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developed. The approach combines data from observations and

atmospheric general circulation models (GCNs), and provides the basis

for a potentially valuable means of using information derived from

GCMs for climate impact assessments on local scales.

The first component of this procedure is an extension of the

'climate inverse' method of Kim al. (1984). Daily mesoscale

temperature and precipitation values are stochastically specifed on

the basis of observational data representing the average over an area

corresponding to a GCN grid element. Synthetic local data sets

generated in this manner resemble the corresponding observations with

respect to various spatial and temporal statistical measures.

A method for extrapolation to grid-scale 'scenarios' of a changed

climate on the basis of control and experimental integrations of a
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GCM, in conjunction with observational data, is also presented. The

statistical characteristics of daily time series from each of these

data sources are portrayed in terms of the parameters of a

multivariate time-domain stochastic model. Significant differences

between the model data sets are applied to the corresponding

parameters derived from the observations, and synthetic data Bets

representing the inferred changed climate are generated using

Monte-Carlo simulations.

The use of the procedure is illustrated in a case study. The

potential climatic impacts of a doubling of atmospheric carbon dioxide

concentrations on three important North American grain cropping

regions is investigated using two 'physiological' crop models.

Although the specific results must be interpreted with caution, they

are moderately optimistic and demonstrate possible means by which

agricultural production may adapt to climatic changes.
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Specification of Local Surface Weather Elements from

Large-Scale General Circulation Model Information,

with Application to Agricultural Impact Assessment

Section 1

Introduction

Skillful climate forecasts have the potential to be of immense

economic value for the purposes of agricultural impact assessment,

planning, and decision making. Among the potential methods of

producing such forecasts, large-scale coupled atmosphere-ocean general

circulation models (GCMs) appear to be the most promising. This

promise is principally a consequence of the ability of these models to

provide data sets that contain a wide variety of meteorological

variables, that are complete (within the limits of model resolution)

in space and time, and that are physically consistent both internally

and with experimentally specified boundary conditions (Gates, 1985).

One especially attractive aspect of information generated by GCMs

for the purpose of climate impact assessment is the regularity and

fineness of their time resolution. Impact assessment tools such as

physiological crop simulation models typically require data at daily

or even hourly intervals (e.g., Baier, 1977; World Climate

Applications Programme, 1984), which are not provided by other

potential means of climate forecasting. This degree of time

resolution is necessary to detect some extreme weather events (e.g.,
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temperature extremes on a single day or several consecutive days)

which may dominate the response, particularly of crops, to variations

or changes in climate (e.g., Mearns et al., 1984; Nield et al., 1980;

Parry and Carter, 1985).

Gates (1985) has recently outlined the elements of a strategy for

obtaining (climate) model-assisted estimates of climatic impacts, and

has identified several critical steps related to the use of GCMs for

local impact assessment. These steps, presented schematically in

Figure 1, are (1> determining which aspects of the modeled climate

change are significant, (2) translating the large-scale information

generated by the climate model to the smaller spatial scales relevant

to potential impacts, and (3) using the inferred local climate

information for estimation of biological and economic impacts. The

first of the above steps may be viewed as the problem of constructing

climate "scenarios" (e.g., Bach et al., 1984). The second and

third steps have become known as the "climate inverse" problem (Kim

et al., 1984), and the problem of "climate impacts" assessment,

repspect i vely.

The relevance of the climate inverse problem to the issue of

impact assessment using GCMs results from the intrinsic coarseness of

the spatial resolution of these models relative to the scales on which

the impacts of weather or climate are accumulated. Typical spatial

resolutions for GCMs are approximately 200,000 km2. Relatively little

work has been done to date in investigating the size of areas that are

fairly homogeneous from the standpoint of agronomic prediction.

However, theresults of Dugas et al. (1983a), derived from

physiological crop models, and of Galliani and Filippini (1985),
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obtained from a cluster analysis of daily temperature and rainfall

data, both indicate that this area may be approximately 1500 km2.

That scale appears to be controlled by the fineness of spatial

variations in precipitation.

Several approaches to the climate inverse problem have appeared

in the literature. One possible procedure is to add temperature

changes linearly and apply proportional precipitation changes to

observed data (Terjung et al., 1984; Waggoner, 1983; Williams, 1985).

However, this approach only considers changes in first-moment

characteristics, and does not allow treatment of possible changes in

variance (at least for temperature) or autocorrelat ion. lso, the

above studies have employed highly generalized scenarios for the

changed climates, none of which have included variations in time or

space. another possible treatment of the climate inverse problem is

interpolation between grid points (Santer, 1985), although this

procedure almost certainly results in unrealistic spatial homogeneity,

particularly for precipitation.

Kim et al. (1984) addressed the climate inverse problem by

performing a principal component analysis of monthly temperature and

precipitation data for stations within an area comparable in size to

the gridbox of a 6CM. The time-dependent structure of the data, with

respect to the principal component basis set, was then predicted

from the respective large-scale data by linear regression.

Predictions were made separately for each of the two variables.

although this work is the most complete treatment of the problem to

date, its applicability to problems such as agricultural impact

assessment is limited by the consideration of only monthly-averaged
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quant it ies.

To date, no specific protocol for implementing the schematic

outline of Gates (1985) on the daily timescale has been proposed. The

present work seeks to develop specific methods to implement this

framework for estimation of climate impacts using results from general

circulation models. Section 2 extends the climate inverse approach of

Kim et al. (1984) to the analysis of daily data necessary for

impact assessment using physiological crop models. This work relates

to step 2 in Figure 1. Section 3 describes and implements a

methodology for the construction of climate change scenarios (step I

in Figure 1) that utilizes the fine time-resolution of the available

6CM information, and that may be used in a Monte Carlo setting with

the climate inverse procedure developed in Section 2. The application

of the coupling of the above two procedures to climate impact

assessment (step 3 in Figure 1) is illustrated in Section 4, with a

case study of possible effects of carbon dioxide-induced climate

change on North merican grain agriculture. Section 5 contains a

summary, conclusions, and outlook for future work.
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Section 2

Statistical Specification of Daily Local Surface Weather Elements

from Large-Scale Information

2.1 Introduction

One of the critical elements of a procedure involving use of 6CM

data for local climate impact assessments is a means to translate the

large-scale information to a more local scale (Gates, 1985). This

topic has been called the climate inverse problem (Kim et aL,

1984). One possible approach to this problem would involve

deterministic dynamical modeling of local flow regimes as forced by

small-scale topography (Deardorff et ., 1984; Han al.,

1982), using the large-scale data as boundary conditions. However,

the computer resources required for extended integrations using this

approach appear at the present time to be prohibitive for climate

impacts work.

This section presents a statistical formulation of the climate

inverse problem. The starting point for the present treatment is the

approach of Kim et al. (1984). In that work, monthly-averaged

values of temperature and precipitation were subjected to separate

principal component (empirical orthogonal function) analyses. The

time-dependent structure of each data set, with respect to the

principal component basis set, was then separately predicted from the

corresponding large-scale data by linear regression. The same basis
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functions were used for all months, and the intercorrelation between

temperature and precipitation was ignored. Also, only a generalized

evaluation of the performance of the scheme was attempted.

The present work seeks to extend the approach of Kim et al.

(1984), with a view toward use of the results as input to crop

simulation models. Toward that end, daily values of three relevant

surface weather variables are analyzed, and treatment of their mutual

intercorrelations is included. The performance of the procedure is

explicitly assessed through compilation of verification statistics

derived from independent data. Section 2.2 describes the spatial

domain and the data set used in the analysis. Section 2.3 develops a

rotated principal component representation of the data, which is used

in Section 2.4 as the basis of a climate inverse procedure. Section

2.5 contains a summary and a brief set of conclusions.

2.2 Domain and Data

The study area for the present work is comprised of three 40 by

50 (latitude by longitude) regions within North America. The size and

boundaries of these areas were selected to conform to the 40 by 50

grid spacing of the Oregon State University Atmospheric 6CM (Ghan et

al., 1982), and the locations were chosen to encompass important grain

cropping regions. These gridboxes are hereafter designated as Box 1

(centered at 38°N, 100°W, and comprised primarily by central and

western Kansas), Box 2 (centered at 42°N, 95°W, and comprised

primarily by central and western iowa), and Box 3 (centered at 46°N,

100°W, and located in the eastern and central portions of North and
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South Dakota).

Daily maximum and minimum temperature and daily accumulated

precipitation data were obtained from the Oklahoma Climate Survey for

24, 27, and 26 stations within Boxes 1, 2, and 3, respectively, for

the years 1948-1983. To the extent possible, stations were chosen

from the list of candidate stations for the National Climatic Data

Center Historical Climatology Network (Brower, 1984) to minimize

problems associated with changes in station location or instrument

height. lso when feasible, only stations with PM observation times

throughout the 36-year data record were selected. The stations,

locations, and elevations are given in Table 1. few stations with

morning observation times or missing data for portions of the record,

noted in Table 2, are used in order to improve the homogeneity of

station distribution or to include stations with solar radiation

measurements. Flagged estimates of missing data, derived from

weighted averages of near neighbors in space and time (Oklahoma

Climate Survey, private communication), were included in the data set.

Temperature data for each station are converted to series of

deviations from an annual cycle by removing the 12-monthly Fourier

harmonic, and as many of the 6-monthly, 4-monthly, 3-monthly,

12/5-monthly, and 2-monthly harmonics as were deemed significant."

Significance was determined using an F-test at the 0.83% level (6

tests simultaneously at the 5% level), although lack of independence

of the residuals renders the true level of the test to be much less

stringent. Typically harmonics with amplitudes less than 0.2°C are

not retained. Fourier harmonics are fit to the full data records in

order to avoid filtering the very low frequency variations (Trenberth,
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Table 1. Station index, name, latitude, longitude, elevation (m),
and relative weight.

a. Box 1

Station Name N Lat W Lon Elev(m) Weight

1 Cheyenne Wells, CO 38°49' 102°21' 1295 .02088

2 Belleville, KS 39°50' 97°38' 469 .01084

3 Beloit, KS 39°29' 98°06' 445 .01850

4 Coldwater, KS 37°16' 99°20' 634 .01909

5 Dodge city WSO P, KS 37°46' 99°58' 786 .03788

6 Goodland WSO P, KS 39°22' 101°42' 1113 .06963

7 Greensburg, KS 37°37' 99°18' 680 .01897

8 Healy, KS 38°36' 100°37' 869 .03305

9 Hoxie, KS 39°21' 100°27' 820 .05768

10 Lamed, KS 38°11' 99°06' 610 .05203

11 Liberal, KS 37°02' 100°55' 866 .04740

12 Lincoln 1 ESE, KS 39°02' 98°08' 427 .02963

13 McPherson, KS 38°22' 97°40' 454 .04211

14 Medicine Lodge, KS 37°16' 98°35' 442 .05384

15 Minneapolis, KS 39°08' 97°42' 402 .01313

16 Plainville, KS 39°14' 99°18' 655 .05247

17 Scott City, KS 38°29' 100°54' 905 .02983

18 Smith Center, KS 39°47' 98°47' 546 .03035

19 Sublette, KS 37°29' 100051 890 .04917

20 Tribune 1 W, KS 38°28' 101°46' 1100 .06207

21 Buffalo, OK 36°50' 990371 549 .07363

22 Goodwell Res. Sta., OK 36°36' 101°37' 1009 .09849

23 Jefferson, OK 36°43' 97°48' 326 .03839

24 Okeene, OK 36°07' 98°19' 366 .04094
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Table 1, continued.

b. Box 2

Station Name N Lat W Lon Elev(m) Weight

1 Algonia 3 W, IA 43°04' 94°18' 375 .02731

2 Ames 8 WSW & 3SW, IA 42°01' 93ø44 320 .02917

3 Atlantic 1 N,IA 41°25' 95°00' 366 .02444

4 Carroll 2 SSW, IA 42°02' 94°53' 381 .02333

5 Chariton, IA 41°00' 93°19' 293 .02260

6 Charles City, IA 43°03' 92°40' 308 .01205

7 Clarinda, IA 40°44' 95°01' 322 .02835

8 Glenwood, IA 41°02' 95°45' 302 .02348

9 Harlan, IA 41°39' 95°19' 354 .03141

10 Indianola 2, IA 41°21' 93°34' 256 .01983

11 Iowa Falls, IA 42°32' 93°16' 357 .03384

12 Le Mars, IA 42°48' 96°10' 363 .01228

13 Logan, IA 41°38' 95°48' 320 .01686

14 Mason City, IA 43°09' 93°12' 344 .02868

15 Onawa, IA 42°02' 96°06' 320 .03294

16 Usage, IA 43°17' 92°48' 357 .02461

17 Oskaloosa, IA 41°19' 92°39' 253 .02075

18 Rockwell City, IA 42°24' 94°37' 369 .03285

19 Spencer 1 N, IA 43°10' 95°09' 405 .03110

20 Albert Lea, MN 43°39' 93°21' 372 .00979

21 Trenton, MU 40°05' 93°38' 256 .01910

22 Crete, NE 40°37' 96°57' 439 .04012

23 Madison, NE 41°50' 97°27' 482 .01435

24 Omaha (North) WSFO, NE 41°22' 96°01' 399 .01962

25 Seward, NE 40°54' 97°05' 451 .02751

26 Wakefield, NE 42°16' 96°52' 430 .02334

27 Sioux Falls SD 43°34' 96°44' 433 .02271
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Table 1, continued.

c. Box 3

Station Name N Lat U Lon Elev(m) Weight

1 Bismarck WSO AP, ND 46°46' 100046i 503 .03199

2 Cooperstown, ND 47°26' 98°07' 436 .04962

3 Fessenden, ND 47°39' 99°37' 494 .03876

4 Fullerton, ND 46°09' 98°24' 439 .03662

5 Gackle, ND 46°38' 99°08' 594 .02770

6 Jamestown St Hosp., ND 46°53' 98°41' 445 .02201

7 McLusky, ND 47°29' 100°28' 591 .02184

8 Mott, ND 46°23' 102°20' 738 .01654

9 Pettibone, ND 47°07' 99°31' 597 .03067

10 Richardton Abbey, ND 46°53' 102°19' 753 .03979

11 Washburn, ND 47°17' 101°02' 546 .02916

12 Aberdeen WSO AP, SD 45°27' 98°26' 396 .01324

13 Britton, SD 45°47' 97045 408 .02974

14 Clark, SD 44°53' 970441 543 .02830

15 Dupree, SD 45°03' 101°36' 722 .03159

16 Eureka, SD 45°47' 99°38' 570 .02185

17 Faulkton 1 NW, SD 45°02' 99°08' 479 .02606

18 Forestburg 3 NE, SD 44°02' 98°04' 375 .03479

19 Gann Valley, SD 44°02' 98°58' 533 .02344

20 Highmore 1 U, SD 44°31' 99°28' 576 .02832

21 Hopewell 1 SE, SD 44°30' 100°52' 585 .06116

22 Huron WSO AP, SD 44°23' 98°13' 390 .04354

23 Lemmon, SD 45°56' 102°10' 792 .02939

24 Midland, SD 44°04' 101°09' 576 .01148

25 Pierre FAA AP, SD 44°23' 100°17' 527 .01607

26 Timber Lake, SD 45°26' 101°04' 655 .03389
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Table 2. Stations and dates of missing data and morning observation
times.

Box 1 Station 10
Station 11
Station 19
Station 22
Station 24

Box 2 Station 8

Station 20
Station 23
Station 24

Box 3 Station 3

Station 7

Station 8

Station 11
Station 21

Sep 1983 Dec 1983

Sep 1979 - Dec 1983

Jan 1948 Dec 1949

Dec 1972 - Dec 1983

Jan 1948 Jan 1950

May 1958 - Nov 1960

Aug 1979 - Dec 1983
Jan 1981 - Dec 1983
Jan 1948 Dec 1953

Jan 1982 - Dec 1983

Jan 1948 Sep 1950

Dec 1980 Dec 1983

Feb 1966 Nov 1970

Jan 1948 - Dec 1949

AM Observations
AM Observations
AM Observations
AM Observations
AM Observations

AM Observations
AM Observations
AM Observations
Missing

Missing
AM Observations
AM Observations
AM Observations
Missing
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1984).

Trace precipitation values are assigned the value 0.1 mm.

Precipitation data is square-root transformed to mitigate the very

strong positive skewness exhibited. This transformation was chosen as

being most satisfactory, after some experimentation involving

comparisons with logarithmic and cube-root transformations, and no

transformation.

Box-scale time series of daily maximum and minimum temperatures

and daily precipitation were calculated by area-averaging station

values using the weights listed in Table 1. These weights specify the

proportion of the study areas closest to each station. Maximum and

minimum temperatures for each station were adjusted, before averaging,

to the nominal box elevations as specified in the GCM (Box 1 = 913 m,

Box 2 = 381 m, Box 3 = 629 m) using an assumed lapse rate of 6.5°C/km.

Morning-observed maximum temperatures were assigned to the previous

day. Morning-observed precipitation data were considered to be

missing, and the weights recalculated for these cases.

2.3 Rotated Principal Component Representation

2.3.1. Spatial patterns

Eigenvectors and eigenvalues are calculated, separately for each

month and gridbox, from the correlation matrix R of the data for all

stations and variables. This matrix is defined as

R ( z Z1 > . (2.1)
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Here the angle brackets denote an ensemble average over all

non-missing data, calculated separately (and with sample sizes

possibly varying) for each element of R, and the prime denotes a

transpose. Morning-observed maximum temperatures are assigned to the

previous day and considered valid. ll estimated data and

morning-observed precipitation are considered missing. The ensemble

average is taken over a randomly selected 27-year training sample

only, the omitted years being 1950, 1955, 1957, 1962, 1966, 1969,

1973, 1974, and 1980.

The data vectors z are of dimension equal to the number of

stations in the gridbox J multiplied by 3, and are comprised of three

sub-vectors, each of dimension J. That is,

I hi
I " I

z= I t I

I I (2.2)

I I

I 4p I

I I

where the vector elements h, denotes maximum temperature, t denotes

minimum temperature, and Ip,, denotes the square-root of the

precipitation, for station j. The tildes above each vector variable

indicate data standardization by subtraction of the annual cycle

(significant Fourier harmonics, varying daily, for temperatures, and

monthly means for transformed precipitation) and division by standard

deviations from the annual cycle for that variable, month, and

station. That is,
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= Cx ) / a , (2.3)

J 3 3 x

'3

where

6

x = A + E A sinC(2n m t)/365.25 + B ]
,

j = 1, 2J; (2.4a)

oj rn=l mj mj

1 N,,

x = --- E x ,
= 2J+l, 3J; (2.4b)

N n1 jn

'3

and

1 N, _2 1/2

a = C (x x ) ] . (2.5)

x N n1 jn j

'3 3

Here x, represents either maximum temperature, minimum temperature, or

square-root transformed precipitation (depending on the index j), the

A's are the Fourier amplitudes, the B's are the phases, and t is the

julian date.

Thus, for Box 1, where J = 24, z, is the scaled maximum

temperature deviation for station 24, and z is the scaled minimum

temperature deviation for station 1. This simultaneous treatment of

all variables is analogous to the approach of Kutzbach (1967). Note

also that this formulation is different from that of Kim et al.

(1984), who considered scaled deviations of station data from the

box-scale values, rather than from the individual average values for

each station.

The largest eigenvectors for each month (scaled to have lengths
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equal to the square-roots of the corresponding eigenvalues) are then

subjected to a varirnax rotation (Horel, 1981; Kaiser, 1958>.

Recommendations in the literature as to precisely how many vectors to

rotate vary widely (e.g., Richman, 1981; Richman and Lamb, 1985). The

criterion used in the present formulation is to include in the

rotation the number of eigenvectors sufficient to describe 98% of the

variance far each month. This number is smallest for the cool months

and largest for the warm months, and ranges from 35, 34, and 36

(respectively for Boxes 1, 2, and 3) for February to 52, 55, and 56

for July. The cutoff value was arrived at by examining the result of

rotating successively more vectors, and observing the point at which

the result ceased to change appreciably. The rotated vectors are

scaled to unit length and, for convenience, multiplied by -1 if

necessary to insure that the loading (i.e., vector element) with the

largest absolute value is positive.

Rotation of principal components is a means of avoiding the

somewhat artificial (for purposes other than data compression only)

constraint on the unrotated solution that each vector in decreasing

importance be orthogonal to the previous vectors while simultaneously

being oriented along the line with maximum variance in the remaining

subspace. Not rotating the initial solution can lead to vectors which

do not represent any feature (pattern or cluster of data points) of

the data. particular unrotated mode may include only a residual

fraction of a particular feature of the data, or may compromise

between several features by being oriented between them (e.g.,

Richman, 1981, Richman 1986; Walsh and Richman, 1981).

The varimax procedure seeks to find rotations of the eigenvectors
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that will maximize the variance of the squared (scaled) rotated vector

loadings. The usual result is that only a few loadings of a given

rotated vector are substantially different from zero. This result is

sometimes referred to as 'simple structure,' (e.g., Harman, 1967;

Horel, 1981; Richman, 1986), and often aids in interpreting these

vectors in terms of features in the data.

In the present data sets, simple structure is manifested by

vectors having distinctly more length in one of the three

J-dimensional subspaces that correspond to each of the three surface

weather variables. The first J loadings of each vector are the

elements of the "maximum temperature subspace', the second 3 loadings

are the elements of the "minimum temperature subspace', and the last 3

loadings are the elements of the "precipitation subspace." The fact

that these portions of the vectors correspond in this way to the three

variables can be seen from the definition of the correlation matrix R

in (2.1) and (2.2), from which the rotated vectors are derived. The

relative division of emphasis of each vector between these three

subspaces may be examined quantitatively (since the rotated vectors

have been scaled to unit length) by summing the squared loadings in

each of the three subspaces. For example, Table 3 presents this

decomposition for the 39 rotated January vectors for Box 1, and Table

4 does the same for the corresponding 52 rotated July vectors. These

tables show that, except for some of the least important modes (which

will subsequently be truncated), each mode may be rather unambiguously

characterized as a "maximum temperature," a "minimum temperature," or

a "precipitation" vector. Results for the other months and gridboxes

are quite similar.



18

Table 3. Index number, percent of total variance described, and
relative partition between maximum temperature, minimum
temperature, and precipititation for rotated Box 1 January

vectors. sterisk indicates dominant emphasis of mode.

Truncation for stochastic data generation indicated by K.

Variance Sum of squared loadings for elements of:

Mode # O x 100) Max. Temp. Mm. Temp. Precipitation

k

1 30.69 % .227 .771 * .002

2 26.75 % .783 * .181 .036

3 14.60 % .053 .007 .940 *

4 2.10 % .063 .021 .915 *

5 1.80 % .053 .021 .926 *

6 1.60 % .024 .011 .964 *

7 1.58 % .017 .007 .976 *

8 1.53 % .024 .010 .966 *

9 1.03 % .021 .009 .970 *

10 1.00 % .016 .010 .974 *

11 0.98 % .015 .005 .981 *

12 0.93 % .156 .829 * .015

13 0.83 % .015 .005 .980 *

14 0.82 % .028 .016 .955 *

15 0.79 % .021 .005 .974 *

16 0.78 % .020 .016 .964 *

17 0.76 % .015 .031 .955 *

18 0.67 % .018 .017 .965 *

19 0.65 % .954 * .041 .006

20 0.63 % .952 * .040 .008

21 0.55 % .921 * .069 .010

22 0.55 % .032 .966 * .002

23 0.54 % .039 .954 * .008

24 0.51 % .936 * .056 .008

25 0.50 % .085 .908 * .007

26 0.50 % .019 .018 .964 *

27 0.49 % .108 .885 * .007

28 0.48 % .027 .016 .957 *

29(=K) 0.46 % .041 .038 .922 *

30 0.38 % .024 .025 .951 *

31 0.38 % .022 .023 .955 *

32 0.37 % .027 .019 .954 *

33 0.30 % .059 .939 * .002

34 0.29 % .893 * .079 .028

35 0.28 % .823 * .165 .012

36 0.27 % .901 * .091 .008

37 0.24 % .136 .844 * .020

38 0.22 % .162 .394 .443

39 0.22 % .053 .062 .886 *
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Table 4. Index number, percent of total variance described, and
relative partition between maximum temperature, minimum
temperature, and precipititation for rotated Box 1 July

vectors. asterisk indicates dominant emphasis of mode.

Truncation for stochastic data generation indicated by K.

Variance Sum of squared loadings for elements of:

Mode * (A x 100) Max. Temp. Mm. Temp. Precipitation

k

1 23.53 % .773 * .150 .077

2 22.69 % .192 .804 * .004

3 3.70 % .825 * .160 .015

4 1.68 % .053 .023 .924 *

5 1.56 % .055 .038 .906 *

6 1.54 % .061 .033 .906 *

7 1.50 % .043 .012 .946 *

8 1.50 % .032 .021 .946 *

9 1.48 % .055 .010 .935 *

10 1.47 % .049 .017 .934 *

11 1.47 % .051 .023 .926 *

12 1.46 % .059 .011 .931 *

13 1.46 % .041 .027 .932 *

14 1.45 % .035 .013 .952 *

15 1.44 % .047 .017 .936 *

16 1.43 % .057 .016 .927 *

17 1.43 % .039 .023 .938 *

18 1.42 % .908 * .082 .010

19 1.42 % .074 .024 .902 *

20 1.40 % .048 .016 .935 *

21 1.37 % .061 .035 .903 *

22 1.34 % .034 .013 .953 *

23 1.33 % .077 .903 * .020

24 1.30 % .118 .085 .798 *

25 1.29 % .047 .014 .938 *

26 1.27 % .035 .019 .946 *

27 1.26 % .045 .017 .938 *

28 1.13 % .050 .014 .937 *

29 1.05 % .044 .014 .942 *

30 .96 % .065 .921 * .014

31 .90 % .036 .958 * .006

32 .81 % .070 .919 * .011

33 .80 % .958 * .038 .005

34 .75 % .080 .911 * .009

35 .71 % .938 * .049 .013

36 .66 % .039 .954 * .006

37 .58 % .078 .921 * .002

38 .55 % .051 .944 * .005

39 .46 % .979 * .020 .001

40(=K) .46 % .063 .931 * .006

41 .44 % .052 .945 * .002

42 .41 % .956 * .042 .001



Table 4, continued.

Variance

Mode * x 100)
k

20

Sum of squared loadings for elements of:

Max. Temp. Mm. Temp. Precipitation

43 .41 % .132 .867 *

44 .39 % .055 .944 *

45 .39 % .061 .937 *

46 .34 % .082 .916 *

47 .30 % .107 .892 *

48 .30 % :255 .745

49 .28 % .320 .680
50 .27 % .907 * .092

51 .27 % .436 .564

52 .23 % .460 .539

002
.001

002
002
001

.001

000
001

000
000
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Figures 2, 3, and 4 illustrate the above for the case of the

leading three vectors, respectively, for the January Box 1 data.

Panel (a) in each figure depicts the structure in (2-dimensional

geographical) space of the first 24 (maximum temperature) elements for

that mode, the (b) panels shoi the second 24 elements (minimum

temperature), and the (c) panels show the final 24 (precipitation)

elements. Looking at the three panels of Figure 2 illustrates the

result, indicated in Table 3, that the first vector primarily

represents variations in minimum temperature. The loadings in Figure

2b are of the same sign and of approximately the same magnitude,

indicating that minimum temperatures are broadly coherent across the

domain. The loadings in Figure 2a (for maximum temperature) are also

all positive and comparable in magnitude, but are smaller than those

for minimum temperature in Figure 2b. This result indicates a

positive correlation between maximum and minimum temperatures, but

also that the spatial correlation among minimum temperatures is

stronger than their correlation with maximum temperatures. The

loadings for precipitation in the first January mode, shown in Figure

2c, are all essentially zero. This result indicates that, to a first

approximation, the relationship between precipitation and broad-scale

minimum temperature is weak.

