

AN ABSTRACT OF THE DISSERTATION OF

Majid Alkaee Taleghan for the degree of Doctor of Philosophy in Computer Science presented

on January 3, 2017.

Title: Simulator-Defined MDP Planning with Applications in Natural Resource Management

Abstract approved:

Thomas G. Dietterich

This work is inspired by problems in natural resource management centered on the challenge

of invasive species. Computing optimal management policies for maintaining ecosystem sus-

tainable is challenging. Many ecosystem management problems can be formulated as MDP

(Markov Decision Process) planning problems. In a simulator-defined MDP, the Markovian dy-

namics and rewards are provided in the form of a simulator from which samples can be drawn.

Simulators in natural resource management can be very expensive to execute, so that the time

required to solve such MDPs is dominated by the number of calls to the simulator. This thesis

studies MDP planning algorithms that attempt to minimize the number of simulator calls before

terminating and outputting a policy that is approximately optimal with high probability. This

thesis addresses three questions on unconstrained MDPs: (a) what confidence interval should be

employed to bound the optimality of the policy and (b) how should samples be drawn to shrink

the confidence interval as quickly as possible? (c) how can we find the optimal policy with

high probability efficiently? Many computational sustainability problems involving MDPs must

also be concerned with catastrophic outcomes such as species extinction. These problems can

be formulated as constrained MDPs. We define the downside risk as the probability of reaching

catastrophic states and then constrain the MDP solution to bound the probability of entering such

states. We then develop the first PAC-Safe-RL algorithm for constrained MDPs. We evaluate

our algorithms on an invasive species problem as well as on standard reinforcement learning

benchmarks.

c©Copyright by Majid Alkaee Taleghan
January 3, 2017

All Rights Reserved

Simulator-Defined MDP Planning with Applications in Natural Resource
Management

by

Majid Alkaee Taleghan

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented January 3, 2017
Commencement June 2017

Doctor of Philosophy dissertation of Majid Alkaee Taleghan presented on January 3, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader
upon request.

Majid Alkaee Taleghan, Author

ACKNOWLEDGEMENTS

My journey through my Ph.D. studies would not have been possible without the help of many

people.

First and foremost, I would like to thank my advisor, Professor Thomas Dietterich, for his

kindness, guidance, time, insights, profound thinking, and continuous support over the years. I

was fortunate to have had the opportunity to work with him. I learned not only how to do ethical

research, but also lessons for my life. I could not have wished for a better mentor, and I am

deeply grateful for that.

I would also like to thank Kim Hall, Professor H. Jo Albers, and Mark Crowley for their

collaboration on the invasive species project. It has been a pleasure working together, and I have

learned a lot from you.

Next, I want to thank my Ph.D. committee, Professors Prasad Tadepalli, Xioali Fern, Re-

becca Hutchinson, and John Dilles, for their constructive comments on my research.

I would like to acknowledge all the members of Professor Dietterich’s group, who provided

me with useful thoughts and ideas throughout my graduate studies. Special thanks to Sean

McGregor, Liping Liu, Jesse Hostetler, and Shahed Sorower.

I would also like to thank all of the staff and faculty at the EECS department who have helped

me in countless ways. My special thanks to Mike Sanders for always accommodating my needs

to run my experiments.

I wish to acknowledge the support of the US National Science Foundation, who funded much

of this work under Computational Sustainability Grant 0832804 and Grant 1331932.

I am indebted to many friends and colleagues for their companionship during these years.

Special thanks to Amir Taherkordi, Javad Azimi, Hashem Baktash, Behrouz Behmardi, and

Soroush Ghorashi.

I’d like to thank all my family (every one of you included!), and express my deep gratitude

to my parents for their unconditional support and encouragement. I am especially grateful to my

mother, who has always believed in me and motivated me to successfully complete my Ph.D.

Finally, I want to express my appreciation for my dear wife, Sarah Ghasedi, who has been

closest to me all these years and shared happy moments with me. Her inspiration and love in the

toughest moments and her smart advice helped me get through this. I am lucky to have her in

my life.

CONTRIBUTION OF AUTHORS

The author would like to thank Kim Hall, H. Jo Albers, and Mark Crowley for their collaboration

on the invasive species project. They have contributed to Chapter 2.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Contribution . 4

1.2 Organization . 5

2 PAC Optimal MDP Planning with Application to Invasive Species Management 7

2.1 Introduction . 7

2.2 Definitions . 10

2.3 Managing Tamarisk Invasions in River Networks 11

2.4 Previous Work on Sample-Efficient MDP Planning 13

2.5 Improved Model-Based MDP Planning . 18
2.5.1 Tighter Statistical Analysis for Earlier Stopping 19
2.5.2 Improved Exploration Heuristics for MDP Planning 24
2.5.3 Experimental Evaluation on Exploration Heuristics 30

2.6 Summary and Conclusions . 36

3 Combining Global and Local Confidence Intervals for More Efficient MDP Planning 39

3.1 Introduction . 39

3.2 Problem Definition, Notation, and Confidence Interval Methods 42
3.2.1 Global (Trajectory-wise) Confidence Intervals 43
3.2.2 Local Confidence Intervals . 45
3.2.3 The Occupancy Measure . 47

3.3 Monte Carlo Policy Evaluation . 48
3.3.1 Optimal Allocation of Sampling . 48
3.3.2 Experimental Comparison of Global and Local Confidence Intervals for

Policy Evaluation . 56

3.4 Policy Optimization . 60

3.5 Experimental Evaluation . 67

3.6 Concluding Remarks . 68

4 Efficient Exploration for Constrained MDPs 72

4.1 Introduction . 72

4.2 Problem Definition and Notation . 74
4.2.1 Extended Value Iteration . 76

TABLE OF CONTENTS (Continued)
Page

4.2.2 Optimal Policies for C-MDPs . 77
4.2.3 Additional Definitions for C-MDPs 78

4.3 PAC-RL for Constrained MDPs . 79
4.3.1 Confidence intervals for VR and VC for policy evaluation 81
4.3.2 Confidence intervals for VR and VC for policy optimization 81

4.4 Algorithm . 83

4.5 Correctness and Polynomial Running Time . 83

4.6 Experiments . 88

4.7 Conclusion . 92

5 Conclusion 95

5.1 Conclusion . 95

5.2 Future Work . 96

Bibliography 98

Appendices 104

A Proofs of the Main Result . 105

LIST OF FIGURES
Figure Page

2.1 Tamarisk structure . 11

2.2 Plots of Vupper(s0) and Vlower(s0) for MBIE-reset on V (s0) with and without
incorporating Good-Turing confidence intervals. Values are the mean of 15 in-
dependent trials. Error bars (which are barely visible) show 95% confidence
intervals computed from the 15 trials. 23

2.3 RiverSwim results: (a) Number of samples required by MBIE-reset, Fiechter,
DDV-UPPER, and DDV-OUU to achieve various target confidence interval widths
∆V (s0). (b) Speedup of DDV-OUU over the algorithms. 32

2.4 SixArms results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-
UPPER, and DDV-OUU to achieve various target confidence interval widths
∆V (s0). (b) Speedup of DDV-OUU over the other algorithms. 33

2.5 Tamarisk with E = 3 and H = 1 results: (a) Number of samples required by
MBIE-reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target
confidence interval widths ∆V (s0). (b) Speedup of DDV-OUU over the other
algorithms. 34

2.6 Tamarisk with E = 3 and H = 2 results: (a) Number of samples required by
MBIE-reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target
confidence interval widths ∆V (s0). (b) Speedup of DDV-OUU over the other
algorithms. 35

3.1 Optimal horizon length H and the gap in the starting state ∆V (s0) as a function
of sampling budget B for computing the trajectory-wise confidence interval via
the Hoeffding and empirical Bernstein bounds. In these plots, we set Vmax = 1. 50

3.2 Tamarisk structure . 57

3.3 Comparison of ∆V (s0) for different five different algorithms [left]. Comparison
of ∆V (s0) computed by the local and trajectory-wise Hoeffding bound methods
[right]. 58

3.4 Comparison of number of samples taken by each algorithm to reach to the ter-
mination point. Each circle corresponds to one of the 8 MDPs. 68

LIST OF FIGURES (Continued)
Figure Page

4.1 Graphical representation of confidence intervals for different value of λ. The
horizontal axis plots the value of 0 ≤ λ ≤ 1. The solid lines denote the true
values of VC and VR. The dashed lines denote the corresponding upper and
lower confidence bounds. 82

4.2 Graphical representation of confidence intervals for λ+ν
lower and λ−νupper. The hor-

izontal axis plots the value of 0 ≤ λ ≤ 1. The solid lines denote the true values
of VC and VR. The dashed lines denote the corresponding upper and lower con-
fidence bounds. 86

4.3 Derived policies for the GridWorld domain; solid arrows are when λ = 1 and
dotted arrows are when λ = 0. When both policies agree on an action in a cell,
only one is shown. 89

4.4 Value of reward and risk while varying λ and risk threshold (τ) for the GridWorld
domain. 90

4.5 Comparison of number of samples taken by each algorithm to reach to the ter-
mination point. 91

4.6 Plots of V UCB(λνlower)

R , VR − V
UCB(λνlower)

R , and V UCB(λνlower)

C on the vertical
axis for three values of ν in the GridWorld domain. 93

LIST OF TABLES
Table Page

2.1 RiverSwim clock time per simulator call. 33

2.2 RiverSwim confidence intervals and required sample size to achieve target ∆V (s0) =

1000. 34

2.3 SixArms confidence intervals and required sample size to achieve the target
∆V (s0) = 600. 35

3.1 ∆V (s0) for Four Benchmarks. The best performance is indicated by bold face. 59

3.2 ∆V (s0) for Tamarisk E = 3 and H = 1 . 59

3.3 ∆V (s0) for Tamarisk E = 3 and H = 2 . 60

3.4 ∆V (s0) for Tamarisk E = 3 and H = 3 . 60

3.5 ∆V (s0) for Tamarisk E = 5 and H = 1 . 62

3.6 ∆V (s0) for Tamarisk E = 7 and H = 1 . 62

3.7 Upper (V (s0)) and lower (V (s0)) confidence bounds at termination for four RL
benchmarks . 69

3.8 Upper (V (s0)) and lower (V (s0)) confidence bounds at termination for four con-
figurations of the tamarisk domain . 69

3.9 Number of samples for 8 benchmark MDPs (×106) 69

LIST OF ALGORITHMS
Algorithm Page

1 Fiechter(s0, γ, F, ε, δ) . 14

2 UPPERP(s, a, δ,M0) . 17

3 MBIE-reset(s0, γ, F,H, ε, δ) . 18

4 DDV (s0, γ, F, ε, δ) . 20

5 HOEFFDINGSAMPLER(δ, γ,Rmax, F) . 52

6 LLGCV (s0, F, ε, δ, γ, Rmax) . 61

7 UNDISCOUNTEDOCCUPANCY(π, hmax) . 63

8 DRAWSAMPLES(Nnew, π) . 63

9 ETPE (π, δ,H) . 65

10 ALLOCATESAMPLES (µ, π,B) . 66

11 LAGRANGIANEVI(λ, η, δ) . 84

12 BINARYSEARCH(λleft, λright, τ, η, function Bound) 85

13 FINDLOWER & FINDUPPER . 86

14 CONSTRAINEDDDV(s0, τ, ν, F, ε, δ, γ, Rmax) 87

Dedicated to my inspiring and loving parents

Chapter 1: Introduction

Many natural resource management problems involve promoting or preventing spread through

spatial networks. Preventing the spread of invasives [7, 31], the recovery of an endangered

species [59], and encouraging the spread of low-intensity ground fires while preventing high-

intensity crown fires that destroy the habitat of critically-endangered species [34] are examples

of ecosystem management problems. The motivation of this work is the spread of tamarisk in

river networks [7, 31]. The tamarisk plant (Tamarix spp.) is a native of the Middle East. It

has become an invasive plant in the dryland rivers and streams of the western US [13, 61]. It

out-competes native vegetation primarily by producing large numbers of seeds. Given an ongo-

ing tamarisk invasion, a manager must repeatedly decide how and where to fight the invasion

(e.g., eradicate tamarisk plants? plant native plants? upstream? downstream?). Computing op-

timal management policies for maintaining sustainable ecosystems is challenging, because they

exhibit spatial and temporal interactions at multiple scales [11].

These kinds of problems can be formulated as Markov Decision Problems (MDPs). Since

it is not feasible to explicitly specify the mathematical formulations of the system or the MDP

model parameters, the system dynamics are represented by simulation models [9]. In a simulator-

defined MDP, the Markovian dynamics and rewards are provided in the form of a simulator from

which samples can be drawn. Simulators in natural resource management can be very expensive

to execute, so that the time required to solve such MDPs is dominated by the number of calls to

the simulator. This is particularly true when the simulator was developed for some other purpose

where fidelity was much more important than computational efficiency. One example, reported

by Houtman et al. [34], concerns the FARSITE [25] model for simulating wildfires. It was

initially developed for tactical (same-day) fire fighting, but Houtman, et al. apply it for policy

evaluation over 100-year horizons. It takes FARSITE anywhere from several minutes to an hour

to simulate a single wildfire, so simulating a 100-year trajectory containing hundreds of fires is

very expensive.

A naive approach to solving simulator-defined MDP planning problems is to invoke the

simulator a sufficiently large number of times in every state-action pair to estimate the transition

probability matrix and then apply standard MDP planning algorithms to compute a PAC-optimal

2

policy. While this is required in the worst case (c.f., [3]), there are two sources of constraint that

algorithms can exploit to reduce simulator calls. First, the transition probabilities in the MDP

may be sparse so that only a small fraction of states are directly reachable from any given state.

Second, in MDP planning problems, there is a designated starting state s0, and the goal is to

find an optimal policy for acting in that state and in all states reachable from that state. In the

case where the optimality criterion is cumulative discounted reward, an additional constraint is

that the algorithm only need to consider states that are reachable within a fixed horizon, because

rewards far in the future have no significant impact on the value of the starting state.

To create a good MDP-planning algorithm, there are two critical design questions: (a) what

confidence interval should be employed to bound the optimality of the policy? and (b) how

should samples be drawn to shrink this confidence interval as quickly as possible. Most existing

work [22, 17, 62, 35] answers the first question by computing a “local” confidence interval for

each state-action pair and then combining these intervals via value iteration. Specifically, Even-

Dar, Mannor, and Mansour [17] apply the Hoeffding bound at each state. Strehl and Littman

[62] apply a multinomial confidence interval developed by Weissman et al. [73] at each state.

One can easily apply the empirical Bernstein bound [2] at each state as well.

To answer the second question, most existing work [62, 35] uses the upper confidence bound

Q(s, a) for each state-action pair to compute the upper confidence bound policy πUCB and then

draws samples by executing that policy along trajectories. This “optimism under uncertainty”

has been shown both theoretically and experimentally to give good exploration. However, there

is no particular reason to think that exploration should take place along trajectories. If we have

a “strong” simulator—that is, a simulator that can provide samples from arbitrary state-action

pairs in any order—then there could be advantages to focusing sampling on particular parts of

the state-action space.

An alternative to local confidence intervals are “global” (or “trajectory-wise”) confidence

intervals. Given a set of trajectories generated according to a fixed policy π, we can compute

the return from each trajectory and then apply either the Hoeffding bound [32] or the empirical

Bernstein bound [2] to compute a confidence interval on the expected return of the fixed policy

π. Such intervals can be much tighter, because, unlike the local intervals, they do not need to

propagate the error by dynamic programming nor do they need to invoke a union bound to ensure

that each of the individual local intervals holds simultaneously. Chapter 3 studies theoretical and

experimental analysis of local and global confidence intervals methods.

For modest-sized instances of these problems, model-based MDP planning algorithms can

3

be applied. During the planning phase, the algorithm can invoke a simulator to obtain samples

of the transitions and rewards. Simulators in these problems typically model the system to high

fidelity and, hence, are very expensive to execute. Consequently, the time required to solve such

MDPs is dominated by the number of calls to the simulator. Although approximate or heuristic

solutions would be useful, our collaborating economists tell us that our policy recommendations

will carry more weight if they are provably optimal with high probability.

In addition to above motivations for unconstrained MDPs, in many practical scenarios, such

as natural resource management, a desirable policy needs to satisfy certain constraints imposed

by decision makers. In these scenarios, maximizing the expected reward does not necessarily

avoid rare catastrophic or dangerous situations. For example, in conservation problems, catas-

trophic outcomes include species extinction, long-term establishment of an invasive species, and

severe wildfires. A standard approach to finding policies that avoid catastrophic states is to as-

sign a large negative reward to those states [26, 27]. This is equivalent to a so-called Big M

method for establishing a lexicographic preference for policies that do not enter catastrophic

states. However, this approach does not quantify the risk (probability) of entering a catastrophic

state, nor does it determine whether there are policies that control this risk. A better approach is

to adopt the Constrained MDP (C-MDP) formalism [1], which seeks to maximize one objective

(e.g., economic value) while satisfying one or more constraints probabilistically. For example,

in invasive species management, we can define a C-MDP to minimize the economic cost of inva-

sive species management while ensuring that the probability of native species extinction is less

than a specified threshold.

Recently, Geibel and Wysotzki [27] developed a model-free Q-learning algorithm for C-

MDPs. Their formulation is applicable to episodic tasks with a combination of absorbing catas-

trophic and goal states. As Geramifard [28] pointed out, the Geibel, et al., work does not provide

a performance guarantee on the result.

An alternative to constrained MDPs is to consider risk-sensitive objectives such as variance

penalties, value at risk (VaR), and conditional value at risk (CVaR) [26, 1]. Var and CVar op-

timize the α-quantile of the expected return, and CVaR has favorable mathematical properties.

While these are all very interesting approaches, we find the constrained MDP formulation easier

to understand and explain to stakeholders, and for this reason, we focus our efforts on C-MDPs.

A drawback of C-MDPs is that the optimal policy can be stochastic in some cases. Specifi-

cally, if there are c constraints, then the optimal policy may be stochastic in up to c states. From

the perspective of our stakeholders, this stochastic behavior is confusing and undesirable. Hence,

4

in this thesis, we aim to find a stationary deterministic policy that satisfies a downside risk con-

straint as well as maximizing the discounted reward. We seek to do this while economizing on

the number of calls to the simulator and while providing PAC guarantees both that the constraints

are satisfied and that the resulting policy is within a fixed bound of optimality. This provides the

first PAC-RL algorithm for deterministic policies in C-MDPs.

1.1 Contribution

Chapter 2 proposes the following five improvements:

1. Instead of exploring along trajectories, we take advantage of the fact that our simulators

can be invoked for any state-action pair in any order. Hence, our algorithms perform fine-

grained exploration where they iteratively select the state-action pair that they believe will

be most informative.

2. By not exploring along trajectories (rooted at the start state), we could potentially lose the

guarantee that the algorithm only explores states that are reachable from the start state.

We address this by maintaining an estimate of the discounted state occupancy measure.

This measure is non-zero only for states reachable from the start state. We also use the

occupancy measure in our exploration heuristics.

3. We adopt an extension to the termination condition introduced by Even-Dar et al. [15, 17],

which is the width of a confidence interval over the optimal value of the start state. We

halt when the width of the confidence interval is less than ε, the desired accuracy bound.

4. We replace the Hoeffding-bound confidence intervals employed by Fiechter [22] (and oth-

ers) with the multinomial confidence intervals of Weissman, Ordentlich, Seroussi, Verdu,

and Weinberger [73] employed in the MBIE algorithm of Strehl and Littman [62].

5. To take advantage of sparse transition functions, we incorporate an additional confidence

interval for the Good-Turing estimate of the “missing mass” (the total probability of all

unobserved outcomes for a given state-action pair). This confidence interval can be easily

combined with the Weissman et al. interval.

