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Abstract

The degenerate nature of the metric on null hypersurfaces makes it difficult to define
a covariant derivative on null submanifolds. Recent approaches using decomposition
to define a covariant derivative on null hypersurfaces are investigated, with examples
demonstrating the limitations of the methods. Motivated by Geroch’s work on asymp-
totically flat spacetimes, conformal transformations are used to construct a covariant
derivative on null hypersurfaces, and a condition on the Ricci tensor is given to deter-
mine when this construction can be used. Several examples are given, including the
construction of a covariant derivative operator for the class of spherically symmetric
hypersurfaces.

1 Introduction

Given a null submanifold of a Lorentzian spacetime, is it possible to define a preferred
torsion-free, metric-compatible covariant derivative? Is it possible to determine, a priori,
when such a connection can be found?

One place where the need for a such a derivative arises is in the study of asymptotically
flat spacetimes. According to Geroch [2]:

In the null case, one has no unique derivative operator, and so one works more
with Lie and exterior derivatives, and with other differential concomitants. As
a general rule, it is considerably more difficult in the null case to write down
formulae which say what one wants to say.

Geroch’s treatment of the null boundaries of asymptotically flat spacetimes [2] motivates the
techniques used here to find a preferred derivative operator on (some) null submanifolds.
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We briefly review traditional approaches to this problem in Section 2] and summarize
the relevant parts of Geroch’s construction of a null asymptotic boundary in Section [3l
Section M] establishes an existence condition, showing when the Geroch construction can be
used to construct a preferred covariant derivative on a given null submanifold, and Section
then gives a simpler condition on the Ricci tensor for determining when this construction is
possible. We present several examples in Section [6] including the horizon of the Schwarzschild
geometry, and discuss our results in Section [7

2 'Traditional Approaches

2.1 Gauss decomposition

Let (M, g) be a spacetime, that is a manofild M together with a nondegenerate metric g of
Lorentzian signature. If (3, ¢) is a submanifold of (M, g) given by ¢ : ¥ — M, and if ¢ = p*g
is a nondegenerate metric on ¥, then a connection V on M induces a natural connection D
on Y. A traditional approach to defining this connection is to split T'M into the direct sum

T™M =TY @ T, (1)

where 7Y+ is the orthogonal complement of 7% in T'M.

For X, Y € I'(T'M), VxY can be separated on X into tangential and orthogonal compo-
nents of T'M which define the induced connection, Dy Y, and the second fundamental form,
I1(X,Y). Explicitly, we have

DxY = (Vy V)l (2)
II(X,Y)=(VxY) =VxY — DyxY. (3)

If V is the Levi-Civita connection on M, then D turns out to be the Levi-Civita connection

on Y. The decomposition
VxY =DxY +I1I(X,Y) (4)

is called Gauss’ formula [4].

2.2 Duggal decomposition

Difficulties arise when the metric ¢, on X, is degenerate. Furthermore, if 3. is lightlike, T'M
cannot be decomposed into the direct sum of TS and TX*, since there are vectors in T'%
that are also in TS+, as well as vectors that are in neither space. Despite these difficulties,
Duggal and Bejancu [3] (henceforth referred to as Duggal) introduced a decomposition that
produces equations similar to the Gauss formula (), as we now describe.

Given a lightlike submanifold ¥ of M with tangent space T'X, the goal is to create
a decomposition of TM by producing a vector bundle similar to TS*. Choose a screen
manifold Ser(TY) C T'Y such that

T = Ser(TY) @ TS . (5)
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Given a screen manifold, Scr(T'Y), Duggal proves the existence of a unique complemen-
tary vector bundle, tr(T'%), to T'Y, called the lightlike transversal vector bundle of ¥ with
respect to Ser(T).

