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.linic Instability in the Eastern North Pacific

Using a linear quasi-geostrophic model of large scale spiraling flow and vertical den-

sity gradient in the eastern North Pacific, we evaluate the complex dispersion relation-

ships for quasi-geostrophic waves. Our calculations indicate that the geostrophic circu-

lation of the eastern North Pacific can locally convert potential energy to mesoscale

kinetic energy on a scale comparable to the observed space and time scale and should

be a source of eddy energy, distant from the eddies spawned by the Kuroshio and near

the topographic features. But the local growth rates by linear stability analysis do not

relate to the observed features of eddy kinetic energy in the eastern ocean; eddy kinetic

energy increases to the south and has a maximum in the subtropical region.

The non-linear baroclinic instability is analyzed using a three-layer quasi-

geostrophic numerical model. Three experiments with different idealized initial mean

flow are performed. Local energetics are calculated to highlight the difference between

the southward return flow and westward return flow regions. It is found that the

boundary flux of mean to eddy kinetic energy conversion is the main differences

between two regions: it is large in the westward return flow region but is small in the

southward return flow region. Two waves with different characteristics are found: the

short waves (periods of 120 days), that propagate to the west and form several wave

trains parallel to the southern boundary, and the long waves (periods of 200 days),

that propagate to the south-west. These two waves are remarkably similar to the
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measurements of open ocean eddies at 28°N and 152°W. It is shown that there are high

eddy activities in the southward return flow regions by influxes of eddies from other

areas, but the southward return flow region is vacant in eddies by outflows of the west-

ward and south-westward propagating waves.
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1. Introduction

It was shown by many investigators (for example, Gill et al., 1974, Haidvogel and

Holland, 1978) that the eddies are generated by the baroclinic instability in the regions

of strong mean vertical shear. But the recent direct measurements (McNally et al.,

1983, Niiler and Reynolds, 1984 and Niiler et al., 1987) reveal that eddies are flourishing

in the regions of weak mean current, i.e. in the eastern ocean basin. And they also

show that the eddy kinetic energy increases to the south and has maximum in the sub-

tropical area.

A theoretical approaches toward understanding the spawning of mid-ocean eddies

were attempted by Schulman (1967), Robinson et al. (1974), Gill et al. (1974) and Kang

et al. (1982). They amply demonstrated the possibility of converting potential energy

into kinetic energy by mid-ocean baroclinic instability. But they did not show as much

detail for the realism of observed large scale flows for a particular ocean basin as to

allow comparison with observations of eddy fields.

In Chapter II, the complex dispersion relation of a linear three-level quasi-

geostrophic model with a non-zonal flow and lateral friction is computed and the pro-

perties of these waves are examined. The linear stability analyses of the continuous

model (34-level model) are also presented for comparison with the three-level results.

After examining the relationships between three-level and 34-level model results, it is

found that while a three-level model can realistically model two gravest stable baroc-

linic Rossby waves over a broad area of the eastern ocean basin, the wave characteris-

tics are quite different from each other.

But the linear growth rates computed from the linear stability analysis do not

match with the observed eddy kinetic energy distribution. For example the local

growth rate of the subpolar regions is the same as that of subtropical region, but the

eddy kinetic energy of the subpolar region is only one-third of that of subtropical

region at depth of 180 m (Niiler et al., 1987).
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The non-linear stability analysis is examined in Chapter III using a three-layer eddy

resolving general circulation model (EGCM). The EGCMs by Holland and Lin (1975),

Holland (1978) and Robinson et al. (1977) are only focused on the eddies generated by

the western boundary current because of the limits of the model size. The first numeri-

cal study which shows a band of high eddy kinetic energy on the westward return flow

of the subtropical gyre was done by Cox (1985) using a 18-level primitive equation

model. The characteristics of the subtropical eddies generated by his model agree well

with observation except that the periods are shorter than the observed periods due to

the large model mean flow (4.1 cm/s) compared to the observed mean flow (1 - 2 cm/s).

In this thesis, the three-layer quasi-geostrophic model focused on the eastern basin

which is far from the strong western boundary current is studied using a strong western

viscosity area. Each layer except the bottom layer is forced to maintain a devised initial

mean circulation in the absence of meso-scale motion. The waves are generated by

adding a small perturbation to the initial stream function. Thus the forcing function is

for maintaining the basic circulation rather than for spinning up the gyre from a

motionless ocean.

Three experiments are performed. The first experiment uses the mean flow of 1 - 2

cm/s and the second experiment uses the strong mean flow (3 - 4 cm/s) for examining

the effects of the growth rates. To show the effects of the south-westward propagating

waves more qualitatively, two long and thin box (north-southward and east-westward)

experiments are presented.
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1. Introduction

Using satellite tracked drifting buoys, McNally et al. (1983) showed that the kinetic energy

of the eastern north Pacific is about one half to one third of the western basins; the weakest

field is found in the subpolar Northeast Pacific. Niiler and Reynolds (1984) also showed,

using drifting buoy data, that there is an increase of eddy kinetic energy from subpolar

to subtropical areas in the Northeast Pacific, especially west of 160°W. Recently acquired

two year-long moored current meter data in the eastern North Pacific at 28°N, 152° WI and

40° N, 152°W reveal a similar picture throughout the water column from lOOm to 400Dm.

For example, the eddy kinetic energy per unit volume which has a period of 1-100 days

is 78.5 crn2/s2 at a depth of 69rn at 28°N, however it is 15.6 cm2/s2 at 8Dm in the same

period band at 42°N and the time scale of eddies are 10 - 15 days. The above three direct

kinetic energy measurements are shown on Figure 1.

Several questions about observed mid-ocean eddies now arise. Why is the mid-ocean

eddy field quite different in various regions? What are the dynamics which generate these

eddies and how do they grow to finite amplitude? Are vertical structures also different?

Are the different mean geostrophic flows also reflected in eddy fields?

A theoretical approach toward understanding the spawning of mid-ocean eddies was first

attempted by Schulman (1967) who computed the stability of a meridionally overturning

cell in a constant density gradient fluid with typical ocean parameters of mean flow; he

found unstable waves with a one year growth rate and wave length of several hundred

kilometers. But these waves (periods of 2-3 years) are of much longer time scale compared

with observed ocean mesoscale time scales. Robinson and McWilliams (1974) computed

the complex dispersion diagram of a two-layer quasi-geostrophic shear including bottom

topography and a-effects. When they evaluated this diagram in a shear of 5 cm/s (observed

eastern north Pacific shear are 1 - 2 cm/s), they found instabilities characterized by a two

month growth rate and a 200 - 300 Km wave length. Gill, Green and Simmons (1974) used



continuous vertical profiles of density and zonal velocity, typical of the North-Equatorial

Current area in the Atlantic, to compute the quasi-geostrophic unstable wave parameters.

They found most unstable waves with growth rates of a few months and wave lengths of a few

hundred kilometers. Their computations, however, ignore the fact that the north equatorial

current shear in the Atlantic has a strong meridional component above 200m (Keffer and

Niiler, 1982). Kang and Magaard (1979) solved quasi-geostrophic vorticity equations using

the observed continuous density profile and corresponding models of geostrophic zonal shear

of several Western North Pacific regions. They found the most unstable waves with a 1.1

year growth rate (periods of 395 days and 157 Km wave length) at 30°N latitude, near the

gyre center. Kang, Price and Magaard (1982) were the first to compute waves on a spiraling

shear instead of a zonal shear, and applied their limited analysis to the California Current

region (35°N, 132.5°W). They only discussed a single stable wave mode. In summary, a

variety of linear instability computations have been done for mid-ocean circulation patterns,

but not with as much detail for the realism of observed large scale flows for a particular

ocean basin as to allow comparison with observations of eddy fields in detail. However,

the possibility of converting potential energy to kinetic energy by mid-ocean baroclinic

instability has already been amply demonstrated.

Holland and Lin (1975) and Holland (1978) demonstrated how these eddies can be

generated and grow to finite amplitude, and they have constructed equilibrium energetics

using a two-layer eddy-resolving numerical model. However, their two-layer model was not

sufficient to resolve the important spiraling nature of the mid-ocean, and the small basin

size made their model more applicable to the western boundary current eddy problem.