Chapter 3 makes three main contributions:

5

1. It develops optimal sampling strategies for Monte Carlo policy evaluation using both local

and trajectory-wise forms of the Hoeffding and empirical Bernstein bounds.

2. It provides experimental evidence that for policy evaluation the trajectory-wise bounds

generally out-perform the local bounds except in a few special cases.

3. It introduces two new MDP planning algorithms, LGCV and LLGCV, for simulator-

defined MDPs. These algorithms combine trajectory-wise confidence intervals with lo-

cal confidence intervals to reduce the number of samples needed to achieve target levels

of accuracy. The LGCV algorithm combines a local upper bound with a global lower

bound. Although this performs well on some problems, it exhibits poor performance on

others. The LLGCV algorithm extends LGCV by intersecting both the local and global

lower bounds. Although this requires computing additional confidence intervals, it elim-

inates LGCV’s failure cases. Hence, LLGCV provides a robust method that can provide

significant improvements over previous methods.

Chapter 4 makes two main contributions:

1. It finds a stationary deterministic policy that satisfies a downside risk constraint as well as

maximizing the discounted reward. It does this while economizing on the number of calls

to the simulator and while providing PAC guarantees both that the constraints are satisfied

and that the resulting policy is within a fixed bound of optimality.

2. It provides the first PAC-Safe-RL algorithm for deterministic policies in C-MDPs.

1.2 Organization

The thesis is composed of three manuscripts; the first one has been published the Journal of

Machine Learning Research. The second and third manuscripts are ready to be submitted to

relevant machine learning journals and conferences. The first and second manuscripts focus on

sample-efficient algorithms for unconstrained MDPs. The first manuscript proposes a sampling

heuristic for local confidence intervals. The second manuscript makes a theoretical analysis of

Monte-Carlo policy evaluation, and proposes a new PAC-optimal algorithm combining global

and local confidence bounds. The third manuscript extends the ideas in the first two manuscripts

to C-MDPs.

6

PAC Optimal MDP Planning with Application to Invasive Species

Management

Majid Alkaee Taleghan, Thomas G. Dietterich, Mark Crowley, Kim Hall, H. Jo Albers

Journal of Machine Learning Research

16 (Dec), 3877-3903

7

Chapter 2: PAC Optimal MDP Planning with Application to Invasive

Species Management

In a simulator-defined MDP, the Markovian dynamics and rewards are provided in the form of

a simulator from which samples can be drawn. This chapter studies MDP planning algorithms

that attempt to minimize the number of simulator calls before terminating and outputting a policy

that is approximately optimal with high probability. The chapter introduces two heuristics for

efficient exploration and an improved confidence interval that enables earlier termination with

probabilistic guarantees. We prove that the heuristics and the confidence interval are sound and

produce with high probability an approximately optimal policy in polynomial time. Experiments

on two benchmark problems and two instances of an invasive species management problem show

that the improved confidence intervals and the new search heuristics yield reductions of between

8% and 47% in the number of simulator calls required to reach near-optimal policies.1

2.1 Introduction

The motivation for this chapter is the area of ecosystem management in which a manager seeks to

maintain the healthy functioning of an ecosystem by taking actions that promote the persistence

and spread of endangered species or actions that fight the spread of invasive species, fires, and

disease. Most ecosystem management problems can be formulated as MDP (Markov Decision

Process) planning problems with separate planning and execution phases. During the planning

phase, the algorithm can invoke a simulator to obtain samples of the transitions and rewards.

Simulators in these problems typically model the system to high fidelity and, hence, are very

expensive to execute. Consequently, the time required to solve such MDPs is dominated by the

number of calls to the simulator. A good MDP planning algorithm minimizes the number of

calls to the simulator and yet terminates with a policy that is approximately optimal with high

probability. This is referred to as being PAC-RL [22].

Because of the separation between the exploration phase (where the simulator is invoked
1Portions of this work appeared in Proceedings of Twenty-Seventh AAAI Conference on Artificial Intelligence

(AAAI-2013)

8

and a policy is computed) and the exploitation phase (where the policy is executed in the ac-

tual ecosystem), we refer to these ecosystem management problems as problems of MDP Plan-

ning rather than of Reinforcement Learning. In MDP planning, we do not need to resolve the

exploration-exploitation tradeoff.

Another aspect of these MDP planning problems that distinguishes them from reinforcement

learning is that the planning algorithm must decide when to terminate and output a PAC-optimal

policy. Many reinforcement learning algorithms, such as Sparse Sampling [39], FSSS [72],

MBIE [62], and UCRL2 [35] never terminate. Instead, their performance is measured in terms

of the number of “significantly non-optimal actions” (known as PAC-MDP, [36]) or cumulative

regret [35].

A final aspect of algorithms for ecosystem management problems is that they must produce

an explicit policy in order to support discussions with stakeholders and managers to convince

them to adopt and execute the policy. Hence, receding horizon search methods, such as Sparse

Sampling and FSSS, are not appropriate because they do not compute an explicit policy.

A naive approach to solving simulator-defined MDP planning problems is to invoke the

simulator a sufficiently large number of times in every state-action pair and then apply standard

MDP planning algorithms to compute a PAC-optimal policy. While this is required in the worst

case (c.f., [3]), there are two sources of constraint that algorithms can exploit to reduce simulator

calls. First, the transition probabilities in the MDP may be sparse so that only a small fraction of

states are directly reachable from any given state. Second, in MDP planning problems, there is

a designated starting state s0, and the goal is to find an optimal policy for acting in that state and

in all states reachable from that state. In the case where the optimality criterion is cumulative

discounted reward, an additional constraint is that the algorithm only need to consider states that

are reachable within a fixed horizon, because rewards far in the future have no significant impact

on the value of the starting state.

It is interesting to note that the earliest PAC-optimal algorithm published in the reinforce-

ment learning community was in fact an MDP planning algorithm: the method of Fiechter [22]

addresses exactly the problem of making a polynomial number of calls to the simulator and then

outputting a policy that is approximately correct with high probability. Fiechter’s method works

by exploring a series of trajectories, each of which begins at the start state and continues to a

fixed-depth horizon. By exploring along trajectories, this algorithm ensures that only reachable

states are explored. And by terminating the exploration at a fixed horizon, it exploits discounting.

Our understanding of reinforcement learning has advanced considerably since Fiechter’s

9

work. This chapter can be viewed as applying these advances to develop “modern” MDP plan-

ning algorithms. Specifically, we introduce the following five improvements:

1. Instead of exploring along trajectories, we take advantage of the fact that our simulators

can be invoked for any state-action pair in any order. Hence, our algorithms perform fine-

grained exploration where they iteratively select the state-action pair that they believe will

be most informative.

2. By not exploring along trajectories (rooted at the start state), we could potentially lose the

guarantee that the algorithm only explores states that are reachable from the start state.

We address this by maintaining an estimate of the discounted state occupancy measure.

This measure is non-zero only for states reachable from the start state. We also use the

occupancy measure in our exploration heuristics.

3. We adopt an extension to the termination condition introduced by Even-Dar et al. [15, 17],

which is the width of a confidence interval over the optimal value of the start state. We

halt when the width of the confidence interval is less than ε, the desired accuracy bound.

4. We replace the Hoeffding-bound confidence intervals employed by Fiechter (and others)

with the multinomial confidence intervals of Weissman, Ordentlich, Seroussi, Verdu, and

Weinberger [73] employed in the MBIE algorithm of Strehl and Littman [62].

5. To take advantage of sparse transition functions, we incorporate an additional confidence

interval for the Good-Turing estimate of the “missing mass” (the total probability of all

unobserved outcomes for a given state-action pair). This confidence interval can be easily

combined with the Weissman et al. interval.

This chapter is organized as follows. Section 2 introduces our notation. Section 3 describes

a particular ecosystem management problem—control of the invasive plant tamarisk—and its

formulation as an MDP. Section 4 reviews previous work on sample-efficient MDP planning

and describes in detail the algorithms against which we will evaluate our new methods. Section

5 presents the technical contributions of the chapter. It introduces our improved confidence

intervals, proves their soundness, and presents experimental evidence that they enable earlier

termination than existing methods. It then describes two new exploration heuristics, proves that

they achieve polynomial sample size, and presents experimental evidence that they are more

effective than previous heuristics. Section 6 concludes the chapter.

10

2.2 Definitions

We employ the standard formulation of an infinite horizon discounted Markov Decision Process

(MDP; Bellman 4, Puterman 55) with a designated start state distribution. Let the MDP be

defined byM = 〈S,A, P,R, γ, P0〉, where S is a finite set of (discrete) states of the world; A

is a finite set of possible actions that can be taken in each state; P : S × A × S 7→ [0, 1] is the

conditional probability of entering state s′ when action a is executed in state s; R(s, a) is the

(deterministic) reward received after performing action a in state s; γ ∈ (0, 1) is the discount

factor, and P0 is the distribution over starting states. It is convenient to define a special starting

state s0 and action a0 and define P (s|s0, a0) = P0(s) and R(s0, a0) = 0. We assume that

0 ≤ R(s, a) ≤ Rmax for all s, a. Generalization of our methods to (bounded) stochastic rewards

is straightforward.

A strong simulator (also called a generative model) is a function F : S × A 7→ S × < that

given (s, a) returns (s′, r) where s′ is sampled according to P (s′|s, a) and r = R(s, a).

A (deterministic) policy is a function from states to actions, π : S 7→ A. The value of a policy

π at the starting state is defined as V π(s0) = E[
∑∞

t=0 γ
tR(st, π(st))], where the expectation

is taken with respect to the stochastic transitions. The maximum possible V π(s0) is denoted

Vmax = Rmax/(1− γ). An optimal policy π∗ maximizes V π(s0), and the corresponding value

is denoted by V ∗(s0). The action-value of state s and action a under policy π is defined as

Qπ(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)V π(s′). The optimal action-value is denoted Q∗(s, a).

Define pred(s) to be the set of states s− such that P (s|s−, a) > 0 for at least one action a

and succ(s, a) to be the set of states s′ such that P (s′|s, a) > 0.

Definition 1 Fiechter [22]. A learning algorithm is PAC-RL2 if for any discounted MDP defined

by 〈S,A, P,R, γ, P0〉, ε > 0, 1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a

policy π such that

P[|V ∗(s0)− V π(s0)| ≤ ε] ≥ 1− δ,

in time polynomial in |S|, |A|, 1/ε, 1/δ, 1/(1− γ), and Rmax.

As a learning algorithm explores the MDP, it collects the following statistics. Let N(s, a) be

2In retrospect, it would have been better if Fiechter had called this PAC-MDP, because he is doing MDP planning.
In turn, PAC-MDP has come to refer to reinforcement learning algorithms with polynomial time or regret bounds,
which would be more appropriately called PAC-RL algorithms. At some point, the field should swap the meaning of
these two terms.

11

the number of times the simulator has been called with state-action pair (s, a). LetN(s, a, s′) be

the number of times that s′ has been observed as the result. Let R(s, a) be the observed reward.

2.3 Managing Tamarisk Invasions in River Networks

The tamarisk plant (Tamarix spp.) is a native of the Middle East. It has become an invasive plant

in the dryland rivers and streams of the western US [13, 61]. It out-competes native vegetation

primarily by producing large numbers of seeds. Given an ongoing tamarisk invasion, a manager

must repeatedly decide how and where to fight the invasion (e.g., eradicate tamarisk plants? plant

native plants? upstream? downstream?).

A stylized version of the tamarisk management problem can be formulated as an MDP as fol-

lows. The state of the MDP consists of a tree-structured river network in which water flows from

the leaf nodes toward the root (see Figure 2.1).

Edge (E)

Slot (H)

Figure 2.1: Tamarisk struc-

ture

The network contains E edges. Each edge in turn has H slots at

which a plant can grow. Each slot can be in one of three states:

empty, occupied by a tamarisk plant, or occupied by a native

plant. In this stylized model, because the exact physical layout

of the H slots within each edge is unimportant, the state of the

edge can be represented using only the number of slots that are

occupied by tamarisk plants and the number of slots occupied by

native plants. The number of empty slots can be inferred by sub-

tracting these counts from H . Hence, each edge can be in one

of (H + 1)(H + 2)/2 states. Consequently, the total number of

states in the MDP is E(H+1)(H+2)/2.

The dynamics are defined as follows. In each time step, each plant (tamarisk or native) dies

with probability 0.2. The remaining plants each produce 100 seeds. The seeds then disperse

according to a spatial process such that downstream spread is much more likely than upstream

spread. We employ the dispersal model of Muneepeerakul et al. [48, Appendix B] with an

upstream parameter of 0.1 and a downstream parameter of 0.5. An important aspect of the

dispersal model is that there is a non-zero probability for a propagule to travel from any edge

to any other edge. Each propagule that arrives at an edge lands in a slot chosen uniformly

at random. Hence, after dispersal, each propagule has landed in one of the slots in the river

network. The seeds that arrive at an occupied slot die and have no effect. The seeds that arrive

12

at an empty slot compete stochastically to determine which one will occupy the site and grow.

In the MDPs studied in this chapter, this competition is very simple: one of the arriving seeds is

chosen uniformly at random to occupy the slot.

Many variations of the model are possible. For example, we can allow the tamarisk plants to

be more fecund (i.e., produce more seeds) than the native plants. The seeds can have differential

competitive advantage. The plants can have differential mortality, and so on. One variation that

we will employ in one of our experiments is to include “exogenous arrivals” of tamarisk seeds.

This models the process by which new seeds are introduced to the river network from some

external source (e.g., fishermen transporting seeds on their clothes or equipment). Specifically,

in the exogenous arrivals condition, in addition to the seeds that arrive at an edge via dispersal,

up to 10 additional seeds of each species arrive in each edge. These are sampled by taking 10

draws from a Bernoulli distribution for each species. For tamarisk, the Bernoulli parameter is

0.1; for the native seeds, the Bernoulli parameter is 0.4.

The dynamics can be represented as a very complex dynamic Bayesian network (DBN).

However, inference in this DBN is intractable, because the induced tree width is immense. One

might hope that methods from the factored MDP literature could be applied, but the competition

between the seeds that arrive at a given slot means that every slot is a parent of every other slot, so

there is no sparseness to be exploited. An additional advantage of taking a simulation approach

is that our methods can be applied to any simulator-defined MDP. We have therefore constructed

a simulator that draws samples from the DBN. Code for the simulator can be obtained from

http://2013.rl-competition.org/domains/invasive-species.

The actions for the management MDP are defined as follows. At each time step, one action

can be taken in each edge. The available actions are “do nothing”, “eradicate” (attempt to kill

all tamarisk plants in all slots in the edge), and “restore” (attempt to kill all tamarisk plants in

all slots in the edge and then plant native plants in every empty slot). The effects are controlled

by two parameters: the probability that killing a tamarisk plant succeeds (χ = 0.85) and the

probability that planting a native plant in an empty slot succeeds (β = 0.65). Taken together, the

probability that the “restore” action will change a slot from being occupied by a tamarisk plant

to being occupied by a native plant is the product χ × β = 0.5525. Because these actions can

be taken in each edge, the total number of actions for the MDP is 3E . However, we will often

include a budget constraint that makes it impossible to treat more than one edge per time step.

The reward function assigns costs as follows. There is a cost of 1.0 for each edge that is

invaded (i.e., that has at least one slot occupied by a tamarisk plant) plus a cost of 0.1 for each

13

slot occupied by a tamarisk plant. The cost of applying an action to an edge is 0.0 for “do

nothing”, 0.5 for “eradicate”, and 0.9 for “restore”.

The optimization objective is to minimize the infinite horizon discounted sum of costs. How-

ever, for notational consistency we will describe our algorithms in terms of maximizing the

discounted sum of rewards throughout the chapter.

It is important to note that in real applications, all of the parameters of the cost function and

transition dynamics may be only approximately known, so another motivation for developing

sample-efficient algorithms is to permit experimental analysis of the sensitivity of the optimal

policy to the values of these parameters. The techniques employed in this chapter are closely-

related to those used to compute policies that are robust to these uncertainties [44, 67].

Now that we have described our motivating application problem, we turn our attention to

developing efficient MDP planning algorithms. We start by summarizing previous research.

2.4 Previous Work on Sample-Efficient MDP Planning

Fiechter [22] first introduced the notion of PAC reinforcement learning in Definition 1 and pre-

sented the PAC-RL algorithm shown in Figure 1. Fiechter’s algorithm defines a measure of un-

certainty d̃πh(s), which with high probability is an upper bound on the difference |V ∗h (s)−V π
h (s)|

between the value of optimal policy and the value of the “maximum likelihood” policy that would

be computed by value iteration using the current transition probability estimates. The subscript

h indicates the depth of state s from the starting state. Fiechter avoids dealing with loops in

the MDP by computing a separate transition probability estimate for each combination of state,

action and depth (s, a, h) up to h ≤ H , where H is the maximum depth (“horizon”) at which

estimates are needed. Hence, the algorithm maintains separate counts Nh(s, a, s′) and Nh(s, a)

to record the results of exploration for each depth h. To apply this algorithm in practice, Fiechter

[23] modifies the algorithm to drop the dependency of the related statistics on h.

Fiechter’s algorithm explores along a sequence of trajectories. Each trajectory starts at state

s0 and depth 0 and follows an exploration policy πe until reaching depth H . The exploration

policy is the optimal policy for an “exploration MDP” whose transition function is Ph(s′|s, a)

but whose reward function for visiting state s at depth h is equal to

Rh(s, a) =
6

ε

Vmax
1− δ

√
2 ln 4H|S||A| − 2 ln δ

Nh(s, a)
.

14

This reward is derived via an argument based on the Hoeffding bound. The transition probabili-

ties Ph(s′|s, a) are computed from the observed counts.

The quantity dπ
e
(s) is the value function corresponding to πe. Because the MDP is strati-

fied by depth, πe and dπe can be computed in a single sweep starting at depth H and working

backward to depth 0. The algorithm alternates between exploring along a single trajectory and

recomputing πe and dπ
e
. It halts when dπ

e

0 (s0) ≤ 2/(1 − γ). By exploring along πe, the algo-

rithm seeks to visit a sequence of states whose total uncertainty is maximized in expectation.

Algorithm 1 Fiechter(s0, γ, F, ε, δ)
Input: s0: start state; γ: discount rate; F : a simulator
Initialization:

H =
⌈

1
1−γ

(
lnVmax + ln 6

ε

)⌉
// horizon depth

for s, s′ ∈ S, a ∈ A(s), h = 0, . . . ,H − 1 do
Nh(s, a) = 0
Nh(s, a, s′) = 0
Rh(s, a, s′) = 0
πeh(s) = a1

Exploration:
while dπe0 (s0) > 2/(1− γ) do

reset h = 0 and s = s0

while h < H do
a = πeh(s)
(r, s′) ∼ F (s, a) // draw sample
update Nh(s, a), Nh(s, a, s′), and Rh(s, a, s′)
h = h+ 1
s = s′

Compute new policy πe (and values dπ
e
) using the following dynamic program dmax =

(12Vmax)/(ε(1− γ))
Ph(s′|s, a) = Nh(s, a, s′)/Nh(s, a)
dπ

e

H (s) = 0, ∀s ∈ S
for h = H − 1, . . . , 0 do

eπ
e

h (s, a) = min
{
dmax,

6
ε
Vmax
1−δ

√
2 ln 4H|S||A|−2 ln δ

Nh(s,a) + γ
∑

s′∈succ(s,a) Ph(s′|s, a)dπ
e

h+1(s′)
}

πeh(s) = argmaxa∈A(s) e
πe

h (s, a)

dπ
e

h (s) = eπ
e

h (s, πeh(s))

Compute policy π, and return it.

