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DIGITAL COMPUTER ANALYSIS AND SYNTHESIS OF LINEAR 
FEEDBACK CONTROL SYSTEMS USING 

SUPERPOSITION INTEGRALS 

I. INTRODUCTION 

The numerical method of analysis and synthesis of linear 

networks started in 1947 when Professor Tustin published his time 

series method for analyzing the behavior of linear systems (14). 

The results of this method are coincident with some later developed 

numerical methods using superposition integrals. 

Truxal (13), Ragazzini and Bergen (10) in 1954 introduced the 

Z- transformation method developed originally for the sampled - 

data system to the analysis of linear systems. Ba Hli (2) applied 

Tustin's method to obtain the approximate impulse response of an 

open loop system in 1953, which along with Kautz's (7) work of 1954 

gave a general idea of time domain synthesis. 

In 1955 and 1956, Cruickshank (5), Boxer and Thaler (4) 

gave a different approximation method for converting Laplace trans- 

form output into time response. Stout (11) suggested his step -by -step 

method for transient analysis of control systems in 1957; Naumov 

(9) in his paper of 1961 set up an approximate method for calculating 

the time response of unity feedback control systems from its Laplace 

transform transfer function. 

Adams (1) in 1962 has proved the possibility of digital computer 
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analysis for unity feedback system from its given transfer func- 

tion. 

Sometimes, the transfer function of an existing system is 

not known. If the system is to be linear or nearly linear, it is 

possible to find its impulse response from the input signal and 

the output response. 

The main interests of this paper are how to use the digital 

computer to find: 

1. The time response of linear, open loop, unity feedback 

and non -unity feedback systems from their impulse 

responses and a given input signal. 

2. The impulse response of an existing open or closed 

loop system from the input signal and output transient 

response. 

3. The impulse response of a desired compensating net- 

work for improving an existing system from the system 

input signal, output time response and the impulse 

response. 

4. The transfer function of a network from its impulse 

response provided the steady state value of the impulse 

response is zero. 

Numerical methods of trapezoidal rule and extrapolation 

are used in calculation of functions from superposition integrals. 
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II. ANALYSIS 

A. Open Loop System: 

Suppose an open loop system as shown in Figure 1 has its 

linear or linearized transfer function represented by G(s), with 

input E(s) and output C(s). Then: 

C(s) = E(s) G(s) (1) 

The transfer function can usually be represented as: 

G(s) = 
A(s) 
B(s) 

(2) 

where A(s) and B(s) are polynomials of s, and because of the 

physical nature, the degree of B(s) is either equal to or greater 

than the degree of A(s). 

E(s) G(s) 

Figure 1. Open loop system I 

> C(s) 

First let us consider the case where the degree of B(s) 

is greater than the degree of A(s). The impulse response of this 

system will be a continuous time function, say: 

g(t) = L -1 {G(s)} (3) 
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Since this system is linear, the superposition theorem can be ap- 

plied, and the transient time response of the output can be repre- 

sented as: 

t 

c(t) = f e(t-T) g(T) dT (4) 
o 

t 
or c(t) = r e(T) g(t-T) dT 

where 

o 

e(t) = L-1 { E(s)} , 

the time function of the input voltage. 

(5) 

(6) 

If the numerical values of e(t) and g(t) are known, the 

approximate values of the equation (4) or (5) can be calculated 

by numerical methods. The simplest numerical integration me- 

thod that can be applied to this problem is the trapezoidal rule. 

Let the numerical values of e(t) and g(t) at equally spaced 

time increments be represented as: 

. Time 0 h 2h 3h 4h 

e(t) el e2 e3 e4 e5 

g(t) g1 g2 g3 g4 g5 

The approximate values of the integral when calculated by 

trapezoidal rule are: 

e e g 
c(nh) = h( 

1 
+ e2 gn + e3 gn-1 + + en g2 + 

n21 
1) 

where n = 0, 1, 2, . 

(7) 
g 

n +1 

2 
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Let an = h gn, and: c(nh) = en +1' 
then: 

el a2 e2a1 
c2 = 

2 
+ 

2 

el a 
3 

e3 al 
c3 = 

2 
+ e2 a2 + 

2 

cn =e 2 elan 
-1 +e3an -2 

+... +en -lag +e 
1 (8) 

The function an = h gn is called the weighting function. 

This method was first introduced by Tustin, (14) where he used 

as the initial value of the output. This approach has also 1 

elal 
been adopted by Adams (1). Obviously, this is not a close approxima- 

tion especially when the initial values of the input and system im- 

pulse response are high. 

The initial value of the output is always zero for a transfer 

function with a continuous impulse response, since by the initial - 

value theorem, 

lim lim lim R(s) A(s) 
(9) 

t s- 00 s--.co B(s) 

The degree of the numerator of R(s) is always less than its de- 

nominator, since any deterministic input signal r(t) may be con- 

sidered to be composed of steps, ramps, parabolas or any com- 

bination of their functions. Therefore, from Equation (9), the 

c(t) sC s ( ) ( ) s 

a 
n 

n n 

= 
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initial value of c(t) is always zero. 

Now, suppose that the degree of A(s) is equal to the de- 

gree of B(s), and 

G(s) = 

n n-1 al s + a2 s +. . . +ans + an+1 

bl sn + b2 sn-1 +. . . +bns + bn+1 

Then, by division, 

G(s) = + U(s) = K + U(s) 
b1 V(s) V(s) 

(10) 

where K is a constant and the degree of U(s) is one less than 

the degree of V(s). 