Theorem 1 (Duggal). Let (3, q, Ser(T%)) be a lightlike hypersurface of a Lorentzian man-
ifold (M, g). Then there ezists a unique vector bundle tr(TYX) C TM, of rank 1 over X3, such
that for any nonzero & € I'(TY1) there exists a unique N € T'(tr(TX)) such that

N-£=-1, N-N=0, N-W =0VW € Ser(TY). (6)

Thus, tr(T%¥) L Ser(T%) and since tr(TY) is 1—dimensional, I'(tr(TX)) = Span(N).
By construction we have tr(7T%) N7 = {0} and have decomposed T'M to

TM = Ser(TY) & (TS @ tr(TX) =TS @ tr(TY) (7)

where T'M is restricted to X.
We can use ([7) to decompose the connection V on M as follows. Let X, Y € I'(T'Y) and
V e I'(tr(X)). Then, since tr(TX) has rank 1, we can write

VxY =DxY+B(X,)Y)N (8)
VxV =—-Ay X +7(X)N, 9)
where Dx Y, Ay X € I'(T'Y). Equation (8) can be thought of as the Gauss formula for the
lightlike hypersurface and () as the lightlike Weingarten formula. Under this decomposition,

Dx Y is a connection on ¥, but, as discussed in Duggal [3], this connection is not, in general,
metric-compatible.

2.3 Example
To investigate the Duggal decomposition, consider the line element

ds® = —2du dv + q;; dz’ da’ (10)
Choose a screen Scr(TY) = Span ({X1, Xs}) by setting

Xk ==
T oah
where £ =7 % € I(TX4) and ay is a function of v, 2! and z2. All possible screens can be
obtained by choosing different . For N € I'(tr(TX)) satisfying Theorem [l the vectors
{£, X1, Xo, N} form a basis for I'(T'M). As shown in Duggal [3], the covariant derivatives
take the form

+ai € (11)

Vx, Xi=17"5 €+ v* i X+ By N (12a)
Vi, € =70 € +7" 0 X (12b)
VeXi =70 +7" 0 Xy (12¢)

Vel = 70 00§ (12d)



and

Vx, N=-A"; Xp + ;N (13a)
VeN=—-A" X+ 7N (13b)

Duggal defines the last term in equation ([I2al) to be the second fundamental form,
II(X,Y)=B(X,Y)N (14)

Thus, equations (I2al)-([12d) decompose V to a form similar to Gauss’ formula (§). Once
the coefficients in (I2a)-(12d)) are known, a connection D on ¥ has been constructed. The
properties of the Levi-Civita connection V on ¥ can be used to show that

P = 2 ¢ (X (an) + Xilans) — Xila) (150)
~° ij = —Gik Akj (15b)
7o = —T; (15¢)
o = 59 €(9) (154)
00 = =70 (15e)

By = 5 €(0) (15%)

and the induced covariant derivative on 7% becomes

Dy, Xi=7"34 &+ ¥ i; X (16a)
Dx, & =7"0; &+ 7" 0; X (16b)
De X =% 0 &+ " i0 X (16¢)

De&=7"00& (16d)

2.4 Uniqueness

In general, the above construction of the induced covariant derivative D depends on the
choice of screen, that is, on the choice of X;. However, Duggal further proves that under
certain conditions there is a unique induced connection on 3.

Theorem 2 (Duggal). Let (X, q, Ser(T%)) be a lightlike hypersurface of (M, g). Then the
induced connection D is unique, that is, D is independent of Scr(TY), if and only if the
second fundamental form Il wvanishes identically on ¥. Furthermore, in this case, D is
torsion free and metric compatible.

Theorem [2] implies that if B;; # 0, or equivalently, £(g;;) # 0 for all 4, j, then there is a
need for a new method to define a covariant derivative on .



Returning to our example ([I0), if the 2-metric ¢;; is that of a plane, that is, if we consider
a null plane ¥ = {u = 0} in Minkowski space M* in null rectangular coordinates with line
element

ds®> = —2dudv + da® + dy?, (17)

then it is straightforward to show that B;; = 0, so that we obtain a unique connection on X
regardless of the screen chosen. It is a useful exercise to check this explicitly, using

g 0 o 0 9,
Xi=a-+ =, X2_B%+8_y’ 5—77%

ov  Ox (18)

with arbitrary «, 3, n, which implies
1 /0 o+ 5%\ 0 0 0

However, if the 2-metric ¢;; is that of a sphere, that is, if we consider a null cone ¥ =
{u = 0} in Minkowski space M? in null spherical coordinates with line element

ds®* = —2dudv + r*df? + r* sin® 0 dp? (20)

with r = (v — u)/v/2, then Bj;; # 0, since g;; depends on r. Thus, Duggal’s construction
using the screen distribution and transversal vector bundle does not yield a preferred, metric-
compatible, torsion-free connection on the null cone.