The second vector, depicted in the three panels of Figure 3 has a

similar interpretation. In this case, however, it is primarily

variations in maximum temperature which are represented, since the

largest loadings are those in Figure 3a. Minimum temperatures exhibit

substantial and coherent positive correlation with maximum

temperatures, as seen in Figure 3b. The loadings for precipitation in
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101 100 99 91

Figur. 2.. Sp.tial diitribution of 1.nta of th. 1..ding
varisax rotetd) victor for January Box 1. Firat
24 (aaxiaua t..p.ratur) 1.a.nt.
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101 100 99

Figur. 2b. Spatial diatribution of l.nta of tb. l.ading
(variaax rot.t.d) vctor for January Box 1. S.cond
24 (.iniau. t.ap.ratur.) le..nta.
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102 101 100 99 91

Figur. 2c. Spatial diatribution of la.nta of th. l.ading
(vsrii.x rotat.d) vctor for January Box 1. Lait

24 (precipitation) l.a.nta.
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1 101 100

Figur. 3.. Sp.ti.1 diatribution of 1nti of th. scond
(vsriu.x rotst.d) v.ator for January Box 1. First
24 (.axi.ua t..p.ratur.) .le.snta.
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Figure 3b. Spatial diatribution of .lea.nta of the second
(varisax rotated) vector for January Box 1. Second
24 (minisus tesperatur.) .l.a.nta.
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101

Figur. 3c. Spitiul distribution of 1.a.nta of the ucond
(varisax rotated) vector for January Box 1. Last
24 (precipitation) elesenta.
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1 101 1O0 99

Figur. 4.. Sp.tis] distribution of 1.nts of th. third
(varisix rotated) vector for January Box 1. First
24 (..xi.ua t..perature) elesonts.
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Figur. 4b. Spstisl. di.tribution of le..nta of th. third
(vari.sx rotatd) victor for January Box 1. S.cond
24 (.iniau. t.ap.ratur.) .1...nti.
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Figure 4c. Spatial diatribution of .l...nta of th. third
(vari.ax rotated) vector for January Box I. Lait
24 (precipitation) ele..nta.



31

Figure 3c are consistently negative although small, and reflect a

tendency for relatively dry conditions to be associated with higher

than average maximum temperatures (and vice versa).

The third January vector, represented in Figure 4, apparently

corresponds to relatively coherent synoptic-scale precipitation over

much of the domain. Many of the loadings in Figure 4c are roughly

equal and of positive sign, and the larger loadings tend to occur in

the wetter (eastern) part of the domain. Figures 4a and 4b indicate

negative relationships between large-scale January precipitation and

temperatures, particularly for the case of maximum temperature.

These results are broadly representative of the cool season for

all three gridboxes. For these months (October through March or

pril) the first two vectors are of approximately equal importance and

each describe approximately 25-30% of the variance; one is a maximum

temperature vector resembling Figure 3, and the other is a minimum

temperature vector resembling Figure 2. In each of these months, the

third vector is a precipitation vector resembling Figure 4, which

describes approximately 10% to 15% of the variance. Subsequent

precipitation modes (for example, 4 through 11, 12 through 17, 26, and

26 through 32 for Box 1 January -- see Table 3) each describe a

relatively small portion of the total variation, and can generally be

identified with a single station.

n exception to the above pattern occurs for the months of

December, January, and February in Box 3. In this case, the primary

variations in maximum and minimum temperature are both contained in a

single (the first) mode, which accounts for approximately 55% of the

total variation. This result may reflect a tendency for temperatures
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to be decoupled from the diurnal cycle of solar radiation as a result

of the influence of snowcover on albedo.

For the warm-season months the temperature analysis is

essentially the same as presented above, but no vector representing

large-scale precipitation exists (compare Table 3 and Table 4). This

result is physically reasonable considering the small-scale nature of

warm-season, convective precipitation in this region. Instead,

variations in precipitation are described by a series of precipitation

modes, a typical example of which (the July vector 6 for Box 1) is

shown in Figure 5. Figure 5c shows clearly that this vector primarily

describes precipitation variations at and near Buffalo, Oklahoma.

This and other single-station precipitation modes represent the

positive spatial correlation in rainfall amounts that drops off more

or less regularly with distance, and is a familiar feature of observed

precipitation data (e.g., Hendrick and Corner, 1970; Zawadzki, 1973).

1so represented (in Figures 5a and Sb) are the negative correlations

between precipitation at Buffalo and temperatures at moderately large

distances from that station. The larger regions of negative

temperature loadings centered geographically on areas of high positive

precipitation loadings seem to reflect the influence of non- or

lightly-precipitating clouds on scales larger than that of the intense

convective precipitation. gain, the relationship is strongest with

maximum temperature, and inspection of Tables 3 and 4 indicates that

this result is common in this data set.

Taken together, the warm-season precipitation vectors for a given

month, each describing a small portion of total variance identified

with a single station, present a picture such as that shown in Figure
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1 101 100 99

Figure 5.. Spatial dietribution of elceente of rotated July vector number
6 for January Box 1, representing precipitation variations
at Buffalo, Oklahoma. First 24 (maximum temperature)
elements).
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Figur. 5b. Spatial diatribution of l..enta of rotated July vector number
6 for January Box 1, reprementing precipitation variation.
at Buffalo, Oklahoma. Second 24 (minimum temperature)
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Figur. Sc. Spatial distribution of leaenta of rotated July vector nu.ber
6 for January Box 1, representing precipitation variations
at Buffalo, Oklaho.a. Last 24 (precipitation) eleaenta.
Areas over 0.30 are hatched.
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6. This figure superimposes the 0.30 contours for all July

precipitation modes, again for Box 1. The selection of the 0.30

contour for Figure 6 is a convenience that serves to illustrate the

completeness of the representation over the sample of stations

available, and the interconnectedness of the precipitation patterns

for nearby stations. It portrays a 'collective regionalization" of

daily precipitation similar to that presented by Richman and Lamb

(1985) for 3- to 7-day precipitation totals over a larger domain.

This type of partition of the precipitation variance is completely

general for the warm season over the gridboxes considered. For all

three cases the analyses for June, July, and August exhibit exactly J

of these small precipitation modes.

The small cool-season precipitation vectors resemble that shown

in Figure 5 as well, and thus may be representing similar physical

phenomena. In that context they seem to correspond to precipitation

produced by convective elements irnbedded in a larger-scale

precipitation event (represented by the third, broad-scale

precipitation vector), which appear to be general features of

extratropical synoptic-scale cyclones (e.g., Houze and Hobbs, 1962).

A demonstration of the utility of the rotation of the initial

principal component solution in meteorological pattern representation

is provided in Figure 7. This figure shows a typical unrotated July

precipitation vector comparable in importance (1.6% of variance) to

that shown in Figure 5. The precipitation subspace of this unrotated

vector, shown in Figure 7c, includes both large positive and negative

loadings, with a pattern not apparently related to any physical mode

of precipitation. Moreover, the corresponding temperature portions of
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101 100 99

Figure 6. Superpocition of the 0.30 lo.ding contouri for Box 1
July precipitation vectora.
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Figure 7c. Spatial distribution of lea.nta of an unrotated July
precipitation vector, illustrating difficulties in
pattern interpretation. Third 24 (precipitation)
eleaents.
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this vector shown in Figures 7a,b appear to be equally arbitrary, and

not discernably related to the precipitation pattern portrayed in

Figure 7c or to each other.

By contrast, consider the effect of the spatial- and

cross-correlations (preserved by the varimax rotation), shown in the

panels of Figure 5, on the representation of the corresponding

meteorological data. P daily precipitation total of 18.0 mm in July

at Buffalo, Oklahoma implies, in the absence of contributions from

other precipitation modes, 2.0 mm at the nearest station, Coidwater,

Kansas (Station 4, cf. Figure 5c). This precipitation amount at

Buffalo also implies an adjustment of -1.0°C to the maximum

temperature at Buffalo, and adjustments of between -0.4°C and -0.8°C

at the other stations in southwestern Kansas and northwestern Oklahoma

(cf. Figure 5a). P similarly large precipitation amount at Medicine

Lodge, Kansas (Station 14) would produce (through the corresponding

correlation structure portrayed in the precipitation mode for that

station) comparable and additive effects on the temperatures at these

stations. P contribution to the precipitation at Coidwater would be

made as well, but its effect in combination with that from the Buffalo

precipitation mode would be more than additive, as a result of the

square-root transformation to which the precipitation data have been

subjected. The implied precipitation at Buffalo would of course

increase as well.

Finally, it is interesting to compare the spatial representation

obtained from a rotated principal component analysis derived using the

correlation matrix formed in the manner of Kim et al. (1984); that

is, using scaled deviations of station data from the box-scale values,



42

rather than from the individual average values for each station. s

might have been anticipated, there are no counterparts to the two

leading large temperature modes indicated in Tables 3 and 4, and there

are correspondingly more small "noise modes. Since the large leading

temperature modes represent broadly coherent temperature variations,

these variations are closely paralleled by the grid-scale time series.

This source of variance is removed from the data before the

correlation matrix is formed, and is automatically reflected in

reconstructed data as a consequence of the correct

back-transformation.

Other aspects of this alternative formulation resemble those

discussed above, although some appreciable differences exist.

Convective precipitation is again represented by local modes, but

there are fewer than J of these modes for the warm season. Some

closely spaced stations share a single mode. Others are not most

important in any one mode, but rather are represented as clearly

secondary components of several vectors. The manifestation of "simple

structure" is less clear in this case, with moderately large negative

preciptitation loadings (on the order of -0.10 to -0.15) appearing for

some stations in precipitation modes (compare Figure 5c). lso, the

intercorrelation between precipitation and the temperature variables

in the precipitation modes seems less physically plausible. Although

moderately large negative temperature loadings occur at stations for

which the precipiation loading is highest, those for the nearest

stations are sometimes small or even positive. These differences may

result from the inability of the Kim a. (1984) formulation to

distinguish, for example, cases for which all stations within a box
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are dry from cases for which precipitation at a particular station is

near the box-averaged value.

2.3.2. Time-dependent structure

In the present setting the mathematical model for the data in

terms of the rotated eigenvectors may be written in matrix form as

z(t) = E aCt),
A. A. A.

(2.6)

where E is a matrix whose columns are the rotated eigenvectors, and

aCt) is the time-dependent vector of "scores" or "amplitudes. ' In
A.

the present work this latter term is adopted for the a vector (cf.
A.

Kim et al., 1984; Richman, 1986), which arises from the analogy

between the matrix E and a basis set such as the Fourier harmonics.
A.

The vector z(t) is defined as in (2.2) for each day t. The 2% of
4.

total variance contained in the unrotated vectors has therefore been

assumed to be of negligible importance.

Various approaches to calculating the amplitudes have been

advanced (e.g., Harris, 1967; McDonald and Burr, 1967), and most of

these methods were found to yield essentially identical results for

the present data set. The amplitudes here are calculated directly,

according to

-1

a(t) = C E' E ] E' z(t) , (2.7)
A. A. A. A.

which is obtained by elementary manipulation of (2.6) (Kaiser, 1962).
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2.4 Climate Inverse Procedures

2.4.1. Regression specification of local data from box-scale

information

Following Rim aj. (1984), regression equations were

developed that related the box-scale values of temperature and

precipitation to the amplitudes (as predictands) calculated according

to (2.7). Note that this procedure is the reverse of the usual

principal component regression, where the aim is to produce a set of

orthogonal predictor variables (Draper and Smith, 1981). The

relationships were fit only to amplitudes calculated from the 27-year

training sample. Morning-observed precipitation, and all estimated

values were accepted in this calculation, as a complete data set is

required. Potential predictors were deviations of box-scale maximum

and minimum temperatures from an annual cycle (calculated in the same

way as for station data in Section 2), the box-scale precipitation,

and its square root. Other predictors, such as a dummy variable for

precipitation occurrence, and the values for box-scale variables on

previous days were found not to be useful in exploratory analyses, and

are therefore not included.

The regression coefficients for the first four Box 1 January and

July amplitudes, and the respective r2 values are listed in Table 5.

In both cases, amplitudes of the leading two temperature modes are

very well predicted by box-scale information, particularly for

January. This result should not be surprising in view of the high

degree of coherence exhibited by maximum and minimum temperatures in
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Table 5. Regression coefficients, r2, and partition of variance
de5cribed, for prediction of first four amplitudes from
box-scale values for Box 1, January and July.

Coefficient for: 3r2 X £ e 2
k j* jk

r2

Const. Max 1. Mm T. TPpt Ppt max mm ppt

January:

a .091 -.435 1.228 -- -.324 .977 .204 .693 .002

1

a -.561 .971 -.679 1.471 .426 .974 .612 .141 .028

2

a -1.200 .117 -.087 2.782 1.235 .698 .016 .002 .287

3
a -.281 -- .311 -- .020 .000 .000 .001

4

Totals .832 .836 .318

July:

a -.730 1.715 -1.191 -- .224 .880 .480 .093 .048

1

a .040 -.656 2.287 -- -- .900 .118 .493 .002

2
a -.053 .112 -- -- .056 .005 .001 .000

3

a -.224 -- -- .179 -- .032 .000 .000 .002

4

Totals .603 .587 .052
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the study area (cf. Figures 2b and 3a). Variations in broad-scale

winter precipitation are moderately well predicted (e.g., r2 = .698

for Box 1 January mode 3). However, the smaller-scale precipitation

modes, typified in Table 5 by a4 for both January and July, appear to

be essentially unpredictable from only box-scale information. For the

summer months, in which all precipitation variations are represented

by these small-scale precipitation modes (cf. Table 4), knowledge of

the weighted-average box-scale values gives essentially no information

as to where within the domain or with what intensity the contributing

precipitation may have fallen. This result is of course not

unexpected considering the nature of warm-season precipitation.

partition of variance described by the combination of the

rotated principal component representation of the data and the

specification of the amplitudes by the regression equations may be

calculated. The proportion of variance described by a particular

principal component which is contributed by each loading is given (for

vectors of unit length) by the square of that loading (e.g., Harman,

1967). The proportion of variance (over all stations), for maximum

temperature, minimum temperature, and precipitation separately,

described by the combined analysis for the kth mode, is thus given by

S = 3r2) E e2 . (2.8)

jk kj' jk

Here r3 is the proportion of variance described by the regression

equation, ) is the proportion of total variance described by the kth

rotated principal component, the eJk are elements of the matrix E

defined above, and the summation over j' denotes either the maximum
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temperature, minimum temperature, or precipitation subspace. The

factor 3 enters since basing the principal component analysis on the

correlation matrix R weights all combinations of stations and

variables equally, and the summations in (2.8) are over one-third of

the vector elements.

Table 5 also gives values of S*k for the first 4 Box 1 modes for

January and July. pproximately 80% of the variations in the training

sample of January temperatures and 60% of the variations in July

temperatures are captured by the combined specification procedure.

Ilmost all of this specification is attributable to the first two

modes in each case. The procedure also describes approximately 30% of

the variations in January precipitation, which is derived almost

entirely from the single broad-scale precipitation component a3, and

essentially none of the variations in July precipitation. These

results are typical for cool- and warm-season months in all three

gridboxes considered.

Regression specification of the local-scale variables from the

box-scale data proceeds in the following manner. First, amplitudes

that exhibit predictability using regression coefficients such as

those presented in Table 5 are specified. Expected (i.e., average)

values, which are zero in all cases, are assumed for the remaining

amplitudes. Scaled deviations for the meteorological variables are

then calculated according to (2.6), which are back-transformed by the

inverses of (2.2) and (2.3). The precipitation is then squared to

recover the dimensional values (taking care that imaginary

precipitation values are first set to zero). Precipitation amounts

less than 0. 1 mm are truncated to zero, and nonzero values are
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proportionally scaled such that their weighted average <with weights

defined from Table 1> equals the box-scale value. Note that this

procedure specifies all station precipitation amounts must be zero if

the box-scale value is zero. Examination of the original data

indicates that this relationship is not strictly true, but that

exceptions are nearly always trace amounts, and can of course never be

substantial.

Results of this process for the 27-year training sample and the

9-year independent sample are presented in Tables 6 and 7, again for

the case of Box 1 data which is representative. Table 6 shows the

average over the 24 stations of mean squared errors for maximum

temperature, minimum temperature, and precipitation amount

specifications made according to climatology (i.e., (2.4a) and

(2.4b)], the procedure described above, and a 'simple inverse'

procedure. The regression procedure was carried out using the four

equations specified by the parameters presented in Table 5, and

verifications were made only with nonmissing data and PM-observed

precipitation. The simple inverse procedure specifies temperatures by

adding the unscaled box-scale maximum and minimum temperature

deviations from their respective means for that date to each of the

respective station mean values. It specifies precipitation by

assuming that it is uniform over the entire study area; that is, it

assumes that all station values are equal to the box-scale value.

Note that the performance of the "simple inverse" procedure is very

similar to that of the rotated principal component representation

derived from the Kim et al. (1984) formulation for the correlation

matrix. This result occurs because the amplitudes for the vectors of
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Table 6. Empirical verification statistics (MSE and skill score with

respect to climatology) for specification of temperature and
precipitation amount by means of clirnatolological values, a
simple inverse procedure, and the regression procedure for

Box 1 January and July. Tabulated separately for the 27-year

training samples and the 9-year independent samples.

Training Sample

max mAn ppt

January:
MSE
Climatology 61.7

Simple inverse 8.5
Regression procedure 8.2

Skill score (%)
Simple inverse 86.3

Regression procedure 86.6

July:
MSE
Climatology 16.5

Simpleinverse 4.3
Regression procedure 4.6

Skill score (%)
Simple inverse 74.0
Regression procedure 72.4

Independent Sample

max mAn ppt

36.1 3.8 70.2

5.5 .1 9.4
5.1 2.5 9.1

84.8 43.2 86.6

85.8 34.0 87.1

8.1 67.7
2.6 52.7
2.6 54.0

67.2 22.2
68.4 20.2

17. 4

3. 4

3. 6

45.0 3.4

6.1 2.0
5.8 2.3

86.4 43.0
87.0 33.0

8.6 74.9
2.5 57.0
2.4 60.6

80.5 71.3 23.9
79.1 72.2 19.1
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Table 7. Average over the 24 stations for Box 1 January and July, of
verification tables and threat scores for precipitation
specified by the regression procedure. Tabulated separately

for the 27-year training sample and the 9-year independent
sample.

Training Sample Independent Sample

Forecast Forecast

Y N Y N

January: 0 Y 88 58 0 Y 40 26

b b

a N 55 602 a N 23 182

Threat Score: .434 .436

Fale Alarm Rate: .385 .365

Forecast Forecast

Y N Y N

July: 0 Y 1
222 8 0 Y 73 29

b b

s N
L

496 79 a N
f

157 40

Threat Score: .304 .309

False Alarm Rate: .691 .683
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the latter representation exhibit essentially no predictability on the

basis of the large-scale data, so that grid-scale variations are

transferred directly to the stations.

It is evident that there is no appreciable degradation of the

specifications from the training sample to the independent sample.

Temperature specifications appear to be reasonably good, with skill

scores ranging from 67% to 87%. verage root-mean-squared errors for

temperature specifications range from approximately 1.5°C for July

minima to 3.0°C for January maxima. The simple inverse scheme

performs essentially as well as the regression procedure for

temperature, which is probably a consequence of the relatively

homogeneous physiography of the study area. Either approach appears

to be a suitable basis for temperature specifications in the present

study area. The simple scheme would be expected to perform less well

in more complex terrain, a supposition that could be tested by

extending the analysis to other areas.

in contrast, the precipitation specifications of both schemes

appear to be entirely unsatisfactory for the deterministic generation

of acceptably realistic (from the standpoint of crop simulation)

synthetic station weather data using large-scale information. This

conclusion is reinforced by the data in Table 7, which presents

verification tables and threat scores for precipitation occurrence

specified by the regression procedure, averaged over the 24 stations.

gain, no appreciable degradation is evident in the independent

sample. However, particularly for July, the false alarm rate

(specification of precipitation when none is observed) is extremely

high. Evidently, widespread light precipitation is being specified.
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Increasing the threshold of 'trace" from 0. 1 mm does not appreciably

improve this situation.

2.4.2. Stochastic generation of station weather data consistent with

box-scale values

The spatial distribution of convective precipitation (presuming

now that such preciptation is represented by the small, single-station

precipitation modes in both the cool and warm seasons) within the

domain is evidently not predictable from the box-scale data with

satisfactory accuracy. It is natural, then, to model the particular

locations and intensities of the convective precipitation conditional

on the box-scale average as random phenomena. In formulating a

climate inverse procedure in this setting, the objective is to

stochastically generate time series of 3J-dimensional weather vectors

which represent the.3 surface weather elements and J stations under

consideration. Of course, such a procedure must produce data that are

both consistent with the (specified) box-scale weather data, and that

exhibit acceptable resemblance to the observed data in terms of

statistical characteristics such as mean, variance, distributional

form, and autocorrelation structure in time and space. Successful

development of such a procedure would represent a practical solution

to this portion of the climate inverse problem from the standpoint of

impact assessment using, for example, crop simulation models. The

utility of this solution relates to the fact that a longer record than

could be economically generated directly by 6CM runs or would be

available from observational data is likely to be desired for this

purpose.
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It is in this context that the utility of employing the varimax

rotation, rather than an oblique rotation which might better represent

the spatial variations in the data (Richman, 1986), becomes apparent.

The advantage of the former arises because the amplitudes are

temporally orthogonal, which greatly simplifies the task of simulating

them in a stochastic sense. In addition, the amplitudes of these

small-scale precipitation modes exhibit a very small degree of serial

correlation.

The data generation then proceeds in the following manner. Only

amplitudes for the most important modes are simulated. This

truncation is determined by including enough modes so that at least

75% of the variance for each of the combinations of stations and

variables is included. That is, truncation K is chosen such that

K 2

3 J £ ). e 0.75 , for all j = 1, 3J , (2.9)

k1 k jk

where all symbols are as defined above. gain, the factor 3J enters

as a result of the equal weighting of all 3J combinations of variables

and stations. The truncations K for Box 1 January and July are

indicated in Tables 3 and 4, respectively.

Given the box-scale values for the variables of interest, values

for the first two (or three in the cool-season months) amplitudes are

calculated using regression coefficients such as those presented in

Table 5. Gaussian noise term is then added to simulate variation

about the mean level predicted by the least-squares regression. That

is,
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a = (3 +13 1 +13 1 8 IP 13 p i-E , (2.10)

k 0 1 max 2 mm 3 L 4 L k

where the 13's are the regression coefficients, T. and T. are the

deviations of the box-scale temperatures from their respective means

for that date, and PL is the large-scale precipitation value for the

date. The independent Gaussian noise Ek has zero mean and variance

equal to the mean-squared error of the regression.

Unlike the amplitudes for the small precipitation modes, those

for the small temperature modes exhibit moderate positive serial

correlation. For a majority of these modes, this serial correlation

is adequately modeled by first-order autoregressive models, as judged

by examination of the Bayesian Information Criterion (BIC) statistic

(Katz, 1982; Schwartz, 1978). For simplicity, all of the small (i.e.

not explicitly predictable) temperature-mode amplitude series are

modeled as first-order autoregressions with parameter (i.e., lag-one

autocorrelation) of 0.3, and (Gaussian) white-noise variance

consistent with this choice of parameter and with the proportion of

total variance accounted for by each mode.

Preliminary amplitudes for the small-scale precipitation modes

are drawn randomly from their respective empirical distributions; that

is, from the collection of amplitudes for that mode calculated from

the data. Since all stations are assumed dry on days for which P1,

the box-scale precipitation, is zero, these empirical distributions

include only box-scale wet days. lso, amplitudes are included in the

empirical distributions only if observed precipitation for stations

that are 'dominant" in a given mode are nonmissing and not

morning-observed. Dominant stations are defined to have precipitation
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loadings of at least 0.15 in magnitude. The empirical

precipitation-mode amplitude thstributions are calculated from data

taken from the full 36-year record.

A histogram for a typical empirical amplitude distribution, that

corresponding to the vector shown in Figure 5, is included in Figure

8. It is evident that the distribution is highly skewed, and that its

representation by a member of one of the usual families of parametric

probability distributions would lead to serious distortions of its

character. In particular, extreme positive values, corresponding to

the largest precipitation amounts, would be difficult to portray

accurately in a parametric setting.

The most serious difficulty with stochastic generation of station

precipitation data according to the above procedure is that the

results derived from the initial sampling just described will in

general not lead to a weighted-average box-scale precipitation value

equal to PL. This difficulty is circumvented using the following

procedure. First, the approximation

* *

fp E a ,
(2.11)

corresponding to (2.6), is employed, where E' is the matrix whose

columns (of dimension J) are comprised of the precipitation elements

of the precipitation vectors only, and a is the vector of

precipitation mode amplitudes. Initial dimensional values of

precipitation values at station j, p,,, are calculated in a manner

similar to that in Section 2.4a, using (2.11) and the inverses of

(2.2) and (2.3). Values less than 0.33 mm are set equal to zero.

A scaling factor F is defined as
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J

F = P / E wp , (2.12)

L j=l j j

where the weights w, are given in Table 1. f modified scaling

factor S is then calculated according to

2

S = 1/3 + 2/3 exp {-F /100} . (2.13)

The scaled precipitation estimates p are calculated as

where

S *

p = (p ) (P / P ) , (2.14)

3 3 L L

* J S

P = E w (p) . (2.15)

L j=1 j

This moderately complex procedure is adopted because simple

proportional scaling (i.e., S = 1 for all F) produces extremely high

individual station precipitation amounts on the relatively rare

occasions where all but a few of the randomly drawn amplitudes are

negative or close to zero. In that case, F is necessarily very large

(on the order of 10 to 100), and all the box-scale precipitation must

be concentrated at the few stations whose amplitudes are not small or

negative. For F less than 2 or 3, which occurs in the great majority

of cases, (2.13) implies that S will be very nearly equal to 1, and

precipitation amounts will be scaled nearly in proportion to their

dimensional values. For large F, the scaling is performed in

proportion to their cube roots. The adjustable constants in this

procedure have been "tuned" empirically to provide a reasonable
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compromise between rare generation of extremely unrealistic large

station precipitiation amounts, and excessive frequency of relatively

small precipitation amounts. Note finally that this approach insures

congruence between the synthetic and box-scale precipitation; that is,

A
E w p = P . (2.16)

j1 j j L

The rescaled precipitation amounts no longer correspond, in

general, to those produced by the amplitudes originally drawn at

random. Therefore direct use of the original random amplitudes would

not produce contributions to temperature anomalies, implied by the

patterns such as those shown in Figure 6, that would correspond

correctly to the rescaled precipitation. Therefore, once the final

station precipitation values have been specified, estimates of

precipitation mode amplitudes consistent with those amounts are

calculated according to

* * -1 * A
a (E'E J E'Jp

. ,'.

(2. 17)

which is analogous to (2.7). Finally, these estimates and the

temperature mode amplitudes generated as described above are used to

derive temperature specifications using the relevant sub-matrices in

(2.6) and the inverses of (2.2) and (2.3).

2.4.3. Comparison of the statistical characteristics of the synthetic

and observed data

This section presents a comparison of the statistical



characteristics (spatial and temporal) of the observed 36-year set of

station data with a particular realization of the process described in

the previous section. For convenience, only results for Box 1 are

presented although, as before, these results are representative of

those for the other boxes. The synthetic data were generated using

grid-scale values derived from the observed 36-year time series and

are therefore of the same length.

The averages, over the 24 stations, of observed and synthetic

correlation matrices for maximum and minimum temperature and

square-root transformed precipitation are shown in Table B for January

and July. These data indicate that the procedure described in Section

2.4b has successfully reproduced this aspect of the observed

correlation structure of the data. Maximum and minimum temperatures

are moderately positively correlated; and precipitation is negatively

correlated with both temperature variables, the relationship being

stronger with maximum temperature. Variances of observed and

synthetic data are comparable in magnitude except for July maximum

temperature, for which the variance of the synthetic data is 10-20%

higher.