Equation (11) can be considered as two transfer functions 

connected in parallel as shown in Figure 2. 

E(s) 

K 
C1(s) 

ì U(s) 

V(s) C2(s) 

Figure 2. Open loop system II 

C(s) 

(11) 1. 



E(s) y 

where: 

and 

From Equation (1 1) and Figure 2, 

C(s) = KE(s) + E(s) U(s) 
V(s) 

7 

(12) 

C1(s) = K E(s) (13) 

c (t) 
1 

= K e(t) (14) 

which can be found by: 

cln = K en (15) 

C = 2(s) E(s) 
U(s) (16) 
V(s) 

Values for c2(t) can be found by the previous method of continu- 

ous impulse response, and: 

Since c21 = 0, 

cn = cln + c 2 (17) 

cl = c11 = Kel 

B. Closed Loop System With Unity Feedback 

R(s) G(s) 

Figure 3. Unity feedback system 

C(s) 

(18) 

n 



or: 

In the unity feedback system as shown in Figure 3, 

E(s) = R(s) - C(s) 

e(t) = r(t) - c(t) 

8 

(19) 

(20) 

where r(t) is the input time function. 

In order to calculate c(t) from Equation (8), Adams (1) sug- 

gested a linear extrapolation method to estimate c' from 

en and en . Then en is found by 

e = r - c' 
n n n 

(21) 

This en is used in Equation (8) to find the final approximate cn. 

Adams' method does not give a very good result. First, 

the value of el calculated from the improper initial value cI 

created some error when applying Equation (8). Second, the 

linear extrapolation introduced significant error especially when 

the slope of the output response is changing rapidly. 

Two different methods have been studied here in the at- 

tempt to find a better solution: 

In the first method, a higher order extrapolation formula 

is used to find c' , such as a Newton's 4th order extrapolation 
n 

formula: 

cñ = 4 cn-1 - 6 cn-2 + 4 en-3 - cn-4 (22) 

For the starting points, lower order extrapolation formulas have 

to be used. Then by applying Equations (21) and (8), a second 

n 2 

n 

-4 
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approximation c" can be calculated, and this c" may be used 

again by applying Equations (21) and (8) to find a more precise 

value of c. This c 
n 

may be used as the final approximated 

value of the output and the en required in successive calculations 
n 

is obtained by: 

e = r - c 
n n n 

(23) 

The remaining problem in this method is how to determine 

the initial value of the output. The overall transfer function of 

the unity feedback system: 

G(s) A(s) 
1 + G(s) A(s) + B(s) (24) 

The degree of the numerator and denominator are the same as the 

degree of the numerator and denominator of the transfer function 

itself. If the transfer function has a continuous impulse response, 

the initial value of the output cl is always zero. 

The results of the above method are satisfactory as shown 

in Table 2. This method is discarded later however, since it re- 

quired laborious calculations. 

The second method is derived from Equations (8) and (23). 

Since: 
e an -c ) a 

I n n n l cn - + e 
2 

an-1 + . . + en-la2 
+ 2 

or: 

(25) . 

n 2 

(r 



10 elan r a 
1 

+ e a + . .. + e a + n 1) (26) 
n al 2 2 n-1 n-1 2 2 

2 

In order to facilitate computations, a computation table as 

shown in Table 1, is made. The computation sequence is: first 

row, first column; second row, second column, third row and so 

forth. 

The same example as used by Adams for G(s) = 
1 + s 

and h = 0 1 sec. is calculated by desk calculator, using both the 

first and the second method. The results are listed in Table 2, 

for comparison. 

Table 1. Unity- feedback Analysis Computation 

1 

Time 0 h 2h 3h 4h . 

Input r r2 r3 r4 r5 . 

Weighting 
function al a2 a3 a4 a5 . 

a1 a1 al a1 

2 r2 2 r3 2 r4 -z r5 
' 

el el el el 

2 
a2 

2 a3 
a4 -27 as 

' 

e2 a2 e2 a3 

e3 a2 

e2 a4 

e3 a3 

e4 a2 

Summation 
of column qn q2 q3 q4 q5 

q 
cn D 

-, cl = 0 c2 c3 c4 c5 

en - rn-Cn el - rl e2 e3 e4 e5 
al 

,- D = 1 + 7 

n+ 

2 

. 

= 

1 

. 

= 

] 

. 
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Table 2. Comparison of Analysis Results 

Results 

Time 

from G(s) 
, 

R(s) = U(t), 

True value 

h = 0. 1 sec. 

2nd method 1st method 

= 1 + s 

Adams method 

0 0. 25 0 0 0 

0. 1 0.09274 0.09063 0.09070 0.09048 
0.2 0. 16888 0. 16484 0. 16496 0. 16502 
0.3 0.22855 0.22559 0. 22575 0.22579 
0.4 0. 27642 0. 27533 0. 27552 0. 27555 

0.5 0.31619 0.31606 0. 31628 0.31632 
0. 6 0. 34887 0. 34940 0. 34962 
0.7 0. 37670 0. 37693 
0, 8 0. 39905 0. 39926 
0.9 0.41735 0.41758 

1.0 0.43233 0.43257 

Nevertheless, the above mentioned methods can only be 

applied when the numerator of G(s) is less than the degree of 

its denominator, or when the transfer function G(s) has a con- 

tinuous impulse response. If the degree of the numerator of 

G(s) is equal to the degree of its denominator, G(s) can be mani- 

pulated as Figure 2 and Equation (1 1) and: 

el an 
c + e a + . . . + e a + (rn-cn) al 

K 
n 2 2 n-1 n-1 2 2 n n 

or: el a a 
cn = al [ 

n 
-I- elan + . . . + ñ- la2 + (-2 +K)rn] (28) 

1 +Z+K 

1 



The value of 

or: 

cl = K el =K (r 
1 

- cl) 

K r 
1 

cl 1+K 

12 

(29) 

(30) 

Therefore, the initial value of the output is always less than the initial 

value of the input signal when K> O. When K = 0, Equation (28) equals 

Equation (26) and cl = O. 

