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INVESTIGATIONS CONCERNING HEAT TRANSFER
INVOLVING WEDGE-SHAPED CONFIGURATIONS

I. INTRODUCTION

The heat conduction equation
au

Kpu. =
at

for a homogeneous

solid in a wedge shaped region has been treated in a number of con-

tributions. The majority of these are based on subjecting the heat

equation to a Laplace transform and obtaining the final solution in the

form of a contour integral, which in turn, can often be expressed as

an infinite series by applying the residue theorem [2, 3]. An approach

suggested here is based upon a connection between the Green's func-

tion of the heat equation and the Helmholtz equation. The region con-

sidered is that of a homogeneous solid bounded by two coaxial cylin-

drical surfaces p = a and p = b, (a < b), and two planes cp = 0

and 9 = a, under the assumption that the temperature field is inde-

pendent of the z coordinate (two dimensional problem). The bound-

ary condition requires that the temperature vanish at the boundaries,

i. e. u = 0 for p = a, b and yo 4 0, a, (isothermic problem).

The procedure is as follows: First we determine Green's func-

tion G1 for the modified Helmholtz equation u+k u = 0 (time

harmonic case) putting k = -iy. Then the Green's function for the

heat conduction equation is given by taking the inverse Laplace trans-

form of G1 with respect to N/777 A further integration involving



the Green's function would lead to the solution of KAU =
au in theat

case where an arbitrary initial temperature distribution throughout

the solid is given.

In Chapter II we show the connection between the heat conduction

equation and the modified Helmholtz equation. We are also concerned

with expressing solutions of the heat conduction problems in terms of

the eigenvalue and the eigenfunctions of Helmholtz's equation.

Chapter III contains applications to wedge-shaped domains,

especially the problem of the heat conduction inside a wedge with a

constant initial temperature. This problem is treated in great detail

applying the methods explained in Chapter II. The results Presented

here are equivalent with those given by N. N. Lebedev and I. P.

Skalskaya [7] which were obtained by Laplace and Kontorovich-

Lebedev transform methods.
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II. CONNECTIONS BETWEEN THE HEAT CONDUCTION
EQUATION AND HELMHOLTZ'S EQUATION IN TWO

AND THREE DIMENSIONS

Helmholtz's Equation

(1) A u + k
2u = 0

governs time harmonic wave phenomena [time dependency eiwt,

k = ; w is the frequency, k is the wave number, and c is the

phase velocity]. If solutions of (1) are sought which depend only on the

distance between two given points P (point of observation) and Q

(location of the source) one has:

(2)
1 (

u =
4

iH
0

)
(k PQ )

(two dimensional case independent of z representing the radiation

of a divergent cylindrical wave with the axis parallel to the z axis

and passing through the point Q in the xy plane)

(3)
1 e-ikPQu = -

4Tr PQ

(three dimensional case, representing the radiation of a divergent

spherical wave due to a point source located at Q). In (2) H (2) (kp)

1
denotes the second Hankel function of order zero. The factors 4i



1
and

47r
in (2) and (3) are chosen such that the "yield" of the source

is unity. The expressions (2) and (3) are also referred to as the free

space Green's functions of (1) in two or three dimensions. Their

property is that they satisfy (1)

A u + k
2u

= 0

everywhere except if P is at Q.

Furthermore
1

rr
u a log PQ

regular as P Q in (2)

1 1

4ir PQ

regular as P Q in (3).

The differentiations in Au apply to the point of observation

with fixed Q, while the term regular means the property is contin-

uous everywhere together with its first and second partial deriva-

tives.

The Heat Conduction Equation

Similar expressions with given singular behavior are sought for

solutions of the heat conduction equation



(4) atAv =
1

at , (K is a constant)
K

Such solutions are [10, p. 59]

(5)

(PQ) 2

1 4Kt
v = v(P, Q, t) =

4TrKt e

in two dimensions (line source at Q)

(6)

(PQ)
2

v = v(P, Q, t) = 1
e

4Kt
Z

(4TrKt)

in three dimensions (point source at Q)

are introduced, P(x, y, z); Q(x', y', z')

(7)

(8)

5

or, if Cartesian coordinates

(x-x')2+(y-y')2

v(P, Q, t) = 4T1 e
4Kt

TrKt
(2 dimensions)

(x-x')2+(y-y') 2+(z-z 2

v(P, Q, t) = 1

(4Tr Kt)
3 /2

4Kt

(3 dimensions).