Intercorrelations between stations for particular variables are

also well portrayed. Table 9 presents the correlation matrices for

observed and synthetic maximum temperatures between the 24 stations

for July. Table 10 does the same for square-root transformed

precipitation. There is a consistent tendency evident in Table 9 for

the synthetic maximum temperature data to exhibit somewhat stronger

correlation between stations than the corresponding observed data, but

the relative relationships are well preserved. The data in Table 10
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Table 8. Observed and synthetic correlation matrices for maximum
temperature, minimum temperature, and square-root
transformed precipitation, averaged over the 24 stations,

for Box 1 January and July.

January

Observed

1.00
.72 1.00

-.27 -.10 1.00

Synthetic

1.00
.76 1.00

-.26 -.07 1.00

July

Observed

1.00
.61 1.00

-.33 -.18 1.00

Synthetic

1.00
.69 1.00

-.32 -.19 1.00
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Table 9. Matrix of correlations of maximum temperature between Box

1 stations for July, observed and synthetic data.

a. Observed data

1.

.66 1.

.63.87 1.

.63.62.65 1.

.74.70.74.83 1.
84. 72. 68.58.74 1.

.68.70.73.91.89.67 1.
77. 73. 76. 73. 86.86.77 1.

.79.75.76.71.82.84.73.88 1.

.66. 72. 78. 88. 88. 67. 88. 82. 81 1.

.66.52.62.85. 82. 59. 78. 70.69. 79 1.

.64.84.88.78. 79. 67.80. 76.80. 87. 66 1.

59. 74. 73. 84. 78. 58. 82. 72.75.89.71.88 1.

.58.61. 64. 91. 81.54. 88.67.66.85.77.76.83 1.
63. 87. 85. 76. 76.66. 78. 75. 79. 84.63. 94. 88. 74 1.

.74. 86. 85. 74. 82. 80. 80. 85. 86. 84. 65. 87. 80. 71. 86 1.

.81.71.73.81.86.77.83.89.88.87.82.81.78.78.78.85 1.

.68.86.88. 71. 78. 71. 76. 79. 86. 84. 66. 89. 79. 71. 89. 89. 79 1.

.69. 58.63.86.84.61.84.76.74.84.92.71.75.80.68.73.85.69 1.

.87.69. 72. 74. 85.85. 78. 88.86. 80. 77. 74. 70. 68. 71. 82. 91. 76. 81 1.

.54. 49. 53. 88. 78.48. 80. 64. 62. 79. 82. 67. 75. 83. 64.63. 72. 62. 83. 66 1.

.66.51.59.80.76. 58. 73. 66. 64. 72. 88.61.64.72.60.62.78.64. 86. 75. 76 1.

48. 52. 58. 86. 71. 43. 78. 59. 56. 79. 73. 69. 79. 89. 69. 63. 68. 65. 73. 59. 83. 68 1.

.42.44.50.81.63.35.72.49.46.70.72.60.71.82.59.54.61.56.70.52. 81.68.89 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Table 9, continued.

b. Synthetic data

1.

.74 1.

.71.97 1.

.74.75.79 1.

.84.83.87.92 1.

.93.81.77.72.86 1.

.80.84.87.98.96.81 1.

.84. 83.84.84.95.93.91 1.

.88.86.84.83. 95. 93. 90. 97 1.

.77.84. 87. 95. 96. 78. 97.91. 92 1.

.77.66.73.92.91.72.90.81.81.88 1.

.72.93.93.87.88.75.91.84.87.94.76 1.
69. 82. 82.92.87.67. 92. 80. 83.95.80. 95 1.

73. 75. 79. 98.91. 70. 97. 82.81. 94. 89. 88. 92 1.

72. 94. 93. 86. 88. 74. 90. 84. 87. 93. 75. 99. 95. 86 1.

.81. 94. 94. 87. 94.88. 94. 95. 95. 94. 78. 95. 88. 86. 95 1.

.88.80.82.92.97.88.95.95. 96.95.91.88.88.90.87.93 1.
77. 95.97.85. 93. 82. 92. 89. 91. 93. 78. 95. 87. 86. 95. 97. 89 1.

79. 70. 77. 94. 94. 75. 93.86. 86. 92. 98. 82. 84. 91.80. 84. 95.83 1.

.93.80.80.86.95.94.91.95.96.89.87.82.79.83.81.92.97.87.91 1.

.69.66. 71. 97. 89.64.93.78. 76. 90. 92. 79. 86. 96. 78. 79.87.79. 93.81 1.

.74.61.69.88.84.67.85.74.73.80.96.70. 73. 83. 69. 73.85. 73.94.83.88 1.

.62.67.71.95.83.59.91. 72.70.88. 83.80.87.97.79. 77. 80. 78.84. 73. 96. 78 1.

.56.58.64. 91. 75. 50. 86.63.59. 79. 81. 71. 79. 93. 70.68. 73. 69. 80. 65. 94. 79. 97 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Table 10. Matrix of correlations of square-root transformed
precipitation for Box 1 July, observed and synthetic

data.

a. Observed data

1.

.07 1.

.12.57 1.

.16. 18. 19 1.

.23.21.22.43 1.

.29. 10.11.15.25 1.

.18.19.22.68.41.14 1.

.23.28.34.38.32.19.37 1.

.26.31.39.23.28.19.26.49 1.

.17.33.36.52.36.15.60.45.38 1.

.11. 16.18.45.29.11.40.33.21.35 1.

.10.54.55.26.20.13.30.32.38.44.15 1.
12.40. 42. 36. 23. 12.45.26.29.57.23.58 1.
15.21.20.57.36. 15. 57. 30.20.48.39.26.38 1.

.08.52.55.23. 18.08.25.31.33.38. 15. 72.52.20 1.

16.44.51.29.27. 18.25.47.57.46.27.50.37.34.44 1.
.25.23.30.33.34. 16. 36. 71. 44. 41. 36. 25.24.33.24.36 1.

.11.60.62.17.21.11.18.36.50.33.19.51.31.18.49.55.30 1.
16. 15. 16. 39. 34. 16.41.37.26.35.59. 15. 18. 28. 15.27.35.20 1.

.30.21.26.34.31.13.31.50.37.33.35.22.19.24.18.34.57.26.34 1.
13. 11. 14. 55. 26. 15. 46. 21.26. 39. 39. 16. 26. 39. 15. 27. 22. 16. 38. 21 1.

.12.00.08.31.19.11.29.28.16.20.48.03.20.26.05. 11.25.08.41.26.24 1.

.07.04.05.40.08.05.29.21.09.29.25.15.28.36.15.14.16.05.15. 14.35.23 1.

.04.05.03.27.00.01.23. 10. 04. 18. 16.09. 16.27.09.09.06.04. 09.06. 33. 09. 51 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Table 10, continued.

b. Synthetic data

1.

.11 1.

.17.47 1.

.13. 10. 10 1.

.17. 14. 14.32 1.

.20.10.10.11.24 1.

.13.12.14.52.37.13 1.

.21.14.20.24.20.16.29 1.

.30.20.32.16.24.19.17.35 1.
18.20. 32. 35. 27. 15. 46. 40. 32 1.

.16.18.22.29.20.16.24.26.16.31 1.

.14.36.37.13.12.05.17.27.31.30.13 1.

.11.32.35.20.16.16.32.19.21.45.16.42 1.

.08. 16.20.42.31. 10.44.22. 16.38.28.20.30 1.

.19.42.47.18.17.07. 15.23.25.29.15.56.44.20 1.
16.27.39. 17. 17. 15. 16.33.45.31. 21.39. 32.24.35 1.

.21.19.26.20.23.13.32.60.29.38.26.18.20.25.20.21 1.
10. 48.52. 10. 15.07. 12.28.43.31. 18.37.22. 14. 39.44.20 1.

.11.11.17.23.22.17.25.21.18.26.51.06.10.20.09.24.22.17 1.

.20. 15. 21.30.24. 13.28.35.25.35.33.22.20.25. 16.20.38.20.28 1.

.16.11.11.36.19.14.32.19.26.35.27.13.25.29.24.21.12.14.27.20 1.

.16.12.19.20.22. 15.25.22.23.26.40.14.20.26.12.12.21.20.27.25.23 1.

.14.12.11.30.06.02.17.24.10.27.21.15.21.20.23.11.13.08.14.18.42.26 1.

.23. 08. 15. 28. 08. 11. 26.28. 18.25. 21. 13. 20. 21 19. 13. 16. 11 14. 23. 39. 23. 49 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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for precipitation are noisier, as would be expected, but the observed

spatial correlation structure again seems to be well reproduced.

Much of the time dependence of the data at the individual station

level also appears to be captured by this method of data generation.

One aspect of the degree of serial correlation of temperature data is

the "effective time between independent samples" T (e.g., Leith,

1973; Trenberth, 1984). Using the result that estimates of T are

approximately normally distributed for present sample sizes, with

variance depending nonlinearly on T (Wilks, 1987; fppendix ), the

equality of T estimates from observed and synthetic January and July

data was tested for each station. greement for January data is

excellent, with none of the maximum temperature differences declared

significant, and the difference for a single station declared

significant (at the 5% level) for minimum temperature. Results for

July indicate less agreement, with 11 tests of 24 significant for

maximum temperature, and 3 tests significant for minimum temperature.

Locations of stations with significant differences appear to be highly

clustered (e.g., all four Oklahoma stations produce significant

results for tests of July maximum temperature), so that a conclusion

of a significant overall difference is not clearcut (cf. Livezey and

Chen, 1983). There is a consistent tendency, however, for synthetic

data for stations for which the test gives a significant result to

exhibit lower 1,, than the corresponding observed data. This tendency

is also evident in a comparison of the synthetic autocorrelation

functions, which decay too rapidly with time for these stations.

Serial correlation of precipitation occurrence may be

characterized by the parameters of a two-state Markov process, and by
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the order of the model necessary to adequately fit the data (e.g.,

Katz, 1985). Determiniation of the appropriate model order is

accomplished by the application of the SIC statistic applied to Plarkov

chains (Katz, 1981; Schwartz, 1978). Observed serial correlation of

precipitation occurrence is adequately represented by Markov chains of

order 1 for all combinations of stations and months in January and

July. The synthetic January data for one station required a

second-order model, whereas July data for seven stations were

adequately described by zero-order models (i.e., precipitation

occurrence independent from day to day). However, in most of these

cases, a first-order model fit the data nearly as well. The results

regarding optimal model order for the synthetic data appear to vary

substantially between realizations, another trial yielding only three

stations (all different from the above seven), with July data

requiring only zero-order models. verages over the 24 stations for

January and July (Table 11) indicate that the portrayal of serial

correlation of precipitation occurrence in the synthetic data is

reasonably close to that in the observed data. In general, parameter

values for different stations are similar, and deviations from these

means for particular stations are generally no more than 10%.

another important aspect of the observed data that should be

reproduced by a successful specification procedure is the

distributional form of the daily precipitation amounts. This feature

is particularly important from the standpoint of agricultural impacts

assessment. Daily precipitation amounts are generally very strongly

skewed, and often a two-parameter gamma distribution is fit to this

type of data, which is first censored to include only nonzero amounts
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Table 11. verage first-order Markov chain parameters for observed
and synthetic data; Box 1 January and July. verages over
the 24 stations.

Pr (dry
following dry}

Pr (wet
following dry}

January

Observed Synthetic

.849 .895

.621 675

July

Observed Synthet ic

.763 .694

.599 .586

Table 12. Pverage scale and shape parameters of gamma distributions
for precipitation amount: observed and synthetic data
for Box 1 January and July. Pverages over 24 stations.

January

Observed Synthetic

July

Observed Synthet ic

Scale parameter 4.3 3.9 16.2 14.5

Shape parameter 0. 55 0. 84 0. 59 0. 54
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(e.g., Katz, 1977; Stern and Coe, 1984; Wayrnire and Gupta, 1981). The

density function of the gamma distribution may be written in a number

of alternative ways. Here it is described in a form such that the

mean is given by the product of the shape and scale parameters. f

comparison of the averages of the shape and scale paramters over the

24 stations is contained in Table 12. It should be noted that

individual station values for the scale parameter deviate

substantially from these mean values (up to 50% or so), particularly

as a result of one or more very large summer precipitation amounts,

but overall there is reasonable agreement between the observed and

synthetic data.

The scaling procedure (2. 12)-(2. 15) succeeds to a large degree in

supressing wildly extreme daily precipitation amounts, although the

synthetic data still exhibit larger extreme values than the

corresponding observations. Table 13 presents a comparison of

frequencies with which selected daily precipitation amounts are

exceeded for January and July. These figures are pooled over all 24

Box 1 stations for the 36-year record in each case. The

correspondence for January is reasonably good. For July, twenty-two

days with more than 150 mm occurred in this realization of the

synthetic data, compared to one day for the observations. The maximum

precipitation amount for the present realization of the synthetic data

is 331 mm, compared to 164 mm in the observations. Use of

proportional scaling rather than (2.12)-(2.15), by comparison,

produces maximum daily precipitation amounts greater than 600 mm.

Note that this tendency to produce occasional unrealistically large

precipitation amounts would probably be exacerbated in a
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Table 13. Frequencies with which selected daily precipitation amounts
are exceeded in the synthetic and observational data,
January and July. Figures are pooled over 24 stations of
Box 1 for 36-year records

January:

July:

Times exceeded in

mount Observations Synthetic data

50mm 0 1

40mm 1 5

30mm 12 14

20mm 49 54

Times exceeded in

Amount Observations Synthetic data

300mm 0 1

250mm 0 2

200mm 0 9

150mm 1 22

100mm 8 62
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representation based on the Kim et al. (1984) formulation for the

correlation matrix, as a result of the presence of moderately large

negative precipitation loadings in the precipitation modes that would

accentuate the relative differences between stations.

Table 14 presents a comparison of average monthly total

(untransformed) precipitation for each station for January and July,

and the corresponding standard deviations (with respect to the 36-year

means for each station). There is moderately good agreement for most

of the stations, with the synthetic data correctly producing largest

average totals on the eastern margin of the domain (north-central

Kansas and Jefferson, Oklahoma), and the lowest average totals in

southwestern Kansas. Note also that for both data sources the

standard deviations are of the same magnitude as the mean values.

This result indicates (for this necessarily nonnegative quantity) that

the strong positive skewness of the observed distribution is

reproduced in the monthly totals of the synthetic data. Such a result

would be expected to follow from the near-equality for the two data

sources of the daily occurrence and intensity parameters presented

above (Katz, 1977).

Finally, Table 15 presents analogous data for mean monthly

maximum and minimum temperatures. The 36-year averages of mean

monthly tempeatures and the standard deviations of these averages from

the overall means are very well reproduced in the synthetic data for

all stations, for both months, and for both temperature variables.
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Table 14. average monthly total precipitation (mm) and standard
deviations of individual monthly totals from the overall
mean monthly total, Box 1 January and July.

a. January

Observed Synthetic

Stat ion Mean Std. Dev Mean Std. Dev

1 6.7 6.0 6.2 5.9

2 17.2 14.6 23.0 20.9

3 16.4 14.3 24.5 21.7

4 15.5 16.2 15.0 14.3

5 12.2 11.0 15.0 14.2

6 10.5 7.5 9.1 7.2

7 13.6 13.1 11.4 11.2

8 10.8 9.8 12.9 15.0

9 10.0 8.4 8.8 9.3

10 12.5 12.0 15.8 16.2

11 12.3 12.3 9.6 9.8

12 15.7 14.9 19.1 18.9

13 17.4 19.8 20.7 20.0

14 14.1 16.2 11.0 10.4

15 16.7 17.1 23.4 21.1

16 10.2 8.9 12.5 12.0

17 13.2 12.1 16.4 19.1

18 10.6 9.4 13.9 12.5

19 8.1 8.0 7.5 9.5

20 7.9 7.6 8.9 9.6

21 13.8 14.5 11.2 10.6

22 7.2 7.3 4.1 3.9

23 20.5 22.9 16.9 15.2

24 17.2 19.6 9.2 10.9
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Table 14, continued.

b. July

Observed Synthet ic

Station Mean Std. Dev Mean Std. Dev

1 68. 6 46. 5 84. 7 90. 2

2 99.6 66.6 107.5 70.9

3 88. 0 72. 4 92. 4 70. 2

4 77. 4 59. 1 86. 3 so. a

5 81.3 52.3 79.1 53.9

6 63.0 31.0 86.8 80.0
7 72. 5 52. 6 60. 8 sa. a

8 77.0 54.5 61.3 49.4

9 81.5 48.9 69.3 49.8

10 87.4 54.1 78.9 56.6

11 77. 7 60. 9 70. 3 52. 6

12 93.6 58.6 105.7 99.6

13 91.3 65.0 84.8 71.1

14 77.7 52.8 57.6 57.1

15 95.6 64.8 100.8 98.7
16 80.1 50.1 82.1 62.2
17 78.2 60. 9 58.4 48. 5

18 73.3 42.5 76.4 51.8
19 67. 1 44. 6 63. 3 55. 8

20 65. 6 49. 7 67. 2 65. 4

21 87.8 55.6 76.3 58,3

22 80. 3 49. 9 83. 6 59. 6

23 97.2 61.0 112.3 96.0
24 67. 1 48. 4 60. 1 60. 0
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Table 15. verage monthly maximum and minimum temperatures, (C),

and standard deviations of individual monthly means from
overall mean values, Box 1 January and July.

a. January

Maximum temperature Minimum Temperature

Observed Synthetic Observed Synthetic

Station mean s.d. mean s.d. mean s.d. mean s.d.

1 6.23 3.31 6.22 3.35 -10.07 3.06 -10.09 2.91

2 1.81 3.02 1.87 3.01 -10.13 3.05 -10.23 3.02

3 3.02 3.18 2.78 3.11 -9.93 3.01 -10.17 3.02

4 6. 74 3. 46 6. 68 3. 58 -6. 92 2. 58 -7. 16 2. 56

5 5. 10 3. 52 5. 10 3. 75 -7. 85 2. 74 -7. 80 2. 75

6 4. 68 3. 50 4. 77 3. 66 -10. 11 3. 09 -10. 05 2. 98

7 5. 59 3. 50 5. 55 3. 63 -7. 85 2. 72 -7. 92 2. 70

8 5. 78 3. 52 5. 83 3. 66 -9. 55 2. 83 -9. 53 2. 89

9 5.25 3.52 5.32 3.59 -9.44 2.81 -9.32 284
10 5. 50 3. 37 5. 56 3. 53 -7. 61 2. 70 -7. 60 2. 68

11 8.58 3.55 8.77 3.70 -6.67 2.54 -6.80 2.59

12 4. 42 3. 26 4. 44 3. 36 -9. 45 3. 12 -9. 53 2. 86

13 4. 07 3. 13 4.00 3. 19 -7.61 2.64 -7. 72 2.69

14 6. 96 3. 63 6. 87 3. 45 -7. 12 2. 70 -7. 18 2. 43

15 3.63 2.97 3.67 3.10 -8.43 2.86 -8.40 2.70

16 3.91 3.40 3.92 3.53 -9.00 2.93 -8.91 2.76

17 6. 55 3. 46 6. 52 3. 70 -8. 97 2. 74 -9. 10 2. 77

18 3.08 3.14 2.83 3.10 -10.23 2.98 -10.30 2.95

19 7. 61 3. 65 7. 63 3. 68 -8. 12 2. 59 -8. 25 2. 68

20 6. 42 3. 57 6. 54 3. 63 -9. 87 2. 79 -9. 86 2. 85

21 9. 04 3. 70 9. 16 3. 61 -6. 48 2. 56 -6. 58 2. 47

22 9. 27 4. 25 9. 49 3. 82 -7. 62 2. 68 -7. 70 2. 62

23 7. 85 3. 43 7. 82 3. 35 -5. 44 2. 54 -5. 65 2. 36

24 9.46 3.76 9.51 3.51 -4.98 2.48 -5.09 2.29
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Table 15, continued.

b. July

Maximum temperature Minimum Temperature

Observed Synthetic Observed Synthetic

Station mean s.d. mean s.d. mean s.d. mean s.d.

1 32. 95 5. 76 32. 93 5. 87 15. 13 2. 76 14. 95 2. 68

2 32.72 6.02 32.60 5.84 19.35 3.52 19.31 3.51

3 33.91 6.23 33.82 6.08 19.13 3.49 19.10 3.50

4 34.93 6.24 34.78 6.25 19.67 3.57 19.55 3.53

5 33.52 6.10 33.49 6.18 19.68 3.62 19.50 3.53

6 32.41 5.78 32.17 5.85 16.28 2.99 16.06 2.90

7 34.16 6.17 34.04 6.16 19.60 364 19.52 3.53

8 34. 37 6. 13 34. 15 6. 20 17.88 3.23 17. 68 3. 18

9 33. 98 6.08 33. 85 6. 13 17.84 3.25 17.65 3. 19

10 34.16 6.22 34.13 6.25 19.78 3.58 19.73 3.59

11 35.11 6.21 35.06 6.23 19.46 3.49 19.30 3.41

12 34. 90 6. 40 34. 79 6. 28 19. 52 3.59 19. 41 3. 60

13 34. 20 6. 32 34. 17 6. 18 20. 04 3. 67 20. 02 3. 68

14 35. 14 6. 29 35.09 6. 31 19.84 3. 57 19. 67 3. 48

15 34.42 6.32 34.38 6.21 19.88 3.67 19.94 3.64

16 33.60 6.17 33.45 6.14 18.89 3.45 18.83 3.41

17 33.73 5.96 33.62 6.07 17.79 3.17 17.67 3.13

18 33.96 6.23 33.82 6.16 18.88 3.53 18.95 3.53

19 34.30 6.08 34.19 6.10 18.32 3.27 18.21 3.22

20 33. 57 5. 98 33. 43 6. 05 16. 37 2. 95 16. 18 2. 89

21 36. 00 6. '+7 35. 87 6. 35 20. 66 3. 77 20. 47 3. 70

22 34. 04 6. 04 33. 93 5. 97 18. 22 3. 26 18. 17 3. 23

23 35.71 6.41 35.66 6.34 21.33 3.81 21.24 3.79
24 36.13 6.41 36.00 6.29 21.29 3.84 21.04 3.72
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2.5 Summary and Conclusions

The present work has extended the initial study of Kim et al.

(1984) by formulating a solution to the "climate inverse" problem for

the case of daily values of maximum temperature, minimum temperature,

and precipitation. The formulation presented differs from that of Kim

et al. (1984) by simultaneously analyzing all three variables, and

by forming the correlation matrix, separately for each month, using

deviations of station values from their (local) mean values rather

than deviations from the box-scale values.

It is found that varimax rotation of the initial principal

component solution produces, consistent with the notion of 'simple

structure11'
pattern vectors that permit reasonable meteorological

interpretations. These vectors are qualitatively different for the

warm and cool seasons, but are similar from month to month within

seasons. They reflect the strong spatial coherence of temperature,

the moderately coherent nature of cool-season precipitation, the

relatively small-scale character of convective precipitation, and the

negative correlation of precipitation with (especially maximum)

temperat ure.

lthough it is possible to specify individual station temperature

data from the larger scale average with moderate success, the

particular location and intensity of convective rainfall within a 40

latitude by 50 longitude region is found to be essentially

unpredictable from the larger-scale information. stochastic

approach to daily weather representation at the station level is

therefore adopted, making use of the temporal orthogonality preserved
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by the varimax rotation procedure. Various spatial and temporal

statistical characteristics of the resulting synthetic data at the

station level correspond reasonably well to the observations. Much

simpler procedures may be employed if realistic spatial

representations of precipititation are not required.

Successful modeling of the spatial distribution of precipitation

indicates that the present approach could be of use in climate impacts

work where a means to produce spatially coherent synthetic

meteorological data is needed. However, the result that exactly J

small preciptitaion modes occur in the analyses for all warm-season

months in each of the three gridboxes considered dictates that some

caution should be exercised in the application of this procedure. In

particular, this result indicates that the station density used here

(even though some of the station spacings are as small as 20 km) is

insufficient to capture the spatial scale of the convective

precipitation. This result is consistent with results obtained using

dense raingage networks (e.g., Changnon, 1981; Griffith et al.,

1981). The application of the procedure should therefore be limited

to data estimation at availabile stations only, as attempts at

interpolation will likely result in underestimation of precipitation

amounts between stations.

One possible application is in studies involving physiological

crop models under present climatic conditions, where the observed

record of meteorological data is shorter than desired. Perhaps the

most serious defect of the present method for this purpose is the

occasional production of unrealistically high daily precipitation

amounts. This effect could be minimized, however, by including a
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parameterization within the crop model for limiting soil infiltration

rate to physically realizable values.

nother potential application is as part of a procedure for using

general circulation model results to estimate the consequences of a

possible climate change on agricultural production. For this purpose,

the method provides a means of producing meteorological data on scales

small enough for use with crop models, which is consistent with the

imposed bok-scale data and which exhibits realistic statistical

characteristics. This application is the focus of the remaining

sections of the present work.
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Section 3

Characterization of Grid-Scale Time Series and Construction of

Climate Scenarios Using a Multivariate Stochastic Model

3.1 Introduction

The second major element in the design of a procedure for

estimation of local impacts of a changed climate is a means to specify

the characteristics of the changed climate on the larger scale.

However, the problem of using data from general circulation model

(SCM) integrations to extrapolate to a 2X-0O2 world is not a

straightforward one. Substantial errors in the control integrations

indicate that direct acceptance of the output from 2XCOg runs as

literally representative of a future changed climate would be unwise.

However, to the extent that significant features of the climate system

are captured in these models, sensible estimates of future climate may

be possible through careful use of the information.

This section describes an approach to this problem that involves

a quantitative description of the statistical structure of daily GCM

data. Surprisingly, only one previous paper in the meteorological

literature (Reed, 1986) has reported investigation of this potentially

rich source of information. In the present work, the statistical

characteristics of the time series of daily surface weather elements

at the scale of the SCM gridbox are portrayed in terms of the

parameters of a rnultivariate time-domain stochastic model. This
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stochastic model and its parameters provide a statistical description

of the climate represented by particular time series of surface

weather elements, and thus may be regarded as a basis for the

representation of the corresponding climatic states (National cademy

of Sciences, 1975). The form of the statistical model is chosen with

the intent of describing important features of the data in terms of

readily interpretable parameters, while at the same time maintaining a

structure that is directly applicable to Monte Carlo simulation.

The inferred climatic state of a 2X-0O2 world is constructed by

considering relative changes in the parameters of this stochastic

model when fit to 1X- and 2X-0O2 6CM data. This approach is the basic

procedure often used in the evaluation of climate change studies using

GCMs (e.g., Schlesinger, 1986). Several applications of this approach

(using changes in monthly, seasonally, or annually averaged

temperature levels and preciptitaion rates) for construction of

"scenarios" of changed climate have been made on the basis of

climatic variations within the period of instrumental records (e.g.,

Jager and Kellogg, 1983; Lough et al., 1983; Namias, 1980; Pittock and

Salinger, 1982; Wigley et al., 1980; Williams, 1980). Some similar

extrapolations, of the same averaged variables and at the same time

scales, have been made with a view toward impact assessments using GCM

data (Bach et al., 1984; I3ates and Bach, 1981; Rosenzweig, 1985;

Santer, 1985).

The present approach is conceptually the same as that in the

above works, but the procedure is used here with a much richer

parameter set. In addition to time-dependent mean values, possible

changes in variances, and in auto- and cross-correlations on the daily
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time scale are considered. The (statistically significant)

differences in the values of parameters representing these aspects of

the 1X- and 2X-00 6CM data are applied to the corresponding values

derived from observations. In this way time series consistent with

observational data, and reflecting relative differences in the climate

states generated by the SCM, may be produced in a Monte Carlo setting.

