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Characterizing the optical properties of the ocean has traditionally

involved measuring daylight submarine light-field quantities, most

commonly plane irradiance and upwelling radiance, from which certain

apparent optical properties (AOP's) can be derived. As useful as these

measurements are, fundamental progress in optical oceanography also

requires the determination of inherent optical properties (lOP's). Comparison

of lOP's has also been problematic because, unlike radiometric measurements,

there are no agreed-upon methods or standards for the characterization and

calibration of TOP instruments. New instruments and methods, which

include theoretical advances in raditiave transfer theory, have been

developed for accurately measuring lOP's, specifically the absorption, beam

attenuation, and backward scattering coefficients, and the volume scattering

function (VSF) at and near 18O.

The fixed-angle backscattering-measurement approach is investigated for

the application of measuring b,. Several backscattering sensors were
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developed with different optical geometries, which are shown to be accurately

calibrated using a rigorous method that is partially traceable to an NIST

reflectance standard. A unique instrument was developed, called Beta P1, that

measures the VSF at and near 180 degrees and was modified to include a

novel variable pathlength transmissometer that is shown to make the

instrument completely self calibrating, yielding highly accurate lOP

measurements. Measurements in the Gulf of Mexico revealed that the VSF

increases by more than 50% from 179° to 180°. A sharp enhancement,

possibly due to coherent backscattering, was also observed at 180° with an

angular width of about 0.03°. Submerged source techniques were developed

and conducted as experiments for testing aspects of radiative transfer theory,

and are shown to be a useful and accurate means for characterizing the optical

properties of ocean water and ice. The irradiance attenuation due to an

isotropic light source was used to calculate the absorption coefficient from an

exact equation that is essentially Gershun's famous equation transformed to

spherical coordinates. A novel method for measuring the complete beam

spread function (BSF) of sea ice was developed, and measurements were

made of first- and multi-year ice off the shore of Barrow, Alaska. All of the

measured sea ice BSF's were drastically different than the BSF of ocean water,

and they strongly indicated that sea ice is a highly scattering medium, with a

single scattering albedo generally greater than 0.97. At pathlengths greater

than 30 cm, the BSF was found to be nearly identical to the computed

asymptotic radiance distribution.
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Optical Backscattering and Embedded Source Techniques for Characterizing
the Optical Properties of the Ocean

Chapter 1

1. INTRODUCTION

Optical oceanography, the study of how light interacts with the sea, has

advanced impressively in the past few decades. Theoretical oceanic optics has

probably achieved the greatest success. Since the publication of the first

correct explanation of the color of the sea by Shuleikin in 1923, the application

of radiative transfer theory to light propagation in the ocean has been

extremely successful. Indeed, the forward problem, namely that of computing

the radiance distribution given the inherent optical properties and boundary

conditions, is considered solved. A recent comparison of several numerical

models which solve the radiative transfer equation, showed that they all

agreed to within the numerical precision of the computations [Mobley et al.,

1993]. In essence, a form of closure has been achieved in oceanic numerical

radiative transfer theory. Inverse problems, however, remain problematic.

Experimental optical oceanography has certainly had its share of

successes too, although it has been mainly in the gathering of data on ocean

optical properties rather than on the careful testing of theoretical

developments. Preisendorfer, in his monumental treatise Hydrologic Optics

[1976], wrote:
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As anticipated above, the denouement of this problem still
stands at this late date in the history of the theory [of radiative
transfer], and awaits a definitive answer from those who are the
only ones who can definitively answer it: the experimenters.
Theoretical reasoning ... can be carried only so far. There
eventually comes a time in the construction of any physical
theory when all the theorizing must momentarily stop, and the
court of last appeal be faced: Nature herself.

Surprisingly, his statement is as true today as when it was written over 20

years ago. The theorizing and the development of ocean-optical models

continues at a rapid pace, with scant empirical data for guidance or

experimental testing of models.

Data gathering of ocean optical properties probably had its beginnings in

the nineteenth century when two independent investigators, the Italian

astronomer P. A. Secchi and the Russian naval officer 0. E. Kotsebu, began to

make what are now referred to as Secchi depth measurements. The discovery

of the photoelectric effect and the invention of the photocell, and later the

photodiode, in this century greatly advanced quantitative, observational

oceanic optics. These new electronic detectors made it possible to directly

measure submarine light-field quantities, such as irradiance and radiance.

The important extensions to radiometry developed by Gershun [19361

revealed how net vertical and scalar irradiances are related to the absorption

coefficient a and the diffuse attenuation coefficient K. Preisendorfer [19611

later made the distinction between inherent optical properties (TOP's), e.g. a,

and apparent optical properties (AOP's), e.g. K. These developments

represented important advances in connecting theory with observations.
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Advances in light source technology allowed instruments to be

constructed that could directly measure TOP's. Ideally, one would like to

measure, as a function of wavelength , the two fundamental TOP's a() and

the volume scattering function f3L, y), where i is the scattering angle. As

Nature would have it, these are the two most difficult lOP's to measure

directly. Undoubtably, the first directly measured lOP of ocean water was the

beam attenuation coefficient c. Although straightforward in concept, even

the measurement of c has its difficulties. To be sure, a wide variety of

instruments and methods have been devised for measuring TOP's, and

several are currently in routine use. But even to this day, the debate still

rages on the proper calibration of lOP instruments, and many of the

measurements reported in the literature have been called into question (a

good, though dated review on this issue, regarding the measurement of J3(v)

is given by Kullenberg [1974]). The measurement of radiometric quantities is,

however, quite the opposite, as optical standards and calibration methods

have been available for many years and are continually being improved.

Fundamental and urgent problems in optical oceanography are therefore

in the two related areas of, 1) developing accurate instruments and methods

for measuring ocean-optical properties, especially TOP's, and 2) conducting

experiments that appropriately test theoretical developments. Without

serious attention and advances in these two areas - given the rapid pace in

the development of ocean-optical models - optical oceanography is in

danger of flying too high on borrowed wings. It is the author's hope that this
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thesis makes a contribution to these fundamental and urgent problems in

optical oceanography. Chapters 2 and 3 primarly address the former area,

namely the development of instruments and methods for accurately

measuring lOP's, in this case the backward scattering coefficient and the

volume scattering function at and near 1800. The latter area, namely

conducting experiments that test theoretical developments in radiative

transfer theory, is the subject of chapters 4, 5, and 6.

Chapter 2, "Instruments and methods for measuring the backward-

scattering coefficient of ocean waters," presents a rigorous analysis of fixed-

angle backscattering sensors and suggests a method for their calibration to be

adopted as a standard which is partially traceable to an NIST optical standard.

It is shown that the backward scattering coefficient bb can be accurately

determined with a properly designed fixed-angle backscattering sensor. A

new multi-wavelength backscattering sensor was developed for this purpose

and is described and analyzed in detail. It was designed to be accurate and

robust, so that the routine measurement of be,, so important to ocean remote

sensing, is now possible.

Chapter 3, "In-situ characterization of optical backscatteririg and

attenuation for lidar applications," follows on the heels of bi-static optical

backscattering measurements to address the measurement of lOP's relevant to

ocean lidar, namely /3(179 to 180) and c. A unique instrument called Beta Pi,

developed specifically for measuring these two optical parameters, is

described and analyzed. It is shown that Beta Pi is the first and only in-water,
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self-calibrating instrument for measuring TOP's. Beta Pi thus performs highly

accurate measurements of $(179 to 180) and c. The concept of quasi-inherent

optical properties (QOP's) is discussed in the context of lidar measurements.

QOP's play the same role in lidar propagation models as lOP's do in radiative

transfer models. However, the concept of QOP's deserves wider attention

because, in general, any real lOP measurement actually yields a QOP. The

goal is to understand how closely a QOP, which depends on the instrument's

optical design, approximates the desired TOP.

Only a handful of investigators have pursued submerged source

techniques for characterizing the optical properties of the ocean, including sea

ice, and almost solely for the application of underwater imaging or lidar. It

has not been generally appreciated that submerged source techniques offer a

powerful means for characterizing the optical properties of the ocean and also

for experimentally testing radiative transfer theory. Chapter 4,

"Measurement of the spectral absorption coefficient in the ocean with an

isotropic source," presents a derivation of a more general form of Gershun's

famous equation [Gershun, 1936] that relates a, an lOP, to K, an AOP. It is

shown that Gershun's equation is actually an asymptotic limit, as the distance

from an isotroptic light source (ILS) goes to infinity, of the more general

result derived in this chapter. As with Gershun's equation, the ILS solution

can be solved for the absorption coefficient. The solution shows that the

absorption coefficient can be measured exactly, with no scattering correction,

from measurements of the scalar and plane irradiances due to an ILS.



Moreover, if measurements are made at two or more distances, no absolute

calibration is required. Like Beta Pi, the method is self calibrating and yields

accurate results with no modeling corrections.

Chapter 5, "The average cosine due to an isotropic light source in the

ocean," further advances the work in Chapter 4. The problem of a finite size

ILS is rigorously treated, and limiting values of the average cosine ir due to

an ILS are derived. The average cosine of the light field is fundamental to

connecting TOP's to AOP's. For a submerged ILS, as opposed to solar

illumination and plane-parallel geometry, simplifications result that allow

the absorption coefficient to be determined accurately from plane irradiance

measurements alone. The relatively controlled experimental conditions with

the submerged ILS technique provides one of the most accurate optical-

oceanographic setups for accurately testing aspects of radiative transfer theory.

For example, in Chapter 5, the computations of a point source Monte Carlo

model are compared with measured radiance distributions due to an ILS in

the ocean. Such a comparison of a computer model with experimental data

has never before been published.

Sea ice, which is, after all, ocean water in its frozen state, deserves

attention in oceanic optics. It is important to understand solar propagation

through sea ice to better model ice thermodynamics and primary production

beneath and even within the ice. However, sea ice is a radically different

optical medium than water and offers new challenges for experimentation

and optical modeling. Chapter 6, "Theory and measurements of the complete
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beam spread function of sea ice," describes a novel technique for measuring

the complete beam spread function (BSF) within ice. Because sea ice is a

highly scattering medium, it is shown that the measured BSF can be used to

test predictions of asymptotic radiative transfer theory and photon diffusion

theory. Connecting these two theories results in new relationships that,

along with the BSF measurements, provide a nearly complete

characterization of the optical properties of sea ice needed for light

propagation modeling.



Chapter 2

INSTRUMENTS AND METHODS FOR MEASURING THE BACKWARD-

SCATTERING COEFFICIENT OF OCEAN WATERS.

Robert A. Maffione and David R. Dana

1996, Applied Optics ,(to be submitted).



2.1 ABSTRACT

The backward-scattering coefficient, bb, is an important optical property

that plays a central role in studies of ocean-color remote sensing, suspended

particle distributions, water clarity, and underwater visibility. In contrast to

other ocean-optical properties, surprisingly little attention has been given to

measuring bb, although modeling it has been a focus of considerable research.

Fixed-angle optical backscattering sensors were previously developed for

application to ocean lidar and were calibrated to provide measurements of the

volume scattering function (VSF) at a single backscattering angle. The fixed-

angle backscattering-measurement approach is investigated for the

application of measuring b. Analysis shows that the sensor response to

volume scattering can be expressed as the integral of the VSF over the

backward angles (90° to 180°) weighted by the sensor response function. A

procedure is described for determining the sensor response function and it is

shown that this function contains all the information necessary to fully

calibrate the sensor to measure the VSF at a nominal backscattering angle.

The backscattering angle, which can be computed using the sensor response

function, is shown to depend mainly on the optical geometry of the sensor,

but also weakly on the attenuation coefficient of the water. Building on the

work of Oishi, it is found that, for fixed-angle backscattering sensors, bb is

probably most accurately estimated when the sensor response function covers

the range of scattering angles from roughly 110° to 160°. In other words,

instead of measuring the VSF at a discrete angle, the most accurate estimate of
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bb is obtained by measuring backscattering over the middle range of

backscattering angles, where the shape of the VSF has the least variability.

Analysis of published VSF's and the work of Oishi strongly suggest that

measurements of the VSF at and near the extreme angles, that is 90° and

180°, will result in the largest errors in estimating b,. Until more definitive

empirical data on the shape of the VSF in the backward hemisphere are

available, b, is best estimated by 1.1x2r/3(110°-160°), where 13(110°_-160°)

denotes the calibrated measurement of the VSF using the procedure given

here, and the sensor response function covers the scattering-angle range of

roughly 110 160. The integral mean value theorem shows that, for the

sensor optical geometries used in the present work, a discrete VSF

measurement is obtained near the peak of the sensor response function,

typically 135° to 145°, although the discrete scattering angle also depends

weakly on the shape of the VSF.

2.2 INTRODUCTION

The backward scattering coefficient, bh, is of fundamental importance to

ocean-color remote sensing. Although spectral absorption by ocean water

modifies the spectrum of the submarine light field, it is spectral

backscattering, predominantly by suspended particles, that provides the

remotely-sensed optical signal. The measured intensity of the light

backscattered by the ocean, which is used to infer the concentration of ocean

water constituents such as phytoplankton, is virtually useless without

knowledge of bk,. Historically, a great deal of attention has been devoted to
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developing instruments and methods for determining spectral absorption of

ocean water and its individual constituents (see Pegau et aL, 1995, for a review

of the many methods available). Ironically however, there has been a

surprising lack of attention to directly measuring the backward scattering

coefficient, particularly spectrally.

This paper describes instruments and methods for directly and routinely

measuring backward light scattering by ocean water, These instruments and

methods were developed over many years at SRI International, and this work

is now continuing at Sequoia Scientific, Inc., by the authors. A unique

calibration method, presented here, is used to convert the optical

backscattering signal to a measurement of the volume scattering function

(VSF) at a nominal angle between about 135° and 145°. The particular

backscattering angle depends on the optical geometry of the instrument and,

to a much lesser degree, the shape of the VSF in the backward hemisphere.

Multiplying this measured VSF by a suitable conversion factor then converts

the VSF to b. The shape of the VSF in the backward hemisphere, generally

known from previous measurements by others {Petzold, 1972; Ku/len berg,

1974], greatly constrains the values of the conversion factor so that the use of a

constant value results in a likely standard error in 1',, of approximately 10%. A

previously published analysis by Oishi [1990] showed that the maximum

likely error is about 17% of the estimated value of bb using this method.

Regardless of any error in the conversion to bb, the measurement of the VSF

at a nominal backward angle is shown to be highly accurate and is partially
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traceable to an NIST standard. It is therefore recommended that the

calibration method presented here be adopted as a standard protocol for

measuring the VSF in the backward hemisphere, which should greatly aid in

the comparison and interpretation of world-wide measurements.

2.3 BACKGROUND

2.3.1 History

Højerslev [1994] credits Pettersson [19341 with constructing the first in-

situ optical backscattering sensor. Pettersson's instrument used an

incandescent light bulb and two large-area photocells. The sensor did not

incorporate spectral filters and was not calibrated to provide measurements in

units of an optical property, such as the VSF at a nominal angle or bb. But

given the technology of the time, Pettersson's instrument was impressive and

marks a milestone in the development of ocean-optical backscattering

sensors.

General-angle scattering meters, sometimes referred to as

nephelometers, began to be developed in the late 1950's and early 1960's for

in-situ work. To the authors' knowledge, the first published paper on a

submersible general-angle scattering meter was by Tyler and Richardson

[1958]. Their instrument covered the angular range from 20° to 170° and was

calibrated to give measurements in units of the VSF (m' Sf1). In theory, a

properly calibrated general-angle scattering meter is the most accurate way for

determining bb since it measures the VSF over a range of backscattering
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angles. However, this type of instrument is notoriously difficult to calibrate

accurately and is cumbersome and time-consuming to deploy. Kuflenberg

[1972] reviews the various submersible general-angle scattering meters and

discusses some of the problems with their calibrations. The present work is

concerned with fixed-angle optical-backscattering sensors and their calibration

for determining the VSF at a nominal backscattering angle, as well as the

backward scattering coefficient, spectrally.

The first fixed-angle backscattering sensors, designed and calibrated for

measuring the VSF of ocean water, were developed at SRI International in

the early 1980's [Moore et al., 19841 under an Advanced Research Projects

Agency (then DARPA) funded program called LIDEX, for LIght Detection

EXperiment. These sensors used infrared light-emitting diodes (LED's) and

high-frequency phase-synchronous photodetection. The major advantages in

using an LED as the light source is its relatively low power consumption and

ability to be modulated electronically at rapid rates. The drawback at that time

was that only IR LED's were available that were bright enough for the

application of measuring backscattering by ocean water. The original SRI

backscattering sensors used visible-blocking filters and measured

backscattering over the spectral bandwidth of the LED, centered at 880 n m.

Figure 2.1 shows a schematic layout of this sensor.
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Figure 2.1 Schematic layout of the first optical backscattering sensor
developed at SRI International in the early 1980's under an ARPA (then
DARPA) program called LIDEX.

The absolute calibration was based on the sensor's response to a

reflectance standard. This method involved measuring the response of the

sensor to a Lambertian target as a function of range from the sensor. The

resulting calibrated measurement provided an estimate of the VSF (m1 sr') at

a nominal backscattering angle [Moore et al., 1984]. A later, more thorough

analysis of this calibration scheme showed that, for the original SRI sensor

geometry, the backscattering angle was nominally 150 [Maffione et al., 19911.

The analysis by Maffione et al. improved the accuracy of the calibration by

taking into account geometrical factors that had previously been neglected.

It is possible to use other types of light sources at the expense of some of

the advantages of LED's. In the late 1980's, the Johns Hopkins University
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Applied Physics Laboratory (APL) developed a backscattering sensor using a

bright incandescent lamp [Smart et al., 1991]. The APL sensors incorporated

spectral absorption filters centered at 490 nm and 532 nm., giving these

sensors the distinction of being the first visible-wavelength, fixed-angle

backscattering sensors. The optical geometry was designed to yield a

measurement of the VSF at a centroid angle of 1700, which is desirable for

lidar applications (although 170° is undesirable for estimating the backward

scattering coefficient). APL used the same calibration method originally

developed at SRI for the JR backscattering sensor, which did not take into

account the attenuation of the water at visible wavelengths. As shown below,

the variability in the attenution of ocean waters at visible wavelengths

requires an attenuation correction to backscatteririg measurements at these

wavelengths. This correction becomes more severe at larger backscattering

angles, such as 170, and as the attenuation of the water increases.

The next advance came in 1991 when the authors redesigned the optics

and electronics of the SRI sensor to take advantage of visible-wavelength

LED's. Figure 2.2 shows a schematic of this sensor, illustrating its more

narrow optical geometry which resulted in a measurement of the VSF at a

nominal angle of 135°. The lower backscattering angle was desired in order to

more accurately estimate bb from a single-angle VSF measurement (explained

in detail below). The newly modified sensors were first deployed during the

ONR ocean-optical closure experiment at Lake Fend Oreille, Idaho, in the

spring of 1992. Only one visible wavelength, centered at 565 nm, was used in
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the newly modified sensors because sufficiently bright LED's were not yet

available at other visible wavelengths. When bright LED's at a variety of

visible wavelengths became available, the authors developed a five-

wavelength backscattering sensor which was incorporated into a remotely-

operated vehicle [Maffione et al,, 1995]. This multi-wavelength sensor,

dubbed The Slab, incorporated the same optical and electrical design as the

single-wavelength visible sensor.

Recently, the authors completely redesigned both the optics and

electronics of the 135' sensor, developing a compact four-wavelength

backscattering sensor that could easily be used in a variety of ocean-deployable

configurations. The new sensor, called the BB-4, incorporates a unique

Input Bidirectional serial
power communications line

t

______

Spectral filter

Photodetector

H-FOV
Pressu!$

Voltage
ference

4OO
regulator

LED

Figure 2.2 The second generation backscattering sensor developed at SRI in
1991. The major improvement was better collimating optics for application
in the visible part of the spectrum.
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electro-optical scheme that effectively cancels any ambient light signal. Thus,

maximum signal gain can be used, even near the surface in bright sunlight.

Narrow-band interference filters, appropriately matched within the broader

spectral bands of the LED's, are used in the receiving optics to select the

measurement wavelengths. It is shown below that the BB-4 measures the

VSF at a nominal angle of 140'. A six-wavelength backscattering sensor,

similar to the BB-4, called the Bscat-6, is currently being developed.

2.3.2 Notation and Definitions

The angular distribution of scattering by a small volume is described by

the volume scattering function, f3( yr), defined as the second partial derivative

of the scattered flux, ci', with respect to solid angle £2 and scattering volume V,

normalized by the incident, collimated irradiance E, viz,

V

EdQdV'
(2.1)

where i is the polar scattering angle with respect to the collimation axis of

the incident irradiance. Although not shown explicitly, /3(i) is a function of

wavelength )i. In the ocean, /3( iy) also varies with time and space but is

usually denoted as a function of only the depth z.

Two useful optical properties can be derived from J3(iy): the total

scattering coefficient b and the backward scattering coefficent bb. They are

respectively defined by



and

LI!'

b = JJui(vi)dQ

4ir (2.2)

= 22r$(,)sinV1d,

= 22r5P(t)sinFdf. (23)

This latter optical property, bb, finds its widest application in ocean remote

sensing because it can be related in a simple, though approximate way to the

amount of light that is backscattered, thus providing the light emerging from

the sea. To first order, the irradiance reflectance and the remotely sensed

reflectance of the oceans are directly proportional to bb [Gordon et al., 1988].

Another useful optical property is the volume absorption coefficient a. It

too is a function of wavelength, space, and time. There are many methods in

use for measuring a, or at least an approximation to it (for a review of these

methods, see Pegau et al., 1995). The sum of a and b gives c, the beam

attenuation coefficient. Transmissometers, which directly measure beam

attenuation, have been in routine use for many years.

As mentioned earlier, the backscattering measurement requires a

correction due to the attenution of the beam over the total water pathlength

from the source to the scattering volume and then to the receiver. Ideally

then, it is desirable to measure the attenuation coefficient using a

transmissometer with an optical design that matches the backscattering

sensor. It will be shown, however, that the attenuation correction is

insensitive to changes in beam optics, at least for the backscattering sensors
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developed by the authors, because the total pathlength is so short. Therefore

the attenuation correction can be accurately performed with measurements

from any type of transmissometer provided the wavelengths are properly

matched.

2.4 GENERAL ANALYSIS OF BACKSCATTERING SENSORS

A general analysis of a generic optical-backscattering sensor is developed

here with two contraints: the faceplate of the sensor is assumed to be flat and

the optical geometry is fixed in other words, it is a fixed-angle sensor. The

term "backscattering" implies that the sensor measures light scattered

through angles greater than 90°, i.e., the backward hemisphere. It is, of

course, possible to construct a backscattering sensor with a faceplate that is not

flat; for example it could be concave, such as in the design of some free-angle

nephelometers [Jerlov, 1976]. To the authors' knowledge, no fixed-angle

backscattering sensors have been built that do not have a flat faceplate.