Numerical experiments with higher vertical resolution by Robinson et al. (1977) also used

a small basin size which was not sufficient to model the eastern north Pacific, but did reveal

instabilities in the analogue to the North Equatorial Current. Schmitz and Holland (1982)

successfully compared the observed eddy kinetic energy in the bottom layers of Gulf stream
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area (near- the western boundary) with that calculated from the numerical model done by

Holland (1978), but they were unsuccessful in reproducing the eddy kinetic energy patterns

observed south of 20°N or in the upper layers. Using a primitive equation numerical model,

Cox (1985) showed the development of eddies with a 400 km wavelength and 50 days period

in the North Equatorial Current region. But their wave period is too short compared to

the observation (100 days), and also the horizontal resolution (44 km zonally) and model

size (6600 km from the western boundary) are not sufficient to describe the eastern North

Pacific eddies with wave lengths of 50 200 km. All above numerical models have lateral

friction for computational stability.

In this paper, we first compute the complex dispersion relationship of a three-level

quasi-geostrophic model with a non-zonal flow and lateral friction (AH 5 x 106cm2/s2)

and examine the properities of these waves with a three-level shear model of the northeast

Pacific. The reasons for initially selecting a three-level model are: i) According to the

computed geostrophic mean flow,, meridional velocities are of the same magnitude as zonal

velocities, so we cannot simply ignore the spiraling mean flow. A three-level model is the

simplest one which can represent a spiral. ii) Schmitz and Holland (1982) showed in their

comparison study of observed and modeled Gulf Stream mesoscale eriergetics that a two-

layer model was not sufficient to obtain appropriate observed shear parameters (for example,

to obtain a sufficient large Rossby number, defined by Holland (1978), R0 irr0/H1i32L3,

a very small upper layer depth is required). iii) We wish to compare the vertical resolution

criterion of resolving equivalent depths or Rossby radii suggested by FlierI(1978) by com-

puting complex diagrams of three-level vs 34-level model of eastern Pacific. In both models

the instabilities associated with meridional shear should be manifest. iv) Three-level results

are presented here because coarse vertical resolution numerical models are often used for

studying the mid-ocean eddy field and this calculation will form the basis of comparison



of the linear instabilities in the realistic three-level setting. After the examining the rela-

tionships between three-level and 34-level models, we found that while a three-level model

can realistically model two gravest stable baroclinic Rossby waves over a broad area of the

eastern Pacific, at least a six-level model is required for resolving the spiraling shear.

The baroclinic instability problem we discuss is not new in principle, but should be

applicable for mimicking the reality of the Northeast Pacific.

2. Equations

2.1 Governing equations

The equations for quasi-geostrophic perturbations on a two dimensional flow pattern are

found in Pedlosky (1979) and Kang et al. (1982). Following their derivation, the linearized

quasi-geostrophic potential vorticity equation and their boundary conditions are,

(U.k-a) { () - K}
{ -4 (;) -4 () } a = iAHKth,

(2.1)

a (i41 +i) = Oat z =0 and z = H. (2.2)

where the mean horizontal velocity vector U = (U,V). the wave number vector K =

(k,1), N is the Briint-Vãisãlã frequency, f is the Coriolis parameter, 8f/y and Ajj

is the horizontal eddy viscosity coefficient. The perturbation pressure from the basic state

Is

y, z, t) = Re {th(z)exp(i(kz ly at))} , (2.3)

and H is the bottom depth. Using variables

/3k

K'
kU +

K
IV

(2.4)

ac=



We can rewrite Eqs.(2.1) and (2.2) as

(U_c){'_(J)_K2cb} + = iAHK3q (2.5)

and

- dçb dU(U c) = 0 at z = 0 and z = H. (2.6)
dz dz

There are certain range of allowable phase speeds and growth rates for the spiral flow. An

estimate for the semi-circle in the complex c plane for inviscid flow can be obtained directly

using Pedlosky's (1979, pp447 451) formulation simply by substituting U for U and /3 for

/3 defined by Equation (2.4) and integrate from bottom to surface.

(Umaz_Umin"2 (Um Jmin > (cr_ Umaz+Umin2 2
(2.7)

2
) K2±()2\. 2 ) 2 )

2

Here we use LI because /3 can be a negative value depending upon wave numbers. If C is

real, then

Cr < or Cr > Umax (2.8)

Expressions (2.7) and (2.8) will be used to distinguish physically realizable solutions from

numerical solutions in Section. 7. Condition (2.8) is strictly applicable only for continuous

models. In any specific level model, it is usually possible to find a Cr where for a specific

resolution, i, condition (2.8) is violated and (U(z) Cr) does not vanish. However, as the

number of levels is increased, such solutions can become increasingly singular. Therefore, as

we have not found a case where (U(zj)cr) vanishes together with { (-)} at some

level, i, we consider all level solutions unphysical where cr,. lies within the range of U(z).

(See Pedlosky, 1979, for an analytical exception). Eady's model, which has two analytical

solutions, was used in testing this selection criterion with n-level model and comparing

n-numerical solutions with the two analytical solutions. A very effective screening of the

correct physical solutions resulted.
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2.2 N-level model equations

The finite-difference approximations of terms in Equation (2.2) are

= L_ (±i _i), (2.9)
dz N2dz gd Pj1Pj PiPi-1

and

f2p (U+1 L U,
(2 10

dz N2 dz Pi+i Pi Pi Pi_i)

where p0 is the average density and d is the level depth. Substitutions of (2.9) and (2.10)

into (2.5) produce a N-level equation. Then for I 1,ri

U1Fçb_1 + {U(F ± G + K2) + + F(U U_1) G(U+1 U)}c ± UG11

c{Fj_i (F H- G + K2) + L4K3, (2.11)

where

F= fPo
gd(p Pi-i)

C
gd(p1
Z2__1 Z_1

2

The boundary conditions are

10 (71-U0(Ujc)( )-
Z1Z,_, Z1Z0

and

T n±1ri Ln_.iUn
(Lic)(

)
ç/n 0.

Zn+1 Zn Zn.1 Zfl

Substituting (2.13) and (2.14) into (2.5) and (2.6), we obtain, for i 1

(2.12)

(2.13)

(2.14)

{U1(G1 + K2) 9 H-G1(U1 U2)}b1 ± fIIG1oO c{(Gi + K2)cbi H- G12} = iAHK3cl

(2.15)

and for i = 12,

{Un(Fn+K2)Fn(Un_Un_i)}+UnFnn_i_c{_(Fn+K2)n+Fncn_i} = IAHK3O

(2.16)



where

11

f2P0= and F = (2.17)
gdj(p2 pi) gd(p,2 Pni)

3. Numerical method

The N-level equations (2.11), (2.15) and (2.16) can be solved numerically using matrix

eigenvalue methods. We can write those three equations as a matrix form,

(A)flc51

)_c(B)fl) =0, (3.1)

where

= U(F + G, + K2) ± 3 ± U_1) G(U±1 U) ± IAHK3

=

F1 =0.

and

= = A111±i = 0,

=

= (Fi + G + K2),

B+1 = G,

B,_i = B1, = B,3i = 0,

F1 =0,

(3.2)

(3.3)

G=0. I
Using the IMSL mathematical computer library, we can obtain complex eigenvalues by the

iteration method.
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Computing the eigenvalues by iteration takes considerable computer time but it is prefer-

able to the shooting method, especially when there are more than one eigenvalue and ap-

proximate solutions cannot be obtained analytically. The velocity and density distributions

of the mean state as a function of depth are derived from the hydrographic data and these

do not lend to simple analytical equations.

4. Mean field.

According to the governing equations (2.11), the instability only depends upon the velocity

difference (U1Uj_1), so computation of the complex phase speed can be done using relative

geostrophic velocities.

as,

The geostrophic velocity at depth z is expressed in terms of the specific volume anomaly

-dz', (4.1)
f z, Y

vv0 dz', (4.2)
I

where z0 is the reference level and

S assOp, (4.3)

where c is a specific volume of sea water. The geostrophic velocities were computed using

gradients of specific volume anomalies from NODChydrographic data compiled from 1950

to 1976, in the area of 130° W - 1650 W and 20°N - 50° N.