It is implicitly assumed that no drastic changes in global circulation

regimes will accompany the accomodation of the atmosphere to CO2

increases, an assumption that is given some support by recent modeling

efforts (Manabe and Bryan, 1985; Rind, 1986).

Finally, these results are combined with the climate inverse

procedure of Section 2 to stochastically generate time series of daily

weather data on the local (observing station) scale consistent with

either the current climate or with the inferred 2X-0O2 climate

scenario. Since the ultimate objective is to use the results in

conjunction with "physiological" crop simulation models, equations are

also developed to specify total daily solar radiation on the station

scale in terms of the generated surface weather variables.

The domain and data sources used are described in Section 3.2.

The form of the stochastic model is described in Section 3.3, and the

significance of differences in the values of its parameters for the

1XCOa versus 2X-0O2 SCM data sets is assessed in Section 3.4.

Finally, the significant differences are applied to parameters

characterizing the observational data, and the stochastic model is

used in conjunction with the climate inverse procedure, in Section

3.5.



81

3.2 Domain and Data

The geographical domain for the work described in the present

section is the same as that for Section 2. It is comprised of the

three 4° by 5° (latitude by longitude) gridboxes centered at 38°N,

100°W (Box 1); 42°N, 95°W (Box 2); and 46°N, 100*W (Box 3).

Three time series, each comprised of daily values of maximum

temperature, minimum temperature, and precipitation, are considered.

The first is the area-weighted time series of (observed) cooperative

station data described in Section 2.2. The remaining two are daily

time series of the same variables derived from 1X-0O2 and 2X-0O2

integrat ions of a GCM for the same three gridboxes.

The GCM data is from the OSU Atmospheric GCM (Shan et al., 1982)

coupled to a two-layer, variable depth mixed-layer model of the upper

ocean and sea ice (Pollard, 1982). Hourly model data for years 14

through 25 of the two integrations were obtained. Since the 2X-002

realization of the model had not yet reached equilibrium (W.L. Gates,

private communication), it was necessary to adjust the temperature

data from this source to compensate for the nonstationarity. This

adjustment was accomplished by removing a linear trend from the

temperature data (separately for maximum and minimum temperature, and

for each gridbox), and then adding back the values of the respective

trend lines corresponding to the end of year 25.

Highest and lowest temperatures from 07 DM1 through 06 DM1 in the

model are taken to represent the maximum and minimum temperatures.

This period corresponds approximately to 00 hours through 23 hours

local time. Daily precipitation from the 6CM is summed over the same
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hours. Data from each of the three time series is stratified by

calendar month, and parameters for the stochastic models are, with the

exception of mean level for temperature, fit separately for each of

the 12 months.

3.3 Description of the Stochastic Model

3.3.1. Precipitation

Stochastic models of daily precipitation are typically comprised

of two parts: a formulation for the occurrence of sequences of wet

and dry days, and another for the intensity (amount) of precipitation

on wet days (Coe and Stern, 1982; Ison et al., 1971; Katz, 1977a,b;

Stern and Coe, 1984; Waymire and Gupta, 1981; Woolhiser and Pegrarn,

1979). Typically the occurrence component is taken to be a 2-state

Markov chain (usually of order 1), and the intensity is modeled using

a gamma distribution.

To model precipitation occurrence, the present work adopts a

modified form of the model proposed by Garcia Guzman and Torrez

(1985). It is a Markov chain model, but the transition probabilites

from wet days are allowed to change as a function of precipitation

amount on the previous day. The matrix of transition probabilities is

given by

I 1

il-p p

01 01

P(y) = I 1 . (3.1)

y y I

I PB 1-P 8 I

i_ 10 10 I
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Here 8 is the "feedback parameter," which scales the dependence of the

probabilities an the previous day's precipitation, and is constrained

such that 0 ( 8 1. The parameter y is taken to be the natural

logarithm of the previous day's precipitation divided by the minimum

observable amount (in the present case the minimum is trace = 0.1 mm),

P is the probability of a wet day following a dry day, and P is

the probability of a dry day following a wet day for which y = 0.

Garcia Guzman and Torrez (1985) propose that y be equal simply to the

previous day's precipitation, but exploration of the nature of the

dependence in observed grid-averaged data indicated that a logarithmic

relationship was more appropriate. That is, the probability of

consecutive wet days increases much more strongly as precipitation

increases from trace to small measurable amounts than it does over

comparable ranges of large precipitation amounts. Precipitation

amount is scaled by the minimum observable amount before the logarithm

is taken in order to insure that 0 ( 8 1.

The model (3. 1) is of course a first-order Markov chain, since

the dependence of a given day's precipitation state on the previous

history of the system is completely specified by the precipitation

state and amount on the previous day (e.g., Katz, 1985). For 8 = 1,

the probabilities in (3.1) reduce to those for the usual two-state,

first-order Markov model. The assumption of first-order time

dependence does appear to be adequate to model the dependence

structure of precipitation occurrence in the present data. When (3.1)

is fit, with 8 assumed equal to unity, to the 36 combinations of

grid-box and calendar month, the BIC procedure (Katz, 1981; Schwartz,

1978) specifies first-order models in 29 cases.
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The parameters in (3.1) are fit by maximum likelihood. For the

probability of precipitation following a dry day, the estimate is

given simply by the relative frequency. That is,

P = N /(N +N ) , (3.2)

01 01 00 01

where Po is the estimate of P01, N00 is the number of dry days in

the data followed by dry days, and N01 is the number of dry days in

the sample followed by wet days. [Note: The corresponding equation in

Garcia Guzman and Torrez (1985) is in error and should read as above.]

For the probability of precipitation following a wet day, the

parameters P10 and 8 must be fit simultaneously. The log-likelihood

function is

A (8, P
;

y) = N in (P
10 10 10

y
+ ( £ y ) in (8) + £ in (1 P 8 ) (3.3)

10

Here Q and Q11 denote wet days followed by dry days, and wet days

followed by wet days, respectively. The two parameters are fit

iteratively using the Newton-Raphson algorithm (e.g., Beaumont, 1980).

The model (3.1) evidently captures an important feature of the

observed gridscale precipitation data. A generalized likelihood test

(e.g., Morrison, 1976) rejects the null hypothesis {8 = 1} at the 5%

level for all combinations of the three gridboxes and twelve calendar

months except December for Box 1. The data for individual stations

within the gridboxes support this model for precipitation occurrence

much less strongly. Individual stations may receive precipitation
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from the same storm and contribute to the area-averaged precipitation

on different (consecutive) days. This could account for the observed

correlation of grid-scale precipitation occurrence with grid-averaged

intensity on the previous day.

Precipitation intensities on wet days are modeled as independent

gamma variates. That is, the probability density for daily

precipitation, given that a nonzero amount occurs, is

)_ 1

(x/a) exp (-x/a)

f(x;a, ') ------------------------ (

a N)')

where a is the "scale" parameter, )' is the "shape" parameter, and r

denotes the gamma function. This flexible distribution is able to fit

daily precipitation data quite well, and is commonly chosen for this

purpose (Coe and Stern, 1982; Neyman and Scott, 1967; Stern and Coe,

1984; Waymire and Gupta, 1981). The parameters are fit, again by

maximum likelihood using the Newton-Raphson procedure, separately for

the cases of wet days following wet days and wet days following dry

days. The generalized likelihood ratio test strongly rejects the null

hypothesis of equality of the parameters for these two cases for all

three gridboxes and in all months.

The modest serial correlation present in precipitation amounts

for consecutive wet days (typical correlation coefficients for

logarithmically- or square-root transformed data are in the range 0.2

to 0.3) is ignored. Reports in the literature indicate that serial

correlation of nonzero daily precipitation amounts is weak for

individual station data as well (Chin and Miller, 1980; Katz, 1977b).
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3.3.2. Temperature

Maximum and minimum temperatures are modeled using a bivariate

autoregressive model. This model is a generalization of the usual

univariate autoregressive model (e.g., Box and Jenkins, 1976), and may

be written as

- p -
(T-T) = CT - I ) + E

.t i=1 i t-i t-i

Here I is the vector of temperatures (T.., 1.,.), the overbars

denote the time-dependent mean values, p is the order of the

autoregression, and the 's are (2x2) matrices of the autoregressive

constants to be determined. The E's are vectors of Gaussian random

noise with zero mean, and variance-covariance matrix V. Equivalent

models are treated in the literature in, for example, Jones (1964),

Tiao and Box (1981), and Whittle (1963). Note that (3.5) allows

intercorrelation of the Gaussian stochastic forcing of the model, but

requires that it be serially independent. Mean temperatures are

allowed to vary continuously throughout the year by fitting Fourier

series, separately for each gridbox:

6
T = P + E A sin N2n m t)/365 + B ] , (3.6)

t o m=1 m m

where the P's are the Fourier amplitudes, the B's are the phases, and

t denotes the julian date. Only harmonics deemed significant in the

manner described in Section 2.2 are retained.

As in the case of precipitation, the other parameters in (3.5)

are fit separately for each combination of gridbox and calendar month.

(3.5)
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llso, separate sets of all temperature parameters are fit for wet and

dry days, as is usual in stochastic weather models (e.g., Bond, 1979;

Larsen and Pense, 1982; Richardson, 1981). Thus, the parameters that

characterize the temperature series mean, autocorrelation

structure, variance, and cross-correlation are regarded as

conditional on the precipitation state, and vary throughout the year.

although use of the multivariate generalization of the

Yule-Walker equations to fit the parameters in (3.5) has been

advocated (Jones, 1964; Whittle 1963), this method was found to give

unstable results for some subsets of the present data. In particular,

the procedure can produce estimates of V with determinants which

increase with p. In the present work, parameters were fit to (3.5)

directly by multivariate least-squares (e.g., Johnson and Wichern,

1982), modified to include no constant term (i.e., the design matrices

have 2p rather than 2p+l columns). Parameter estimation by

least-squares is equivalent to multivariate maximum likelihood

estimation for pure autoregressions (Hilimer and Tiao, 1979).

The appropriate order of the autoregressions (3.5) was estimated

using an extension of the BIC procedure as formulated for univariate

autoregressions (Katz, 1982). In general, the form of the BIC

statistic is (Schwartz, 1978)

q ln (N)

BIC (p) A (p) ---------- , (3.7)

2

where p indicates the order of the model being tested, A(p) is the

log-likelihood for that model, q is the number of parameters estimated

from the data, and N is the sample size. Written in this way, the
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order p that maximizes (3.7) is chosen as the most appropriate. For

the model (3.5), where bivariate normal stochastic forcing (noise) is

assumed, (3.7) becomes

- N in (det CV]) (4p + 4) in (N)

BIC (p) = ------------ - ---------------- , (3.8)

2 2

where V is the sample estimate of the variance-covariance matrix of

the Gaussian noise, since 4p autoregressive coefficients, two

variances, one covariance, and approximately one parameter

representing the mean (per month) are estimated from the data.

utoregressions of order 0 through 5 were fit to the observed

data. Over the 72 combinations of gridbox, month, and precipitation

state, p1 was chosen in 19 cases, p2 was chosen in 43 cases, and p3

was chosen in 10 cases. Sequential F-tests (nderson, 1958; Jones,

1964) produced substantially the same results. For those cases where

BIC(3) was maximum, the values were close to those for BIC(2), so

that, for uniformity, all temperature series were modeled as

second-order bivariate autoregressions. Nearly all empirical

residuals of (3.5) exhibit lag autocorrelations of magnitude less than

0.05, and appear to be have distributions that approximate the

Gaussian. Typical examples of the latter are shown, converted to

standard normal form (i.e., values minus sample means and divided by

sample standard deviations) in Figures 9a,b and lOa,b. These results

show Box 2 residuals for January minimum temperatures on dry and wet

days, and residuals for July maximum temperatures on dry and wet days,

respect ively.

Once the parameter estimates for (3.5) have been obtained,
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implementation as a generating algorithm for Monte Carlo simulations

is direct except for the specific nature of the random noise term E.

Gaussian random number generators (e.g., Box and Muller, 1958) produce

independent variates with zero mean and unit variance.

two-dimensional vector of these quantities, say g, has

variance-covariance matrix

E[g g'] = I , (3.9)

where E denotes statistical expectation, the prime denotes transpose,

and I is the (2 x 2) identity matrix. Some transformation, embodied

in a (2 x 2) matrix C, is required, such that

and

E = C g (3.10)

E[E E'J = V. (3.11)

Substitution of (3.9) and (3.10) into (3.11) yields

CC' = V (3.12)
' .

Since any solution of (3.12) will produce the desired result and V is

symmetric, a simple procedure is to use the Cholesky (lower

triangular) factorization of V to calculate C (Bratley

1983), and substitute (3.10) into (3.5).



3.4 Intercomparison of 0CM-Derived and Observed Data

3.4.1. Precipitation

nnual cycles for the parameter P01 for gridboxes 1,2,and 3 are

shown in Figures ha, 12a, and 13a, respectively. The probability

values in these figures are plotted on a log-odds scale, that is

= 1nCP/ (1-P)] . (3.13)

Cycles for observed data as well as for data from the IX- and 2X-0O2

6CM simulations are shown. The observed data for all three boxes

exhibit strong and similar annual cycles, indicating that dry spells

are most likely to persist in the cool season and least likely to

persist in the warm season. The general shapes (and, for Box 2, the

magnitudes) of the cycles for the model data are similar to those for

the observed data for all except the summer months. For these months

both model runs evidently exhibit longer dry spells than are present

in the observations. Figures hib, 12b, and 13b present estimates for

the parameter P,0, derived using data from the three gridboxes, and

again on a log-odds scale. For the case of estimates derived from the

observations, the minima during the summer months indicate that the

tendency for wet spells to terminate is lowest during this part of the

year. Thus, both of these measures of precipitation occurrence favor

wet days during the warm season. The general shape of the cycles

derived from the 6CM data is similar, although for most months the

magnitudes are substantially larger. Again, differences between

parameters derived from the two 6CM data sets are small, and only that
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for Box 3 in March is significant at the 5% level.

Although the general shapes of the annual cycles of P values

derived from the two model data sets are quite similar, some

statistically significant differences exist. These differences were

assesed using the normal approximation to the binomial, which Gabriel

(1959) has found to be adequate for this type of data using a sample

size approximately 20% of those available in the present context.

Table 16 indicates the months for which the differences are

significant, and the level and direction of these differences. For

example, "))" indicates that the P01 value for the 2X-CO data is

significantly greater than that for the 1X-0O2 data at the 1% level,

and "C" indicates that P01 for the 2X-00 data is significantly less

than that for the 1X-COR data at the 5% level. It is evident that the

primary difference is a relative decrease in P01 (increase in the

probability persistence of dry spells) during the warm season.

The corresponding data for the annual cycles of the "feedback

parameter" 8 are given in Figures 14a,b,c. Annual cycles in the

parameter estimates derived from the observational data are less clear

than for the case of P01, although the larger interannual changes are

statistically significant, as judged by the approximation of the

sampling distribution of the maximum likelihood estimatiors to the

normal distribution. As in the case of P01, the annual cycles derived

from the two 6CM data sources correspond to each other closely, and

none of the differences for particular months are significant at the

5% level.

Figures 15, 16, and 17 show the annual cycles for the scale

parameter a, of the gamma distribution model (3.4) for precipitation
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Table 16. Distribution in time of significant differenceB in the
parameter PDI between IX- and 2X-CO model. Single
symbols indicate differences significant at the 5% level
and double symbols indicate differences significant at the
1% level. The symbol "c indicates the value for 2X-CO
is less than that for IX-0O2.

Box No. Jan Feb }lar Apr May Jun Jul Aug Sep Oct Nov Dec

1 < <<

2 << < <

3 >>

Table 17. As Table 16, but for gamma distribution scale parameter,
a, on consecutive wet days.

Box No. Jan Feb Mar Apr flay Jun Jul Aug Sep Oct Nov Dec

1 >

2 >>

3 >> >>>
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intensity for Boxes 1, 2, and 3, respectively. The (a) panels in

these figures are for precipitation intensities following dry days,

and the (b) panels are precipitation intensities for consecutive wet

days. gain, the largest values derived from the observational data

occur in the warmer months, reflecting the fact that precipitation is

more intense in this region during the summer. The seasonal

difference is most striking when precipitation has occurred on the

previous day. The corresponding curves for the 6CM-derived parameters

exhibit considerably less fluctuation throughout the year. For the

case of the preceding day dry the differences are significant at the

5% level (as judged by the generalized likelihood test) only for Box 3

in March. More of the differences between the two 6CM data sets are

significant for the case of consecutive wet days, and at higher

significance levels. These results are presented in Table 17. In

particular, large increases in July precipitation intensity are

indicated for Boxes 2 and 3.

Finally, Figures 18, 19, and 20 present the corresponding annual

cycles for the shape parameter of the precipitation intensity

distributions. With the exception of the 6CM-derived curves for Box I

(Figure 18), all are fairly flat. The 6CM-derived curves are rather

noisy relative to those for the observations. Three of the monthly

differences are judged to be significant, however; these are Box 1

fugust (1% level), Box 2 July (5% level), and Box 3 November (5%

level).

3. 4. 2. Temperature

Figure 21 shows the annual cycles of maximum and minimum
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temperatures, for each of the three data sources, reconstructed from

the significant* Fourier modes for Box 1. Panel (a) shows dry day

maxima, panel (b) shows dry day minima, panel (c) shows wet day

maxima, and panel (d) shows wet day minima. Figures 22 and 23 present

the corresponding information for Boxes 2 and 3. It is evident that

the 1X-COR climates in these gridboxes are in general substantially

colder than the observations, which is a common feature of GCMs

(Barnett, 1986). It is also clear that 2X-0O2 climate is

substantially warmer than the 1X-0O2 climate. Interestingly, the

largest differences between the GCM-derived temperatures occur during

the warm season in the two southernmost gridboxes. flthough it would

be possible to conduct formal tests of statistical significance for

differences in average temperature by, say, calendar month (Katz,

1982), the differences are so large in comparison to the white-noise

variances (presented later in this section) scaled by the (effective)

sample sizes, that such tests are scarcely necessary.

Plthough the magnitudes of the 6CM temperatures exhibit large

errors, the amplitudes and phases, particularly for the annual modes,

are in closer agreement. Differences in the former are on the order

of 2°C, and differences in the latter are approximately 10 days.

The autocorrelation structure of the temperature data is modeled

in (3.5) by the parameter matrices . Comparison of variations

through the year, or comparison of autocorrelation structure for

different data sources, is difficult in that eight coefficients must

be judged simultaneously for the second-order autoregressions

considered here. One approach to intercomparison could be examination

of spectra and cross-spectra, either derived directly from the data



4E1

.i II

Ii'

U

'U

20

''I

(a)

0 100 100 300 400

40

30

oil

I U

U

'II

20

Hi

(b)

IOU 200 300 400

Figure 21. Annual temperature cycies for Box 1 observed (broken line),
1X-CO,, and 2X-CO, data: (a) dry day maximum temperatures,
and (b) dry day minimum temperatures.



411

Cc)

.111

211

iii

4-,

E '

in

in -i

4)

0.

411

(d)

,i n

ni

in

in

Ii

T1TTT1 -511 TT
inn nn 3110 4011 0 inn 21111 300

jiin da1 .hiidn dii

Figure 21, continued.
(C) wet day maximum temperatures, and (d) wet day minimum temperatures.

0

4011

0



411

(a)

311

30

II1

/
/

II ---

-ill

fl

311 VT
11111 21111

Figure 22. Annual
1X-Ct3.,

and (b)

40

30

311

III

'2

k

£°

JO

311

111

3011 4110 0 100 2110

3JIdn hI1

temperature cycles for Box 2 observed (broken line),
and 2X-CO. data: (a) dry day maximum temperatures,
dry day minimum temperatures.

300 4110

I-.



40

20

20

ID

a

-ID

-:111

-ID

Cc)

'0

40

ID

ID

Iii

a

-III

-ID

-.10

Cd)

100 200 31111 41111 II 100 2011 31111 4011

Figure 22, continued.
Cc) wet day maximum temperatures, and (d) wet day minimum temperatures.

0



(a)

H

In

4-,

I?

£°

In

--in

--in -t

411

(b)

ia

iIl

in

4-,

E '

0

2
I

In

rT1rTFH --

1UU 2111 3H11 4111] 1] 1011

JuIn fljri
JuIin Ui1:

Figure 23. Annual temperature cycles for Box 3 observed (broken line),
tX-CO., and 2X-CD. data: (a) dry day maximum temperatures,
and (b) dry day minimum temperatures.

2
0

31111 41111

I-.



40

Cc)

:io

I0

E0

Ia

10

311 -t

2

40

(d)

.30

ID

(11

Ill

3
4)

10

10

rTrTTi 30 TT
1011 2110 300 4110 0 1110 200 3110

JuIin 11ui JuIn 0

Figure 23, continued.

Cc) wet day maximum temperatures, and Cd) wet day minimum temperatures.

'2

4110



113

sets (e.g., Jenkins and Watts, 1968) or from the autoregressive

coefficients themselves (Jones, 1974). It would be necessary in the

present context to examine many plots using either approach, and

difficult to present these results compactly.

The alternative employed here is use of the summary statistic Ti,,

or "time between effectively independent samples" (e.g., Leith, 1973;

Madden, 1976; Trenberth, 1984). This statistic is constructed from a

weighted average of sample autocorrelation estimates (see Appendix A

for details), and is a compact characterization of the degree of

autocorrelation present in a time series. Figures 24, 25, and 26

present annual cycles of T0 for maximum temperature series from Boxes

1, 2, and 3, respectively. The (a) panels in these figures are for

maximum temperatures, and the (b) panels are for minimum temperatures.

For the most part, the cycles for maximum and minimum temperatures for

each data source are similar with respect to both shape and magnitude

for all three boxes. For the observed data, the cycle of T exhibits

apparent minima in the transition seasons for Box 1, and hints of a

similar feature can be seen for Box 2. For Box 3 there is a broad

warm-season minimum. These features may reflect the seasonal advance

and retreat of the mean jet stream position over North America (e.g.,

Palmen and Newton, 1969), since the increased frequency of the

associated cyclonic storms would tend to diminish the tendency of

daily temperatures to persist. This pattern of two maxima in the

annual cycles is also present in the 6CM-derived data from Boxes 1 and

2, although the summer maxima are greatly exaggerated.

The 6CM evidently does not reproduce this aspect of the observed

climate with great fidelity, but the relative changes between the two
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GCM data sets again are slight. pplication of the normal

approximation to the distribution of T (Wilks, 1987; ppendix P)

indicates a significant difference between the two GCM data sets at

the 5% level only for Box 1 minimum temperatures for September.

Figures 27, 28, and 29 show the annual cycles of (for

convenience, the square-roots of) white-noise variances for maximum

temperatures on (a) dry days and (b) wet days, for Boxes 1, 2, and 3,

respectively. Figures 30, 31, and 32 show the corresponding cycles

for white-noise variances for minimum temperatures. These quantities

are the square-roots of the diagonal elements of the matrices V in

(3.11). ll of these figures indicate distinct warm-season minima and

cool-season maxima for the observational data. The parameters derived

from the 6CM data exhibit the same primary feature, although often

with much smaller amplitudes. lthough the curves for the 1X- and

2X-00 data tend to follow one another fairly closely, some

substantial differences exist. Those differences which are

significant, as determined using the method of Katz (1983), are

tabulated in Table 18 for maximum temperature and in Table 19 for

minimum temperature.

Similarly, differences in the white-noise correlation (the scaled

off-diagonal elements of V), calculated using the normal

approximation to the distribuiton of the Fisher z-transformation

(e.g., Lindgren, 1976), are presented in Table 20. These tables

indicate a tendency for relative increases in variability in

temperature, as well as in correlations between maximum and minimum

temperatures, during the warm season for the 2X-0O2 simulations. This

result is especially evident for wet days. Some tendency for
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Table 18. As Table 16, but for white-noise variance of maximum
temperatures.

Dry days

Box No. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 > >> >> >>

2 'C << > < <<

3 >> <'C <<

Nov Dec

'C

<< <<
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Table 19. As Table 16, but for white-noise variance of minimum
temperatures.

Dry Days

Box No. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 >>

2 << > << < > << <

3 << << > < <<

Wet days

Box No. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 << << >> >>

2 > > << <<

3 << << > >> <'C
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Table 20. As Table 16, but for white-noise correlation.

Dry Days

Box No. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 >> >>

2 << > >> >>

3 > >>

Wet days

Box No. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 >> >> >>

2 > > << > >> <

3 > > >
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decreases in temperature variability during the cool season is also

notable.

3.5 Stochastic Generation of Local IX-0O2 and Possible 2X-CO

Climate Data

3.5.1. Extrapolation to the 2X-001 climate scenario on the

grid-scale

The stochastic weather model described in Section 3.3 has been

constructed so as to be directly applicable to Monte Carlo simulation

of daily weather data on the grid scale. The stochastic forcing acts

through the probabilities in (3.1), the precipitation intensity

variates whose probability density function is given by (3.4), and the

E vectors in (3.5). Application of the model to generation of data

representative of present climate is of course accomplished through

use of parameters fit to the observational data.

The present approach to extrapolation to the possible climate of

a 2X-0O2 world is through use of relative changes in the parameters

fit to the 1X-COR and 2X-0O2 6CM data. The inferred 2X-0O2 climate

scenario is constructed by applying changes in those parameters that

are deemed to be statistically significant in Section 3.4 to the

corresponding parameters derived from the observational data. There

is no unique means of accomplishing this objective, and no theoretical

guidance. The approach taken in the following is to apply the

relative changes additively, but on transformed scales suggested by

the forms of the usual statistical tests involving each parameter.
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Ps discussed in Section 3.4, the statistical characteristics of

the 1XC0g and 2X-CO data sets, with respect to many of the

parameters described in Section 3.3, are rather similar. The only

parameters to undergo adjustment are those for which significant

differences are tabulated in Tables 16 through 20, and the annual

cycles of mean daily temperature. For other parameters, the values

fit to the observed data are assumed to describe the 2X-0O2 world as

well.

The only precipitation occurrence parameter in (3.1> to be

adjusted is P01, the probability of precipitation given that the

previous day was dry. Probabilities for those months and gridboxes

indicated in Table 16 are adjusted additively on the log-odds scale

(3.12). That is,

A CP) = A (P (cbs>]
01 01

+ A (P (2X)] - A (P (IX)] , (3.14>

01 01

where P1 is the value adopted to represent the 2X-COR world. In

this case and in the following, starred parameters are equal to those

fit to the observational data if the corresponding differences between

the 1X-CO. and 2X-00 data sets are not significant. Equation (3.14>

leads to the formula

P. = Wa / ( 1 + Wa ) , (3. 15)

01

where
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[P (obs)J [P (2X)J El P (IX) ]

01 01 01
= - . (3. 16)

El P (obs)] El P (2X)J [P (1X)]

01 01 01

The only precipitation intensity parameter to be adjusted is the

scale parameter for days following wet days. This adjustment is

performed multiplicatively for those combinations of gridbox and month

indicated in Table 17:

a(obs) (2X)

a. = ---------------
. (3. 17)

a(1X)

Note that the method adopted for examining and adjusting the

parameters of the gamma distribution (3.4) is not the only one

possible. n equally reasonable procedure would be to reparameterize

(3.4) in terms of the mean of the distribution, p = a', and a

"nuisance" parameter (e.g., Beaumont, 1980), and then to consider

relative changes in p alone.

s discussed above, the nature of the autocorrelation of the

temperatures is regarded as being unchanged for the 2X-00 climate,

and the matrices of autoregressive coefficients , derived from the

observational data, are used to characterize the 2X-009 climate as

well. These quantities are presented separaately for wet and dry days

in Table 21 for Box 1, Table 22 for Box 2, and Table 23 for Box 3.