C. Closed Loop System With Non -unity Feedback 

Figure 4. Non -unity feedback system I 

c(t) 

If we know the transfer functions G(s) and H(s), this whole 

system can be considered either as an open loop system of transfer 

function: 

G'(s) - G(s) 
1 + G(s) H(s) (31) 

or can be transformed to a unity feedback system with the open loop 

transfer function: 

GIs) = 
G(s) 

1 + G(s) H(s) - G(s) 
(32) 

r(t) + e(t) 
) 

d(t) 

G(s) 

H(s) 
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Then, if the impulse response of either of the above transfer 

functions can be calculated, c(t) can be calculated by one of 

the previous methods. Suppose the impulse responses g(t) and 

h(t) are given as: 

Time 0 h 2h 3h 4h 

g(t) g1 g2 g3 g4 g5 

h(t) hl h2 h3 h4 h5 

at equally spaced time increments, and it is known that they are 

both continuous. Then: c = dl = 0, el = r and: 

el an en al 
co - + e2 

an-1 + . . . + en-1 
a2 + 2 

c bn cobl 
do = + c2bn-1 + . . . + co-1 b2 + 2 

(33) 

(34) 

en = r 
n 

- d 
n 

(35) 

where: 

an and b =hh 
n n n n 

Solving Equations (33), (34) and (35), 

cn = 1 [ 1 a r + 1 elan + e a + . .. + e a 
n 1+ 1 a b 

2 1 n 2 elan 2 n-1 n-1 2 

4 1 1 

4a1 (b +c b + +c b )] (36) 2-c 
1 n 2 n-1 , ,, n-1 2 

If the degree of the numerators of both G(s) and H(s) 

are equal to the degree of their denominators, Figure 4 can be 

n - 

n 

. 

. . 

2 
n2 1 

= h gn 



transformed to Figure 5. 

r(t) 

and: 

e(t) 

d(t) 

K 
1 

G1(s) 

K2 

H1(s) 

Figure 5. Non -unity feedback system II 
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c(t) 

dn= 2 clbn+c2bn-1 +. . . +cn-1b2+ 
2 cnbl +K2cn (37) 

c 
n 2 

=-e 
1 

elan 
n 

+e 
2 
a n-1 +. . . +e n-1 a 

2 
+(1 a 

2 1 
+K 

1 
)(r 

n 
- d n ) (38) 

where an = h gin and bn = h hln 

Therefore: 

1 c = 
1 l + e +K )r a +e a +...+ 

n 1+ l +K a )(-b l +K 2 1 1 n 2 1 n 2 n-1 
(2 1 1)(2 1 2) 

e a - (1 a +K )(1 c b + c b +. . . +c b ) } 
n-1 2 2 1 1 2 1 n 2 n-1 n-1 2 

(39) 

Y+ 

l n 



The value of 

cl 
r K 

1 1 

1 +K1K2 

15 

(40) 

When K1 = K2 = 0, Equation (39) is equal to Equation (36). Table 

3 shows the computation procedure. 

- 
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Table 3. Non -unity Feedback Analysis Computation 

r r2 r3 r4 

1 

2a1 al a2 a3 a4 

2 
ó1 ó2 b3 2 1 2 ó4 

c = (1 a +K )r (1 a +K )r (1 a +K )r 
1 2 1 1 2 1 1 3 2 1 1 4 

r1K1 1 
-1 e 

1 

1+K1K2 2e1a3 21a3 2e1a4 

21+K1)p2 

+) 

e2a2 

1 

-(2 a1+K1) p 

e2a3 

e3a2 

- (la +K1) p4 

Summation q2 q3 q4 

cn = qn/F c 
2 

c3 c4 

+) 

c2b2 

c3b2 

c2 b 
3 

2 c1b2 2c1c3 2c1ó4 

Summation P 2 p3 p4 

1 
-1 b +) 

2 ó1 c2 2 c3 
ól 

2 c4 
ól 

d2 d3 d4 

e =r -d e2 e3 e4 
4 

where: el 
= r 1 - cl K2 1+ K K 

1 2 

r 
1 

and: F = 1 + (-2-al +K1) (2b1 +K2) 

2 

- 
2 

1 

n n n 2 

1 
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III. SYNTHESIS 

In Figure 1, if e(t) and c(t) are given, and if we know 

that the impulse response of the system is a continuous function 

of time, then from Equation (8): 

2 1 

an = 
e 

(cn - 2 al en - a2en-1 . - a e n-12) (41) 

where el / 0 

Therefore, the impulse response can be calculated in terms of 

the input signal and output time response. 

In order to start the computation of Equation (41), the ini- 

tial value of the impulse response has to be found. Different start- 

ing procedures have been studied. The only satisfactory procedure 

is to use a high order extrapolation formula for finding the initial 

value by simultaneous equations. For example, if Newton's bino- 

mial formula of order 4 is used: 

0 = a 
1 

-4 a2+6 a3 - 4 a4+a5 

1 1 c2 = e2 al + 2e1 a2 

1 1 
c3 = 2e3 al + e2a2 + 2 ela3 

1 1 c4 = -2e 
4 

al + e3e2 + e2a3 + 2el a4 

1 1 
c = 2 2 a +ea+ea +ea+ea (42) 

- . . 