The computation procedure is as follows : 1) Calculate the specific volume anomalies

at the standard depth of each station. 2) Divide the Northeast Pacific into 50
X 5° grids,

and calculate the gradients of specific volume anomalies at the standard depth using the

first order surface fitting method. 3) Integrate the gradients in depth and calculate the

geostrophic velocity with respect to 1500 m. 4) Based on the similarity of each grid's

hodographs with depth, combine the 50 < 5° grids into 7 typical regions. 5) Calculate
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geostrophic velocities of 7 typical regions with respect to 3000 m, using the same procedure

as described above. The geostrophic spirals for 7 regions are shown on Figure 2.

5. Choice of (z..pd) for the three-layer model

The only mathematical difference between small amplitude perturbation equations in a

layer and level model is the method used to evaluate p2 and Ui. In the level model, these

are evaluated at the level heights, z z, but in the layer model they are averaged over the

layer depth and have discontinuities across layer interfaces. Here we choose the level model

for evaluating those values.

To examine the real ocean instability problem using a layer model, the density step

Lp and/or layer depth D have to be specified. One logical choice for determining these

might be to make the linear complex dispersion relation of a three-layer model the same

as that of the continuous model. But we found it impossible to obtain the same range

of unstable wave lengths and growth rates simultaneously from both models. Thus we

follow Flierl's (1978) suggestion to select parameters by matching the linear dispersion

relation for baroclinic Rossby waves of the continuous model with that of a three-layer

model without shear. Dispersion relations of a continuous model are calculated numerically

from Equations (2.11), (2.15) and (2.16) with L = 0 and one hundred levels between 0 and

5000 m. Matching the dispersion curves of the first two baroclinic modes and equating the

net heat and salt contents of layers gives the layer depths and the corresponding density

steps. This is equivalent to adjusting the layer depths until the two gravest Rossby radii

of the layer model equal that of a continuous model. As baroclinic instability of zorial flow

occurs at these radii scale, it is as our anticipation that such a dynamic constraint would

also lead to a realistic model of the spiraling flows. The vertical structure function and

dispersion diagram of region III for Rossby waves without shear are shown on Figure 3 as

an example.
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After dividing the eastern North Pacific into three layers by the above criterion, we

can now compute the relative geostrophic currents in each layer. We found that in such

a three-layer model of the North Pacific the horizontal gradients of vertically averaged

density contribute more to the baroclinic shear than tha layer depth gradients (Table 1).

The relative geostrophic velocities in each level are shown on Figure 2.

6. 3-level solutions.

Computations of the growth rates for a three-level model with and without Laplacian lateral

friction as a function of wave number were done and are shown on Figures 4 - 10. We use

5 x lO5crn2/s as a horizontal eddy viscosity. Estimates of the eddy diffusion coefficient relate

to the large scale motion which includes both the baroclinic eddy motions and other small

scale features had been made in the subtropical Atalantic by Armi and Stommel (1983).

They found the value of 5 x 106 cm2/s. Estimates of this coefficient which should be used for

scales smaller than the baroclinic eddies, 10 Km or less, are not available in the subtropical

oceans (see Csanady. 1982, for estimates in coastal areas). We surmise that smaller scales

have smaller eddy diffusivities because the diffusion coefficient is presumably related to the

mixing length (Tennekes and Lumley, 1972). Therefore there is a degree of unrealism in our

growth rate computaions. because there is an uncertainty that is related to an assumption

that sub-eddy scales have a momentum diffusion coefficient of 5 x 105cm2 s. Presently,

theory can do no better.

However, general circulation models do employ a minimum frictions for numerical sta-

bility and we wish to know how low levels of this a priori assigned viscosity would affect

the linear wave properties. Thus frictional computation serves for us as a diagnostic tool to

understand the growth of waves in general circulation models of the eastern North Pacific.

No specific realism aside from the requirements of numerical stability and potentially small

enstropy destruction is assigned to our choice of Ajj.
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Growth rates of the most unstable waves are tabulated in Table 2 with their wave

lengths and periods. The most slowly growing waves are found in the subpolar area (region

II) and have a period of more than 14 years. The fastest growing waves are located in the

southward return flow region (region V), and these grow three times faster than the slowest

growing waves (note that the California Current is east of region V). In the eastern North

Pacific three-level model, the propagation direction of the most unstable waves is nearly

southward, except for a north-eastward direction in region I which only has a northward

component mean shear.

As found by other investigators, the time and length scales of the most unstable waves

in a few layer model are too large when compared with observed mesoscale motions. In the

southern regions, instabilities occur only with a nearly northward wave orientation because

the strong ,3-effect and large Rossby deformation radius, compared to the magnitude of the

mean shear, tend to stabilize all other directed waves (note that 3-effect vanishes near the

wave direction of 90°). In the northern regions, the maximum growth rates are between

the shear direction and 90° because the 3-effect and Rossby deformation radius are smaller

in the high latitudes . In regions II and III, there is a second growth rate maximum at a

higher wave number. The amplitude functions of these second maxima are surface trapped

compared to the relatively large intermediate and bottom amplitudes in the case of the first

maximum near 90° (see Fig. 7). At each horizontal wave number in a three-level model, two

baroclinic modes are possible; one is a growing solution. The vertical structure functions of

both modes changes with wave number.

In these velocity spirals lateral friction narrows the range of wave numbers for unstable

waves and dissipates short unstable waves in all regions except in region I; there the lateral

friction broadens the range of unstable meridional wave number. In this three-level ocean

lateral friction of AH = 1.0 x 108cm2/s would practically stabilize all regions except V and

VII.
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7. Continuous (multi-level) solution

Using the multi-level model, we compute the growth rates of unstable waves for selected

regions. The level thicknesses are 100 in above 3000 m, and 500 m below 3000 m. Applying

the semi-circle theorem of Section 2.1 to select the numerical solutions, we obtain only 2 4

stable solutions and four unstable solutions. Two of the four unstable solutions are bottom

trapped mode (amplitude maximum below 3000 m), but because the bottom topography

is not considered and there are few hydrographic data below 3000 m, we do not feel these

are physically realizable and thus they are not presented. One of the unstable solutions is

a surface trapped mode which has a maximum amplitude at the surface and a very small

amplitude below 200 m. Because our model does not include the Ekman layer dynamics nor

the seasonal thermocline, this mode is also not considered physically meaningful. The most

robust unstable solution has a maximum amplitude at 200 1000 in, and as this mode can

also be obtained from a three-level solution (although with quite different growth rates) a

direct comparison can be done. The slowness curves of stable waves for region III are shown

on Figure 11. The e-folding times of most unstable waves are tabulated on Table 2, with

their wave lengths and periods for four regions. Compared to a three level model these show

more realistic eddy growth time scales of 50 -200 days and wave lengths of 60 -200 km. In

the northern regions, the most unstable waves are short waves and have a maximum wave

amplitude at 200 m compared to the southern region with a maximum wave amplitude at

800 m (Fig. 13). The short waves are stabilized by lateral friction (Fig. 12). In a frictionless

model, as the vertical resolution increases, the high wave number cut-offs move to higher

wave number. So, when friction is added stabilization by friction is more effective on this

high wave number band on a continuous model than on a three-level model.

The two general results from continuous model are the south-westward propagation of

the most unstable waves and the subsurface amplitude maximum in the subtropical region
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(Fig. 13). Cox (1985) showed a similar subsurface maximum of eddy kinetic energy at the

core of the North Equatorial Current from his 18 level primitive equation numerical model.

8. Discussion.

Baroclinic Rossby waves in an environment without a mean shear can have an infinite

number of vertical normal modes, but when mean shear exists only a limited number of

stable or unstable normal modes are found because limitations on phase speed and growth

rates are now imposed (see Eqn. (2.7)). Because the phase speed of high vertical mode

waves can be slower than the mean flow, the mean flow does not allow for the existence of

all the high vertical mode Rossby waves . Our calculations show that only very few stable

Rossby waves can exist in the Northeast Pacific.

