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DIGITAL COMPUTER ANALYSIS AND SYNTHESIS OF LINEAR
FEEDBACK CONTROL SYSTEMS USING
SUPERPOSITION INTEGRALS

I. INTRODUCTION

The numerical method of analysis and synthesis of linear
networks started in 1947 when Professor Tustin published his time
series method for analyzing the behavior of linear systems (14).

The results of this method are coincident with some later developed
numerical methods using superposition integrals.

Truxal (13), Ragazzini and Bergen (10) in 1954 introduced the
Z -transformation method developed originally for the sampled-
data system to the analysis of linear systems. Ba Hli (2) applied
Tustin's method to obtain the approximate impulse response of an
open loop system in 1953, which along with Kautz's (7) work of 1954
gave a general idea of time domain synthesis.

In 1955 and 1956, Cruickshank (5), Boxer and Thaler (4)
gave a different approximation method for converting Laplace trans-
form output into time response. Stout (11) suggested his step-by-step
method for transient analysis of control systems in 1957; Naumov
(9) in his paper of 1961 set up an approximate method for calculating
the time response of unity feedback control systems from its Laplace
transform transfer function.

Adams (1)in 1962 has proved the possibility of digital computer
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analysis for unity feedback system from its given transfer func-

tion.

Sometimes, the transfer function of an existing system is

not known.

If the system is to be linear or nearly linear, it is

possible to find its impulse response from the input signal and

the output response.

The main interests of this paper are how to use the digital

computer to find:

1.

The time response of linear, open loop, unity feedback
and non-unity feedback systems from their impulse
responses and a given input signal.

The impulse response of an existing open or closed
loop system from the input signal and output transient
response.

The impulse response of a desired compensating net-
work for improving an existing system from the system
input signal, output time response and the impulse
response.

The transfer function of a network from its impulse
response provided the steady state value of the impulse

response is zero.

Numerical methods of trapezoidal rule and extrapolation

are used in calculation of functions from superposition integrals.



II. ANALYSIS

A. Open Loop System:

Suppose an open loop system as shown in Figure 1 has its
linear or linearized transfer function represented by G(s), with
input E(s) and output C(s). Then:

C(s) = E(s) G(s) (1)
The transfer function can usually be represented as:

A(s)
B(s)

G(s) (2)

where A(s) and B(s) are polynomials of s, and because of the
physical nature, the degree of B(s) is either equal to or greater

than the degree of A(s).

E(s) ——— G(s) [—— C(s)

Figure 1. Open loop system I

First let us consider the case where the degree of B(s)
is greater than the degree of A(s). The impulse response of this
system will be a continuous time function, say:

g(t) = Lt {G(s)} (3)
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Since this system is linear, the superposition theorem can be ap-
plied, and the transient time response of the output can be repre-

sented as:

t
c(t) = f e(t-T) g(T) dT (4)
o } . .
t
or c(t) = Ie(T) g(t-T) dT (5)
o
where e(t) = Lot {Ks)} , (6)

the time function of the input voltage.

If the numerical values of e(t) and g(t) are known, the
approximate values of the equation (4) or (5) can be calculated
by numerical methods. The simplest numerical integration me-
thod that can be applied to this problem is the trapezoidal rule.

Let the numerical values of e(t) and g(t) at equally spaced

time increments be represented as:

Time 0 h 2h 3h  4h
e(t) e1 e, e, e4 e5
g(t) g, 8, & g, &

The approximate values of the integral when calculated by

trapezoidal rule are:

e g e g
I ®n+1 n+tl ~1
c(nh)=h(—T— +e2gn+e3gn_l+ +eng2+————-—

where n =0, 1, 2,



L = h : h) = hen:
et a g , and: c(nh) SR then
. ) elaz s [S] al
2 2 2
€133 ‘e . €32
€3 ~ 22 2
ela enal
n
= +... +
Tz ten17%3%h2 e 122t 2 8

The function a = h g, is called the weighting function.

This method was first introduced by Tustin, (14) where he used
zll-ela1 as the initial value of the output. This approach has also
been adopted by Adams (1). Obviously, thisis not a close approxima-
tion especially when the initial values of the input and system im-
pulse response are high.

The initial value of the output is always zero for a transfer

function with a continuous impulse response, since by the initial-

value theorem,

A(s
B(s

—

lim lim lim
f =0 c(t) = s_’Oos C(s) = S_’OOR(S) s

(9)

~—

The degree of the numerator of R(s) is always less than its de-
nominator, since any deterministic input signal r(t) may be con-
sidered to be composed of steps, ramps, parabolas or any com-

bination of their functions. Therefore, from Equation (9), the



initial value of c(t) is always zero.

Now, suppose that the degree of A(s) is equal to the de-

gree of B(s), and

a s + n-ly oy +
LS a,s c..ta sta
G(s) = n n-1
+
bls + b2s + +bns bn+1
Then, by division,
a
1 U(s) U(s)
G = — + = K +
T Vi)

where K 1is a constant and the degree of U(s)

the degree of V(s).