An alternate construction will be developed in this paper.

2.5 Connections via the Pullback

Another possible way to construct a connection on a submanifold is to use pullbacks. Al-
though this method often fails, we will show in subsequent sections that a modified version
of this method has wide applicability.

Let ¥ be a submanifold of M* with ¢ : ¥ — M* an embedding of ¥ into M*. If w, is
a 1-form on M?*, its pullback p* w, is a 1-form on X. We can therefore attempt to define a
covariant derivative D on ¥ by pulling back the covariant derivative operator V on M?, that
is, we seek an operator D satisfying

Do(p wy) = 9" (Vawp). (21)

We adopt a less formal notation, and write Wy instead of ¢*w, for the pullback of wy
to 2. With this new notation, the pullback of the covariant derivative is written

D = . 22
a'%ﬂ) va'wb ( )

It is easily checked that the Duggal connection on a null plane in Minkowski space, as
defined in Section and shown to be unique in Section 24 also satisfies (22]), and is in
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fact uniquely defined by this condition. In general, however, (22]) alone is not enough to
determine a well-defined covariant derivative D on .
The problem is that there are many 1-forms w with the same pullback w; for D to be

well-defined on ¥, it must not depend on this choice. If ¥ = {u = 0}, then

wH fdu=w (23)
since du = 0. Thus, ([22) will be well-defined if (and only if)
Vydu=0 (24)

for all X € I(TY).
As an example, consider the null cone in Minkowski space given by v =t —r = 0. Then

deU = det — de’f’ 7& 0 (25)

since Vxdt = 0 but Vxdr # 0. Thus, the pullback method fails on the null cone.
—— ———

In terms of coordinates {z'} on the surface ¥ = {u = 0}, extended to a neighborhood
of ¥, it is easily seen that condition (22]) for the existence of a well-defined pullback connection
is equivalent to the vanishing of the appropriate Christoffel symbols, namely

In the case of the null cone, we have

u v—u 1

o = — 2 __T_sinze

The simple dependence of these terms on r suggests a possible strategy: remove the r-

dependence by rescaling the line element by r2, after which these Christoffel symbols will
vanish, and a well-defined covariant derivative can be defined.

We implement this strategy in the remainder of the paper

I™ 4o (27)

3 Asymptotically Flat Spacetimes

There is a well-known context in general relativity for studying a null submanifold, namely
the construction of null infinity for an asymptotically flat spacetime. Since much of that
construction will be useful in our more general context, we briefly review it here. Our
presentation follows the classic 1976 paper of Geroch [2].

An asymptote of a spacetime (M , gap) 1s a manifold M with boundary .#, together with
a smooth Lorentzian metric gq, on M, a smooth function 2 on M, and a diffeomorphism by
means of which we identify M and M — .#, satisfying the following conditions:

1. On Ma Gab = 02 gab;
2. On ., 0 =0, V,Q#0, and g?*(V,Q)(V,Q) = 0,

where V, denotes covariant differentiation on M.
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The Ricci curvature tensors of the conformally related metrics g, and g, are related by

Ry = Rap+ (s —2) Q7' VoV, Q0+ Q7 g V"V, Q
— (s =1) Q% gap (V") (Vi Q) (28)

where s is the dimension of M.
We introduce the normal vector field

n® = ¢** V;,Q = V°Q (29)
and compute
£n Gab = 2 vavbQ (30)

Following Geroch [2], we assume that the physical stress-energy tensor vanishes asymptoti-
cally to order 2, that is, we assume that Q_2§“b admits a smooth extension to .#, which in
turn implies that QR is zero on .. [ As shown by Geroch [2], we can then use the gauge
freedom in the choice of 2 to ensure that the pullback to .# of the RHS of (B0]) vanishes.
Explicitly, by solving the ordinary differential equation