As noted by other investigators, a non-zonal shear makes the ocean more unstable than a

strictly zonal shear because north-southward propagating waves feel little of the stabilizing

/9-effect. A rotating shear also makes the ocean more unstable than a non-rotating shear.

Because instability depends upon the velocity difference of mean flow (U U2_1) and on

the vector plane, the velocity difference is minimum for the non-rotating spirals.

It is quite clear that different mean geostrophic flows coupled with /9-effect and the size

of Rossby deformation radius are strongly reflected in the stability characteristics of both

three-level solutions and continuous solutions. If every region had the same mean shear

magnitude and direction, waves would be more unstable in the northern region than in the

southern region because of the diminished 13-effect. But from a 3 level solution, growth

rates increase to the south except in region VI where the magnitude of shear is the smallest

among all the regions. The subtropical gyre has progressively more southward shear with

decreasing latitude and our computations show that this feature, at any level, is usually

increasingly sufficient to destabilize the flow. To demonstrate the effect of latitudinally

varying /9 and Rossby deformation radius in this ocean of small mean shear, we computed

the growth rates at region VII using 3 value and Rossby deformation radius of region I. The
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dramatic change is noted when Figure 14 is compared with Figure 4. Kang et at. (1982)

showed from their two-level analytical solutions that the direction of shear is important to

the unstable Rossby waves. According to their computation, the westward shear is more

unstable than the eastward shear, and the meridional shear is more unstable than the

zonal shear of equal magnitude. From our 3 level computation, the region VI, which has

a southward shear, has almost the same growth rates as the region II, although it has the

smallest shear magnitude and is at the low latitude.

The wave length of most unstable waves also vary significantly among regions. The wave

length of the northern-most regions is only one third of that in the southern-most region.

Because eddies prefer to have the length scale of the Rossby deformation radius LD.

1

I \ Po

where D is the vertical length scale of motion, and because the Coriolis parameter f is

two times larger and z.p is two times smaller in the northern region than in the southern

region, the Rossby deformation radius is about two times smaller in the northern region

(Table I). Therefore, the dissipation of growing waves by scale selective friction will play an

important role in their growth in a spatially non-uniform fashion as seen on our three-level

and continuous model computations.

In the continuous model analysis, we have only one physically meaningful unstable

solution which has a subsurface amplitude maximum. Growth rates are much faster in

the continuous model than in the three-level model and the wave directions of the unstable

waves are near the shear directions of the upper levels. Growth rates and the wave directions

are very sensitive to the mean shear.

The most general statement is, however, that aside from the existance of unstable waves

in either a three-level or a continuous model of the northeast Pacific, there appears to be very

little direct relationship between the unstable wave properties of the two models. As shown



19

in Figure 3, the linear Rossby waves can be made effectively equivalent, primarily because

the vertical density gradient profiles have simple level model representations. Because the

baroclinic unstable waves require the existence of both shear and vertical density gradients,

the inadequacy of representing the spiraling shear by three layers (specially d2U/dz2) is

evident. In Figure 15 we present the growth rate diagrams for a three-level, six-level and

34-level model of region VI, all in the same scale. Region VI is chosen for this dramatization

because its shear characterizes those of all the other regions. And six levels were chosen to

resolve the mean vekcity spiral in nearly equal increments in both directions. It is obvious

that the six-level model now shows both qualative and quantative close agreement with the

34-level computation. A 64 level computation does not change the 34-level results. The

conclusion we draw is that in the Northeast Pacific, two and three-level (or layer) models

of the linear instability process are not realistic in either space or time scale properties or

vertical structure functions of the linear shear waves which extract energy from the spiraling

observed mean shear across the thermocline. At least six-level model is required for realism.

We emphasize that our calculation applies only to linear shear waves and the detailed

fashion in which energy is extracted from mean flow where waves are growing. At finite

amplitude where there is other eddy transport process, as barotropization (Rhines, 1977),

this can be represented by low resolution models. Our results are to be contrasted with

those ofHo1Iand and Haidvogel (1979) who found that linear instability of a two-layer model

in the Gulf Stream region was adequate to describe the vertical structure of growing waves

as well as the finite amplitude equilibrium process.

9. Conclusion.

The computation of the complex phase speed of baroclinic waves is done by solving linear

quasi-geostrophic level equations, and by using the eastern Pacific geostrophic non-zonal

mean flow and density structure. It shows that the spiraling mean flow coupled with latitu-

dinally varying 3-effect and Rossby deformation radius can produce mid-ocean baroclinic
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instability with significant space dependent properties. The most unstable waves have a

wave length of 60 - 200 km, the smallest scale is in the northern region (47.5°N) and the

largest scale is in the southern region (22.5°N). Because short waves can be dissipated by

scale selective friction more easily than long waves, lateral friction may prevent growth of

northern eddies very effectively (especially in numerical models). From continuous model

computation the periods of 50 - 200 days are obtained for the most unstable waves and

thus they are consistent with known eddy time scales. The waves e-fold within one period,

and propagate eastward in the area north of the subpolar front and southwestward in the

subpolar region. Vertical amplitude functions show a subsurface maximum of kinetic energy

at 200 - 800 m, and vertical phase changes occur above 700 m depth.

Our linear analyses with fine vertical resolution demonstrate that the quasi-geostrophic

waves produced by baroclinic instability can be a good candidate for explaining the observed

eddy field at the Northeast Pacific, but can only show the birth and early growth of the

eddies. The character of the growing instabilities will critically depend on the vertical

resolution of the model. So, non-linear analysis wit.h sufficient vertical resolution (at least

six-level in the northeast Pacific) is required to realistically study the whole life cycle of the

mid-ocean eddies.



Layer Depth Density East-west velocity Noitli-soutli velocity Rosshy radius
(in)

)
(cm/s) (cuui/s) (Knu)

- LiL [iLi -1I ±J 1 1LiI _____
I 300 650 4050

4100
26.42
26,11

27.18
27.05

27.74
27.75

1.76 0.51 0.0 0.45 0,15 0.0 22
II 300 600 1.56 0.31 0.0 -0.33 -0.19 0.0 25
III 4050 27.75 0.0 -0.49 -0.21350 600 25.99 26.93 1.01 -0.26 0.0 33
IV 350 600 4050 25.93 26.99 27.75 .1.44 0.26 0.0 -0.57 -0,23 0.0 33
V 300 600 4100 25.48 27.00 27.14 1.33 0.19 0.0 -1.2? -0.39 0.0 35
VI 300 550 4150 25.26 26.80 21.15 0.31 -0.92 0.0 -0.62 -0.21 0.0 44
VII 250 500 4250 24.78 26.85 27.75 -1.92 -1.19 0.0 -1.34 .047 0.0 50

'Fable 1. The parameters and internal Rossby radius of deformation of seven regions
used for three level model computation.
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rpaT)le 2. Growth rates and wave characteristics of the most uiistable waves computed
from three level and continuous model.
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Fig. 1. Direct estimates of eddy kinetic energy between 138°W and 172°W as a function
of latitude from Niiler and Reynolds (1984) (solid line with box), between
130°W and 170°W from McNally et al. (1983) (dotted line with triangle) using
drifting buoy and at 152°\V (1985) (+) using current meter data.
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Fig. 2. Geostrophic hodograph with mean layer geostrophic currents of 7 regions (dot-
ted line). The extents of these regions are in the Table 1. The estimated errors at
3000m (the greatest error) are shown with the surface points for convenience.
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adjusting layer depth.
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Fig. 4. Growth rate contours in unit of 1O_8 s1 for unstable Rossby wave for Region I
(a) without lateral friction and (b) with lateral friction. The wave numbers have
units of iO m1.
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Fig. 6. Growth rate contours for unstable ROSSbY wave for Region TI (a) without
lateral friction and (b) with lateral friction (same units as in Fig 4).
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Fig. 12. Growth rate contours (in units of 1O s') of unstable waves computed from

continuous model for the intermediate mode which has the subsurface maximum

amplitude (a) without friction and (b) with friction in the Region VII. The wave

numbers have units of iü m1,
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Fig. 14. Growth rate contours of unstable waves in the latitude of 47.5° N using mean
shear of Region VII instead of Region I (in same units as Fig. 4).
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ABSTRACT

Non-linear unstable waves in the eastern ocean basin are analyzed using a three-

layer quasi-geostrophic numerical model. The numerical model in this study differs from

the one used by Holland (1978), in two respects: i) each layer except the bottom layer is

forced to maintain a devised initial mean circulation in the absence of meso-scale

motion. The waves are produced by initial small perturbations added to the mean flow,

and ii) a strong viscosity western boundary area (sponge layer) makes western boun-

dary currents stable and absorbs all the waves entering into the area.