(10)

(11)

is one less than

Equation (11) can be considered as two transfer functions

connected in parallel as shown in Figure 2.

E(s) —)

Figure 2.

5 K €\t
N
4

o _U(s)
vis) | Cof8)

Open loop system II

C(s)



From Equation (11) and Figure 2,

C(s) = KE(s) + E(s) 352; (12)
where: Cl(s): K E(s) (13)
and Cl(t) = Ke(t) (14)
which can be found by:

c = K e (15)

In n

_ U(s)
C,(s)= E(s) T3 (16)

Values for CZ(t) can be found by the previous method of continu-
ous impulse response, and:
c = c + c (17)

0
21 ’

Since c¢

c. = ¢ = Ke (18)

R (s)—a()A8) G(s) C(s)

Figure 3. Unity feedback system



In the unity feedback system as shown in Figure 3,

E(s) R(s) - C(s) (19)

or: e(t) r(t) - cf(t) (20)
where r(t) is the input time function.
In order to calculate c(t) from Equation (8), Adams (1) sug-

gested a linear extrapolation method to estimate c' from
n

C1 and ST Then e s found by

e = r - c' (21)

This e is used in Equation (8) to find the final approximate -

Adams' method does not give a very good result. First,
the value of € calculated from the improper initial value <)
created some error when applying Equation (8). Second, the
linear extrapolation introduced significant error especially when
the slope of the output response is changing rapidly.

Two different methods have been studied here in the at-
tempt to find a better solution:

In the first method, a higher order extrapolation formula
is used to find c;l, such as a Newton's 4th order extrapolation
formula:

= 4c -6c¢c +4c -c (22)

For the starting points, lower order extrapolation formulas have

to be used. Then by applying Equations (21) and (8), a second



approximation C'r; can be calculated, and this C'r; may be used
again by applying Equations (21) and (8) to find a more precise
value of <. This c ~may be used as the final approximated
value of the output and the e required in successive calculations
is obtained by:
e = r - ¢ (23)

The remaining problem in this method is how to determine
the initial value of the output. The overall transfer function of
the unity feedback system:

G(s) _ A(s)
1 +G(s)  A(s) + B(s)

(24)

The degree of the numerator and denominator are the same as the
degree of the numerator and denominator of the transfer function
itself. If the transfer function has a continuous impulse response,
the initial value of the output < is always zero.

The results of the above method are satisfactory as shown
in Table 2. This method is discarded later however, since it re-
quired laborious calculations.

The second method is derived from Equations (8) and (23).

Since:

€2 (r -c )a1
n n
= + L4+ = = =
“n 2 ©2%n-1 ®n-1%2 7 2 (25)

or:
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) (26)

In order to facilitate computations, a computation table as
shown in Table 1, is made. The computation sequence is: first
row, first column; second row, second column, third row and so

forth.

1
1+ s

The same example as used by Adams for G(s) =
and h =0 1 sec. is calculated by desk calculator, using both the
first and the second method. The results are listed in Table 2,

for comparison.

Table 1. Unity-feedback Analysis Computation

Time 0 h 2h 3h 4h
Input r r r r r
Weighting ! 2 3 4 >
¢ )
unction al a2 a3 a4 a5
0 e ) N |
2 2 2 '3 2 "4 275
(Lo, L, o
2 %2 2 %3 2 %4 2 %5
€222 %233 2%
3% ©3%3
€422
Summation
of column a, q, d5 4 g
¢ =9 0
n —_— K =
D ‘1 ) 3 ‘4 ‘s
e =T -c e1 = r1 e2 e3 e4 e5

a
1
D—l+°‘é—
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Table 2. Comparison of Analysis Results

1
Results from G(s) =

R(s) = U(t), h =0.1 sec.

1 +s’
Time Adams method True value 2nd method 1st method

0 0. 25 0 0 0

0.1 0.09274 0.09063 0.09070 0.09048
0.2 0.16888 0.16484 0. 16496 0.16502
0.3 0. 22855 0. 22559 0. 22575 0. 22579
0.4 0.27642 0. 27533 0. 27552 0. 27555
0.5 0.31619 0.31606 0.31628 0.31632
0.6 0. 34887 0. 34940 0.34962

0.7 0.37670 0.37693

0.8 0. 39905 0.39926

0.9 0.41735 0.41758

1.0 0. 43233 0.43257

Nevertheless, the above mentioned methods can only be
applied when the numerator of G(s) is less than the degree of
its denominator, or when the transfer function G{(s) has a con-
tinuous impulse response. If the degree of the numerator of
G(s) is equal to the degree of its denominator, G(s) can be mani-

pulated as Figure 2 and Equation (11) and:

e 2, (rn—cn)al
c. =3 +e2an_l+...+en_la2+—T——+K(rn-cn) (27)
or
cn = ! [elan te_a +...+e _a +(1+K)r] (28)
a 2 2 n-1 T o n-12 "2 n
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The value of

c1 =K el = K (r1 - Cl) (29)
Krl
or:
“1 717K (30)

Therefore, the initial value of the output is always less than the initial
value of the input signal when K> 0. When K = 0, Equation (28) equals

Equation (26) and ¢, = 0.