5 1 4 2 3 3 4 
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Solving the above equations - by using a digital computer, the 

first five values of the impulse response can be found, and the 

successive values can be computed by applying Equation (41). 

To determine experimentally whether the transfer func- 

tion of this system has equal degree in its numerator and de- 

nominator, the best way is to apply an input signal with non -zero 

initial value. A non -zero initial value for the output indicates 

that numerator and denominator are of the same degree. 

Since for an input signal of non -zero initial value, the de- 

gree of the deonominator of its Laplace transform will be one 

greater than its numerator, let it be represented by 

E(s) = P(s) - Q(s) 

(sm-1+ 
p1 

sm-2 + 
. . . + pm-1) 

sm + gl sm-1 + . . . + gm 

The transfer function of the system is 

G(s) = K + 
U(s) 
V(s) 

(43) 

then by the initial -value theorem, 

lim c(t)_lim 
a 

sm +pl sm -1 +... +pm -ls +U(s)) t- 0 s -co 
sm+ sm- 1 +... + 

V(s) +q qm 

_lim 
(1 + PI(s) ) ( K + C(s)) s Q(s) D(s) 

= aK (45) 

a 

... 
(K (44) 



Since a = e : 
1 1 

Therefore: 

(15): 

or: 

cl 

c 

K = 1 el 

0 if K = 

Kel if K#0 
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(46) 

(47) 

After K is found from Figure 2 and Equations (14) and 

c2(t) = c(t) - K e(t) (48) 

c2n = cn - Ken (49) 

Then the impulse response of the term U(s) 
V(s) 

in Equation (1 1) can 

be found by the method of Equations (41) and (42). 

In the case where it is impossible to use an input signal 

with non -zero initial value or when doing compensating synthesis 

as will be discussed later, the constant K in Equation (11) can be 

computed by the use of the second value of the input signal e2 

provided that e2 is correct and is not too small: 

When e 
1 

= 0, from Equation (27), : 

c2 = 2a 1e2 + K e2 = (-1 al + K) e2 

c 

or 2al + K = 2 e 
2 

(50) 

(51) 

= 

0 
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After the rest of a's have been found by: 

-1 e2 [cn (K+ 
2 a1)en- aten -1- . . . - an -2e3] (52) 

The value al can be determined by using a high order extrapola- 

tion formula similar to that used in Equation (42), then: 

K 
= (K+2 al) - 2al (53) 

When K is zero, Equations (50) - (53) can still be used. 

The above is a general method for finding the impulse re- 

sponse of an open loop system. If the system is a unity feedback 

system as shown in Figure 3, and r(t) and c(t) are given as dis- 

crete values at equally spaced time increments, then: 

e(t) = r(t) - c(t) (20) 

or 

en r - c 
n n n 

(21) 

If the system is a non -unity feedback system as shown in Figures 

4 or 5, and r(t), h(t), and c(t) are given as discrete values at 

equally spaced time increments, then 

d(t) _ 

t 

c(T)h(t-T)dT 

The open loop analysis method mentioned before can be used to 

find d(t), and then e(t) is found by: 

e(t) = r(t) - d(t) 

or 
en r - d 

n n n 

(54) 

(55) 

(35) 

- 

o 

= 
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From the computed e(t) and the given c(t), the required g(t) 

can be found. 

If the impulse response found from the above is mainly 

for analysis use, there is no need to convert it to the frequency 

domain. The method for finding the equivalent transfer function 

of certain system with given impulse response will be discussed 

in the next section. 
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IV. COMPENSATION OF CONTROL SYSTEM 

A. Compensation 

Suppose a control system as shown in Figure 3 or 4 is 

given. If the time response of the system when computed by the 

analysis method mentioned before does not give a satisfactory re- 

sult, usually, a series or feedback compensating circuit can be 

used to improve the output response as shown in Figure 6 and 

Figure 7 

r(t) ± e(t) 

d(t) 

F(s) 

H(s) 

G(s) 

Figure 6. Series compensating system 

r(t) ± e(t) 
A 

d(t) 
F(s) 

G(s) 

k(t) 
H(s) 

Figure 7. Feedback compensating system 

c(t) 

i c(t) 

L 
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For the series compensating method, if r(t), g(t) and h(t) are 
given for a desired c(t), d(t) can be found by Equation (54 and e(t) can 

be obtained from Equation (35). In order to facilitate the computation, 

the compensating circuit should be arranged as shown in Figure 8. 

For a linear system, this change does not effect the result. 

The values of k(t) can be then found by applying the open loop analy- 

sis method, and f(t) is obtained by the synthesis method mentioned 

before. 

r(t) e(t) k(t) 
G(s) 

H(s) 

F(s) 
c(t) > 

Figure 8. Rearranged series compensating system 

For the feedback compensating system, since: 
t 

c(t) = fo e(T)g(t -T)dT 

and: c(t) = k(T)h(t- T)dT 

e(t) and k(t) can be computed by the method used for synthesis. 

Then, d(t) is found by Equation (35). Now f(t) can be computed 

by the synthesis method. 

(5) 

(56) 

1n 

0 
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B. Calculation of the Compensating Transfer Function 

In order to find the transfer function from its impulse re- 

sponse, the superposition integral is used again. Since: 

and from: 
: 

co 

G(s) = 
J 

g(t) e-st dt 

ex = 1 +x+2x2+... 

the transfer function can be represented as: 

G(s) = h (- g 
2 1 

+ g2e-hs g3e-2hs g4e-3hs 

= 2a1 + a2(1-hs + 
2 s2 

- 
6 

3 3 hs + . 