Nonetheless, the analysis presented here can easily be extended to include

non-flat faceplate designs should such sensors ever be built. Calibrating such

sensors, using the method described in this paper, could be quite complicated

however. Unless there is a compelling need for a non-flat faceplate, it is

highly recommended that furture backscattering sensor designs incorporate a

flat faceplate to allow for their accurate calibration.
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Figure 2.3 shows a schematic of the general optical geometry for a

backscattering sensor. The fixed geometrical parameters, which define the

optical design of the sensor, are

H = distance between optical axes of source and detector;

Os = in-water (i.e., refracted) angle of source optical axis;

0Od = in-water angle of detector optical axis;

= full-width half-maximum (FWHM) divergence angle of source;

ad FWHM field-of-view (FOV) of detector.

Distinct from the fixed parameters are the geometrical variables, defined li'

i:i

ad
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I
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Figure 2.3 Optical geometry for a generic fixed-angle backscattering sensor.
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Figure 2.3 as

z = linear distance perpendicular to faceplate;

rq = water-path distance from source to infinitesimal scattering volume;

water-path distance from scattering volume to detector;

0, = centerline angle of that portion of the source beam which illuminates

the scattering volume dV;

= centerline angle of that portion of the detector FOV which subtends

the intersecting scattering volume dv;

1/I = scattering angle.

Note that the latter five variables can all be considered dependent variables of

z. The dependent variable functions are all simple geometrical relationships

involving the fixed parameters.

In general, the source beam will have a finite area where it enters the

water at the pressure window, not shown in Figure 2.3. Likewise, the detector

FOV has a finite area of acceptance at the water side of the window. These are

omitted for simplicity and clarity in the presentation of the analysis but are

easily taken into account by moving the origin of z, the axis perpendicular to

the faceplate, further to the right in Figure 2.3. Simple trigonometry can then

be used to correct the optical pathlengths r, and rd. If the areas are relatively

small, it is an excellent approximation to simply assume that the source and

detector cones converge to a point at the window in the manner illustrated in

Figure 2.3.
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The scattering volume, dV zSA dz/cos 0,, is defined by the intersection of

the source beam and FOV of the detector, and is a function of the distance z.

This is illustrated by the darker shaded region in Figure 2.3. M(z) is the area

perpendicular to the z axis subtended by dV at the detector. Also note that the

pathlengths r, and Td intersect at the center of dv, so that the angles that r, and

rd make with the optical axis are likewise a function of z. At a certain

distance, denoted by, say Z,d, the lines r, and ra will coincide with the source

beam and detector optical axes, respectively. The scattering angle at Zd,

denoted is not, however, the scattering angle at the peak response of the

sensor, nor is it the centroid scattering angle. This will be made clear below.

Let 'Z denote the radiant flwc emitted into the water by the source beam.

If A (z) is the total area illuminated by the beam perpendicular to the z axis,

then the flux 4Pdv(z) incident on dV is

41dv(z) = I0exp(-cr)iA(z)/A(z).

The irradiance E incident on dV is therefore

E(z)
4A(z)

=
ci's exp(_c )/A(z).

By the definition of the VSF, Eq. 2.1, the flux scattered into the solid angle iQ,

which is determined by the FOV of the detector, is given by

= f3(W)E(z)4Q(z)zV(z)

= $(9')[ exp(-c i ) /A(z)}[zlA(z) cos 0d/12 1[M(z)dz/cos 0,] (2.4)

fl() ' (cos0d/cos 0, ){exp(-c i) /r I{AA2 (z)/A(z)}dz,
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where infinitesimal dependent variables are replaced by their corresponding

real, finite quantities. In the second line of Eq. 2.4, the last two bracketed

quantities are zQ(z) and V(z), respectively, as obtained from the geometry.

The expression for 4Q(z) assumes no vignetting at the detector, which is

always true for the small optical pathlengths involved with the types of

backscattering sensors considered here. The scattered flux arriving at the

detector's pressure window is then

= L1/.r,z)exp(_crd)

= $(4')o (cosod/coseS){exp{_c(rS + rd)] /rfl[ziA2(z)/A(z)]dz (2.5)

= J3(v)t0 W(z;c)dz,

where

W(z; c) (cos Od/cos o){exp[_c (ç + r)J /rd2} [2 (z)/A(z)1 (2.6)

is defined as the sensor-response weighting function to scattering. The

dependence of W(z; c) on the parameter c is explicitly denoted to distinguish

the weighting functions that result from waters with different attenuation

coefficients. It should be noted that c is not the "true" beam attenuation

coefficient, but here represents the attenuation coefficient for the

backscattering sensor's source beam. As shown below, W(z; c) is a relatively

weak function of c so that even rough measurements of c are adequate for an

accurate attenuation correction which depends on W(z; c).

Integration of Eq. 2.5 over all z from 0 to gives the total flux scattered

into AQ(z) arriving at the detector window. The response of the detector will

be proportional to this flux, as well as to an electronic gain factor. For
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calibration purposes, the detection electronics are usually designed to

incorporate variable gain settings. Let the gain-factor setting for the detection

of volume scattering be denoted g. This gain factor can be thought of as

incorporating all electronic and optical conversion factors such as detector

efficiencies and losses through the optical train. Then the detection signal,

denoted , is given by

= g f/3(iy)W(z;c)dz
(2.7)

= Pog f3(I*)fw(z;c)dz

The last step is justified by the integral mean value theorem, i.e., i( takes

whatever value, within the limits of integration, that gives the equality in

Eq. 2.7. As mentioned above, the scattering angle v is implicitly a function of

z. The value of depends both on W(z; c) and the shape of the VSF.

However, as will be shown, is determined primarily by W(z; c). The units

of I are not relevant because the calibration, described below, involves a

ratio of two measurements that cancels radiometric units. In other words, g,5

does not need to incorporate a quantum-electronic conversion factor to

convert the electronic signal to absolute radiornetric units, such as watts.

The calibration method involves measuring the in-water response of the

sensor to a Lambertian target as a function of z. Figure 2.4 illustrates the

geometry with a Lambertian target at a distance z. The response of the sensor

is similar to Eq. 2.6, but the volume scattering function is replaced by a surface

scattering function, p/2r, where p is the diffuse reflectivity of the Lambertian
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target. Because the target is Lambertian, the surface scattering function is

independent of scattering angle. Similar to the derivation for the response of

the sensor to volume scattering, the surface scattering response, denoted

ztcP,, (z), to a Lambertian target at a distance z is found to be

4I (z) = g (p/ir) cos2 O. {exp[_c, ( + r)] /r }[A2(z)/A(z)}
(2.8)

= g (p/ir)(cos&, cosed)W(z;cW)

In this case the beam attenuation coefficient is denoted c to distinguish

it from c in Eq. 2.7, which is the attenuation coefficient of the (ocean) water
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Figure 2.4 Optical geometry for analyzing the sensor response to a
Lambertian target.



whose backscattering is being measured. z(z) is assumed to be measured in

clear filtered water so that the target surface scattering greatly dominates the

water volume scattering. The important difference between Eqs. 2.8 and 2.5 is

the cosine factors. The cos 9 factor is missing in the denominator of Eq. 2.8

because there is no dV since Eq. 2.8 deals with surface scattering.

The additional COS&d factor arises because the intensity of the scattered light

from a plane Lambertian source varies as the cosine of the angle from the

surface-normal direction. It is important to distinguish this from the

radiance emitted by a Lambertian source, which is constant with direction.

Multiplying Eq. 2.8 through by dz/cosO cosO and integrating yields

' =f
L(z)

dz
p

(2.9)

= 0g(p/r) fw(z;c)dz

Taking the ratio of Eqs. 2.7 and 2.9, and solving for I(v,*) gives

/3(i) =
g

f:W(z;cw)

g0 5°°w(z;c) (2.10)

=

where

and

(2.11)
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c(c,c,)
fw(z;c,)

= (2.12)
f°W(z;c)

Thus the direct backscattering measurement, , is converted to $(() by

normalizing by the electronic gain factor gp - which is set at the time of

the measurement and multiplying by the calibration constant u and the

attenuation correction factor o(c, cm). Since Eq. 2.10 involves the ratio of the

two gain factors, g and g,,, they only need to be known relative to each other.

In other words, it is not necessary to know the various electronic and optical

conversion factors implicitly incorporated into gp and g. This scheme

greatly improves the accuracy in the measurement of /3(v) over other

calibration methods which require absolute values of various difficult-to-

determine calibration factors.

The constant calibration factor i is determined by measuring the

response of the sensor, usually in a laboratory tank containing filtered water,

to a Lambertian target as a function of range z. This measurement yields

as given by Eq. 2.8. Integration of (z)/cosO cos9 then gives as

in Eq. 2.9. The cosine factors cosOScosOd, needed in the integration of

can easily be computed from the geometry in Figure 2.4. SpectralonTM is

recommended as the Lambertian target because its reflectivity is known to

high accuracy and does not change in water when its. surface is properly

wetted.



The weighting function W(z;c,) is fundamental to the characterization

and calibration of backscattering sensors. In theory, W(z;ç) could be

calculated from first principles, but this would be extremely cumbersome

because accurate analytic expressions are required for the cross-sectional

profile of the beam and detector FOV. A better, and almost certainly more

accurate way to determine W(z;c) is to measure it in some fashion. This is

essentially done through the measurement of L1(z). Dividing Eq. 2.8

through by cos 6, cos6d exp{c (r. + i, )]/r gives

Act (z){if exp[ç, (r, + rd)J/cos 0, cos = k [LL42 (z)/A(z)j
(213)

kG(z),

where k t' g (p/ir) is a constant and

G(z) ziA2(z)/A(z) (2.14)

is strictly a function of the optical geometry of the sensor. Like cos0, cos0,

the factor expç (i + can easily be calculated from the geometry in

Figure 2.4, given (or assuming) c of the water in which 4(z) is measured is

known. The constant k does not need to be known because only the relative

shape of W(z;c) is needed. For example, the computation of a(c,crn), given

by Eq. 2.12, involves the ratio of W(z; c,,) and W(z;c), thus cancelling k. Once

G(z) is computed using Eq. 2.13, W(z;c) can be computed for any value of c.
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2.5 DESCRIPTION AND ANALYSIS OF PARTICULAR
BACKSCATTERING SENSORS

2.5.1 Optical Design of the BB-4

As previously noted, the fixed-angle backscattering sensors originally

developed at SRI went through several developmental stages. The basic

geometry of the first SRI sensor, developed on the LIDEX program, is shown

in Figure 2.1. The next generation of backscattering sensors, developed in

1991 by the authors, was designed to operate in the visible region of the

spectrum and to measure backscattering for the purpose of estimating bb. A

schematic of this sensor is shown in Figure 2.2.

The basic optical design of the third generation backscattering sensor, the

BB-4, is shown in Figure 2.5. One new feature is the collimating optics for the

LED. Although LED's are designed to emit semi-collimated light, the

collimation is typically much broader than the manufacturer's specifications,

and the cross-section of the beam is highly non-uniform. The simpliest

correction is to place a pinhole in front of the LED at the focal plane of a

collimating lens. This solution, however, greatly reduces beam throughput.

A standard technique to increase throughput is to first collect the light with a

condenser lens which creates a real image of the LED at the focal plane of a

second, collimating lens. If the LED is placed behind the focal plane of the

condenser lens, the real image of the LED will be smaller than its actual

extent. A pinhole could then be placed at the location of the real image,
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Figure 2.5 Schematic of the backscattering-sensor optics of the BB-4.

resulting in greater throughput as compared with placing a pinhole directly

in front of the source.

OpticaTM, a ray tracing program that runs under MathematicaTt, was

used for the initial development of the optical design of the BB-4. Studies

using OpticaTl suggested that better stability and beam uniformity could be

achieved by placing the field stop for the source behind the focal plane of the

collimating lens. There are two reasons for this. First, a larger aperture can be

used, reducing any output variations in the beam due to mechanical flexing.

Second, LED's have highly irregular intrinsic collimation, and it turns out

that a field stop behind the focal plane of the collimating lens better stops
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aberrant rays. The precise optimal position for, and diameter of the field stop

was then found through trial and error with the actual optical components

and turned out to be in close agreement with the ray tracing results.

2.5.2 Calibration Analysis

2.5.2.1 Authors' Backscattering Sensors

The in-water response of the backscattering sensors to a Lambertian

target was measured using a motor-drive system which moves the target in a

continuous fashion and digitally records its distance, simultaneous with the

backscattering measurement, with an optical encoder. The tank water was

filtered with a series of filters from 2 im down to 0.2 J.im pore diameter.

From the measured response function M(z), expressed by Eq. 2.8, the

corresponding weighting function, W(z; ç,) as given by Eq. 2.6, was computed

using the method described above.

Examples of W(z;c,) for all three generations of backscattering sensors

are shown in Figure 2.6. The curves in this figure clearly illustrate the

evolution in the optical design of the backscattering sensors. For example, the

first generation sensor used no collimating optics and thus has the broad

weighting function shown in Figure 2.6. The second generation sensor,

which incorporates crude collimating optics, has a more narrow weighting

function. Finally, the third generation sensor, the BB-4, which is designed

with more-highly collimating optics, yields the most narrow weighting

function.
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Figure 2.6 Weighting functions of three backscattering sensors with
different optical geometries. The most narrow curve (solid line), from the
BB-4, illustrates the result of highly collimating optics.

Recall Eq. 2.7, which shows that the detected scattered light is given by

the integral of
/3(v')

weighted by W(z;c). A perfect sensor with infinitesimal

divergence angles would yield a delta function for W(z; c), in which case /3(ty)

would be picked out at a discrete scattering angle given by the complement of

the crossing angle of the (perfect) beam and receiver FOV. All real sensors

must yield a W(z;c) with a finite width, although the higher the collimation

of the sensor optics, the smaller the width of W(z;c), as shown above. In this

case, the value of j3(í) that results from the calibrated measurement will
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depend on the shapes of both W(z;c) and j3(i) over the limits of integration,

as required by the integral mean value theorem. Sensor-response weighting

functions tend to look like skewed bell curves, as shown in Figure 2.6,

whereas the shape of $() in the backward hemisphere is generally a very

gradual "U" shape, with a minimum somewhere between 100° and 140°. It

should be expected then, that the value of f3(i), or f3(y), that is picked out

will tend to be near = Zpeak)1 where Zpeak is the distance z at which the peak

of W(z;c) occurs.

Figure 2.7 illustrates these comments with a 13B-4 weighting function

and a scattering phase function created by averaging the VSF measurements

reported by Petzold [1972], which is probably indicative of the shapes of most,

if not all, real ocean-water phase functions. The phase function shown in

Figure 2.7 was normalized by bb, not b, so that its solid angle integration from

90 to 180 is unity. Both W(z; c) and /3(v') are plotted as functions of y over the

range z from about 1 to 10 cm (as shown in Figure 2.6, there is no sensor

response below 1 cm or above 10 cm). Clearly, the multiplication of these two

functions will yield a curve that still looks very much like W(z;c), so that the

value of is almost entirely determined by W(z;c). Figure 2.8 shows

which looks almost exactly like W(z;c) in Figure 2.7. It is

therefore an excellent approximation to assume that is given by V =

where
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Figure 2.7 W(z;c) for the BB-4 and Petzold averge phase function plotted as
a function of the scattering angle

$ zW(z;c)dz
z' (2.15)

$w(z;c)dz

is defined as the centroid of W(z;c). If W(z;c) is a symmetric function (such as

a Gaussian), then z = Zpe For the BB-4 weighting function, f = 4.21 cm and

Zpeak = 4.30 cm. These correspond to scattering angles r(Z*) 1412° and

V1peai.z) 142.00. Numerically computing by finding that value of iy for

which



35

1014vz)lwc)
(2.16)

f°w(z;c)dz
0

gave iy = 141.3 when the Petzold average phase function was used. This

value differs insignificantly from ty(z*), demonstrating that Eq. 2.15, which is

independent of f3(r), is an excellent way of computing V. It is

recommended that ( be computed in this manner for all backscattering

sensors and reported along with their backscattering measurements.

There remains the question of the dependence of W(z;c) on the
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Figure 2.8 W[it(z);c}/3[iy(z)] as computed from the two curves in
Figure 2,7.



parameter c, which could in turn affect z or since they are implicit

functions of c by virtue of Eqs. 2.15 and 2.16, respectively. W(z;c) given by Eq.

2.6 can be expressed in the form

W(z;c) exp[c(t + rd)}
1G(z)cosO 1

L,cosO, j

where G(z) is given by Eq. 2.14. The dependence of W(z;c) on c is therefore

seen to be only a function of the factor exp(_cr) = exp(r), where r t + i, and

r Cr. For the BB-4, r ranges from about 4 to 15 cm in the non-zero region of

W(z;c). If c is on the order of, for example, 0.1 m1, then r ranges from 0.004 to

0.015, and exp(r) changes in an approximate linear fashion from about 1.00

to 0.98. If c is on the order of 1 m1, then r ranges from 0.04 to 0.15, and exp(r)

again changes in a linear fashion from 0.96 to 0.86. So W(z;c) is not expected

to be a strong function of c for the BB-4 optical geometry.
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Figure 2.9 shows W (z; c) for three different values of c. The three

W(z; c) 's were normalized to unity to better illustrate the effect on the shapes

of the curves and their centroid values, which is relevant to Although all

three curves are approximately the same shape, there is a small but noticable

shift along the z axis, which corresponds to a shift in tr'. The shift in is

not large: a change in c by a factor of 25, from 0.02 to 0.50 m1, changed t by

only 70, from 141° to 134°. Nonetheless, this effect should be kept in mind,

especially for measurements in coastal waters where drastic spatial variability
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Figure 2.9 W(z;c) for three values of c. An increase in c by a factor of 25
changed ,*b7o



in optical properties is often found. Moreover, this effect can be much greater

for backscattering sensors with longer pathlengths or wider optical

geometries. Also, as explained in Section 2.5.3, this effect may be significant

for general-angle scattering meters, which are designed to characterize the

shape of the VSF.

The change in due to a change in c can be understood by referring to

optical geometry in Figure 2.3. The total scattering volume is given by the

intersection of the beam and detector FOV. However, the response of the

sensor to each infinitesimal volume dv within the total scattering volume is

weighted by W(z;c). In air, where there is no attenuation of the light, the

maximum response will be at the distance Zpeak where dV is a maximum,

since W(z;c) is now a function only of the geometry. In water, the

exponential attenuation of the light with distance shifts the maximum

response closer to the sensor faceplate. As the attenuation increases, Zpeak Will

decrease.

The spectral correction factor, o(c,c), given by Eq. 2.12, can be computed

for any backscattering sensor using the procedure described above for

computing W(z;c). The W(z;c) from the filtered water calibration needs

only to be computed once and integrated. W(z;c) is repeatedly computed for a

range of c's and integrated. Taking the ratio of JW(z;crv )dz and fw(z; c) dz for

each value of c yields a curve for c(c,c). Figure 2.10 shows the result for the

440 nm channel of the BB-4. The initial c value on the horizontal axis is
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Figure 2.10 The attenuation correction factor cr(c, c) computed for the
440 nm channel of the BB-4. The attenuation coefficient of the filtered water,
c = 0.02 m at 440 nm, was measured with the BB-4 transmissometer.

c = 0.02 m', which was measured with the BB-4 transmissometer. This point

corresponds to ac,c,) = a(c,c) = 1. Values below this are not computed

because the ocean water in which backscatterirtg is measured should not be

clearer than the filtered laboratory water.

As expected from the foregoing discussion, a(c, c) is a small correction

factor for relatively low values of c. Even a value of c = 1 m1 requires only

about a 10% correction in P(iv). But a value of, say, c = 4 m4 requires almost

a 50% correction in which is significant. Such high values of c(440 nm)

are often found in coastal and productive open ocean waters. Moreover, in

these regions, vertical variability can be extreme, giving large changes in c, as



well as in a single profile.
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It is therefore important that all

backscattering measurements be corrected for the attenuation of the water, so

that measurements can be properly interpreted and compared. Although

.1(c, c) is a significant correction factor for high values of c, o(c, c) itself is a

relatively weak function of c, at least for the optical geometry of the BB-4, and

is therefore insensitive to changes, or errors, in the measurement of c. For

example, a change in c from 0.02 to 1 m', which is a change by a factor of 50,

results in about a lO% change in a(c,c,). This is why it is not mandatory for a

transmissometer to have optics that match those of the backscattering sensor

For this particular application, almost any transmissometer is adequate, as

long as the wavelengths match.

2.5.2.2 APL Backscattering Sensor

It is of interest to apply the above analysis to a backscattering sensor with

an optical design that is significantly different than the BB-4. As noted earlier,

the APL sensor was designed to measure the VSF at an angle as close to 180°

as practical because the application was to use the measurements to calibrate

the 180° backscattering received by a lidar system. The APL sensor response

function, 4(z) given by Eq. 2.8, was measured by APL personnel and kindly

supplied to the authors [Smart, 1995]. The measured 4P (z) yielded the

weighting function W(z;c,) shown in Figure 2.11.
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Figure 2.11 Weighting function W(z;ç).

Although the APL weighting function is qualitatively similar in shape to

those seen in Figure 2.6 especially to that of the 2nd generation sensor -

there is an important difference. Because the APL sensor is designed to detect

backscattering at very large scattering angles, the linear distance z over which

the sensor responds is relatively large, as seen in Figure 2.11. For example,

the APL sensor response falls below 10% of its peak at about 35 cm, as

compared with 17 cm for the 2nd generation sensor and 7 cm for the BB-4.

This is due to the low crossing angle of the beam and detector FOV, as is

required to detect scattering at large angles. Referring back to Figure 2.3, the
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angles O and 0od for the APL sensor are both 6°. For the BB-4, these angles

are both approximately 19°.

The important consequence of the long linear extent of a backscattering

sensor's response, or its weighting function, is the greater effect the

attenuation of the water will have on the backscattering measurement. The

higher the backscattering angle, the greater will be the effect of beam

attenuation by the water. Indeed, the calibration of another backscattering

sensor, called Beta Pi, which was developed by the authors and which

measures backscattering at exactly 1800, depends directly on the beam

attenuation coefficient [Maffione and Dana, 1996].