15

A second important inspiration for our work is the Model-Based Action Elimination (MBAE)

algorithm of Even-Dar et al. [15, 17]. Their algorithm maintains confidence intervals Q(s, a) ∈
[Qlower(s, a), Qupper(s, a)] on the action-values for all state-action pairs in the MDP. These con-

fidence intervals are computed via “extended value iteration” that includes an additional term

derived from the Hoeffding bounds:

Qupper(s, a) = R(s, a) + γ
∑
s′

P̂ (s′|s, a)Vupper(s
′) + Vmax

√
ln ct2|S||A| − ln δ

|N(s, a)|
(2.1)

Vupper(s) = max
a

Qupper(s, a) (2.2)

Qlower(s, a) = R(s, a) + γ
∑
s′

P̂ (s′|s, a)Vlower(s
′)− Vmax

√
ln ct2|S||A| − ln δ

|N(s, a)|
(2.3)

Vlower(s) = max
a

Qlower(s, a). (2.4)

In these equations, t is a counter of the number of times that the confidence intervals have been

computed and c is an (unspecified) constant. Even-Dar et al. prove that the confidence intervals

are sound. Specifically, they show that with probability at least 1−δ,Qlower(s, a) ≤ Q∗(s, a) ≤
Qupper(s, a) for all s, a, and iterations t.

Their MBAE algorithm does not provide a specific exploration policy. Instead, the primary

contribution of their work is to demonstrate that these confidence intervals can be applied as a

termination rule. Specifically, if for all (s, a), |Qupper(s, a) − Qlower(s, a)| < ε(1−γ)
2 , then the

policy that chooses actions to minimize Qlower(s, a) is ε-optimal with probability at least 1− δ.

Note that the iteration over s′ in these equations only needs to consider the observed transitions,

as P̂ (s′|s, a) = 0 for all transitions where N(s, a, s′) = 0.

An additional benefit of the confidence intervals is that any action a′ can be eliminated from

consideration in state s if Qupper(s, a′) < Qlower(s, a). Even-Dar et al. demonstrate experimen-

tally that this can lead to faster learning than standard Q learning (with either uniform random

action selection or ε-greedy exploration).

The third important source of ideas for our work is the Model-Based Interval Estimation

(MBIE) algorithm of Strehl and Littman [62]. MBIE maintains an upper confidence bound on

the action-value function, but unlike Fiechter and Even-Dar et al., this bound is based on a

confidence region for the multinomial distribution developed by Weissman et al. [73].

Let P̂ (s′|s, a) = N(s, a, s′)/N(s, a) be the maximum likelihood estimate for P (s′|s, a),

16

and let P̂ and P̃ denote P̂ (·|s, a) and P̃ (·|s, a). Define the confidence set CI as

CI(P̂ |N(s, a), δ) =
{
P̃
∣∣∣ ‖P̃ − P̂‖1 ≤ ω(N(s, a), δ)

}
, (2.5)

where ‖ · ‖1 is the L1 norm and ω(N(s, a), δ) =
√

2[ln(2|S|−2)−ln δ]
N(s,a) . The confidence interval is

an L1 “ball” of radius ω(N(s, a), δ) around the maximum likelihood estimate for P . Weissman

et al. [73] prove that with probability 1− δ, P (·|s, a) ∈ CI(P̂ (·|s, a)|N(s, a), δ).

Given confidence intervals for all visited (s, a), MBIE computes an upper confidence bound

on Q and V as follows. For any state where N(s, a) = 0, define Qupper(s, a) = Vmax. Then

iterate the following dynamic programming equations to convergence:

Qupper(s, a) = R(s, a) + max
P̃ (s,a)∈CI(P (s,a),δ1)

γ
∑
s′

P̃ (s′|s, a) max
a′

Qupper(s
′, a′) ∀s, a (2.6)

At convergence, define Vupper(s) = maxaQupper(s, a). Strehl and Littman [62] prove that this

converges.

Strehl and Littman provide Algorithm UPPERP (Algorithm 2) for solving the optimization

over CI(P (s, a), δ1) in (2.6) efficiently. If the radius of the confidence interval is ω, then we

can solve for P̃ by shifting ∆ω = ω/2 of the probability mass from outcomes s′ for which

Vupper(s
′) = maxa′ Qupper(s

′, a′) is low (“donor states”) to outcomes for which it is maximum

(“recipient states”). This will result in creating a P̃ distribution that is at L1 distance ω from

P̂ . The algorithm repeatedly finds a pair of successor states s and s and shifts probability from

one to the other until it has shifted ∆ω. Note that in most cases, s will be a state for which

N(s, a, s) = 0—that is, a state we have never visited. In such cases, Vupper(s) = Vmax.

As with MBAE, UPPERP only requires time proportional to the number of transitions that

have been observed to have non-zero probability.

The MBIE algorithm works as follows. Given the upper bound Qupper, MBIE defines an

exploration policy based on the optimism principle [6]. Specifically, at each state s, it selects

the action a that maximizes Qupper(s, a). It then performs that action in the MDP simulator to

obtain the immediate reward r and the resulting state s′. It then updates its statistics N(s, a, s′),

R(s, a), and N(s, a) and recomputes Qupper.

MBIE never terminates. However, it does compute a constant m such that if N(s, a) > m,

then it does not draw a new sample from the MDP simulator for (s, a). Instead, it samples a

17

Algorithm 2 UPPERP(s, a, δ,M0)
Input: s, a
δ: Confidence parameter
M0: missing mass limit
Lines marked by GT: are for the Good-Turing extension
N(s, a) :=

∑
s′ N(s, a, s′)

P̂ (s′|s, a) := N(s, a, s′)/N(s, a) for all s′

P̃ (s′|s, a) := P̂ (s′|s, a) for all s′

∆ω := ω(N(s, a), δ)/2
GT: N0(s, a) := {s′|N(s, a, s′) = 0}
GT: ∆ω := min

(
ω(N(s, a), δ/2)/2, (1 +

√
2)
√

ln(2/δ)
N(s,a)

)
while ∆ω > 0 do

S′ := {s′ : P̂ (s′|s, a) < 1} recipient states
GT: if M0 = 0 then S′ := S′ \N0(s, a)

s := argmins′:P̃ (s′|s,a)>0 Vupper(s
′) donor state

s := argmaxs′∈S′,P̃ (s′|s,a)<1 Vupper(s
′) recipient state

ξ := min{1− P̃ (s|s, a), P̃ (s|s, a),∆ω}
P̃ (s|s, a) := P̃ (s|s, a)− ξ
P̃ (s|s, a) := P̃ (s|s, a) + ξ
∆ω := ∆ω − ξ

GT: if s ∈ N0(s, a) then M0 := M0 − ξ
return P̃

next state according to its transition probability estimate P̂ (s′|s, a). Hence, in an ergodic3 or

unichain4 MDP, it will eventually stop drawing new samples, because it will have invoked the

simulator on all actions a in all non-transient states s at least m times.

Because MBIE does not terminate, it cannot be applied directly to MDP planning. However,

we can develop an MDP planning version by using the horizon time H computed by Fiechter’s

method and forcing MBIE to jump back to s0 each time it has traveled H steps away from

the start state. Algorithm 3 provides the pseudo-code for this variant of MBIE, which we call

MBIE-reset.

Now that we have described the application goal and previous research, we present the novel

contributions of this chapter.
3An ergodic MDP is an MDP where every state can be accessed in a finite number of steps from any other state
4In unichain MDP, every policy in an MDP result in a single ergodic class

18

Algorithm 3 MBIE-reset(s0, γ, F,H, ε, δ)
Input: s0:start state, γ: discount rate, F : a simulator, H : horizon,ε, δ: accuracy and confidence

parameters
N(s, a, s′) = 0 for all (s, a, s′)

m = c
[

|S|
ε2(1−γ)4

+ 1
ε2(1−γ)4

ln |S||A|
ε(1−γ)δ

]
repeat forever

s = s0

h = 1
while h ≤ H do

update Qupper and Vupper by iterating equation 2.6 to convergence
a = argmaxaQupper(s)
if N(s, a) < m then

(r, s′) ∼ F (s, a) // draw sample
update N(s, a, s′), N(s, a), and R(s, a)

else
s′ ∼ P̂ (s′|s, a)
r = R(s, a)

h = h+ 1

2.5 Improved Model-Based MDP Planning

We propose a new algorithm, which we call DDV. Algorithm 4 presents the general schema

for the algorithm. For each state-action (s, a) pair that has been explored, DDV maintains up-

per and lower confidence limits on Q(s, a) such that Qlower(s, a) ≤ Q∗(s, a) ≤ Qupper(s, a)

with high probability. From these, we compute a confidence interval on the value of the start

state s0 according to Vlower(s0) = maxaQlower(s0, a) and Vupper(s0) = maxaQupper(s0, a).

Consequently, Vlower(s0) ≤ V ∗(s0) ≤ Vupper(s0) with high probability. The algorithm termi-

nates when the width of this confidence interval, which we denote by ∆V (s0) = Vupper(s0) −
Vlower(s0), is less than ε.

The confidence intervals for Qlower and Qupper are based on an extension of the Weissman,

et al. confidence interval of Equation (2.5), which we will refer to as CIGT (P (s, a), δ1) (which

will be described below). The confidence intervals are computed by iterating the following

19

equations to convergence:

Qlower(s, a) = R(s, a) + min
P̃ (s,a)∈CIGT (P (s,a),δ1)

γ
∑
s′

P̃ (s′|s, a) max
a′

Qlower(s
′, a′) ∀s, a.(2.7)

Qupper(s, a) = R(s, a) + max
P̃ (s,a)∈CIGT (P (s,a),δ1)

γ
∑
s′

P̃ (s′|s, a) max
a′

Qupper(s
′, a′) ∀s, a.(2.8)

The Q values are initialized as follows: Qlower(s, a) = 0 and Qupper(s, a) = Vmax. At conver-

gence, define Vlower(s) = maxaQlower(s, a) and Vupper(s) = maxaQupper(s, a).

Lemma 1 If δ1 = δ/(|S||A|), then with probability 1−δ,Qlower(s, a) ≤ Q∗(s, a) ≤ Qupper(s, a)

for all (s, a) and Vlower(s) ≤ V ∗(s) ≤ Vupper for all s.

Proof 1 Strehl and Littman [62] prove this for Qupper and Vupper by showing that it is true at

the point of initialization and that Equation (2.8) is a contraction. Hence, it remains true by

induction on the number of iterations of value iteration. The proof for Qlower and Vlower is

analogous.

The exploration heuristic for DDV is based on exploring the state-action pair (s, a) that

maximizes the expected decrease in ∆V (s0). We write this quantity as ∆∆V (s0|s, a), because

it is a change (∆) in the confidence interval width ∆V (s0|s, a). Below, we will describe two

different heuristics that are based on two different approximations to ∆∆V (s0|s, a).

We now present the improved confidence interval, CIGT , and evaluate its effectiveness ex-

perimentally. Then we introduce our two search heuristics, analyze them, and present experi-

mental evidence that they improve over previous heuristics.

2.5.1 Tighter Statistical Analysis for Earlier Stopping

The first contribution of this chapter is to improve the confidence intervals employed in equation

(2.6). In many real-world MDPs, the transition probability distributions are sparse in the sense

that there are only a few states s′ such that P (s′|s, a) > 0. A drawback of the Weissman et al.

confidence interval is that ω(N, δ) scales asO(
√
|S|/N), so the intervals are very wide for large

state spaces. We would like a tighter confidence interval for sparse distributions.

Our approach is to intersect the Weissman et al. confidence interval with a confidence interval

based on the Good-Turing estimate of the missing mass [30].

20

Algorithm 4 DDV (s0, γ, F, ε, δ)
Input: s0:start state
γ: discount rate
F : a simulator
ε, δ: accuracy and confidence parameters
m = c

[
|S|

ε2(1−γ)4
+ 1

ε2(1−γ)4
ln |S||A|

ε(1−γ)δ

]
δ′ = δ/(|S||A|m)
S̃ = {s0} // observed and/or explored states
N(s, a, s′) = 0 for all (s, a, s′)
repeat forever

update Qupper, Qlower, Vupper, Vlower by iterating equations 2.7 and 2.8 using δ′ to compute
the confidence intervals
if Vupper(s0)− Vlower(s0) ≤ ε then

// compute a good policy and terminate
πlower(s) = arg maxaQlower(s, a)
return πlower

forall the explored or observed states s do
forall the actions a do

compute ∆∆V (s0|s, a)

compute (s, a) := argmax(s,a) ∆∆V (s0|s, a)
(r, s′) ∼ F (s, a) // draw sample
S̃ := S̃ ∪ {s′} // update the set of discovered states
update N(s, a, s′), N(s, a), and R(s, a)

Definition 2 For a given state-action pair (s, a), let Nk(s, a) = {s′|N(s, a, s′) = k} be the

set of all result states s′ that have been observed exactly k times. We seek to bound the total

probability of those states that have never been observed: M0(s, a) =
∑

s′∈N0(s,a) P (s′|s, a).

The Good-Turing estimate of M0(s, a) is

M̂0(s, a) =
|N1(s, a)|
N(s, a)

.

In words, Good and Turing count the number of successor states that have been observed exactly

once and divide by the number of samples. The following lemma follows directly from [38],

[46], and [45].

21

Lemma 2 With probability 1− δ,

M0(s, a) ≤ M̂0(s, a) + (1 +
√

2)

√
ln(1/δ)

N(s, a)
. (2.9)

Proof 2 Let S(M0(s, a), x) be the Chernoff “entropy”, defined as

S(M0(s, a), x) = sup
β
xβ − lnZ(M0(s, a), β),

where Z(M0(s, a), β) = E[eβM0(s,a)]. McAllester and Ortiz [45, Theorem 16] prove that

S(M0(s, a),E[M0(s, a)] + ε) ≥ N(s, a)ε2.

From Lemmas 12 and 13 of McAllester and Schapire [46],

E[M0(s, a)] ≤ M̂0(s, a) +

√
2 log 1/δ

N(s, a)
.

Combining these results yields

S

(
M0(s, a), M̂0(s, a) +

√
2 log 1/δ

N(s, a)
+ ε

)
≥ N(s, a)ε2. (2.10)

Chernoff [10] proves that

P (M0(s, a) ≥ x) ≤ e−S(M0(s,a),x).

Plugging in (2.10) gives

P

(
M0(s, a) ≥ M̂0(s, a) +

√
2 log 1/δ

N(s, a)
+ ε

)
≤ e−N(s,a)ε2 . (2.11)

Setting δ = e−N(s,a)ε2 and solving for ε gives ε =
√

(log 1/δ)/N(s, a). Plugging this into

(2.11) and simplifying gives the result.

Define CIGT (P̂ |N(s, a), δ) to be the set of all distributions P̃ ∈ CI(P̂ |N(s, a), δ/2) such

22

that
∑

s′∈N0(s,a) P̃ (s′|s, a) < M̂0(s, a) + (1 +
√

2)
√

ln(2/δ)
N(s,a) . This intersects the Weissman and

Good-Turing intervals. Note that since we are intersecting two confidence intervals, we must

compute both (2.5) and (2.9) using δ/2 so that they will simultaneously hold with probability

1− δ.

We can incorporate the bound from (2.9) into UPPERP by adding the lines prefixed by “GT:”

in Algorithm 2. These limit the amount of probability that can be shifted to unobserved states

according to (2.9). The modified algorithm still only requires time proportional to the number of

states s′ where N(s, a, s′) > 0.

2.5.1.1 Experimental Evaluation of the Improved Confidence Bound

To test the effectiveness of this Good-Turing improvement, we ran MBIE-reset and compared its

performance with and without the improved confidence interval.

We experimented with four MDPs. The first is a Combination Lock MDP with 500 states.

In each state i, there are two possible actions. The first action makes a deterministic transition to

state i + 1 with reward 0 except for state 500, which is a terminal state with a reward of 1. The

second action makes a transition (uniformly) to one of the states 1, . . . , i− 1 with reward 0. The

optimal policy is to choose the first action in every state, even though it doesn’t provide a reward

until the final state.

The remaining three MDPs are different versions of the tamarisk management MDP. The

specific network configurations that we employed in this experiment were the following:

• E = 3, H = 2 with the budget constraint that in each time step we can only choose one

edge in which to perform a non-“do nothing” action. This gives a total of 7 actions.

• E = 3, H = 3 with the same constraints as for E = 3, H = 2.

• E = 7, H = 1 with the budget constraint that in each time step we can only choose one

edge in which to perform a non-“do nothing” action. The only such action is “restore”.

This gives a total of 8 actions.

2.5.1.2 Results

Figure 2.2 shows the upper and lower confidence bounds, Vupper(s0) and Vlower(s0), on the

value of the starting state s0 as a function of the number of simulator calls. The confidence

23

bounds for the Weissman et al. interval are labeled “V(CI)”, whereas the bounds for this interval

combined with the Good-Turing interval are labeled “V(CI-GT)”.

0E+0

2E+0

4E+0

6E+0

8E+0

1E+1

0E+0 2E+5 4E+5 6E+5 8E+5 1E+6

C
o

n
fi

d
e

n
ce

 B
o

u
n

d
s

o
n

 V
(s

_
0

)

Simulator Calls

V(CI)

V(CI-GT)

(a) Combination Lock

0E+0

1E+1

2E+1

3E+1

4E+1

0E+0 2E+5 4E+5 6E+5 8E+5 1E+6

C
o

n
fi

d
e

n
ce

 B
o

u
n

d
s

o
n

 V
(s

_
0

)

Simulator Calls

V(CI)

V(CI-GT)

(b) Tamarisk with E = 3 and H = 2

0E+0

1E+1

2E+1

3E+1

4E+1

5E+1

0E+0 2E+5 4E+5 6E+5 8E+5 1E+6

C
o

n
fi

d
e

n
ce

 B
o

u
n

d
s

o
n

 V
(s

_
0

)

Simulator Calls

V(CI)

V(CI-GT)

(c) Tamarisk with E = 3 and H = 3

0E+0

2E+1

4E+1

6E+1

8E+1

1E+2

0E+0 2E+5 4E+5 6E+5 8E+5 1E+6

C
o

n
fi

d
e

n
ce

 B
o

u
n

d
s

o
n

 V
(s

_
0

)

Simulator Calls

V(CI)

V(CI-GT)

(d) Tamarisk with E = 7 and H = 1

Figure 2.2: Plots of Vupper(s0) and Vlower(s0) for MBIE-reset on V (s0) with and without incor-
porating Good-Turing confidence intervals. Values are the mean of 15 independent trials. Error
bars (which are barely visible) show 95% confidence intervals computed from the 15 trials.

2.5.1.3 Discussion

The results show that the Good-Turing interval provides a substantial reduction in the number

of required simulator calls. On the combination lock problem, the CI-GT interval after 2 × 105

24

calls is already better than the CI interval after 106 calls, for a more than five-fold speedup.

On the E = 3, H = 2 tamarisk problem, the speedup is more than a factor of three. On the

E = 3, H = 3 version, the speedup is more than five-fold. And on the E = 7, H = 1 problem,

the CI interval does not show any progress toward convergence, whereas the CI-GT interval has

begun to make progress.

2.5.2 Improved Exploration Heuristics for MDP Planning

The second contribution of this chapter is to define two new exploration heuristics for MDP

planning and compare them to existing algorithms. As with previous work, we wish to exploit

reachability and discounting to avoid exploring unnecessarily. However, we want to take ad-

vantage of the fact that our simulators are “strong” in the sense that we can explore any desired

state-action pair in any order.