Mean daily maximum and minimum temperatures are adjusted

additively, and separately for wet and dry days:

P = T (cbs) + I (2X) T (1X) , (3.18)

t t t t
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Table 21. Putoregressive coefficient matrices, , and white-noise
variance-covariance matrices, , for Box 1. * denotes
assumed variance-covariance matrices for 2X-001 climate.

a. Dry days

Jan .641 .122 -.009 -.079
.392 .421 -.150 .027

Feb .712 .020 .001 -.097
.356 .382 -.112 .018

Mar .671 .024 .016 -.099
.398 .356 -.041 -.108

Ppr .687 -.039 -.048 -.177
.547 .246 -.088 -.083

May .723 -.001 .011 -.169
.458 .471 -.119 -.134

Jun .702 -.084 .062 -.094
.509 .485 -.185 -.066

Jul .622 .042 .072 -.060
.238 .678 -.050 -.173

Pug .842 -.102 -.118 .054
.548 .485 -.273 .025

Sep .680 -.022 -.036 -.055
.464 .510 -.268 .004

Oct .686 -.059 -.079 -.043
.469 .421 -.251 .082

Nov .671 .073 -.131 -.026
.417 .400 -.188 .081

Dec .646 .049 -.051 -.102
.361 .397 -.169 .024

V

22.08 10.89
10.89 11.89

21.50 8.05
8.05 9.28

22.83 8.82
8.82 9.94

14.21 5.33
5.33 6.76

9.13 4.24
4.24 5.77

4.61 2.19
2.19 3.17

3.03 1.40
1.40 1.96

3.17 1.23
1.23 2.18

7.86 3.45
3.45 5.17

11.71 4.01
4.01 6.07

16.72 5.10
5.10 6.66

19.22 7.57
7.57 8.19

V*

28.42 10.40
10.40 8.43

21.50 8.05
8.05 9.28

22.83 6.63
6.63 5.61

9.73 4.41

4.41 6.76

9.13 4.24
4.24 5.77

4.61 2.19
2.19 3.17

7.57 4.89
4.89 4.24

4.78 2.29
2.29 2.18

12.26 4.30
4.30 5.17

11.71 4.01
4.01 6.07

16.72 5.10
5.10 6.66

19.22 5.48
5.48 8.19



Table 21, continued.

b. Wet days

Jan .295 .520 .146 -.198
.016 .771 .014 -.094

Feb .505 .383 .040 -.211

.132 .678 .003 -.056

Mar .563 .368 .034 -.249
.172 .699 -.075 -.104

Apr .616 .210 -.093 -.054
.303 .503 -.121 -.083

May .745 -.029 -.095 -.049

.350 .469 -.171 -.013

Jun .844 .000 -.233 .084

.394 .378 -.185 .052

Jul .889 -.186 -.214 .224

.290 .502 -.184 .040

Aug .924 -.121 -.276 .159

.321 .505 -.239 .119

Sep .702 .273 -.140 -.111

.238 .712 -.207 -.084

Oct .532 .453 -.073 -.293
.212 .646 -.196 -.152

Nov .570 .420 -.165 -.233
.228 .565 -.165 -.058

Dec .565 .365 -.051 -.118
.250 .602 -.104 .004

V

25.60 15.39
15.39 18.58

23.47 11.24

11.24 14.84

23.36 8.31

8.31 11.74

16.41 6.38
6.38 8.94

12.10 3.72

3.72 5.14

7.73 2.69
2.69 3.44

6.39 2.44
2.44 2.33

6.56 2.16
2.16 2.33

11.70 4.56
4.56 6.05

15.10 5.59
5.59 9.04

18.24 6.79
6.79 11.25

20.54 10.43
10.43 13.85

131

V*

25.60 12.83
12.83 12.90

23.47 11.24
11.24 14.84

17.53 5.71

5.71 7.38

16.41 5.40
5.40 6.41

12.10 3.72
3.72 5.14

11.71 4.11

4.11 3.44

17.13 7.97
7.97 5.02

11.11 4.73
4.73 3.57

11.70 4.56
4.56 6.05

15.10 5.59
5.59 9.04

18.24 2.64
2.64 11.25

20.54 8.65
8.65 9.53
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Table 22. s Table 21, for Box 2.

a. Dry days

V v*

Jan .941 -.116 -.139 -.007 22.47 15.70 22.47 12.29

.657 .282 -.180 .029 15.70 19.21 12.29 11.76

Feb .874 .031 -.122 -.096 20.50 12.48 20.50 10.84

.669 .398 -.294 .031 12.48 16.41 10.84 12.37

Mar .901 .013 -.064 -.160 19.60 8.97 19.60 6.18

.555 .416 -.205 -.069 8.97 10.60 6.18 5.02

pr .911 -.202 -.080 -.109 14.43 5.38 14.43 4.48

.572 .205 -.126 -.152 5.38 6.96 4.48 4.83

May .901 .114 -.287 -.091 8.42 4.17 8.42 4.85

.715 .363 -.350 -.018 4.17 6.51 4.85 8.80

Jun 1.000 -.130 -.144 -.115 4.79 2.97 3.47 1.76

.857 .270 -. 233 -.093 2. 97 4.81 1. 76 4. 81

Jul 1.020 -.085 -.151 -.141 3.70 2.40 3.70 2.29

.942 .268 -.371 -.006 2.40 3.59 2.29 2.56

Aug 1.064 .074 -.324 -.073 3.71 2.17 2.36 1.56

.734 .616 -.480 .037 2.17 3.75 1.56 3.03

Sep .834 -.043 -.135 -.023 8.21 4.26 10.54 6.80

647 . 389 -. 290 . 047 4. 26 7. 36 6. 80 7. 36

Oct .817 -.023 -.179 -.039 13.17 5.18 13.17 6.50

683 . 224 - 282 097 5. 18 8. 40 6. 50 8. 40

Nov .765 .011 -.098 -.046 18.65 8.13 14.75 7.23

536 .243 -. 144 .037 8. 13 9. 99 7.23 9.99

Dec .756 .048 -.095 -.093 19.24 12.08 12.00 7.37

.611 .275 -.185 .005 12.08 14.60 7.37 8.71



Table 22, continued.

b. Wet days

Jan .525 .272 -.185 .033

.255 .568 -.158 .025

Feb .620 .160 -.102 -.006

.408 .478 -.256 .116

Mar .829 .061 -.119 -.026
.507 .426 -.292 .108

Apr .824 .144 -.185 -.106
.476 .369 -.245 .052

May .857 .027 -.177 -.040

.479 .458 -.240 .001

Jun .868 .072 -.266 -.020
.588 .380 -.377 .101

Jul .901 .002 -.233 .050

.529 .460 -.352 .079

Aug .875 .052 -.246 .002

.505 .467 -.277 -.030

Sep .779 .139 -.246 -.087
.382 .526 -.252 -.079

Oct . 850 . 182 -. 269 -. 061

.520 .480 -.340 -.048

Nov .647 .278 -.046 -.180
.294 .569 -.147 -.055

Dec .696 .290 -.217 -.039
.371 .608 -.239 .031

V

19.84 16.50

16.50 24.09

14.92 11.75
11.75 20.68

14.63 7.40
7.40 12.06

14.58 5.67
5.67 8.82

9.62 3.41

3.41 6.32

6.01 2.49
2.49 4.88

4.24 1.95

1.95 3.57

4.96 2.11

2.11 4.32

9.40 4.12
4.12 8.34

11.37 4.69
4.69 10.05

13.86 8.18
8.18 12.94

15.18 12.22
12.22 19.38

133

V*

19.84 18.18
18.18 24.09

14.92 13.67
13.67 20.68

9.52 2.38
2.38 5.16

14.58 5.67
5.67 8.82

15.79 4.36
4.36 6.32

8.84 3.02
3.02 4.88

4.24 1.95
1.95 3.57

4.96 3.90
3.90 6.73

14.06 8.92
8.92 11.69

11.37 2.62
2.62 10.05

9.52 4.74
4.74 6.31

9.07 7.88
7.88 13.49



Table 23. Ps Table 21, for Box 3.

a. Dry days

Jan .931 -.045 -.178 .089

.760 .196 -.257 .153

Feb .701 .153 .026 -.138
.644 .395 -.116 -.055

Mar .917 -.075 -.114 -.004

.661 .364 -.379 .131

Ppr 1.023 -.337 -.150 .089

.581 .208 -.261 .097

May .771 -.036 -.142 .020

.592 .347 -.258 .055

Jun 1.007 -.089 -.186 -.079

.664 .363 -.388 .086

Jul 1.052 -.275 -.272 .043

.705 .336 -.393 .090

Aug 1.009 -.185 -.353 .177

.695 .342 -.445 .141

Sep .682 -.052 -.048 -.123

.480 .299 -.182 .048

Oct .689 -.132 -.049 -.030
.468 .145 -.158 .101

Nov .697 -.064 -.045 .039

460 . 332 -.215 . 108

Dec .743 .098 .043 -.168
.548 .389 -.171 .014

134

V V*

26.74 17.89 26.74 13.30

17.89 19.07 13.30 10.54

24.13 15.89 24.13 15.89

15.89 17.15 15.89 17.15

18.61 10.44 18.61 6.56

10.44 13.46 6.56 5.32

17.17 5.78 17.17 4.07

5.78 6.64 4.07 3.29

13.04 6.14 13.04 6.14

6.14 6.49 6.14 6.49

7.02 3.10 7.02 3.10

3.10 4.33 3.10 4.33

6.64 3.59 6.64 3.59

3.59 4.76 3.59 4.76

7.05 3.50 7.05 4.09

3.50 4.78 4.09 4.78

14.84 6.18 23.27 11.82

6.18 7.41 11.82 10.47

18.52 6.59 18.52 6.59
6.59 8.13 6.59 8.13

21.67 9.62 13.78 6.46

9.62 10.28 6.46 7.30

26.64 18.68 14.22 10.05

18.68 19.42 10.05 10.53



Table 23, contnued.

b. Wet days

Jan .694 .084 -.198 .09.7

.499 .315 -.250 .151

Feb .672 .122 -.185 .047

.363 .448 -.295 .190

Mar .729 .085 -.098 .025

.402 .492 -.201 .121

Apr .791 .016 -.142 -.023

.349 .440 -.206 .089

May .796 -.023 -.071 -.089

.353 .421 -.178 .014

Jun .850 .061 -.221 -.002

.470 .401 -.298 .127

Jul .888 -.192 -.216 .146

.497 .312 -.314 .165

Aug .911 -. 122 -.194 .091

520 266 -. 319 . 179

Sep .650 .191 -.156 -.015
.280 .395 -.160 .051

Oct .623 .145 -.182 .059
.293 .391 -.178 .086

Nov .620 .199 -.124 -.029

.324 .521 -.187 .154

Dec .626 .150 -.013 -.080
.312 .495 -.075 .006

V

26.14 17.94

17.94 21.86

21.39 16.63

16.63 23.49

15.00 9.99
9.99 13.91

16.75 5.98
5.98 6.96

14.00 4.61

4.61 6.12

8.37 2.69
2.69 4.42

6.94 2.41
2.41 3.72

8.47 3.14
3.14 4.86

15.99 6.78
6.78 7.97

16.51 6.39
6.39 7.95

17.90 10.87
10.87 13.56

20.45 14.86
14.86 19.50

135

V*

26.14 17.94
17.94 21.86

21.39 12.25
12.25 12.75

15.00 7.78
7.78 6.69

16.75 5.16
5.16 5.19

14.00 4.61

4.61 6.12

11.69 3.58
3.58 5.59

9.91 4.36
4.36 5.52

8.47 3.14
3.14 4.86

15.99 6.78
6.78 7.97

16.51 6.39
6.39 7.95

10.16 8.19
8.19 13.56

14.73 11.58
11.58 14.09
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where the subscripts emphasize that the values vary from day to day on

the basis of (3.6). Similarly, white-noise variances indicated in

Tables 18 and 19 are adjusted multiplicatively, according to

a2 = [ 2 (obs) a2 (2X) 3 / a2 (IX) . (3. 19)

Finally, significant differences in the white-noise correlations

indicated in Table 20 are adjusted additively on the scale of the

Fisher z-transformat ion:

where

z Cr] = z Er(obs)] + z Er(2X)] z Er(IX)3 , (3.20)

1

z Er] = in C (1 + r) / (1 r) 3 . (3.21)

2

This procedure leads to

where

r = (R-1)/(R'+l) , (3.22)

C 1 + r(obs) 3 C I + r(2X) 3 C 1 r(IX) 3

= ------------------------------------------- . (3. 23)

C 1 r(obs) 3 C 1 r(EX) 3 C 1 + r(1X) ]

djusted covariances (the off-diagonal elements in V') are then

produced by multiplying r' in (3.22) by the factor (amax amin).

Elements of V and V' are presented for Boxes 1, 2, and 3 in Tables

21, 22, and 23, respectively.
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3.52. Combined use of grid-scale stochastic weather models and the

climate inverse procedure

Combination of stochastic generation of grid-scale daily weather

elements with the climate inverse procedure described in Section 2.4.b

is direct for the case of the 1XC0a (i.e., observed) world.

amplitudes of the leading rotated eigenvectors are calculated on the

basis of the deviations of maximum and minimum temperatures from their

respective means (i.e., I T) box-scale precipitation (PL) and its

square-root, using (2.10). mplitudes of the smaller-scale modes are

chosen randomly, and data for individual stations (scaled to standard

normal form) are produced using (2.6). These scaled deviations are

then redimensionalized using means and standard deviations derived

from the observational data for each station.

Table 24 compares the average January and July monthly maximum

temperatures produced by the above procedure for the 27 stations in

Box 2 with the corresponding observations. Piso included are the

respective standard deviations of the monthly means from the overall

means. The sample sizes are 36 years for the observations and 31

years for the synthetic data. The values are very well reproduced by

the synthetic weather generation procedure, although the standard

deviations for January synthetic data appear to be too low. The

interpretation is the same for the corresponding minimum temperature

data in Table 25.

The synthetic precipitation data, presented in Table 26, follow

the observations less closely, as could have been anticipated on the

basis of results presented in Section 2.4.c. Nevertheless, several
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Table 24. January and July average maximum temperatures (C), with
standard deviations, for Box 2 stations observed and
synthetic data.

January July

Observed Synthetic Observed Synthetic

Sta. avg. a avg. a avg. a avg. a

1 -4. 7 3. 0 -4. 8 2. 5 29. 3 5. 3 29. 2 5. 5

2 -3.0 3.0 -3.0 2.5 29.5 5.3 29.3 5.5

3 -2.0 3.0 -1.9 2.3 30.3 5.4 30.1 5.6

4 -3.1 3.0 -2.9 2.3 30.4 5.4 30.1 5.6

5 -.6 3.0 -.6 2.5 30.8 5.4 30.5 5.7

6 -4. 6 3. 1 -4. 7 2. 6 29. 1 5. 2 29. 0 5. 4

7 -.4 3.0 -.4 2.3 31.2 5.6 31.0 5.8

8 -.5 2.9 -.5 2.3 31.4 5.7 31.2 5.8

9 -2.0 2.9 -1.9 2.3 30.4 5.4 30.2 5.6

10 -1.0 3.0 -1.1 2.5 30.9 5.5 30.6 5.7

11 -3. 7 3. 0 -3. 7 2. 6 29. 3 5. 2 29. 2 5. 5

12 -3.3 3.2 -3.1 2.4 31.0 5.5 30.7 5.7

13 -1.6 2.9 -1.6 2.3 30.9 5.5 30.7 5.7

14 -5. 0 3. 1 -5. 1 2. 6 28. 8 5. 2 28. 8 5. 4

15 -1.9 3.0 -1.8 2.3 31.0 5.5 30.9 5.7

16 -5. 1 3. 0 -5. 2 2. 6 28. 1 5. 0 28. 1 5. 3

17 -1.1 2.9 -1.2 2.5 30.7 5.5 30.5 5.7

18 -3.4 3.0 -3.3 2.5 30.0 5.3 29.8 5.6

19 -5. 1 3. 3 -4.8 2. 5 29. 0 5. 2 29. 0 5. 4

20 -6. 1 3. 4 -6. 0 2. 7 28. 5 5. 1 28. 4 5. 3

21 1.1 3.1 1.0 2.4 31.4 5.7 31.1 5.8

22 .3 3.0 .3 2.1 31.8 5.8 31.5 5.9

23 -.9 3.1 -1.0 2.2 31.6 5.6 31.3 5.8

24 -2.4 3.2 -2.3 2.4 30.0 5.9 30.0 5.6

25 -.4 2.8 -.3 2.1 31.9 5.8 31.6 5.9

26 -2. 0 3. 2 -2. 0 2. 3 30. 9 5. 5 30. 8 5. 7

27 -5. 1 3. 4 -4. 9 2. 4 30. 0 5. 4 30. 0 5. 6
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Table 25. s Table 24, for average minimum temperatures (C).

January July

Observed Synthetic Observed Synthetic

Sta. avg. a avg. a avg. a avg. a

1 -15.1 4.1 -15.1 3.8 16.4 3.1 16.3 3.1

2 -13.3 3.7 -13.1 3.6 17.2 3.2 17.2 3.3

3 -13.5 3.6 -13.6 3.6 16.9 3.3 16.8 3.2

4 -14.0 3.6 -13.8 3.6 16.4 3.2 16.3 3.2

5 -12.0 3.7 -12.0 3.5 17.2 3.3 17.2 3.3

6 -14.8 4.2 -14.9 3.9 16.5 3.1 16.5 3.2

7 -11.7 3.4 -11.6 3.2 18.0 3.4 18.0 3.4

8 -11.8 3.4 -11.8 3.3 18.2 3.4 18.2 3.5

9 -13.1 3.6 -13.1 3.5 17.5 3.3 17.3 3.3

10 -12.0 3.8 -11.9 3.5 17.6 3.4 17.5 3.3

11 -14.4 4.0 -14.3 3.8 16.4 3.1 16.4 3.1

12 -14.9 4.0 -14.9 3.7 17.0 3.3 16.8 3.2

13 -12.8 3.5 -12.7 3.4 17.9 3.4 17.9 3.4

14 -15.5 4.1 -15.5 3.9 16.2 3.1 16.3 3.1

15 -13.5 3.6 -13.6 3.5 17.7 3.3 17.5 3.3

16 -15.3 4.2 -15.4 3.9 16.5 3.2 16.5 3.2

17 -11.6 3.6 -11.3 3.4 18.0 3.3 18.0 3.4

18 -14.1 3.8 -13.9 3.6 17.0 3.1 17.0 3.2

19 -16.4 4.2 -16.3 3.9 16.0 3.1 15.8 3.1

20 -16.2 4.6 -16. 1 4.0 16.7 3. 1 16. 7 3.2

21 -9.8 3.6 -97 3.1 18.7 3.4 18.7 3.5

22 -11.1 3.1 -11.2 3.0 18.7 3.4 18.6 3.5

23 -13.9 3.5 -14.0 3.3 17.2 3.2 17.0 3.3

24 -12.5 3.7 -12.2 3.3 18.9 3.8 18.8 3.5

25 -11.3 3.2 -11.3 2.9 18.6 3.4 18.6 3.5

26 -14.6 3.8 -14.8 3.6 16.8 3.1 16.5 3.2

27 -16.7 4.4 -16.6 3.9 16.7 3.3 16.4 3.2
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Table 26. As table 24 for total monthly precipitation (mm).

January July

Observed Synthetic Observed Synthetic

Sta. avg. a avg. a avg. a avg. a

1 19.2 16.4 9.0 6.0 94.8 47.8 111.0 74.0

2 20.5 14.6 13.0 11.0 89.2 47.1 70.0 58.0

3 20.8 16.5 16.0 13.0 89.4 51.1 61.0 44.0

4 21.9 14.5 17.0 15.0 91.0 66.8 72.0 54.0

5 27.9 19.7 17.0 14.0 103.2 63.8 113.0 80.0

6 23.5 17.3 10.0 7.0 103.8 45.0 137.0 86.0

7 24.7 20.6 14.0 13.0 110.1 84.7 101.0 88.0

8 21.9 17.8 16.0 12.0 98. 7 68. 8 80.0 75.0

9 21.7 15.4 20.0 14.0 95.8 69.0 72.0 71.0

10 28.3 22.2 27.0 23.0 93.0 58.4 99.0 132.0

11 23.6 18.3 8.0 7.0 108.8 57.7 98.0 70.0

12 15.1 14.6 13.0 12.0 84.6 49.5 78.0 67.0

13 23. 4 17. 3 19.0 14. 0 88. 4 54. 4 78. 0 63. 0

14 20.6 17.0 14.0 13.0 107.7 51.7 114.0 72.0

15 20.0 18.7 15.0 12.0 86.8 51.8 78.0 56.0

16 24.9 19.2 9.0 7.0 110.6 51.7 143.0 92.0

17 32.3 21.8 19.0 15.0 98.1 55.3 113.0 88.0

18 20.2 15.1 16.0 18.0 103.1 57.3 89.0 78.0

19 15.6 11.6 10.0 7.0 94.9 59.4 86.0 55.0

20 21.1 17.4 19.0 18.0 105.3 57.3 113.0 73.0

21 31.6 27.7 21.0 14.0 102.7 66.5 94.0 89.0

22 19.2 19.0 16.0 12.0 86.8 47.0 69.0 '+6.0

23 14.9 15.1 12.0 11.0 87.6 49.7 79.0 75.0

24 16. 1 12. 8 20. 0 16. 0 73. 4 62. 4 93. 0 79. 0

25 16.1 14.6 13.0 15.0 77.1 43.2 62.0 45.0

26 17.2 15.3 14.0 11.0 87.9 54.3 77.0 61.0

27 14.0 10.9 10.0 8.0 74.7 40.7 71.0 71.0
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salient features of the observed data are reasonably well approximated

by the synthetic data. First, the mean levels are approximately

reproduced, as are the order-of-magnitude changes in average total

precipitation between January and July. The standard deviations are

of the same order of magnitude as the means in both data sets,

indicating that strong positive skewness exists in the synthetic as

well as the observational data. July standard deviations are

typically too high in the synthetic data, which reflects the

occasional production of very large daily precipitation amounts by the

climate inverse scheme as discussed in Sections 2.4.b and 2.4.c.

Finally, the east-west gradient of average monthly precipitation is

evident in both data sets. Synthetc data for other months and

gridboxes are similarly comparable t;o the respective observations.

For the case of grid-scale data generated using inferred 2XCOa

parameters (denoted with asterisks in Section 3.5.a) generation of

local data elements (in standard normal form) using (2.1) and (2.6) is

the same as described above for the IX-0O2 grid-scale time series.

However, station-scale means and standard deviations for temperatures

and precipitation in a 2X-0O2 world are unknown, and some assumption

must be made regarding them. Precipitation means and all standard

deviations on the station scale are assumed here to be equal for the

1X-CO and 2X-0O2 climates. Pbsolute precipitation amounts, and the

magnitudes of temperature variations are explicitly modeled in the

procedure for generating gridscale weather data described in Section

3.3, and this information is transmitted to the climate inverse

procedure. accordingly, the above assumptions are consistent with an

assumption implicit in this section; namely, that relationships among
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stations within a gridbox will be similar in the IX-0O2 and 2X-COe

worlds.

However, information regarding mean temperature has been removed

from the procedure in (2.10), since the temperature predictors in that

equation are deviations from mean levels. This procedure is desirable

from the standpoint of not distorting the correlation structure

between temperature and precipitation (particularly for the cool

season, where the relative strength of the broad-scale precipitation

mode depends substantially on temperature), which is based on

observational data. Some adjustment is obviously required if the

large temperature increases predicted by the 6CM are to be reflected

in the station-scale data. It is assumed here that 2X-0O2 temperature

means at individual stations increase by amounts equal to increases at

the gridscale, and that these means vary on a daily basis. That is,

P = I (obs) + I (2X) I (1X) , (3.24)

where 1' (t>j,t is the inferred 2X-CC)2 station mean for station j on

julian date t, the first term on the right-hand side is the

corresponding value from the observations in (2.4a)., and the last two

terms are the qridscale values from (3.6).

3.5.3. Specification of local solar radiation data

It would be desirable, in view of the anticipated use of the

present procedure in conjunction with crop models, to incorporate

solar radiation in the climate inverse formulation developed in

Section 2. Unfortunately, each of the three gridboxes considered
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contains only a single location for which daily solar radiation data

are available (National Climatic Center, 1978). These SOLMET stations

are Dodge City, l(ansas (Box 1, station 5), North Omaha, Nebraska (Box

2, station 24), and Bismarck, North Dakota (Box 3, station 1). The

periods of record for radiation data at these stations are June 1957

through December 1976 for North Omaha, and July 1952 through December

1976 for Dodge City and Bisrnarck. Rather than include radiation in

the climate inverse procedure directly, it is necessary to predict

radiation values consistent with the generated surface weather data on

the basis of observations at the available stations, and to assume

that similar relationships hold at other stations within the same box.

Separate linear regression equations are developed relating daily

global radiation (langleys) to maximum and minimum temperatures and

total daily precipitation for each of these stations, and separately

for each calandar month. Since it is intended that these equations

represent the relationships among the variables throughout each

gridbox, as well as under a 2XCOa climate, temperature data are

converted to standard normal form before fitting. Values in the

SOLMET data sets greater than the maximum possible incoming solar

radiation at the top of the atmosphere were discarded prior to the

analysis.

The resulting regression parameters are tabulated in Table 27,

which also includes the mean squared errors for each regression

equation, and the coefficients of determination. In using these

equations in a Monte Carlo setting, a Gaussian noise term (with

variance equal to the mean squared error of that regression equation)

is added, as is done in the implementation of (2.10) for simulation.
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Table 27. Regression coefficients for prediction of daily global
radiation (langleys) from maximum temperature, minimum
temperature, and precipitation; and mean squared errors and

coefficients of determination. Temperature coefficients
are for predictors transformed to standard normal form.

a. Box I (Dodge City, J<ansas)

Coefficients

Month Const (ly) Max (ly) Mm (ly) Ppt (ly/mm) MSE R2

Jan 236.3 56.6 -44.7 -10.4 4515. .9275

Feb 313.6 84.8 -69.7 -10.1 8596. .9216

Mar 411.7 129.9 -99.5 -6.3 13290. .9290

Apr 515.5 140.7 -108.9 -8.3 17230. .9400

May 570.8 171.4 -105.0 -5.4 17300. .9520

Jun 646.1 116.0 -62.2 -4.6 13080. .9697

Jul 642.3 115.1 -64.0 -3.1 10660. .9742

Aug 564.7 114.0 -54.7 -3.5 10280. .9696

Sep 459.2 130.6 -71.1 -3.9 9937. .9555

Oct 357.4 98. 1 -61.5 -4. 7 7287. . 9476

Nov 253. 5 67. 6 -54. 4 -9. 4 4655. . 9345

Dec 214.9 52.9 -44.0 -10.7 3767. .9246

b. Box 2 (Omaha, Nebraska)

Coefficients

Month Const (ly) Max (ly) Mm (ly) Ppt (ly/mm) MSE R2

Jan 197.1 32.9 -46.0 -10.7 4005. .9053

Feb 275.5 72.1 -91.9 -10.1 7696. .9070

Mar 361.5 100.1 -115.4 -11.0 12310. .9143

Apr 445.7 161.6 -129.1 -9.8 14960. .9314

May 532.4 168.9 -130.2 -5.0 15540. .9487

Jun 599. 7 132. 1 -93. 8 -4. 8 13800. . 9623

Jul 587.2 121.6 -98.1 -4.4 13800. .9612

Aug 514.9 115.4 -81.2 -3.5 12650. .9543

Sep 399.2 131.4 -94.1 -3.2 13160. .9224

Oct 290. 6 98. 5 -83. 8 -4. 1 7574. . 9236

Nov 187.9 69.6 -75.5 -6.0 4251. .8987

Dec 162.6 51.0 -63.3 -6.3 3804. .8706
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Table 27, continued.

c. Box 3 (Bisniarck, North Dakota)

Coefficients

Month Const (ly) Max (ly) Mm (ly) Ppt (ly/mm) MSE R2

Jan 152.6 4.4 -18.5 -12.3 2180. .9101

Feb 238.5 23.9 -48.7 -13.7 4721. .9217

Mar 342.1 62.4 -90.3 -10.4 10580. .9181

Apr 422.1 115.3 -102.9 -9.8 14910. .9238

May 539.7 142.8 -106.4 -8.8 16820. .9457

Jun 586.8 126.8 -73.8 -6.0 18430. .9482

Jul 598.5 75.4 -51.9 -7.2 13110. .9653

Aug 519.7 78.7 -49.7 -5.8 13250. .9534

Sep 378.8 87.4 -43.9 -8.1 10580. .9344

Oct 254. 0 59. 7 -44. 3 -6. 8 5750. . 9231

Nov 152.2 35.0 -39.8 -7.7 3166. .8800

Dec 120.2 15.3 -27.0 -7.4 2183. .8666
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Possible spatial correlation of the noise term is ignored.