The centroid scattering angle of the APL sensor was calculated in the

manner described above. At c 0.03 m1 (filtered water at , = 490 nm),

1y*=l6800 which is impressively close to 180° for a bi-static backscattering

sensor. At c, = 0.75 m1, however, = 157.0°, which is about the minimum

for the APL sensor, because its response function is essentially zero below

this angle. The attenuation correction factor o(c,c0) for the APL sensor,

which is shown in Figure 2.12, is even more revealing. The correction factor

is nearly twice as great as for the BB-4. But again, this is not a significant

correction for measurements in clear ocean water, where c(490 nm) < 0.5 m1,

which, without a correction, results in an error in /3 of less than 10%. For

productive or coastal waters, however, where c(490 nm) can often be greater

than 1 or even 2 m1, the attenuation correction can be quite significant.
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Figure 2.12 The attenuation correction factor a(c,c) for the APL
backscattering sensor. The attenuation coefficient of the filtered water was
estimated to be c, 0.03 m1 at 490 nm.

2.5.3 Estimation of the Backward Scattering Coefficient

In principle, the backward scattering coefficient bb is determined by

measuring /3(41) over the range 900 to 1800 and then calculating its solid angle

integral over the backward hemisphere. For the routine measurement of bb

in the ocean, this is clearly impractical. Following the long tradition of

searching for a simple means to measure b, the total scattering coefficient,
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researchers have wondered if there is a "magic" angle, in the backward

hemisphere such that

= X22rI3(41), (2.17)

where is either assumed constant or can be parameterized in some simple

fashion. An analysis of this conjecture is given next.

There is some justification for the form of Eq. 2,17. For instance, the

integral mean value theorem can be applied to the definition of the backward

scattering coefficient bb, Eq. 2.3, so that,

bb =2irJJ3(iii)sinvd1y

= 2iv$(*)5sirLI/rd (2.18)

=2irf3(r)

where once again takes on whatever value, within the limits of

integration, that makes /3(') give the last equality in Eq. 2.18. Clearly, iy'

will depend on the shape of /3(i). But it" also depends on sin, analogous to

the discussion above involving the product J3[iy(z)]W(z;c). In the latter case

W(z;c) is the dominant function in determining If, then, /3(g) is a weak

function of i as compared with sinv" over the limits of integration, then

sini will predominately determine i' For example, consider f3() to be

relatively constant in the range ir/2 ii iv. Then ( is mainly determined

pg

I
s,dw=siny,*5dw,

.' r/2
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sini'5r/2 = 1,

or = 140°. In other words, this suggests that b, can be estimated by

2r /3(1400).

Oishi [1990] published an analysis on estimating bb from a single

measurement of /3(i) in the backward hemisphere. His work mainly focused

on Mie scattering functions for a polydisperse system of particles assumed to

obey a Jtmge, or hyperbolic size distribution, although he also included some

empirical VSF data published by others. Oishi's conclusion was that /3(120°)

gave the highest correlation to a linear expression for estimating b. For this

angle, he reports x = 1.14 with an additive constant of 0.43 x10m1. The

results he presents for other angles, however, show no statistically significant

difference in using /3(120°), /3(130°), or 13(140°). Indeed, Oishi reports that the

regression for /3(140°) gave a maximum prediction error that was less than

that for /3(120°). Considering all of the uncertainties in his analysis, such as

the calculations using Mie theory and the meager empirical data set that was

available, it might seem that the wiser choice is the angle that gives the

lowest maximum prediction error. For 140°, Qishi reports x =1.08 with an

additive constant of 1.62 x 10 m'.

An analysis of one of the most well-documented empirical data sets of

the VSF, namely that of Petzold [1972], further sheds light on this issue.

Petzold's ocean measurements falls into three categories: 1) clear ocean water,
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measured in Tongue-of-the-Ocean (TOTO), Bahamas, 2) coastal water,

measured off the coast of southern California, and 3) murky water, measured

in San Diego Harbor. His results are presented in Figure 2.13 for the range 900

to 180°, although J3(180°) was not actually measured and is an extrapolation

by Petzold (which is not relevant to this discussion since these values are

multiplied by sin r = 0). Each curve represents an average of all of the data

reported by Petzold for its particular category. The VSF's are normalized by

the factor 2Jr/bb for better comparison in other words the curves are

actually /3(ttr) 2rJ3(VF)/bb, so that where (i) 1, b, = 2r$().

At first glance, it appears that Petzold's data confirm Oishi's conclusion.

The three curves for the three different water types have the smallest spread

at about 120°. Note, however, that if the harbor water data are excluded, the

two remaining curves remain fairly close together throughout the angular

range from 100° to 1600. The differences between the two curves at 120° and

140° are nearly equal, although the percentage difference is slightly less at

140°. Also note that the TOTO and coastal water curves cross the value of 1

near 140°, which lends support to Oishi's value of x = 1.08 for 140°.
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Figure 2.13. VSF measurements by Petzold [1972], normalized by the factor
2ir/b,,. Each curve is an average of all of the data reported by Petzold for that
water type.

There are compelling reasons to question the accuracy of Petzold's harbor

water data. The harbor water had a relatively high attenuation coefficient,

averaging about c = 2 m' at 530 nm, the wavelength at which the VSF's were

measured. It is known that Petzold did not properly correct for the water

attenuation, and that the greatest errors were expected for measurements of

turbid water [Smith, 1996]. Moreoever, a published analysis of general-angle

scattering meters of the type used by Petzold also showed that for scattering

angles in the backward hemisphere, systematic errors, which depend on the



light attenuation of the water, occur in the VSF measurements [Jonasz, 1990].

As shown above, the attenuation correction factor, 0(C,Ca,) increases with

increasing c. In other words, without applying the correction factor, the

measurement will underestimate 13(41 >90 deg) and the error will increase as

c increases. When properly normalized for comparison, Petzold's harbor data

are much lower than his measurements in clearer water at angles greater

than 120°, suggesting these measurements suffer from errors due to light

attenuation, which Figure 2.13 illustrates rather dramatically.

Given all the uncertainties in the VSF measurements published by

Petzold and others, and given the uncertainty of using Mie theory to compute

ocean water VSF's, the foregoing discussion strongly suggests that 140° is

statistically as good an angle as 120°, and perhaps even better, for measuring

/3(v) in order to estimate b. The data of Petzold, excluding the harbor water

curve in Figure 2.13, and the analysis by Oishi both indicate that the best

estimate of near 140° is x = 1.1, in which case,

b 1.ix2ir/3(140deg). (2.19)

Until more accurate and comprehensive data on ocean-water VSF's in the

backward hemisphere are available, Eq. 2.19 is probably just as accurate as

using Oishi's results for 120° or any other method. From a statistical analysis

of Petzold's measurements, excluding the harbor water data, the percent

standard error in using Eq. 2.19 to estimate b, was 5%, and the maximum

error was about 10%.



2.6 SUMMARY AND CONCLUSIONS

A general analysis of fixed-angle backscattering sensors showed that their

total response to volume scattering was given by Eq. 2.7, which is essentially a

weighted integral of the VSF. The weighting function W(z; c), Eq. 2.6, was

shown to be a function of both the geometry of the sensor, which is fixed, and

the beam attenuation coefficient c of the water, which is variable. However,

the derivation of W(z;c) showed that it could be analytically separated into

two factors, one solely a function of the sensor optical geometry, G(z) given by

Eq. 2.14, and the other a simple exponential function of c.

The weighting function is fundamental to calibrating backscattering

sensors and properly interpreting their measurements. A procedure was

given for accurately determing a sensor's weighting function. This procedure

involves first measuring the in-water response of the sensor to a Lambertian

target as a function of distance z. Dividing this measured response function,

zic(z) given by Eq. 2.8, then yields W(z;c.,) to within a multiplicative

constant that does not need to be known. G(z) can also be calculated from

as shown by Eq. 2.13. Once G(z) is known, W(z;c) can be calculated for

any value of c.

When W(z;c) for a particular backscattering sensor is known, the sensor

can be accurately calibrated to yield measurements of in absolute units,

where ( was shown to be a very close approximation to the centroid angle of

W(z;c). Because W(z;c) depends on c, so does t(, although it was shown to
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be only a weak function of c. In the worse case, ( changed by about 100 when

c changed by a factor of 25.

A correction factor, cr(c,c0,) given by Eq. 2.12, was derived that corrects

the backscattering measurement for the light attenuation by the water.

cr(c, c), like was also shown to be a weak function of c. However, for

coastal and productive open-ocean waters, where c can often be large as well

as highly variable, neglecting the a(c,c) correction can result in significant

errors in backscattering measurements.

An analysis of a recently developed four-wavelength sensor, the BB-4,

gave ( = 141° at c = 0.02 m1 (440 nm). For all backscattering sensors,

decreases with increasing c and asymptotes to some minimum value that

depends on the sensors optical geometry. For the BB-4, this mimin-tum value

was found to be ,tr' = 134 at c(440 nm) = 0.5 m1. An analysis of the APL sensor

showed that, at 490 nm, ij( = 168° at c, = 0.03 m1, and the minimum was

= 157 at c = 0.75 m1. Thus measurements by the APL sensor can be

relatively sensitive to changes in c as a consequence of the low crossing angle

of the beam and detector FOV. The attenuation correction factor cY(c, c) for

the APL sensor was found to be nearly twice as large as a(c,c) for the BB-4.

However, the correction is significant only when the attenuation of the water

is relatively high. Since o(c,c) can be determined, it should, nonetheless,

always be applied.
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The conjecture that the backward scattering coefficient bb can be

estimated with a measurement of the VSF at a single angle in the backward

hemisphere was examined. Oishi's analysis [1990] concluded that

l.14x2g(1200)_0.43x1Om provides the best estimate of bb for the

computed and observed scattering functions he considered. However, he also

reported that 1.08 x 2,v $(140°) 1.62 x 10m' gives the least maximum likely

error in estimating bb. VSF measurements by Petzold [1972] were examined in

the present paper, where it was argued that his turbid water measurements

were probably systematically low in the backward hemisphere because they

were not properly corrected for light attenuation by the water. An analysis of

general-angle scattering meters by Jonasz [19901 arrived at a similar

conclusion. When the turbid water measurements were excluded in the type

of analysis performed by Oishi, it was found that estimating bb from

%221 f3(v'), where is a constant for the particular angle there was no

statisically significant difference between using J3(120°) or 1J(140°), or even

VSF values between these angles. The expression bb 1.1 x 2ir13(140 deg) was

suggested as providing the best estimate of bb from measurements of (*)

using the BB.-4, where is nominally 1400.
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Chapter 3

IN-SITU CHARACTERIZATION OF OPTICAL BACKSCATTERING AND

ATTENUATION FOR LIDAR APPLICATIONS

Robert A. Maffione and David R. Dana

1996, SPIE (in press).
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3.1 ABSTRACT

Measurements of ocean-water optical properties that are directly relevant

to airborne oceanographic lidar (AOL) systems are rare. The two most

important water optical properties to AOL systems are the volume scattering

function (VSF) at 180° and the lidar beam attenuation coefficient. An

instrument has been developed, called Beta P1, which measures, in situ, these

two optical parameters. It is a self-calibrating instrument that provides an

accurate measurement of both the VSF at 1800 and the lidar attenuation

coefficient. Results from a deployment in the Gulf of Mexico near Panama

City, Florida, during a Navy lidar test, are given. It was found that the VSF

increases by more than 50% from 179° to 180°. A sharp enhancement,

possibly due to coherent backscattering, was also observed at 180° with an

angular width of about 0.03°. Measurements made at six discrete wavelengths

from 457 to 532 rim revealed that the spectral dispersion of backscattering at

and near 180° was substantially greater than the dispersion at 135° measured

with multispectral bi-static backscattering sensors. All of these results have

important implications to the sea truth calibration of AOL systems.

3.2 INTRODUCTION

Ocean remote sensing using airborne lidar is a powerful method for

investigating the near-surface water column. NASA's airborne oceanographic

lidar (AOL), for example, is well documented [Hoge et al., 1986a; Hoge et al.,

1986b} and has been in use for many years. Most airborne lidars use a narrow,



collimated pulsed beam to illuminate the upper water column and a range-

gated receiver to measure the backscattered return from a selected depth.

Varying the range gate of the receiver produces a measured profile of the

backscattering and attenuation properties of the upper water column. Some

systems can penetrate as far as four to five attenuation lengths which, at 532

nm in clear oligotrophic waters, can be deeper than 50 m.

The real utility of airborne oceanographic lidar is its rapid surveillance

capability compared with shipborne surveys. Unlike shipborne

measurements, however, interpreting lidar measurements is far more

difficult. First, a forward model is required that describes, 1) the propagation

of the beam through the water column, 2) the backscattering at the range-

gated depth, and 3) the propagation of the backscattered light to the receiver.

The model must then be inverted to obtain the in-water parameters of

interest. Single-scattering (SS) models are the simplest and they permit

inversion so that profiles of the backscattering and attenuation properties of

the water column can be obtained. The inversion of an SS model can provide

the volume scattering function (VSF) in the backward direction, fi(180), and

the beam attenuation coefficient, c. The next level of sophistication are quasi-

multiple-scattering (QMS) models such as the one described by Gordon. [1982].

The mathematical forms of QMS models are the same as SS models, but the

inherent optical properties (lOP's) /3(180) and c are replaced by quasi-inherent

optical properties (QOP's), usually denoted with a prime, i.e., p'(180) and c'.

These QOP's are considered to take on whatever values that will force the
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QMS model to accurately describe the propagation of the beam through the

water. Typically, the farther the beam propagates, the more it is modified by

multiple scattering, and the further the QOP's will diverge from their

corresponding TOP's.

Experimental verification of ocean lidar models requires sea truth -
that is, the direct measurement of the relevant optical parameters.

Historically this is rarely done, so that lidar model testing is usually a

bootstrap procedure where the accuracy of the model is judged by how

reasonable or self-consistent the results look. Models are even tested (and

developed) with other models. For example, the QOP's have been

investigated using the Monte Carlo method [Gordon, 19821. Even when sea

truth is performed, it is exceedingly rare for all of the appropriate TOP's to be

measured. The beam attenuation coefficient is unquestionably the most

commonly measured TOP relevant to lidar, but rarely is the optical design of

the transmissometer matched with the optical parameters of the lidar system,

such as beam divergence and receiver FOV. This is important because

drastically different values of "c" can be obtained when measured by two

transmissometers with different receiver acceptance angles due to the

extremely large slope of the VSF in the near forward direction.

Transmissometer path-length can have a significant effect on the accuracy of

the measurement of c as well. The downwelling irradiance attenuation

coefficient, K, is also routinely measured and is believed to approximate the

total round-trip attenuation of the lidar beam, especially for long path-
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lengths. In other words, Kd, an apparent optical property (AOP), is thought to

approximate c', a QOP, for long path-lengths. This connection, however, is by

no means firmly established in a quantitative way. Moreover, Kd, by its very

definition as an AOP, can change with changes in boundary conditions such

as sun angle and cloud cover, although methods have been proposed to

correct for this [Gordon et al., 1975; Gordon, 1980]. Another problem is that Kd

is difficult to accurately measure near the surface due to ship shadow and

wave motion effects.

Until the development of the instrument described in this paper, called

Beta Pi [Maffione and Honey, 1992], the one optical parameter that had never

been measured was $(180). On rare occasions, mainly during the testing of

Navy lidar systems, optical backscattering was measured with bi-static sensors

[Dana and Honey, 1990; Maffione et al., 19911. These backscattering sensors,

originally developed at SRI International, measure a weighted angular

average of the VSF at a centroid angle between 135° and 150° depending on

the design of the sensor optics. The Johns Hopkins University Applied

Physics Laboratory has developed a backscattering sensor with a centroid

angle approaching 170° [Smart, 1991]. When these sensors are used for lidar

sea truthing, it is assumed that the VSF is fairly flat over the backward angles

so that the bi-static measurements are a good approximation to 13(180). There

is evidence to suggest, however, from VSF measurements that were made

over a range of discrete angles up to 170° and from Mie scattering

computations, that the VSF sharply increases from 170° to 180° [Kullenberg,
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1974; Petzold, 1972]. Also, questions have been raised about the possibility of

enhanced backscattering [Kuga and Ishimaru, 1984; 1989; Tsang and Ishimaru,

1984; .lshimaru and Tsang, 1988] by ocean water [Maffione and Honey, 1992].

Thus, despite all of the modeling that has been done on beam

propagation in the ocean, there is still little firm knowledge of ocean optical

properties relevant to lidar applications. This is mainly because these

properties need to be measured directly, and rarely is there instrumentation

developed for this purpose. Until the relevant optical properties are

definitively measured, we are only guessing at their values and behavior.

Beta Pi, described in the present paper and in greater detail elsewhere

[Maffione and Honey, 19921 was designed specifically to address this issue.

This instrument was recently modified to include a new type of variable path-

length beam transmissometer for measuring the lidar attenuation coefficient.

Preliminary results are presented from a deployment in the Gulf of Mexico

near Panama City, Florida, during a Navy test in the summer of 1994.

3.3 LIDAR MODELS

An elastic single-scattering model that describes the returned power d P

at the lidar receiver in the time interval t + dt due to a short laser pulse is

straightforward to derive and can be expressed in the form

T2cl0A$(180) exp[_cv(t t0)/ nI vdt/2n
(3.1)d'P=

2

[nH + v(t t0)/2nJ

The lidar receiver, which is at a height H above the water, has an effective

receiving area A. 4 is the laser power at the sea surface and T is the Fresnel



transmittance of the air-sea interface. The quantity v(t - t)/2n is the

penetration depth at which the light received by the lidar was scattered, where

v is the speed of light in vacuo, t t0 is the total round-trip travel time of the

beam in the water, and n is the refractive index of the water. Two inherent

water optical properties, discussed previously, appear in Eq. 3.1: /3(180) and c.

Equation 3.1 can be simplified, following Gordon [1982], by defining the

normalized returned power

so that

[dc1(t)/dt] [2n/k0AvT2J[nH + t0)/2n}2 d(t)/dt

[dtI(t)/dt] = $(180)exp[cv(t t0)/n]
(3.2)norm

= /3(18O)exp-2c zj

where z = v(t t0)/2n is the penetration depth as noted above. The utility of

Eq. 3.2 lies in its easy inversion to obtain lOP profiles of /3(180) and c simply by

fitting [d<P(t)/dt' to an exponential.
inorrn

Strictly speaking, Eq. 3.2 is valid only for a perfectly collimated beam and

a receiver with an infinitesimal area and FOV. Anything less than this ideal

situation will inevitably involve multiple scattering effects. Probably the

simplest, and most common way to deal with this is to retain the form of Eq.

3.2, but modify the TOP's. These are the QOP's referred to earlier. A more

accurate model is then expressed by

Id(t)/dtl ,W(180) exp[-2 c'z]. (3.3)
L morn1
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The problem now is to understand these QOP's and their relationships to

both the lOP's and the lidar system parameters.

Consider, for example, multiple scattering effects on the attenuation

coefficient. As the beam propagates through the water, multiple scattering of

light back into the beam will decrease its attenuation. Thus the actual

attenuation of the beam power from source to receiver should be described by

an attenuation coefficient that is less than c. The receiver FOV can also

greatly affect the received power, altering the measured beam attenuation.

The larger the FOV, the more power received due to multiple scattering by

the water, and therefore the lower the computed value of the attenuation

coefficient. Because the computed lidar attenuation coefficient is a function

of the lidar system parameters as well as the TOP's, it is often denoted (= c'

in Eq. 3.3). It should be clear that a c, where a is the absorption

coefficient. Intuition suggests that a single scattering approximation is

accurate for propagation through two, and probably three attenuation lengths

(an attenuation length is defined as 1/c) provided the receiver FOV is narrow.

Monte Carlo studies of the point spread function, which is mathematically

equivalent to the beam spread function [Mertens and Replogle, 1977], by

Maffione and Jaffe [1995] found that the asymptotic state of beam spreading is

not attained after 20 attenuation lengths, even in a highly scattering medium,

suggesting that multiple scattering does not appreciably alter the beam

attenuation coefficient when measured with a narrow FOV receiver. The

greatest effects of multiple scattering have been shown to depend on cR,



where R is the radius of the spot on the sea surface that is seen by the lidar

receiver [Gordon, 1982]. So it is not just the receiver FOV that matters, but

also the height of the lidar above the water. The most useful measurement of

an attenuation parameter for lidar sea truth, then, is the round-trip

attenuation coefficient for the case of a narrow beam and small spot size seen

by the receiver. Changes in actual spot size, or cR, can then be correlated with

differences in K5 (or c' in Eq. 3.3) as determined by the lidar and the sea truth

measurement of c.

Equation 3.3 reveals that the easiest and most accurate water optical

property that a lidar system can determine is provided that the water

column is homogeneous in the depth interval where the exponential fit is

made to the received signal. In this case is simply given by the slope of

the natural log of [d(t)/dt] / which does not have to be known in absolute
norm

units. Neither does /3(180) have to be known, except for the required

assumption that it is constant over the depth interval used in the log-linear

regression to obtain K,,. On the other hand, to determine )3(180) from the

regression, [d(t)/dt} has to be known in absolute units. This can be
norm

exceedingly error prone since some of the parameters in [d(t)/dtLorm are not

accurately known. For example, the (average) Fresnel reflection coefficient T

will depend on the wave spectrum of the sea surface, which can be highly

variable and is usually unknown. Clearly then, to accurately calibrate an

ocean lidar system, both c and /3(180) must be measured in situ. It is also

important to note that the assumption of vertical homogeneity is not always
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valid, and in fact is usually wrong for coastal waters, especially when they are

productive. Moreover, c and (180) can not be expected to covary in a regular,

predictable manner. The proper in-situ characterization of water optical

properties relevant to lidar is thus critical to accurately calibrating these

systems and interpreting their signals.

3.4 IN-SITU INSTRUMENTATION: BETA P1

Beta Pi, shown schematically in Figure 3.1, was developed specifically to

measure, in situ, fi(180) and the VSF near 1800. This instrument is well

documented by Maffione and Honey [19921, although a brief overview is

given here for completeness. Beta Pi was recently modified to include an

attachment that converts the instrument to a unique, variable path-length

beam transmissometer. The variable path-length attachment also makes Beta

Pi a highly accurate, self-calibrating instrument. An updated analysis of the

calibration of Beta Pi is thus presented.
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Figure 3.1 Schematic layout of "Beta Pi," the instrument that measures the
volume scattering function at and near 180°. Not all light traps are shown.
The attachment for performing variable path-length beam transmission
measurements is also not shown. This attachment fits over the pressure
window housing and extends out 1.2 m. A motor drive system, controlled at
the surface, moves a Spectralon target along the length of the attachment. An
optical encoder records the range of the target.