+a3(1-2hs + 
Z 

(2hs)2 - 
6 

(2hs)3 + . ,. ) 

(57) 

(58) 

.) (59) 

+an[1-(n-1)hs + 2((n-l)hs)2 - 
6 
((n-1)hs)3+. . . ] (60) 

oo co 

1 
_ (-2-al + 

L 
an) - ( an(n- 1)h)s + ( 

n=2 n=2 
°n 3 

an((n-1)h)3)ó + . . . 

n=2 
= Y1 + Y2 s + Y3 s2 + Y4 s3 + . . . 

00 2 

((n- 1)h)2)2 

(61) 

(62) 

where, an = h g , 
n 

and h = time increment, as used before. 

In Equation (62), Y1 is the total area between the impulse 

response curve and the time axis. It is just the summation of all 

the values of the weighting function. The other Y's can also be 

s 

+ 

n=2 
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calculated from the weighting function. 

In order to avoid laborious computation, it is assumed 

that the transfer function of the continuous impulse response has 

a denominator of degree 2 and a numerator of degree 1: 

X + X 
2 

s 
G(s) = 1 (63) 

1 + X3 s + X4 s 

Compare Equation (62) and (63), : 

X1 = Y1 

X2 = Y2 + Y1 X3 

0 = Y3 + Y1 X4 + Y2 X3 

0 = Y4 + Y2 X4 + Y3 X3 (64) 

Solving the above equations, the continuous transfer function G(s) 

can be determined. If the system has a parallel constant transfer 

function K as indicated in Equation (11), the total transfer function 

will be 

G(s) - 
(K+X1) + (KX3+X2) s + KX4 s2 

1 +X3 s +X4 s 
2 

(65) 

Therefore, as long as the impulse response or its weighting 

function is known, the transfer function can be calculated and re- 

presented as either Equation (63) or (65). This quadratic transfer 

function can then be checked with the original system. The new 

system can be further compensated by adding additional networks 
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of the form of Equations (63) or (65). These networks are found by 

applying the above method. With this compensating procedure, or- 

dinary systems can always be compensated. 



V. EXAMPLES AND THEIR ACCURACY 

A. Analysis 

27 

Several examples similar to those used in Adams' paper 

have been computed by using the IBM 1620. Different time incre- 

ments were used in order to find the best choice, i. e. satisfactory 

results and not too laborious computation. The conclusions are: 

1. Find the time from the given impulse response curve 

where the value has decreased to about 1100 of the maximum 

value; say T. 

2. Choose the time increment h equal to T divided by 

a convenient number around 60 to 80, and choose T as the com- 

puting range. Since beyond T, the response will be approaching 

steady state. 

3. Compute the output response, from which find a new 

T. The value of T should be just large enough to include the en- 

tire transient period. This T will be divided by a convenient 

number around 70 to find a new h; then compute again. The final 

results will give a response accurate to the third place. 

The IBM 1620 takes about one minute acutal computing 

time (input time are not included) to compute the output of an open 

loop or an unity feedback system. It will take four minutes to 
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compute a non -unity feedback system output. This is about 1/3 to 

1/4 the time required by Adams' method to attain comparable ac- 

curacy using the same digital computer. 

B. Synthesis 

In order to find the impulse response only, a similar pro- 

cedure as stated above can be used. If the response value at T 

has decreased to about 1100 of its maximum value and the divisor 

is around 70, the error will be less than 1/500 of the response 

maximum value. 

In order to find the equivalent transfer function of the impulse 

response, the computing range should be longer. The value of the 

impulse response at T should be around 110000 to 1/100000 of its maxi- 

mum in order to find accurate coefficients. The divisor is chosen as 100. 

It takes about one minute to compute the impulse response on 

the IBM 1620. The equivalent transfer function can be calculated in 

about nine minutes. 

The coefficients of a transfer function computed for differ- 

ent ranges are compared in Table 4. The transfer function is 

1 + s 

4 +2s +s2 



29 

Table 4. Comparison of Computed Transfer Functions 

T (sec) X1 X2 X3 X4 

True value .25000000 .25000000 .50000000 .25000000 

10.0 . 25081436 . 25 63 9184 .51969386 . 24160654 

5. 0 . 2535 6454 . 097199090 -.04270133 . 340205 67 

2. 5 . 22511990 .41002583 . 89874220 .314795 67 
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VI. CONCLUSION 

The methods represented in this paper furnish a practical 

way to analyze almost any kind of linear control system provided 

that it is stable. They also give an accurate method to compen- 

sating an existing system. The synthesis method mentioned in 

this paper provides a simple procedure for directly converting a 

computed impulse response to its transfer function. The impulse 

response can be obtained for any kind of an input signal and a 

reasonable output response. A complete synthesis program writ- 

ten in Fortran is contained in the appendix for reference. 

Common types of non - linear and time varying systems can 

also be solved by numerical methods. Analysis methods appear 

in some of the papers contained in the attached bibliography. 