The properties of (7) and (8) are respectively
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00 (x-xl) 2+(y-y1)
1 rs e- 4Kt

111-K t

ao

dxdy = 1

2
00 (x-x') +(y-y') 2

+(z-z' )2

3 2 SD% e-
4Kt1

(4Tr Kt)
-oo

Furthermore in (7) and (8) for t = 0

v(P, Q, 0) = 0 for all PQ 0

v(P, Q, 0) 00 as P Q

dxdydz = 1

This means that (7) and (8) have the character of a 6 function.

Again the solutions (7) and (8) are referred to as the free space

Green's functions of (6).

The physical meaning of, for instance (8), is the temperature

field at a point P at a time t when at t = 0, v(P,Q, 0) = 0 for

all P with PQ 0. This represents the equalization of the tem-

perature due to an instantaneous point source or heat pole located at

Q. A similar explanation holds for the instantaneous infree space

line source as expressed by (7).

The Modified Helmholtz Equation

For the following it is necessary to replace temporarily the

wave number k in (1) by another parameter putting k = where
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for the time being y is regarded as real and positive. This means

not the Helmholtz's equation (1) but the "modified" Helmholtz equation

( 9 ) Au - y2u

is considered and the emphasis will not center so much upon the

character of possible solutions u of (9) but upon the parameter

especially solutions u of (9) which are analytic functions of y.

Physically this means the transition from a periodic problem as

expressed in (1) to an exponential decay problem characterized by (9).

The basic reason is that while solutions of (1) have an oscillatory

behavior, the solutions of (9) are monotonic.

Having obtained solutions of (9), one returns to solutions of (1)

upon replacing y by ik, provided that the solution u of (9) [con-

sidered as a possible analytic function of y] includes the positive

imaginary y-axis. This method removes the often serious difficulties

regarding the convergence of certain intermediate operations. The

merits of this procedure have been demonstrated in [9].

Moreover, we wish in general, as in the case of this thesis, to

derive solutions of (1), where the boundaries of certain configurations

stretch into infinity, since the limiting case of finite boundaries for

solutions of (1) are not always suitable.

To illustrate this a simple example is used. Consider the 1st

Green's function of Au + k 2u
= 0 for the interior of a sphere of,
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radius a under the boundary condition u = 0 at the surface r = a

of the sphere. The point source Q is the center of the sphere.

The 1st Green's function is easily seen to be

1 sin[k(r- a)]
G =

1 4Trr sin(ka)

One should expect that in the limiting case G1 tends to the

free space Green's function -
1

e
-ikr But 0 does not tend

4Trr 1

to a limit as a 00. The transition to an exponential decay prob-

lem k would lead to the 1st Green's function for

Au-y 2 u=0 and

G 1 sinh[y(r-a)]
1 4Trr sinh(ya)

Assuming y > 0 we obtain in the limit a ,- 00

1
(Z1)a 4Trr

[sinh(yr)-cosh(yr)]

1 -yr
= - e

4Trr

returning to the wave problem with y = ik the above expression

becomes

1 -ikr
(G 1 ) r co 4Trr

e

the free space Green's function for ®u k 2u = 0 as given in (3),



The free space Green's functions of (9) become now

1
(10) u = 27 K (YPQ)

1 e-Y PQ
u = -

4rr pQ

(line source)

(point source)

9

with the properties (K
0

denotes now the modified Hankel function of

order zero), Au -
2

u = 0 everywhere except if P is at Q and

2TE

regular as P Q (line source)

u + 1 1

47r

regular as P Q (point source).

[Note that K0(yPQ) log PQ for small PQ

Connections Between Heat Conduction-Equation and.
Modified. Helmholtz Equation Solutions

We are now in a position to use the inverse Laplace transforms

of certain known formulas [Appendix formulas C" and C "

1
(12) L [K (2NrfTy)] = t

-1
e
-pt

Y0
Re y > 0



(13) L
-1

e
-2Ar

=
- 1/2t -3/1 -Pit

Tr Re y > 0

10

The index y in (12) and (13) means that the inversion has to be per-

formed with respect to the wave parameter y or, instead of (12)

and (13) using the explicit inversion formulas

(14)
2Tri

1
c +ico

Ko(2 )eytdy = lt -1
e
-ph

2
c-ioo

1 2N/T \it -r_13/t(15)
c+ioo

e
-

e dy = r
1/2

t
3/2

e
-

2Tri
c-100

In both cases c > 0. Replace in both formulas t by 4Kt,

and substitute the integration variable y by . (Here

PQ is the distance between two axes or the distance between two

points P and Q.) The result is:

(16)

and

(17)

1
e

4Tr Kt -y

4Kt -1
21

= -L [- K
0

(NNPQ)], t
Tr

1
e

(4TrKt)

Kt

(PQ)2 -4y PQ
4Kt -1 1 e

= -Ly [-
47i

], t Kt

PQ

In both cases t Kt means that after the inversion process, t

has to be replaced by Kt. The 1.h. s. of (16) and (17) represent the

two or three dimensional free space Green's functions (5) and (6) of
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the heat conduction equation (4) while on the r. h. s. the inverse

Laplace transforms of the free space Green's functions (10) and (11)

of the modified Helmholtz equation (9) appear with -y replaced by

Definition of both Green's functions of (4) and (9) for the interior

problem. Since only interior problems

are considered here, we examine the

interior D of a simple closed sur-

face cr. P represents the point of

observation and. Q characterizes

the location of an instantaneous line

or point source. Then, for the first

and second. Green's functions gi (P, Q, t) and gz(P, Q, t) of (4)

12E1) Ag = 1
, everywhere for t > 0

2) For t = 0, g = 0 everywhere except if P is at Q and

at this point g have the character of a b function

(instantaneous source)

3a) g1 = 0 if P is on o- (first Green's functions, isothermic

boundary condition)

ag2
3b)

an
= 0 if P is on CT (second Green's function, adiabatic

boundary condition). The A operation in g is performed



12

with respect to the coordinates of P. In the case of a finite

number of discretely distributed instantaneous sources a sum-

mation over all sources Qv has to be performed, while in

the case of an initial temperature distribution f(Q) one

would have for the temperature field in P at a time t > 0

(18) v(P,Q,t) Sg(P,Q,t) f(Q)d-rQ

The integration is taken over all Q and dTQ is a volume element at

Q. The definition of G(P,Q, y) of the modified Helmholtz equation

(9) for the interior of Cr is

1) AG - y2-6 = 0 everywhere except if P is at Q

1-2) G - Tr log (PQ) regular everywhere inside

3a) G1 = 0 if P is on Cr

aG
2

3b) = 0 if P is on Ci

As mentioned before the (so far purely real) parameter y will be

emphasized. It is now concluded from (16) and (17) that if the Green's

function G(P,Q, y) for the modified. Helmholtz equation (9) is known,

the corresponding Green's functions for the heat equation is

(19) g
1
(P, Q, t) = y 1

(P, Q, N51,

2
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Expression of Green's function for the heat equation by means

2ftheEi envalues and Eigenfunctions for Helmholtz's equation. The

well known expansion theorem for the Green's functions of the

Helmholtz equation (1) is [10, p. 183)

(20)
U (P)U (Q)

k
2 -k2

Here the U./ are the normalized eigenfunctions of Au k
2u

= 0

and kf are the eigenvalues for the boundary value problem under

consideration. The sum in (20) is a triple sum (three dimension) or

a double sum (two dimensional problem). Here U f(Q) means the

conjugate complex value of the Ith eigenfunction U with respect

to the source point Q. Let Ui denote an eigenfunction, not

necessarily normalized, then from

(21) N2 = CU (P)U (P)d-r
12 P

the integral extended over the whole space interior to Cr . With this

and replacing k by -iy one obtains for the modified. Green's

functions

(22)
1

U (P)U i(Q)
"Y) = 2 2 2

N y +k
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But replacing y by NIT and taking the inverse Laplace transform

with respect to one has, since

-k 2
Kt

-1 1

L (y+k 2- t=Kt e

The Green's functions for the heat equation becomes

(23) g(P,Q,t) =

2-Ri Kt
)U (Q)e

expressed in terms of the eigenvalues U1 and the eigenfunctions of

Au + ku.
2

= 0..