The monostatic geometry necessary for measuring /3(180) is achieved

with a beam splitter as shown in Figure 3.1. A laser beam is bounced off of

the beam splitter where half its power is sent out into the water. The other

half of the beam power that is transmitted through the splitter is efficiently

dumped with a novel light trap arrangement (see Maffione and Honey for

further details). It is vital that all specular reflections of the beam off of the

optical surfaces be accounted for and removed with light traps, so that only

the light scattered backward by the water is seen by the detector. A

Photometrics cooled integrating CCD camera is the detector. A 516 x 516 pixel

array sits at the focal plane of a 200 mm, f/2 lens that looks down the axis of

the beam that is sent out into the water. Pixel size is 20 im so that the



angular resolution of the camera in water is 0.0750 mrad = 0.00430°; the useful

range of scattering angles is about 178.6° to 180°. An underwater multi-mode

fiber optic cable, with a core diameter of 50 Inn, is used to send the laser power

from the surface to Beta Pi, an arrangement which allows for the tuning or

interchange of lasers to measure multispectral backscattering. A beam

expander collimates the laser power exiting the optical fiber and an aperture

reduces the beam diameter to 1 cm. The focal length of the expander is 80

mm which works out to a half-angle beam divergence in water of 0.23 mrad

0.013°. Since this is greater than the angular resolution of the CCD camera,

the actual resolution of the VSF measurement is 0.013°, which is still more

than sufficient for resolving phenomena such as enhanced backscattering.

Figure 3.2 shows the geometry for measuring the VSF over a small range

of angles in the backward direction. The incremental backscattered energy dQ

incident on a pixel that views a scattering angle is given by

dQ(r,O)= 3(8)rsz1Q Tf(r,O)e2dr
(34)

= $(0)rsiif(r,O)e2'dr
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Figure 3.2 Geometry for measuring the VSF at and near 1800.

J'r

In this expression, r s represents the total laser energy emitted into the

water over the integration time i; s is a reference detector signal which

monitors the output of the laser and is normalized to a reference power 'Z'.

zQ is the solid angle FOV of a pixel and T is the transmission loss factor for

the backscattered flux in traveling through the optical train to the detector

pixel. The quantity = ztQ T is constant and, as shown below, does not

need to be known because the calibration to obtain the VSF divides it out.

The factor exp(-2c r) takes into account the round-trip attenuation of the

forward beam and the backscattered flux. The function f(r,6) in Eq. 3.4

represents the vignetting of the backscattered flux at the detector due to the

finite size of the lens. For example, f(r,180) = 1 for all r, and f(r,O> O) = 0,

where O is the minimum scattering angle the detector can see ( 178.90).



Between O and 180°, f(r,O) falls between 0 and 1 depending on the distance

r and geometric parameters such as the diameter of the lens and the beam

[Maffione and Honey, 1992].

The total backscattered energy incident on a pixel during the integration

time r is then

Q(o)
= 3(0)siiJf(r,O)e2dr

(3.5)
= /3(0)rsG(0)/2c

where G(0) 2c$f(r,O)e2dr is the vignetting correction function. The

purpose of the factor 2c is to normalize G(0) to unity at 180°; that is,

f(r,180) = 1 so that G(180) 2c$0e_2rdr = 1. Note that in general G(0) is a

function of the parameter c. G(0) can be accurately determined through a

geometric analysis and surface backscatteririg measurements using a

Lambertian target set at various distances r. Since, by definition, the surface

scattering function of a Lambertian target is constant, roll-off itt the angular

response of the CCD quantifies the vignetting. Examples of G(6) for values of

c ranging from 01 to 0.5 m1 are shown in Figure 3.3. Because of the large
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Figure 3.3 The vignetting correction function, G(6) = 2c50 f(r,9)e2'"dr, for

values of c ranging from 0.1 to 0.5 m1. Because of the large diameter lens (10
cm) and long focal length, vignetting does not have a strong effect on the
results, especially when c > 0.5 m'. Vignetting is also negligible from 179.8° to
180°, as expected.
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diameter lens (10 cm) and its long focal length, as well as the exponential

attenuation of light with distance, the total vignetting is not that severe. In

fact it is virtually negligible for c > 0.5 m'. Analogous to Eq. 3.5, the radiant

energy QL (r, 0) incident on a pixel due to backscattering by a Lambertian target

placed a distance r in the path of the beam is

QL(r,O) = rL L f(r,6)e2 +

(3.6)Jr

LsLflf(r,0)e
Jr

where p is the diffuse reflectivity of the target and the quantity p/2r - the

surface scattering function (which is constant) - replaces the volume

scattering function /3(0) in Eq. 3.5. represents the backscattering by the water

in the volume between the window and the target. If p is close to 1 and r <

1 /2b, where b = c - a is the total scattering coefficient of the water, then is

completely negligible compared with the first term. Since (p/it), TL/ and 5L

are known and ii is constant, f(r,6) can be obtained from measurements of

Q1(r,0) assuming c is known. c can be obtained from the slope of a log-linear

regression to QL(r,0) as a function of r, analogous to the discussion in the

previous section on obtaining from pulsed lidar measurements. This is

best performed using measurements of QL(r, 6) in the range of r and 6 for

which f(r,9)= 1. Letting QL(r/6) denote the average of QL(r,0) over a range

of angles for which f(r,0) = 1 at the range r, and multiplying QL(r,a) by

exp(2c r) yields



QL(r,)exp(2cr) = 5L ()
=QL(r)

where L(r) is constant and therefore independent of r. Measurements of

QL (r) can be obtained, however, over a range of distances r, and averaged to

obtain the best estimate of , i.e., cL where N is the number of

measurements.

Dividing Q(0) by QL. the average of L(r), and solving for J3() gives

[]ri
(3.8)

LLiL2dLG(0)i

The quantity in the first bracket represents the measurement of backward

light scattering by the ocean water. The quantity in the second bracket

represents the inverse of the measurement of surface backscattering by a

Lambertian target. The multiplication of these two terms is thus a unitless

number, so that only relative measurements of Q, r, and s need to be made.

Spectralon is used as the Lambertian target, so p 0.99 is known to at least

within 1% error. The beam attenuation coefficient c is measured directly with

the variable path-length transmissometer attachment. Because the same

beam source and receiver are used to measure both /3(0) and c, the measured

value of c is the most appropriate c for Eq. 3.8. This c is, essentially, the

multiple-scattering equivalent c', or for the Beta Pi system, analogous to

the lidar model discussion in Section 3.3. The vignetting correction function,

G(0), is likewise accurately determined from the variable path-length, surface-



scattering measurements with the Lambertian target. Thus Beta Pi is a fully

self-calibrating instrument that accurately measures the VSF at and near 1800

as well as the beam attenuation coefficient most appropriate to lidar.

3.5 RESULTS FROM GULF OF MEXICO NEAR PANAMA CITY, FLORIDA

Beta Pi was deployed in the Gulf of Mexico during the early summer of

1994 in support of Navy lidar tests. The research vessel was Mr. Offshore,

which was anchored about 7 miles south of Panama City, Florida, where the

bottom depth was approximately 30 m. The data reported here are for a

deployment on the evening of August 2, 1994. These data are fairly

representative of the measurements taken during the two-month test period.

Throughout the test period, the water column showed little change in its

optical properties. On the evening of August 2, the water column was

homogeneous down to about 12 m, with a gradual increase in the TOP's,

specifically backscattering and beam attenuation, down to about 26 m. In the

last 4 m to the bottom, the lOP's sharply increased due to bottom turbidity

caused by resuspended sediments. The Beta Pi measurements reported here

were taken at 8 m.

Two lasers were used during this measurement series to obtain

multispectral measurements of fl(0). A doubled Nd:YAG laser was used for

the 532 nm measurements, and a tunable Argon ion laser was used for

measurements at 457, 476, 488, 496, and 514 nm. At each selected wavelength,

variable path-length measurements with the movable Lambertian target were

first made to self-calibrate Beta Pi. Following the calibration measurements at
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the selected wavelength, a series of water backscattering measurements was

performed. Then another wavelength was selected and the procedure

repeated. The entire series at six wavelengths took about 3 hours to complete.

Vertical profiles both before and after the Beta Pi deployment, using our bi-

static backscattering sensors [Maffione et al., 1991], showed no changes in the

optical properties of the water column.

The results of the self-calibration measurements at 488 nm, which are

similar to the other five wavelengths, are shown in Figure 3.4. The movable

Lambertian target, remotely controlled at the surface, was moved in 10 cm

increments (20 cm total path-length increments). At each position a
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Figure 3.4 Variable path-length measurements with Beta Pi attachment at
488 nrn. The left panel is the natural log of QL(r,0) vs. round trip path-length.
The negative of the slope of the regression yields the beam attenuation
coefficient which in this case was c = 0.167 ± 0.003 m1. The right panel shows
QL(r) vs. total path-length. The average was QL = 27.6 ± 0.2.



71

measurement was made of the backscattered light by the target. At a 1.2 m

distance from the window (total round trip path = 2.4 in), the target flips out

of the path of the laser beam so that measurements of water backscattering

can be made. Many prior tests have been performed with and without the

attachment to insure that it has no affect on the measurement of the

backscattering by the water alone. The regression to obtain c was extremely

good, as shown in the left panel of Figure 3.4. The slope yielded a beam

attenuation coefficient of c = 0.167 m1 with a standard deviation of 0.003m1,

or an error of less than 2%. The right panel shows the L(r) calculations

which yielded an average value of
L

= 27.6 ± 0.2, or a 0.7% error. Thus, the

self calibration is quite good and accurate rneasurern.ents of $(0), with an

estimated error of about 3%, were obtaIned.

Figure 3.5 shows the measured J3(9) at the six wavelengths over the

angular range from 179° to 1800. The spectral dispersion in the backscattering

follows a wavelength power law, with a negative exponent, as might be

expected. In other words, backward light scattering increases with decreasing

wavelength. The wavelength exponent was found to be -4.1, which is quite

surprising since an exponent of -4.3 is expected for pure sea-water

backscattering [Morel, 1974]. Although the water was fairly clear at 8 m, it was

by no means pure sea water, which is expected to have a value of c around

0.22 m. The spectral measurements with bi-static backscattering sensors,

which measure the VSF at around 135°, yielded an exponent of about -2.2 at 8
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m, indicating a significant change in the spectral dispersion of /3(0) in going

from lower backscattering angles to 1800.

There are two more interesting features of /3(0) as it approaches 1800

shown in Fig. 3.5, One is the large change in /3(0) over the one degree angle

from 179° to 1800. The average change is over 50%. Considering that this

large change occurs over only one degree, there is reason to suspect that /3(0)

increases substantially from 170° to 180°, perhaps more than a factor of two.

This has important implications to lidar sea truth when /3(180) is estimated

from bi-static backscattering measurements. The other interesting feature is

the apparent enhanced peak at 180°. Whether this is due to coherent

enhanced backscattering is an open question, but the width of the peak, which

is about 0.03°, suggests that it just might be.



L

0

I

0.0012

0.0011

[I1iIII1'J

XsIsIsi:i

xwr.i

WI,";"

nm

l4nrn

532

73

179.0 179.1 179.2 179.3 179.4 179.5 179.6 179.7 179.8 179.9 180.0

Scattering angle (deg)

Figure 3.5 The spectral volume scattering function /3(0) over the angular
range 179° to 1800. The average change in /3(0) over this one degree angular
range was about 50%. The shapes of the VSF's did not appear to vary with
wavelength in any significant fashion. /3(0) at all six wavelengths revealed a
small but sharp enhancement at 180° with an angular width of approximately
0.03°.
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Chapter 4

MEASUREMENT OF THE SPECTRAL ABSORPTION COEFFICIENT USING

AN ISOTROPIC SOURCE IN THE OCEAN

Robert A. Maffione, Kenneth J. Voss, and Richard C. Honey

Published in Applied Optics, 32, 3273-3279, June 20, 1993. Copyright by The
Optical Society of America
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4.1 ABSTRACT

Closed-form equations that describe the vector irradiance from an

isotropic source embedded in the ocean are rigorously derived from the

steady-state radiative transfer equation. The equations are exact for a

homogeneous medium and are believed to be an excellent approximation

along the vertical axis for a plane-parallel ocean. The equations are solved for

the absorption coefficient as a function of distance from the source. For clear

ocean water, it is shown that vector irradiance measurements alone provide

sufficient information for an accurate calculation of the absorption coefficient.

Measurements in Pacific water of the vector irradiance from an isotropic

source are presented and the absorption coefficient computed. The estimated

value of the absorption coefficient from a linear least-squares fit to the data

has a standard percent error of about 1%.

4.2 INTRODUCTION

Knowledge of the spectral absorption coefficient of oceanic waters is

Important to many areas of oceanography and ocean remote sensing. Yet it is

still a difficult ocean-optical parameter to measure accurately and routinely.

The difficulty is fundamentally due to scattering, which may cause significant

errors in measurements of light attenuation from pure absorption (that is,

energy conversion) processes. Nonetheless, several diverse approaches have

been developed for measuring the absorption coefficient, either in situ or on-

board ship. Some of the more notable are the reflective-tube absorption

meter [Zaneveid et al.,., 1990] , the integrating cavity absorption meter [Fry et
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al., 1992], photoacoustic and photothermal techniques [Bennett et aL, 1986;

Trees and Voss, 1990], and in-situ irradiance [Højerslev, 1975; Spitzer and

Wernand, 1980] and radiance [Voss, 1989b; Doss and Wells, 19921 meters

which rely on Gershun's law [Gersfiun, 1939] to determine the absorption

coefficient.

Gershun's law relates the divergence of vector irradiance to the product

of the absorption coefficient and the scalar irradiance at a point in an

absorbing and scattering medium. Preisendorfer [1961] independently derived

Gershun's law from the steady-state radiative transfer equation (RTE) and

showed that the absorption coefficient could be determined by measuring the

scalar irradiance and the change with depth of the net downward (vector)

irradiance. He arrived at this result by considering the ocean as a medium

with negligible horizontal gradients compared with its vertical structure.

Experimental methods [Højerslev, 1975; Sptizer and Wernand, 1980; Voss,

1989b; Doss and Wells, 1992] that use this result, however, depend on the

temporal invariance of the submarine daylight field and are limited to the

photic zone. Furthermore, the measurements can be complicated by ship

shadowing [Gordon, 1985; Helliwell et al., 1990].

Artificial light sources obviate these problems and offer several other

advantages. Duntley [1971] used an isotropic source to measure both the

absorption and attenuation coefficients of water in Lake Winnipesaukee,

New Hampshire. By illuminating the rear (relative to the detector) of a table-

tennis ball with a laser beam, he was able to create a spectral underwater
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isotropic source. Duntley obtained the absorption coefficient by measuring

the hemispherical scalar irradiance and the outward flowing irradiance from

the source at long ranges. The decay of the outward irradiance provided what

Duntley called a spherical diffuse attenuation coefficient that was expected to

be constant at long ranges [Preisendorfer, 1959j. By an approximation to

Gershun's law for the asymptotic region, he obtained a simple equation

relating the hemispherical scalar irradiance, outward irradiance, and the

spherical diffuse attenuation coefficient to the absorption coefficient.

Sorenson and Honey [1968a, 1968b1 designed an absorption meter based

on a different approximation from Duntley's for the decay of irradiance from

an isotropic source. Whereas Duntley used an approximation valid for the

asymptotic region, Sorenson and Honey used a different approximation for

the decay of irradiance within a few attenuation lengths of the source. Both

approximations may be obtained from the general solution derived in this

paper. Sorenson and Honey argued that within a few mean free paths, the

outward irradiance would decay geometrically as hr2 and exponentially as

exp(-ar), where i is the absorption coefficient and r the distance from the

source, Their instrument measured the outward irradiance at two separate

distances from an isotropic source. Because the ratio of the two

measurements cancels the radiometric units, their instrument did not require

any absolute radiometric calibration. The construction and the testing of this

device are described in detail by Gilbert, et al., [1969].



The technique of Sorenson and Honey was recently used to measure the

absorption coefficient in an experiment to test the closure property in ocean

optics [Maffione et al., 1991]. In this experiment, two spectral irradiance

detectors looked down at an isotropic source and two looked up, away from

the source. The distance between the source and detectors was varied, and

measurements were taken over a range of separations from approximately 2

to 40 m. Whereas the Sorenson and Honey instrument measured the

irradiance at only two distances from the source, the closure experiment

provided a series of measurements of vector irradiance as a function of range.

A least-squares fit of the measurements to the appropriate equation, derived

in this paper, yields the absorption coefficient with an accurately quantified

error. Measurements of the variation of the absorption coefficient with depth

were obtained by changing the depth of the light source and detectors.

4.3 THEORETICAL DEVELOPMENT

4.3.1 Derivation of the Vector and Scalar Irradiance from an Isotropic Source
Embedded in the Ocean

Nearly all techniques developed for solving the RTE treat the ocean as a

horizontally homogeneous, vertically inhomogeneous optical medium. If

the oniy source for the submarine light field is the penetration of solar

radiation, then the spatial distribution of radiance in the ocean will be a

function of depth only. The reduction to one spatial coordinate greatly

simplifies manipulation of the RTE. For an isotropic source embedded in the

ocean, however, the radiance will clearly depend on all three spatial
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coordinates. It is for this reason that the most difficult standard problems

encountered in radiative transfer theory are point-source problems. Aside

from the approximate solutions already mentioned, some general

formulations have been attempted, such as Preisendorfer's discrete-space

method [Preisendorfer, 1965] and results from diffusion theory (see, for

example,Elliott, [1955]).

A general, closed-form solution for the vector and scalar irradiance

distribution from an isotropic source in the ocean is now derived from the

RTE. It is valid at any depth, z, on axis with the source for a plane-parallel

ocean and is exact everywhere for a homogeneous medium. This solution

lends itself quite readily to approximations for off-axis irradiance distributions

in a plane-parallel medium and to the irradiance distribution from a

Lambertian (cosine) source. It is therefore applicable not only to

measurements of the absorption coefficient, but also to bio-optical modeling

of the irradiance distribution from bioluminescent organisms [Gordon, 1987].

Let L = L(r,t) denote the radiance at a point r = (x, y, z) in the unit vector

direction in a Cartesian coordinate system. Assuming no internal sources

and no cross-wavelength effects, i.e., fluorescence and Raman emission, the

steady-state RTE may be expressed as

(.
v) L(r, ) = -c(r) L(r,)+ .L(r,

),
(4.1)

where the operator



(a a
. v) = (cosO,cos o,cos (4.2)

takes the derivative of L(r,
)

in the direction . The first term on the right

represents the loss of radiance along an infinitesimal path length in the

direction , and c(t) is the beam attenuation coefficient at point r. The last

term on the right is the so-called path function, which gives the increase in

radiance per unit path length that is due to scattering into the direction

from all other directions {'}. If tJ(r,. ') denotes the volume scattering

function and dQ(') denotes the infinitesimal solid angle in the direction ',

then the path function is given explicitly by

L*(r,) = 5L(r,')$(r, . ')dc'). (4.3)

The quantities L, c, and 3 are assumed to be spectral, although their explicit

dependence on wavelength is not shown.

Integrating Eq. 4.1 over 4ir sr gives the general form of Gershun's

equation:

-v . E(r) = a(r)E0(r), (4.4)

Here a is the spectral absorption coefficient and Eo is the scalar irradiance,

given by

E0(r) = fL(r,F)dQ(). (4.5)

Note that, in general, the vector irradiance E has three components: E, E,, E,

where



E = 2S:L(r,)coSOSfrOxd6t

= 2,r[$AL(r, ) cos Q sin Od Q f L(r, )jcos 6 sin OdO] (4.6)

= E+ E_,

etc.

Thus E represents the difference between the irradiance that flows in the

positive x direction and the irradiance that flows in the negative x direction.

Under the assumption of a horizontally homogeneous ocean

illuminated by solar radiation, the partial derivatives dE/ and aE/dy in

Eq. 4.4 will be zero, and Gershun's equation simplifies to

dE.(z)
=aE0(z), (4.7)

which is the result used most often in ocean optics. In principle then, the

absorption coefficient can be determined by measuring the change in the

vector irradiance with depth and the scalar irradiance. In practice it is quite

difficult, and very little data have been published on the measured spectral

absorption coefficient using Gershun's law [Eq. 4.7]. Significant errors can be

introduced in computing the derivative of E, especially in regions where the

water is not vertically homogeneous. Measurements are restricted to the

daytime and to depths where the ambient light is strong enough for the

sensors to detect. Ship shadowing is another problem that has already been

mentioned. But a major reason why researchers do not routinely apply

Gershun's law is that the scalar irradiance is rarely measured. Sometimes,
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however, the scattering properties of the water are estimated, which then

allows one to estimate the absorption coefficient from Gershun's law.

For an isotropic source embedded in the ocean, the divergence of the

vector irradiance E will be a function of all three spatial coordinates.

Assuming that the isotropic source is the only source for the light field, a

natural coordinate system for its description are spherical coordinates. The

three components of the vector irradiance are then E, E6, and E, which

correspond to the respective unit orthogonal directions, ,O, and , shown in

Fig. 4.1. The source is taken to be at the origin, and the z axis is the vertical

direction in the ocean. In this coordinate system, Cershun's law (Eq. 4.4)

appears as

iE
1(r2E) 1 d(sin8E0) 1 dEc

(4.8)
dr rsine do rsinO dp



Figure 4.1 Spherical components of vector irradiance. The three
components of the vector irradiance are the differences of the irradiances
incident on the opposing faces

y

Clearly, for a plane-parallel medium in which the planes are oriented

perpendicular to the z axis, E, and dEQ /p must be zero for all r, 0, and t.

Along the z axis (0 = 0), it should also be clear that E =0. Eq. 4.8 then

simplifies to



aE0=1
d(r2Er) 1

(4.9)
---

dEe)drr

In all practical cases of interest, dEe/dO will be negligible compared to Er, and

thus

dEr 2E_aE0__+__L, (4.10)
r

which is everywhere exact for a homogeneous medium and an excellent

approximation along the vertical axis for a plane-parallel ocean.

With the introduction of the radial average cosine,

Er(r)

E0(r)'
(4.11)

which is similar to the commonly used "vertical" average cosine, Eq. 4.10 may

be expressed in the form

dEr(r) a(r) 2
dr dr (4.12)

Er(r) jI.(r) r

Integrating from r0 to r and solving for Er(r) gives

[ ra(r) 1
expi -f ---dr

LT0r jE,(r)=E(i) . (4.13)
I r/

1

If R r0 << 1/c, where R is the radius of the source, then the initial condition,

Er(ro), is

E'(rQ)
ro (4.14)

4,rr02'
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where ro is the total radiant power at ro. Thus, for r = z, i.e., 6 0, the

solution for the vector irradiance from an isotropic source embedded in a

plane-parallel ocean is

I za(z) 1

Er(Z) = exP[S
11r(Z)

dz]. (4.15)

Consider now a homogeneous, nonscattering medium. Then a is

constant, and Eq. 4.15 simplifies to

E (z)= z exp(az) (4.16)
4irz2

where Az = z zo. The inclusion of scattering gives

z dzlE(z) 4z2 exp[_aS
r(Z)

(4.17)

exp(a2)
4irz2

where Z is Schellenberger's mean light path [Scheilenberger, 1965], viz.,

z dz
Jzöjj()' (4.18)

which appears in Stavn's three-parameter model [SUion, 1982] and is a

similarly useful concept in the present context. A comparison of Eqs. 4.17 and

4.18 shows that the net effect of scattering on the irradiance is completely

described by the mean light path i. For any scattering medium, Ji < 1 and

thus > zl z, which means that there will be a decrease in the net irradiance at

z by a factor exp[a( 4 z)]. Another way of expressing this is to rewrite Eq.