As discussed above, our termination condition is to stop when the width of the confidence

interval ∆V (s0) = Vupper(s0)−Vlower(s0) is less than ε. Our heuristics are based on computing

the state-action pair (s, a) that will lead to the largest (one step) reduction in ∆V (s0). Formally,

let ∆∆V (s0|s, a) = E[∆V (s0)−∆V ′(s0)|(s, a)] be the expected change in ∆V (s0) if we draw

one more sample from (s, a). Here the prime in ∆V ′(s0) denotes the value of ∆V (s0) after

exploring (s, a). The expectation is taken with respect to two sources of uncertainty: uncertainty

about the reward R(s, a) and uncertainty about the resulting state s′ ∼ P (s′|s, a).

Suppose we are considering exploring (s, a). We approximate ∆∆V (s0|s, a) in two steps.

First, we consider the reduction in our uncertainty about Q(s, a) if we explore (s, a). Let

∆Q(s, a) = Qupper(s, a) − Qlower(s, a) and ∆∆Q(s, a) = E[∆Q(s, a) − ∆Q′(s, a)|(s, a)].

Second, we consider the impact that reducing ∆Q(s, a) will have on ∆V (s0).

We compute ∆∆Q(s, a) as follows.

Case 1: N(s, a) = 0. In this case, our current bounds areQlower(s, a) = 0 andQupper(s, a) =

Vmax. After we sample (r, s′) ∼ F (s, a), we will observe the actual reward R(s, a) = r and

we will observe one of the possible successor states s′. For purposes of deriving our heuristic,

we will assume a uniform5 prior on R(s, a) so that the expected value of R is R = Rmax/2.

We will assume that s′ will be a “new” state that we have never observed before, and hence
5Any symmetric prior centered on Rmax/2 would suffice.

25

Vupper(s
′) = Vmax and Vlower(s′) = 0. This gives us

Q′upper(s, a) = R(s, a) + γRmax/(1− γ) (2.12a)

Q′lower(s, a) = R(s, a), (2.12b)

If a more informed prior is known for R(s, a), then it could be employed to derive a more

informed exploration heuristic.

Case 2: N(s, a) > 0. In this case, we have already observed R(s, a), so it is no longer a

random variable. Hence, the expectation is only over s′. For purposes of deriving our exploration

heuristic, we will assume that s′ will be drawn according to our current maximum likelihood

estimate P̂ (s′|s, a) but that N1(s, a) will not change. Consequently, the Good-Turing estimate

will not change. Under this assumption, the expected value of Q will not change, M0(s, a) will

not change, so the only change to Qupper and Qlower will result from replacing ω(N(s, a), δ) by

ω(N(s, a) + 1, δ) in the Weissman et al. confidence interval.

Note that DDV may explore a state-action pair (s, a) even if a is not currently the optimal

action in s. That is, even if Qupper(s, a) < Qupper(s, a
′) for some a′ 6= a. An alternative rule

would be to only explore (s, a) if it would reduce the expected value of ∆V (s) = Vupper(s) −
Vlower(s). However, if there are two actions a and a′ such that Qupper(s, a) = Qupper(s, a

′),

then exploring only one of them will not change ∆V (s). Our heuristic avoids this problem. We

have studied another variant in which we defined Vupper(s) = softmaxa(τ) Qupper(s, a) (the

softmax with temperature τ). This gave slightly better results, but it requires that we tune τ ,

which is a nuisance.

The second component of our heuristic is to estimate the impact of ∆∆Q(s0|s, a) on ∆∆

V (s0|s, a). To do this, we appeal to the concept of an occupancy measure.

Definition 3 The occupancy measure µπ(s) is the expected discounted number of times that

policy π visits state s,

µπ(s) = E

[∞∑
t=1

γtI[st = s]

∣∣∣∣∣ s0, π

]
, (2.13)

where I[·] is the indicator function and the expectation taken is with respect to the transition

distribution.

26

This can be computed via dynamic programming on the Bellman flow equation [64]:

µπ(s) := P0(s) + γ
∑
s−

µπ(s−)P (s|s−, π(s−)).

This says that the (discounted) probability of visiting state s is equal to the sum of the probability

of starting in state s (as specified by the starting state distribution P0(s)) and the probability of

reaching s by first visiting state s− and then executing an action that leads to state s.

The intuition behind using an occupancy measure is that if we knew that the optimal policy

would visit s with measure µ∗(s) and if exploring (s, a) would reduce our uncertainty at state

s by approximately ∆∆Q(s0|s, a), then a reasonable estimate of the impact on ∆V (s0) would

be µ∗(s)∆∆Q(s0|s, a). Unfortunately, we don’t know µ∗ because we don’t know the optimal

policy. We consider two other occupancy measures instead: µOUU and µ.

The first measure, µOUU is computed based on the principle of optimism under uncertainty.

Specifically, define πOUU (s) := maxaQupper(s, a) to be the policy that chooses the action that

maximizes the upper confidence bound on the Q function. This is the policy followed by MBIE

and most other upper-confidence bound methods. This gives us the DDV-OUU heuristic.

Definition 4 The DDV-OUU heuristic explores the state action pair (s, a) that maximizes

µOUU (s)∆∆Q(s0|s, a).

The second measure µ is computed based on an upper bound of the occupancy measure over

all possible policies. It gives us the DDV-UPPER heuristic.

Definition 5 The DDV-UPPER heuristic explores the state action pair (s, a) that maximizes

µ(s)∆∆Q(s0|s, a).

The next section defines µ and proves a property that may be of independent interest.

2.5.2.1 An Upper Bound on the Occupancy Measure

The purpose of this section is to introduce µ, which is an upper bound on the occupancy measure

of any optimal policy for a restricted set of MDPs M̃. This section defines this measure and

27

presents a dynamic programming algorithm to compute it. The attractive aspect of µ is that it

can be computed without knowing the optimal policy. In this sense, it is analogous to the value

function, which value iteration computes in a policy-independent way.

To define µ, we must first define the set M̃ of MDPs. At each point during the execution of

DDV, the states S of the unknown MDP can be partitioned into three sets: (a) the unobserved

states s (i.e., N(s−, a−, s) = 0 for all s−, a−); (b) the observed but unexplored states s (i.e.,

∃(s−, a−)N(s−, a−, s) > 0 but N(s, a) = 0 for all a), and (c) the (partially) explored states s

(i.e., N(s, a, s′) > 0 for some a). Consider the set M̃ = 〈S̃, Ã, T̃ , R̃, s0〉 of MDPs satisfying

the following properties:

• S̃ consists of all states s that have been either observed or explored,

• Ã = A, the set of actions in the unknown MDP,

• T̃ consists of any transition function T such that for explored states s and all actions a,

T (s, a, ·) ∈ CIGT (P̂ (s, a), δ). For all observed but not explored states s, T (s, a, s) = 1

for all a, so they enter self-loops.

• R̃: For explored (s, a) pairs, R̃(s, a) = R(s, a). For unexplored (s, a) pairs, R̃(s, a) ∈
[0, Rmax].

• s0 is the artificial start state.

The set M̃ contains all MDPs consistent with the observations with the following restrictions.

First, the MDPs do not contain any of the unobserved states. Second, the unexplored states

contain self-loops and hence do not transition to any other states.

Define Pupper(s′|s, a) as follows:

Pupper(s
′|s, a) = max

P̃ (s,a)∈CIGT (P,δ)
P̃ (s′|s, a).

Define µ as the solution to the following dynamic program. For all states s,

µ(s) =
∑

s−∈pred(s)

max
a−

γPupper(s|s−, a−)µ(s−). (2.14)

The intuition is that we allow each predecessor s− of s to choose the action a− that would send

the most probability mass to s and hence give the biggest value of µ(s). These action choices

28

a− are not required to be consistent for multiple successors of s−. We fix µ(s0) = µ(s0) = 1.

(Recall, that s0 is an artificial start state. It is not reachable from any other state—including

itself—so µ(s0) = 1 for all policies.)

Lemma 3 For all MDPs M̃ ∈ M̃, µ(s) ≥ µπ
∗(M̃)(s), where π∗(M̃) is any optimal policy of

M̃ .

Proof 3 By construction, Pupper(s′|s, a) is the maximum over all transition distributions in M̃
of the probability of (s, a) → s′. According to (2.14), the probability flowing to s is the maxi-

mum possible over all policies executed in the predecessor states {s−}. Finally, all probability

reaching a state s must come from its known predecessors pred(s), because all observed but

unexplored states only have self-transitions and hence cannot reach s or any of its predecessors.

In earlier work, Smith and Simmons [60] employed a less general path-specific bound on

µ as a heuristic for focusing Real-Time Dynamic Programming (a method that assumes a full

model of the MDP is available).

2.5.2.2 Soundness of DDV-OUU and DDV-UPPER

We now show that DDV, using either of these heuristics, produces an ε-optimal policy with

probability at least 1− δ after making only polynomially-many simulator calls. The steps in this

proof closely follow previous proofs by [62] and [17].

Theorem 1 (DDV is PAC-RL) There exists a sample size m polynomial in |S|, |A|, 1/ε, 1/δ,

1/(1− γ), Rmax, such that DDV(s0, F, ε, δ/(m|S||A|)) with either the DDV-OUU or the DDV-

UPPER heuristic terminates after no more than m|S||A| calls on the simulator and returns a

policy π such that |V π(s0)− V ∗(s0)| < ε with probability 1− δ.

Proof 4 First, note that every sample drawn by DDV will shrink the confidence interval for some

Q(s, a). Hence, these intervals will eventually become tight enough to make the termination

condition true. To establish a rough bound on sample complexity, let us suppose that each state

must be sampled enough so that ∆Q(s, a) = Qupper(s, a)−Qlower(s, a) ≤ ε.
This will cause termination. Consider state s0 and let aupper = argmaxaQupper(s0, a) be

the action chosen by the OUU policy. Then the upper bound on s is Vupper(s) = Qupper(s, aupper),

29

and the lower bound on S is Vlower(s0) = maxaQlower(s0, a) ≥ Qlower(s0, aupper). Hence,

the difference Vupper(s0)− Vlower(s0) ≤ ε.
How many samples are required to ensure that ∆Q(s, a) ≤ ε for all (s, a)? We can bound

Qupper(s, a)−Qlower(s, a) as follows.

Qupper(s, a)−Qlower(s, a) = R(s, a) + γ max
P̃∈CI(P̂ (s,a),δ′)

∑
s′

P̃ (s′|s, a)Vupper(s
′)

−R(s, a)− γ min
P̃∈CI(P̂ (s,a),δ′)

∑
s′

P̃ (s′|s, a)Vlower(s
′)

Let Pupper be the P̃ chosen in the max and Plower be the P̃ chosen in the min. At termination,

we know that in every state Vupper ≤ Vlower + ε. Substituting these and simplifying gives

Qupper(s, a)−Qlower(s, a) ≤ γ
∑
s′

[Pupper(s
′|s, a)− Plower(s′|s, a)]Vlower(s

′) + γε.

We make two approximations: Pupper(s′|s, a)−Plower(s′|s, a) ≤ |Pupper(s′|s, a)−Plower(s′|s, a)|
and Vlower(s′) ≤ Rmax

1−γ . This yields

Qupper(s, a)−Qlower(s, a) ≤ γRmax
1− γ

∑
s′

|Pupper(s′|s, a)− Plower(s′|s, a)|+ γε.

We know that ‖Pupper(·|s, a)− Plower(·|s, a)‖1 ≤ 2ω, because both distributions belong to the

L1 ball of radius ω around the maximum likelihood estimate P̂ .

Qupper(s, a)−Qlower(s, a) ≤ γRmax
1− γ

2ω + γε.

Setting this less than or equal to ε and solving for ω gives

ω ≤ ε(1− γ)2

2γRmax
.

We know that

ω =

√
2[ln(2|S| − 2)− ln δ′]

N
.

To set δ′, we must divide δ by the maximum number of confidence intervals computed by the

algorithm. This will be 2|S||A|N , because we compute two intervals (upper and lower) for ever

30

(s, a). Plugging the value for δ′ in and simplifying gives the following equation:

N ≥ γ28R2
max[ln(2|S| − 2)− ln δ + ln 2|S||A|+ lnN]

ε2(1− γ)4
.

This has no closed form solution. However, as Strehl and Littman note, there exists a constant C

such that if N ≥ 2C lnC then N ≥ C lnN . Hence, the lnN term on the right-hand side will

only require a small increase in N . Hence

N = O

(
γ2R2

max|S|+ ln |S||A|/δ
ε2(1− γ)4

)
.

In the worst case, we must draw N samples for every state-action pair, so

m = O

(
|S|2|A|γ

2R2
max + ln |S||A|/δ
ε2(1− γ)4

)
,

which is polynomial in all of the relevant parameters.

To prove that the policy output by DDV is within ε of optimal with probability 1 − δ, note

that the following relationships hold:

Vupper(s0) ≥ V ∗(s0) ≥ V πlower(s0) ≥ Vlower(s0).

The inequalities Vupper(s0) ≥ V ∗(s0) ≥ Vlower(s0) hold (with probability 1 − δ) by the

admissibility of the confidence intervals. The inequality V ∗(s0) ≥ V πlower(s0) holds, be-

cause the true value of any policy is no larger than the value of the optimal policy. The

last inequality, V πlower(s0) ≥ Vlower(s0), holds because extended value iteration estimates

the value of πlower by backing up the values Vlower of the successor states. At termination,

Vupper(s0)− Vlower(s0) ≤ ε. Hence, V ∗(s0)− V πlower(s0) ≤ ε.

2.5.3 Experimental Evaluation on Exploration Heuristics

We conducted an experimental study to assess the effectiveness of DDV-OUU and DDV-UPPER

and compare them to the exploration heuristics of MBIE (with reset) and Fiechter’s algorithm.

31

2.5.3.1 Methods

We conducted two experiments. The goal of both experiments was to compare the number

of simulator calls required by each algorithm to achieve a target value ε for the width of the

confidence interval, ∆V (s0), on the value of the optimal policy in the starting state s0. For

problems where the value V ∗(s0) of the optimal policy is known, we define ε = αV ∗(s0) and

plot the required sample size as a function of α. For the tamarisk problems, where V ∗(s0) is not

known, we define ε = αRmax and again plot the required sample size as a function of α. This is

a natural way for the user to define the required accuracy ε.

In the first experiment, we employed four MDPs: the RiverSwim and SixArms benchmarks,

which have been studied by Strehl and Littman [63, 62], and two instances of our tamarisk

management MDPs (E = 3, H = 1) and (E = 3, H = 2). Each of the tamarisk MDPs

implemented a budget constraint that permits a non-“do nothing” action in only one edge in each

time step. In the E = 3, H = 2 MDP, we included exogenous arrivals using the parameters

described in Section 2.3 (up to 10 seeds per species per edge; Bernoulli parameters are 0.1 for

tamarisk and 0.4 for native plants). The E = 3, H = 1 tamarisk MDP has 7 actions and 27

states, and the E = 3, H = 2 MDP has 7 actions and 216 states. The discount factor was set to

0.9 in all four MDPs.

Each algorithm was executed for one million simulator calls. Instead of performing dy-

namic programming updates (for extended value iteration and occupancy measure computation)

after every simulator call, we computed them on the following schedule. For MBIE-reset, we

performed dynamic programming after each complete trajectory. For DDV-OUU and DDV-

UPPER, we performed dynamic programming after every 10 simulator calls. Extended value

iteration gives us the confidence limits Vlower(s0) and Vupper(s0) for the starting state from

which we also computed ∆V (s0) = Vupper(s0) − Vlower(s0). The experiment was repeated

15 times, and the average value of ∆V (s0) was computed. For each MDP, we defined a range

of target values for ∆V (s0) and computed the average number of samples m required by each

algorithm to achieve each target value. By plotting these values, we can see how the sample

size increases as we seek smaller target values for ∆V (s0). We also computed the speedup of

DDV-OUU over each of the other algorithms, according to the formula malg/mDDV-OUU, and

plotted the result for each MDP.

We also measured the total amount of CPU time required by each algorithm to complete the

one million simulator calls. Because the simulators in these four MDPs are very efficient, the

32

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

0.000.501.001.502.002.503.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0) as Fraction of V*

MBIE‐reset

DDV‐UPPER

Fiechter

DDV‐OUU

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

2.800

3.000

0.000.501.001.502.002.503.00

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0) as Fraction of V*

over MBIE‐reset

over DDV‐UPPER

over Fiechter

(a) Samples Required

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

0.000.501.001.502.002.503.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0) as Fraction of V*

MBIE‐reset

DDV‐UPPER

Fiechter

DDV‐OUU

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

2.800

3.000

0.000.501.001.502.002.503.00

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0) as Fraction of V*

over MBIE‐reset

over DDV‐UPPER

over Fiechter

(b) Speedup

Figure 2.3: RiverSwim results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-
UPPER, and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b)
Speedup of DDV-OUU over the algorithms.

CPU time primarily measures the cost of the various dynamic programming computations. For

Fiechter, these involve setting up and solving the exploration MDP. For MBIE-reset, the primary

cost is performing extended value iteration to update Vupper and πOUU . For the DDV methods,

the cost involves extended value iteration for both Vupper and Vlower as well as the dynamic

program for µ.

In the second experiment, we ran all four algorithms on the RiverSwim and SixArms prob-

lems until either 40 million calls had been made to the simulator or until ∆V (s0) ≤ αRmax,

where α = 0.1 and Rmax = 10000 (for RiverSwim) and Rmax = 6000 (for SixArms).

2.5.3.2 Results

Figures 2.3, 2.4, 2.5, and 2.6 show the results for the first experiment. In each figure, the left plot

shows how the required sample size increases as the target width for ∆V (s0) is made smaller. In

each figure, the right plot shows the corresponding speedup of DDV-OUU over each of the other

algorithms. In all cases, DDV-OUU generally requires the fewest number of samples to reach the

target width, and DDV-UPPER generally requires the most. The poor behavior of DDV-UPPER

suggests that the policy-free occupancy measure µ is too loose to provide a competitive heuristic.

The relative performance of MBIE-reset and Fiechter’s algorithm varies dramatically across

33

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

0.000.501.001.502.002.503.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0) as Fraction of V*

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.800

1.300

1.800

2.300

2.800

3.300

3.800

4.300

0.000.501.001.502.002.503.00

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0) as Fraction of V*

over DDV‐UPPER

over Fiechter

over MBIE‐reset

(a) Samples Required

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

1.E+06

0.000.501.001.502.002.503.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0) as Fraction of V*

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.800

1.300

1.800

2.300

2.800

3.300

3.800

4.300

0.000.501.001.502.002.503.00

Sp
ee
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0) as Fraction of V*

over DDV‐UPPER

over Fiechter

over MBIE‐reset

(b) Speedup

Figure 2.4: SixArms results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-
UPPER, and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b)
Speedup of DDV-OUU over the other algorithms.

the four MDPs. On RiverSwim, Fiechter’s method is almost as good as DDV-OUU: DDV-OUU

shows a speedup of at most 1.23 (23%) over Fiechter. In contrast, MBIE-reset performs much

worse. But on SixArms, it is MBIE-reset that is the closest competitor to DDV-OUU. In fact,

MBIE-reset is actually better than DDV-OUU for target values larger than 2.1, but as the target

width for ∆V (s0) is made smaller, DDV-OUU scales much better. On the tamarisk R = 3

H = 1 problem, MBIE-reset is again almost as good as DDV-OUU. The maximum speedup

produced by DDV-OUU is 1.11. Finally, on the tamarisk R = 3 H = 2 problem, DDV-OUU is

definitely superior to MBIE-reset and achieves speedups in the 1.9 to 2.3 range. Surprisingly, on

MDP Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter
(ms/call) (ms/call) (ms/call) (ms/call)

RiverSwim 9.59 9.92 3.73 3.29
SixArms 15.54 48.97 10.53 4.87

Tamarisk (E=3 and H=1) 11.93 8.13 4.81 4.68
Tamarisk (E=3 and H=2) 187.30 166.79 12.63 18.79

Table 2.1: RiverSwim clock time per simulator call.