It is hoped that high speed digital computers can be used 

along with analog -digital converters to solve routine problems 

for control engineers. The methods presented in this paper give a 

fundamental technique for this purpose. 
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APPENDIX 1 

OPEN LOOP ANALYSIS PROGRAM 

Input E 
Weighting Function A 
Computed Output C 
Read in H = Time increment in sec 

M = Number of intervals needed 

E(1) = EGO. 
A(1) = A(1)/2. 
DO 6 I= 2,M 

6 C(1) = E(1) *A(1) 
DO8 I=2,M 
K = 2 

DO7 J=I,M 
C(J) = C(J) + E (I-1)*A(K) 

7 K = K + 1 

8 CONTINUE 
C(1) = 4.* (C(2)+C(4)) -6. *C(3) - C(5) 
PUNCH 54 
DO 9 I = 1, M 

9 PUNCH 52, I, C(1) 
52 FORMAT (5X 14, 5X E14. 8) 
54 FORMAT (/10X 7H OUTPUT/) 

END 
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APPENDIX 2 

UNITY FEEDBACK SYSTEM ANALYSIS PROGRAM 

Input R weighting function A computed output C 
Read in H = time increments in sec 

M = number of intervals needed 

A(1) = A(1)/2. 
N = 1 

C(1) = O. 

PUNCH 54 
PUNCH 52, N, C(1) 
DO5 I=2,M 

5 C(I) = A(1)*R(I) 
E(1) = 0.5*R(1) 
D = 1. +A(1) 
DO 8 I = 2,M 
K = 2 

DO 7 J =I ,M 
C(J) = C(J)+E(I-1)*A(K) 

7 K=K+1 
C(I) = C(I)/D 
PUNCH 52, I, C(I) 

8 E(I) = R(I) - C(I) 
52 FORMAT (5X I4, 5X E14. 8) 
54 FORMAT (/10X 7H OUTPUT/) 

END 
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APPENDIX 3 

NON -UNITY FEEDBACK SYSTEM ANALYSIS PROGRAM 

Input R Weighting functions A and B computed output C 
Read in H = time increments in sec 

M = number of intervals needed 

A(1) = A(1)/2. 
B(1) = B(1)/2. 
N = 1 

C(1) = O. 

D(1) = O. 

E(1) = R(1)*O. 5 

PUNCH 54 
PUNCH 52, N, C(1) 
DO 5 I = 2,M 
D(I) = O. 

5 C(I) = A(1)*R(I)+E(i)*A(I) 
F = 1. +A(1)*B(1) 
DO 7 I = 2,M 
C(I) = C(I) - A(1)*D(I) 
C(I) = C(I)/F 
D(I) = D(I)+B(1) *C (I) 
E(I) = R(I) - D(I) 
L = 1+1 
K = 2 

DO6 J=L,M 
D(J) = D(J)+C(I)*B(K) 
C(J) = C(J)+E(I) *A(K) 

6 K=K+1 
7 PUNCH 52, I, C(I) 
52 FORMAT (5X I4, 5X E14. 8) 
54 FORMAT (/10X 7H OUTPUT/) 

END 
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APPENDIX 4 

OPEN LOOP SYNTHESIS PROGRAM 

Input E Output C Computed weighting function A 
Computed transfer function 

Numerator GN(1) +GN(2)S +GN(3)S2 
Denominator GD(1) +GD(2)S +GD(3)S2 

READ 51, DELTA 
IF (E(1)) 11, 15, 12, 

11 P = -E(1) 
GO TO 13 

12 P = E(1) 
13 IF (P- DELTA) 15, 15, 14 
14 SK = C(1) /E(1) 

PUNCH 64 
PUNCH 59, SK 
DO 4I = 1, M 

4 C(I) = C(I) - SK *E (I) 
E(1) = E(1)O2. 
DIMENSION X (5, 6), Y(4, 5) 
DO 22 I = 2, 5 

22 X(I, 1) = C(I) *2. 
X(1, I) =O. 
X(1, 2) = 1. 

DO 23I =2,5 
23 X(I, 2) = E(I) 

X(1,3) _ -4. 
DO 24 I = 2, 5 

24 X(I, 3) = E(I -1) *2 
X(1, 4) = 6. 
X(3,4) = E(1)*2. 
X(4, 4) = E(2) *2. 
X(5, 4) = E(3) *2. 
X(1,5) = -4. 
X(4,5) = E(1) *2. 
X(5, 5) = E(2) *2. 
X(1, 6) = 1. 
X(5, 6) = E(1) *2. 
DO31I = 1,5 

31 Y(1, I) = X(5, I) -X(1,I) *X(5, 6) 
DO 32 I = 1,4 
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32 Y(2,I) = X(4, I)*Y(1, 5)-Y(1, I)mX(4, 5) 
DO 33 I = 1,3 

33 Y(3, I) = X(3, I) *Y(2, 4)-Y(2, I) *X(3, 4) 
DO 34 I= 1,2 

34 Y(4, I) = X(2, I)*Y(3, 3)-Y(3, I)mX(2, 3) 
A(1) = Y(4, 1)/Y(4, 2) 
A(2) = (X(2, 1)-A(1)*X(2, 2))/X(2, 3) 
A(3) = (X(3, 1)-A(1)mX(3, 2)-A(2)MX(3, 3))/X(3, 4) 
A(4) = (X(4, 1)-A(1)mX(4, 2)-A(2)mX(4, 3)-A(3)*X(4, 4))/X(4, 5) 
A(5) = X(5, 1)-A(1) *X(5, 2)-A(2)MX(5, 3)-A(3)*X(5, 4)-A(4)^X(5, 
A(5) = A(5)/X(5, 6) 
PUNCH 55 
DO35I=1,5 

35 PUNCH 52, I, A(I) 
DO 36 I = 6, M 

36 A(I) = O. 

A(1) = 0. 5*A(1) 
DO38I=1,5 
DO 37 J = 6, M 
K = J-I+1 

37 A(J) = A(J) + A(I)*E(K) 
38 CONTINUE 

D040 I= 6,M 
A(I) = (C(I) - A(I))/E(1) 
PUNCH 52, I, A(I) 
K = 

L = I+1 
D039 J=L,M 
A(J) = A(J)+A(I)*E(K) 

39 K =K+1 
40 CONTINUE 

GO TO 20 
15 DO16I=1,M 
16 A(I) = 0. 