In (23), the two dimensional eigenfunctions (double sum) has to

be taken for the case where the excitation is due to a line source or

the case where the temperature field inside a closed surface is due to

a heat pole. A separate case (heat pole inside a closed cylindrical

surface whose cross section forms a curve C) can be treated as

follows. Take the identities [5, p. 94, Form. 46] with II =
1 and

v = 0 to get

(24) 1 e -YrIP2+z2
1 1

K (pN ) cos (Xz)dX
2n- 0Nri:Fz 2

The expression on the 1.h. s. of (24) represents the free space Green's

function (11) of a point source at the origin, while the expression
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-
2,
1 K

0
(pig y

2
+X2) represents the free space Green's function (10) of

Tr

a line source along the z-axis with -y rei laced by N2+x2 From

this relation it can be concluded that the point source solution inside

an infinite cylinder (pt. source located in the xy-plane) can be ob-
y2+x2

tained from the line source solution by replacing

multiplying by cos (Xz), and integrating over X from 0 to

Hence, from (22), with

one obtains

oo cos (xy) -cx
dx = e

J 2 2 2c
0 c +x

Tr

Further, by C''" (Appendix)

Nty+k

and hence for this case

1
(25) g(x,y,z,t) = -2.(71-Kt)

_IziNis,Y 22+k

1T Kt

c, x > 0

1 z
2

2-k Kt
e

2 4Kt

2(z-zi) 2
- -k Kt

4Kt
2

1
U / (P)U / (Q) e

1

NI

oo .
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if the point source is at z'. The series is the same as in (23). The

case of the line source can be regained from integrating over all

z' from -00 to +00. But

c>o

J.-Tre-ax =

-co

and with this one regains the line source field.
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III. APPLICATIONS

A. The first Green's function for the domain 0 < cp < a ,

a < p < b, -co < z < oo, and for the two dimensional case (U independent= =

of z) [P = point of observation,

Q = location of line source].

U = U(p,(p); Au+k2u=0

A solution of Au+k u=0

by the method of the separation of

variables U = f
1

( p)f
2

(co) with

p =0 p =a

Jv(kp)

f2(9) = e±ivq)
f

1
(p) = Iry (kp)

H(1),
(2)

(kp)

The J , Y , H(1),
(2)

v v v

p = b

are the Bessel functions of the first order and

the two Hankel functions respectively. So far, v is an arbitrary

separation parameter. Hence, a simple solution of Au k
2u = 0,

regular in a < p < b; 0 < cp < a is= = =

(26) U = [Jv(kP) CYv(kP)] [A cos (v9) + B sin (v9)]

The boundary conditions are
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U = 0 at ( p 0, = a, for a < p < b= =

U = 0 at p =a, p = b, for 0 <cp <a

The first equation leads to A = 0, and v = nTr, n = 1, 2,3, .a

The second equation yields

Jv (ka) + CY
v

(ka) = 0

J (kb) + CY
v

(kb) = 0

or

Jv (ka) Jv (kb)
Tr

(27) C - - = - v = n
Yv (ka) Yv(kb) a

This leads to the determination of the eigenvalues

(28) J v(ka)Y (kb) Y
v

(ka),T
v

(kb) = 0

Trv= na

It is known that [5,, p. 62 ] the function

(29) Fv(z) = Jv(z)Yv (Xz) - ,Tv(X.z)Yv(z)

has for v, X > 0, real and simple zeros for z only. Further-

more, while J v(z) and. Y v(z) are many valued, the cross product

(29) represents an even, regular function of z. This can be seen

using the relations [5, p. 80 ]
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Jv(ze±imTr) z e±imirvJv(z)

Yv(ze±
MIT) = e rri sin(mTrv) cos (Try (z)irr v

Y v(z) + 2i sin(v7r)

Hence, for m = 1

Fv(ze±iTr) = Fv(z)

This means that the solution of (28) has real values ±kn,m only, if

k denotes the mth positive root of (29). Equation (29) for
n, m

F
v

(z) can also be represented in a different way using the relation

(
H

v

2) (z) = J (z) - iY v(z)

(30) F
v

(z) = i[H
v

(2) ().z))Jv(z) - J Xz)H(2) (Xz)]

-i-2
And with z replaced by ze remembering that

7T.

2-i22
- (22

v 1 V

J v(ze ) = e I
v '

(z1, Hy
) 2i

(ze ) P
Tr

e Kv(z)

(The Iv and Kv are the "modified" Bessel function of the first

and second kind respectively. )

(31) F
v
(ze

7T-12
= Gv(z) = -1-72r v(z)Kv(Xz) - Iv(Xz)Kv(z)]



Hence the zeros of G
v

(z) for X., v > 0, are all purely imaginary.