34

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

0.000.501.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target Delta V(s0)/Rmax

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.000.501.00

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0)/Rmax

Over DDV‐UPPER

Over Fiechter

Over MBIE‐Reset

(a) Samples Required

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

0.000.501.00

N
u
m
b
er
 o
f
Si
m
u
la
to
r
C
al
ls

Target Delta V(s0)/Rmax

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.000.501.00

Sp
ee
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0)/Rmax

Over DDV‐UPPER

Over Fiechter

Over MBIE‐Reset

(b) Speedup

Figure 2.5: Tamarisk with E = 3 and H = 1 results: (a) Number of samples required by
MBIE-reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

this problem, Fiechter’s method is sometimes worse than DDV-UPPER.

The CPU time consumed per simulator call by each algorithm on each problem is reported

in Table 2.1. Not surprisingly, MBIE-reset and Fiechter have much lower cost than the DDV

methods. All of these methods are designed for problems where the simulator is extremely

expensive. For example, in the work of [34] on wildfire management, one call to the simulator

can take several minutes. In such problems, the overhead of complex algorithms such as DDV

more than pays for itself by reducing the number of simulator calls.

Tables 2.2 and 2.3 report the results of the second experiment. The results are consistent with

Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 2967.2 2936.6 3001.5 2952.6 2203
Vlower(s0) 1967.2 1936.6 2001.5 1952.6 2203
∆V (s0) 1000 1000 1000 1000

Simulator Calls (×106) 2.31 1.44 4.05 1.76

Table 2.2: RiverSwim confidence intervals and required sample size to achieve target ∆V (s0) =
1000.

35

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

4.005.006.007.008.009.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0)/Rmax

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

5.506.507.508.50

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0)/Rmax

Over DDV‐UPPER

Over Fiechter

Over MBIE‐reset

(a) Samples Required

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

4.005.006.007.008.009.00

N
u
m
b
e
r
o
f
Si
m
u
la
to
r
C
al
ls

Target DeltaV(s0)/Rmax

DDV‐UPPER

Fiechter

MBIE‐reset

DDV‐OUU

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

5.506.507.508.50

Sp
e
e
d
u
p
 o
f
D
D
V
‐O
U
U

Target DeltaV(s0)/Rmax

Over DDV‐UPPER

Over Fiechter

Over MBIE‐reset

(b) Speedup

Figure 2.6: Tamarisk with E = 3 and H = 2 results: (a) Number of samples required by
MBIE-reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

those of the first experiment. DDV-OUU reaches the target ∆V (s0) with the smallest number of

simulator calls on both problems. On RiverSwim, Fiechter’s method is second best, whereas on

SixArms, MBIE-reset is second best. On SixArms, DDV-UPPER and Fiechter did not reach the

target accuracy within the limit of 40 million simulator calls.

Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 5576.7 5203.9 5242.4 5672.8 4954
Vlower(s0) 4140.4 4603.9 4642.4 3997.7 4954
∆V (s0) 1436.3 600 600 1675.1

Simulator Calls (×106) 40.0 14.5 19.3 40.0

Table 2.3: SixArms confidence intervals and required sample size to achieve the target
∆V (s0) = 600.

36

2.5.3.3 Discussion

The experiments show that DDV-OUU is the most effective of the four algorithms and that it

achieves substantial speedups over the other three algorithms (maximum speedups of 2.73 to

7.42 across the four problems).

These results contrast with our previous work [12] in which we showed that DDV-UPPER

is better than MBIE. The key difference is that in the present chapter, we are comparing against

MBIE with reset, whereas in the previous work, we compared against MBIE without reset.

Without resetting, MBIE can spend most of its time in regions of the MDP that are far from

the start state, so it can fail to find a good policy for s0. This behavior also explains the poor

performance of Q-learning reported in [12].

2.6 Summary and Conclusions

This chapter has addressed the problem of MDP planning when the MDP is defined by an ex-

pensive simulator. In this setting, the planning phase is separate from the execution phase, so

there is no tradeoff between exploration and exploitation. Instead, the goal is to compute a PAC-

optimal policy while minimizing the number of calls to the simulator. The policy is designed to

optimize the cumulative discounted reward starting in the current real-world state s0. Unlike in

most published RL papers, which typically assume that the MDP is ergodic, the starting state of

our ecosystem management problems is typically a transient state.

The chapter makes two contributions. First, it shows how to combine the Good-Turing esti-

mate with the L1-confidence region of Weissman et al. [73] to obtain tighter confidence intervals

(and hence, earlier termination) in sparse MDPs. Second, it shows how to use occupancy mea-

sures to create better exploration heuristics. The chapter introduced a new policy-independent

upper bound µ on the occupancy measure of the optimal policy and applied this to define the

DDV-UPPER algorithm. The chapter also employed an occupancy measure µOUU based on the

“optimism under uncertainty” principle to define the DDV-OUU algorithm.

The µ measure is potentially of independent interest. Like the value function computed dur-

ing value iteration, it does not quantify the behavior of any particular policy. This means that

it can be computed without needing to have a specific policy to evaluate. However, the DDV-

UPPER exploration heuristic did not perform very well. We have two possible explanations for

this. First, µ can be a very loose upper bound on the optimal occupancy measure µ∗. Perhaps

37

this leads DDV-UPPER to place too much weight on unfruitful state-action pairs. Second, it

is possible that while DDV-UPPER is optimizing the one-step gain in ∆∆V (s0) (as it is de-

signed to do), DDV-OUU does a better job of optimizing gains over the longer term. Further

experimentation is needed to determine which of these explanations is correct.

Our DDV-OUU method gave the best performance in all of our experiments. This is yet

another confirmation of the power of the “Optimism Principle” [6] in exploration. Hence, we

recommend it for solving simulator-defined MDP planning problems. We are applying it to solve

moderate-sized instances of our tamarisk MDPs. However, additional algorithm innovations will

be required to solve much larger tamarisk instances.

Three promising directions for future research are (a) exploiting tighter confidence interval

methods, such as the Empirical Bernstein Bound [2, 65] or improvements on the Good-Turing

estimate [50, 70], (b) explicitly formulating the MDP planning problem in terms of sequential

inference [71], which would remove the independence assumption in the union bound for parti-

tioning δ, and (c) studying exploration methods based on posterior sampling [69].

38

Combining Global and Local Confidence Intervals for More Efficient

MDP Planning

Majid Alkaee Taleghan and Thomas G. Dietterich

Ready For Submission

39

Chapter 3: Combining Global and Local Confidence Intervals for More

Efficient MDP Planning

Given a Markov Decision Process (MDP) defined by a simulator and a designated starting state

s0, the goal of MDP planning is to find a policy π that with probability 1 − δ achieves a value

V π(s0) that is within ε of the value of the optimal policy, V ∗(s0), while economizing on the

number of calls to the simulator. Existing approaches to this problem have computed “local”

confidence intervals for each state-action pair and then combined these via “extended” value

iteration to obtain a confidence interval on |V π(s0)−V ∗(s0)|. However, global (trajectory-wise)

confidence intervals are usually much tighter than these local intervals. A drawback of global

methods is that they require samples to be collected along trajectories, whereas at each point

during MDP planning, the samples have been collected piecemeal according to an exploration

algorithm. This chapter makes two contributions. First, this chapter develops optimal sampling

algorithms for global and local confidence intervals based on the Hoeffding, empirical Bernstein,

and multinomial bounds. It then presents experimental evidence that sampling along trajectories

and computing global confidence intervals is preferred except in a few extreme cases. Second,

this chapter introduces an algorithm called Equivalent Trajectory Policy Evaluation (ETPE) that

re-uses the accumulated set of samples to generate a new set of trajectories and compute a global

lower confidence bound on the value of the optimal policy. This global lower bound is combined

with a local upper bound to obtain a tighter bound on |V π(s0) − V ∗(s0)|. Finally, the chapter

introduces a new PAC-optimal MDP planning algorithm, Local-Local-Global Confidence Value

(LLGCV) that explores in a series of minibatches. In each minibatch, it chooses either to try to

reduce the upper bound or to increase the lower bound. Experiments on benchmark problems

show that LLGCV can provide substantial benefits in some cases.

3.1 Introduction

Many important problems in natural resource management can be solved via Markov Decision

Process (MDP) planning. For example, Sheldon et al. [59] describe a problem involving the

recovery of an endangered species, and Dietterich, Alkaee Taleghan, and Crowley [12] present a

40

problem of invasive species management. For modest-sized instances of these problems, model-

based MDP planning algorithms can be applied. If the transition probabilities of the MDP are

available in matrix form, then standard dynamic programming methods can solve these MDPs.

However, the transition dynamics of these MDPs are typically available only via an expensive

simulator. This leads us to consider adapting methods from model-based reinforcement learning

to solve these problems. Specifically, we seek MDP-planning algorithms that draw a minimal

number of samples from the simulator and then output a policy that with high probability is

near-optimal when executed in a designated start state.

To create a good MDP-planning algorithm, there are two critical design questions: (a) what

confidence interval should be employed to bound the optimality of the policy? and (b) how

should samples be drawn to shrink this confidence interval as quickly as possible? Most existing

work [22, 17, 62, 35] answers the first question by computing a “local” confidence interval for

each state-action pair and then combining these intervals via value iteration. Specifically, Even-

Dar, Mannor, and Mansour [17] apply the Hoeffding bound at each state. Strehl and Littman

[62] apply a multinomial confidence interval developed by Weissman et al. [73] at each state.

One can easily apply the empirical Bernstein bound [2] at each state as well.

To answer the second question, most existing work [62, 35] uses the upper confidence bound

Q(s, a) for each state-action pair to compute the upper confidence bound policy πUCB and then

draws samples by executing that policy along trajectories. This “optimism under uncertainty”

has been shown both theoretically and experimentally to give good exploration. However, there

is no particular reason to think that exploration should take place along trajectories. If we have

a “strong” simulator—that is, a simulator that can provide samples from arbitrary state-action

pairs in any order—then there could be advantages to focusing sampling on particular parts of

the state-action space. In a recent chapter [12], we and our collaborators developed a greedy

heuristic sampling strategy, called DDV, that tries to sample the state-action pair that will most

rapidly shrink the confidence interval on the value of the optimal policy in the starting state.

This was shown experimentally to reduce the number of simulator calls required to obtain a tight

confidence interval compared to trajectory-based sampling.

An alternative to local confidence intervals are “global” (or “trajectory-wise”) confidence

intervals. Given a set of trajectories generated according to a fixed policy π, we can compute

the return from each trajectory and then apply either the Hoeffding bound [32] or the empirical

Bernstein bound [2] to compute a confidence interval on the expected return of the fixed policy

π. Such intervals can be much tighter, because, unlike the local intervals, they do not need to

41

propagate the error by dynamic programming nor do they need to invoke a union bound to ensure

that each of the individual local intervals holds simultaneously. However, these global intervals

do not provide an upper bound on the value of the optimal policy, and, hence, they cannot be

used to compute πUCB . Is there any way global bounds can still be useful?

The key observation underlying this chapter is that for purposes of computing a lower bound

on the value of the optimal policy, we can use a global lower confidence bound computed using

trajectories from any policy. Hence, we introduce a combined local-global algorithm. It uses a

local confidence interval to compute an upper bound on V ∗ (and to compute πUCB), and it uses

a global confidence interval (also based on πUCB) to compute a lower bound on V ∗.

A naive implementation of the global lower bound would require drawing a new set of tra-

jectories every time πUCB changed. Instead, we introduce an algorithm that re-uses previously-

collected samples to compute a set of “equivalent trajectories” for πUCB .

Once we have effective ways of computing the local and global confidence intervals, the

remaining task is to develop an exploration algorithm for deciding which state-action pairs to

sample at each point. Instead of the DDV greedy heuristic, we develop a new exploration heuris-

tic that is based on optimal sample allocation for policy evaluation. For each of the confidence

interval methods (local Hoeffding, local empirical Bernstein, local Weissman, global Hoeffding,

and global empirical Bernstein), we derive an optimal or near-optimal algorithm for allocating a

fixed sampling budget. We then apply this to the problem of policy optimization by performing

exploration in a series of mini-batches. In each mini-batch, we hold πUCB constant and allo-

cate simulator calls according to the optimal policy evaluation method. We call the resulting

algorithm LGCV (for Local-Global Confidence Value).

Initial experiments showed that while LGCV provides very substantial reductions in sim-

ulator calls on some problems, it can also perform poorly on other problems. This motivated

us to develop a second algorithm, LLGCV (for Local-Local-Global Confidence Value), which

computes the lower confidence bound by taking the maximum of the global and local confidence

intervals.

To assess the effectiveness of LGCV and LLGCV, we perform experiments on several bench-

mark domains and on multiple configurations of an invasive species management problem. The

experiments show that LLGCV provides robust overall performance including in cases where

LGCV does not perform well. Hence, we conclude that the local-global strategy is generally

preferred over all previous methods.

The chapter is organized as follows. Section 3.2 introduces our notation and the various

42

confidence interval methods. Section 3.3 considers the question of how to optimally allocate a

fixed sampling budget for policy evaluation for each of the methods. It includes an experimental

comparison of the different confidence interval methods that may be of independent interest.

Section 3.4 introduces LGCV and LLGCV, our new algorithms that combine local confidence

bounds with a global lower confidence bound during MDP planning. Section 3.5 presents an

experimental evaluation of LGCV, LLGCV, and a comparison with existing methods. Section

3.6 concludes the chapter.

3.2 Problem Definition, Notation, and Confidence Interval Methods

Let a finite simulator-defined MDP consist of a start state s0, a finite set of possible states S, a

finite set of possible actionsA, a discount factor γ ∈ (0, 1], and a stochastic function F that maps

from an input state-action pair (s, a) to a resulting state s′ and reward r, where s′ ∼ P (s′|s, a)

is sampled according to the (unknown) transition function, r ∼ R(r|s, a) is sampled according

to the unknown reward function, and 0 ≤ r ≤ Rmax. In this chapter, we will assume that the

reward is deterministic; our methods can be easily extended to handle stochastic rewards. A

(deterministic) policy π is a function mapping from states s to actions a = π(s). The value of

the policy in the start state, V π(s0), is the expected discounted cumulative reward:

V π(s0) = E

[∞∑
t=0

γtrt

∣∣∣∣∣ s = s0

]
.

Let Vmax = Rmax
1−γ denote the maximum possible value of any state under any policy. The

corresponding minimum possible value is zero.

An optimal policy π∗ maximizes V π(s0), and the corresponding value is denoted by V ∗(s0).

The action-value of state s and action a under policy π is defined as Qπ(s, a) = R(s, a) +

γ
∑

s′ P (s′|s, a)V π(s′). The optimal action-value is denoted Q∗(s, a).

As a learning algorithm explores the MDP, it collects the following statistics. Let N(s, a)

be the number of times state-action pair (s, a) is simulated during learning. Let N(s, a, s′)

be the number of times that s′ has been observed as the resulting state. Let R(s, a) be the

observed reward. Let P̂ (s′|s, a) = N(s, a, s′)/N(s, a) be the maximum likelihood estimate for

P (s′|s, a).

Definition 6 When executing a fixed policy π, the MDP becomes a Markov Reward Process

43

(MRP) with transition function P (s′|s) = P (s′|s, π(s)), reward function R(s) = R(s, π(s)),

and value function V (s). Similarly, for each state s, N(s) samples have been drawn of which

N(s, s′) samples resulted in a transition to state s′.

The goal of our MDP planning algorithms is to draw samples from the simulator and then

output a policy π that is approximately optimal with high probability. This is captured by the

following definition due to Fiechter.

Definition 7 [22]. A learning algorithm is PAC-RL if for any discounted MDP (S,A, P,R, γ, s0),

ε > 0, 1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a policy π such that

P [|V ∗(s0)− V π(s0) | ≤ ε] ≥ 1− δ,

in time polynomial in |S|, |A|, 1/ε, 1/δ, 1/(1− γ), and Rmax.

Note that this goal is different from the goal of exhibiting approximately optimal behavior

over an infinite horizon, which is formalized by the notion of a PAC-MDP algorithm [36]. Unlike

a PAC-MDP algorithm, a PAC-RL algorithm does not face an exploration-exploitation tradeoff.

Instead, it performs pure exploration, but with the goal of minimizing the number of calls to the

simulator.

A confidence interval is a pair of random variables V (s0), V (s0) such that with probability

1− δ, V (s0) ≤ V π(s0) ≤ V (s0). Similarly, Q(s, a) and Q(s, a) denote the confidence bounds

over the action-value functions. We follow the “Optimism Under Uncertainty” principle, and

denote by πUCB the policy based on an upper confidence bound on the action-value function:

πUCB(s) = argmax
a

Q(s, a).

Let us now consider the methods available for computing such confidence intervals.

3.2.1 Global (Trajectory-wise) Confidence Intervals

A trajectory of length H provides a truncated sample of the infinite-horizon return:

v =
H∑
t=0

γtrt ≤
∞∑
t=0

γtrt,

44

where rt = R(st|st−1, at−1). The error introduced by truncating the trajectory lies in the interval

[0, γHVmax]. Given the returns v1, . . . , vN from N trajectories of length H , let

V̂ (s0) =
1

N

N∑
n=1

vn

be the mean of these returns.

Global methods compute confidence intervals on the expected value of the returns at s0 and

obtain a confidence interval for s0. We refer to this family of confidence intervals as Global

Confidence Value (GCV) methods.

The Hoeffding Method: Because the value of s0, V π(s0), lies in the interval [0, Vmax], we

can apply the Hoeffding bound [32] to obtain a confidence interval on V π(s0). We will call this

method GCV(H).

Lemma 4 Let V̂ π(s0) be the mean return obtained from N trajectories of length H obtained by

executing policy π starting in s0. Then with probability 1− δ,

V̂ π(s0)− Vmax

√
ln 2/δ

2N
≤ V π(s0) ≤ V̂ π(s0) + Vmax

√
ln 2/δ

2N
+ γHVmax. (3.1)

We will denote the width of the confidence interval by ∆V (s0). Hence,

∆V π(s0) = 2Vmax

√
ln 2/δ

2N
+ γHVmax. (3.2)

The Empirical Bernstein Method: Let V̂ ar
π
(s0) = 1

N

∑N
n=1[vn − V̂ π(s0)]2 be the es-

timated variance of the returns along the trajectories generated by π. Then we can apply the

empirical Bernstein bound [2] to obtain the following confidence interval. We will call this

method GCV(B).

Lemma 5 Let V̂ π(s0) and V̂ ar
π
(s0) be the sample mean and sample variance of the return

obtained from N trajectories of length H by executing π starting in s0. Then with probability

45

1− δ,

V̂ π(s0)−

√
2V̂ ar

π
(s0) ln 3/δ

N
− 3Vmax ln 3/δ

N

≤ V π(s0) ≤

V̂ π(s0) +

√
2V̂ ar

π
(s0) ln 3/δ

N
+

3Vmax ln 3/δ

N
+ γHVmax.

(3.3)

Hence,

∆V π(s0) = 2

√
2V̂ ar

π
(s0) ln 3/δ

N
+

6Vmax ln 3/δ

N
+ γHVmax.

3.2.2 Local Confidence Intervals

Local methods compute confidence intervals on the value function at each state and then combine

these via dynamic programming to obtain a confidence interval for s0. We refer to this family

of confidence intervals as Local Confidence Value Iteration (LCVI) methods. We present these

intervals in their general form for computing optimal policies. They can be converted to the

fixed policy form for Markov Reward Processes by replacing the choice of actions a with π(s)

for fixed policy π.