DO 18I = 1, M 
A(I) = (C(I+1)-A(I))/E(2) 
K = 3 

L = I+1 
DO 17J =L,M 
A(J) = A(J)+A(I)*E(K) 

17 K = K+1 
18 CONTINUE 

5) 

2 
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AT = 4. *(A(2)+A(4))-6. *A(3)-A(5) 
PUNCH 55 
N = 1 

PUNCH 52, N, AT 
DO 19 I = 2, M 

19 PUNCH 52, I, A(I) 
SK = A(1) - AT/2. 
PUNCH 64 
PUNCH 59, SK 
A(1) = AT/2 

20 PUNCH 56 
A(1) = A(1) *2. 
DO 21 I = 1,M 
D(I) = A(I)/H 

21 PUNCH 52, I, D(I) 
A(1) = A(1)/2. 
DIMENSION U(4), V(4), W(100), Z(100) 
DIMENSION GD(3), GN(3) 
DO 101 I = 1,4 
V(I) = O. 

101 U(I) = O. 

V(1) = A(1) 
W(1) = O. 

DO 102 I = 2, M 
V(1) = V(1) + A(I) 
W(I) = W(I - 1) + H 
Z(I) = A(I)*W(I) 
V(2) = V(2) + Z(I) 
Z(I) = Z(I)*W(I) 
V(3) = V(3) + Z(I) 
Z(I) = W(I) *Z(I) 

102 V(4) = V(4) + Z(I) 
V(2) = -V(2) 
V(3) = O. 5*V(3) 
V(4) = -V(4)/6. 
U(1) = V(1) 
S = V(2)*V(3) 
U(3) = (S-V(1)*V(4))/(V(1)*V(3)-V(2) er,V(2)) 
U(4) = ( V(3)+V(2)*U(3))/(- V(1)) 
U(2) = V(2)+V(1)*U(3) 
PUNCH 60 
DO 104 I = 1,4 

104 PUNCH 52, I, V(I) 
PUNCH 61 
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DO 105 I = 1, 4 
105 PUNCH 52, I, U(I) 

GN(1) = SK +U(1) 
GN(2) = SK *U(3) +U(2) 
GN(3) = SK *U(4) 
GD(1) = 1. 

GD(2) = U(3) 
GD(3) = U(4) 
PUNCH 62 
DO 106 I = 1,3 

106 PUNCH 52,1 GN(I) 
PUNCH 63 
DO 107 I = 1,3 

107 PUNCH 52, I, GD(I) 
51 FORMAT (E8. 0, E8. 0, E8. 0) 
52 FORMAT (5X I4, 5X E14. 8) 
55 FORMAT ( /1X 27H COMPUTED WEIGHTING FUNCTION) 
56 FORMAT ( /2X 26H COMPUTED IMPULSE RESPONSE/) 
59 FORMAT (20X E14. 8/) 
60 FORMAT ( /10X 2H Y/) 
61 FORMAT ( /10X 2H X/) 
62 FORMAT ( /10X 23H NUMERATOR COEFFICIENTS /) 
63 FORMAT ( /10X 25H DENOMINATOR COEFFICIENTS /) 
64 FORMAT ( /5X 39H PARALLEL CONSTANT TRANSFER 

FUNCTION IS) 
END 
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APPENDIX 5 

EXAMPLE OF UNITY FEEDBACK SYSTEM ANALYSIS 

Input: r(t) = U(t) 
Impulse response: g(t) = t e 
Time increment: h = 0.1 sec. 

Time Computed Output True Output Error 
0 00000000 00000000 .00000000 
1 00452418 00467502 -.00015083 
2 01719474 01746637 -.00027162 
3 03630559 03667131 -.00036571 
4 06034332 06077974 -.00043641 
5 08797965 08846652 -.00048686 
6 11806193 .11858195 -.00052002 
7 14960215 .15014081 -.00053866 
8 18176502 .18231033 -.00054531 
9 21385542 .21439766 -.00054224 

10 24530550 .24583702 -.00053152 
11 27566192 .27617691 -.00051499 
12 30457336 .30506759 -.00049423 
13 33177835 .33224893 -.00047058 
14 35709365 .35753887 -.00044522 
15 38040354 .38082260 -.00041906 
16 40164947 .40204243 -.00039296 
17 42082101 .42118848 -.00036747 
18 43794698 .43829017 -.00034319 
19 45308824 .45340859 -.00032035 
20 46633035 .46662967 -.00029932 
21 47777788 .47805806 -.00028018 
22 48754889 .48781192 -.00026303 
23 49577037 .49601827 -.00024790 
24 50257431 .50280910 -.00023479 
25 50809456 .50831814 -.00022358 
26 51246381 .51267802 -.00021421 
27 51581165 .51601817 -.00020652 
28 51826257 .51846297 -.00020040 
29 51993487 .52013048 -.00019561 
30 52093928 .52113143 -.00019215 
31 52137883 .52156853 -.00018970 
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Time Computed Output True Output Error 

