

with the series uniformly convergent in the real intervals [a < x < b]

and [c < t < d] where c < 0 < d. Let the series

co/ f(k)n(x)(n) t
n-k

n=k

be uniformly convergent in the same x and t intervals for all

k = 1, 2, ... . Also, assume that the generated set {fn(x)} has

continuous derivatives of all orders in the x interval. Then, the

repre sentation
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oo

F(x, t) = fn(x)tn,

n=0

relating F(x, t) and {fn(x)}, is unique over [a, b] and [c, d].

Proof. Assume F(x, t) can be represented by two generated

sets, {fn(x)} and {gn(x)}, possessing the listed properties for

n = 0, 1, 2, ... . Then,

(C-1)

and

(C-2)

oo

F(x, t) = fn(x)tn

n=0

oo

F(x, t) = gn(x)tn.

n=0

Subtract (C-2) from (C-1). The result is

(C-3)

00 00

0 = fn(x)tn - gn(x)t

n=0 n=0

00

fn(x)-gn(x)]tn

n=0

co

= (1)n(x)tn,

n=0

n
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where cl:In(x) = fn(x) - gn(x) is continuously differentiable in all

orders, for fn(x) and gn(x) have these properties by hypothesis.

Take the kth partial derivative of (C-3) with respect to t. The

equation becomes

(C-4) a o
atk

0

a
k

atk

00

n=0

(x)tn]

00

a
ktn" atn=0

for the series is assumed to be uniformly convergent in all orders.

So,

(C-5)

00

0 = con(x)(n)(k)tn-k n > k.

n=k

Since t = 0 lies in the region of validity for t, evaluation there

gives

(C - 6)

CO

0 = c0n(x)(n)(k)( )n-k

n=k

= chc(x)k(k)

= cl)k(x)k! .



Now, k! > 0 because k is an integer and > 0. This fact im-

plies 4k(x) = 0 for all valid x and k. Consequently,

(C-7)

or

(C-8)

Assume that

fn(x) - gn(x) = 0,

fn(x) = gn(x), n = 0, 1, 2, ... .

oo

fn(x)tn

n=0

can be represented by two different generating functions, F1(x, t)

and F
2(x,

t), for all valid x and t; i. e. ,

(C-9)

co

fn(x)tn = F 1(x' t)

n=0
= F 2(x, t).

94

Then, (x, t) = F 2(x, t) identically, contradicting the previous

statement. Therefore, the generating function is uniquely determined

by the series.

It should be noted that the restrictions placed on the series and

generated sets by the hypotheses of the theorem are met by the vast

majority of sets considered,