C. Closed Loop System With Non-unity Feedback

r(t) +\_m e(t) G(s) . c(t)

Figure 4. Non-unity feedback system I

If we know the transfer functions G(s) and H(s), this whole
system can be considered either as an open loop system of transfer

function:

G(s)

G'(s) 1 + G(s) H(s)

(31)

or can be transformed to a unity feedback system with the open loop

transfer function:

\ - G(s)
G's) = T5GE) Hes) - Gs) (32)
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Then, if the impulse response of either of the above transfer
functions can be calculated, c(t) can be calculated by one of
the previous methods. Suppose the impulse responses g(t) and

h(t) are given as:

Time 0 h 2h 3h 4h
g(t) g, g, g5 84 8¢
h

(t) h, h, h, h, h,

at equally spaced time increments, and it is known that they are

both continuous. Then: ¢, = d1 = 0, e, = rl, and:
e 2 e 2
n n
= + S
“n 2 eZan-l e en—laZ * 2 (33)
c1 b c b1
n n
dn- 5 +C2bn—l+"' +Cn-1b2+ > (34)
e =r -d (35)
n n n
where:
a =

hgn and bn:hh

n n

Solving Equations (33), (34) and (35),

1 1 1
“n ” 1 [Ealrn+ielan+e2an-l HERE +en-la2
1+=— a b
1 1
1 1
33, (Eclbn+c2bn_l+ +cn_lb2)] (36)

If the degree of the numerators of both G(s) and H(s)

are equal to the degree of their denominators, Figure 4 can be
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transformed to Figure 5.

) — SO — > clt)

G, (s)

+

A
H. (s)

d(t

Figure 5. Non-unity feedback system II

and:
d =Lcb 4eb 4 o botic b +K (37)
n- 2% 21T T2 T 2 %1 T et
C -le a +e +...+e + +K)r ) 38)
n 2 1°n Zan-l °e an(a ( _n (
h = =hh
where a hgln and bn h in
Therefore:
c = 1 {(—a+K)r +lea +e_a + +
- 1 _ o o o
nl+( +K)(b+K)21 2 1 n 2 n-1
e 1% ( a, +K )( SN b +c2b _1+...+cn_1b2)} (39)
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The value of

c. = _1 1 (40)

1+
KIKZ

When Kl = KZ = 0, Equation (39) is equal to Equation (36). Table

3 shows the computation procedure.



Table 3. Non-unity Feedback Analysis Computation

16

T r

r

r

1 2 3 4
L a
231 22 a3 4
1y b b b
21 2 3 4
1 1
= = Za +
€ Ga, vk, 7 Ky (za KT,
rlKl l—e a le a "l—e a
1+K_K 2°1%3 193 194
12
-2, tK )P, €222 €223
(—l-a +K ) e.a
"2 P3 S3%;
(la +K )
AV B R
+)
Summation q, 5 Ay
c, qn/F c2 c3 C
©3°;
b, €,P3
1 1 1
= = —c. b
+) Z ©1°2 213 2174
Summation P 5 p3 p4
5 L1y b c ~b.c
2 °1%2 2°1°3 14
d d d
2 3 4
en-rn-dn e2 e3 e4
T
h : = - =
where e r1 CIKZ

I+ KIKZ

W
)
o
|
i

1 1
=1+ (Eal +K1)(Ebl +K2)
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III. SYNTHESIS

In Figure 1, if e(t) and c(t) are given, and if we know
that the impulse response of the system is a continuous function

of time, then from Equation (8):

a:—g——(c -—a_ e - a_e -. .. -a e ) (41)
noe,

where el # 0
Therefore, the impulse response can be calculated in terms of
the input signal and output time response.

In order to start the computation of Equation (41), the ini-
tial value of the impulse response has ta be found. Different start-
ing procedures have been studied. The only satisfactory procedure
is to use a high order extrapolation formula for finding the initial
value by simultaneous equations. For example, if Newton's bino-

mial formula of order 4 is used:

0 = -4 + 6 -4 +
a1 a2 a3 a4 a5
C —l—ea +lea
2 2 21 21 2
c. = —e_a_  te_a +lea
37 2 3°1 272 27173
c, = —e a_ +te_e +ea+lea
4 2 41 3 2 2 3 2 1 4
1 1
c_= —e_a_ tea_+e_a_te_.a +—-e a (42)

5 2571 4 2 3°3 24 215
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Solving the above equations - by using a digital computer, the
first five values of the impulse response can be found, and the
successive values can be computed by applying Equation (41).

To determine experimentally whether the transfer func-
tion of this system has equal degree in its numerator and de-
nominator, the best way is to apply an input signal with non-zero
initial value. A non-zero initial value for the output indicates
that numerator and denominator are of the same degree.