The Hoeffding Method: Even-Dar et al. [15, 17] introduced a method for computing a

confidence interval at the start state s0 based on applying dynamic programming to confidence

intervals computed in each state. This method is based on the following two Bellman-like equa-

tions that incorporate the Hoeffding bound:

V (s) = max
a

R(s, a) + γ
∑
s′

P̂ (s′|s, a)V (s′) + γVmax

√
ln 2/δ0

2N(s, a)
(3.4)

V (s) = max
a

R(s, a) + γ
∑
s′

P̂ (s′|s, a)V (s′)− γVmax

√
ln 2/δ0

2N(s, a)
(3.5)

Here, δ0 is derived from δ to ensure that all of the confidence intervals computed hold simulta-

neously with probability 1− δ. For example, if we need to compute a confidence interval for all

46

|A||S| state-action pairs, then δ0 = δ/|A||S|. This is because the confidence bounds (but not the

center of the confidence interval) are computed only once for each (s, a) pair, and these bounds

depend only on N(s, a).

These equations can be iterated to convergence. At convergence, with probability 1 − δ,

V (s0) ≤ V ∗(s0) ≤ V (s0). We will call this method LCVI(H).

The Empirical Bernstein Method: This approach can be extended by replacing the Ho-

effding bound with the empirical Bernstein bound to obtain LCVI(B). Let M(s, a) denote the

sample mean of the discounted backed-up values from the successor states by taking action a

in state s, and V ar(s, a) denote the sample variance of these values by taking action a in state

s. We denote the upper and lower bounds on these values as M(s, a), M(s, a),V ar(s), and

V ar(s).

M(s, a) =
∑
s′

P̂ (s′|s, a)γV (s′)

V ar(s, a) =
∑
s′

P̂ (s′|s, a)[γV (s′)−M(s, a)]2

V (s) = max
a

R(s, a) +M(s, a) +

√
2V ar(s, a) ln(3/δ0)

N(s, a)
+

3γVmax ln(3/δ0)

N(s, a)
(3.6)

M(s, a) =
∑
s′

P̂ (s′|s, a)γV (s′)

V ar(s) =
∑
s′

P̂ (s′|s, a)[γV (s′)−M(s, a)]2

V (s) = max
a

R(s, a) +M(s, a) −

√
2V ar(s, a) ln(3/δ0)

N(s, a)
− 3γVmax ln(3/δ0)

N(s, a)
(3.7)

These equations can be iterated to convergence. At convergence, for an appropriate choice of δ0,

with probability 1− δ, V (s0) ≤ V (s0) ≤ V (s0).

The Weissman Method: Strehl and Littman [63, 62] compute a different local confidence

47

interval based on a multinomial confidence interval proved by Weissman et al. [73]:

CI(P̂ |N(s, a), δ0) =
{
P̃
∣∣∣ ‖P̃ − P̂‖1 ≤ ω(N(s, a), δ0)

}
, (3.8)

where ‖ · ‖1 is the L1 norm and ω(N(s, a), δ0) =
√

2[ln(2|S|−2)−ln δ0]
N(s,a) . With probability 1 − δ0

the true multinomial distribution P (s′|s, a) is contained in this set of distributions. Strehl and

Littman then define Equation (3.9) and Dietterich et al. [12] added the corresponding lower

bound.

V (s) = max
a

R(s, a) + γ max
P̃∈CI(P̂ ,N(s,a))

∑
s′

P̃ (s′|s, a)V (s′) (3.9)

V (s) = max
a

R(s, a) + γ min
P̃∈CI(P̂ ,N(s,a))

∑
s′

P̃ (s′|s, a)V (s′) (3.10)

We will refer to this method as LCVI(W). We have included it here for completeness.

3.2.3 The Occupancy Measure

Our derivations employ the occupancy measure µπ of the MDP for policy π, which is defined as

µπ(s) = EP

[∞∑
t=0

γtI[st = s]

∣∣∣∣∣ s0, π

]
,

where I[·] is the indicator function and the expectation is taken with respect to the transition

distribution. This is the cumulative discounted probability that the MDP will occupy state s

under policy π for discount factor γ. It can be computed via dynamic programming on the

Bellman flow equation [64]:

µπ(s) = I[s = s0] + γ
∑
s−

µπ(s−)P (s|s−, π(s−)). (3.11)

This says that the discounted probability of visiting state s is equal to the sum of the probability

that s is the starting state and the probability of reaching s by first visiting state s− and then

executing an action that leads to state s.

It is easy to show that

V π(s0) =
∑
s

µπ(s)R(s, π(s)). (3.12)

48

We adopt the notation µUCB for the occupancy measure computed based on the principle of

optimism under uncertainty (or Upper Confidence Bound).

3.3 Monte Carlo Policy Evaluation

We now consider the problem of PAC policy evaluation. Given a fixed policy π and a sampling

budget B, what is the tightest 1− δ confidence interval that we can compute on V π(s0) after B

calls to the simulator.

The standard approach to Monte Carlo policy evaluation is to simulate a series of trajecto-

ries, compute the return of each trajectory, and take the average of these values. Appropriate

confidence intervals on these average values can be used to form local and global methods using

the fixed-policy versions of the methods described above. For trajectory-based methods, this

makes sense. However, for local methods, it might be better to allocate more simulator calls to

some states than to others.

In this section, we study this issue. We give exact answers for the global methods and for

the local Hoeffding and empirical Bernstein methods. For the Weissman, et al., bound, we

provide a heuristic solution. To assess the relative merits of the different confidence intervals,

we perform a series of experiments comparing the methods on four benchmark problems and

five configurations of an invasive species management task. The results show that the global

method based on the empirical Bernstein bound gives the tightest intervals in all cases, except

for two small MRPs. In these two small MRPs, the local method based on empirical Bernstein

bound gives the tightest bound.

3.3.1 Optimal Allocation of Sampling

Given an overall sampling budget B, we must decide how to draw the samples. In this section,

we develop sampling algorithms for each confidence interval method.

3.3.1.1 Optimal Sampling for Trajectory-wise Methods

For trajectory-wise methods, we must determine the length H of each trajectory. If H is too

short, then the truncation error γHVmax will dominate the confidence interval. But if H is too

large, then the number of trajectories N = bB/Hc will be small, so the confidence interval will

49

be very wide.

Theorem 2 For trajectory-wise sampling with the Hoeffding bound method with sampling bud-

get B, discount factor γ, and confidence parameter δ, the optimal trajectory length H is the

solution to the equation

H =
1
2 ln ln 2/δ − 1

2 ln 2B − ln ln 1/γ

ln γ
− lnH

2 ln γ
. (3.13)

Proof 5 We seek to minimize the width of the confidence interval ∆V (s0). From Equation 3.2,

we can write this as

∆V (s0) = Vmax

[
2

√
ln 2/δ

2BH
+ γH

]
.

The derivative of the quantity in square brackets is

1

H

√
H ln 2/δ

2B
+ γH ln γ.

Setting this to zero and rearranging terms, we obtain the result.

This equation lacks a closed-form solution, but it is easy to solve numerically by iterating

Equation (3.13) to convergence.

Following the same line of reasoning, we can obtain a similar solution for the empirical

Bernstein bound method.

Theorem 3 For trajectory-wise sampling with the empirical Bernstein method with sampling

budget B, maximum value Vmax, variance V ar, discount factor γ, and confidence parameter δ,

the optimal trajectory length H is the solution to the equation

H =

ln

[√
2V ar ln 3/δ

BH + 6Vmax ln 3/δ
B

]
− lnVmax − ln ln 1/γ

ln γ
. (3.14)

This can also be rapidly solved by simple iteration.

50

To apply this formula, we need an estimate of the variance of the cumulative discounted

reward. It is easy to show that the maximum possible variance is V 2
max/4, and hence, we can

employ this if a tighter value is not known for the particular problem.

Figure 3.1(a) shows the optimal values of H for the Hoeffding and empirical Bernstein

bounds. We show the results for various budgetsB, two settings of δ and γ, and, for the Bernstein

bound, with two settings of V ar. Note that the optimal trajectory length is independent of the

size of the state space.

We can also compute the width of the global confidence interval as a function of B, as it

only depends on the sampling budget, δ, γ, and V ar and not on the actual rewards received.

Figure 3.1(b) shows that the Hoeffding bound can be tighter for small budgets but that as B

grows larger, the empirical Bernstein bound becomes tighter. How large a sampling budget do

we need to drive ∆V (s0) ≤ 0.1× Vmax? For δ = 0.05 and γ = 0.95, we need about 2.4× 104

and 1.4 × 105 samples for the empirical Bernstein bound when V ar = 1/4 and V ar = 0, and

8 × 104 samples for the Hoeffding bound. When δ = 0.01 and γ = 0.99, we need a much

larger budget of about 9.6× 105 and 1.5× 105 samples for the empirical Bernstein bound when

V ar = 1/4 and V ar = 0, and 6× 105 for the Hoeffding bound.

0

100

200

300

400

500

600

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05 1.E+06

O
p

ti
m

a
l H

o
ri

zo
n

 L
e

n
gt

h

Sampling Budget B

H delta=0.01; gamma=0.99

H delta=0.05; gamma=0.95

EB delta=0.01; gamma=0.99; var=0.25

EB delta=0.05; gamma=0.95; var=0.25

EB delta=0.01; gamma=0.99; var=0

EB delta=0.05; gamma=0.95; var=0

(a) Optimal horizon lengthH as a function of the sampling
budget B.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

D
e

lt
a

V
(s

0
)

Sampling Budget B

H delta=0.01; gamma=0.99

H delta=0.05; gamma=0.95

EB delta=0.01; gamma=0.99; var=0.25

EB delta=0.05; gamma=0.95; var=0.25

EB delta=0.01; gamma=0.99; var=0

EB delta=0.05; gamma=0.95; var=0

(b) ∆V (s0) as a function of the sampling budget B.

Figure 3.1: Optimal horizon length H and the gap in the starting state ∆V (s0) as a function of
sampling budget B for computing the trajectory-wise confidence interval via the Hoeffding and
empirical Bernstein bounds. In these plots, we set Vmax = 1.

51

3.3.1.2 Optimal Sampling for Local Methods

We now present sampling algorithms for three methods based on local confidence intervals:

Hoeffding, empirical Bernstein, and Weissman.

Our strategy for minimizing ∆V (s0) is to obtain an expression for it in terms of the local

confidence intervals. We will do this by computing a dynamic program for the width of the local

confidence intervals and then noticing that this dynamic program is identical to value iteration in

a MRP with a particular reward function. We can then apply Equation (3.12) to map that reward

function into a non-recursive expression for ∆V (s0).

Theorem 4 For the local Hoeffding bound method, N(s) samples should be allocated to state

s to minimize

∆V (s0) =
∑
s

µ(s)2γVmax

√
ln 2/δ0

2N(s)
.

Proof 6 We begin by subtracting Equation (3.5) from (3.4) to obtain

V (s)− V (s) = γ
∑
s′

P̂ (s′|s)[V (s′)− V (s′)] + 2γVmax

√
ln 2/δ0

2N(s)

We rewrite this as

∆V (s) = γ
∑
s′

P̂ (s′|s)∆V (s′) + 2γVmax

√
ln 2/δ0

2N(s)
.

We can recognize this as the Bellman equation for a Markov Reward Process for which ∆V (s)

is the value function and 2γVmax

√
ln 2/δ0
2N(s) is the reward function. The result is obtained by

applying Equation (3.12).

Algorithm 5 presents the HOEFFDINGSAMPLER. It repeatedly samples from the state that

will most decrease ∆V (s0) and then recomputes the occupancy measure. This is an instance

of coordinate descent in the objective. Because the objective is convex, this is guaranteed to

find the global optimum. In practice, the sampling could be performed in minibatches and the

occupancy measure updated after each minibatch. The algorithm could be initialized by first

drawing a small number of trajectories with H computed from Theorem 2. This will provide a

useful initial estimate of µ.

52

Algorithm 5 HOEFFDINGSAMPLER(δ, γ,Rmax, F)

parameters:
1: B sampling budget
2: δ confidence parameter
3: γ discount factor
4: Rmax maximum possible reward
5: F : state 7→ (state, reward) simulator
6:

7: N(s) := N(s, s′) := 0 for all s, s′

8: N(s, s′) := 0 for all s, s′

9: Rsum(s) := 0 for all s
10: K := {s0} // the set of known states
11: Define priority(s) = µ(s)[1/

√
N(s)− 1/

√
N(s) + 1]

12: µ(s) := 0 for all s
13: µ(s0) := 1
14: while B > 0 do
15: Let s be the state in K that maximizes priority(s)
16: (s′, r) := F (s) // draw a sample at s
17: N(s) := N(s) + 1
18: N(s, s′) := N(s, s′) + 1
19: Rsum(s) := Rsum(s) + r
20: K := K ∪ {s′}
21: B := B − 1
22: Compute µ by solving Eq.(3.11)
23: end while
24: Return N(s), N(s, s′), Rsum(s) for all s, s′

Theorem 4 has such a simple form that it is possible to solve for the optimal allocation of

samples.

Theorem 5 The optimal sample allocation for the local Hoeffding bound is to assign samples

N(s) in proportion to µ(s)2/3.

Proof 7 Our goal is to find values ~N = (N(s0), . . .) to minimize

J(~N) =
∑
s

µ(s)c/
√

2N(s)

subject to the constraint that
∑

sN(s) = B, the sampling budget. Here c = 2γVmax
√

ln 2/δ0.

53

We apply the Lagrange multiplier method:

L(N(s), λ) =
∑
s

µ(s)
c√

2N(s)
+ λ

[∑
s

N(s)−B

]
∂L

∂N(sj)
= −1

2
µ(sj)cN(sj)

−3/2 + λ

∂L

∂λ
=

∑
s

N(s)−B

Setting the partial derivatives equal to zero we obtain

N(s) =

(
µ(s)c

2λ

)2/3

∑
s

N(s) = B

∑
s

(
µ(s)c

2λ

)2/3

= B

λ =
1

B3/2

[∑
s

(
µ(s)c

2

)2/3
]3/2

=
c

2B3/2

[∑
s

µ(s)2/3

]3/2

Therefore,

N(s) =

 µ(s)c

2 c
2B3/2

[∑
s µ(s)2/3

]3/2
2/3

=
µ(s)2/3∑
s µ(s)2/3

B

The effect of this sampling strategy compared to sampling on trajectories is to shift samples

somewhat towards lower-occupancy states. In particular, in a loop-free MDP, this will shift

samples to states that are deeper in the MDP. This makes sense, because uncertainty deeper in

the MDP will be magnified as it is propagated backwards toward the start state, so narrowing

those deep confidence intervals gives a better overall result at the start state.

We can obtain similar results for the empirical Bernstein bound.

Theorem 6 For the local empirical Bernstein bound method, N(s) samples should be allocated

54

to state s to minimize

∆V (s0) =
∑
s

µ(s)

√
c1V ar(s) +

√
c1V ar(s)√

N(s)
+

2c2

N(s)

]
,

where c1 = 2 ln 3|S|/δ and c2 = 3γVmax ln 3|S|/δ.

Proof 8 Subtract Equation (3.7) from Equation (3.6) and simplify to obtain

∆V (s) = γ
∑
s′

P (s′|s)∆V (s′) +

√
c1V ar(s) +

√
c1V ar(s)√

N(s)
+

2c2

N(s)

 .
We can again recognize this as an instance of the Bellman equation for which the term in brackets

is the reward. The result follows by applying Equation (3.12).

To implement this sampling method, we can change the priority function in Algorithm 5 to

be

µ(s)

{
c1

[√
V ar(s) +

√
V ar(s)

]
×
(

1√
N(s)
− 1√

N(s)+1

)
+ 2c2

(
1

N(s) −
1

N(s)+1

)}
. (3.15)

To obtain a sampling method for local confidence intervals computed with the Weissman method,

we must introduce some approximations. Let ∆VFR(s) be defined as follows:

∆VFR(s) = max
P̃∈CI

P̃ (s′|s)V̂ (s′)− min
P̃∈CI

P̃ (s′|s)V̂ (s′).

The subscript FR denotes “fixed result”. This is the (undiscounted) width of the Weissman con-

fidence interval on V (s) if we replace V (s′) and V (s′) in Equations 3.9 and 3.10 with V̂ (s′), the

value function estimate that would be obtained by performing value iteration using the maximum

likelihood estimates of the transition probabilities.

Heuristic 1 To approximately minimize ∆V (s0) for local multinomial confidence intervals,

samples should be allocated to minimize∑
s

µ(s)γ∆VFR(s).

55

Derivation. Rewrite Equations (3.9) and (3.10) as

V (s) = R(s) + γ max
P̃∈CI

∑
s′

P̃ (s′|s)[V (s′)− V̂ (s′) + V̂ (s′)]

V (s) = R(s) + γ min
P̃∈CI

∑
s′

P̃ (s′|s)[V (s′)− V̂ (s′) + V̂ (s′)]

The first approximation is to split the maximizations and minizations

V (s) ≈ R(s) + γ max
P̃∈CI

∑
s′

P̃ (s′|s)[V (s′)− V̂ (s′)] + γ max
P̃∈CI

∑
s′

P̃ (s′|s)V̂ (s′)

V (s) ≈ R(s) + γ min
P̃∈CI

∑
s′

P̃ (s′|s)[V (s′)− V̂ (s′)] + γ min
P̃∈CI

∑
s′

P̃ (s′|s)V̂ (s′)]

This approximation will widen the gap between the lower and upper bounds. The second ap-

proximation is to replace the maximization and minimization over P̃ in the first terms with the

maximum likelihood estimate P̂ of the transition probabilities. This will shrink the gap between

the lower and upper bounds.

V (s) ≈ R(s) + γ
∑
s′

P̂ (s′|s)[V (s′)− V̂ (s′)] + γ max
P̃∈CI

∑
s′

P̃ (s′|s)V̂ (s′)

V (s) ≈ R(s) + γ
∑
s′

P̂ (s′|s)[V (s′)− V̂ (s′)] + γ min
P̃∈CI

∑
s′

P̃ (s′|s)V̂ (s′)]

Now subtract the lower bound from the upper bound and simplify to obtain

∆V (s) ≈ γ
∑
s′

P̂ (s′|s)∆V (s′) + γ∆VFR(s).

We recognize this as an approximation of the Bellman equation for a MRP with reward function

γ∆VFR(s). Applying Equation (3.12) completes the derivation. �

This method can be implemented as a change to the priority function in Algorithm 5. Let

∆V N
FR(s) denote ∆VFR computed using N samples. Then we can set the priority function to

µ(s)γ[∆
N(s)
FR (s) − ∆

N(s)+1
FR (s)]. For the Weissman interval, we can estimate ∆

N(s)+1
FR (s) by

replacing N by N + 1 in Equation (3.8) when computing the confidence intervals.

56

3.3.2 Experimental Comparison of Global and Local Confidence Intervals

for Policy Evaluation

Now that we have determined the optimal way to allocate samples for both the local and global

methods, we turn our attention to the question of which methods give the tightest confidence

intervals. We present the computed ∆V (s0) for five confidence interval methods: the global

empirical Bernstein bound (“GCV(B)”), global Hoeffding bound (“GCV(H)”), local Hoeffd-

ing bound (“LCVI(H)”), local Bernstein bound (“LCVI(B)”), and the local Weissman bound

(“LCVI(W)”). We first describe the benchmark MDPs and corresponding policies. We then

provide the numerical results in tabular format.

3.3.2.1 Benchmarks and Evaluated Policies

We employed the following benchmark MDPs with modifications as indicated. We have mod-

ified all of the benchmarks to use rewards of the form R(s, a) rather than R(s, a, s′) where

necessary. We also normalized the rewards in these benchmarks so that the maximum possible

reward in any state, Rmax is 1.

The RiverSwim benchmark is studied by Strehl and Littman [62]. We evaluate the optimal

policy, which is π(s) = 1,∀s ∈ S and corresponds to moving to the rightmost state.