Also by [5, p. 80]

G v(ze±iir) G v(z)

20

Furthermore, G v(z) is an even regular function of z. Inserting

(27) into (26), the non-normalized eigenfunctions become

(32)

with

U = sin (122a (p)U m(k p)

(33) U (k p) = J (k p)Y (k b) J (k b)Y (k p)n,m n,m v n,rn v n,m v n,m v n, m

= F (k p, )
v n, m a

by (29) or also

(34) U (k p) = J (k p)Y (k a) - Y(kp)J (k a)n,m n, m v n,m v n,m v n,m v n,m

a= F (k p, )
v n, m b

A factor [yv(kn, mb)]
1

and [Yv(kn, mna- 1 respectively in (33)

and (34) is suppressed here since these factors do not concern the

normalized eigenfunctions. Here v = and the eigenvalues ka n,

are the solution of

(35) F
v

(ka, a ) = J
v

(ka)Y
v
(kb) - J

v
(kb)Y

v
(ka) = 0
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Normalization of the eigenfunctions, One forms

(36)

By (33)

ra
[ U

12

yo=0 p=a
(k

n, miTh P
mr )pdpcsin2( hp
a

a Sb

2
[ U n, m (kn, mp)]z pdp

p=a

r b

n, mU pdp = [Jv(kn, mp)Yv(kn, mb)
a a

2
- Jv(kn, mb)Yv (kn, mp)] pdp

or, introducting w, and putting w = kn,

(37)
b

2 2
Jiv

2
b

2
Un, m(wp)pdp = Yv(wb) jy(x)xdx + (wb) Yv(wx)dx

a a a

niT
v

a

- 2j v(wb)Yv(wb) J Jv(wx)Yv(wx)xdx
a

w = kn, m

In order to evaluate (37) the following formulas are used [5, p. 90]



(38)

2 1

2

2 2(wx)xdx = x rJ (wx) J v-1 (wx)Jv +1(wxv
Yv2(wx)xdx

1 2 2

2
x [Y

v
(wx)-Y

v -
(wx)Y

v +1
(wx)

v
(wx)Y

v
wx)xdx

21

x [2jv (wx)Yv (wx)-jv +1(wx)Y. v- 1 (wx) -jv-1(wx)Yv+1 ((A)

Hence

(39)

[Jv (wp)Yv (wb)-Jv (wb)Y (wp)]
2

pdp
a

1 2
Y

2
=

2
b (wb)[Jv

2
(wb) -J v1 (wb)J

v +1
(wb)]

v

1 2J 2
+

2
b (wb)[Yv

2
(wb) - Yv +1 (wb)Yv -1 (wb)]

v

1 2
- b Jv (wb)Yv (wb)[2Jv (wb)Yv (wb)-Jv+i (wb)Y (cob)

v_1 (wb)Y v+1
(wb)]

1 2
Y

2 2
-

2
a (wb)[Jv (a)-Jv_ a Jr

v +1 (coa)]v

1- 2 a 2
Jv

2
(wb)[Yv (wa) Y v-1 (wa)Y v+1(wa)]

+
1z a 2

Jv (wb)Yv (wb)[2,Tv (wa)Yv (wa)-Jv (wa)Yv_ (wa)

Jv-1(wa)Yv+1(wa)]

nn-
v = , w = ka n, m

22

)]
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This somewhat lengthy expression can be considerably simplified by

making use of the eigenvalue condition (28) and of certain identities

involving cross prodicts of Bessel and Neumann functions [5, p. 80].

These intermediate operations are omitted here. One arrives

finally at the results;

b
(40) f [Jv(wp)Yv(wb)-Jv(wb) Yv(wp)]Zpdp

a

2
1,12 2

If W

Hence, by (36)

2
J (wb)

v

iv2 (wa)

nTrw =kn, m v = .a

2
2 a Jv(wa)-Jv2 (wb)

(41) N 2 2 2
Tr w J(wa)

v

Hence, the normalized eigenfunctions U1 of the domain under con-

sideration are

1 Tr(42) Un,m(p, cp) = °N sin( (P)

X [Jv(kn, mp)Yv(kn, mb)-Jv(kn, mb)Yv(kn, mp)]

v = nTr

a
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with N given by (41). Now, with the preceding results it is possible

to represent Green's function (23) for the heat conduction equation.

using (41) and (33) as

00 00

(43) gi(P,Q, t) = l2 n,m(kn,mp)Un,m(kn, m
n=1 m=1

21 -knan

a

Kt
nTr y-X sin((p) sin (ma. (p)e

It is of interest to investigate the first Green's function G
1

for the modified Helmholtz equation as given by (22). This, again

leads to a double sum

(44)

G1(P, -y) = sin (n(p) sin (nip')

n= 1

00
U (k (kp)U p')n, mn, m n,m n, m

m= [N2+k2 ] 11 U2 (k p )PdPn, m n, m n, m
a

The value of the integral in the denominator of (44) is given by (40).