4.17 as



riTA

Er(Z)=
4irz2

exp[a(ztz+öz)], (4.19)

where & = z is defined as the mean increase in the light path due to

scattering (see Figure 4.2).

4.3.2 Solution for the Absorption Coefficient

Equation 4.12 is easily solved for u(z), giving

1 dEr(Z)21
a(z)=r_E() dz Z

(4.20)

2]

=ir(Z) KE(z)---

where KE is defined as the diffuse attenuation coefficient for vector

irradiance from an isotropic source. This follows the usual convention for

defining irradiance attenuation coefficients, viz,

1 dE(z)KE(Z)()
dz
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Figure 4.2 Vector irradiance from isotropic souce embedded in a
homogeneous scattering and absorbing medium.

From the definition of the irradiance attenuation coefficient, the vector

irradiance may be expressed as

Er(Z) = Er(zo)exp[I:KE(z)dz}. (4.21)

Solving Eq. 4.20 for KEr gises

a(z) 2

.14(z) z
(4.22)

Substituting this expression into Eq. 4.21 gives the same result as Eq. 4.13 for

the vector irradiance, as it should. Note that for a homogeneous ocean, as

z -* , KE -* KE = affi where KE is the well-known diffuse attenuation
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coefficient for vector irradiance defined for solar, i.e. plane wave,

illumination.

Since the light field from an isotropic source approaches a plane wave in

the far field, all the results derived here must approach, at large distances

from the source, the well-known relations in ocean optics that are derived for

plane waves incident upon the water's surface. Consider again Eq. 4.20. As z

increases, the second term on the right eventually becomes negligible

compared to KEr, resulting in the approximation

a(z) r(Z)KE (z), (4.23)

which is identical to Preisendorfer's solution [Preisendorfer, 19611 for a plane-

parallel ocean illuminated by solar radiation. Again for a homogeneous

ocean, KE K K, where K is the asymptotic diffuse attenuation

coefficient. Because the equivalencies are achieved at large distances from the

source, theoretical proofs [Preisendorfer, 1959; Højerslev and Zaneveld,, 1977]

of the existence of a submarine asymptotic daylight field apply just as well to

an isotropic source embedded in the ocean. From Eq. 4.20 it is seen that the

condition for the asymptotic field from an isotropic source in the ocean is

2/KEr
<< z. This condition will always be met for large enough values of z,

since KE1 is bounded and, for homogeneous water at least, eventually

approaches a constant. Because the light field from an isotropic source is truly

axially symmetric, Zaneveld and Pak's derivation [Zaneveld and Pak, 19721,

which relates the asymptotic radiance distribution and its derivative to the

beam attenuation coefficient and the volume scattering function, also applies.



This opens up the possibility for testing these theories. Furthermore,

measurements in homogeneous water can more easily be made since the

source-receiver system can be lowered to depths where the water column

between the source and receiver is found to be homogeneous.

Experimentally, measurements are taken at discrete points zj, so that

KEr(Zi) would be calculated from

[Er(Zi)]
KE(zfl)= -, (4.24)

2fl-'rl
flI

where > z1 > z1. The operational form of Eq. 4.20 is then

Iin
Ez '(1 1
r\ n-li

I

[rZn+ij 2-----p. (4.25)
IZn+i fl_I

71

To determine the absorption coefficient at a point z, three physical

quantities must be measured: the vector irradiance E, the average cosine 1r/

and the distance z between the source and detectors. Measuring vector

irradiance and distance are straightforward and can be performed accurately

[Maffione et al., 1991]. One way to determine L is to measure the scalar

irradiance E and compute the ratio Er/Eu. Scalar irradiance meters, however,

are much more difficult to construct and use [Højersiev, 1975; Spitzer and

Wernand, 19801 and are subject to various sources of error. The average

cosine could be estimated from measurements of the point spread function

[Voss and Chapin, 19901 (PSF) from the isotropic source. Since the PSF is the



radiance distribution, L(z, 8), normalized to the source power, jI. is estimated

from

Pr(Z)

jemL(z,9)c0s OsinOd6

IemaxL(zO)sin8d8

The ratio cancels the radiometric units, so that no absolute calibration of the

camera and source is necessary. Measurements by Voss imd Cha pin [1990]

and Maffione et iii., [1991] of the PSF in ocean waters show that the PSF falls

off by more than 3 orders of magnitude within the first 10°, which is expected

since scattering in the ocean is highly peaked in the forward direction

[Kullenberg, 1974]. Measurements by Wilson [1979] of the radiance

distribution from a point source in an aluminum hydroxide suspension

show that the PSF continues to drop off by another 2 orders of magnitude

from 10 to 50°. Thus an accurate estimate of j'r cai-i be obtained by

measuring the PSF over forward angles, i.e., 9m 90°, except perhaps in

murky water or at asymptotic distances where a larger fraction of the scattered

light is contained at larger angles. Underwater camera systems have become a

well-developed technology [Voss, 1989b; Maffione et al,, 1991; Voss and

Cha pin, 1990; Voss, 1989a] which in many circumstances makes their use

preferable to that of scalar irradiance meters because the measurement of the

radiance distribution provides additional information about the optical

properties of the water.

To the authors' knowledge, no data have been published on Pr(Z), as a

function of the distance z from the source. Nonetheless, its limiting values
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can be inferred. From its definition, it is clear that r(Z) 1 as z *z. In clear

homogeneous water,
11r (z) should gradually and monotonically decrease and

must eventually approach its asymptotic value as z -. °. In the asymptotic

limit, KE must approach K.,,, the asymptotic diffuse attenuation coefficient.

With the Wilson-Honey relationship [Wilson, 19791 for the asymptotic

diffuse attenuation coefficient, K = c %b, where b and c are the total

scattering and the beam attenuation coefficients, respectively, the following

equation is easily derived from Eq. 4.23:

- 1-O)
IL°, (4.27)

where aj b/c is the single scattering albedo. Measurements of the optical

properties of ocean waters at 530 nm by Petzold [1972] show that wo varies

from 0.3 in the clearest waters to 0.9 in murky (e.g., harbor) waters. ge., is

thus bounded approximately by 0.4 < <0.9, with the lower value for murky

waters and the upper value for the clearest waters.

Since, for clear ocean water, g., is - 0.9, then it should be expected that

g(z), which starts out at I at z, will remain close to 1 for at least several

attenuation lengths. Clear ocean water measurements of the vector

irradiance from an isotropic source will therefore decay, according to Eq. 4.16,

to a good approximation over distances extending to several attenuation

lengths, assuming the water column is relatively homogeneous, i.e., a is

constant.
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Let E = k,E denote the signal from the irradiance detector in, say, digital

counts or volts, where ke determines the response to the irradiance E at the

detector. For all practical purposes, zo may be taken to be at the origin, and Eq.

4.16 may then be expressed in the form

E=
k,cli0exp(az)

4,rz2
(4.28)

where is now the total power emitted by the source. Multiplying through

by z2 and taking the natural logarithm gives

lri[z2 E(z)} 14
k,P0 ) - az. (4.29)

A plot of the left-hand side versus z yields a line whose slope is the negative

of the absorption coefficient. Because the offset, ln(k,0/4ir), is not needed to

determine the slope, no absolute calibration is necessary.

At large distances from the source or in water where scattering is high, z

in Eq. 4.29 should be replaced by 1, Schellenberger's mean light path (Eq.

4.18).But, this requires knowing Pr(z). In many situations, however, the error

in using z instead of in estimating a with Eq. 4.29 will be small since

2= z + & = z(1 + &/z). That is, even though Sz increases as z increases, the

ratio 6z/z remains small.

4.4 DATA

Measurements of the vector irradiance E(z) from an isotropic source

were made in waters off the coast of southern California during the Ocean
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Optics cruise in August 1990, sponsored by the Office of Naval Research. The

experimental technique and instrumentation are described in Maffione et al.

[1991] and Brown et al. [1991]. In addition to the vector irradiance

measurements, simultaneous measurements of the apparent radiance of the

source and the PSF were made. The decay of the apparent radiance of the

source provided the beam attenuation coefficient, and the PSF gave

information on the forward-scattering properties of the water.

Measurements were made at a wavelength of 465 ± 15 nm. The data

presented here contain the largest source-to-detector separation profile, which

is from the last run on August 26. In this run, the detectors and cameras were

held at a depth of approximately 72 m and the distance to the isotropic source

was varied by lowering the source from 78 to 140 in. Measurements were

taken at approximately 5 m increments.

Figure 4.3 shows a log-linear profile of the vector irradiance. The bottom

abscissa is the distance between the source and detectors, and the top abscissa

shows the depth of the source. The units for the irradiance are in digital

counts. The absorption coefficient a and the offset term ln(k,'Io/4ir) were

calculated from a linear least-squares fit to the data using Eq. 4.29. The curve

in the plot was computed from Eq. 4.16, with the values of the linear fit for a

and k,i0/4ir. The absorption coefficient, which is given by the absolute value

of the slope, was computed to be 0.0337 m1. The standard error of the slope

was 0.0003 m4. This gives a percentage error in a of - 1%.
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Figure 4.3 Vector irradiance measurements from an isotropic source taken
on 26 August 1990, off the coast of southern California.

From measurements of the apparent radiance of the source, which were

made with a CCD camera [Maffione et al., 1991], the beam attenuation

coefficient was found to be c = 0.077 rn'. Therefore b = c - a = 0.043 rn-1, and

thus the single scattering albedo, w = b/c, was 0.56, which gives i 0.8 from

Eq. 4.27. The change in i7(z) from its value of 1 at the source was therefore

probably small, which is one reason why there was such a good fit to the data.

Nonetheless, it would be quite interesting, in future experiments, to

determine r(Z) and its effect on the computation of a.
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4.5 SUMMARY AND CONCLUSIONS

Closed-form solutions for the vector irradiance from an isotropic source

embedded in the ocean were derived from the RTE. The solutions are exact

everywhere for a homogeneous optical medium and are believed to be an

excellent approximation along the vertical axis in a plane-parallel ocean,

although this has yet to be rigorously demonstrated. The vector irradiance

equations were solved for the absorption coefficient. Operational equations

for the absorption coefficient were also given. The appropriate solution

depends on the experimental setup and assumptions about the clarity and

homogeneity of the water column.

Measurements of the vector irradiance from an isotropic source were

performed off the coast of southern California, and some of the data were

presented. The instrumentation used to carry out the measurements

consisted of upward- and downward-facing irradiance detectors, a CCD

camera system, and an isotropic source. Neither an absolute radiometric

calibration nor an iritercalibration between the detectors and camera were

needed. For clear, homogeneous water, it was shown that irradiance

measurements only are required to determine the absorption coefficient

accurately. The absorption coefficient was computed from a profile of the

vector irradiance. The percent error of the estimate was less than l%.
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Chapter 5

THE AVERAGE COSINE DUE TO AN ISOTROPIC LIGHT SOURCE IN THE

OCEAN

Robert A. Maffione and Jules. S. Jaffe

Journal of Geophysical Research, 100, 13,179-13,192, 1995.
Copyright by the American Geophysical Union.
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5.1 ABSTRACT

The average cosine, i, of the light field created by an isotropic point source

(IFS) embedded in a homogeneous ocean is investigated with a Monte Carlo

model. Two volume scattering functions (VSF's) are used in the model, taken

from Petzold [1972] to compute the radiance distributions at various distances

from the source. The simulated radiance distributions are compared with

measurements of the point spread function made at Lake Fend Oreille, Idaho,

during the 1992 optical closure experiment. An analytic model is presented for

ii which is valid to at least 15 optical lengths from the source. The model shows

that the mean light path, derived from )i, is a strong function of the single

scattering albedo and the VSF. We found that errors in estimating the absorption

coefficient by neglecting the increase in the mean light path, which is due to

scattering, vary between 5% and 12% for nearly all natural waters. A

mathematical proof is given that i -4 1 as the distance to the IFS goes to zero.

An analytic expression is derived for i close to a finite diffuse-isotropic source

which shows that 71 approaches one as the distance decreases, but at extremely

close distances, 71 -4 1/2 as the distance to the surface of the source goes to zero.

At distances beyond one attenuation length, for finite sources small compared to

an attenuation length, 71 behaves essentially as it would for a point source. An

asymptotic model for 71 as a function of the single scattering albedo is given with

coefficients that depend on the VSF. Model results and comparisons with

measured PSF's, reveal the surprising result that the light field from an



embedded isotropic point source in the ocean does not exhibit asymptotic

behavior as far as 15 attenuation lengths from the source.

5.2 INTRODUCTION

The light field due to an isotropic point source (IPS) embedded in the ocean

is interesting to study because this light field, under suitable mathematical

transformations, provides a wealth of information about the optical properties of

the water. To the extent that the ocean may be thought of as a linear optical

medium, the radiance distribution at each point in the water due to an embedded

IFS is the optical impulse response (OIR) of the medium. The OIR is commonly

referred to as the point spread function (FSF), although the PSF for imaging

systems is usually defined as the (output) radiance distribution due to a point

Lambertian source. In this case, the transformation of any input light field by the

optical system is given by the spatial convolution of the input light field with the

OIR. The ocean laser community defines the PSF similarly because of its

equivalence to the beam spread function (BSF), which is the angular irradiance

distribution due to a unidirectional light beam. [Mertens and Reptogle, 1977]. In

the small-angle range (less than 10 °), both the isotropic- and Lambertian-source

defined PSF's are empirically nearly equal. In general, however, they should be

distinguished.

Aside from its powerful use as the OIR of an optical medium, the light field

due to an IFS embedded in the ocean can, in principle, be mathematically

transformed to yield all of the inherent optical properties (lOP's) of the medium.

Sorenson and Honey [19681, for example, conjectured that the beam attenuation,



volume absorption, and backward scattering coefficients can all be determined

from radiance and irradiance measurements of an IPS. Sorenson and Honey's

conjectures were experimentally verified as good approximations [Honey and

Maffione, 1992; Maffione, 1993; Maffione and Honey, 1991; Maffione et al., 1991, 19931.

Wells [1969] first presented the transformation of the PSF to the volume scattering

function (VSF) in the small-angle approximation. Although Wells'

transformation to the VSF has yet to be experimentally tested in the sense of

closure, it was recently numerically tested and found to be accurate within the

small-angle scattering limit up to about six attenuation lengths [Jaffe, 1995].

To the authors' knowledge, the only known exact transformation to an

inherent optical property from an IPS light field was presented by Maffione et al.

[1993]. They showed that the absorption coefficient a could be obtained exactly

from the scalar irradiance and divergence of the vector irradiance by simply

transforming Gershun 's [19361 Equation to spherical coordinates. For

homogeneous water the problem reduces to one spatial coordinate, the radial

distance r from the source, and the resulting solution is given by

where

2]a= ir(r)[Kr(r)_j (5.1)

I(,(r) 1 dEr(r) (5.2)
Er(r) dr

is defined as the radial attenuation coefficient for net radial irradiance E7 and

iir(T)

E(r)
(5.3)

E(r)
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is defined as the radial average cosine. The net radial irradiance is the difference

between the irradiance flowing away from the source and the irradiance flowing

in toward the source due to scattering. Er is analogous to the vertical component

of the vector irradiance in a Cartesian coordinate system; Eo is the scalar

irradiance. It is understood that all quantities are spectral. Henceforth, the

subscript r and the adjective radial will be omitted. Comparing Eq. 5.1 to the

analogous form of Gershun's Equation,

a = I(r)K(r) (5.4)

reveals that Gershun's Equation is actually a special case of the more general

form Eq. 5.1 whenr - oO In other words, Gershun's Equation is the far-field

approximation where the electromagnetic waves are considered plane waves and

horizontal gradients in the electromagnetic field are neglected.

The average cosine, i, is an apparent optical property (AOP) since it

depends on the structure of the light field. The importance of Gershun's

Equation 5.4 is that the product of the average cosine with another AOP, the

irradiance attenuation coefficient K, yields the absorption coefficient, an TOP

which depends only on the physical properties of the water. In the more general

ca.se Eq. 5.1, the absorption coefficient is given by the product J1K minus the

geometric reduction due to the spherically expanding light field of an IPS, but

this geometric term also containsi. Thus, the average cosine is fundamental to

understanding how the ocean transforms the light field and how that

transformation is related to the absorption of light by the water.
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In this paper we investigate the behavior of i from the radiance

distribution due to an IFS embedded in the ocean using a Monte Carlo (MC)

model. The computed radiance distributions are compared with PSF's that were

measured in Lake Fend Oreille during the Office of Naval Research (ONR)

sponsored optical closure experiment in April-May, 1992 [Maffione, 1993;

Zaneveld and Pegau, 1993]. Analytical results are derived on the limiting values of

i both for the case when r *0 and when r- co We also discuss the case of a

finite source. A simple exponential equation is presented as a model for g

which is valid to at least 15 optical lengths from the source. The i model is used

to compute the mean light path, defined by Eq. 5.17, which is then used to

accurately calculate the absorption coefficient. Errors in neglecting the increase

in the mean light path are investigated.

5.3 APPROACH

The MC model uses standard Monte Carlo techniques for computing

photon propagation in an absorbing and scattering medium (see, for example,

Mobley [1994, Chapter 6]). Spherical polar coordinates are most appropriate for

describing the radiance distribution L due to an IFS situated at the origin, as

shown in Figure 5.1. In homogeneous water, the symmetry of the radiance

distribution at all points in space allows L to be specified as a function of one

independent angular variable, 0', (ref. Figure 5.1). Along any radial path from

the point source, 0' is defined as the angle that the radiance direction vector, ,

makes with the radial line from the IFS to the point where the radiance is
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specified. If, for example, a radiometer is pointing directly at the source, it is

measuring the radiance in the direction 6' = 0. The symmetry of the problem

also allows L to be specified as a function of the distance r from the source; the

radial direction from the origin is irrelevant.

Making use of these symmetry properties in the Monte Carlo simulations

greatly reduces computation time. Computing the radiance distribution at a

point in space does not require counting only those photons which cross that

point (strictly speaking, a small area). All of the photons which cross an

imaginary sphere of radius r are tallied according to the direction 0' that they are

heading when they cross the sphere to compute the radiance distribution L(r, 0').

Because it does not matter where on the sphere the photons cross, by reciprocity

Figure 5.1 Coordinate system for the Monte Carlo model that computes the
radiance distribution due to an isotropic point source at the origin.
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it does not matter in which direction the photons are initially launched. A

computational step is saved by launching all of the photons in one direction.

This simulation is thus analogous to an experiment where the radiance

distribution at all points a distance r from a collimated source is measured and

then summed or integrated to produce the radiance distribution that would have

been measured at a single point a distance r from an isotropic source. The results

are identical because an isotropic source is equivalent to a collimated source

being pointed in all directions at once.

To simplify the notation, we will henceforth drop the prime on the angular

variable 0., keeping in mind that we are referring to the polar angle in the prime

coordinate system shown in Figure 5.1. Then i is given by

jJ(r)
fFL(r,O)cosOsin9dO

L L(r,O)sinOdO

L(,O)J
cos&sinOdO I L(r,a)cosOjsinOdO

.',vJ2 (55)
I L(r,O)sinOdO+J L(r,9)sin9dO

E(r) E(r)
E0(r)+E0(r)

where the plus and minus subscripts denote the forward and backward

hemisphere irradiances, respectively, defined by the limits of integration of the

separate terms in the second equation. Because the reduction in computation

time by excluding the calculation of the radiance distribution in the backward

hemisphere is significant, we chose to compute the radiance distribution only

from 0 to it/2. Our estimation of,
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5
L(e)cosesinede

a

f2L(o)sinaio (5.6)

E0

therefore assumes that E >> E and E0 >> E0_. The fact that the VSF's of ocean

water are highly peaked in the forward direction indicates that this ought to be

an excellent approximation. Furthermore, measurements [Honey and Maffione,

1992; Maffione, 1993;Maffione et al., 1991, 19931 show that E/E <0.01 for various

natural waters. Bear in mind that this is an excellent approximation for

irradiances due to an IPS and is not meant to apply to comparisons of

downwelling with upwelling irradiances due to solar illumination of the ocean.

For the present study we define four cases which we refer to as deep, coast,

bay, and milk, The associated volume absorption, total scattering, and beam

attenuation coefficients are listed in Table 5.1. These values for a, b, and c,

respectively, were chosen to represent what could be considered typical, at a

wavelength of 530 nm, for clear ocean water, coastal water, bay or harbor water,

Table 5.1 Optical Parameters for Monte Carlo Simulations

Type a

m 1

b

m 1

c

m 1 b/c

Deep 0.08 0.08 0.16 0.5

Coast 0.10 0.15 0.25 0.6

Bay 0.30 1.20 1.50 0.8

Milk 0.06 1.14 1.20 0.95
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and extremely turbid water dominated by scattering. The single scattering

albedo, o = b/c, for these four cases range from 0.5 to 0.95, which encompasses

nearly all natural water.

Two different volume scattering functions were used to investigate the

dependence of the radiance distribution and 7 on the VSF. Both VSF's are from

Petzold [1972], which were measured at 530 n.m with a bandwidth of 100 nm; one

is referred to as station 8 (AUTEC test 161, July 13, 1971) and the other as station

11 (HAOCE, August 5, 1971). These two VSF's were chosen because they yield

significantly different scattering phase functions for the natural waters measured

by Petzold. Figure 5.2a shows the VSFs, and Figure 5.2b shows the cumulative

scattering probability functions for these two stations. The derivative of the

scattering probability function is the scattering phase function. Note that the

station 11 VSF has a higher slope than the station 8 VSF, and this higher slope

results in a higher photon scattering probability function over all angles.

For each of the four water types given in Table 5.1, radiance distributions

were computed at seven discrete distances from the source corresponding to

optical lengths of 0.1, 0.5, 1, 3, 6, 10, and 15. Since the attenuation coefficient c is

constant, the optical path length T is defined as
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Figure 5.2a Volume scattering functions from Petzold [1972] used in Monte
Carlo simulations. Station 8 is AUTEC test 161, July 13, 1971; station 11 is
HAOCE,August 5, 1971.