The pattern of the radiation regression parameters in time

appears to be physically sensible for each of the three gridboxes.

The constant terms and coefficients for maximum temperature exhibit

annual cycles with maxima in June and minima in December, which-

reflects the astronomical forcing. The coefficients for maximum

temperature are all positive, and the coefficients for minimum

temperature and precipitation are all negative. These results reflect

the positive correlation between maximum temperature and solar

heating, the positive correlation between minimum temperature and

cloud cover, the positive correlation of precipitation and cloud

cover, and the negative correlation between cloud cover and solar

radiation at the ground. Percent variance described by the

regressions are typically 90% to 95%.

3.6 Summary and Conclusions

This section has developed a multivariate stochastic model for

three daily surface weather model elements on the gridscale, and

discussed the characterization of daily weather in terms of the

parameters of this model. This stochastic model is then used to

extrapolate to a climate scenario consistent with the relative changes

in its parameters as derived from 1X-0O2 and 2X-0O2 realizations of

the OSU 6CM. The coupling of these grid-scale stochastic models with

the stochastic climate inverse procedure described in Section 2.4.b

was then described, and results were presented comparing summary

statistics for the observations with a realization of the
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corresponding stochastic data.

This procedure appears to be well-suited as a link between

large-scale GCMs, with which possible future climate changes are

commonly explored, and crop simulation models, which are designed to

represent much smaller spatial scales. The applicability of specific

results derived from the particular GCM realizations treated here,

however, is not clear. part from deficiencies inherent in the 13CM,

the data available here are not (at least for the 2X-0O2 realization)

a sample from its equilbrium climate. It is not clear that the

transient response of the climate system to CO2-induced warming will

be qualitatively similar to the eventual equilibrium state (e.g.,

Schneider, 1984; Thompson and Schneider, 1982), although recent

results indicate that the differences may not be large (Barnett,

1986). case study of the applicability of the present procedure to

assessment of agricultural consequences of COG-induced climatic

changes is presented in Section 4, but the quality of the resulting

agronomic forecasts derived from the particular SCM realizations

treated here will be influenced by these considerations.



Section 4

Some Possible Consequences of C0-Induced Climate Change

on North American Agriculture

4.1 Introduction

148

It is a widely held view that increasing atmospheric carbon

dioxide concentrations are producing or will produce changes in the

climate of the Earth. In particular, numerous modeling efforts

project very substantial surface air temperature increases

(Schlesinger, 1986). In addition to a general warming of the

atmosphere, the possibility of increased summer dryness in the

continental midlatitudes has been suggested on the basis of both

historical analogs (Jager and Kellogg, 1983; Schneider, 1984; Wigley

et al., 1980) and GCM studies (Manabe and Wetherald, 1986; Manabe

et al., 1981).

Agricultural productivity is one area where the consequences of

climate variations are felt particularly strongly (e.g., Bryson and

Murray, 1977; Lamb, 1982; Sakamoto et al., 1980; Thompson, 1975;

Waggoner, 1983), so that agriculture may be particularly vulnerable to

climatic changes induced by increasing carbon dioxide (Waggoner,

1983). It has been suggested that a warmer and dryer climate in

central North America, for example, could result in crop yield

decreases (Waggoner, 1983), and shifts of major cropping areas (e.g.,

Butzer, 1980; Newman, 1980; Rosenzweig, 1985). Large dislocations in
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global food supply could occur as a consequence, since this area is

the principal world grain surplus region (Oram, 1985).

However, agriculture has been historically and continues to be

adaptable (Clark, 1985; Kimball, 1985; Rosenberg, 1982; Waggoner,

1983), and it is anticipated that the accomodation of the climate

system to carbon dioxide increases will be slow, as a consequence of

the long response time of the deep ocean (Schlesinger, 1986). It is

particularly important, therefore, that projections of agricultural

potential in the future not assume that practices that are currently

optimal will necessarily continue to be so. Indeed, a more reasonable

assumption is that agriculture will be nearly fully adapted to

prevailing climatic conditions at any stage of the warming (Clark,

1985).

One attractive means of studying the relationships between

climatic variations and agricultural production is through the use of

crop-climate models. There are two major types of these models:

empirical-statistical; and process-oriented or physiological

simulation models (Baier, 1977; Sakamoto, 1981; World Climate

pplications Programme, 1984). The former seek to describe, through

the parameters of multiple regression analyses, the historical

relationships between averaged weather or climate data and crop

yields. Typical examples are found in the work of Thompson (1969a,b).

although they are relatively simple to develop and use, the

regression-based models suffer from a number of limitations. They are

necessarily site-specific and highly aggregated in space and time.

Moreover, the use of intercorrelated predictor variables may produce

misleading results, particularly for conditions near the extremes or
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outside the range of the historical record (Katz, 1977c; World Climate

pplications Programme, 1984). Empirical- statistical models are

therefore not appropriate tools for the study of the impacts of a

changed climate on agriculture (World Climate Programme, 1984).

Process-oriented crop models deterministically model crop growth

on small spatial scales based on the physiology and phenology of the

plant, the physics of evaporation, and the values of local

meteorological variables. They are, in principle, fully generalizable

to any location, and reliable for extreme as well as more "normal

conditions. The time resolution of this type of model, typically on

the order of one day, is sufficient to respond to short-term weather

events and their interactions with stages of plant development. This

capacity may be critical to adequate representation of crop response

(Mearns et al., 1984; Neild et al., 1979; Parry and Carter, 1985).

This section illustrates of the use of the climate scenarios

constructed in Section 3, for agricultural impact analysis using

physiological crop models for corn (maize) and wheat. In this

analysis, possible relative changes in the yields of these crops in a

2X-0O2 world are modeled. The gridboxes analyzed in earlier sections,

which represent three important North cmierican grain cropping regions,

are treated separately. Section 4.2 describes the crop models

employed, and Section 4.3 enumerates constants and initial conditions

used in the crop simulations. Section 4.4 presents the results, and

Section 4.5 contains a summary and conclusions.
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4.2 Description of the Crop Simulation Models

4.2.1. Grain corn (maize)

The response of grain corn (maize) to the changed climate is

studied using the physiological crop model CORNF (Stapper and Arkin,

1980). This model simulates growth and development of a hypothetical

representative corn plant, based on daily values of maximum

temperature, minimum temperature, precipitation, and solar radiation.

Additional initial information, such as latitude, plant population

density, seeding depth, soil characteristics, and initial soil

moisture content, are also required. One major advantage to the use

of CORNF in conjunction with the climate inverse procedure presented

in Section 2 derives from the fact that it was developed using the

method of Priestley and Taylor (1972) for estimation of potential

evaporation. This is an energy balance approach which, in effect,

assumes a Bowen ratio that varies as a function of temperature. The

soil water balance submodel therefore does not use windspeed or

humidity data, which are unavailable on the required scale.

The stages of development of the corn plant have been well

characterized (Hanway, 1963), and this framework is the basis for the

organization of CORNF. Progression from stage to stage within CORNF

is controlled by the accumulation of growing degree days. This

"thermal time scale" (Monteith, 1981) is a commonly and successfully

used means of precicting corn development (e.g., World Meteorological

Organization, 1977). Within a given phenological stage, the rates of

physiological processes (e.g. photosynthesis and kernel growth) are
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controlled using rate functions derived from empirical results. These

functions transform values of the meteorological data, soil water

stress, and the previous history of the plant (as reflected in dry

matter accumulation) to daily increments of the physiological

processes. Influences of insects, diseases, weeds, suboptirnal

nutrient levels, or hail damage are not included in CORNF. More

information concerning the details of the operation of CORNF is given

in Stapper and frkin (1980).

very broad range of corn cultivars (i.e., varieties) exists,

the characteristics of which are closely matched in practice to local

growing conditions (e.g., Martin et al., 1976). The most salient

aspect of the differences among corn varieties from the standpoint of

modeling phenology and yield is the rate of maturity. fn "early"

variety for a particular location requires fewer heat units to mature,

but has a lower potential yield than a "late variety. One essential

attribute of a widely applicable corn model is the capacity to account

for these differences in rates of maturity. This is accomplished in

CORNF with discrete "maturity classes," which range from 1 (earliest)

to 9 (latest).

n important aspect of crop simulation in the present context is

adequate representation of the timing of plant development, since it

is typically the case that crop plants are especially vulnerable to

environmental extremes during particular phenological stages (e.g.,

Salter and Goode, 1967; Shaw, 1983). It has been shown that CORNF

performs well in this regard (Stapper and rkin, 1980; Wright and

Keener, 1982). However, absolute levels of yield match observations

less well, and cannot be literally relied upon (Stapper and rkin,
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1980; Wright and Keener, 1982).

4.2.2. Wheat

The possible effects of a changed climate on wheat agriculture is

studied with the model T1Th1W (Maas and rkin, 1980a). It is similar to

CORNF in that it simulates crop response on the basis of the

physiology of a single 'average plant. lso, potential evaporation

is estimated using the Priestley-Taylor formulation, so that the same

readily available meteorological variables are used to drive TMW and

CORNF.

The principal difference in the basic form of the two models is

in the treatment of phenological development. Progression to

succeeding phenological stages for the wheat plant (cf. Large, 1954)

is accomplished by daily summation of reciprocal values of 'duration

functions, rather than accumulation of heat units. This approach is

taken in order to better model the processes of vernalization and

tillering. The duration functions are particular to each stage of

development, and depend on daily temperatures, soil water stress, and

snow depth. Solar radiation is used in TMW only in the estimation of

potential evaporation.

fs for the case of CORNF, rate functions control the daily levels

of physiological activities within each stage of development. The

rate functions respond to the same environmental variables as the

duration functions, and the forms of both functions are derived from

empirical results. fgain, no impairments of plant growth or

development due to pests, weeds, nutrient levels, or hail damage are

included in TTh1W. Uso, T$MW does not account for whole-plant death
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due to excessively cold temperatures (winterkill), which can be

important for winter wheat.

Characteristics of different wheat varieties are treated in T1MW

through the suites of particular numerical values of the rate and

duration functions. The values of these functions corresponding to

specific cult ivars, and further details on model operation in general

are available in Maas and rkin (1980a).

s is the case for CORNF, simulation of phenological development

in TPMW compares well with observations, while absolute magnitudes of

yield predictions reproduce the observations less well (Maas and

rkin, 1980b).

4.2.3. Modifications to the crop models

Several modifications to the soil water balance subrnodels of

CORNF and ThMW were made prior to beginning crop simulations. Both

crop models use the soil water model of Ritchie (1972), with potential

evaporation estimated using the formulation of Priestley and Taylor

(1972>.

While the simplicity of the Priestley-Taylor formulation is

attractive, it is prone to underestimation of potential evaporation,

particularly at higher temperatures (Jury and Tanner, 1975). Its

performance has been improved by Kanemasu et al. (1976) by increasing

estimated evaporation by 10% for days on which maximum temperature

exceeds 33 C. This correction is adopted in the present work as well.

The Ritchie (1972) model contains two soil-specific parameters, U

and c. The parameter U specifies the amount of water which must be

evaporated from a soil surface before the evaporation rate is limited
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by (in addition to available radiant energy) soil hydraulic

properties. This parameter is an input variable for both crop models

in the forms received from their authors. The parameter c controls

the rate of evaporation after the initial energy-limited stage. The

original soil water balance submodel in CORNF assumes a constant value

for c, and the FORTRAN code for CORNF was modified to accept different

values for different soils.

The final modification pertains to the treatment of loss of

rainfall through the process of runoff from soil surfaces. Some

formulation representing runoff is a desirable feature of any soil

water model. It is particularly important for the present work, since

the climate inverse procedure described in Section 2 occasionally

produces unrealistically large daily precipitation amounts. The

original FORTRAN cone for TiMU ritars rio proviicin for loss of water

from the soil/crop system by this mechanism. *Jhile CORNF contains

code to calculate runoff, it is done in a way which does not depend on

soil properties, following only a portion of the traditional procedure

(Soil Conservation Service, 1972). Moreover, the calculation does not

influence the model soil water balance as a consequence, apparently,

of a programming error. The representation of runoff employed here

for both crop models is equivalent to that developed in ppendi B.

This formulation calculates the amount of precipitation absorbed by

the soil on the basis of both daily precipitation amount and the soil

parameter which specifies the maximum instantaneous rate at

which the soil can absorb water.

Carbon dioxide is a limiting nutrient for plant growth at current

concentrations (Strain, 1985). side from climatic effects,
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increasing carbon dioxide concentrations will affect crops directly,

through changes in plant physiology Wcock and llen, 1985; Cure,

1985; Waggoner, 1983). The consequences for crop yield may be quite

large, and it would be desirable to include a treatment of these

effects in the present modeling exercise.

It is unfortunately not straightforward to incorporate this

influence into the crop models, due to interactions with other plant

processes and with other environmental conditions, and it has not been

attempted here. Direct effects of carbon dioxide on plant

physiological processes are included in neither CORNF nor TMW, and

their alteration to adequately incorporate the many influences and

interactions would be a large project in itself (feynolds and cock,

1985), and clearly beyond the scope of the present work.

The wheat model, TAMW, is relatively insensitive to snow depth

Urkin et al., 1983; Larsen 1983), and for simplicity this variable is

assumed to be zero in all simulations.

4.3 Initial Conditions for Crop Simulations

Soil properties are assigned to stations on the basis of the

uresource regions's of ustin (1972). These resource regions are

generalized groupings of land on the basis of agricultural potential

and use, using primarily soil and climate information. f single soil

type is selected here as representative of each resource region

(Pustin, 1972), and the relevant soil properties are assigned to all

stations within that resource region on the basis of soil descriptions

taken from County Soil Surveys. Table 28 shows the profiles of soil
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texture representing Box 1 stations, Table 29 shows the soil profiles

representing Box 2 stations, and Table 30 shows the soil profiles

representing Box 3 stations. Soils are regarded as being comprised of

homogeneous 10-cm thick layers, and having maximum depths of 150 cm.

Plant-available water capacity for each 10-cm soil layer is

assigned on the basis of its textural designation following Buckman

and Brady (1969), as indicated in Table 31. lso presented as a

function of soil textural designation in Table 31 are effective values

of the water absorption parameter, for the runoff formulation of

Ippendix B. These values of are taken from the lower limits of

the ranges given as 'typical maximum infiltration rates for wet soils

by Hillel (1971), in order to account somewhat for greater runoff due

to slopes and 'puddling" (Buckman and Brady, 1969). Values of

characterizing each soil are calculated by depth-weighting the data

presented in Table 31 according to the proportion of each textural

class in the profile as presented in Tables 28, 29, and 30. Values of

the soil evaporation parameters U and c are calculated according to

the method of Jaafar et al. (1978), except in the case of Soil X

(Table 30), for which this procedure is inappropriate. In this case

the values are taken from Ritchie et al. (1972). Soil surface

layers throughout the three study areas are generally dark (typical

Munsell designation for dry soils is 1OYR 4/2, dark greyish brown),

and the surface albedo for all soils is accordingly assumed to be 0.08

(Geiger, 1965).

Soil moisture at time of seeding exhibits large interannual

variations, and has a strong influence on crop yield in the regions

considered here (e.g., Mathews and 1rmy, 1960). One approach to
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Table 28. Assumed soil textural profiles for Box 1 soils. The

symbol 1s denotes finer than normal for the given
textural designation. Key to abbreviations for textural
designations is given in Table 4.4.

1 2 3 4

Depth (cm) Soil I Soil II Soil III Soil IV

o - 10

10 - 20

20 30

30 - 40

40 50

50 60

60 - 70

70 80

80 - 90

90 - 100

100 - 110

110 120

120 - 130

130 - 140

140 - 150

L

SiL

CL

SCL

I SiCL I

FSL

SCL

FSLs

SiCL

LFS

LFS

LFS

1 Hastings SIL(Soil Conservation Service, 1967). Assumed for
stations 1-6, 8, 9, 13, 14, 16-21, 23, 24.

2 Lancaster L (Soil Conservation Service, 1980). Assumed for
stations 12,15.

3 Dalhart FSL (Soil Conservation Service, 1965). Assumed for
stations 11,22.

4 Pratt LFS (Soil Conservation Service, 1965). Assumed for stations
7, 10.



Table 29. As Table 28, for Box 2 soils.

Depth Coin)

0 - 10

10 - 20

20 30

30 40

40 - 50

1 2

Soil V Soil VI

50 - 60

60 - 70
L

70 - 80

80 - 90

90 100

100 110

110 - 120

120 130

130 - 140

140 - 150

SiCL
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1 Clarion L (Soil Conservation Service, 1981). Assumed for stations

1, 2,6, 11, 14, 16, 18-20.

2 Sharpsburg SICL (Soil Conservation Service, 1978). Assumed for
stations 3-5, 7-10, 12, 13, 15, 17, 21-27.
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Table 30. As Table 28, for Box 3 soils. The symbol '-" indicates
coarser than normal for the given textural designation.

1 2 3 4

Depth (cm) Soil VII Soil VIII Soil IX Soil X

o - 10

10 - 20

20 - 30

30 40

40 - 50

50 - 60

60 - 70

70 - 80

80 - 90

90 - 100

100 - 110

110 - 120

120 130

130 140

140 150

L

CL-

CL

CL-

SIL

SiCL

L

L

Sic

C

1 Williams L (Soil Conservation Service, 1974). assumed for stations
1,16,19,20.

2 Morton SiL (Soil Conservation Service, 1974). assumed for stations
8,10,11,15,23,26.

3 Svea L (Soil Conservation Service, 1975). assumed for stations
2-7, 9, 12-14, 17, 18,22.

4 Promise SiC (Soil Conservation Service, 1985). Pssumed for
stations 21,24, 25.



161

Table 31. Pssumed available soil water capacities (P4C) and maximum
infiltration rates (Pmax) for soil textural classes.

Soil Textural Class PWC (mm/mm) * P (mm/hr) **

max

Loamy fine sand (LFS) .09 12.0

Fine sandy loam (FSL) .11 8.0

Loam (L) .15 4.0

Silt Loam (SiL) .16 3.5

Sandy clay loam (SCL) .17 3.5

Clay loam (CL) .18 2.5

Silty clay loam (SiCL) .18 1.5

Silty clay (SiC) .14 1.0

Clay (C) .14 1.0

* From Buckman and Brady (1969)
** From Hillel (1971)
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obtaining initial values for this variable would be to run the soil

water balance submodels of the respective crop models continuously

(i.e., between simulated harvest and the following planting date as

well as during crop development). This was not done in order to reduce

the computational burden. Instead, initial soil moisture is modeled

as a random variable which is independent of past and subsequent

growing season precipitation.

The Gaussian distribution is assumed for initial soil moisture

for spring-sown crops (spring wheat and corn), and the Chi-square

distribution is assumed for fall-sown crops (winter wheat). This

distinction is natural in view of the precipitation climatologies for

the respective fallow (i.e., between-cropping) periods. For the case

of spring-sown crops, initial soil moisture may be regarded to a first

approximation as the sum of precipitation from perhaps 6 or 7

cool-season months, for which the distributions of total precipitation

exhibit only moderate positive skewness. The central limit theorem

would lead one to consider the Gaussian distribution as a first

approximation, and available data support this choice approximately

(Daier, 1971; Mathews and rmy, 1960; Shaw, 1965; Wadleigh et al.,

1965). For the case of winter wheat, the corresponding random sum is

comprised of only 2 or 3 warm-season months, for which the

distributions of total precipitation are very highly skewed. In

addition, increased evaporation during the warm season tends to

emphasize the skewness since proportionally more of the smaller

precipitation amounts is lost to the soil through this process. The

Chi-square distribution is a simple means of incorporating the

resulting skewness of the distrtibutions of inital soil moisture, and
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in a manner which is also consistent with observations (Mathews and

rmy, 1960; Zook and I4eakley, 1944).

Observed planting-time soil moisture is very similar for the

regions encompassed by Boxes 1 and 3 (Mathews and rmy, 1960), and

identical parameters are used for them. For the spring-planting

Gaussian distribution, mean 6 cm and standard deviation 3.5 cm are

assumed, and the mean of the Chi-square distribution for initial

moisture in fall is tai<en to be 4 cm. For Box 2, mean 17 cm and

standard deviation 8 cm are assumed for the spring (Gaussian)

distribution, and mean 6 cm is assumed for the fall (Chi-square)

distribution. The same parameters are assumed for the single- and

double-CO2 simulations. Initial soil moisture is set to zero for

spring crops in years for which the stochastic realization produces a

negative level. Identical amounts are assumed for all stations within

the same box for a given year, and the initial moisture is assumed to

be distributed uniformly through each soil profile.

Other parameters pertaining to cultural practices required as

input by the crop models were prescribed on the basis of current

practice (Martin et al., 1976). For corn these are 75-cm row spacing,

50000 plants per hectare, and 4-cm seeding depth. For wheat (both

winter and spring) these are 20-cm row spacing, 1.5 cm spacing within

rows, and seeding depth of 4 cm. These are assumed constant for all

stations, and for both the single- and double-CO2 simulations.

The adaptation and equilibration of the modeled agricultural

systems to the changed climate is treated by allowing changes in

seeding date and cultivar. This is achieved by calculating annual

yields over 30-year training periods,u separately for each station
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and CO2 level, for combinations of seeding date and cultivar over

selected ranges of these parameters. That combination which produces

maximum average yield for each station is selected for subsequent use

in the crop simulations.

Of course maximization of average yield is not the only criterion

which could have been employed, but investigation of other possible

choices was not undertaken. These alternatives could include

maximizing median yield; or use of a more complicated criterion,

perhaps involving emphasized weighting of very low yields, designed to

incorporate the effects of risk aversion on the part of the farmer.

Note also that real-world crop seeding on different fields in a given

area does not begin in unison, but rather proceeds over a period of

weeks and is variable from year to year.

The same realizations of initial soil moisture, synthetic

grid-scale weather, and the stochastic climate inverse procedure are

used in the estimation of optimal cultivars and seeding dates at all

stations within each gridbox. Identical sequences of initial soil

moisture are used for the 1X- and 2X-CO2 explorations, so that any

differences in optimal cultural practices may be attributed to

differences in the 30-year realizations of the respective synthetic

climates. Trial seeding dates are spaced at 10-day intervals. For

corn, consecutive maturity classes bracketing the optimum are

explored. Developmental paramenters for two varieties of winter wheat

("TM-1O1" and uPawneeu) are used. Parameters for different spring

wheat cultivars are not available, so that planting date only is

varied for this crop. The "cultivar' employed for spring wheat was

constructed using the parameters for the winter wheat variety "Scout
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66,' modified to require only a very short vernalization period (S.J.

Maas, private communication).

Table 32 presents the results of one such exploration, that for

corn at lgonia, Iowa (Box 2, Station 1), using simulated IX-0O2

weather data. Maximum average yield occurs for seeding on 30 pril,

which corresponds to the beginning of the seeding period in actual

practice (Martin et al., 1976); and maturity class 6, which represents

long-season varieties for Iowa (Stapper and rIin, 1980). Tables 33,

34, and 35 present planting dates and, for corn, maturity classes,

selected as optimal for each set of meteorological data, for stations

in Boxes 1, 2, and 3, respectively.

Best average model winter wheat yields are higher in all cases

for the variety TAM-101, a cultivar adapted to the southern Great

Plains. This is consistent with a general tendency to select earlier

planting dates and later maturing cultivars (for the 1X-COR

simulations) than is usual in current practice. However, the

geographical distribution of seeding dates and corn cult ivars based on

single-COg synthetic weather data bears a qualitative resemblance to

observed practices both within and between grid boxes. For example,

the corn planting date tends to be increasingly later in the northern

portions of the 3-box domain, although its distribution is complicated

by the effects of cultivar. Corn maturity class 9 (the longest-season

variety included in CORNF) is chosen as best only for the lower

elevations of the southernmost gridbox (Box 1). Maturity classes 2,

3, and 4 are only selected in the northern and east-central portions

of Box 3, while in the southeast portion of this northernmost gridbox

maturity classes 5 and 6 are chosen. For Box 2, the selected maturity
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Table 32. Simulated average corn yields (kg/ha) for lgonia, I (Box

2, Station 1) as a function of seeding date and maturity
class (cultivar). verages are over 30 years of synthetic
weather data representing the 1X-0O2 climate.

Planting Date (Julian)

Maturity
Class 80 90 100 110 120 130 140

4 4303 4286 4327 4433 4400 4517 4750

5 5281 5338 5366 5447 5658 5523 5521

6 5584 5638 5710 5827 6030 5761 5322

7 4900 4815 4843 4869 4859 3949 2786

8 2536 2448 2551 2574 2664 1924 1217

9 428 436 493 571 645 21 0
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Table 33. Julian dates of seeding, and corn maturity classes for Box

1 stations.

1X-0O2

Seeding Dates
Corn

Sta. Spring Winter Corn Maturity

No. Wheat Wheat Class

1 30 260 80 7

2 50 230 90 8

3 40 240 90 8

4 40 250 90 9

5 50 260 130 8

6 30 260 80 7

7 30 260 90 9

8 60 240 120 8

9 30 250 80 8

10 40 240 120 9

11 20 250 80 9

12 40 240 100 9

13 30 240 80 9

14 30 240 80 9

15 40 240 90 9

16 40 230 100 8

17 60 250 120 8

18 30 240 110 8

19 50 280 80 9

20 40 280 90 7

21 30 250 120 9

22 20 270 90 8

23 30 250 90 9

24 20 250 120 9

2 X -0O2

Seeding dates
Corn

Spring Winter Corn Maturity

Wheat Wheat Class

10 300 130 8

10 240 100 9

40 240 120 9

10 240 170 8

20 250 120 9

20 290 90 9

10 230 100 9

10 280 170 8

10 260 100 9

10 240 170 9

10 260 170 8

10 260 130 9

10 250 120 9

10 240 170 8

10 250 140 9

10 240 100 9

10 250 100 9

10 260 120 9

10 240 170 8

10 270 130 9

10 240 170 8

10 310 110 9

10 240 170 9

10 240 170 9
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Table 34. Julian dates of seeding, and corn maturity classes for Box

2 stations.