1
nVelnw = s Y (31)

along each integral curve of n® on ., where L) = gV, V, Q is the d’Alembertian, and
setting €2 = wf), so that

Gab (.U2 Gab (32)
nt = win® (33)
then
£ﬁ_ == 0 34
gab ( )

Thus, given an asymptotically flat spacetime satisfying the original Geroch conditions,
one can assume without loss of generality that n is in fact a Killing vector field.

A divergence-free conformal frame (gap, n°) satisfying ([B34) (where we have dropped the
bars) has an additional property: the pullback connection is well-defined on the null sub-
manifold .#. To see this, we set

Gab = Gab (35)

and note that
£nQ¢1b - £ngab = 2vanb~ (36)

Setting u = €2, the 1-form ny is just du, so that
(£ g)ij = —2I"y;. (37)

and the result now follows by comparison with (26]).

'We will weaken this assumption below, which will affect the numerical factor in (3.
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4 Covariant Derivatives on Null Submanifolds

We now adapt the results from the previous section for asymptotically flat spacetimes to
more general null submanifolds.

Recall that a vector field v® is Killing if £,94 = 0. Given a null surface, our first result
is that if the normal vector is Killing, then there is a well-defined covariant derivative on X.
Following Geroch, we then consider the conditions under which a conformally related metrics
admits a well-defined covariant derivative. When appropriate conditions are satisfied, we
further propose that the resulting notion of covariant derivative be regarded as the natural
choice on the null submanifold.

Lemma 1 (Covariant Derivative on X). Let ¥ = {u = 0} be a null submanifold of a given
spacetime (M ,gap), let ng = Vau, and let qqu be the induced degenerate metric on %, as

in BB). If £.q0 = 0 on X, then the connection defined by the pullback, as in [22), is
well-defined.

Proof. Let wy, be any 1-form on the surface ¥. We would like to define a covariant derivative
using the pullback, D, w, = V, W, where W is a 1-form on M such that Kb = wy, but we

must show that this is well defined.
On X, @ = 0, since ny dz® = du. Let V, = W}, + kny where k is any function. Vj is the
most general 1-form with the same pullback as W5,

ﬁzﬂ(_fbjtlﬂ,:wwro. (38)
Consider the pullback of the derivative of V,, — W},
va (‘/b - Wb) = va (k nb)

- () s (Ren)

= Sklug (£ntw) =0 (39)

[\]

by assumption, where we have used (36]) in the penultimate equality. a

Lemma 2 (Conformal Killing Vector). With ¥, n®, and qu as above, if £,qu = f qap, then
there exists a unique conformal factor w, up to a constant factor, such that £7q,, =0, with

n® and G, as in [B3).

Proof. This is essentially the same as the result in Geroch [2] quoted above, and the proof
is similar. We have

£ﬁ% = n° chab + gcb thﬁc + gac Vbﬁc
= w'n V. (W gaw) + W’ gy Va4 (w_l nc) + w? Goe Vi (w_l nc)
= n° (2(Vew) gab — 9eb Vaw — Gae Vow) + w £y, Gap- (40)



and pulling both sides back to ¥ results in

2(nc Vcw) Gab = —W .f Qab- (41)
Letting w = n® V. w the equation simplifies to

w
w

! (12)

This ordinary differential equation will have a unique solution, up to a constant factor, along
each integral curve of n®, yielding an w such that the conformal transformation will result
in £7q, = 0. O

These two lemmas immediately yield the following result:

Theorem 3 (Covariant Derivative with conformal transformation). With 3, n®, and q. as
above, if £,qm = fquw on X, then the conformal pullback method produces a well-defined
covariant deriwative, D, on 3.