= Cr,

which is dimensionless. One optical length,r = 1, represents the distance that a

pencil beam of radiance is reduced by a factor e due to absorption and

scattering of light out of the beam. Throughout this paper, numerical results are

given in terms of the optical path length 'r, but in the proofs and some

discussions we use the radial distance r for clarity. It should be clear that the two

variables are easily interchanged.
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5.4 THEORY

5.4.1 Limiting Values of the Average Cosine Due to an IPS

5.4.1.1 The Limit r -4 00,

The existence of an asymptotic light field in a homogeneous ocean was first

explored mathematically by Preisendorfer [1959] and was rigorously proven to

exist by Højerslev and Zaneveld [1977]. By its definition the asymptotic light field

is independent of boundary conditions and is determined solely by the lOP's of

the water. Therefore relationships derived for the asymptotic light field apply

equally well for an IPS boundary condition as they do for solar, plane-wave

illumination. For example, Eq. 5.1 was derived for an IPS boundary condition

and becomes Eq. 5.4, derived for the daylight illumination boundary condition,



as r - . Without the existence of an asymptotic light field, the equality of Eq.

5.1 and Eq. 5.4 really only proves that

=

This ratio is unity because all diffuse attenuation coefficients become equal in the

asymptotic limit. Therefore, in the asymptotic limit, the average cosines for a

homogeneous ocean illuminated by the Sun and embedded with an IFS are

equal.

That the asymptotic average cosines are equal allows us to use equations for

ji that were derived for the submarine daylight field. For example, the so-called

Wilson-Honey relationship [Wilson, 1979] for K/c, namely,

can be manipulated using Eq. 5.4 to give

=
1

(5.7)

Zaneveld [1989] used a second order expansion

K.jc = 1 'y1co (5.8)

to fit data from Prieur and Morel [1971] and Tirnofteva [1971] using the coefficients

al = 0.52 and a = 0.44. The expression for using Eq. 5.4 and Eq. 5.8 is

- 1w0
poo= 2

(5.9)

1-. y1w0

It is interesting to note that although K,,jc does not depend strongly on the

second-order term, does. We performed a least-squares regression using Eq.

5.9 with data from C.D. Mobley (private communication, 1994) that he computed



with an eigenmatrix method [MobIe, 1994; Mobley et al., 1993]. Mobley ran the

same cases (ref. Table 5.1) with the two Petzold [1972] VSF's used in our

simulations. Table 5.2 gives the coefficients and Figure 5.3 shows the resulting

curves for Wilson-Honey, [Wilson, 1979], Zaneveld [1989], and Mobiei [1994].

5.4.1.2 The Limit r -4 0.

To derive this limit ofi, we must be able to specify the radiance

distribution as r 0. Since the area of a point source is zero, its radiance is

undefined. This does not, however, prevent us from considering the radiance

distribution due to a point source or the radiance at 0= 0. Conceptually, we may

think of the area of the source to be the area that an infinitesimal solid angle

subtends at r. As r 0, the area decreases as r2 and likewise goes to zero. The

radiance distribution must become more and more sharply peaked since the

fraction of photons heading in the direction 0= 0 must greatly increase over the

fraction that are scattered into other angles as r +0. This distribution will

approach a delta function because the radiance at r = 0 becomes infinite since the

subtended area goes to zero. For the same reason, the radiance at all other angles

Table 5.2 Coefficients for ThRegression to the Equation (5.9)

Empirical Eigenmatrix Methoda

Coefficients Zaneveldb Station 8 Station 11

0.52 0.532 0.666

0.44 0.379 0.280
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Figure 5.3 Asymptotic average cosine from the Wilson-Honey [Wilson, 1972]
and Zaneveld [1989] equations compared with 7 values computed with the
Mobley [1994] eigenmatrix method using the station 8 and 11 VSF's. The dotted
lines were computed from a regression using (5.9).

goes to zero. Therefore we postulate or assert that the radiance distribution

approaches some delta sequence 5(0) such that asr*0, noo,

and (0) o(0), the Dirac delta function. Specifically,

1limL(r,0) = 1im--ö(0)
(5.10)r

= 45(o)r

where I is the (finite) radiant intensity of the IFS.

Starting with the definition of i as given by Eq. 5,5 and applying Eq. 5.10

we see that
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J
L(r,6)cosOsin&1O

limi(r) = urn °

r-*O 5L(r,6)siniO

$[urn L(r, 0)] cos Osin
0 r-0

5
ilirnL(r,O)Jsinode (5.11)0 Lr-40

f8(6)cos9sir&

cos(0)sin(0)
sin(0)

Since this limit evaluates to 0/0, we may apply 1' Hospital's rule, which gives

cos(0)sin(0) cos2(0)sin2(0)
tim = hm-° sin(0) oo cos(0)

=1.

Therefore 11(0) = 1 for an isotropic point source.

5.4.1.3 Limit for a Finite Source

In practice, isotropic point sources are approximated by finite diffuse

(quasi) isotropic sources [Brown et ul., 19911. If the radius of the source is R, then

the question to be addressed is: What is the limiting value of as r -* R? Since a

diffuse isotropic source is a plane Lambertian source at its surface, then from

Eqs. 5.5 and 5.6 we have,
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ji(R) 1imii(r)
r-R

=lim °
SL(,O)sin9dO

L,5
i/2

cososina-f L(R,9)cos6sinOd&' (5.12)

LJ sinOdO+ L(R,O)sin9dO
r/2

L,-E(R)1
L,+E0 2

where L is the radiance of the Lambertian source and we have assumed

that L >> E (R), E0_ (R), which is clearly true for any realistic volume scattering

function. In taking L out of the integral we have also assumed that R << 1/c

Essentially, we are assuming that the water optical properties and the relative

size of the source is such that, at very close distances to the source, it will appear

as a plane Lambertian source in air, where the proof holds exactly.

Now consider what happens to Z in the region from the surface of the

source to about one optical length (v = 1). The source subtends a half angle at r

given by sina = R/r. Then i maybe written as

.T(r)

5a

L(r,o)cososine.do -i-J L(r,9)cosOsinOdO

I
L(r,O)sinodo+J L(r,O)sinW6

Jo

jcos8sindO+ L(r,O)cosOsin9d9
o .'a

(5.13)

1'sinGdO+5L(r,O)sinOdO
a

2

L
Sifl

= ' 2
L52sin2(a/2)+fVL(r,O)sin6do
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which is clearly an excellent approximation since the differential path to all

points on the source is small and thus L is nearly constant with angle. In the

region r < 1/c it should also be a very good approximation to neglect the second

terms in the numerator and denominator since a will be large and the radiance of

the source dominates the radiance distribution. Therefore

sin2 a (R/r)2
(5.14)

4sin2(a/2)
2{1_./iiif(/r)21}

This function is plotted in Figure 5.4 with R/r as the independent variable. It is

evident that, although 0.5 at r = R, it rapidly approaches unity in a short

distance from the surface of the source. At distances further than R/r = 0.1,

will decrease in nearly the same fashion as it would for a point source, and the

two cases will rapidly become indistinguishable as r * oo Experimentally then,

where finite diffuse isotropic sources are used, the average cosine of the light

field will be nearly identical to the IPS at distances greater than, say, one

optical length as long as the radius of the source is small compared to 1/c.

5.4.2 The Mean Light Path and the Absorption Coefficient

If there were no scattering of light in a homogeneous ocean, then the

irradiance flowing outward from the source would attenuate geometrically as

1 /r2 and exponentially according to Beer's law as exp(-ar). More precisely,
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Figure 5.4 The average cosine within one optical length of a finite isotropic
source where the radius of the source is one tenth of an optical length.

E(r) = E(r) exp(ar), (5.15)

showing explicitly that the net irradiance E equals the outward flowing

irradiance E+ since there is no scattering, i.e., F.. = 0. cb is the radiant flux of the

source.

Scattering increases the geometric distance photons travel, thereby

increasing the probability of photon absorption. An emitted photon that makes

it to a radial distance r after one or more scattering events will have actually

traveled a total distance r + Sr. To compute the irradiance at r, all photon paths to

that point would have to be accounted for and the resulting calculation would be
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unwieldy, but Maffione et al. [1993] showed that the net irradiance is given exactly

by

where

E(r)
2
exp(ai) (5.16)

4,vr

rdr'
r_J0(,) (5.17)

is defined as the mean light path. So we see that , which depends solely on the

average cosine, magically takes into account all of the photon paths when

computing net irradiance at a distance r from the II'S.

Comparing Eq. 5.15 with Eq. 5.16 implies that we may write F=r+ör,

where is defined as the mean increase in the light path due to scattering. The

import of or is that it applies to any geometry, yet nearly all methods for

measuring the absorption coefficient [Pegau et at., this iss'ue] neglect it and use the

geometric distance, analogous to r, for the path length. The mathematical

formulation of the IPS method for determining a, summarized by Eqs. 5.16 and

5.17, provides an exact expression for the mean increase in the light path,

namely,

&{r) = 1] dr' (5.18)

which we investigate here with the MC model.
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5.5 RESULTS

5.5.1 Comparison of Simulations with Measured PSF's

Measurements of the PSF at Lake Pend Oreille, Idaho, with both plane

Lambertian and isotropic sources, provided us an opportunity to compare the

MC model to measurements in natural water. The measurements were

conducted as part of the ONR sponsored optical closure experiment in April-

May, 1992. The experimental arrangement is described in Maffione et al. [1991,

1993]. Briefly, a light source [Brown et aL, 1991] is lowered into the water and

images of the source are recorded by an integrating CCD camera [Voss and

Cha pin, 19901. The electronic camera is lowered to some depth and the distance

between the source and camera are varied by changing the depth of the source.

During the Lake Pend Oreille experiment we used a 50-mm focal-length lens and

a 532-nm interference filter (10-nm bandwidth) with the camera. This

arrangement provided measurements of the PSF out to nearly 200, although light

levels were usually noise limited by 15°.

The light source arrangement allowed us to interchange a flat diffuser with

a diffusing globe. The flat diffuser created a cosine (i.e., plane Lambertian)

source with a diameter of 3.8 cm. The diffusing globe created an isotropic source

with a diameter of 12.7 cm. Most measurements at Lake Pend Oreille were made

with the isotropic source. Occasionally, we made measurements with the cosine

source to see how these PSF's compared with the isotropic-source PSF's. The

advantage of using the flat diffuser is that all of the light emitted by the light

source is initially directed into the forward hemisphere, toward the camera,
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allowing us to measure the radiance distribution at larger angles and at farther

distances from the source than we could when all of the light is directed

isotropically.

On May 6 a series of PSF's were measured using the isotropic source with

the camera held at a 60-rn depth. When the run was complete, the system was

immediately hauled to the surface and the diffusing globe was replaced with the

flat diffuser, creating a cosine source. Then another series of PSF measurements

were made with the camera at the same depth. The absorption and beam

attenuation coefficients were estimated with the IPS method [Maffione et aL, 1991,

1993]. At 60 m they were a = 0.12 rn-1 and c = 0.40 rn1 at 532 nm. Thus the single

scattering albedo was Ukj = 0.70. These optical properties most closely match our

"coast" PSF simulations (ref. Table 5.1). Figures 5.5a-5.5d show comparison plots

of the measured PSF's with the simulated coast PSF's at one, three, six, and ten

optical lengths for the simulated data. These optical path lengths roughly

correspond to the optical path lengths of the measured PSF's. The isotropic

source PSF is missing in Figure 5.5d because there was not enough measurable

light at this distance. The PSF units are arbitrary and were scaled to adjust the

vertical height of the curves for better comparison. We are not interested in the

absolute magnitudes, only the shapes of the PSF's, which are not affected by our

scaling. The scales of the four plots are identical so that the slopes and their

changes with distance can more easily be compared.



10 io
(a)

io io

102 cs'N--- 10

flNN\.

Station S
lO

100 urce 100

Isotropic source

10 I hull I 11111 10
2 468 2 468 2

0.1 1 10

Angle (deg)

10

iü

10
-e
(8

iø
-I

100

101

s-. -

.1

4

118

(b)

0.1 1 10

Angle (deg)

10

io

10

10'

100

I

2 468 2 468 2

0.1 1 10 0.1 1 10

Angle (deg) Angle (deg)

Figure 5.5 Comparisons of the Monte Carlo radiance distributions, or PSF's,
and the measured PSF's at Lake Pend Oreille during the optical closure
experiment. (a) Approximately one optical length from the source; (b)
approximately three optical lengths from the source; (c) approximately six optical
lengths from the source; (d) approximately ten optical lengths from the source.
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As the distance from the source is increased, the slope of the PSF will

decrease due to multiple scattering of photons into larger angles that were

initially headed at smaller, forward angles. Figures 5.5a-5.Sd clearly show the

decreasing slopes at greater ranges for both the modeled and measured PSF's.

The horizontal portion of the measured PSF's are the sources themselves. The

extremely sharp drop-off is an edge effect caused by the sharp transition in the

radiance distribution from directly transmitted plus scattering light to purely

scattered light. For our comparison we are interested in the portion of the PSF

away from source and edge effects.

At a fixed distance from the source, the slope of the PSF will be primarily

dependent on the VSF and the a of the water. The station 11 VSF yields higher

PSF slopes than the station 8 VSF, as expected, because the former VSF has a

steeper slope than the latter (ref. Figure 5.2a). A steeper slope means a higher

scattering probability function (ref. Figure 5.2b) which implies that a greater

fraction of scattered photons are contained within the smaller scattering angles

causing the PSF to decrease faster with increasing radiance angle. The slopes of

the PSF's were computed at a radiance angle of about 50 and are plotted in

Figure 5.6 as a function of optical path length. The slope of the PSF was

computed by a linear regression on a log-log scale. In general, the measured PSF

slopes fall between the model PSF slopes for the two VSF's used in the

simulations. If the slopes at 3r for the measured PSF's are ignored, the trends for

the change in slopes with optical path length are fairly similar. The anomalous

slopes at 3T are probably a measurement artifact since linear trends were found
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Figure 5.6 Comparison of PSF slopes from measurements at Lake Pend Oreille
with the Monte Carlo "coast" runs.

when these plots were made using slopes computed at angles other than It

not the intent here to present an analysis of PSF slopes but rather to demonstrate

that the model gives physically reasonable PSF's.

5.5.2 Model of the Average Cosine

The average cosine was computed with Eq. 5.6 at the seven optical path

lengths for each water type (ref. Table 5.1) and for the two Petzold [1972] VSF's

(station 8 and 11). Figure 5.7 shows the results for station 11. We found that JI

fit the exponential equation

i(r) = k0 + k1exp(k2r) (5.19)
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Figure 5.7 The average cosine as a function of optical path length from an IPS
computed from the station 11 VSF simulations. Solid curves were determined
from a regression to (5.19).

quite well for all of the simulations. The regression coefficients, ko, k1, k2, for all

of the cases we studied are given in Table 5.3. Note that ko + sums almost

exactly to one in all cases, as it should by our proof that ji - las r - 0. We did

not constrain the regression to do so.

A fortunate coincidence of Eq. 5.19 is that it can be integrated to give

analytic solutions to Eqs. 5.17 and 5.18. The solutions are

- 1
= k0 +ln[ji(r)]

k0k2

and

(5.20)
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TABLE 5.3 Coefficients for ji Regression to the Equation (5.19)

Station 8 VSF Station 11 VSF

Type k0 k2 k1 k2

Deep 0.9024 0.0985 0.2309 0.9315 0.0693 0.1811

Coast 0.8846 0.1169 0.2428 0.9193 0.0817 0.1918

Bay 0.8466 0.1552 0.2546 0.8875 0.1136 0.1880

Milk 0.8132 0.1891 0.2578 0.8502 0.1506 0.1668

= - iJ + 1n[rl()] (5.21)

where 7('r) is given by Eq. 5.19. The mean increase in the light path, Eq. 5.21, is

plotted in Figure 5.8 for the station 11 VSF. We see that or reaches one tenth of

an optical length at about r = 3 in the most highly scattering case (milk). Not

until r = 11 does the mean light-path increase reach one optical length. For clear

ocean water (deep), Or = lat r = 19! For all types of natural water, the mean

increase in the light path is small compared to the distance from the source. It is

important to point out that this is not necessarily the case for light-field

geometries other than the spherically symmetric IPS geometry. For solar

illumination, (z)will in many cases be a significant fraction of z, where z is the

vertical distance. In the next section we investigate the errors in ignoring Or

when estimating the absorption coefficient with the IPS method.

Equation 5.19 shows that as r + oo, ko so that we might expect ji = ko.

It also appears from Figure 5.7 that I accurately approaches /1. according to
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Figure 5.8 The mean path-length increase as a function of optical path length
from an IPS computed from the Station 11 VSF simulations.

Eq. 5.19, but when the asymptotic values, k3, are plotted versus nj and compared

to the asymptotic values computed by C. D. Mobley (private communication,

1994), similar to what was shown in Figure 5.3, we get the results shown in

Figure 5.9. M pointed out earlier, all asymptotic values of the average cosine

must be equal, independent of the boundary conditions for the same TOP's.

Because the Mobley values compare exceptionally well with empirical data (ref.

Figure 5.3), we are led to the conclusion that Eq. 5.19 does not accurately predict

the asymptotic values of the average cosine, Nonetheless, Eq. 5.19 does

accurately model the behavior of i within at least 15 optical lengths from the

source, which is clearly evident in Figure 5.7.

We estimated the model parameters in a regression to only the last three 7

values at 'r = 6, 10, 15 to see if the ko parameter would then better agree with C. D.
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Mobley (personal communication, 1994). Although ko did decrease, it was by

only a few percent and was still significantly too high. Our conclusion is that r

15 is still nowhere near the asymptotic light field for an IPS. Further evidence of

this conclusion can be seen in Figure 5.10, where the normalized radiance

distributions at 'r 15 are plotted together with the asymptotic radiance

distributions computed by Mobley with his eigenmatrix method IMobley, 19941.

It can be seen that even for the highly scattering case, wtj 0.95, the inflection in

the radiance distribution near zero is still not evident for the IPS boundary

condition. Because the exponential fit of the ji values at r = 6, 10, 15 to Eq. 5.19

was quite good and yet still predicted values of that were significantly higher

than expected, it is possible and even likely that i(r) itself undergoes an

inflection as -

5.5.3 Determining the Absorption Coefficient

The absorption coefficient can be estimated experimentally by making

measurements of the net irradiance E(r) due to an isotropic source as a function

of distance [Maffione et aL, 1991, 1993]. Taking the natural logarithm of Eq. 5.16

and rearranging gives

ln[r2E(r)] in(f) (5.22a)

- ar. (5.22b)
\4ir)
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Figure 5.9 Comparison of average cosines from Monte Carlo simulations at 15
optical lengths with asymptotic average cosines from eigenmatrix computations.

The slope of a linear regression of the measurements of E(r) to Eq. 5.22a yields

the absorption coefficient, assuming (r) is known. In practice, (r) is not

known and Eq. 5.22b is used to estimate a. As we showed above, to a very good

approximation, especially near the source, r.

From our simulations we can now estimate (r) using Eq. 5.20 and

investigate the errors in estimating a using Eq. 5.22b. Also, because the MC

model uses a known input value of a, we can check the accuracy of the MC

model and the i model (Eq. 5.19) by estimating a with Eq. 5.22a since this

equation is exact. The results are summarized in Tables 5.4a and 5.4b, where the

last column gives the percent error in estimating a with Eq. 5.22a. These errors
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Figure 5.10 Comparison of normalized radiance distributions from Monte
Carlo simulations at 15 optical lengths with asymptotic radiance distributions
from eigenmatrix computations.

are due to errors in both the MC model and the i model together since the ji

model was needed to compute (r). The fourth column gives the percent error

in estimating a with Eq. 5.22b, which neglects the mean light-path increase5r.

These errors, however, include the errors due to the MC and i models as well as

the errors in using the approximation (Eq. 5.22.b). Therefore the difference

between the errors in columns 4 and 6 is a better indicator of the errors due to

using Eq. 5.22b for estimating a. Ignoring the milk runs, which. are not realistic

for natural waters, the largest error is then about 12% (bay, station 8 VSF) and

the smallest is about 5% (deep, station 11 VSF).
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One observation of these results is that the error in estimating a is a strong

function of both Uj and the VSF. That the errors should be strongly related to cj

is expected, but the strong dependence on the VSF is somewhat surprising. The

errors roughly double between the station 11 VSF and the station 8 VSF, yet the

scattering probability functions do not differ that greatly between the two VSF's

(ref. Figure 5.2b). Evidently, however, this difference does have a significant

affect on the mean light path. Figure 5.11 shows the differences in the increase in

the mean light paths, & (station 8) -& (station 11). Comparing this to Figure 5.8

shows that the change in & is over half the magnitude of Sr for the station 11

VSF.

5.6 CONCLUSIONS

The radiance distribution due to an isotropic point source embedded in the

ocean can, in theory, be inverted to yield all of the inherent optical properties of

the medium. Approximations have been developed by Sorenson and Honey [1968]

and Wells [1969]. Sorenson and Honey's approximations can be used to estimate

the absorption, attenuation, and backward scattering coefficients. Wells' paraxial

approximation can be analytically inverted to yield the volume scattering

function in the small-angle limit. The accuracy of these approximations depends

on the shape of the volume scattering function as well as the distance to the light

source. The only known exact solution for an TOP derived from an IFS light field

was presented by Maffione et at. [1993]. They derived the absorption coefficient

by transforming Gershun's [1936] Equation to spherical coordinates. Their
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derivation showed that the average cosine ji was fundamental to describing how

scattering increases the optical path length and thus the probability of photon

absorption.

A Monte Carlo model that computes the IPS radiance distribution was

compared with point spread functions measured in Lake Fend Oreille, Idaho

[Maffione, 1993]. MC simulations using volume scattering functions from Petzold

[1972] compared quite well with the measured PSF's (Figures 5,5a-5.5d). The

slopes of the measured PSF's fell within the slopes of the simulated PSF's (Figure

5.6).
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For homogeneous water the asymptotic radiance distribution is only a

function of the lOP's and independent of the boundary conditions [Preisendorfer,

1959; Højerslev and Zaneveld, 1977]. Given the same lOP's, the asymptotic light

field due to an embedded IPS is thus identical to that for an ocean illuminated by

solar, plane-wave radiation. Comparing the MC results at 15 optical lengths

from the source to eigenmatrix calculations of the asymptotic daylight field

[Mobley, 1994] showed that 15 optical lengths is nowhere near the asymptotic

limit for an IPS light field, even for the murkiest of waters (o = 0.95). Using the

eigenmatrix results and a model for the asymptotic ii presented by Zaneveld

[1989], new coefficients for the model were computed that were shown to

depend on the VSF (Table 5.2).