The sum over m in (44) can be given without explicit knowledge of

[Un, m(kn, mpn2pdpa

The result is
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(45)

CO

P')Un, m (kn, m p)Un, m(kn, m

m=1 [y2+k
2

] S' U2 (k p)pdpn, m n, n,
a

= [Iv (ya)Kv (yb)-Iv( yb)Kv(ya)]-1[Iv(yp)Kv(ya)-Iv(ya)Kv(Yp)]

x [Iv(ypT)(Kv(yb)-Iv(yb)K vh(Pin

v = nir a < p < p' < , i.e., p < p'a

and the same formula with p and p' interchanged if p > p°.

Thus the Green's function G1 given by (44) is reduced to a single

series involving the summation over only n, and the zeros kn, m

no longer appear. If (45) is inserted in (44), it is necessary, in

order to obtain the first Green's function g
1

for the heat conduc-

tion equation by (19), to evaluate

(46) L
Y

1
{ G

1

(P, Q, N/-7)}, t Kt

i.e. , the inverse Laplace transform of the right side of (45) with y

replaced by \TT. This inversion can be performed by using the well

known inversion formula of Laplace's transform by means of a com-

plex integral. But this method leads to an infinite series, using the

residue theorem and the fact that the expression

[Iv (Nry-a)Kv(\f'y b) - I v(N/T, b)Kv(NPV b)] has an infinite number of sim-
2ple zeros at y = -kn,m. Thus this approach would again lead to the
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double series (43) for the first heat conduction Green's function.

The summation of the series (45) can be obtained in the

same manner as a similar formula obtained by Buchholz [1]. Since

the use of the sum formula (45) does not simplify the heat conduction

solution of the problem considered here, its derivation is not in-

cluded.

B. The case of the domain of

a wedge 0 < cP < a , 0 < p < oo ,=

-oo < z < co is the limiting case

treated in A for a 0 and

b 00 . The two Green's functions

G1 and. G2 become

(47) C41 = (P, (PI; .\/)

2
00

-2; n{cos[2a (co-co')] F cos [112-ar (q)-1-qii)]}

0

X InTr (yp)Knrr ( p')

a a

p < p', and the same formula with p and p' interchanged if

p > p'. In order to obtain the solution of the equalizing of the tem-

perature inside a homogeneous solid wedge when the initial tempera-

ture inside the wedge is a constant equal to unity, it is necessary to
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integrate (47) over all line sources inside the wedge. This means it is

necessary to obtain

91=0
1

(p, p', co!'

2

The expression (47) is not suited for this operation since the

integration would involve integrals of the form

oo

Ins (ypl)pIdpl and Knn eyp')pidpI
p'=0 p

a a

p

These integrals would lead to Lommel's functions [5, p. 90]. It is

clear that this complication is due to the fact that the formula (47) is

not symmetric in p and p' and that therefore the p" integra-

tion from 0 to 00 has to be split up in two parts. In order to

replace (47) by an expression which is symmetric in p and p'

the formula [6, p. 176]

Iv(a)Kv(b) = 271.
2 r x sinheirx)

(48) K. (a)K. (b)dxix ix
0 x

2
+v2

is used. This formula is valid for arbitrary v with Re v > 0

and for the left side, b > a. But the right side is symmetric in a

and b. Hence



00

(Y13)K
2Tr-2$ x sinh(Trx)

/17T /17T 2 nTr 2 Kix(.")Kix
0 x +() (yp')dx

a a a

Then, interchanging the order of summation and integration

00

EnInTr (y0Knir (NP') cos

n=0 a a

co

= 2Tr2S x sinh(rrx)K. ( )K (YP')
0

W fircn cos( a 0 )

2 nTr 2

n=0 x +( )

But the sum is elementary

Therefore

dx

co nTr

vs E cos( ---- 0)
n a a cosh[x(a-(0)]

Z.
n=0 x

2+( )
u- 2 x sinh(ax)

00

0 < < 2a

nI
mr

(.yp)Kmr (ypt) cos (1.-r 0)a
n=0 a a

28



27-2a sinh(Trx) K. (yp)K, cosh[x(a-0)]dxsinh(ax) ix ix

e = IcoT(P'I

Hence, one obtains instead of (47)

(49)
Co

1

- 2 S' sinh(Trx)
iK (1/P)Ki (YPI)sinh(ax) x x

0
2

X {cosh[x(a-19-q)'1] cosh[x(a-9-91)]}dx

0 < Igo <2a

Formula (49) is symmetric in p and (see also [9]).