The first experiment is performed with 300 x 150 grids of 20 Km intervals using a

mean flow of 1 - 2 cm/s. The initial mean stream function of the upper layer is an

idealized, smooth and closed stream function. it is symmetric in both axes. The middle

layer has a gyre center close to the northern boundary. The local growth rates by

linear stability analysis in the southward return flow region near the eastern boundary

are the same in the westward return flow region near the southern boundary. Local

energetics are calculated to highlight the differences between the eastern and southern

regions. The maximum eddy energy occurs near the center of the southern boundary,

and is caused by the westward propagation of unstable waves. The second experiment

uses a stronger mean field of 3 - 4 cm/s and eddies fill the southern half of the gyre.

The total equilibrium eddy kinetic energy per unit area becomes 10 - 15 times bigger

than the first experiment although the linear growth rates are only two times bigger.

Two dominant waves are found that have the same periods as the two most unstable

waves in the linear stability analysis. The short waves (periods of 120 days) propagate

to the west and form several wave trains parallel to the southern boundary. The long

waves (periods of 200 days) propagate to the south-west. These two waves are remark-

ably similar to measurements of open ocean eddies at 28°N, 152°W. There are high

eddy activities in the southern region, but the eastern and northern regions are vacant
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of eddies because of these westward and south-westward propagating unstable waves.
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1. Introduction

Recent current measurements in the Northeast Pacific along 152°W (Niiler and

Reynolds, 1984, Niiler et aL, 1987) showed that the eddy kinetic energy per unit

volume increases to the south and reaches its maximum in the subtropical area. Lee and

Niiler (1987, hereafter, LN), in their local linear baroclinic instability study, tried to

explain these features by calculating growth rates in the various regions of the

Northeast Pacific using the geostrophic mean current from historic hydrographical

data. They found that the subtropical area has the same local growth rates as the sub-

polar area because of the south-westward shear, even though the Rossby radius of

deformation is two times larger in the subtropical regions than in the subpolar regions.

But they failed to relate the eddy energy distribution to the local growth rates. The

linear local growth rates do not relate to the observed eddy energy level in the

Northeast Pacific! The first numerical study which shows these eddy features in the

mid-ocean was done by Cox (1985), using his 18 level primitive equation model. He

identified a band of high eddy kinetic energy centered on the westward return flow of

the subtropical gyre. The characteristics of these subtropical eddies (periods of 50

days and 400 Km wave lengths) agree reasonably well with observations by Fu et al.

(1982) in the subtropical North Atlantic, except that the periods are shorter than the

observed periods due to the large model mean flow (4.1 cm/s) compared to the observed

mean flow (1 - 2 cm/s).

This paper is an extension of the linear stability analysis by LN to a non-linear

baroclinic growth of unstable waves in the eastern ocean basin, using a three-layer

quasi-geostrophic numerical model. Our model is the quasi-geostrophic (QG) three-layer

model with a flat bottom described by Holland (1978), but it is different from his

model; first, each layer except the bottom layer is forced to maintain its initial mean

circulation in the absence of meso-scale motions. The waves are produced by adding a

small perturbation to the initial stream function. Thus the forcing function is for
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maintaining the basic circulation rather than for spinning up the gyre from a motion-

less ocean. Second, we concentrate our analysis on the eastern basin, which is far from

the strong western boundary current effects, using a strong western viscosity area

(sponge layer) to absorb the wave energy that propagates into the west. This sponge

layer also makes western boundary currents stable. The intercomparison study of the

QG model with the primitive equation (FE) model by Harrison and Semtner (1086) sug-

gested that the quasi-geostrophic assumptions used in the QG model are not always

valid, especially for the basin scale time average circulation as well as for the conditions

in and near the western boundary currents. For this study, quasi-geostrophic assump-

tions are adequate to describe the evolution of mid-ocean eddies.

We will emphasize the geographical variation of eddy kinetic energy in the final

equilibrium state and explain these differences by the characteristics of the fully

developed meso-scale eddies and the calculation of local energetics of two regions: near

the eastern and the southern boundaries of the gyre. After a description of the

models and derivation of terms for local energetics in Section 2, two experiments of

300 x 150 grids (6000 Km zonal and 3000 Km meridional model size including the

sponge layer) are analyzed in Section 3. To show the reasoning drawn from Section 3.1

and 3.2 more qualitatively, two additional long and thin (250 x 40 and 40 x 250 grids)

box experiments are discussed in Section 3.3. A discussion of three model experi-

ments will follow in Section 4.

2. Description of model

2.1. The governing equations

The model is one presented by Holland (1978), which is based on the quasi-

geostrophic potential vorticity equations applied to the three-layer ocean of a con-

stant depth in a closed basin. The potential vorticity equations for this three-layer
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for 1 1, 3, 5 and
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f0 10J(f +V2b1,'1) - (.)w11 + (---)w1_1 + AH74b( + F1 (2.1)

= J('1_1 ()w (2.2)
10

for 5 = 2, 4. Throughout this paper the subscript 5 is used for the interface level: 2

and 4, and I is used for the level at the center of each layer: 1, 3 and 5 (see Fig. 16). In

these equations,

w0=w6=O
1

pi-1-pi+1
I

g1=g
p0

I

I = 10 + i(i Y0)
(2.3)

(R_1 +
j+ H11)

where w is the vertical velocity at the interface, is the stream function at the

level Z, fi,. is the stream function at the layer interface, g,' is the reduced gravity, H is

the layer depth, f is the Coriolis parameter, y0 is the mid latitude of the basin where

f and $ are calculated and S is the Jacobian operator. Laplacian lateral friction is used

and AH represents the horizontal eddy viscosity coefficient, which is 100 m2s2 in the

eastern two thirds of the model.

The forcing function F is

for I = 1, 3 and

= _J(f +V21,1) + (--)+ - AVh1 (2.4)

F5 0 (2.5)

where is the devised initial stream function at level I and u' are the initial vertical
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velocities on the layer interfaces.

The boundary conditions are: i) is constant along the boundary but a function of

time (no normal flow through the boundary) and ii) slip boundary conditions, i.e.,

V2b = 0 along the boundary.

We start the model calculation with the devised smooth stream function plus a

small random perturbation as an initial stream function. The vertical structure of the

model is schematically presented in Fig. 16.

2.2. The western sponge layer

To model the Northeast Pacific eddy field far from the high eddy activity area

caused by the strong baroclinic instabilities of the western boundary current, using an

open western boundary becomes necessary. The sponge layer is used to overcome the

dynamical or numerical difficulties that arise from using an open boundary. Chap-

man (1986) tested various numerical methods applied to the coastal wave model, and

found that the sponge layer with an Orlansky (1976) radiation condition is the best

method for dealing with an open boundary. Barnier (1986) tested the behavior of the

sponge layer by the westward propagating barotropic Rossby waves in the box model

and concluded that the sponge dampens the fast barotropic waves and non-linear

eddies well.

The governing equations with the sponge layer are now different in the lateral fric-

tion term from Equation (2.1). The friction coefficient is constant in the eastern two

thirds of the basin and then gradually increase as a cosine function to a maximum

value of 75 times that of the constant value at the western boundary. The maximum

value was decided numerically to be as large as possible for the desired time step (2

hours) to avoid numerical instability at the boundary between the interior and the

sponge layer. The equations for the lateral friction are now

AHV4 = KHV4 + 2
OK11 °V2 +

O2KH
(2.6)

Ox Ox Ox2 Ox2
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Kif = A1 + H(5)Am(1 + coe(--(---- + 1)) (2.7)
2 zs

and the step function H is

Ii if XWXXS
fl(x XS)= jo ir XSX<XE.