Proof. Since £y,¢ap, = [ qap, Lemma [2] gives an w such that under the conformal transforma-
tion £7Ge = 0. Now by Lemma [I], define the covariant derivative by D = z O

It is straightforward to verify that all of the examples considered so far satisfy the con-
ditions in Theorem [8l The most interesting case is the null cone (20)), for which

2
£n Gab = ; dab (43)

Substituting f = 2/v into (42]) gives the ordinary differential equation
v 10w

w 1
bl 44
w  wowv v (44)
with solution c
= - 45
w=" (45)
where ¢ is a constant. But Y Y
1 2 2
- = = (46)
Tlyeo U —Ul,_p v

and we see that rescaling the line element by 1/7? leads to a well-defined covariant derivative,
as previously conjectured.

It is worth noting that if we regard the null cone as the unphysical space in Geroch’s
construction, then the corresponding “physical” stress-energy tensor only vanishes asymp-
totically to order 1, so that the derivation of (31) fails, although a similar result still holds,
with a different constant of proportionality. We show in the next section that a weaker
condition on the stress-energy tensor is indeed sufficient for the argument used here to work.



5 Ricci Tensor

The techniques adapted from Geroch’s work on asymptotically flat spacetimes have addressed
the fundamental question: What are the conditions on a null surface needed to construct a
well-defined covariant derivative? Either a Killing normal vector, £,,q., = 0, or a conformal
Killing vector, £,9. = f qu, combined with a conformal transformation leads to a well-
defined covariant derivative on a null surface ¥ using the pullback method.

One of the drawbacks of this construction is that the Lie derivative of the metric must
first be computed on M and then pulled back to ¥ to test the hypotheses of the theorems.
If the hypotheses are met, we return to M, perform a conformal transformation if needed,
compute V, then pull this derivative back to ¥, giving D. It would be nice if there was a
test to tell if the pullback led to a well-defined covariant derivative on ¥ and if a conformal
transformation is required before pulling V back to ¥. Again the work of Geroch leads to
precisely such a condition

Theorem 4 (Ricci Tensor and Covariant Derivative on X). Given a spacetime (M, gap)
containing a null surface ¥ = {u = 0}, then if (Rab — Eab> =k qup , where Gop = Q72 gap,

Q) = u, and where Ry, and éab are the Ricci tensors of gay, and ga, respectively, then the
conformal pullback method leads to a well-defined connection on X.

Proof. From (28) and (30),

- —9 1
QRup = QRap+ == £afas + 9V "Vl = =9 (V")(Vil).  (47)
Taking the trace of (28)) (using the metric g) yields
| R R — 1 _o-1p
) (V") (Vi Q)) = . V"'V + - (QR— Q" R) (48)

thus showing that the LHS admits a smooth limit to 3 (since the last term on the RHS does
by assumption). Setting 2 = v in ([47)) and using (48]) and our hypotheses yields

2k 2 2 ~
Lolap = £nfap = | ——— + V"V, Q0+ ——OQ7 'R a 49
ab = Znfab < s—2+s +s(s—2) ) _qu (49)
Theorem Bl now implies that there is a covariant derivative D on Y. O

While the above derivation can be found in Geroch [2], the interpretation is quite different.
We start with a metric g, a null surface ¥ = {u = 0} and a conformal factor defined by
) = u. In the sense of Geroch, we are creating an artificial “physical” space (]TJ/ , Jap) in order
to determine if the pullback method will result in a well-defined covariant derivative. In the
Geroch approach, the boundary at null infinity was separated from M by the conformal
transformation in order to define some structure of the null surface. In our approach, one
begins with the null surface and uses the “physical” space to define the covariant derivative.
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6 Further Examples

The Schwarzschild metric in double-null Kruskal-Szekeres coordinates is given by

32 m?

ds® = e”"?™ du dv + 2 d6* + r? sin® 0 d¢? (50)
r
where r is given implicitly by
r
= (1= _) 7’/2m‘ 51
w ( 2m c (51

The Schwarzschild metric is a vacuum solution of Einstein’s equation, so the Ricci tensor van-
ishes. Considering the horizon at u = 0 and using (28]) with 2 = u, the relevant components
of the conformally related Ricci tensor are given by