By describing the IPS radiance distribution as a delta sequence near the

source, we proved that )i 1 as r -.4 0. For a finite diffuse isotroptic source, we

showed thati .- 1/2 at the surface of the source. If R << 1/c, where R is the

radius of the source and c the attenuation coefficient, then I rapidly approaches

unity very near the surface, and at distances beyond one optical length, 1/c, it

behaves essentially as it would for an IPS. On the basis of our MC simulations

we developed a simple analytic model, Eq. 5,19, for )i valid out to at least 15

optical lengths from the source. This model can be used to compute the mean

light path, (5.17), and the increase in the mean light path, Eq. 5.18, due to

scattering. The analytic solutions to Eqs. 5.17 and 5.18 based on the model are

given by Eqs. 5.20 and 5.21, respectively.



131

Sorenson and Honey [19681 argued that the absorption coefficient a could be

estimated using Eq. 5.22b which does not depend on the increase in the mean

light path due to scattering and hence assumes i = 1. The exact result, Eq. 5.22a,

was derived by Maffione et al. [1993] and does depend on the true value ofi. Our

model fori, Eq. 5.19, showed that the errors in neglecting the increase in the

mean light path due to scattering are, for nearly all natural waters, between 5°/.

and 12% of the true value of a.
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Chapter 6

THEORY AND MEASUREMENTS OF THE COMPLETE BEAM SPREAD

FUNCTION OF SEA ICE

Robert A. Maffione and Curtis D. Mobley

Submitted to Limnology and Oceanography
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6.1 ABSTRACT

The beam spread function (BSF) of sea ice is of interest for several

reasons. The BSF characterizes beam propagation through sea ice. Its

equivalent, the point spread function (PSF), is essentially the optical impulse

response of the medium, which has many useful connections to radiative

transfer theory. In-ice measurements of the BSF over the full angular range 0

to 130 degrees, using a novel method, were made of first- and multi-year ice

off the shore of Barrow, Alaska. All of the measured sea ice BSF's were

drastically different than the BSF of ocean water, and they strongly indicated

that sea ice is a highly scattering medium, with a single scattering albedo

generally greater than 0.97. At pathlengths greater than 30 cm, the BSF was

found to be nearly identical to the computed asymptotic radiance distribution.

The rapid approach to the asymptotic state and the high single scattering

albedo of sea ice suggests that photon diffusion theory should accurately

describe radiative transfer in sea ice. Equating the results of diffusion theory

with asymptotic radiative transfer theory yields a simple expression that

relates the asymptotic attenuation coefficient to the inherent optical

property coefficients and the asymmetry parameter g of the scattering phase

function. It is shown that the necessary optical parameters for computing g

can be obtained from the measured BSF. Thus all the information necessary

for modeling optical propagation in sea ice can be obtained from the BSF

measurements using the method described here.
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6.2 INTRODUCTION

Sea ice is generally a highly scattering optical medium. It's physical

structure is highly complex as well, consisting of a usually unknown

distribution of air bubbles, irregularly shaped brine pockets, fractures, and

embedded particles, which all strongly scatter light [Perovich and Gow, 1991].

Measuring the optical properties of sea ice is equally challenging due to its

solid nature and the usually harsh working conditions. Thus sea ice remains

one of the least understood natural optical media.

To characterize the optical properties of sea ice, researchers usually have

taken an approach similar to that employed for characterizing the optical

properties of ocean water, but with greater limitations. For example, the

spectral solar irradiance attenuation through sea ice has been measured and

the results characterized by bulk irradiance attenuation coefficients for the

entire slab of ice [Grenfeil and Maykut, 1977; Ma ykut and Grenfell, 1975;

Perovich, Maykut, and Grenfeil, 1986}. In fact, nearly all optical

measurements of sea ice in the field have involved ambient light

measurements, from which apparent optical properties (AOP's) of sea ice can

be directly computed, These measurements and the resultant AOP"s are

useful for characterizing optical propagation through sea ice, but they suffer

from the same difficulties of interpretation as do AOP's of ocean water.

Obtaining data on the inherent optical properties (TOP's) of sea ice is

highly desirable because lOP's yield information about the fundamental

optical nature of the medium. Moreover, lOP's are necessary input for
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radiative transfer models of light propagation in sea ice [Grenfell, 1991;

Perovich and Gren fell, 1982]. But sea ice lOP's are exceedingly difficult to

measure, even in the laboratory [Light, 1995; Perovich and Grenfell, 19811.

Nonetheless, a few researchers have made heroic attempts at measuring sea

ice lOP's, including the absorption coefficient [Grenfefl and Perovich, 1981;

Perovich and Govoni, 1991; Roesler and Iturriaga, 19941, the scattering phase

function [Grenfell and Hedrick, 1983; Miller et al., 1994], and the index of

refraction [Maykut and Light, 1996]. Thus far, however, reported results

remain preliminary, especially regarding the lOP's of natural sea ice.

The beam spread function (BSF) and its mathematical equivalent, the

point spread function (PSF), are useful radiometric functions for

characterizing an optical medium [Mertens and Replogle, 1977]. The BSF is

defined as the irradiance distribution due to a collimated beam as a function

of distance R and polar angle 0 from the source, normalized by the source

power, or radiant flux. The PSIF is defined as the radiance distribution due to

a plane Lambertian source, as a function of R and 0, normalized by the source

power divided by it, i.e., the PSF is normalized by the maximum source

intensity. (See Mertens and Replogle [19771 for a thorough description of

these two functions.) Although it was known for some time that the PSF and

BSF are equal [Honey, 1979], a rigorous proof was only recently given by

Gordon [1994].

The PSF is fundamental to imaging [Wells, 19691 and the BSF has direct

applications to laser propagation and lidar [Honey, 1979]. Small-angle
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scattering theory relates the PSF to the volume scattering function (VSF) in

the paraxial, or small-angle, approximation in a way that can be analytically

inverted to obtain the VSF from the measured PSF [Wells, 1969]. Due to the

interest in underwater imaging and ocean lidar, considerable attention has

been given to characterizing the PSF of ocean waters [Voss, 1990; Maffione et

al., 19911, although there has been little progress at inverting the measured

PSF to obtain the VSF using small-angle scattering theory [Voss, 19911.

Since the PSF is essentially the radiance distribution due to a Lambertian

source, it can be integrated to yield the scalar and planar irradiances. Maffione

et al. [1993] have shown that the bulk absorption coefficient of the medium

can be accurately determined from these two irradiance measurements as a

function of distance from the source. No absolute calibration is needed, and

furthermore the method is exact, so that its accuracy is unaffected by even a

highly scattering medium. Thus, the method described below for measuring

the complete BSF of sea ice, which is the equivalent PSF, can be integrated to

yield both the scalar and net irradiances due to a Lambertian source. From

these two irradiance quantities, the absorption coefficient, diffuse attenuation

coefficient, and the average cosine of the light field can be determined.

The oniy reported attempt at measuring the PSF of sea ice was performed

by Gilbert and Bun tzen [19861 using a method developed by Honey [1979] and

instrumentation developed by Moore [1985]. Gilbert and Buntzen attempted

to measure the bulk PSF of Arctic sea ice by lowering a Lambertian light

source into the water below the ice and recording the radiance distribution
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emerging above the ice with a camera. Problems with their particular

experimental method in the harsh arctic environment limited the usefulness

of these measurements. Nonetheless, a subsequent analysis of the Gilbert and

Buntzen data by Voss et al. [1992] showed that the PSF of sea ice is far broader

than the PSF of ocean water, indicating a high degree of scattering by sea ice.

Measurements of the planar irradiance distribution due to a collimated

source - which is a paraxial approximation to the BSF - were made of a slab

of laboratory grown saline ice by Schoonmaker et al. [19891. Their results also

showed that sea ice is a highly scattering medium. Schoonmaker et al.

computed the BSF with forward and inverse Hankel transforms of their

planar irradiance measurements. Using the same optical geometry as

Schoonmaker et aL, Longacre and Landry [1994] measured the planar

irradiance distribution due to a beam propagating vertically through a bulk

slab of Arctic sea ice. As in Schoonmaker et al.'s setup, Longacre and Landry's

measurements were not strictly the BSF, but their results once again

confirmed that sea ice is a highly scattering medium. Tan is [1994] also used a

similar setup to make beam spreading measurements of sea ice samples taken

from cores. Tanis's goal was to use his measurements in Wells's small-angle

scattering inversion algorithm [Wells, 19711 to obtain the small-angle VSF.

However, recent investigations by Joe/son [1996], using a Monte Carlo model,

indicate that small-angle scattering theory breaks down for highly scattering

media because these theories do not take into account the scattering of

photons back into the forward light path. These theories take into account
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only multiple scattering that occurs within the paraxial angles (nominally <

100). Therefore it does not appear that the small-angle VSF can be

determined for sea ice, which is a highly scattering medium, with the Wells

inversion algorithm.

A new method for measuring the BSF of sea ice is described below. It is

shown that this method allows the BSF to be measured over the full 180°

range of polar angles in a manner that properly relates it to the strict

definition of the BSF. This method determines the BSF over horizontal

paths of selected distances, as opposed to previous field techniques which

measure only vertical paths through the entire ice sheet. Moreover, the

horizontal-path BSF can be measured as a function of depth within the ice.

This method was tested near Barrow, Alaska, in the springs of 1993, 1994, and

1995, and several data sets of the complete BSF of sea ice were obtained. These

experiments were conducted as part of the Office of Naval Research (ONR)

sponsored program, Electromagnetic Properties of Sea Ice (EMPOSI). The

results of the 1995 experiment are used in the analysis presented here.

6.3 INSTRUMENTS AND METHODS

In collaboration with S. Pegau and R. Zaneveld of Oregon State

University, instrumentation was developed for measuring beam attenuation

in sea ice. The optical instrumentation was built by WET Labs, Inc., and a

unique ice coring rig was built by the Polar Ice Coring Office (PICO), then at

the University of Alaska, Fairbanks. After initial field trials, the optical

instrumentation was modified for measuring the BSF in the manner
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illustrated in Figure 6.1. Two holes are cored in the ice with a separation R,

where R is defined as the horizontal distance through the ice separating the

holes. A collimated light source, in this case a laser diode within a cylindrical

housing, is lowered into one hole (left one in Figure 6.1). An irradiance

detector, also in a cylindrical housing, is lowered into the other hole and

aligned with the axis of the source beam. As discussed above, the BSF is the

irradiance distribution around a constant arc from a collimated source, as

illustrated in the inset in Figure 6.1. For an isotropic medium, it is entirely

equivalent if the irradiance detector is kept fixed and the source is rotated.

For example, in the inset of Figure 6.1, if the beam is pointed at the position of

E(0), then the irradiance E(0) will be identical to the irradiance at E(0) when

the source is pointing in its original direction at E(0). Therefore as the source

beam in the cylindrical housing on the left in Figure 6.1 is rotated, the

irradiance distribution recorded by the detector is BSF(9).
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Figure 6.1 Experimental setup for measuring the complete BSF of sea ice in
situ.
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The only assumption in this method is that the medium is isotropic, at

least optically. It is well known that sea ice can be anisotropic due to the

columnar alignment of the ice crystals during formation. Fractures in the ice,

which can channel a light beam, also cause anisotropy. In general, however,

the anisotropic structures within sea ice should have a small effect on

irradiance-level radiative transfer unless there is high spatial coherence in

crystal alignment. The severity of anisotropic effects on the BSF

measurements can be characterized in the following manner. By rotating the

source beam counter clockwise (looking down), the BSF is measured from 0

to +180 degrees, and by rotating it clockwise, the BSF is measured from U to -

180 degrees. If the medium is isotropic, a plot of the BSF from -180 to + 180

degrees should be a symmetric curve about 0 degrees. As shown in the next

section, anisotropic effects do show up in the data, but they are mainly local

effects at discrete angles, probably due to light channeling from fractures.

These discrete effects can easily be removed or smoothed out since the

primary interest here is the overall shape of the 8SF. In most cases, the

overall shape of the BSF was found to be symmetric.

The optical instrumentation consisted of separate source and detector

units housed in water-tight canisters. The light source was a laser diode

which emitted approximately 1 mW at a nominal wavelength of 670 nm.

The beam had a nominal divergence of 3 mrad as specified by the

manufacturer. The laser diode was electronically modulated for phase

synchronous detection with the photodetector. The signal from the
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photodetector was digitized within its housing and then recorded and

displayed on a laptop computer. Both the source and detector housings were

built out of a polycarbonate material and were designed to be water-tight since

the ice holes sometimes fill with sea water. Unfortunately, this material did

not hold up under the stress of the Arctic environment, and one of the

canisters often leaked. The optical instrumentation did not incorporate an

electronic means, such as an optical encoder, for recording the rotation angle.

Thus the BSF was measured at discrete angles, usually in 5 or 10 degree

increments, and the angles were measured manually with a protractor and

pointer. Approximately 25 to 50 digitized photodetector signals were recorded

for each angle and averaged to produce a single value of the BSF at that angle.

The ice coring rig, built by PICO, was specifically designed for the

application of measuring in-ice optical properties. When set in place, the rig

was able to core a series of holes over a total linear distance of about 1 m. The

cores were approximately 15 cm in diameter. The purpose of drilling a series

of holes was to make BSF measurements over several different pathlengths.

This was accomplished by first drilling two holes with the largest desired

separation, making the BSF measurement, and then drilling another hole

between these two for a shorter pathlength BSF measurement. The process

was repeated until the shortest desired pathlength was achieved, which was

typically about 15 cm.
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6.4 RESULTS

The measurements presented here were made on shorefast first- and

multi-year ice in the Chuckchi Sea near the coast of Barrow, Alaska in April,

1995. These data, although not extensive or comprehensive, have the greatest

angular resolution and range, covering 180 0 +180, of the data sets

obtained during the 1993, 1994, and 1995 Barrow trips. Comparison of the

1995 data with the 1994 data over the limited angular range of -90° to +90° did

not reveal any differences that affect the conclusions presented here. The

1993 experiment was preliminary and mainly for testing the experimental

design and instrumentation. The coring rig, optical instruments, and

associated equipment were towed to the sites with snow mobiles, where

measurements were performed over the course of about a week. The most

extensive measurements were made on first-year ice, although some

measurements were obtained of a multi-year floe embedded in the first-year

ice. BSF measurements were made both as a function of separation distance

R and depth z within the ice. The angular range of the BSF measurements

usually spanned from 00 to 180°, both clockwise and counterclockwise.

Occasionally, time or equipment constraints restricted measurements to one

direction, usually counterclockwise (looking down) from 0° to +180°, and in

some instances measurements were made to only 90°. Unless stated

otherwise, graphs are of data from the first-year site.



The BSF was usually measured in dry holes, although occasionally the

holes flooded, either by seepage or because the holes were deliberately drilled

down into the water. The inner walls of the holes were generally smooth, but

certainly not to optical tolerances so that some effect on the beam as it passed

through the ice interface was expected. But hole surface roughness should

generally cause only random effects that can be averaged out, and shouldn't

cause any significant or systematic effect on the shape of the BSF. These

effects should be greatest when the holes are dry due to the larger index of

refraction change at the ice interface compared to when the holes are wet.

Figure 6.2 shows two BSF's that were measured in the same hole at the same

depth when the hole was dry and later flooded with sea water. The
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Figure 6.2 Sea ice BSF with the holes dry and flooded with sea water.
Pathlength through the ice was R 30 cm.
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pathlength was R = 30 cm. Except for some random differences, the two

curves are essentially identical. As expected, the curve with the most

variability is the data from the dry hole. Some of the variability is also due,

perhaps, to "light channeling" by fractures and brine pockets.

An important feature of all the sea ice BSF's that were measured is their

broadness, or angular width, which indicates a high degree of scattering.

Indeed, the irradiance of the scattered laser light could be measured when the

detector was pointed at 180. Figure 6.3 shows the BSF of a multi-year floe at

two depths, with R 30 cm. The broadness of these BSF's is again clearly

evident and similar to the first-year ice BSF's. Compare this with the PSF,
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Figure 6.3 Sea ice BSF of multi-year ice at two depths. F'athlength through
the ice was R 30 cm.
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which is equivalent to the BSF, of ocean water, shown in Figure 6.4. The

ocean water PSF was measured by one of the authors (Maffione) in Monterey

Bay, California, using a method similar to that first described byHoney [1979]

and later used by Voss and Chapin [1990] and Maffione et al. [1991]. The ocean

water PSF is so highly peaked that it must be graphed on a log plot. In the

first 30° it decreases by four orders of magnitude, after which the dynamic

range of the digital camera begins to be reached. In contrast, the sea ice BSF

barely drops by one order of magnitude over 90°. Moreover, there is a large

difference in pathlengths between the ocean water PSF and sea ice BSF. The

pathlength of the ocean water PSF was 10 m, whereas the sea ice BSF

pathlength was 0.30 m. Since multiple scattering increases with pathlength,

the highly scattering nature of sea ice, when compared with ocean water at

least, is quite dramatic.

Figure 6.5 shows a series of ice BSF's that were measured as a function of

depth within the ice, with a pathlength between source and receiver of

R = 30cm. Again the broad, bell-shaped like curves are evident in all the

BSF's. A visual examination of both the core and ice hole revealed layering

of the ice sheet. Layers were identified by their slightly darker or more milky

appearance compared with other regions of the ice sheet. There was some

correlation between the BSF amplitudes and the ice layers, especially where

the layer was very distinct, such as near the bottom of the ice sheet

corresponding to the 106 cm BSF. The correlation of the BSF amplitudes with

the other layers was not as pronounced, although this may have been due to
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Figure 6.4 Comparison of the BSF of sea ice and the equivalent PSF of
ocean water. Sea ice pathlength was 30 cm; ocean water pathlength was 10 m.

the fact that the layers were not characterized in an independent, quantitative

manner; layers were observed by visual inspection of the ice cores. No

definitive correlation was found between the BSF shapes and the layers.

As already discussed, an important assumption in this technique for

measuring the BSF is that the medium is isotropic, at least for light

propagation at the irradiance level. Sea ice often forms anisotropic structures,

most notably columnar crystals which may align in a predominant direction.

Fractures, on certain spatial scales, are anisotropic structures as well. If the

spatial coherence of these anisotropic structures is not highly pronounced,

then anisotropic effects should average out at the irradiance level of light
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Figure 6.5 The BSF as a function of depth in sea ice. Pathlength was
R = 30 cm.

propagation. The data shown in Figures 6.2, 6.3, and 6.5 are all relatively

symmetric about 00, save for local variations at discrete angles. Indeed, an

examination of all the measured BSF's revealed no systematic asymmetry.

Another dataset which supports the assumption of an isotropic medium

for irradiance-level propagation is shown in Figure 6.6. Here one BSF was

measured with the 00 beam axis pointing in the direction of the ice C-axis,

and the other BSF was measured with the 00 beam axis perpendicular to the

C-axis. The experimental arrangement consisted of three holes forming a

right angle, with the laser in the vertex hole. Both measurements were made
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Figure 6.6 The BSF for two different orientations of the 00 beam axis with
the C-axis of the ice crystals. Pathlength was R = 30 cm.

at the same depth, 76 cm, and the same pathlength, 30 cm. The two BSF's

exhibit symmetry about 00, and are similar both in shape and amplitude. It is

difficult, however, to draw any definitive conclusions by comparing the

parallel and perpendicular BSF's because differences may be due to local

variability in the ice. Still, the consistent symmetry about 0 00 in all the

BSF's, even when the 00 beam axis was randomly oriented with respect to the

ice C-axis, strongly supports the assumption that sea ice an isotropic medium

for irradiance-level propagation.

A potential source of experimental error is the finite size of the holes

and instrumentation. In theory, the BSF is the irradiance distribution at a
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In general, the irradiance attenuation of the direct beam will be larger than

the irradiance attenuation of the multiply scattered light from the beam. In

other words, K(r,O) takes on its maximum value at 0 00. Moreover, as r

increases, K(r, 0) will approach a constant for all 0, the asymptotic attenuation

coefficient K [Preisendorfer, 1959]. K(r,O) can be estimated from

measurements of BSF(r, 0) at two discrete pathlengths r1 and r2 by

K(r, )
ln[BSF(r1, a)] - ln[BSF(i, 0)]

(6.3)

At 0 00, no BSF correction is required since r = R. The most accurate

estimate of K(r,0) is thus expected to be when 0 = 00. A series of BSF

measurements, shown in Figure 6.7, were made at three pathlengths, R 15,

30, and 50 cm. Figure 6.8 shows a plot of ln[BSF(0,R)] vs. R, from which K
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Figure 6.7 BSF as a function of sea ice pathlength R.



152

4.6

-1.8

-2.0

-2.2

-2.4
U

-2.6

-2.8

-3.2

-3.4

-3.6

-3.8

-4.0

K=3n1-

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Distance (m)

Figure 6.8 Plot of ln[BSF(0,R)] for the three BSF's in Figure 6.7. K was
computed with Eq. 6.3.

was estimated for the two regions, 15 to 30 cm and 30 to 50 cm. As expected, K

decreases as R increases. Indeed, this rather dramatic decrease, from K = 8 m1

to 3 m1 over a change inR of only 35 cm again illustrates the highly scattering

nature of sea ice.

The BSF correction, Eq. 6.1, becomes more significant as K increases and

R decreases. Thus, for the present data, the largest correction is for R = 15 cm

and K = 8 m. Figure 6.9 shows the corrected and uncorrected BSF for

R = 15 cm, using a constant value of K = 8 m'. The correction at small angles

is insignificant, since r R, and becomes noticeable only at large angles.

Nonetheless, the overall shape of the 8SF is still not significantly altered.

Also, the correction at larger angles is certainly overestimated because, as
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Figure 6.9 Result of applying the correction, Eq. 6.1, to the 15 cm pathlength
BSF data in Figure 6.7. This is the most extreme correction and is likely
overestimated. For 8SF data where R> 15 cm, the correction was negligible.

already noted, K(r, 6) < K(R, 0). Indeed, it is likely that K(r, 8) K00 since the

BSF at angles other than 00 is diffuse irradiance due to multiply scattered

photons. When K =3 m' was used for 6>300, the 8SF correction was

insignificant. For R 30cm, the BSF correction was negligible even when

values of K > 3 m' were used. The conclusion is that the finite size of the

instrumentation does not cause any significant change in the measured BSF's,

and the correction can be ignored, at least for the present data.

The apparent bell-shaped curve of the BSF's shown in the previous

figures suggests a Gaussian function for fitting the data. Schoon maker et al.