(2.8)

The variables XE, XS, andxw are eastern, sponge and western boundaries, respectively, Am

is the maximum friction coefficient, 7500m2s2 and A1 is 100m2s2. The cosine function

from ir/2 to r is used to make the transition as smooth as possible near the interface.

2.3. Local energetics

Because we are interested in distinguishing the different distributions of eddy

kinetic energy, it is useful to derive the local energetics for an arbitrary open region.

Pinardi and Robinson (1986) derived such local energetics for quasi-geostrophic systems

and applied them to the analysis of the Rossby wave, and normal mode barotropic

and baroclinic instability processes. Hall (1986) derived the local energetics after

separating the stream function into the mean and eddy components to examine the

energy flux of the various regions near the Gulf Stream, using the data generated by

the numerical model by Holland (1978).

After multiplying by H, and integrating over the domain where

t'bondary, (2.1) becomes

oThT11' )2dzdy } = H1 ff V 1*_Vb1 ) dxdy + H. JJb1*J(V2b;
, ) dxdy + Th ff1ç_dxdy

f0Th
+ 10 ffw1i,b11dxdy f0 fJw,._ib1i.idxdy + (HH) ffwjij* - 12)dzdy

f0II (2.9)

(Th +14_2)
ffwj_i('j*- b12)dzdy H. ffb12F1 dxdy H,. ffb1*D1 dxdy,

where D1 is lateral friction.
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The potential energy equation of the system can be derived by multiplying

(2.2) by fb,_1 - bi)/g and integrating over the area,

of02 f2 * *,b51)2dxdy = - +1,'1)dxdy

- bJi)dxdy. (2.10)

After further separating the time-dependent variables into a time mean and per-

turbation part, the various terms for local energetics can be derived and are presented

in Table 1. The boundary flux terms are not converted to the divergence form and are

integrated using the term expressed in Table 1, because we want to minimize the error

due to numerical integration and differentiation. Thus there is no directional informa-

tion of the boundary terms and they only represent the total boundary flux or work

terms. The complete derivations of these local energetics of the open region are found

in Hall (1986).

As explained by McWilliams et al. (1978), there are the contributions of time trend

terms to the energy budgets because the time average of a time derivative does not

vanish. But these trend terms are relatively small and thus will not be included in the

energy flux diagrams.

3. Results

Three numerical experiments are performed in this study to answer the following

questions: How do unstable waves, which grow locally by a baroclinic instability pro-

cess, interact in the mid-ocean? How do they propagate and in what directions? Do

they have any particular wave numbers and periods after equilibrium? Do these waves

differ in various areas? If so, how and why?

The first experiment is the basic experiment for this study and uses a mean current

speed of 1-2 cm/s which is a typical mean current in the mid-ocean. The second
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experiment uses a stronger mean current of 3-4 cm/s to examine the effects of the

large growth rates (60 days) at the eastern and southern boundaries. Both experiments

use a highly idealized initial mean circulation which gives the same growth rates in the

southern return flow area near the eastern boundary and in the western return flow

area near the southern boundary region. This closed initial stream function is sym-

metric in both axes for the surface layer. The gyre center of the middle layer is located

close to the northern boundary after the computation of the geostrophic spirals by LN

in the North-east Pacific.

It was shown by LN that a three-layer model is not adequate to resolve the spiral-

ing shear in the eastern North Pacific and at least a six-layer model is required to model

the realistic shear in the eastern ocean basin. In this paper we examine the three-layer

model as one step preceding the costly six-layer model experiment toward the under-

standing of mid-ocean eddies.

The third experiment intends to show qualitatively the 18-effects by comparing two

long and thin boxes aligned in the east-westward and south-northward directions,

respectively.

Table 4 gives the grid sizes, the parameters used and the initial mean current

speeds with their local maximum growth rates. The characteristics of the most

unstable waves in the westward return flow region by linear stability analysis are also

tabulated.

3.1. Experiment I

This experiment's goal is to model the Northeast Pacific (15°-45° N and 1300 - 170°

W) for size and for the mean stream function. The initial mean stream functions of

the surface and middle layers are shown in Figs. 17.a and 17.b, with the sponge layer

indicated.

The maximum local growth rates and propagation directions of the fastest growing



waves by the linear baroclinic instability process are shown in Fig. 17.a with the upper

layer initial mean stream function. The fastest growing waves basically propagate

toward the mean flow direction of the upper layer, except for the five degrees west-

ward deviation from southward direction at the eastern boundary. The linear growth

rates as a function of wave number are presented in Figs. 18.a and 19.a for Point S and

for Point E, respectively. The locations of those two points are marked in Fig. 17.b.

There are two growth rate maxima on wave number space and these fastest growing

waves have different wave characteristics (see Table 3). Figs. 18.b and 19.b. show the

vertical structure functions and their vertical phase changes. The longer waves change

phase 180 degrees from the surface to the bottom layer and have more baroclinic pro-

perties than shorter waves.

After five years of integration using two hours as a time step, the system equili-

brates its total kinetic energy and starts to vacillate. Total kinetic energy and poten-

tial energy of 15 years as a function of time are shown on Fig. 20.a and 20.b, respec-

tively. In year 3 the upper potential energy starts to release its energy and two years

after that year, the kinetic energy reaches its the peak. But lower potential energy

increases continuously until the 14th year. The upper two layers become more barotro-

pic while the bottom layer becomes more baroclinic than the initial state.

Fig. 21 shows the stick time plots of eddies in three boundary areas. At Point S

and Point E, after five years waves reach the finite amplitude but their characteristics

are quite different. At Point S the meso-scale eddies are developed, but at Point E

the waves have long periods (600 800 days) and the south-northward component is

dominant. At Point N, amplitudes of the waves are small (the linear growth rates in

this area are very small) and those waves do not show eddy characteristics. For

detailed contour of the change between the initial stream function and the mean stream

function of the final five years, the differences between those stream functions are

presented in Figs. 22.a, 22.b and 22.c for the upper, middle and bottom layer,
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respectively. Maximum eddy kinetic energy per unit volume of bottom layer occurs at

the largest gradient of the difference field of the bottom layer (see Fig. 26). At the

north of this maximum the upper layer is stretched, but at the south of this maximum

the upper layer is squeezed.

At Point E, the energy of the north-south velocity is predominant and this shows

that only long south-northward waves are generated in this area because there is a

boundary condition (no normal flow) at the eastern wall. These long waves are also

shown well in the y-t diagram of the eddy field(top figure in Fig. 24) of five years at

100 Km from the eastern boundary. The energy conserving kinetic energy spectra of

the upper layer at Point S for the last five years are shown in Fig. 23. The energy of

the east-west velocity is smaller than that of the north-south velocity at all frequencies

except that with a 200 day period. There is a peak of north-south components of eddy

kinetic energy having periods of 300 days and it indicates a westward propagation of

eddies at this period. The westward propagation of eddies is well shown in the phase

diagrams for the eddy field for the x, t plane (Fig. 25) and y, t plane at various loca-

tions along the x axis (Fig. 24). Fig. 24 (progressive y-t phase diagram) is made by fol-

lowing way: We calculate the average westward propagation speed of this wave from an

x-t phase diagram (Fig. 25) at 400 Km from the southern boundary, and it is 1.1

Km/day. From this propagation speed we align the y-t phase diagram with a 360 day

interval for a 400 Km longitudinal distance, and then we are able to see the evolution

of the waves with time and space. These waves are growing during their propagation to

the west. This progressive y-t diagram at various longitudes from 100 Km to 3000 Km

from the eastern boundary shows that there is one predominant wave in the southern

boundary area with a wave length of 375 Km and a period of 340 days which is similar

to the second most unstable wave. The finally developed waves in both boundary

regions are presented in linear stability diagrams (Fig. 18.a and 19.a).