Since for an input signal of non-zero initial value, the de-
gree of the deonominator of its Laplace transform will be one

greater than its numerator, let it be represented by

- -2

P(s) a(sm 1+ pl sm +...+pm-l)
E(s) = (43)

Q(s) sm + sm_l + +

q, ceeta
The transfer function of the system is
U (s)
G = K+ 11
(s) vio) (11)

then by the initial-value theorem,
lim c(t)—lim s 4P sm-l+...+pm-ls (K +U(s)) (44)
t—0 Ts—0 O m m-1 V{(s)

s +qls +...+qm

Mmoo By kg Sls)

§—c0 Q(s) D(S))

= aK (45)
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Since a = e _:

1

c. = (46)

Therefore:

After K is found from Figure 2 and Equations (14) and

(15):

cz(t) c(t) - K e(t) (48)

or:

c = ¢ - Ke (49)

2n n n

U(s)
Vi(s)

be found by the method of Equations (41) and (42).

Then the impulse response of the term in Equation (11) can
In the case where it is impossible to use an input signal
with non-zero initial value or when doing compensating synthesis
as will be discussed later, the constant K in Equation (11) can be
computed by the use of the second value of the input signal e,

provided that €, is correct and is not too small:

When e1 = 0, from Equation (27),:

1 1
= = + = (= + 0
¢, Tz ey tKe, = (73, K e, (50)
C
1 2
or Eal + K = - (51)
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After the rest of a's have been found by:

I (52

1
a = e—[cn - (K+Eal)en-a2en_l- ceoma ey

The value a_. can be determined by using a high order extrapola-

tion formula similar to that used in Equation (42), then:

}-al (53)

1
K = (Kfza)-3

When K is zero, Equations (50) - (53) can still be used.

The above is a general method for finding the impulse re-
sponse of an open loop system. If the system is a unity feedback
system as shown in Figure 3, and r(t) and c(t) are given as dis-
crete values at equally spaced time increments, then:

e(t) = r(t) - c(t) (20)
or

e =T r -c (21)
If the system is a non-unity feedback system as shown in Figures
4 or 5, and r(t), h(t), and c(t) are given as discrete values at
equally spaced time increments, then

t
d(t) = I c(T)h(t-T)dT (54)
o

The open loop analysis method mentioned before can be used to
find d(t), and then e(t) is found by:

e(t) = r(t) - d(t) (55)

or
e =r -d (35)
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From the computed e(t) and the given c(t), the required g(t)
can be found.

If the impulse response found from the above is mainly
for analysis use, there is no need to convert it to the frequency
domain. The method for finding the equivalent transfer function
of certain system with given impulse response will be discussed

in the next section.



22

Iv. COMPENSATION OF CONTROL SYSTEM

A. Compensation

Suppose a control system as shown in Figure 3 or 4 is
given. If the time response of the system when computed by the
analysis method mentioned before does not give a satisfactory re-

sult, usually, a series or feedback compensating circuit can be

used to improve the output response as shown in Figure 6 and

Figure 7
r(t) + e(t)
o ® = F(s) G(s) > c(t)
d(t
(t) H(s)
Figure 6. Series compensating system
r(t) T e(t)
TQ G(s) > cft)
M
d(t) . kit
F(s) ) H(s) [
Figure Feedback compensating system
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For the series compensating method, if r(t), g(t) and h(t) are

given for a desired c(t), d(t) can be found by Equation (54 and e(t) can
be obtained from Equation (35). In order to facilitate the computation,

the compensating circuit should be arranged as shown in Figure 8.

For a linear system, this change does not effect the result.
The values of k(t) can be then found by applying the open loop analy-

sis method, and f(t) is obtained by the synthesis method mentioned

before.

+

k(t) (t)
r(t)__;gp._e.(_ﬂ;.‘ Gls) 19 I (s) clt) 5

d(t)

H(s) [

Figure 8. Rearranged series compensating system

For the feedback compensating system, since:
t

f e(T)g(t-T)AaT (5)
(o]

t
I k(T)h(t-T)dT (56)

c(t)

and: c(t)

It

e(t) and k(t) can be computed by the method used for synthesis.
Then, d(t) is found by Equation (35). Now f(t) can be computed

by the synthesis method.
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B. Calculation of the Compensating Transfer Function

In order to find the transfer function from its impulse re-

sponse, the superposition integral is used again. Since:
Q0
-st
G(s) = f g(t) e dt (57)
(o]
and from:
eX=l+x+%x2+... (58)
the transfer function can be represented as:
1 -hs -2hs -3hs
=h(x + + v 5
G(s) (78, t8,¢ 83° - +...) (59)

1 1.2 2 1.3 3
— - —h - —h
a +a2(1 hs+z s z s +...)

21

1 2 1 3
+a3(l—2hs +E(2hs) -7 (2hs)™ +...)