The SixArms benchmark is studied by Strehl and Littman [62]. The policy evaluated on this

benchmark is π(0) = 4 and π(5) = 4. The optimal policy is π∗(0) = 5 and π∗(6) = 6. Under

either policy, only three states are visited.

The Casino Land benchmark is studied by Strehl and Littman [63]. We modified Casino

Land to introduce additional stochasticity. We modified the transitions of type (a = 1, p =

1, r = 0) for s ∈ {0, 1, 2, 3}, where a is an action, p the probability of the corresponding

transition, and r is the reward for taking the transition. For each state s ∈ {0, 1, 2}, the transition

is modified so that it transits to s and s + 1 with probabilities 0.5 and 0.5. For state s = 3, the

transition is modified so that it transits to s and s− 1 with probabilities 0.5 and 0.5. The policy

that was evaluated is π(s) = 1,∀s ∈ S.

The Combination Lock benchmark is studied by Gheshlaghi Azar et al. [29]. We modified

it to provide some intermediate rewards with the goal of increasing the variance of the value

function in some of the intermediate states. We thought that this might reveal interesting behavior

for the local empirical Bernstein method.

57

We employed a Combination Lock MDP with 50 states, where state 50 is the terminal state

with reward 1000. There are two actions {0, 1}. The first action’s transitions are specified

in Equation 3.16. The second action makes a deterministic transition from s to s + 1. Odd

numbered states get reward 10, and even numbered states get reward 30 for action 0. These

rewards are 0 in the original MDP. The policy that we evaluate is π(s) = 1, ∀s ∈ S \ {2} and

π(s) = 0 for s = 2, where the starting state is s = 0.

n(xk, xl) =

1

k+1 for l = k + 1

1
k−l for l < k

0 otherwise

, P (xl|xk, 0) =
n(k, l)∑

sm∈S n(k,m)
(3.16)

Reach (R) or

Slot (H)

Edge (E)

Figure 3.2: Tamarisk struc-

ture

Finally, we evaluate the methods on the Tamarisk invasive

species management problem developed by [31]1. The state of

the MDP consists of a tree-structured river network as shown in

Figure 3.2. The network contains E edges. Each edge in turn has

H slots at which a plant can grow.

The problem instances vary according to the number of river

segments and the number of slots: (E = 3, H = 1), (E =

3, H = 2), (E = 3, H = 3), (E = 5, H = 1), and (E = 7, H =

1). For each of these MDPs, we evaluated three policies [7, 33, 47]: Eradicate upstream first

(EUTD), restore upstream first (RUTD), and eradicate the leading edge (LE). We configured

the system dynamics and cost function variables for the Tamarisk management benchmark as

follows. The values for the system dynamics are: eradication rate (0.85), restoration rate (0.65),

downstream spread rate (0.5), upstream spread rates (0.1), death rate (0.2), and production rate

for native and tamarisk plants (100, 2000).

The cost function has two kinds of variables: variables that describe the cost of states and

variables that describe the cost of actions. For the “cost of states variables”, we set the cost per

invaded edge to 1), the cost per tree to 0.1, and the cost per empty slot to 0.05. The values for

the “cost of actions” variables consist of fixed and variable costs. The values of the fixed cost

variables are eradication cost (0.2) and restoration cost (0.2). The values of the variable cost are

varied based on the number of slots. The variable cost values for H = 1 are variable eradication
1The Tamarisk domain description can be found at http://2013.rl-competition.org/domains/

invasive-species

http://2013.rl-competition.org/domains/invasive-species
http://2013.rl-competition.org/domains/invasive-species

58

cost (0.8), variable restoration cost for empty slot (0.8), and variable restoration cost for invaded

slot (1.6). For H = 2, the values are the same as H = 1, except that the variable restoration

cost for invaded slot (0.8). For H = 3, the variables are variable eradication cost (0.6), variable

restoration cost for empty slot (0.6), and variable restoration cost for invaded slot (0.6). The

budget value, which limits the number of possible actions, is 2.

We employed the following starting states. We denote each state by ordering the edges

from left-to-right and top-to-bottom and then listing the contents of each slot using the notation

T (Tamarisk), N (Native), and E (Empty). The starting states that we employed were TTT

(E = 3, H = 1), NTNEEE (E = 3, H = 2), NTENEEEEE (E = 3, H = 3), TNTTTT

(E = 5, H = 1), and TTTNNEE (E = 7, H = 1).

0.01

0.1

1

10

100

1000

D
e

lt
a

 V
(s

0
)

MDP + Policy

LCVI(W)

LCVI(B)

LCVI(H)

GCV(H)

GCV(B)

(a) Comparison of ∆V (s0) computed for 19 policies
(using 9 MDPs). The notation Tn EeHh denotes
Tamarisk MDP n, with E = e edges and H = h slots.
Solid markers correspond to trajectory-based methods;
open markers correspond to local methods.

1

10

100

1000

1 10 100 1000

Lo
ca

l-
H

 D
e

lt
a

 V
(s

0
)

Trajectory-H Delta V(s0)

(b) Comparison of ∆V (s0) computed by the local and
trajectory-wise Hoeffding bound methods. Each circle
corresponds to one of the 19 MDP-policy combinations.
All points are above the line, which corresponds to cases
where the trajectory-wise interval is smaller.

Figure 3.3: Comparison of ∆V (s0) for different five different algorithms [left]. Comparison of
∆V (s0) computed by the local and trajectory-wise Hoeffding bound methods [right].

For each MDP and each sampling algorithm, we specified a budget of 500,000 samples

and set δ = 0.01, γ = 0.95. We performed 30 replications of each combination of MDP and

algorithm and then computed the average width of the confidence interval in the starting state

∆V (s0).

The results are summarized in Figure 3.3(a), where the computed value of ∆V (s0) is plotted

on a log scale. Figure 3.3(b) plots a direct comparison of the global and local Hoeffding methods.

59

Table 3.1 show ∆V (s0) for the benchmark problems and Tables 3.2, 3.3, 3.4, 3.5, and 3.6 show

∆V (s0) for five configurations of the Tamarisk management problem.

The width of the confidence intervals computed by the five confidence interval methods

varies widely, often by factors of more than 50. With two exceptions, the global methods are

always better, and the Bernstein method, GCV(B), is always better than the Hoeffding method,

GCV(H). GCV(H) is always better than LCVI(H), as predicted by our analysis.

Similarly, among the local methods, the Bernstein method, LCVI(B) is the best. In two cases,

SixArms and T1E3H1 EUTD, it is even better than the global Hoeffding method, GCV(H). We

note that these two cases involve very small MRPs that only visit 2 and 4 states, respectively.

When a policy makes repeated visits to a state, the local confidence intervals pool the statistics

from those visits and so can become very tight. In addition, the uncertainty does not need

to propagate very far in the MRP to reach the start state. This allows the local methods to

outperform the global methods.

GCV(B) GCV(H) LCVI(W) LCVI(H) LCVI(B)

RiverSwim 0.198± 0.037 0.948± 0.174 3.408± 0.623 3.907± 0.714 0.385± 0.071
SixArms 0.292± 0.054 0.948± 0.174 1.750± 0.320 2.598± 0.475 0.150± 0.028
CasinoLand 0.176± 0.032 0.948± 0.174 5.729± 1.046 5.169± 0.944 0.623± 0.114
CombinationLock 0.180± 0.033 0.948± 0.174 7.912± 1.445 6.937± 1.267 1.503± 0.275

Table 3.1: ∆V (s0) for Four Benchmarks. The best performance is indicated by bold face.

RUTD EUTD LE

GCV(B) 1.440± 0.263 2.918± 0.533 1.471± 0.269
GCV(H) 5.025± 0.918 5.025± 0.918 5.025± 0.918
LCVI(W) 41.350± 7.550 15.836± 2.892 41.286± 7.538
LCVI(H) 28.379± 5.182 14.329± 2.617 27.490± 5.019
LCVI(B) 2.628± 0.480 1.674± 0.306 2.742± 0.501

Table 3.2: ∆V (s0) for Tamarisk E = 3 and H = 1

The fact that global, trajectory-wise confidence intervals are generally tighter than local in-

tervals makes sense. Every confidence interval is somewhat conservative, because it is designed

for extreme distributions of samples. Hence, when we combine many slightly conservative in-

tervals via value iteration, we end up with an interval that is significantly wider (in most cases)

than the global interval.

60

RUTD EUTD LE

GCV(B) 1.498± 0.274 3.52 ± 0.643 1.464± 0.268
GCV(H) 5.309 ± 0.97 5.309 ± 0.97 5.309 ± 0.97
LCVI(W) 81.17 ± 0.005 84.561 ± 15.439 81.369 ± 14.856
LCVI(H) 24.556 ± 4.484 25.764 ± 4.704 24.77 ± 4.523
LCVI(B) 3.450 ± 0.630 5.502 ± 1.005 3.593 ± 0.656

Table 3.3: ∆V (s0) for Tamarisk E = 3 and H = 2

RUTD EUTD LE

GCV(B) 1.739± 0.318 4.188± 0.765 1.761± 0.322
GCV(H) 5.593 ± 1.022 5.593 ± 1.022 5.593 ± 1.022
LCVI(W) 108.74 ± 19.853 109.23 ± 19.943 108.73 ± 19.851
LCVI(H) 28.268 ± 5.161 30.182 ± 5.511 29.374 ± 5.363
LCVI(B) 5.61 ± 1.025 8.138 ± 1.486 6.597 ± 1.205

Table 3.4: ∆V (s0) for Tamarisk E = 3 and H = 3

3.4 Policy Optimization

Now that we have determined that confidence intervals (global and local) based on the empirical

Bernstein bounds are the tightest, we present our MDP planning algorithms, LGCV and LLGCV,

that use those bounds. We describe LLGCV first, which is shown in Algorithm 6. In line 15,

ExtendedValueIteration is invoked to compute upper and lower confidence bounds on the action

values in every (reachable) state including the start state. Then in line 16 the upper confidence

bound policy πUCB is computed. The next line, 17 computes the global lower confidence bound

using the Equivalent Trajectories Policy Evaluation algorithm that will be described below. Line

18 combines the global and local lower bounds on V ∗(s0).

Exploration is performed in a series of minibatches of size MB, where we allocate one

minibatch to ‘upper’ and another one to ‘lower’ iteratively. In each minibatch, LLGCV draws

samples alternately aiming to reduce the upper confidence bound (ExMethod == upper) and

to increase the lower confidence bound (ExMethod == lower) until the gap between them is

less than ε. When sampling to reduce the upper bound, we use the result from Theorem 5 for

the Hoeffding bound and allocate our minibatch samples in proportion to (µUCB)2/3 (line 29).

When sampling to increase the lower bound, we allocate our minibatch samples in proportion to

61

Algorithm 6 LLGCV (s0, F, ε, δ, γ, Rmax)

parameters:
1: s0 starting state
2: F : (state, action) 7→ (state, reward) simulator
3: ε accuracy parameter
4: δ confidence parameter
5: γ discount factor
6: Rmax maximum possible reward {Global Data Structures}
7: H := 1/(1− γ) log(2Rmax/ε(1− γ)) {ε/2 horizon}
8: N(s, a) number of times action a was executed in state s
9: N(s, a, s′) number of times the transition (s, a) 7→ s′ was observed

10: L(s, a) sequence data structure of the observed (s′, r) transitions
11: N(s, a) := 0, N(s, a, s′) := 0, L(s, a) := ∅
12:

13: ExMethod := upper
14: loop
15: (V (s0), V local(s0)) := ExtendedValueIteration()
16: ∀s πUCB(s) := argmaxaQ(s, a)
17: V UCB(s0) := ETPE(πUCB)
18: V (s0) := max{V (s0), V UCB(s0), V local(s0)}
19:

20: if V (s0)− V (s0) ≤ ε then
21: Perform value iteration using P̂ to obtain π̂
22: return π̂
23: end if
24:

25: MB := 4×H
26: if (ExMethod == upper) then
27: Compute µUCB

28: Compute Bupper :=
∑

s I[µUCB(s) > 0]N(s, πUCB(s))
29: Nnew := AllocateSamples((µUCB)2/3, πUCB, Bupper +MB)
30: DrawSamples(Nnew, πUCB)
31: ExMethod := lower
32: else if (ExMethod == lower) then
33: ρUCB :=UndiscountedOccupancy(πUCB, H)
34: Compute Blower :=

∑
s I[ρUCB(s) > 0]N(s, πUCB(s))

35: Nnew := AllocateSamples(ρUCB(H), πUCB, Blower +MB)
36: DrawSamples(Nnew, πUCB)
37: ExMethod := upper
38: end if
39: end loop

62

RUTD EUTD LE

GCV(B) 2.036± 0.372 5.135± 0.938 2.562± 0.468
GCV(H) 7.11 ± 1.298 7.11 ± 1.298 7.11 ± 1.298
LCVI(W) 122.52 ± 22.368 108.91 ± 19.885 118.57 ± 21.647
LCVI(H) 73.339 ± 13.39 63.099 ± 11.52 76.969 ± 14.052
LCVI(B) 16.27 ± 2.971 18.515 ± 3.381 18.88 ± 3.448

Table 3.5: ∆V (s0) for Tamarisk E = 5 and H = 1

RUTD EUTD LE

GCV(B) 3.573± 0.653 5.956± 1.088 4.463± 0.815
GCV(H) 9.195 ± 1.679 9.195 ± 1.679 9.195 ± 1.679
LCVI(W) 184.3 ± 33.648 184.3 ± 33.648 184.3 ± 33.648
LCVI(H) 181.07 ± 33.059 121.01 ± 22.093 182.86 ± 33.385
LCVI(B) 113.41 ± 20.705 63.366 ± 11.569 110.98 ± 20.261

Table 3.6: ∆V (s0) for Tamarisk E = 7 and H = 1

an undiscounted occupancy measure ρ that is computed by UNDISCOUNTEDOCCUPANCY (line

33). This is an undiscounted, fixed-horizon occupancy measure that corresponds to sampling

along trajectories of length H .

The pseudo-code for UNDISCOUNTEDOCCUPANCY is shown in Algorithm 7. It works by

converting the infinite-horizon MDP into an “unrolled” finite-horizon MDP as follows. Let

h ∈ {0, . . . ,H} index the levels of the unrolled MDP. Then the states of this MDP are pairs

(s, h), the transition function is P ((s′, h+ 1)|(s, h), a) = P (s′|s, a), and the reward function is

R((s, h), a) = R(s, a). Hence, each transition moves from one level to the next deeper level.

Trajectories terminate when they reach level H . The undiscounted occupancy measure ρ(s, h)

is the probability that π will visit state s at level h given that it starts in state s0 at level 0. This is

computed in a single top-down pass (line 5). Note that
∑

s ρ(s, h) = 1 because the policy must

visit some state at each level h during a trajectory.

We now describe the ETPE algorithm for computing the global trajectory-wise lower bound.

Our approach is inspired by the work of [49], where they re-use a sequence of random values

to evaluate different policies. Every time we invoke the simulator, we record the observed state

transitions. Then, when asked to evaluate a new policy π, we replay the recorded transitions in

the same order they were observed.

63

Algorithm 7 UNDISCOUNTEDOCCUPANCY(π, hmax)

1: P̂ (s′|s, a) = N(s, a, s′)/N(s, a) for all (s, a) where N(s, a) > 0
2: ρ(s, h) := 0 for all s, 0 ≤ h < hmax
3: ρ(s0, 0) := 1
4: for h = 1 to hmax do
5: ρ(s′, h) := ρ(s′, h) + ρ(s, h− 1)P̂ (s′|s, π(s)) for all states s and s′

6: end for
7: return ρ

More precisely, for each state-action pair (s, a) in the MDP, we define a sequence data struc-

ture SEQ(s, a) that supports four operations:

SEQ(s, a).push(s′, r) adds state s′ and reward r to the end of the sequence.

SEQ(s, a).reset() resets an internal index SEQ(s, a).index so that it points to the first ele-

ment in the sequence.

SEQ(s, a).end() returns TRUE if the index points beyond the end of the sequence

SEQ(s, a).next() returns the (s′, r) sequence element indexed by SEQ(s, a).index and in-

crements the index. It raises an exception if SEQ(s, a).end() is true.

Every time our exploration algorithm invokes the simulator F in (s, a) and observes the

result (s′, r), we invoke SEQ(s, a).push(s′, r) to add (s′, r) to the end of the sequence. This

is summarized in Algorithm 8. Conceptually, we can imagine that the simulator has access to a

separate stream of random values for each (s, a) and uses that stream of randomness to generate

its answer each time it is invoked.

Algorithm 8 DRAWSAMPLES(Nnew, π)
1: for all s do
2: for n = 1 to Nnew(s) do
3: a := π(s)
4: (s′, r) := F (s, a)
5: R(s, a) := r
6: SEQ(s, a).push(s′, r)
7: end for
8: end for

64

Now given a policy π and the contents of these sequences, we generate a collection of

trajectories, each of length H as shown in Algorithm 9. First, for all s and a, we invoke

SEQ(s, a).reset() to reset their indexes. Then we generate trajectory n = 1, . . . by start-

ing in state s0, choosing action π(s0), and then making a transition to the state (s′, r) :=

SEQ(s, a).next(). We repeat this until we reach horizon depth H . At that point, we com-

pute the cumulative discounted return vn from the observed r values. The algorithm terminates

when it attempts to execute the next action on a sequence that has been fully consumed. At that

point, let N be the number of trajectories that we have generated. We can obtain a confidence

interval on V π(s0) by computing the mean and variance of the returns v1, . . . , vN and evaluating

the one-sided empirical Bernstein bound.

Theorem 7 Given an MDP, a policy π, a horizon H , a confidence parameter 0 < δ < 1/2,

and a collection of observed (s, a, s′, r) transitions that have been recorded in the SEQ data

structures, Algorithm 9 terminates and returns a lower confidence bound V (s0) such that with

probability 1− δ
V (s0) ≤ V π(s0).

Proof 9 Because in each (s, a) we observe the same state transitions in the same order as they

were originally collected, we obtain the same confidence interval that we would have obtained

if we had been executing policy π from the beginning.

The final part of LLGCV that we need to describe is the ALLOCATESAMPLES method (see

Algorithm 10). This populates the Nnew array with the number of samples that should be drawn

from each state. The goal is to allocate a minibatch of new samples to states so that after drawing

the new samples, a total budget of B samples will have been drawn in proportion to the occu-

pancy measure µ that is provided. Because some states may already have more samples than

this, we can treat those “extra” samples as excess and add them to B.

As LLGCV runs, it computes many confidence intervals. To ensure that all of those intervals

are simultaneously valid with probability 1− δ, we need to partition δ into smaller individual δ′

values when computing each interval. To do this, we use the fact that

∞∑
t=1

1

t(t+ 1)
= 1

to create a sequence of δ′ values that sum to δ. The variable t indexes the iterations of the

65

Algorithm 9 ETPE (π, δ,H)

parameters:
1: δ confidence parameter
2: π policy to evaluate
3: M MDP with starting state s0, discount factor γ, and maximum value Vmax.
4: H horizon depth (trajectory length)
5: SEQ collection of sequence data structures one for each (s, a)
6: For all s and a in M , SEQ(s, a).reset()
7: J := ∅ is the set of generated trajectories
8: loop
9: s := s0, h := 0, v := 0

10: while h < H do
11: if SEQ(s, π(s)).end() then
12: goto FINISH
13: end if
14: (s′, r) := SEQ(s, π(s)).next()
15: s := s′; v := v + γhr
16: h := h+ 1
17: end while
18: J := J ∪ {v}
19: end loop
20: FINISH: N := |J |
21: V̂ := 1

N

∑N
j=1 vj

22: V̂ ar := 1
J

∑J
j=1(vj − V̂)2

23: halfwidth :=

√
2V̂ ar ln 3/δ

N + 3Vmax ln 3/δ
N

24: return V̂ − halfwidth

main loop of LLGCV (line 14). Hence, in each main loop iteration, we have a total of δ
t(t+1)

confidence probability to consume.