The distribution of the five-year means of eddy kinetic energy per unit area for the
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bottom layer is shown in Fig. 26. There is an eddy kinetic energy maximum at 330 Km

from the southern boundary, near the center of the westward propagating wave train.

The eddies grow until they reach 2000 Km from the eastern boundary and decay when

they propagate further to the west. Eddy kinetic energies are concentrated around this

maximum area, and there is hardly any eddy kinetic energy at the eastern boundary

even though the linear growth rates for both regions are the same.

Figs. 27.a and 27.b show the energy flux diagram for the eastern boundary region

and the southern boundary region marked by dotted areas in Fig. 26. In the eastern

region the energy converted from the mean kinetic energy to mean potential energy

goes out from the boundary and there is little conversion from mean potential energy to

eddy potential energy (whose conversion process is the main baroclinic instability pro-

cess). The main mean kinetic energy flux in this region is the pressure work done by the

fl-effect along the boundary. All the energy flux from the mean forcing goes out from

the area by the pressure work done by the $-effect and by the outward boundary flux

of mean potential energy by the mean flow on the interface. On the other hand, in the

southern region the largest energy source for the region is the boundary influx of mean

kinetic energy by the pressure work done by the fl-effect and the boundary influx of the

mean potential energy by mean flow. There is a large conversion from mean potential

energy to eddy potential energy, and consequently a large conversion from eddy poten-

tial energy to eddy kinetic energy. Why are they different? We will discuss these

differences in greater detail in Section 4.

3.2. Experiment II

This experiment is the same as Experiment I except that the maximum growth

rates are two times as large as in Experiment I at the eastern and the southern boun-

dary. The linear stability diagram for Point S and Point E with the vertical structure

function and their phase for two growth rate maxima are presented in Figs. 28 and 29,
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respectively. The wave characteristics of these two most unstable waves are tabulated

in Table 2; their wave lengths and periods become shorter compared to those in Exper-

iment I, but vertical structure functions and their phases remain unchanged.

Using the time step (two hours), the system reaches statistical equilibrium after

three years of integration (see Figs. 30.a and 30.b). The upper potential energy is

releasing its energy until the fifth year but lower potential energy is increasing. Fig. 31

shows the stick time plots for three regions and the eddy development at the eastern

boundary region. The mean stream function of the final five years are shown in Fig.

32.a, 32.b and 32.c for the upper, middle and lower layers, respectively. In Fig.32,a the

propagation directions and the growth rates of the most unstable waves using final five

year mean flow are also presented. In the surface layer, there are significant mean flow

changes in the southern half of the gyre; the zonal current becomes weaker ( 1 cm/s)

and meridional current becomes stronger ( 0.5 cm/s) than the initial flow. The mean

stream function of the middle layer is changed significantly in the southern half of the

gyre. The long (3000 Km zoanily) and thin (240 Km meridionally) counterclockwise

mean circulation is formed in the bottom layer along the southern boundary. Two

peak frequency bands which have different wave characteristics are found in the energy

preserving eddy energy spectra at Point S for each layer (Figs. 36.a, b and c). In the

southern region the eddy kinetic energy density of the east-west flow is larger in the

longer period band (longer than 150 days) than that of the north-south flow. But it is

smaller in the shorter period band (shorter than 150 days). This is from the waves of

short periods only traveling westward as shown in the phase diagram in the y, t plane

(Fig. 33.), which is band passed for periods between 115 days and 150 days. The waves

of short period bands (80 - 100 days) have similar energy in all three layers and show

more barotropic properties than the waves of longer period bands (longer than 200

days). At the eastern region there is only one peak at the period of 200 days and the

east-west component of eddy kinetic energy is bigger than north-south component at all
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frequencies (Fig. 37).

The short period waves (periods of 120 days) show similar periods to the first most

unstable wave (103 days) from the linear stability analysis. They have an average

phase speed of 2.1 Km/day and wave length of 285 Km whiôh is much longer than that

of the first most unstable waves, which is 192 Km. Long period waves (periods of 200

days) also have similar wave periods to the second most unstable waves which have the

period of 225 days. The average phase speed of these long waves is 1.1 Km/day south-

ward and 1.8 Km/day westward, and their wave lengths are 422 Km, which is much

longer than the wave length of the second most unstable waves (324 Km). The finally

developed waves in both boundary regions are presented in Fig. 28.a and 29.a. The

difference between developed waves and waves predicted by linear analysis is partly due

to the effects of the propagated waves from the eastern boundary areas. When locally

generated short waves interact with propagating long waves, the phase speed of result-

ing waves becomes faster than that of locally generated waves if their periods are

unchanged. These phase speed changes are well shown in the x-t diagram (Fig. 35).

The progressive y-t diagrams of the long waves which have periods longer than 200

days are presented in Fig. 34 and propagate south-westward. All these waves are pro-

pagating and vacillating (growing and decaying) at the same time.

The distribution of the eddy kinetic energy per unit area for the bottom layer is

shown in Fig. 38. Unlike Experiment, I the eddy kinetic energy per unit area is distri-

buted all over the southern half of the basin except near the eastern boundary and the

maxima occur near 100 Km from the southern boundary and 2000 Km from the eastern

boundary. Because the eddies can grow and decay several times before they reach the

sponge layer, there are several local eddy kinetic energy per unit area maxima. Near

the eastern boundary the eddy kinetic energy per unit area is still much smaller than

near the southern boundary.

The energy flux diagrams are found in Figs. 39.a and 39.b for the southern



53

boundary region and the eastern boundary region, respectively. In this experiment

there is a baroclinic instability process at the eastern boundary, but this conversion

from mean potential energy to eddy potential energy comes largely from the boundary

process rather than internal conversion between mean and eddy potential energy as

shown on following equations.

a a
(-i + [v, (_ +)]) dxdy

oil

+ i+)) dxdy (3.1)

+ v(_ +)) dzdy(3.2)

The mean potential energy between the upper two layers fluxes out from the boundary

all the energy converted from the mean kinetic energy of the upper two layers, the

same as in Experiment I. In the southern region, however, there is large conversion

locally from mean to eddy potential energy. The middle layer feeds the eddy kinetic

energy to the upper layer and the bottom layer in the eastern boundary region, but at

the southern boundary region there is a large eddy energy conversion from the middle

layer to the bottom layer and from the upper layer to the middle layer. The eddy

kinetic energy is dissipated mainly by lateral friction in the southern region, but the

pressure work done by the fl-effect at the boundary is nearly as important at the

eastern boundary. In summary, it is less unstable in the eastern region than in the

southern region even though the growth rates are the same in both regions, and the

boundary fluxes in the conversion from mean to eddy potential energy play a very

important role in the finite growth of the eddy field.

3.3. Experiment ifi

This experiment is performed to show the difference between the long north-south flow

region and the east-west flow region. Because of the fl-effect, the most unstable waves

formed by the mean current propagate westward so that waves propagate out of the
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north-south current system, i.e. to the less unstable regions. But in the east-west flow

region the waves propagate with the flow direction and then to the more unstable

region (i.e. at the center), therefore they grow. Fig. 40 shows the formation of eddies

along the southern boundary for the east-westward long box experiment for three years.

During the first year eddies are formed along the southern boundary and have similar

amplitude in the western return flow region except near the eastern boundary. The

amplitudes of eddies developed in this experiment is very small compared to Experi-

ment I even though the maximum local growth rates are bigger than Experiment I (see

Table 2). And also eddies are slowly decaying from the second year. This smaller eddy

development indicates that the propagating waves from the eastern and northern areas

are very important for the formation of the equilibrated eddy field.

On the other hand, all eddies are aligned along the interface between sponge layers

and the southward return flow area in the north-south long box experiment (Fig. 41) in

the first year of growth. In the third year eddies are nowhere to be found.

These two experiments clearly show the local growth rates are not related to the

finite amplitude growth of eddies but the propagation of eddies, and consequently

interaction of eddies between locally generated waves with non-local propagating waves

are the most important dynamics for the equilibrated eddy field in the eastern ocean

basin.

4. Discussion

Because of the 9-effect, eddies grow in the westward mean flow region but in the

southward mean flow region eddies are propagating out of the region and do not grow.