1X-0O2 2X-0O2

Seeding Dates Seeding dates

Corn -------------------- Corn

Sta. Spring Winter Corn Maturity Spring Winter Corn Maturity

No, Wheat Wheat Class Wheat Wheat Class

1 30 220 120 6 10 240 140 8

2 20 220 100 6 10 240 120 9

3 20 220 110 7 10 240 120 9

4 20 220 110 7 10 240 100 9

5 20 230 110 7 10 240 140 8

6 30 220 90 6 10 240 130 8

7 30 230 110 7 10 240 120 9

8 20 230 100 8 10 240 150 8

9 20 230 100 7 20 240 130 9

10 20 230 110 7 10 240 120 9

11 30 230 100 6 20 240 130 8

12 20 230 120 7 10 240 120 9

13 20 230 120 7 10 240 150 9

14 30 220 110 5 10 240 110 8

15 20 230 120 7 10 240 110 9

16 30 220 90 5 10 240 110 8

17 20 230 130 7 10 240 130 9

18 20 220 90 7 10 240 120 9

19 30 220 100 5 20 230 120 8

20 30 220 110 5 10 240 120 8

21 20 230 120 8 10 240 130 9

22 20 230 120 8 10 240 130 9

23 20 230 110 7 10 240 110 9

24 20 230 120 7 10 240 130 9

25 30 240 100 8 20 240 160 8

26 20 230 100 7 10 240 90 9

27 40 220 130 6 10 230 120 8



Table 35.

St a.

No.

1

2

3

4
5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22
23
24
25
26
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Julian dates of seeding, and corn maturity classes for Box

3 stations.

1X-0O2

Seeding Dates
Corn

Spring Winter Corn Maturity

Wheat Wheat Class

70 230 130 2

20 210 120 4

40 210 130 3

20 220 100 4

40 230 120 4

30 220 120 4

50 220 120 3

70 250 130 4

40 220 120 3

50 230 120 4

60 240 120 3

30 220 90 4

30 220 90 4

20 230 90 5

30 250 100 4

40 220 120 4

50 220 100 5

20 220 90 6

30 220 90 6

30 220 100 5

30 260 150 4

20 220 90 6

30 250 100 3

20 260 120 6

30 220 100 6

50 220 150 4

2X-0O2

Seeding dates
Corn

Spring Winter Corn Maturity

Wheat Wheat Class

20 230 120 7

10 220 120 6

20 230 120 7

10 230 120 7

20 240 120 7

20 230 120 7

50 230 130 6

40 250 130 7

10 230 120 6

20 240 120 7

20 230 130 7

20 230 100 8

10 230 100 8

10 230 90 7

10 240 90 8

10 240 120 7

10 230 90 8

10 240 80 8

10 240 90 8

10 230 90 8

20 240 90 8

10 240 80 8

10 240 140 6

40 260 90 9

20 230 100 9

20 230 90 8
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classes range from 8 in the south to 5 in the north. Planting dates

for winter wheat are increasingly later toward the southern part of

the 3-box domain and exhibit reasonable continuity between the three

gridboxes. Model planting dates for spring wheat are increasingly

later in the northern parts of the domain, except for Box 1, where

spring wheat culture is not well adapted to current conditions.

Similar considerations apply for planting dates and cultivars

estimated from double-COa synthetic weather data, although the

specific optimal practices are substantially different for many

stations. There is a tendency for corn planting dates to be later (in

comparison to optimal values for 1X-00 conditions) in Boxes 1 and 2,

and about the same time or earlier for Box 3. Later maturing corn

varieties are selected in nearly all cases, so that the earliest,

selected again in the northern part of Box 3, are maturity classes 6

and 7. Only maturity classes B and 9 are selected in Boxes 1 and 2.

It is interesting to note that for these southernmost boxes, maturity

class 8 is often selected as best in conjunction with June (i.e.,

late) seeding dates. Spring wheat seeding dates tend to be shifted

earlier in the spring, and winter wheat seeding dates tend to be

shifted later in the summer and fall, although the previous

latitudinal gradients are maintained in both cases.

n alternative to the foregoing, relatively expensive, procedure

would be to simply match planting dates and cultivars to current

agronomic practices. While this might result in more realistic

simulations representing current climatic conditions, it will not in

general represent practices which are well-adaped to the changed

climate. s indicated above, "best practices with respect to the
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synthetic 2X-0O2 climate are often substantially different, and

disabling adaptive mechanisms in the modeling procedure will almost

automatically introduce a negative bias to estimates of agricultural

potential under the changed climate.

4.4. Results of Crop Simulation

Estimation of the agricultural impact (with respect to grain corn

and wheat) of the climate change scenario constructed in Section 3.5

is investigated through Monte Carlo simulations of winter wheat,

spring wheat, and corn. The two crop models described in Section 4.2

and the initial conditions described in Section 4.3 are employed.

Separate simulations are undertaken for all stations using 250 years

each of 1X- and 2X-0O2 synthetic weather data.

4.4.1. West and central Kansas: winter wheat region

Table 36 presents means, standard deviations, and medians of the

yield distributions of winter wheat and grain corn for Box 1 stations.

Spring wheat culture is not adapted to this relatively warm area, and

yields of this crop are below or equivalent to winter wheat yields for

all stations and for both climatic conditions. Spring wheat will

therefore not be discussed further for this region. Statistical

significance of differences between IX- and 2X-0O2 yields of winter

wheat and grain corn for each station, as judged by the

Wilcoxon-Mann-Whitney rank-sum test (e.g., Steel and Torrie, 1980),

are indicated in Table 36 by asterisks.

fs might have been expected, model wheat yield levels for the
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Table 36. Means, standard deviations, and medians of model winter
wheat and grain corn yield distributions for Box 1.
Significant differences between single- and double-0O2
distributions are indicated by '**' for the 1% level and

UlI for the 5% level.

a. Winter Wheat

Single CO2 Double CO2

Station Mean (Std.Dev.,) Median Mean (Std.Dev.) Median

1 445 C 428) 328 * 378 C 437) 265

2 2345 (1642) 2182 * 2668 (1548) 2593

3 1372 (1405) 847 1521 (1388) 1051

4 342 C 428) 224 580 C 902) 224

5 344 C 461) 235 ** 246 C 411) 123

6 492 C 459) 380 ** 390 C 389) 297

7 979 (1196) 574 ** 1547 (1414) 1094

8 342 C 462) 202 ** 413 C 520) 233

9 469 C 565) 297 548 C 753) 306

10 1513 (1311) 1116 ** 2059 (1510) 1932

11 264 C 387) 159 239 C 352) 122

12 2483 (1735) 2297 * 2829 (1651) 2818

13 1625 (1689) 877 ** 2206 (2039) 1389

14 331 C 516) 145 * 543 C 908) 196

15 3500 (2037) 3767 ** 4140 (2040) 4735

16 1106 (1269) 666 ** 1716 (1771) 1133

17 434 ( 553) 272 558 ( 882) 255

18 1388 (1427) 872 ** 1881 (1745) 1321

19 394 C 475) 243 ** 302 C 599) 131

20 440 ( 467) 287 * 370 C 497) 242

21 325 C 551) 161 612 ( 998) 172

22 375 C 434) 243 ** 275 C 371) 155

23 938 (1272) 432 ** 1583 (1661) 1048

24 570 C 888) 286 1087 (1540) 340
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Table 36, continued.

b. Grain Corn

Single CO2 Double CO2

Station Mean (Std.Dev.) Median Mean (Std.Dev.) Median

1 428 C 809> 2 ** 449 C 887) 6

2 3828 (2530) 3618 ** 2734 (2166) 2810

3 1604 (1658) 1148 * 1289 (1477) 867

4 701 (1070) 45 * 463 ( 917) 1

5 834 (1298) 86 ** 696 (1064) 121

6 563 ( 886) 189 492 C 854) 33

7 1428 (1853) 646 ** 723 (1208) 152

8 419 C 812) 0 ** 296 ( 658> 0

9 729 (1022) 275 581 ( 882) 124

10 1359 (1860> 468 995 (1460) 308

11 804 (1252) 105 ** 587 ( 946) 82

12 2369 (2066) 1989 ** 1564 (1800) 816

13 1498 (1618) 918 ** 692 ( 993) 272

14 592 ( 874) 141 ** 425 C 819) 1

15 2675 (2325) 2055 ** 1550 (1938) 681

16 1065 (1224> 567 * 778 (1125) 288

17 420 C 801) 0 ** 369 C 700) 28

18 1475 (1582) 975 1159 (1428) 559

19 349 C 760) 0 ** 259 C 638) 0

20 242 C 494) 2 ** 282 ( 590) 0

21 643 C 960> 72 * 409 C 785) 10

22 794 (1243) 90 ** 549 C 937) 77

23 1239 (1432) 641 ** 764 (1184) 18

24 1085 (1529) 335 ** 561 C 939) 3
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1X-0O2 simulations do not correspond quantitatively to observations,

but the general increase in yields toward the wetter (eastern) portion

of the gridbox is qualitatively similar to that in the real world.

Model yields are 50% to 100% higher than observed in the northeast.

corner, and perhaps half those observed in the western half of the

gridbox (cf. Michaels, 1983). This latter discrepancy is probably

related in part to the fact that alternate-year cropping (as a

moisture conservation strategy) is practiced in this region, and is

not incorporated into the present crop modeling procedure. Comparable

figures for observed corn yields in this region are not readily

available, since relatively little nonirrigated corn is grown even in

the wetter portions of this gridbox (U.S. Bureau of the Census,

1982b). However, modeled corn yields are very low indeed (median

model yields for several stations are zero) except in the wetter

eastern portion of the gridbox, as is undoubtedly the case in the real

world.

Relative changes in Box I yields are presented in Figure 33.

Panels a and b show proportional changes in winter wheat and corn

yields, respectively. Wheat yields are seen to increase, in some

cases rather substantially, in the eastern portion of the box; and to

decrease to a lesser degree in the drier western portion. These

differences between the 1X-00 and 2XC0a
distributions are

statistically significant for most of these stations. In contrast,

corn yields decline significantly almost everywhere within this

gridbox.

Widespread decreases in potential corn yields in this region

under the 2X-0O2 climate scenerio of Section 3 are to be expected, in
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view of the very large temperature increases (Figure 21) and reduced

precipititation probabilities (Table 16) during summer. Both these

factors act to reduce available soil moisture during the tasseling and

silking stages, when that moisture is most needed by the plant (Shaw,

1983). For most locations these developmental stages occur in the

modeled crops during mid- to late July, which is the hottest part of

the summer (cf. Figure 21). Model corn at those stations for which

seeding is delayed until June (Table 33) does not reach these

phenological stages until mid-ugust, after the highest potential for

damaging heat in the 2X-0O2 scenario has passed. (However, moisture

is still insufficient for good yields.) Interestingly, this is a

strategy sometimes employed for real-world irrigated corn production

in western Ransas (Martin et al., 1976).

The present results indicate that the potential for winter wheat

production may increase in a 2X-CtJR world. This is perhaps

surprising, but may be viewed as an e<ample of the potential

adaptability of agriculture to changing environments. The crop

calendar of winter wheat is such that no crop is present during July,

so that the very harsh conditions in the 2X-COR scenerio for this

month do not affect yield potential. Winter temperatures are higher

as well, but still cool enough that evapotranspiration is not

drastically increased. The primary effect of increased winter

temperatures on the modeled wheat crop is to accelerate vegetative

development relative to the 1XCOa simulations. In combination with

delayed planting dates, this results in occurrence of the critical

anthesis and grain filling periods for stations in the eastern part of

the gridbox (where model yields increase) during pril. verage
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temperatures during these critical stages are then somewhat cooler for

the 2X-0O2 simulations, as the corresponding period occurs in May for

the 1X-CO wheat crops. Also, there is a small increase in average

March precipitation, which results from an increase in average

precipitation intensity (cf. Table 16) in combination with the

associated influence on the probabilities of successive wet days.

Together the lower temperatures and higher precipitation effect a

reduction in average daily water stress during the critical grain

filling period. As a result, the duration of this stage is extended

substantially and the yields are correspondingly increased.

For the stations in the western part of Box 1, both 2X-COa

planting dates and onset of flowering and grain filling are later than

for the eastern stations. Average daily water stress during the

critical phenological stages increases over that for IX-0O2 crops, and

this is the apparent cause of the modeled yield decreases for these

stations. Moisture is severely limiting in this area, and even modest

increases in evapotranspiration would be expected to decrease yield

potentials. The later planting dates may have been chosen so that the

flowering period extends into the climatologically wetter period of

late spring. This could have resulted in a few good harvests during

the 30-year training sequence, which would have exerted a large

influence on the mean yields over that period. Note in this regard

that the near-equality of the means and standard deviations in Table

36, and the smaller magnitudes of the medians indicate that these

distributions are strongly positively skewed.
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4.4.2. West and central Iowa: western corn belt region

Table 37 presents means, standard deviations, and medians for the

yield distributions of grain corn and winter wheat at Box 2 stations.

fulso indicated, as in the corresponding table for Box 1, are

significance levels for the differences as judged by the

Wilcoxon-Mann-Whitney test. Both winter wheat and spring wheat are

grown in this area, although neither are of major importance (Martin

et al., 1976). Since a warmer climate would likely favor winter wheat

over spring wheat, discussion of the former will be emphasized in the

present section.

Modeled 1X-0O2 average corn yields compare moderately well with

the corresponding observations, exhibiting a general increase toward

the northeast, although the absolute magnitudes are perhaps 20% lower

(cf. U.S. Bureau of the Census, 1982a). Modeled winter wheat yields

are higher than observations, roughly by a factor of 2, but exhibit

the same tendency for yields to decrease toward the northwest and

southwest (U.S Bureau of the Census, 1982a). Modeled spring wheat

yields (not tabulated) exhibit much less spatial variation, and are

comparable in magnitude to the observed values.

The relative changes in yields for modeled grain corn and winter

wheat are shown in Figure 34. Panel (a) indicates increases in corn

yields under the 2X-00 climate in the northeast corner, several of

which (stations 6, 14, 16, 19, and 20) are highly significant. ln

area of comparable size in the west-central portion of this box

(stations 8, 9, 12, 13, 15, 23, 24, and 26) exhibits significant yield

decreases. Half the stations exhibit no significant changes in corn
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Table 37. Means, standard deviations, and medians of model grain
corn and winter wheat yield distributions for Box 2.
Significant differences between single- and double-0O2
distributions are indicated by "** for the 1% level and
"* for the 5% level.

a. Grain Corn

Single CO2 Double CO2

Station Mean (Std.Dev.) Median Mean (Std.Dev.) Median

1 5404 (2866) 5459 5731 (2997) 5666

2 5538 (2104) 5493 5615 (2750) 5485

3 4461 (2187) 4569 4248 (1774) 4260

4 4961 (2394) 4899 4602 (2077) 4553

5 4663 (2296) 4751 4554 (2178) 4655

6 6423 (2812) 6792 ** 7551 (2967) 7967

7 4890 (2307) 5065 4785 (2158) 4575

8 5558 (2237) 5593 ** 4908 (2235) 4995

9 5635 (2309) 5809 ** 5085 (2046) 5144

10 4482 (2203) 4555 4183 (2050) 4192

11 6230 (2708) 6377 6657 (2906) 6753

12 4091 (2131) 4211 * 3582 (2094) 3667

13 5328 (2266) 5303 ** 3884 (2226) 3837

14 6492 (2335) 6716 ** 7515 (2802) 7704

15 4873 (2411) 5156 ** 4333 (1932) 4395

16 6167 (2634) 6438 ** 7873 (2886) 8306

17 4938 (2546) 5117 * 4511 (2262) 4378

18 5699 (2717) 5841 5475 (3358) 5188

19 4975 (2254) 4751 ** 6090 (2802) 6025

20 6029 (2600) 6419 ** 7233 (3008) 7691

21 4520 (2356) 4486 4196 (2252) 3995

22 4395 (2215) 4451 4141 (2174) 4197

23 4535 (2369) 4518 * 4112 (2030) 3903

24 5768 (2358) 5540 ** 5153 (2108) 4948

25 4394 (2162) 4484 4082 (2402) 4110
26 4231 (2065) 4329 * 3920 (1850) 3911

27 3677 (2185) 3659 4033 (2069) 4030
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Table 37, continued.

b. Winter Wheat

Single CO2 Double CO2

Station Mean (Std.Dev.) Median Mean (Std.Dev.) Median

1 3203 (1782) 3368 ** 1909 (1384) 1573

2 4739 (1737) 5232 ** 3250 (1594) 3537

3 4493 (1687) 4783 ** 2987 (1521) 3101

4 4379 (1602) 4699 ** 2848 (1475) 3029

5 3551 (1749) 3619 ** 2552 (1550) 2353

6 3219 (1805) 3195 ** 1886 (1405) 1694

7 3694 (1755) 3799 ** 2515 (1491) 2505

8 4935 (1370) 5171 ** 3409 (1512) 3644

9 5252 (1175) 5363 ** 3708 (1401) 3885

10 4185 (1599) 4426 ** 2895 (1558) 2888

11 2890 (1829) 2724 ** 1658 (1345) 1259

12 3183 (1667) 3151 ** 2022 (1403) 1740

13 4991 (1288) 5185 ** 3404 (1480) 3637

14 4556 (1503) 4893 ** 2851 (1436) 2973

15 4225 (1516) 4459 ** 2734 (1453) 2764

16 2938 (1803) 2754 ** 1671 (1335) 1461

17 3860 (1777) 4243 ** 2708 (1495) 2633

18 4317 (1766) 4720 ** 2667 (1552) 2681

19 4089 (1633) 4499 ** 2701 (1486) 2857

20 4345 (1474) 4773 ** 2621 (1398) 2647

21 3139 (1863) 3001 ** 2210 (1381) 2045

22 4329 (1696) 4638 ** 2846 (1579) 2923

23 3377 (1715) 3546 ** 1984 (1521) 1556

24 5230 (1198) 5380 ** 3805 (1334) 4045

25 3173 (1746) 3182 ** 1999 (1464) 1727

26 3688 (1655) 3863 ** 2326 (1485) 2128

27 2802 (1556) 2688 ** 1670 (1274) 1415
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yield potential.

In contrast, Figure 29b indicates sharp yield reductions for

winter wheat throughout this gridbox, with the largest decreases

occurring in the central and southeast portions. Spring wheat yields

(not shown) exhibit decreases which are similar in magnitude and

distribution. These decreases in potential wheat yields are rather

clearly attributable to the higher temperatures (Figure 22) in

conjunction with sharply lower spring rainfall frequencies (Table 16).

verage model daily water stress during the anthesis and grain filling

periods for winter wheat increase 30% to 100% throughout most of the

gridbox, with catastrophic effects on yields.

For the case of corn yields, the possibly surprising relative

increases at stations in the northeast portion of the box may be

viewed as another example of the potential adaptability of

agricultural production systems. Table 17 indicates a very

substantial increase in July precipitation intensity while Table 16

shows no significant decrease in precipitation probability following

dry days for this month. The result is a large (average of 66%)

increase in July precipitation for all stations throughout the

gridbox. The optimal combinations of seeding date and cultivar

selected in Section 4..3.c result in the average dates of silking

occurring in mid-July, thus minimizing water stress during this and

the subsequent critical phenological stages. However, average water

stress during the flowering period is still generally higher for the

2X-0O2 corn crops as compared to the IX-0O2 realizations, and the

differences are greater at those stations for which significant yield

decreases are predicted. This is apparently a consequence of the
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higher temperatures in the 2X-0O2 climate offsetting the beneficial

effects of increased precipitation. Pveraqe 2X-0O2 July maximum

temperatures increase toward the southwest, being 34 C to 35 C in the

region predicted to experience increased corn yields, and 36 C to 37 C

for the area in which model yields decline significantly.

The compensating factor allowing overall yield to remain at

nearly the same level, even though water stress is increased, follows

as a consequence of the adaptability of cultural practices. More heat

units are available, and over a longer growing season, in the warmer

changed climate. It thus provides the opportunity for use of longer

season varieties, which have a higher yield potential. If no increase

in July precipitation were predicted, it is probable that the

procedure of Section 4.3.c would select June planting of

shorter-season varieties so that the flowering period could occur

after the midsummer heat and drought. Modeled yields would clearly be

lower than for the present 2X-COR climate scenario, but not as low as

would be the case if the opportunity to extend the growing season

later into the fall were denied.

Taken together these results indicate that the regional corn

production capacity may remain more-or-less constant. The tendency for

corn yields to increase in the northeast portion of this gridbox

support the possibility that the corn belt' may shift in that

direction, as has been suggested by Newman (1980). However1 this may

be compensated by declines in winter wheat yields in the southwest

section of the gridbox, with the possible result that corn may still

be the more profitable crop albeit at reduced yield levels.
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4.4.3. North and South Dakota: spring wheat region

Finally, the summary yield statistics for Box 3 spring wheat and

grain corn are presented in Table 38. Winter wheat results are not

considered in this section, since modeled yields are quite high

(ranging to several tons per hectare). This error derives from the

absence of a mechanism for "winterkill' in TMW. Very cold winters

prohibit fall planting of wheat in this region for current climatic

conditions, and the modest increases in winter (particularly maximum)

temperatures in the 2X-0O2 scenario (cf. Figure 23) for this gridbox

suggest little change in the adaptability of winter wheat. Modeled

magnitudes of yields for both spring wheat and corn are approximately

two-thirds of those observed, although the general increase in average

yields toward the wetter eastern portion of the box is preserved (cf.

North Dakota Crop and Livestock and Reporting Service, 1984; U.S.

Bureau of the Census, 1982c).

Figure 35a indicates substantial declines in modeled average

spring wheat yields. Significant yield reductions occur over all but

the southwestern portion of the gridbox, where both modeled and

observed yields are low, and little wheat is grown in practice (e.g.,

Martin et al., 1976). Spring wheat is well adapted to the current

climate in the remainder of this region, and while the 2X-0O2 scenario

does not specify reductions in probabilities of spring precipitation

(as in the case of Box 2), increased temperatures and associated

increases in evapotranspirat ion appear to be sufficient to impair

yields.

For the case of grain corn, Figure 35b shows widespread yield
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Table 38. Means, standard deviations, and medians of model spring
wheat and grain corn yield distributions for Box 3.
Significant differences between single- and double-CIJ2
distributions are indicated by "**" for the 1% level and
*' for the 5% level.

a. Spring wheat

Single CO2 Double CO2

Station Mean (Std.Dev.) Median Mean (Std.Dev.) Median

1 505 ( 495) 375 426 ( 384) 318

2 1518 (1031) 1321 ** 946 ( 723) 748

3 1185 ( 927) 923 ** 786 ( 656) 570

4 1268 C 941) 1016 ** 862 C 708) 692

5 1243 ( 965) 1033 ** 891 ( 744) 710

6 1369 C 995) 1180 ** 885 ( 717) 701

7 951 ( 787) 667 ** 589 ( 575) 440

8 576 C 561) 394 * 463 ( 456) 360

9 1379 C 958) 1219 ** 934 C 770) 705

10 545 ( 533) 388 ** 412 C 420) 289

11 555 C 534) 400 * 448 C 440) 309

12 835 C 772) 559 ** 630 C 619) 445

13 819 C 706) 609 ** 605 C 558) 404

14 946 C 817) 668 ** 738 C 726) 489

15 328 C 310) 220 311 C 291) 232

16 613 C 566) 413 514 C 469) 392

17 688 C 650) 502 ** 578 C 594) 342

18 1234 C 996) 951 1069 C 902) 789

19 622 C 636) 395 559 C 558) 366

20 655 ( 617) 465 ** 519 ( 508) 364

21 265 C 260) 176 244 ( 235) 173

22 905 C 754) 672 * 784 C 744) 587

23 448 C 488) 287 * 356 ( 373) 255

24 329 C 364) 229 342 ( 334) 247

25 331 ( 342) 209 310 C 339) 197

26 303 C 265) 232 * 273 C 296) 178
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Table 38, continued.

b. Grain Corn

Single CO2 Double CO2

Station Mean (Std.Dev.) Median Mean (Std.Dev.) Median

1 613 C 679) 442 810 (1184) 197

2 2065 (2080) 1404 ** 2630 (2316) 1984

3 1476 (1510) 1018 1712 (1825) 1204

4 1777 (1693) 1190 1893 (1901) 1363

5 1898 (1753) 1398 2168 (2125) 1593

6 2316 (2027) 1832 2506 (2394) 1913

7 1285 (1302) 917 1491 (1561) 975

8 390 ( 725) 4 ** 645 (1145) 0

9 1682 (1563) 1250 1980 (1883) 1416

10 508 C 808) 95 ** 708 (1033) 105

11 685 C 861) 389 * 822 (1207) 128

12 1310 (1346) 854 1463 (1656) 915

13 1447 (1416) 994 1654 (1838) 1116

14 1990 (2015) 1407 * 2312 (2154) 1781

15 334 C 486) 151 553 C 962) 5

16 760 C 920) 449 * 1105 (1361) 661

17 1040 (1205) 575 1286 (1581) 665

18 2329 (2193) 1792 * 2871 (2583) 2376

19 1192 (1413) 682 * 1630 (1904) 870

20 1086 (1215) 625 ** 1567 (1602) 1292

21 251 C 376) 51 ** 384 ( 598) 98

22 1328 (1617) 618 ** 1893 (1867) 1598

23 422 C 737) 94 ** 641 (1072) 109

24 290 C 484) 77 379 C 682) 3

25 415 C 501) 229 589 C 850) 99

26 373 ( 658) 3 ** 732 (1196) 100
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increases under the 2X-0O2 climate scenario, many of which are highly

statistically significant. While July precipitation intensity

increases as in the case of Box 2 (Table 17), this is offset by a

corresponding decrease in the probability of precipitation following

dry days (Table 16). The result is that, at least in terms of average

July precipitation, the moisture supply is approximately unchanged at

most stations.

The observed yield increases appear to result from two

temperature effects. First, the present climate of this region is

cooler than the optimum for corn growth. verage 2X-0O2 July

temperatures (i.e., [,.11+T.1.J12 ) are between 25 C and 27 C through

most of the gridbox, which is near the optimum for corn growth at the

corresponding level of average July precipititalon (Shaw, 1983).

Second, as is the case for Box 2 corn, warmer temperatures and the

extended growing season allow use of longer-maturing varieties, with

attendant increased yield potential.

Many of the stations exhibiting statistically significant yield

increases are in the western half of the gridbox, where the large

proportional increases would probably still be insufficient to produce

economic corn crops. However, this is not the case for the

east-central and southeastern portions of this gridbox (Newman, 1980;

Wilks and Murphy, 1987), where the modeled increases would be

agronomically as well as statistically significant. The combination

of increasing corn yields and decreasing wheat yields in this gridbox

indicate the potential for extension of the corn belt both northward

and westward in this region.
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4.5 Summary and Conclusions

This section has presented results describing possible

consequences of COg-induced climate changes on several important

aspects of North merican grain agriculture. L4hile some aspects of

the changed climate in the scenario considered act to reduce crop

yields, others present opportunities for adaptation which could result

in compensation or even yield increases.

One important result is the illustration of means by which

agriculture could effectively adapt to a changing climate. For

example, warmer temperatures allow use of later-maturing varieties of

grain corn as a consequence both of higher daily temperatures and an

extended growing season. The resulting higher yield potential may be

further enhanced by increased precipitation, even for a single month.

This is particularly so if planting dates can be manipulated such that

the occurrence of critical developmental stages of the crop can be

made to occur at that time.

The particular climate scenario constructed in Section 3.5

produces some changes in the geographical distribution of the major

cropping regions considered here. However, the picture is by no means

complete since other important crops, most notably soybeans, have not

been included in the present analysis.

For the case of grain corn, yields increase in the (presently

temperature-limited) areas in the northern half of the three gridboxes

considered, and yields decrease in the warmer southern areas. That

portion of the continent well-adapted to grain corn production may

accordingly increase; to the north as heat limitations are removed,
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and to the southwest to the extent that the yields of corn decline

relatively less than those for wheat.

Evaluation of this latter point is complicated by the anticipated

differences in the two types of plants to direct physiological effects

of increased carbon dioxide, which are not treated in the present

simulations. Plants such as wheat exhibit marked increases in net

photosynthesis in response to increases in carbon dioxide

concentrations, which may ultimately be 30% under favorable conditions

in a doubled CO2 atmosphere (Cure, 1985). Plants such as corn, which

utilize a different biochemical pathway for carbon dioxide fixation,

show little response in the rate of photosynthesis for CO2

concentrations above the current levels of about 340 ppm, but do

exhibit increased water use efficiency (cock and llen, 1985).