R, = 0 (52a)
Ry = — (52b)
m
~ - L . 9
Ryy = — sin 0 (52¢)
and we have ~ _
Q (Rab - Rab) =U (Rab — Rab) = O, (53)

trivially satisfying the necessary conditions of Theorem [l Straightforward computation
verifies that the pullback connection constructed from the conformally related metric
~2 32m?

ds = 3 e™"2™ du dv + df* + sin® 0 d¢?. (54)

is well-defined, and can therefore be used on the horizon.
More generally, a spherically symmetric space times has a line element of the form

ds* = hdudv + r* d6* + r? sin® 0 dp* (55)

where h and r are both functions of the null coordinates u and v. As in previous examples,
the null surface is chosen to be ¥ = {u = 0}. The nonzero components of the Ricci tensor
are

2 (g -0 22)

ou? u Ou
Ruu = - i hr o0 (563“)
Oh Oh 92h 2 9%r
_T%%_h 8v8u_2h v du
Ry = o0 (56D)
2 (h5— 32)
R,, = — 56
e (56¢)
ArZr —h+all
R@g — _ Ov Ou - ov du (56d)
(47" 6?)ng —h +4%%> sin? 6
Rys = — (56e)

h
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Setting 2 = wu, and again using (28], the conformally related Ricci tensor has nonzero
components

2
2 (—uh%—rah—l—u@&)

~ du ou Ou
Ry, = — (57a)
Oh Oh 9%h ar 9%r
uv T uh27” ( )
va:_ 2 n i (570)
r
~ Aur 2o —yh+4u2d gy
R60 - Ov du — v Ju v (57d)
_ (4ura‘?}2{;’u—uh+4u%%—8r%> sin”
Ryp = — " (57e)

Computing the pullback of Q(R,, — ﬁab) =u(Rgp — Eab), the relevant components are

u(va - évv) — 0 (583)

R —8r % —8 % 2
U(Rgg — R@g) — h = ( h r (58b)
u(Ryp — Ryp) — ——® gin?g = | —2 | 2 sin?6 (58c¢)

h rh

so that
~ -8 %

Q(Rap — Bap) = | 77— | a 59
W — B) (r(O, v) h(O,v)) ot (59)

Thus the conditions of Theorem Ml are satisfied. More importantly, the conformal transfor-
mation g,, = (w?) g With w = r(u,v) will yield £7g,, = 0, the condition needed to use the
pullback to produce a well-defined covariant derivative on ¥ = {u = 0}.

Again, straightforward computation verifies that the pullback connection constructed
from the conformally related metric is indeed well-defined on 3.

7 Summary

Due to the degenerate metric, working with null surfaces offers some very challenging obsta-
cles, since traditional tools such as Christoffel symbols are not defined. Gauss decomposition
fails, since there are non-zero null vectors both tangent and perpendicular to the hypersur-
face. The work of Duggal and Benjacu attempts to overcome this difficulty by defining a
screen manifold and a lightlike transversal vector bundle to decompose the manifold and the
null hypersurface. However, even with all of this structure, there are elementary examples,

12



such as the null cone, that do not satisfy the hypotheses necessary to produce a covariant
derivative independent of the screen.

An alternate construction uses the pullback to define the covariant derivative. Care must
be taken when using this technique, since the resulting derivative operator may not be well
defined; this technique will only work as long as the null vector field is a Killing vector field.

Motivated by the work of Geroch on asymptotically flat spacetimes, conformal transfor-
mations were used not only to give a well-defined derivative on null hypersurfaces, but also
to provide a test to determine whether the null surface admits such a definition.

Finally, the conformal pullback method was shown to work at the horizon of the Schwarz-
schild geometry, and more generally for any spherically symmetric spacetime.

Further work is needed to understand the implications of this construction. For example,
in the case of the null cone, the conformal transformation results in a null cylinder. What
does it mean to use the cone’s covariant derivative operator on a sphere? And are there
non-symmetric null surfaces on which this construction works?

Finally, we remark that there does not appear to be a similar technique for Riemannian
spaces, but since traditional Gauss decomposition works, this technique is not needed in that
case.
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