The unstable waves generated in the Northeast Pacific generally propagate south-

westward and the waves are growing during propagation. These wave properties make

the southern region an eddy rich area but, in the eastern region, there is little eddy

activity. In the northern region, not only are the local growth rates small for the east-
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ward mean flow, but also the unstable waves propagate south-westward and these

make the northern region the smallest eddy kinetic energy area.

The energy production rates by the energy conversion from mean to eddy potential

energy, the energy fluxes by the pressure work and the eddy kinetic energy which are

integrated over depth for Experiment II are shown in Fig. 42.a in the various region.

As explained in Section 3.2, the production of energy by the baroclinic instability is

mainly balanced by the boundary flux and the dissipation. In the north-eastern corner

there is little conversion of mean potential energy to eddy potential energy and there is

net energy leak by the pressure work. In the south-eastern corner, the energy produc-

tion is large but half of that energy production fluxes out of the region by the pressure

work. On the other hand, there is large influx of energy by the pressure work in the

southern regions. These combined effect of large boundary influx and the energy pro-

duction make the southern region the area of the largest eddy kinetic energy. Because

the energy flux by the waves is expressed by the pressure work along the boundary it

clearly shows the effect of the propagating waves quantitatively. Fig. 42.b shows the

eddy kinetic energy as a function of the net energy production (energy conversion from

mean to eddy potential energy plus boundary flux by the pressure work). The eddy

kinetic energy has a linear relationship with the net energy production. These two

figures well demonstrate that the local baroclinic instability, the boundary energy flux

by the propagating waves and the dissipation play the major role in the eddy dynam-

ics in the eastern ocean basin.

The linear stability analysis shows growth rates as a function of the wave number,

but cannot show which particular waves ultimately develop because of the boundary

conditions and wave energy input from outside the region. The north-south wave

number (1) becomes very small by the boundary condition (no normal flow) and east-

west wave number (k) is 0.75 X10m1 near the eastern boundary in the case of Exper-

iment II. The k = O.75X1Om1 is the smallest possible wave number which is
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determined by the mean flow, thus large portion of wave number band including the

first local growth rate maximum at high wave number cannot be unstable (see Fig. 20).

Near the southern boundary, however, it is quite unstable in the broad wave number

band even though 1 is very small by the boundary condition (see Fig. 28).

There are two dominant waves with different characteristics in the southern regions.

The periods of these waves match the two most unstable waves by the linear stability

analysis; only the fastest growing waves dominate the eddy field in this area. But the

wave lengths become longer than those predicted by the linear analysis partly because

of the effects of the propagated waves from the eastern boundary region (the most

unstable waves in the eastern boundary region have much longer wave lengths depend-

ing upon the distance from the boundary). Haidvogel and Holland (1978) showed that

the linear stability analysis correctly identified the finally developed baroclinic waves in

the numerical experiment by Holland (1978). But their analysis was focused on the

strong eastward jet area and used an instantaneous field rather than a mean field. The

three year-long current meter observations (Niiler and Hall, 1087) at 28°N and 152°W

clearly show these two waves on their spectral analysis (Fig. 43). They have shorter

periods than the result of Experiment H but when the vertical resolution of the model is

increased, the most unstable waves become shorter period waves (see Fig. 15 in LN).

Is there a third wave to form resonant interaction for these two dominant unstable

waves? A third wave should propagate north-eastward to form a resonant triad (Pedlo-

sky, 1979). We were able to trace the northward propagating waves which have

periods between 200 days and 160 days, but there are no eastward propagating waves

and also these northward propagating waves exist only near the center of the southern

gyre. These two waves are simply the most unstable waves by the baroclinic instabil-

ity, and they do not form a resonant interaction as stable waves do.

The final mean fields are changed significantly in the high eddy activity area for

both experiments. These alterations will ultimately change stability properties (see Fig.
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32.a). In the case of Experiment II, ii (-2.6 cm/s) becomes smaller than [t=G} (3.8

cm/s) but i changes significantly from 0 cm/s to 0.6 cm/s at Point S. The maximum

growth rates become smaller (from 61 days to 116 days) and the direction of the most

unstable waves changes from 1800 to 160° (Fig. 44.a). But there are no signs of north-

ward propagating waves in the southern boundary area during the final five years. At

Point E the stability properties are only slightly changed (Fig. 44.b). Because of the

significant change of the zonal and meridional mean currents in the strong eddy

activity area (southern region), the linear stability analysis using these final mean field

quite depends upon the position where the mean flow is evaluated. The eigenvalue

method, which was used by Haidvogel and Holland (1978), can be used for the mean

field as a function of space but it is beyond the scope of this paper.

The zonally averaged eddy kinetic energy per unit volume is shown in Fig. 45, with

the measured eddy kinetic energy in the Northeast Pacific by Niiler et at. (1987).

There are several fluctuations because of the wave train being parallel to the southern

boundary but generally the eddy kinetic energy per unit volume increases to the south -

a phenomenon which agrees with the measurements.

The six-layer model with more realistic mean fields is planned for modelling the real-

istic mid-ocean eddy fields. This increase in vertical resolution in the numerical model

will make the developed eddy field more realistic, i. e., the subsurface eddy kinetic

energy maxima (Cox, 1986 and LN) and eddies of realistic time and length scale.



Symbol Term Physical Process

HffiF1 dzdf, Work done by initial forcing

+ drdij Mean flux of mean K. E.

Kj'u,.'Kj' -_iiff_T --T1 da', Eddy flux of eddy K. E.

Rff(--'+ --j dz4 Mean flux of eddy K. E.

KD HffAybjVhj ddy Frictional dissipation by mean field

dzdy Frictional dissipation by eddy field

Kf H,-ff8i_ dzdy Mean pressure work due to ,3 effect

HfJ,3 'i dzdy Eddy pressure work due to 3 effect

K W I.ff(4_) + dzdy Mean pressure work due to advection of mean field

W B ff(' v') + -('' ---e' )J dxdy Eddy pressure work due to accelaration of eddy field

K' W ± ddij Eddy pressure work due to advection

(K-W) - (Kj'-_-..Wj of mean and eddy field

-T1 Flux and conversion of mean to eddy K. E.

± v, + ----e; dzd'

Flux and conversion of eddy to mean K. E.

+ v,

±fffiii dxdy Conversion of mean K. E. between two layers

+f JJ1 w dzdij Conversion of eddy K. E. between two layers

drdy Conversion of mean K. E. to mean P. E.

±1 I
JJ

Conversion of eddy P. E. to eddy K. E.

ffjP + dxd Mean flux of mean P. E.

Pi '1P1 -ff[± -_-tjP1l dzdij Eddy flux of eddy P. E.

-ff[-± ---.P) drdy Mean flux of eddy P. E.

dzdy Flux and conversion of men to eddy P. E.

PiPi ) dxj Flux and conversion of eddy to mean P. E.

Table 3. Energy equation symbo's and their terms as they are referred to in energy
flux diagram. is the total derivative with respect to time following individual

fluid elements.
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Experiment Grid Meaii Grow Lii

Size Current Rate

I 300x150 0 - 2 cm/s 160 Days
11 300x150 0 - 4 cm/s 60 Days

111.1 250X40 0 - 3 cm/s 105 1)ays

111.2 40x250 0 - 3 cm/s 90 Days

The First
\lost Uns(,aI)IC

ave
Length Period

175 Kin 126 Days
192 Kzii 103 Days

'fhie Second
MOSt Unstable

Wave
Length Period
342 Kin 295 Days

321 Km 225 Days

Table 4. Summary of experiments discussed in this study. Note that all cases used
f0 1.0 X iO4 s, = 2 X 10h1 m1 g' 2 = 0.011 in s, g' = 0.007 in s2,
II = 350 m, 113 650 in and 1T = 4000 m.
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Fig. 16. A schematic diagram for the vertical structure of the three-layer quasi-
geostrophic model.
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Fig. 44. Linear growth rate contours in unit of iO of the unstable waves corn-
puted from the mean flow of the final five years (a) at Point S and (b) at Point E.
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