+ .
1 2 3
+an[l-(n-1)hs + 5 ((n-1)hs) --g((n-l)hs) +...] (60)
o0 o0 o0 2
1 - 2.8
=(za, + Z a) - (z a_(n-1)h)s +( Zan((n-l)h) Y
n=2 n=2 n=2
X 3 s3
-(E a ((n-Dh))g +... (61)
n
n=2
=Y1+st+Y3sz+Y4s3+... (62)

where, a =hg , and h = time increment, as used before.
n n

In Equation (62), Yl is the total area between the impulse

response curve and the time axis. It is just the summation of all

the values of the weighting function. The other Y's can also be
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calculated from the weighting function.
In order to avoid laborious computation, it is assumed
that the transfer function of the continuous impulse response has

a denominator of degree 2 and a numerator of degree 1:

X + X_ s
1 2
G(s) = - (63)
1 +X s+ X s
3 4
Compare Equation (62) and (63), :
Xl = Y1
X2 = Y2 + Y1X3
0 =
Y3 +Y1X4+Y2X3
0 = + X + X : 64
Y4 YZ 4 Y3 3 (64)

Solving the above equations, the continuous transfer function Gf(s)
can be determined. If the system has a parallel constant transfer
function K as indicated in Equation (11), the total transfer function

will be

(K+Xl) + (KX3+X2) s + KX4 s‘2
G(s) = > (65)
1+ X3 s + X4 s

Therefore, as long as the impulse response or its weighting
function is known, the transfer function can be calculated and re-
presented as either Equation (63) or (65). This quadratic transfer
function can then be checked with the original system. The new

system can be further compensated by adding additional networks
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of the form of Equations (63) or (65). These networks are found by
applying the above method. With this compensating procedure, or-

dinary systems can always be compensated.
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V. EXAMPLES AND THEIR ACCURACY

A. Analysis

Several examples similar to those used in Adams' paper
have been computed by using the IBM 1620. Different time incre-
ments were used in order to find the best choice, i.e. satisfactory
results and not too laborious computation. The conclusions are:

1. Find the time from the given impulse response curve
where the value has decreased to about 1/100 of the maximum
value; say T.

2. Choose the time increment h equal to T divided by
a convenient number around 60 to 80, and choose T as the com-
puting range. Since beyond T, the response will be approaching
steady state.

3. Compute the output response, from which find a new
T. The value of T should be just large enough to include the en-
tire transient period. This T will be divided by a convenient
number around 70 to find a new h; then compute again. The final
results will give a response accurate to the third place.

The IBM 1620 takes about one minute acutal computing
time (input time are not included) to compute the output of an open

loop or an unity feedback system. It will take four minutes to
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compute a non-unity feedback system output. This is about 1/3 to
1/4 the time required by Adams' method to attain comparable ac-

curacy using the same digital computer.
B. Synthesis

In order to find the impulse response only, a similar pro-
cedure as stated above can be used. If the response value at T
has decreased to about 1/100 of its maximum value and the divisor
is around 70, the error will be less than 1/500 of the response
maximum value.

In order to find the equivalent transfer function of the impulse
response, the computing range should be longer. The value of the
impulse response at T should be around 1/10000 to 1/100000 of its maxi-
muminorder tofindaccurate coefficients. The divisor is chosenas 100.

It takes about one minute to compute the impulse response on
the IBM 1620. The equivalent transfer function can be calculated in
about nine minutes.

The coefficients of a transfer function computed for differ-

ent ranges are compared in Table 4. The transfer function is
1 +s

2
4 +2s + s
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Table 4. Comparison of Computed Transfer Functions
T (sec) Xl X2 X3 X4
True value 25000000 . 25000000 . 50000000 . 25000000
10.0 . 25081436 .25639184 .51969386 . 24160654
5.0 . 25356454 . 097199090 -.04270133 . 34020567
2.5 .22511990 .41002583 . 89874220 . 31479567
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V. CONCLUSION

The methods represented in this paper furnish a practical
way to analyze almost any kind of linear control system provided
that it is stable. They also give an accurate method to compen-
sating an existing system. The synthesis method mentioned in
this paper provides a simple procedure for directly converting a
computed impulse response to its transfer function. The impulse
response can be obtained for any kind of an input signal and a
reasonable output response. A complete synthesis program writ-
ten in Fortran is contained in the appendix for reference.

Common types of non-linear and time varying systems can
also be solved by numerical methods. Analysis methods appear
in some of the papers contained in the attached bibliography.

It is hoped that high speed digital computers can be used
along with analog-digital converters to solve routine problems
for control engineers. The methods presented in this paper give a

fundamental technique for this purpose,
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APPENDIX 1

OPEN LOOP ANALYSIS PROGRAM

Input E

Weighting Function A

Computed Output C

Read in H = Time increment in §ec

9

M = Number of intervals needed

E(1) = E(1)/2.

A(l) = A(1)/2.