29

The convergence of the integral (49) for 0 < I co cpi I < 2a fol-

lows from the following considerations. From [5, p. 88]

1 Tr2 x
K. (a) 27

)
2

e sin [x log (2x)]
ix x

for large x >> a . Also for large x

sinh(Trx) x (Tr-a)
sinh(ax)

cosh [x--(a- I 0 1 ) ] ex(a- 1 (31)' 101 < a

ex(1°I-a), 101 >a
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Hence, 0 < I 9 91 I < 2a.

The expression (49) for the two Green's functions is now used to

form

(50) -6(1),P',9,9';'10Piciptd(pl
9'=0 p'=0

It can be easily verified that the order of integration can be inter-

changed. The case of the first Green's function shall be considered

only, corresponding to the heat conduction problem with zero tempera-

ture at the boundaries 9 = 0 and = a of the wedge. The p'

integration follows from the formula [5, p. 51]

co
- 2 -p. 1 1 1 1

1K v(I3t)dt = 2 p r( --p.+ v)r( )
2 2 z

0

Re (p.±v) > 0, Re p > 0

with II = 2, v = ix, p =

o0
1TX

plic. (-ypI)dp? =
2 Tr

0 2.y sinh(2 x)

The integration of the integrand in (49) with respect to 9' (note that

in the term cosh[x(a-I9-911)] the integration has to be taken over

the interval 0 to 9' and over the interval 9' to a). The

result is



0
{cosh[x(a-19-yo'l)] - cosh[x(a-rp-9')]}501

2= x Is inh(xa) - sinh(xco) - sinh[x(a-q)]}

Therefore (50) can now be written as

a 00

(51) S Gi(p, p', rP, col;y)pTdpIdc,91
(p'=0 'pI=0

1
sinh(Trx)Kix(w)

2 Sc°
Try 0 sinh(2x) sinh(ax)

31

Is inh(ax) - sinh(cpx)-sinh[x(a-cp)]} dx

It can be shown, as before, that this integral is convergent for

0 < c < a . In order to be in accordance with the investigation in= =

[7], the transformation cp = + p, a = 213 will be made. This leads

to a configuration as indicated by the

figure below. The interior of the

wedge is now given by 0 < p < oo,

< < p. It follows then from= =

(51) and (19) that the temperature

distribution T(p,1.; t), at the

time t > 0, inside the wedge is the

inverse Laplace transform with re-

spect to y of

= 0
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2 cosh(2-x).c. (per [1- cosh(x)cosh(0)] dx; t Kt
Try

x=0 2 ix

provided that the initial temperature inside the wedge is equal to

unity. Since, [6, p. 175]

oc

cosh(ix)Kix(pNrry)dx = 1

0

(independent of p and .y) one has for the temperature field.

-1( 1 cosh(-2 x)cosh(Ix)
(52) T(p, t) = L -

TrY cosh(Px) K. (pqy)dx
0

t Kt:

and since

-1
L (--1 ) U(t) 0, t < 0

1, t > o

(unit step function), one can also write (52) as

co cos
2

(53) T(p, t) 1 - -2- L-1 -1-S'' ixK (pNii) dx} ,

Y Y 0 cosh(13 x)

The integral in (53) can be processed further by means of an integral

expression for the modified Hankel function [5, p. 82]
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00
1

(54) K. (Pi\"-Y) cosh( Trx) cos(pNri sinht) cos(xt)dt.ix 2
0

Inserting (54) into (53), it follows, interchanging the order of integration.

00 cosh( T21-.x)cosh(x)

(55) s Kix(pNry) dx
cosh((3x)

0

00

c-b [cos(per sinh
t=0

cosh(x) cos(xt) dx
cosh(13x)

x=0

The inner integral is known [6, Vol. 1, p. 31]

00
cosh(xl.)