[1989] used a Gaussian function to fit their laboratory BSF data, which, as

described earlier, was actually a paraxial approximation to the BSF as defined
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by Mertens and Replogle [1977]. A least-squares regression of the BSF data in

Figure 6.6 to the Gaussian function

Gauss(8) = AexP[_
02

22a) (6.4)

is shown in Figure 6.10. For clarity, only one BSF (perpendicular) is shown,

but the results were similar for the other BSF (parallel) as well. Two

regressions were performed and shown as the solid curves in Figure 6.10. In

one of the regressions, A and o were both free parameters, and in the other

regression A was constrained to the peak value of the BSF data. The best fit

occurred when the Gaussian function was constrained to one free parameter,
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Figure 6.10 Constrained and unconstrained regressions to the BSF in
Figure 6.6 (perpendicular) using the Gaussian function, Eq. 6.6.
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the standard deviation a. Nonetheless, even a constrained Gaussian function

did not appear to adequately describe any of the BSF data, especially at angles

greater than about 800, which is clearly evident in Figure 6.10.

It was found that all of the BSF data regressed extremely well, over the

full angular range , to a Lorentzian function, which can be expressed in the

form

A
= (6.5)Lor(0)

+ 1]'

where A is the maximum value at 9 00 and o is the half-maximum angle.

Figure 6.11 shows the results of fitting a Lorentzian to the same data used in

the Gaussian fit shown in Figure 6.10. In the Lorentzian fit, both A and a

were free parameters and the regression gave the values A = 0.028 and

a 41°. For the other BSF, where the 0° beam axis was oriented parallel to

the ice C-axis, the regression gave the values A = 0.029 and a = 32°.

The Lorentzian serves as a useful function for fitting the BSF data to

compare their half-maximum angles a. For example, a regression to the

Lorentzian, Eq. 6.5, with the three BSF's in Figure 6.7, yielded the a values

22°, 42°, corresponding to the pathlengths 15, 30, and 50 cm, respectively.

The increasing width of the BSF with increasing pathlength is due to

multiple scattering, but it is again the highly scattering nature of sea ice that

rapidly increases the BSF width over such relatively short pathlengths. A

200% change in a occurred over a 15 cm change in R, from 15 to 30 cm. Note,

however, that the next 20 cm change in R, from 30 to 50 cm, yielded a 12%
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Figure 6.11 Result of regressing the BSF data in Figure 6.10 to a Lorentzian
function, Eq. 6.5.

change in . This sharply decreasing change in c indicates the rapid

approach, over relatively short geometrical distances, of the BSF towards its

asymptotic, constant shape.

6.5 DISCUSSION

The ultimate objective of the present work is to better understand the

optical nature of sea ice and to develop practical models for describing and

predicting radiative transfer in sea ice. The physically complex nature of sea

ice makes modeling it from first principles nearly impossible. Moreover,

single scattering approximations can not be used because, as shown above and

by the work of others, sea ice is a highly scattering medium. This also
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complicates the direct measurement of TOP's. The highly scattering nature of

sea ice may, however, allow for the application of some useful simplifications

in the theory of radiative transfer.

Asymptotic radiative transfer theory predicts that the radiance

distribution, once asymptotic, does not change its shape and decays in

amplitude as exp(K R), where K, is the asymptotic attenuation coefficient.

The theory also predicts that both the shape of the radiance distribution and

K are functions of only the TOP's of the medium and are independent of the

boundary conditions [Priesendorfer, 1959]. Thus, for a given set of TOP's, the

asymptotic radiance distribution and K are uniquely given regardless if the

light field is generated by solar illumination or a submerged source.

Therefore, the asymptotic radiance distribution due to a submerged source is

identical to the asymptotic radiance distribution for plane wave illumination

at the boundary of the medium, such as solar illumination on the surface of

the ocean, or in this case sea ice.

As explained earlier, the PSF is the radiance distribution due to a

Lambertian source and, by reciprocity, so is the BSF. The sea ice BSF

measurements are thus equivalent to the in-ice radiance distribution due to a

submerged Lambertian source. In general, sea ice is a far more highly

scattering medium than ocean water, so that the asymptotic state is

approached much more rapidly in sea ice. This is true not only in terms of

geometrical distance, but also in terms of optical pathlength r R/c, where c

is the beam attenuation coefficient. Over a given optical pathlength, more
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scattering events occur in a medium with a high single scattering albedo

= b/c, where b is the total scattering coefficient, than in a medium with a

lower w. How far from the source the light field becomes asymptotic, in

terms of 'r, depends mainly on co0, and to a lesser extent on the scattering

phase function [Gordon et al., 1993]. But in terms of geometrical distance R,

the dependence is mainly on the absolute value of b.

The BSF measurements as a function of pathlength, shown in Figure 6.7,

strongly suggest that the BSF is closely approaching the asymptotic radiance

distribution for R> 30 cm, As shown in Figure 6.8, the irradiance attenuation

appears to be approaching an asymptotic limit that is probably close to

K = K,,, 2 m1. The change in the shape of the BSF, as measured by o, is also

rapidly approaching an asymptote. As noted earlier, changed by 200% from

15 to 30 cm, but then changed by only 12% from 30 to 50 cm. The definitive

test is to compare the BSF to the asymptotic radiance distribution, L,..(0), for

the appropriate choice of lOP's. L,,, (0) is uniquely determined by w0 and the

scattering phase function, /3(w) where tr is the scattering angle.

The asymptotic radiance distribution, L(0), can be computed accurately

using an eigenmatrix method which is incorporated into a numerical

radiative transfer model called Hydrolight [Mobley, 1995]. To properly

compare L,,(6) with the BSF, co and $(i) of the sea ice needs to be known or

estimated. From Monte Carlo radiative transfer calculations of highly turbid
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water, Kirk [1994] found that K can be accurately related to a, the absorption

coefficient, and b by

=.Ja2+Gab, (6.6)

where G is a regression parameter. Kirk reported the value of G = 0.233 for

the highly scattering cases, and for all cases which covered the range

0.5 0.995, he reported an average value of G=0.245. Based on the

results shown in Figure 6.7, K likely falls within the range

8 m1 K 2 m K, with the lower value applying to R >50cm.

At 670 nm, a for ocean water is predominantly determined by pure water

absorption and, to a lesser degree, by chlorophyll, except when concentrations

are extremely high. For pure water, a(670) 0.43 m1 [Smith and Baker, 1981].

Although phytoplankton were embedded in the ice, their concentrations

were not high and probably contributed no more than 0.2 m1, and at most

0.3 m1, to a(670). Thus for sea ice, a reasonable range for a(670) is

0.43 m1 a 0.73 m1. Any temperature dependence on a(670) is negligible

[Trab)erg and Højerslev, 1996], especially compared with the variability in

phytoplankton absorption.

Solving Eq. 6.6 for b gives

b=
K -a2

Ga
(6.7)

which is used to compute c = a + b and w = b/c. The beam attenuation

coefficient c is plotted in Figure 6.12 for different values of a spanning the

range 0.43 a 0.73 m1, with G = 0.233. For K, between 2 and 3 m', C
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Figure 6.12 Computation of c = a + b as a function of K, for four values of a,
using Eq. 6.7 to calculate b.

ranges from 20 to 90 m'. Assuming a likely value of a(670) 0.53 m1 gives

c 50m1 for K = 2.5 m1. Plots of a are shown in Figure 6.13 for the same

four values of a used for Figure 6.12. The results confirm that w > 0.95, and

is probably greater than 0.98 for the likely values of a and

The remaining 10? to be estimated is the scattering phase function /i(yi).

Because the inhomogeneities in sea ice that cause scattering are

predominantly large compared to visible wavelengths, /3(w) is expected to be

a highly forward-peaked scattering-phase function. Measurements of

scattering by ice confirm this [Grenfeil and Hedrick, 1983; Miller et al., 1994].

A useful form for (') is the Hen yey-Greenstein [1941] phase function,

namely
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4.0

where g is the average cosine of the scattering angle for (i), otherwise

known as the asymmetry parameter, defined by

g 2irJ1i3(tii)cosvd(cosvf).

Monte Carlo calculations of radiative transfer in the ocean show that

irradiance propagation is only weakly dependent on the shape of J3(i) in the

near-forward direction (< 3O) [Gordon, 1993]. Therefore K, should not be a

strong function of J3(i), and neither should the shape of the asymptotic

radiance distribution L(9), since it consists only of photons that have

scattered at least once, and more likely have undergone many scattering
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events. So regardless of the fine details of (i), the H-G phase function,

Eq. 6.8, should be adequate for irradiance-level and asymptotic computations

of the light field in sea ice.

It remains then to estimate g, the asymmetry parameter of the phase

function. As previously shown, co0 of sea ice is generally greater than 0.95,

and is likely 0.98 or greater for the sea ice of which the BSF measurements

were made. The high a of sea ice suggests that photon diffusion theory may

adequately describe radiative transfer in sea ice. In the asymptotic limit,

photon diffusion theory predicts that

K0 = (6.9)

(See Maffione [1996] for a complete derivation and discussion of this

equation.) Equating Eq. 6.9 to Kirk's result, Eq. 6.6, and solving for g gives

2/o0 G +1
3

(6.10)

which is plotted in Figure 6.14 over the range, 0.95 a 1. For w0 0.98,

Eq. 6.10 predicts g0.935.

The asymptotic radiance distribution was computed with Hydrolight

using an H-G phase function with g 0.935, co = 0.98, and a = 0.58 m1.

Figure 6.15 shows the results, with L0.(6) plotted over the BSF measured at

R =50 cm. The dotted line is the regression of the data to a Lorentzian,

Eq. 6.5. Clearly, L0.(0) matches the BSF quite well and confirms that the BSF is

indeed closely approaching the asymptotic radiance distribution.
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Figure 6.14 Asymmetry parameter g computed with Eq. 6.10 using G = 0.233 -

6.6 CONCLUSIONS

A new method for measuring profiles of the BSF of sea ice also yields the

complete (axially symmetric) radiance distribution due to a submerged

Lambertian source. The BSF of sea ice is significantly different than the BSF

of ocean water due to the highly scattering nature of sea ice. Based on an

equation developed by Kirk for highly turbid water, and estimates of K. and a

for sea ice in the visible spectrum, sea ice can generally be expected to have a

single scattering albedo (O >0.97. The high w0 of sea ice suggests that photon

diffusion theory can adequately describe radiative transfer in sea ice, at least at

the irradiance level. Combining a result of this theory with Kirk's equation

predicts that the asymmetry parameter g of the scattering phase function is



approximately in the range 0.9 g 0.95. An exact computation of the

asymptotic radiance distribution matched quite well the measured BSF at a

pathlength of 50 cm, strongly suggesting that the BSF rapidly approaches, over

geometrical distances, the asymptotic radiance distribution. Thus, for

sufficient pathlengths, both asymptotic radiative transfer theory and photon

diffusion theory can be used to interpret BSF measurements of sea ice.

Application of these theories provide useful relationships for estimating sea

ice lOP's, such as K, w, and g.
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Figure 6.15 Comparison of computed asymptotic radiance distribution with
the measured BSF for the pathlength R = 50 cm.
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Chapter 7

7. CONCLUSIONS

7.1 Summary

It was stated in the introduction that theoretical advances have far

outpaced experimentation in optical oceanography. New models and

analytical relationships among ocean-optical properties appear in journals

practically on a monthly basis. Yet in most cases these models are based on

numerical simulations or, at best, scant data sets that almost never include

both input and output model parameters (i.e., closure is not achieved). Many

ocean-optical properties remain to be empirically characterized and

understood, and without the means to do so, experiments for testing

theoretical advances are impossible. It is the author's hope that this thesis has

helped in some small measure to bridge the wide gap between theory and

experiment in optical oceanography.

Ocean-color remote sensing (OCRS) is poised to emerge as one of the

most, if not the most, powerful tool for studying global-ocean primary

production. The usefulness of this tool relies not only on the ability of the

sensors themselves, but also on the models needed for interpreting the

remotely-sensed signals. Ultimately, these models involve inherent and

apparent optical properties of the ocean. For OCRS models, the two primary

TOP's are the spectral absorption coefficient a(A.) and the spectral backward

scattering coefficient bb(A.), since, as is well known, the remotely-sensed
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reflectance is proportional to + bh). Although a(A.) has been measured

for decades with a variety of instruments and methods, surprisingly little

attention has been given to measuring b,, () - until recently.

Chapter 2 presented new instruments and methods for routinely

measuring bb(A.) in situ. These instruments and methods involved fixed-

angle backscattering sensors. A rigorous analysis showed that these sensors

can be calibrated with reference to an NIST traceable reflectance standard, and

the calibration provides a measurement of /3(ji *) accurate to within a few

percent of the true f3( *) when the sensor's response function, W(z; c), is

properly characterized. A complete procedure was given for determining

W(z;c). Once W(z;c) is known, the centroid angle of scattering, for that

sensor can be determined. It was shown that, depending upon the design of

the sensor, can change by 100 or more for drastic changes in the

attenuation of the water..

Since a fixed-angle backscattering sensor, when properly calibrated,

measures a procedure for converting this measurement to an estimate

of bb is needed. An analysis was performed of the conjecture that bb can be

estimated with a measurement of the VSF at a single angle in the backward

hemisphere. Oishi's analysis of this conjecture [Oishi, 1990] concluded that

1.14x2(120°)-0.43x10m' provides the best estimate of bb for the

computed and observed scattering functions he considered. However, he also

reported that 1.08 x 2ir/3(140°) 1.62 x1Om1 gives the least maximum likely
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error in estimating bb, VSF measurements by Petzold [1972] were examined in

this thesis, where it was argued that his turbid water measurements were

probably systematically low in the backward hemisphere because they were

not properly corrected for light attenuation by the water. When the turbid

water measurements were excluded in the type of analysis performed l

Oishi, it was found that estimating bb from x2irI3(y), where x is a constant

for the particular angle there was no statIsically significant difference

between using /3(1200) or /3(140°), or even VSF values between these angles.

The expression bb 1.lx2irfl(140°) was suggested as providing the best

estimate of b, from measurements of /3(V) using the BB-4, where ip° is

nominally 140°.

Optical remote sensing of the oceans includes not only passive ocean-

color remote sensing but also active remote sensing with lidar. These are two

entirely different methods with their own sets of problems. Airborne

oceanographic lidar (AOL) typically involves a monostatic laser transmitter

and narrow-angle receiver. The upper ocean is essentially 'pinged" with a

pulse of highly collimated monochromatic light, and the "impulse response"

of the ocean is recorded as the directly backscattered light of the pulse by the

ocean. As with OCRS, AOL is useful only when there are appropriate models

for interpreting the light signals. For AOL, the two primary lOP's are /3(ir)

and c (analogous to bb and a for OCRS). Although c has been routinely

measured, no direct measurements of 13(ir) had ever been made until the
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work presented in Chapter 3, and some previous work by Maffione an d

Honey [1992].

In addition to the application to AOL, the VSF at and near 1800 is of

theoretical interest. It has been hypothesized, based mainly on Mie

calculations, that the VSF could rise sharply from 1700 to 1800, depending on

the nature and size distribution of the marine particles. There was also some

conjecture that enhanced, coherent backscattering might occur at 1800 for a

laser beam. The results presented in Chapter 3, based on measurements made

in the Gulf of Mexico near Panama City, Florida, revealed that the VSF

increased by more than 50% from 179 to 1800. A sharp enhancement, possibly

due to coherent backscattering, was also observed at 1800 with an angular

width of about 0.030. Measurements made at six discrete wavelengths from

457 to 532 nm revealed that the spectral dispersion of backscattering at and

near 180° was substantially greater than the dispersion at 1350 measured with

multispectral bi-static backscattering sensors. These results have direct

implication to both the AOL models and the calibration of these lidar systems.

The spectral absorption coefficient a(..%) is important to all areas of optical

oceanography and plays a central role in bio-optical oceanography and OCRS,

as noted earlier. Gershun [1939] first proposed a method for measuring a

which involved measuring scalar irradiance and the attenuation of vector

irradiance due to solar illumination of the ocean. Assuming no internal

sources and elastic scattering only, Gershun's equation is exact and provides a

practical means for measuring a. Curiously, Gershun's exact method had to
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wait 40 years before it was correctly pursued by Højerslev [1976] and later 1y

Spitzer and Wernand [1980]. Yet none of these researchers carried out any

further, systematic work with Gershun's method. Sorenson and Honey [1968]

and Duntley [1971] apparently were the first to suggest using a submerged

isotropic light source to determine a that is, in retrospect, an extension of

Gershun's method. But there is nothing in their published work to suggest

that they understood the connection to Gershun's equation, and their results

were not rigorously derived or completely accurate.

Chapter 4 gave the first rigorous derivation of the equation which relates

the absorption coefficient to the scalar irradiance and attenuation of net

"radial" irradiance due to a submerged isotropic light source (ILS).

Interestingly, it was found that Sorenson and Honey's result was an

approximation in the near field, that is, within a few attenuation lengths of

the source, and Duntley's result was an approximation in the far field, or

asymptotic limit, far from the source. Equation 4.20 is, like Gershun's

equation, exact but requires only the assumption of homogeneity in the TOP's.

It was shown that the one-dimensional form of Gershun's equation is

obtained in the asymptotic limit as the distance from the source goes to

infinity.

The ILS method has many advantages over Gershun's method, as well

as many other methods, for determining the (total) absorption coefficient,

although it certainly has its disadvantages as well. One powerful advantage is

that the experimental conditions can be controlled quite well. For example,
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both the light source and irradiance detectors can be spectrally filtered, so that

(other) internal sources and inelastic scattering effects can be quantified, or

mitigated without any loss in accuracy. Another advantage, as demonstrated

in Chapter 5, is that the average cosine of the light field due to an ILS

decreases slowly from unity as the distance from the source increases.

Moreover, the backward-scattered irradiance is only a tiny fraction of the

outward flowing irradiance from the source. Consequently, a can be

determined accurately from measurements of only the outward flowing

(radial) irradiance, which is a relatively easy measurement to make. Another,

often overlooked though important advantage, is that the ILS method, like

Gershun's method, determines the absorption coefficient of ocean water in its

natural, "undisturbed" state, unlike methods that require filtering or flow-

through systems. The major disadvantage is that the ILS method, like

Gershun's method, is strictly an in-situ method that does not directly lend

itself to determining the absorption coefficient of the individual water

constituents.

Chapter 5 directly extended the results of the previous chapter with an

investigation of the average cosine, i, of the light field due to an 1LS. This

AOl? is fundamental to nearly all studies of the submarine light field,

whether the light field is due to solar illumination or a submerged light

source. In the latter case it was shown that i -* 1 as the distance to the source

approaches zero, and decays slowly to its asymptotic limit as the distance goes

to infinity. The light field due to a submerged ILS was simulated with a
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Monte Carlo model. The simulated radiance distributions, or point spread

functions (PSF), were compared with measurements of the PSF made in Lake

Pend Oreille, Idaho. It was found that the log-log slopes of the PSF's changed

nearly identically as a function of optical pathlength r from the source.

Differences could be attributed to measurement errors and uncertainties

about the optical properties of the water. Simulations of fl('r) could be

accurately modeled with a simple exponential function of where the

coefficients depended on both the single scattering albedo and the VSF. A

somewhat surprising finding was that the light field due to a submerged ILS

did not approach its asymptotic state at 20 optical pathlengths, in strong

contrast to the case of solar illumination where the daylight field is nearly

asuymptotic at 5, or at most 10, optical pathlengths.

Ocean water in its frozen state is a radically different optical medium

than the liquid ocean. Understanding optical propagation in sea ice presents a

unique set of challanges in optical oceanography due to the complex physical

structure of sea ice, its solid state, and the harsh working environment.

Although the AOP's of sea ice can be determined using similar, albeit

modified, methods used in the ocean, most TOP's of sea are nearly impossible

to measure directly. Chapter 6 presented a new method for characterizing the

optical properties of sea that may have universal application to highly-

scattering media, The technique involves measuring the in-ice beam spread

function (13SF) which, by reciprocity, is the radiance distribution due to a

submerged Lambertian source, also known as the point spread function.
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Measurements definitively demonstrated that sea ice is a highly scattering

medium, with a single scattering albedo w0 generally greater than 0.97. The

highly scattering nature of sea ice causes the PSF to rapidly approach the

asymptotic radiance distribution. The asymptotic state, together with a high

w justifies the application of photon diffusion theory for optical propagation

in sea ice. Equating results from diffusion and asymptotic radiative transfer

theory yields a simple yet important relationship between the asymptotic

attenuation coefficient and the sea ice lOP's. This relationship includes the

phase function asymmetry parameter g. which is important for characterizing

the sea ice VSF for modeling purposes. It is thus possible to determine g from

measurements of the BSF as a function of pathlength using the method

described in Chapter 6.

7.2 Future Research

The development of a spectral backscattering sensor that is calibrated to

measure bb() is a new and important advance in optical oceanography.

Previously, bb(,) was determined from painstaking measurements of /()

with general-angle scattering meters that are rarely in use. Now b,() can be

as easily and routinely measured as temperature and salinity are with a

commercial CTD. Spectrophotometric measurements of a(A.) have provided

much information about the nature of marine particles, most notably

phytoplankton, and bb() complements these measurements, yielding

information about particle size distributions and composition. Existing
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models of the spectral dependence of bb 7) are based on Mie calculations and

a paucity of empirical data. Measurements of b,() by Maffione et al. [1995] in

a variety of coastal waters indicate that these models are grossly inadequate.

Thus, much research on bb(A), which is now possible, remains to be done.

Ocean lidar is becoming increasingly important as a research tool in

optical oceanography. The current body of knowledge of beam propagation

and backscattering in the ocean is based almost entirely on numerical

modeling and lidar measurements themselves. Rarely are ocean

measurements conducted to study beam propagation and backscattering, and

much remains to be learned. Beta Pi, as the only instrument of its kind, will

continue to play an important role in ocean lidar research and applications.

One area of on-going research by the author is comparing simultaneous

measurements with Beta Pi and the bi-static b, sensors. This investigation

will help to characterize both the shape of the VSF in the backward

hemisphere and its spectral dispersion.

Submerged source techniques are an effective method for investigating

beam propagation. Indeed, the origin of submerged source techniques can be

traced directly to beam propagation studies [Duntley, 19711. Understanding

and modeling the point spread function remains an active area of research.

In addition to their application to beam propagation studies, submerged

source techniques are a powerful means for conducting in-situ experiments of

radiative transfer theory. Since optical closure is still a distant goal,

submerged source experiments need to continue.
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Understanding optical propagation in sea ice has grown in importance

due to global climate change research. There is evidence, for example, that

increases in ultraviolet radiation due to severe ozone depletion in Antarctica,

is leading to increases in UV radiation on phytoplankton beneath sea ice. It is

therefore important to understand how UV radiation propagates through sea

ice. The submerged source technique of Chapter 6, modified for a UV source

and detector, would provide important data on this problem. Although there

is increased absorption by sea ice in the U\T, scattering increases as well so that

w0 ought to remain high in the UV. Thus the asymptotic-diffusion model

developed in Chapter 6 should describe UV propagation in sea ice and can be

applied to no-going investigations in this area.
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