DO6 1=2,M

C(l) = E(1) *A(1)

DO8 I=2,M

K=2

DO7 J=1I,M

C(J) = C(J) + E (I-1)*A(K)
K=K+1

CONTINUE

C(1) = 4. * (C(2)+C(4)) -6. *C(3) - C(5)
PUNCH 54

DO9 1 =1,M

PUNCH 52,1, C(1)

52 FORMAT (5X 14, 5X E14. 8)
54 FORMAT (/10X 7H OUTPUT/)

END



APPENDIX 2

UNITY FEEDBACK SYSTEM ANALYSIS PROGRAM

Input R weighting function A computed output C
Read in H = time increments in sec
M = number of intervals needed

A(l) = A(1)/2.
N =1
C(1) = 0.
PUNCH 54
PUNCH 52, N, C(1)
DO5 1=2,M

5 C(I) = A(1)*R(I)
E(1) = 0. 5%R(1)

D= 1.+A(l)
DO8 I =2,M
K =2

DO7 J=1,M
C(J) = C(J)+E(I-1)*A(K)
7 K=K +1
C(I) = C(1)/D
PUNCH 52,1, C(I)
8 E(I) = R(I) - C(I)
52 FORMAT (5X 14,5X E14. 8)
54 FORMAT (/10X 7H OUTPUT/)
END



APPENDIX 3

NON-UNITY FEEDBACK SYSTEM ANALYSIS PROGRAM

Input R Weighting functions A and B computed output C
Read in H = time increments in sec
M = number of intervals needed

A(1) = A(1)/2.
B(1) = B(1)/2.
N-=1

C(1) = 0.

D(1) = 0.

E(1) = R(1)%0.5
PUNCH 54
PUNCH 52, N, C(1)
DO5 I1=2,M
D(I) = 0.

5 C(I) = A(1)*R(I)+E(1)*A(I)
F = 1. +A(1)*B(1)
DO7 1=2,M
C(I) = C(I) - A(1)*D(I)
C(l) = C(I)/F

D(I) = D(I)+B(1)*C(I)
E(I) = R(I) - D(I)

L = I+1

K=2

DO6 J=L,M
D(J) = D(J)+C(I)*B(K)
C(J) = C(J)+E(I)*A(K)
6 K = K+l
7 PUNCH 52,1, C(I)
52 FORMAT (5X 14, 5X El4. 8)
54 FORMAT (/10X 7H OUTPUT/)
END



APPENDIX 4

OPEN LOOP SYNTHESIS PROGRAM

Input E Output C Computed weighting function A

Computed transfer function

11

12
13
14

22

23

24

31

Numerator GN(1)+GN(2)S+GN(3)S?
Denominator GD(1)+GD(2)S+GD(3)S?%

READ 51, DELTA
IF (E(1)) 11,15, 12,

P = -E(1)

GO TO 13

P = E(1)

IF (P-DELTA) 15,15, 14

SK = C(1)/E(1)

PUNCH 64

PUNCH 59, SK
DO4I1=1,M

C(I) = C(I) - SK*E(I)

E(1) = E(1)/2.

DIMENSION X (5, 6), Y(4,5)
DO 221=2,5

X(I, 1) = C(I)*2.

X(1,1) = 0.
X(1,2)= 1.
DO 231=2,5
X(I, 2) = E(I)
X(1,3) = -4.

DO 24 1=2,5
X(I, 3) = E(I-1)*2.
X(1,4) = 6.
X(3,4) = E(1)*2.
X(4, 4) = E(2)%2.
X(5, 4) = E(3)%2.
X(1,5) = -4.
X(4,5) = E(1)*2.
X(5,5) = E(2)%2.
X(1,6) = 1.

X(5, 6) = E(1)%*2.
DO311I=1,5
Y(1,1I) = X(5,1) -X(1, I)*X(5, 6)
DO32 I=1,4

36



32

33

34

35

36

37
38

39
40

15
16

17
18

37

Y(2,1) = X(4,I)*Y(1,5)-Y(1,I)*X(4,5)
DO 33 1=1,3

Y(3,I) = X(3,1)*Y(2, 4)-Y(2,1)*X(3, 4)
DO 34 1=1,2

Y(4,1) = X(2,1)*Y(3, 3)-Y(3,I)*X(2, 3)
A(l) = Y(4,1)/Y(4, 2)

A(2) = (X(2,1)-A(1)*X(2, 2))/X(2, 3)
A(3) = (X(3, 1)-A(1)*X(3, 2)-A(2)*X(3, 3))/X(3, 4)
A(4) = (X(4, 1)-A(1)*X(4, 2)-A(2)*X(4, 3)-A(3)*X(4, 4))/X(4, 5)
A(5) = X(5, 1)-A(1)*X(5, 2)-A(2)*X(5, 3)-A(3)*X(5, 4)-A(4)*X(5, 5)
A(5) = A(5)/X(5, 6)

PUNCH 55

DO 351=1,5

PUNCH 52,1, A(I)

DO 361 =6M

A(I) = 0.

A(l) = 0.5%A(1)

DO 38 I1=1,5

DO 37 J=6M

K =7J-I+1

A(J) = A(J) + A(I)*E(K)

CONTINUE

DO 40 1=6M

A(I) = (C(I) - A(I))/E(1)

PUNCH 52,1, A(I)

K=2

L =I+1

DO 39 J=L, M

A(J) = A(J)+A(I)*E(K)

K=K+l

CONTINUE

GO TO 20

DO 16l =1, M

A(I) = 0.