0
cosh(x(3)

Then from (55)

(56)

cos (xt)dx

d t

Tr
cosh(-2r t)

Tr 213cos(
p 2P Tr

cos(
P

cosh(
R
t)

cosh(x)cosh(lx)
K. (p\I'y)

cosh
dx

(13x)

Tr Tr
= 7-,

P Six

cosh( t) cos (pNry- sinh t)
cos( 2- d.t

0 cos( + cosh( It)

Now, by (53) and (56)
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(57)

2
T(p, t) = 1 - L

Y

1 cos(--It
213

Tr

co cos(pN(y smh t)cosh(t)2p

cosh(5-t) + cos(111,)

t Kt

This represents the temperature distribution inside a wedge of arbi-

trary angle zp for the boundary condition T = 0 for fi = ±13.

It does not seem possible to perform the Laplace inversion in (57).

=
TrFor the special case a (/ = 1, 2,3, ...) the result given by

(57), can be expressed in terms of error functions. For this purpose

an expansion in partial fractions [7] is used.

(58)

cos(Tr) cosh( t)
Tr 213 2f3

p cosh t cosh( It) + cos (1-rfl

= on'
cos (I.)

sinh 2t+ cos 21.

m
fl

+ (-1)s 1{ sin(2sP-I3- sin(20-(3 +)

sinh 2
t + sin 2(2sP-p- sinh2t + sin

2(2s(3-(3+f)
s=1

for 213 -
TT

,
2m+1

m = 0,1, 2,

TrA similar expression exists for the case 2P = -2--m- . Upon inserting

(58) into (57) there occur expressions of the form:
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oo
um 2 cos .1 C cos(pNr7y x) dx (-1)m

e
cos

J 2
0 x + cos 2

Go

s- 1 2 cos ( DNIyx)dx(-1) sin(2sP-PTfl
0 x2+ sin2 (2s13- (3Tt)

(-1)
s-1

e-p\17 sin(2s13-PTI9

if the substitution sink t = x and [6, Vol. 1, p. 8]

Se° cos(xy) IT -ay
dx e

0 x2+ a2
x = 2a

is used. The Laplace inversions with respect to y of the formula

above are known [6, Vol. 1, p. 245] to be respectively

4,

L-1 {
(-1)111 e-pNrCicos = (-1)mErfc

p cos

Kt 4Kt

1
{
(-1)s-11: e-p\r7isin(2s13-13TC,

s-1 r
1 - (-1) Erfci

Y Kt
sin(2s(3 -3 T)

4Kt:

With these results the temperature distribution becomes finally

(59)

T(p, t) = (-1)m Erf p cos
4Kt

1
{Erf[ P sin(ZsP-P-fl] +-Erf[

p sin(2sP-13+fl]}

ANriT<t Nr-47t
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Tr

if one uses Erfc(z) = 1 - Erf(z) and 2R = = 0, 1, 2.. .
TrA similar analysis holds for 213 =

21
for this case see [7].
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APPENDIX

MacDonald's formulas [5, p. 53] represent the product of two

modified Hankel functions of different arguments in the form of

Laplace transform

a2+p2

coo(A) J e
Nit

e t pKv(2at )t-Idt = 2Kv(2aNFOK (2PN7y), Rey > 0,
0

is:

(A')

The inversion of the above Laplace integral with respect to

2a 2
+p_____

i 1 t
t-1K (2ail)LNi [Icv(2aNr-y)Kv(2P\FY-)] = 7 e

v t

a2 R2

(B)
Soc e-yte- t

I
v t
(2aP)t -1 dt NT7i2I (2a)K (2(3Nr),

Re > 0, 0 < a < (3

and the same formula with a and 13 interchanged if p < a. The

inverse of the above Laplace integral with respect to -y is

a2+p2

(3')
-

1 t
t

1
I 2 t ), a < .L

1
[I Ar-y)Kv(213N7y)] = e

v
(2a

Similarly for only one modified Bessel function involved [5, p. 82]
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(C)

1
Co

e e t
t -v-ldt = 2 (1)2

v

Kv(2NFy), Re (y ,3) >

Its inversion

(C')
1 v

1v
L-1[y2 Ki)(2N-Pc)] =

1
P

2
t
-v-1

e
-

t

Special Cases of C'

v = 0

(C")

V =

(C'")

_
1

L [lc (2,\FF)] = t e
t

y 0

2

1 [Note
TrLote that K

1 NI 2z
z

(z) = e
±2

1 1 3

L 1[e-21\771] = Tr
2

p
2

t
2

e
t

Y

R

L
1 ly

2
e-2q13y j

, 2 2 t(C") = Tr t e , Re y > 0.