32 .52134782 .52153607 -.00018825 

33 .52093220 .52111977 -.00018757 

34 .52020916 .52039672 -.00018756 

35 . 51924759 . 51943563 -. 00018804 

36 . 51810804 . 51829704 -. 00018900 

37 . 51684348 . 51703371 -. 00019023 

38 .51549941 .51569114 -.00019173 

39 .51411461 .51430797 -.00019336 

40 .51272155 .51291661 -.00019506 

41 .51134689 .51154370 -.00019681 

42 .51001221 .51021076 -.00019855 

43 . 50873444 . 50893465 -.00020021 

44 .50752641 .50772818 -.00020177 

45 .50639729 .50660055 -.00020326 

46 .50535327 .50555787 -.00020460 

47 . 50439781 . 50460362 -.00020581 

48 .50353217 .50373904 -.00020687 

49 . 50275566 . 50296351 -.00020785 

50 .50206631 .50227494 -.00020863 

51 .50146073 .50167001 -.00020928 

52 .50093470 .50114451 -.00020981 

53 .50048331 .50069356 -.00021025 

54 .50010121 .50031180 -.00021059 

55 .49978281 _49999361 -. 00021080 

56 .49952225 .49973321 -.00021096 

57 .49931382 . 49952483 -.00021101 

58 .49915181 .4993 6283 -.00021102 

59 .49903076 .49924172 -.00021096 

60 .49894542 .49915629 -.00021087 

61 .49889086 .49910162 -.00021076 

62 .49886250 .49907311 -.00021061 

63 .49885611 .49906654 -.00021043 

64 .49885611 .49906654 -.00021043 

65 .49889413 .49910418 -.00021005 

66 .49893191 .49914177 -.00020986 

67 .49897844 .49918808 -.00020964 

68 .49903123 .49924068 -.00020945 

69 .49908821 .49929750 -.00020929 
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APPENDIX 6 

EXAMPLE OF UNITY FEEDBACK SYSTEM SYNTHESIS 

Input: r(t) = U(t) 
Output: c(t) = 0. 5 + 0. 707 e -t sin (t -3 n /r) 
Time increment: h = 0. 1 sec. 

Computed Impulse 
Time Response 

True Impulse 
Response Error 

0 00168218 . 00000000 . 00168218 
1 .09182608 .09048374 .00134233 
2 .16488101 .16374614 .00133487 
3 .22314089 .22224546 .00089543 
4 26889979 26812801 .00077178 
5 .30386574 .30326532 .00060042 
6 .32981960 .32928698 .00053262 
7 .34801640 .34760971 .00040669 
8 .35983960 .35946317 .00037643 
9 .36619360 .36591269 .00028091 

10 .36815380 .36787944 .00027436 
11 .36635680 .36615819 .00019861 
12 .36164060 .36143305 .00020755 
13 .35443620 .35429132 .00014488 
14 .34539860 .34523574 .00016286 
15 .33480380 .33469523 00010857 
16 .32316660 .32303443 .00013217 
17 31064500 31056199 .00008301 
18 .29764840 .29763800 .00011040 
19 .28424440 .28418037 .00006403 
20 .27076420 .27067056 .00009364 
21 .25720680 .25715849 .00004831 
22 .24384740 .24376694 .00008046 
23 .23063040 .23059534 .00003506 
24 .21779200 .21772309 .00006891 
25 .20523640 .20521249 .00002391 
26 .19317000 .19311130 .00005870 
27 .18146880 .18145488 00001392 
28 .17031680 .17026817 00004863 
29 .15957240 .15956734 00000506 
30 .14940120 .14936120 00004000 
31 .13965000 .13965252 00000252 
32 .13046980 .13043905 00003075 
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Time 
Computed Impulse 

Response 
True Impulse 
Response Error 

33 . 12170600 . 12171445 -. 00000845 
34 .11349160 .11346911 .00002249 
35 .10567620 .10569084 -.00001464 
36 .09838240 .09836540 .00001699 
37 .09145580 .09147704 -.00002124 
38 .08502060 .08500893 .00001166 
39 .07891760 .07894345 -.00002585 
40 .07327120 .07326255 .00000864 
41 .06791640 .06794796 -.00003156 
42 .06298640 .06298142 .00000497 
43 . 05831020 . 05834480 -. 00003460 
44 .05402240 .05402029 .00000210 
45 . 04995380 . 04999048 -.00003668 

46 . 04623800 . 04523844 -. 00000044 
47 .04270940 .04274780 -.00000238 
49 . 03644940 . 03648825 -. 00003885 

50 . 03368640 . 03368973 -. 00000333 
51 . 03105340 . 03109340 -. 00004000 
52 . 02868080 . 02868613 -. 00000533 

53 . 02641780 . 02645544 -. 00003764 
54 . 02438240 . 02438953 -. 00000713 

55 .02244040 .02247724 -.00003684 
56 . 02070080 . 02070803 -. 00000723 
57 . 01903520 . 01907200 -. 00003680 
58 . 01755460 . 01755981 -. 00000521 

59 .01612460 .01616272 -.00003812 
60 . 01486900 . 01487251 -. 00000351 

61 . 01364520 . 01368149 -. 00003629 
62 . 01257900 . 01258246 -. 00000346 
63 .01153260 .01156872 -.00003612 
64 . 01063180 . 01063396 -. 00000216 
65 . 00973860 . 00977235 -. 00003375 
66 . 00897600 . 00897842 -. 00000242 
67 . 00821420 . 00824710 -. 00003290 
68 .00757400 .00757367 .00000032 
69 .00692100 .00695371 -.00003271 