DO 18I =1,M

A(I) = (C(I+1)-A(I))/E(2)

K=3

L =1I+1

DO17J =L, M

A(T) = A(J)+A(I)*E(K)

K =K+l

CONTINUE



19

20

21

101

102

104

AT = 4. ¥(A(2)+A(4))-6. *A(3)-A(5)
PUNCH 55

N =1

PUNCH 52, N, AT

DO19 I =2,M

PUNCH 52,1, A(I)

SK = A(l) - AT/2.

PUNCH 64

PUNCH 59, SK

A(l) = AT/2,

PUNCH 56

A(l) = A(1)*2.

DO21I=1,M

D(I) = A(I)/H

PUNCH 52,1, D(I)

A(l) = A(1)/2.

DIMENSION U(4), V(4), W(100), Z(100)
DIMENSION GD(3), GN(3)

DO 101 I=1,4

V() = 0.
U(l) = 0.
V(1) = A(l)
W(1) = 0.

DO 102 I =2, M

V(1) = V(1) + A(I)
W(I) = W({I-1)+H
Z(I) = A(I)*W()

V(2) = V(2) + Z(I)
Z(I) = Z(I)*W(I)

V(3) = V(3) + Z(I)
Z(I) = W(I)*Z(I)

V(4) = V(4) + Z(1)
V(2) = -V(2)

V(3) = 0.5%V(3)

V(4) = -V(4)/6.

U(l) = V(1)

S = V(2)*V(3)

U(3) = (S-V(1)*V(4))/(V(1)*V(3)-V(2)*V(2))
U(4) = (V(3)+V(2)*U(3))/(- V(1))
U(2) = V(2)+V(1)*U(3)
PUNCH 60

DO 104 I1=1,4
PUNCH 52,1, V(I)
PUNCH 61

38



105

106

107
51
52
55
56
59
60
61
62
63
64

DO 1051=1,4
PUNCH 52, I, U(I)
GN(1) = SK+U(1)
GN(2) = SK*U(3)+U(2)
GN(3) = SK*U(4)

GD(1) = 1.
GD(2) = U(3)
GD(3) = U(4)
PUNCH 62

DO 106 1=1,3

PUNCH 52,1 GN(I)

PUNCH 63

DO 1071=1,3

PUNCH 52,1, GD(I)

FORMAT (ES8. 0, E8. 0, E8. 0)

FORMAT (5X 14, 5X El14. 8)

FORMAT (/1X 27H COMPUTED WEIGHTING FUNCTION/)

FORMAT (/2X 26H COMPUTED IMPULSE RESPONSE/)

FORMAT (20X E14. 8/)

FORMAT (/10X 2H Y/)

FORMAT (/10X 2H X/)

FORMAT (/10X 23H NUMERATOR COEFFICIENTS/)

FORMAT (/10X 25H DENOMINATOR COEFFICIENTS/)

FORMAT (/5X 39H PARALLEL CONSTANT TRANSFER
FUNCTION IS)

END

39



EXAMPLE OF UNITY FEEDBACK SYSTEM ANALYSIS

Input:

Impulse response:

r(t) = U(t)

Time increment:

Time

0~ o0l WV O

W W IV VIV DNDNDNND = ===
— O 0 0NNk LW OO 0NN WY OO

g(t)

APPENDIX 5

=t
h = 0.1 sec.

Computed Output

True Output

. 00000000
. 00452418
.01719474
. 03630559
. 06034332
. 08797965
.11806193
. 14960215
. 18176502
. 21385542
. 24530550

27566192

. 30457336
. 33177835
. 35709365
. 38040354
. 40164947
. 42082101
. 43794698
. 45308824
. 46633035
. 47777788
. 48754889
. 49577037
.50257431
. 50809456
.51246381
.51581165
. 51826257
. 51993487
.52093928
.52137883

. 00000000
. 00467502
. 01746637
. 03667131
. 06077974
. 08846652
. 11858195
. 15014081
. 18231033
. 21439766
. 24583702
. 27617691
. 30506759
. 33224893
. 35753887
. 38082260
. 40204243
.42118848
. 43829017
. 45340859
. 46662967
. 47805806
. 48781192
. 49601827
. 50280910
.50831814
.51267802
.51601817
. 51846297
. 52013048
.52113143
.52156853

40

Error

. 00000000
. 00015083
. 00027162
. 00036571
. 00043641
. 00048686
. 00052002
. 00053866
. 00054531
. 00054224
. 00053152
. 00051499
. 00049423
. 00047058
. 00044522
. 00041906
. 00039296
. 00036747
. 00034319
. 00032035
. 00029932
. 00028018
. 00026303
. 000247990
. 00023479
.00022358
. 00021421
. 00020652
. 00020040
. 00019561
. 00019215
. 00018970



Time
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Computed Output

.52134782
.52093220
.52020916
. 51924759
.51810804
.51684348
. 51549941
.51411461
.51272155
.51134689
.51001221
. 50873444
. 50752641
. 50639729
. 50535327
. 50439781
. 50353217
. 50275566
. 50206631
.50146073
. 50093470
. 50048331
. 50010121
. 49978281
. 49952225
. 49931382
. 49915181
. 49903076
. 49894542
. 49889086
. 49886250
. 49885611
. 49885611
. 49889413
. 49893191
. 49897844
. 49903123
. 49908821