However, the extent to which crop yields may be affected by these

changes in plant physiology is not known (cock and llen, 1985;

Bazzaz at al., 1985; Waggoner, 1983).

The potential changes in cropping regions are less clear for

wheat than for corn. The modeled wheat crops fare worse in the 2X-0O2

scenario nearly everywhere except in the very important production

region of central Ransas. While this is an encouraging prospect, it

is troubling that precisely the opposite result is encountered in the

adjoining region of southeast Nebraska. The differences can be

sensibly interpreted in terms of the separate projected climates for

the respective gridboxes, but this spatial incoherence underscores the

need to improve the present procedure to allow treatment of the

statistical dependence between climates of nearby gridboxes.

Of course the specific results depend on many uncertainties in
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the antecedent components of the procedure. The two crop simulators

employed do consider crop physiology and phenology on a daily basis,

but are relatively simple examples of "process-oriented' models. Two

particular shortcomings are in the treatment of winter wheat in very

cold weather, and errors in quantitive yield predictions. It must be

assumed that relative changes in crop yields are adequately portrayed.

However, the two models are successful in relating developmental

stages to weather events, which is critically important for

examination of the capacity of agricultural producers to adapt. The

climate inverse procedure does not completely reproduce the

statistical character of station-scale meteorological data, but the

most severe error from the standpoint of crop simulation, occasional

very large precipitation amounts, is mitigated by the formulation for

surface runoff presented in Appendix B. The appropriateness of the

climate inverse procedure in a 2X-0O2 world, and the means of

extrapolating the statistical characteristics of the grid-scale time

series, have both been assumed. Finally, the relative changes

portrayed by the 6CM have necessarily been accepted.

While the results presented here are moderately optimistic about

the fate of North American grain agriculture in a doubled CO2 world,

the above considerations indicate that the present work may be best

regarded as an exercise in the development of methods to examine this

issue. Specific predictions should be taken seriously only to the

extent that similar results are obtained using different 6CM data sets

and different or improved formulations linking the 6CM data to the

local conditions.
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Section 5

Summary, Conclusions, and Future Work

The present work has formulated and demonstrated the use of

specific procedures to implement the conceptual framework of Gates

(1985) for estimation of local climate impacts using information

derived from large-scale general circulation models. The development

has consisted of three major parts. The first was refinement of the

approach to the climate inverse problem of Kim et al. (1984) to

allow its use with daily data. This extension consisted of a rotated

principal component analysis of daily data for simultaneous treatment

of maximum temperature, minimum temperature, and precipitation. It

was found that this procedure produces pattern vectors that sensibly

portray the different spatial scales of the variables and their

cross-correlations, and that permit reasonable meteorological

interpretation. Of particular utility in the context of stochastic

simulation of the spatial distribution of weather elements is the

representation of daily precipitation patterns that reflects,

particularly in the warm season, its relatively isolated character.

The second major development presented here was a novel means of

statistically constructing climate scenarios at the scale of

resolution of GCMs, on the basis of the climates portrayed by two

realizations of a 6CM and a corresponding sample of observational

data. This approach involved characterizing the climate states

esented by each of these three data sources using the parameters
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of a multivariate parametric time-series model. The scenario for the

changed climate was then constructed by adjusting parameters of this

model that were derived from the observations on the basis of

significant relative differences between the two GCM data sets.

Ithough this method is conceptually no different than the usual

approach to interpreting the results of climate change experiments

with GCMs, it is carried out here with a much richer parameter set,

and in such a way that stochastic realizations of daily data

representing the present or inferred changed climate can be

constructed in a straightforward manner.

Finally, these two procedures were coupled, and their

applicability to investigations of climate impacts on agriculture was

demonstrated with a case study. Stochastically synthesized local

weather data were used in conjunction with two physiological crop

simulation models to produce estimates of the climatic consequences of

a doubling of CD2 on grain yields, for selected regions of North

merica. The results of this investigation are moderately optimistic,

and indicate that many potential disruptions may be mitigated by the

adaptive capacity of agricultural producers, as has been emphasized by

Clark (1985).

However, the specific predictions concerning relative crop yields

and possible shifts in cropping regions generated here must be

regarded with great caution. It could be tempting to use the present

results in public policy or planning contexts (Figure 1, step 4), for

example in conjunction with global economic models such as that

described by Liverman (1986). Consideration of the many uncertainties

present in the analysis indicates that such use of these initial
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results would be inappropriate.

First, the results depend rather strongly on the correctness of

relative changes in surface climatic elements as portrayed by the

particular 6CM employed here. The global-averaged increase in surface

temperature for this model at year 25 of the integrations (from which

the assumed relative increases in temperature are calculated) is

approximately 5°C (W.L. Gates, private communication). This increase

is larger than results from comparable 6CM studies reported in the

literature (Schlesinger, 1986), although the potentially important

contributions of radiatively active trace gases other than carbon

dioxide to a global warming (e.g., Ramanathan et al., 1985) have not

been considered. Also, the timing within the year of inferred climate

changes (particularly for precipitation) with respect to the crop

calendar influences the results very strongly.

The climate inverse procedure described in Section 2 appears to

be a reasonably successful procedure for the estimation of local data

using large-scale weather information, at least for current

conditions. Particularly for the case of precipitation, however, it

does not produce realizations of local climates possessing statistics

that are identical to the observations. Also, the degree to which the

statistical relationships embodied in the procedure will be

representative of those in a warmer world is largely a matter of

speculat ion.

Finally, there is uncertainty regarding the performance of the

crop models employed. It is known that these models produce errors in

absolute yield predictions, and it has been necessary to assume that

relative changes in yields have been reasonably portrayed. In
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addition, the inability of these models to simulate the direct effects

of CO2 on plant physiology implies that the specific results

pertaining to future crop yields contain considerable uncertainty.

It is probably best to regard the results presented here as a

demonstration of the potential utility of the present method for

climate impact assessments. Overall, the formulation appears to be an

appropriate basis for such studies.

number of refinements to the procedure are possible and should

be pursued. These refinements may be regarded as being comprised of

technical improvements to the climate inverse formulation, and

extensions aimed at broadening the applicability of the approach:

1. Results presented in Section 2 indicate that the present

station density is not adequate to fully capture the spatial

variations of daily precipitation data, which in turn

precludes adequate stochastic simulation of this variable

between stations by interpolation. Precipitation has a very

strong influence on agricultural response, and improvement of

its representation would be highly desirable. n obvious

potential remedy would be inclusion of more stations for

which precipitation (but not necessarily temperature)

observations are available. Many cooperative observing

stations report only preciptitation, so that a larger pool of

stations from which to choose is available. Increasing the

density of stations appears to be unnecessary from the

standpoint of representing spatial variations of temperature,

and would primarily serve in this case to increase the

computational burden.
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2. The present formulation of the climate inverse procedure

includes no weighting of the station data in the calculation

of the correlation matrix, and the representation might be

improved if some measure of relative station importance were

incorporated at this stage. This issue is complicated by the

fact that use of the correlation (rather than the covariance)

matrix is dictated by simultaneous treatment of several

variables. Possible starting points in the search for an

optimal method of station weighting are the procedures

suggested by Lorenz (Kutzbach, 1967) and Buell (1978).

3. The present procedure uses the GCM information at the very

limit of its resolution, where its performance is expected to

be least reliable. It would be desirable to devise a

reasonable and consistent procedure for incorporation of

information from surrounding gridboxes into the specification

of climate scenarios. successful treatment of this issue

should minimize artificial discontinuities in the climates

(and corresponding simulated crop yields) between nearby

stations in adjacent gridboxes.

Finally, the applicability of the procedure presented here could

be extended by explicit modeling of variations on time scales of

months or seasons. Except when box-scale weather is specified from

the observational record (which severely limits the applicability of

the procedure for large-sample '1onte Carlo simulations), the only

source of interrnonthly, interseasonal, or iriterannual variability in

the present formulation is through a random-walk process (e.g.,

Feller, 1968; Katz, 1985). This limitation follows from treatment of
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the annual cycles of mean daily values, for example, as constant over

the period of record (e.g., Trenberth, 1984).

There are several possible future lines of inquiry relative to

this issue. One is explicit modeling of monthly and seasonal

variations of mean values following, for example, Chu and Katz (1985).

Rnother is stratification of the principal component amplitudes

according to the value of some variable that may be produced by

extended-range prediction efforts, such as monthly or seasonal mean

temperature anomaly, or phase of the El Nino cycle. Refinement of

climate-inverse procedures in this way could allow use of results from

extended-range prediction groups in estimation of local impacts of

weather fluctuations on monthly or seasonal time scales. For example,

some current means of agricultural yield prediction, employing

physiological crop models and daily values of climatological data

(e.g., Duchon, 1986; Dugas et aL,, 1983b), could be improved

through more sophisticated use of growing-season meteorological

forecasts. s the performance of monthly and seasonal forecasting

efforts improves, the procedure could then begin to provide

information of economic and policy significance.
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APPENDIX l

Note on the Sampling Distribution of the

'Time Between Effectively Independent Samples"

h1 Introduction

Meteorological and other geophysical time series exhibit positive

serial correlation, or persistence. One popular and compact means of

characterizing the degree of persistence in a data set is the "time

between effectively independent samples," T (e.g., Leith, 1973;

Madden, 1976; Trenberth; 1984). This statistic has been employed in

the meteorological literature to characterize and compare variations

in monthly-averaged sea-level pressure (Madden, 1976), temperature

(Madden and Shea, 1978), and daily geopotential height (Shukia and

Gutzler, 1983; Trenberth, 1985).

The sampling distributions of estimates of T0 have not been well

documented, although this is an important consideration from the

standpoints of both informal comparisons and formal statistical tests.

Thiebaux and Zweirs (1984) investigated sample variances and measures

of central tendency for several possible methods of calculating the

"effective sample size," which is proportional to the reciprocal of

T0. Trenberth (1984) presents results indicating sample estimates of

T, are negatively biased for sample sizes less than about 100.

The present note reports the results of an investigation into the

sampling distribution of TQ using Monte-Carlo techniques, with the aim
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of providing a basis for formal statistical tests involving this

quantity. Section 2 describes the approach taken, results are

reported in Section 3, and Section 4 contains some brief concluding

remarks.

.2 pproach

Synthetic time series are generated using autoregressive

processes of the form

3

X = E ØX + E

t t=1 tt-t t

(ci. 1)

where is the value of the time series (which has zero mean) t

lags prior to time t, E is a set of independent standard normal

(i.e., Gaussian) variates, and the øs are the autoregressive

coefficients. Table 39 lists autoregressive coefficients for the ten

generating processes used in the study. These coefficients are

representative of the sort of models that describe many

meteorolological time series, and they are characterized by T0 values

(also listed in Table 39) which range from 1.7 to 18.2 time units.

Values of T0 are calculated according to a weighted average of

the autocorrelation function (e.g., Trenberth, 1984; Theibaux and

Zwiers, 1984),

M

T = 1 + 2 E (1--) r
o t=1 N t

(L2)

where r1 is the autocorrelation at lag t, N is the sample size, and M
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Table 39. utoregressive coefficients for the ten generating
processes considered, and corresponding theoretical values

of T0.

Model 0 0 0 T

1 2 3 o

1 1. 00 -0. 50 0. 00 1. 67

2 0.40 0.00 0.00 2.33

3 0.60 -0.20 0.10 2.86

4 0. 90 -0. 50 0. 20 3. 25

5 1.00 -0.40 0.10 4.46

6 1.20 -0.40 0.00 5.57

7 1. 00 -0. 20 0. 00 7. 33

8 0. 90 -0. 20 0. 10 8. 79

9 0.85 0.00 0.00 12.25

10 0.90 0.00 0.00 18.24
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is a truncation number. In the present work, M is taken to be 30, a

value appropriate to daily data stratified by month.

Pnalytical values of rt, and therefore for T, corresponding to a

given autoregressive model are obtained using the Yule-Walker

equations (e.g., Box and Jenkins, 1976). For autoregressive processes

of maximum order 3 the recursions for calculation of autocorrelations

are given by

and

r (0 + 0 0 ) / (1 0 0 0 0 ) , (P.3a)

1 1 23 2 13 3

r = 0 -r (0 + 0), (P.3b)

2 2 1 1 3

r = Or + 0 r + 0

3 12 21 3

(P. 3c)

3

r = E 0 r , k = 4,...,M. (P.4)

k t=1 t k-t

Estimates of the time between effectively independent samples,

T, are calculated according the procedure recommended by Jones

(1975) and Trenberth (1984). First a sequence of (order zero to five)

autoregressive processes are fit to the data, using the Yule-Walker

equations (e.g., Box and Jenkins, 1976; Katz, 1982). The most

appropriate order, p, is selected according the Bayesian information

criterion statistic (Katz, 1982; Schwartz, 1978). Only the first p

empirical autocorrelations are then used to estimate T0, with the

remaining N-p coefficients being calculated from the Yule-Walker
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recursion on the basis of the initial p empirical autocorrelations.

That is,

M t

T 1 *2E (1--) r , rn.5)

o t=i N t

where

A 1 N

r = E ( X X ) ( X X ) , k = l,...,p, (f:L6a)

k N-i t=1 t t-k

and

A P A A
r = 0 r , k = p+1,...,M. (.6b)

k t=1 t t-k

A
Here the 0's are the fitted estimates of the autoregressive

coefficients, and X is the usual sample mean over all N observations.

Note that (p.5) is based on sample estimates of the autocorrelation

function, while (f.2) employs the true autocorrelation values. The

foregoing procedure is applied to obtain 1000 Monte-Carlo realizations

for each of the 10 autoregressive generating processes, and each of

eight values of N. These latter values are 2000, 1000, 600, 300, 200,

100, 70, and 50.

The proportion of effectively independent data decreases with

increasing T, so that sample variances would be expected to increase

with T0. flexible statistical model for quantifying this

relationship is

A

V(T ) 1:1 T e / N . (f.7)

0 0
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Here and B are constants to be determined, the overbar denotes an

average over the 1000 realizations, and e is a random residual error.

The variance is assumed to be inversely proportional to N. Note that

(p.7) implies that the errors are multiplicative (i.e., have

magnitudes proportional to the fitted values), which indeed appears to

be a feature of the data. The constants are determined by linear

least-squares analysis after logarithms of both sides of (p.7) have

been taken.

.3 Results

Table 40 presents sample means and variances for T as a function

of sample size for the 10 generating processes listed in Table 39. For

the smaller sample sizes, some tendency toward negative bias of the

sample means is evident, particularly for larger T0 values. This

is in agreement with the result of Trenberth (1984). The bias

steadily decreases with increasing N, however, and appears to be

negligible for the larger sample sizes. The estimator (p.5) appears

therefore to be asymptotically unbiased.

Figures 36 and 37 present histograms of T estimates, scaled to

standard normal form (i.e., values minus sample means and divided by

sample standard deviations), for autoregressive models 4 and 7,

respectively. Panel (a) is for N = 100 and panel (b) is for N = 1000

in each case. also shown in these figures for comparison is the

standard Gaussian density. These figures illustrate that for the

smaller values of N, the sampling distribution of T0 is distinctly

non-normal, with moderately strong positive skewness. For the larger
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Table 40. Theoretical T0 values, and respective sample means and
variances as a function of sample size, N, for the ten

autoregressive models.

Model T I V(T) N

0 0 0

1.667 1.666 .011 2000

1.662 .024 1000

1.671 .039 600
1.657 .074 300
1.646 .112 200
1.597 .242 100

1.670 .596 70

1.672 .995 50

2 2.333 2.334 .014 2000
2.323 .026 1000

2.336 .045 600
2.312 .082 300
2.299 .135 200
2.269 .274 100

2.241 .403 70

2.227 .593 50

3 2.858 2.854 .075 2000

2.738 .179 1000

2.624 .268 600

2.712 .456 300

2.760 .572 200
2.781 .711 100

2. 772 . 998 70

2.745 1.510 50

4 3.250 3.251 .075 2000
3.242 .170 1000

3.198 .264 600
3.124 .687 300
2.899 .999 200
2.776 1.612 100

2.812 2.915 70

2.821 4.328 50

5 4.457 4.421 .179 2000

4.240 .460 1000

4.046 .625 600

3.946 1.054 300

3.823 1.341 200

3.978 3.356 100

4.025 4.948 70

4.219 7.262 50



Table 40, continued.

A A A
Model I I V(T) N

0 0 0

6 5.571 5.558 .174 2000
5.530 .346 1000

5.507 .619 600

5.396 1.115 300

5.325 1.799 200

5.219 5.657 100

5.595 12.840 70

5.824 20.550 50

7 7.333 7.279 .328 2000
7.298 .650 1000

7.153 1.267 600
7.396 3.729 300
7.777 6.323 200
7.967 11.060 100

7.858 14.210 70
7.414 18. 370 50

8 8.788 8.677 .889 2000
8.384 1.875 1000

8.278 3.042 600

8.198 4.165 300

8.000 5.194 200
7.768 8.286 100

7.288 10. 790 70

7.136 14.300 50

9 12.250 12. 130 1.025 2000
12.060 1.971 1000
11.850 3.186 600

11.680 5.747 300

11.370 8.897 200
10. 510 13. 730 100

9.807 18. 730 70

9.289 24. 100 50

10 18.240 18. 030 2.706 2000
17.780 4.745 1000

17.620 8.059 600
16. 720 14. 710 300
15.840 19. 200 200
14.470 30.860 100

13.040 38.440 70

11.980 44.110 50
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sample sizes, however, these distributions appear to be approximately

Gaussian. This general impression is supported by the data in Table

41, which indicate proportions of the estimates lying beyond ±1.960

and ±2.576 standard deviations (the two-tailed 5%- and 1%-points for

the normal distribution, respectively). Positive skewness of the

sampling distributions for smaller N is evident here also, as well as

the tendency to converge toward Gaussian distributions as sample sizes

increase.

The best linear least-squares fit of the Monte-Carlo data to the

transformed (p.7) is

log EV(T )] = 2.47 + 2.24 log IT ] 1.03 log EN] , (f.8)

0 (.246) (.070) o (.039)

where the numbers in parentheses below the parameter estimates

indicate standard errors and log denotes natural logarithm. The

coefficient of the last term in (L8) is evidently not significantly

different from unity, indicating that V(T0) may indeed be regarded as

inversely proportional to sample size, as assumed in (p.7). The

resulting values for and B in (I.7) are 11.8 and 2.2, respectively.

Estimates of V(10) using this relationship are plotted in Figure 38

for selected values of N, together with the corresponding data points.

The degree of fit is good (R2 = 0.956 over all the transformed data),

and deviations from the regression lines do indeed appear to increase

w2th higher values of the predictand (note log scale on the ordinate).
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Table 41. Proportion of standardized T values in the tail regions
of the empirical distribution functions corresponding to
one-tailed tests at the 0.5%- and 2.5%-levels.

Proportion of Standardized Data Values

Model N ( -2.576 -1.960 > +1.960 ) +2.576

2000 .006 .020 .027 .011

1000 .000 .014 .040 .012

600 .001 .012 .038 .014

300 .000 .006 .037 .014

200 .000 .006 .036 .011

100 .001 .008 .038 .015

70 .000 .000 .034 .023

50 .000 .001 .058 .034

2 2000 .005 .020 .030 .007

1000 .001 .019 .026 .009

600 .003 .015 .033 .007

300 .004 .015 .033 .008

200 .002 .014 .041 .013

100 .000 .005 .040 .014

70 .000 .010 .042 .022

50 .000 .013 .036 .015

3 2000 .008 .033 .029 .007

1000 .001 .005 .024 .006

600 .000 .001 .034 .013

300 .000 .005 .020 .009

200 .000 .006 .021 .005

100 .001 .012 .027 .010

70 .000 .006 .033 .012

50 .000 .000 .039 .016

4 2000 .002 .020 .027 .006

1000 .001 .020 .029 .008

600 .002 .024 .029 .008

300 .000 .005 .039 .014

200 .000 .000 .043 .016

100 .000 .000 .052 .018

70 .000 .000 .044 .026

50 .000 .000 .032 .015

5 2000 .012 .034 .022 .008

1000 .000 .011 .022 .005

600 .000 .003 .038 .011

300 .000 .000 .047 .025

200 .000 .001 .047 .028

100 .000 .000 .056 .024

70 .000 .000 .059 .023

50 .000 .000 .046 .024
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Table 41, continued.

Proportion of Standardized Data Values

Model N ( -2.576 ( -1.960 > +1.960 2.576

6 2000 .002 .020 .031 .008

1000 .000 .017 .031 .016

600 .003 .009 .033 .010

300 .000 .011 .037 .012

200 .000 .006 .036 .016

100 .001 .002 .037 .022

70 .001 .001 .053 .029

50 .002 .002 .051 .028

7 2000 .000 .018 .029 .008

1000 .002 .013 .028 .008

600 .000 .008 .032 .014

300 .000 .003 .053 .023

200 .000 .000 .043 .014

100 .000 .001 .039 .014

70 .000 .000 .041 .017

50 .000 .000 .037 .019

8 2000 .005 .023 .025 .009

1000 .003 .018 .023 .004

600 .000 .005 .032 .009

300 .000 .011 .031 .006

200 .000 .011 .027 .014

100 .000 .002 .039 .015

70 .000 .000 .036 .015

50 .000 .000 .052 .027

9 2000 .000 .015 .033 .011

1000 .004 .017 .028 .007

600 .001 .013 .033 .014

300 .000 .010 .037 .008

200 .000 .007 .045 .012

100 .000 .002 .048 .014

70 .000 .001 .046 .019

50 .000 .000 .059 .024

10 2000 .004 .023 .022 .007

1000 .003 .019 .027 .011

600 .001 .016 .031 .008

300 .001 .017 .030 .004

200 .000 .006 .033 .011

100 .000 .002 .038 .014

70 .000 .000 .044 .022

50 .000 .001 .054 .030
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.4 Concluding Remarks

The present results indicate that estimates of T0 calculated

according to (p.5) are asymptotically normally distributed. This

result may be viewed as a consequence of the central limit theorem,

since the statistic is a linear combination of sample autocorrelation

estimates which are themselves asymptotically normally distributed

(Hannan and Heyde, 1972). However, the sample size must be fairly

large, perhaps on the order of 1000, for the sampling distribution of

A
To to well approximate the Gaussian distribution.

Other important results include the fact that the sampling

A
distribution of T appears to be asymptotically unbiased, and that

its variance may be well represented as a simple nonlinear function of

its mean. It is therefore possible to perform formal statistical

procedures (for example, confidence statements concerning mean values,

or approximate tests of equality of T for two time series) by

making use of the approximation to the normal distribution given time

series of adequate length. This procedure would be appropriate, for

example, when dealing with daily data from a 30-year record stratified

by month or season.

For smaller sample sizes the Chebyshev inequality (e.g.,

Lindgren, 1976) can be used together with (B) for formal testing or to

aid qualitative judgments. The present results indicate that,

particularly for small samples and large estimates of T, caution in

the interpretation of differences in this statistic is warranted.
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PPENDIX B

f Meteoroloically-Based Formulation

of fbsorption and Runoff of Daily Rainfall

B.1. Introduction

Runoff of rainwater from soil surfaces occurs when rainfall

intensity exceeds the absorption capacity of the soil. Estimation of

the proportion of rainfall which runs off, as a function of rainfall

amount and soil properties, is desirable for many purposes. These

include estimation of water available to crops, watershed yield, and

soil loss due to erosion.

Most frequently precipitation data are available only as daily

accumulations. However, drastic variations in precipitation intensity

occur on much shorter time scales (e.Q., Bodtmann and Ruthroff, 1976;

Brown et al., 1985), and it is during periods of greatest

precipitation intensity that most runoff occurs (e.g., Stallirigs,

1957).

The purpose of this note is to develop a method forestimation of

absorption and runoff based on the statistical characteristics of

point rainfall intensity, which can be applied using relatively coarse

(i.e., daily) precipitation data.
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B.2. Development

It is assumed that the instantaneous rate of rainfall may be

regarded as an exponentially distributed random variable. That is,

that the probability density function for instantaneous rainfall rate,

r, is given by

1 -r

f(r) = exp [ J , r ) 0, (B.1)

31 31

where i is a scaling constant. This formulation is consistent with

observations of rainfall accumulated over short time periods (e.g.,

Bodtmann and Ruthroff, 1976; Brown et al., 1985; Drufuca, 1977; Huff,

1967; Jones and Simms, 1978) in that it implies that a large

proportion of total rainfall occurs over relatively short durations,

and therefore at high intensities. This is evidently a consequence of

the concentration of the most intense convective activity in

relatively small-scale regions, even within synoptic-scale storms

(e.g., flustin and Houze, 1972; Hobbs and Locatelli, 1978; Houze et

al., 1976).

The parameter j.x in (B.1) is the mean of the distribution, and

represents the average rainfall rate over the day. Its numerical

value (in mm/hour) therefore depends on total daily rainfall (in mm),

P, according to

p = P / 24 (B. 2)

Let f, be the maximum (instantaneous) rate at which a soil can

absorb rainfall, with units of mm/hour. So long as rainfall intensity
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is below this threshold, all precipitation will be absorbed and no

runoff will occur. This will be the case during the proportion of the

day given by

max

D
f

f(r) dr

full
0

max
1 -r

exp C ] dr

J p p

0

max

= 1 - exp C ] . (B. 3)

p

The probability-weighted (i.e., statistically expected) absorption

rate during this time is given by the conditional expectation

max

= r f(rtr< ) dr

full J max

0

max
r -r

= j

exp C ] dr

J pD p
0 full

max

= { p ( + p ) exp C 3 } / D , (8. 4)

max p full
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since the probability that r is less than fL is equal to D,01.

Similarly, that proportion of the day for which the precipitation

rate exceeds the absorption capacity of the soil is given by

D = f(r) dr

part J

p

max
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Runoff is of course given by P J.

B.3. Examples and Discussion

The relationship between daily rainfall, P, and water absorbed,

W, given by (B.8) and (B.2) is illustrated in Figure 39. Curves for

five values of representing typical values for very

fine-textured to very coarse-textured soils (Hillel, 1971) are shown.

s precipitation increases, absorption approaches a limit which

depends on ci.1,. For P less than approximately 5 mm full absorption

is specified, and no runoff occurs for even very slowly permeable

(1) soils. For highly permeable (.a.20) soils runoff is not

specified unless P is greater than about 50 mm.

The specifications of the present method are similar to those

derived from the more cumbersome traditional method of calculating

rainfall absorption (Soil Conservation Service, 1972), which is based

on empirical 'rainfa1l/runoff" data from small watersheds and is

oriented primarily toward prediction of streamflow. The present

formulation has the advantages of being based on a single continuously

variable parameter that directly influences absorption, P.., and

gives explicit consideration to the nature of variations in

precipitation rate during a given day. 1lso, extension of the method

for use with rainfall data accumulated over shorter periods (e.g.,

hourly) is immediate.

Incorporation of the present formulation into soil water balance

models would be straightforward, and could be done at various levels

of sophistication. The parameter .. can be considered constant for
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a particular soil depending, for example, on soil texture and slope.

Alternatively, it could be made to vary dynamically as a function of

such variables as soil water content or leaf area index.

A more faithful representation of the instantaneous rainfall rate

might result if (B.l) were replaced by a more complicated probability

density function, such as the Chi-square or two-parameter gamma.

These distributions would allow the possibility of low probabilities

of small precipitation intensities, although at a higher computational

expense. It is doubtful that the overall specification of rainfall

absorption would be much improved, however, since the essential

feature of precipitation intensity influencing runoff and absorption

is the strong positive skewness of the distribution, which is well

represented in (B.1).
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