True Output

.52153607
. 52111977
. 52039672
. 51943563
. 51829704
.51703371
. 51569114
.51430797
.51291661
.51154370
.51021076
. 50893465
.50772818
. 50660055
. 50555787
. 50460362
.50373904
. 50296351
.50227494
.50167001
.50114451
. 50069356
.50031180

49999361

. 49973321
. 49952483
. 49936283
. 49924172
. 49915629
.49910162
. 49907311
. 49906654
. 49906654
. 49910418
. 49914177
. 49918808
. 49924068
. 49929750

41

Error

. 00018825
. 00018757
. 00018756
. 00018804
. 00018900
. 00019023
.00019173
. 00019336
. 00019506
. 00019681
. 00019855
. 00020021
. 00020177
. 00020326
. 00020460
. 00020581
. 00020687
. 00020785
. 00020863
. 00020928
. 00020981
. 00021025
. 00021059
.00021080
. 00021096
. 00021101
. 00021102
. 00021096
. 00021087
. 00021076
. 00021061
. 00021043
. 00021043
. 00021005
. 00020986
. 00020964
. 00020945
. 00020929
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APPENDIX 6
EXAMPLE OF UNITY FEEDBACK SYSTEM SYNTHESIS

Input: =r(t) = U(t) ¢
Output: c(t) = 0.5 + 0. 707 e ~ sin (t-37/r)
Time increment: h = 0.1 sec.

Computed Impulse True Impulse

Time Response Response ____Eﬁfgi_
0 .00168218 . 00000000 .00168218
1 . 09182608 . 09048374 .00134233
2 . 16488101 . 16374614 . 00133487
3 . 22314089 . 22224546 . 00089543
4 . 26889979 . 26812801 .00077178
5 .30386574 . 30326532 . 00060042
6 . 32981960 .32928698 . 00053262
7 . 34801640 . 34760971 . 00040669
8 . 35983960 . 35946317 . 00037643
9 .36619360 . 36591269 . 00028091

10 . 36815380 . 36787944 . 00027436
11 . 36635680 .36615819 . 00019861
12 . 36164060 . 36143305 . 00020755
13 . 35443620 . 35429132 .00014488
14 . 34539860 . 34523574 . 00016286
15 . 33480380 . 33469523 . 00010857
16 . 32316660 . 32303443 .00013217
17 .31064500 -31056199 . 00008301
18 . 29764840 . 29763800 .00011040
19 . 28424440 . 28418037 . 00006403
20 . 27076420 . 27067056 . 00009364
21 . 25720680 . 25715849 . 00004831
22 . 24384740 . 24376694 . 00008046
23 . 23063040 . 23059534 . 00003506
24 . 21779200 . 21772309 . 00006891
25 . 20523640 . 20521249 . 00002391
26 .19317000 .19311130 . 00005870
27 . 18146880 . 18145488 . 00001392
28 .17031680 .17026817 . 00004863
29 . 15957240 . 15956734 . 00000506
30 . 14940120 . 14936120 . 00004000
31 . 13965000 . 13965252 . 00000252
32 . 13046980 . 13043905 . 00003075



Time

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Computed Impulse

Response

True Impulse

Response

. 12170600
. 11349160
. 10567620
. 09838240
. 09145580
. 08502060
. 07891760
.07327120
. 06791640
. 06298640
. 05831020
. 05402240
. 04995380
. 04623800
. 04270940
. 03644940
. 03368640
. 03105340
. 02868080
. 02641780
. 02438240
. 02244040
. 02070080
. 01903520
. 01755460
. 01612460
. 01486900
. 01364520
. 01257900
. 01153260
. 01063180
. 00973860
. 00897600
. 00821420
. 00757400
. 00692100

. 12171445
. 11346911
. 10569084
. 09836540
.09147704
. 08500893
. 07894345
. 07326255
. 06794796
. 06298142
. 05834480
. 05402029
. 04999048
. 04523844
. 04274780
. 03648825
. 03368973
. 03109340
. 02868613
. 02645544
. 02438953
. 02247724
. 02070803
. 01907200
. 01755981
. 01616272
. 01487251
. 01368149
. 01258246
. 01156872
. 01063396
. 00977235
. 00897842
. 00824710
. 00757367
. 00695371

43

Error

. 00000845
. 00002249
. 00001464
. 00001699
. 00002124
. 00001166
. 00002585
. 00000864
. 00003156
. 00000497
. 00003460
. 00000210
. 00003668
. 00000044
. 00000238
. 00003885
. 00000333
. 00004000
. 00000533
. 00003764
. 00000713
. 00003684
. 00000723
. 00003680
. 00000521
. 00003812
. 00000351
. 00003629
. 00000346
. 00003612
. 00000216
. 00003375
. 00000242
. 00003290
. 00000032
. 00003271