We divide δ equally between computing local and global bounds. For computing the lower

global bound in iteration t, we only need to compute one confidence bound, so we set

δ′ =
δ

2t(t+ 1)
.

For computing the upper and lower local bounds in iteration t, we need to compute 2Kt|A| con-

fidence bounds, where Kt is the number of states that participate in the extended value iteration

66

Algorithm 10 ALLOCATESAMPLES (µ, π,B)

1: Nnew(s) := 0 for all s
2: muTotal :=

∑
s µ(s)

3: toAllocate := B // Total number of samples to allocate
4: S′ = {s|s ∈ S, µ(s) > 0}
5: Sexcess = ∅
6: repeat
7: continue := false
8: for s in S′ do
9: share := Round(toAllocate ×µ(s)/muTotal)

10: if (N(s, π(s)) > share) then
11: toAllocate − = N(s, π(s))
12: Sexcess := Sexcess ∪ {s}
13: continue := true
14: end if
15: end for
16: S′ := S′ \ Sexcess
17: muTotal :=

∑
s∈S′ µ(s)

18: until (continue = false)
{Allocate the samples}

19: for s in S′ do
20: share := Round(toAllocate ×µ(s)/muTotal)
21: Nnew(s) := share−N(s, π(s))
22: end for

for minibatch t (line 15 of LLGCV). Hence, when computing each bound, we set

δ′ =
δ

4t(t+ 1)Kt|A|
.

Note that although extended value iteration computes multiple confidence intervals for each

state-action pair, the confidence intervals computed prior to convergence do not need to be ac-

counted for. The key is that the final confidence intervals that solve the Bellman equation and

hence support πUCB must be valid.

The following theorem formalizes the correctness of LLGCV. The proof is in Appendix A.

Theorem 8 (LLGCV is PAC-RL) There exists a sample size m polynomial in |S|, |A|, 1/ε,

1/δ, 1/(1− γ), Rmax, such that LLGCV (s0, π0, F, ε, δ, γ, Rmax) terminates after no more than

67

m|S||A| calls on the simulator and returns a policy π such that |V π(s0) − V ∗(s0)| < ε with

probability 1− δ.

We now describe how LGCV differs from LLGCV. The only change is that LGCV does not

compute the local lower bounds in line 15 of Algorithm LLGCV and it does not include those

bounds in the maximization in line 18. This also means that during each call to ExtendedVal-

ueIteration, we can set δ′ according to

δ′ =
δ

2t(t+ 1)Kt|A|
,

because we are computing half as many confidence bounds.

3.5 Experimental Evaluation

To evaluate the effectiveness of LGCV and LLGCV, we compared their performance to two other

algorithms. The first is the DDV algorithm [12, 66] but improved to use the empirical Bernstein

bound and Theorem 6 instead of the multinomial bound. The second is Fiechter’s original MDP

planning algorithm [22]. We compare the performance on the same MDP benchmarks as in

Section 3.3. In these experiments, γ = 0.9, δ = 0.01, and ε = 0.1. The algorithms terminate

either if the width of the confidence interval falls below εRmax or if 10 million samples are

drawn. We report the number of samples drawn at termination. The results are averaged over 15

independent runs and plotted in Figure 3.4(a).

Figure 3.4(a) shows that Fiechter’s algorithm gives the worst performance on all problems

and LLGCV matches or exceeds the performance of the other algorithms. The performance

of LGCV is often identical to LLGCV, except on Six Arms, where it is much worse. DDV

gives the best performance, by slight margins, on RiverSwim, Six Arms, and CasinoLand. It is

particularly notable that both LGCV and LLGCV give major improvements over DDV on three

Tamarisk problem instances.

Figure 3.4(b) presents a more detailed comparison of LLGCV and DDV. Points above the

diagonal line correspond to MDPs where LLGCV requires fewer samples than DDV. This shows

again that when LLGCV is better than DDV, the improvement is huge, whereas when DDV is

better than LLGCV, the difference is small.

Table 3.7 reports the upper and lower confidence bounds computed by each of the algorithms

on the four benchmark MDPs. The table also includes the value of the optimal policy for these

68

problems. In all cases, the confidence intervals include the true value of V ∗(s0).

Table 3.8 reports the upper and lower confidence bounds for the four Tamarisk instances.

Notice that the lower bounds computed by LGCV and LLGCV are almost always higher (tighter)

than the lower bounds computed by DDV and Fiechter. This reflects the “two-sided” exploration

strategy of LLGCV. Higher lower bounds allows higher upper bounds to achieve the same final

confidence level width. This allows LGCV and LLGCV to terminate sooner.

1.E+05

1.E+06

1.E+07

N
u

m
b

e
r

o
f

S
a

m
p

le
s

MDP

LLGCV

LGCV

DDV

Fiechter

(a) Comparison of the number of samples to termination
(using 8 MDPs). The notation Tn EeHh denotes Tamarisk
MDP n, withE = e edges andH = h slots. Solid markers
correspond to local methods methods; open markers corre-
spond to LLGCV methods.

1.E+05

1.E+06

1.E+07

1.E+05 1.E+06 1.E+07
D

D
V

 S
am

p
le

s

LLCGV Samples

(b) Comparison of number of samples computed by the
best local and the best LLGCV heuristics. Each circle cor-
responds to one of the 8 MDPs. All points are above the
line, which corresponds to cases where the LLGCV method
is better.

Figure 3.4: Comparison of number of samples taken by each algorithm to reach to the termina-
tion point. Each circle corresponds to one of the 8 MDPs.

3.6 Concluding Remarks

This chapter has made three main contributions. First, it has developed optimal sampling strate-

gies for Monte Carlo policy evaluation using both local and trajectory-wise forms of the Hoeffd-

ing and empirical Bernstein bounds. Second, it provided experimental evidence that for policy

evaluation the trajectory-wise bounds generally out-perform the local bounds except in a few

special cases. Third, it introduced two new MDP planning algorithms, LGCV and LLGCV,

for simulator-defined MDPs. These algorithms combine a trajectory-wise confidence intervals

with local confidence intervals to reduce the number of samples needed to achieve target levels

69

LLGCV LGCV DDV Fiechter V ∗(s0)

RiverSwimV (s0) 0.271± 0.001 0.271± 0.001 0.272± 0.002 0.271± 0.001 0.221
RiverSwimV (s0) 0.171± 0.001 0.171± 0.001 0.172± 0.002 0.171± 0.001

SixArmsV (s0) 0.876± 0.007 0.859± 0.004 0.874± 0.006 0.910± 0.011 0.826
SixArmsV (s0) 0.776± 0.007 0.760± 0.004 0.774± 0.005 0.732± 0.011

CasinoLandV (s0) 0.576± 0.002 0.575± 0.002 0.566± 0.001 0.586± 0.001 0.516
CasinoLandV (s0) 0.476± 0.002 0.475± 0.002 0.466± 0.001 0.447± 0.001

CombinationLockV (s0) 0.200± 0.001 0.193± 0.001 0.200± 0.001 0.200± 0.001 0.150
CombinationLockV (s0) 0.100± 0.001 0.093± 0.001 0.100± 0.001 0.100± 0.001

Table 3.7: Upper (V (s0)) and lower (V (s0)) confidence bounds at termination for four RL
benchmarks

LLGCV LGCV DDV Fiechter

E=3 and H=1 V (s0) 27.865± 0.055 27.842± 0.044 27.334± 0.030 27.737± 0.015
E=3 and H=1 V (s0) 24.371± 0.054 24.345± 0.045 23.835± 0.031 24.238± 0.015

E=3 and H=2 V (s0) 37.476± 0.021 37.464± 0.028 36.825± 0.006 38.000± 0.001
E=3 and H=2 V (s0) 33.711± 0.040 33.687± 0.030 33.027± 0.006 30.393± 0.095

E=3 and H=3 V (s0) 40.669± 0.027 40.659± 0.025 39.721± 0.008 41.000± 0.001
E=3 and H=3 V (s0) 36.605± 0.041 36.632± 0.063 35.622± 0.008 26.842± 0.151

E=5 and H=1 V (s0) 49.198± 0.075 49.159± 0.056 47.319± 0.018 50.799± 0.055
E=5 and H=1 V (s0) 43.500± 0.073 43.467± 0.049 41.620± 0.018 34.299± 0.077

Table 3.8: Upper (V (s0)) and lower (V (s0)) confidence bounds at termination for four configu-
rations of the tamarisk domain

LLGCV LGCV DDV Fiechter

RiverSwim 2.120± 0.022 2.090± 0.026 1.780± 0.003 2.510± 0.004
SixArms 2.400± 0.019 5.140± 0.433 2.220± 0.004 10.000± 0.000
CasinoLand 5.570± 0.089 5.520± 0.073 5.640± 0.002 10.000± 0.000
CombinationLock 3.370± 0.005 3.550± 0.005 2.890± 0.001 7.360± 0.009
E=3 and H=1 0.351± 0.007 0.347± 0.005 0.336± 0.005 7.350± 0.042
E=3 and H=2 0.279± 0.005 0.276± 0.006 0.465± 0.005 10.000± 0.000
E=3 and H=3 0.332± 0.010 0.326± 0.007 0.949± 0.010 10.000± 0.000
E=5 and H=1 1.080± 0.022 1.060± 0.017 1.630± 0.005 10.000± 0.000

Table 3.9: Number of samples for 8 benchmark MDPs (×106)

70

of accuracy. The LGCV algorithm combines a local upper bound with a global lower bound.

Although this performs well on some problems, it exhibits poor performance on others. The

LLGCV algorithm extends LGCV by intersecting both the local and global lower bounds. Al-

though this requires computing additional confidence intervals, it eliminates LGCV’s failure

cases. Hence, LLGCV provides a robust method that can provide significant improvements over

previous methods.

71

Efficient Exploration for Constrained MDPs

72

Chapter 4: Efficient Exploration for Constrained MDPs

Given a Markov Decision Process (MDP) defined by a simulator, a designated starting state s0,

and a downside risk constraint defined as the probability of reaching catastrophic states, our goal

is to find a stationary deterministic policy π that with probability 1− δ achieves a value V π(s0)

that is within ε of the value of the optimal stationary deterministic ν-feasible policy, V ∗(s0),

while economizing on the number of calls to the simulator. This chapter presents the first PAC-
Safe-RL algorithm for this purpose. The algorithm extends PAC-RL algorithms for efficient

exploration while providing guarantees that the downside constraint is satisfied. Experiments

comparing our CONSTRAINEDDDV algorithm to baselines show substantial reductions in the

number of simulator calls required to find a feasible policy.

4.1 Introduction

This work is inspired by problems in natural resource management centered on the challenge of

invasive species [12, 66]. Computing optimal management policies for ecosystems is challeng-

ing because they exhibit complex spatio-temporal interactions at multiple scales. Many ecosys-

tem management problems can be formulated as MDP (Markov Decision Process) planning

problems [59]. In a simulator-defined MDP, the Markovian dynamics and rewards are provided

by a simulator from which samples can be drawn. Simulators in natural resource management

can be very expensive to execute, so that the time required to solve such MDPs is dominated by

the number of calls to the simulator.

Efficient MDP planning algorithms attempt to minimize the number of simulator calls before

terminating and outputting a policy that is approximately optimal with high probability. For

unconstrained MDPs, the standard formulation of this is the notion of PAC-RL [22, 12]. This

is in contrast to the PAC-MDP formalization, which minimizes various measures of infinite-

horizon regret [62]. A common component of PAC-RL algorithms is to compute confidence

intervals and explore using the optimism principle.

In many practical scenarios, such as natural resource management, a desirable policy needs

to satisfy certain constraints imposed by decision makers. In these scenarios, maximizing the

73

expected reward does not necessarily avoid rare catastrophic or dangerous situations. For ex-

ample, in conservation problems, catastrophic outcomes include species extinction, long-term

establishment of an invasive species, and severe wildfires. A standard approach to finding poli-

cies that avoid catastrophic states is to assign a large negative reward to those states [26, 27].

This is equivalent to a so-called Big M method for establishing a lexicographic preference for

policies that do not enter catastrophic states. However, this approach does not quantify the risk

(probability) of entering a catastrophic state, nor does it determine whether there are policies

that control this risk. A better approach is to adopt the Constrained MDP (C-MDP) formalism

[1], which seeks to maximize one objective (e.g., economic value) while satisfying one or more

constraints probabilistically. For example, in invasive species management, we can define a C-

MDP to minimize the economic cost of invasive species management while ensuring that the

probability of native species extinction is less than a specified threshold.

Recently, Geibel and Wysotzki [27] developed a model-free Q-learning algorithm for C-

MDPs. Their formulation is applicable to episodic tasks with a combination of absorbing catas-

trophic and goal states. As Geramifard [28] pointed out, the Geibel, et al., work does not provide

a performance guarantee on the result.

An alternative to constrained MDPs is to consider risk-sensitive objectives such as variance

penalties, value at risk (VaR), and conditional value at risk (CVaR) [26, 1]. Var and CVar op-

timize the α-quantile of the expected return, and CVaR has favorable mathematical properties.

While these are all very interesting approaches, we find the constrained MDP formulation easier

to understand and explain to stakeholders, and for this reason, we focus our efforts on C-MDPs.

A drawback of C-MDPs is that the optimal policy can be stochastic in some cases. Specifi-

cally, if there are c constraints, then the optimal policy may be stochastic in up to c states. From

the perspective of our stakeholders, this stochastic behavior is confusing and undesirable. Hence,

in this chapter, we aim to find a stationary deterministic policy that satisfies a downside risk con-

straint as well as maximizing the discounted reward. We seek to do this while economizing on

the number of calls to the simulator and while providing PAC guarantees both that the constraints

are satisfied and that the resulting policy is within a fixed bound of optimality. This provides the

first PAC-RL algorithm for deterministic policies in C-MDPs.

The chapter is organized as follows. Section 2 introduces our notation for MDPs, C-MDPs,

and confidence intervals. Section 3 introduces our new planning algorithm CONSTRAINED-

DDV. Section 4 presents an experimental evaluation of CONSTRAINEDDDV and a comparison

with other methods. Section 5 concludes the chapter. We evaluate our algorithms on an invasive

74

species problem as well as on standard reinforcement learning benchmarks.

4.2 Problem Definition and Notation

Let a simulator-defined MDP consist of a start state s0, a set of possible states S, a set of possible

actions A, a discount factor γ ∈ (0, 1] and a stochastic function F that maps from an input state-

action pair (s, a) to a resulting state s′ and reward r, where s′ ∼ P (s′|s, a) is sampled according

to the (unknown) transition function, r ∼ R(r|s, a) is sampled according to the unknown reward

function, and 0 ≤ r ≤ Rmax. In this chapter, we will assume that the reward is deterministic;

our methods can be easily extended to handle stochastic rewards. A (deterministic) policy π is

a function mapping from states s to actions a = π(s). The value of the policy in the start state,

V π(s0), is the expected discounted cumulative reward:

V π(s0) = E

[∞∑
t=0

γtrt | s = s0

]
.

Let Vmax = Rmax
1−γ be the maximum possible value of any state under any policy. The

corresponding minimum possible value is zero.

An optimal policy π∗ maximizes V π(s0), and the corresponding value is denoted by V ∗(s0).

The action-value of state s and action a under policy π is defined as Qπ(s, a) = R(s, a) +

γ
∑

s′ P (s′|s, a)V π(s′). The optimal action-value is denoted Q∗(s, a). Later, we indicate these

functions with subscript R to distinguish them from the catastrophe value function.

Definition 8 The occupancy measure µ of an MDP under policy π is defined as

µπ(s) = EP

[∞∑
t=0

γtI[st = s]|s0, π

]
,

where I[·] is the indicator function and the expectation is taken with respect to the transition

distribution.

This is the cumulative discounted probability that the MDP will occupy state s under policy π for

discount factor γ. It can be computed via dynamic programming on the Bellman flow equation

[64]:

µπ(s) = I[s = s0] + γ
∑
s−

µ(s−)P (s|s−, π(s−)). (4.1)

75

This says that the discounted probability of visiting state s is equal to the sum of the probability

that s is the starting state and the probability of reaching s by first visiting state s− and then

executing an action that leads to state s.

It is easy to show that

V π(s0) =
∑
s

µπ(s)R(s, π(s)). (4.2)

We adopt µπ
UCB

(also written as µUCB) as the occupancy measure computed based on

the principle of optimism under uncertainty and maximum likelihood estimates of transition

probabilities.

Let a subset of states SC ⊂ S be “catastrophic” states in the sense that we want to limit the

probability of entering those states. Let us assume that all states in SC are absorbing.

Definition 9 For a policy π, the risk in state s is defined as

ξπ(s) =
∑
t

γtCP (st ∈ SC |s, π), (4.3)

which is the (discounted) probability of entering a catastrophic state when following π. γC

denotes the catastrophe discount factor.

As a learning algorithm explores the MDP, it collects the following statistics. Let N(s, a) be

the number of times state-action pair (s, a) is simulated during learning andN(s) =
∑

aN(s, a).

Let N(s, a, s′) be the corresponding number of times that s′ has been observed as the resulting

state. LetR(s, a) be the observed reward. Let P̂ (s′|s, a) = N(s, a, s′)/N(s, a) be the maximum

likelihood estimate for P (s′|s, a).

A 1− δ confidence interval is a pair of random variables V (s0), V (s0) such that with prob-

ability 1 − δ, V (s0) ≤ V π(s0) ≤ V (s0). Similarly, Q(s, a) and Q(s, a) denote the confidence

bounds over the action-value functions. We follow the “Optimism Under Uncertainty” princi-

ple, and denote by πUCB the policy based on an upper confidence bound on the action-value

function, πUCB(s) = argmaxaQ(s, a).

Definition 10 [22]. A learning algorithm is PAC-RL if for any discounted MDP (S,A, P,R, γ, P0),

ε > 0, 1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a policy π such that

P[|V ∗(s0)− V π(s0)| ≤ ε] ≥ 1− δ,

76

in time polynomial in |S|, |A|, 1/ε, 1/δ, 1/(1− γ), and Rmax.

4.2.1 Extended Value Iteration

Classical value iteration computes an optimal policy for a fixed MDP. Extended value iteration

can compute optimal policy for finite-sampled optimistic/pessimistic MDPs by defining confi-

dence intervals on the value function at each state of the MDP based on samples from that MDP.

Different confidence interval methods (e.g., Hoeffding bound [32], empirical Bernstein bound

[2], multinomial confidence interval [73], etc.) at each state lead to different confidence intervals

throughout the MDP. One can obtain robust policies from pessimistic MDPs [67]. Based on the

experiments in Chapter 3, the empirical Bernstein bound is the tightest bound compared to the

other bounds.

The Empirical Bernstein Method: This approach uses the empirical Bernstein bound. Let

M(s, a) denote the sample mean of the discounted backed-up values from the successor states

that result from taking action a in state s, and V ar(s, a) denote the sample variance of these

values. We denote the upper and lower bounds on these values asM(s, a), M(s, a),V ar(s), and

V ar(s).

M(s, a) =
∑
s′

P̂ (s′|s, a)γV (s′)

V ar(s, a) =
∑
s′

P̂ (s′|s, a)[γV (s′)−M(s, a)]2

V (s) = max
a

R(s, a) +M(s, a) +

√
2V ar(s) ln(3/δ0)

N(s, a)
+

3γVmax ln(3/δ0)

N(s, a)
(4.4)

M(s, a) =
∑
s′

P̂ (s′|s, a)γV (s′)

V ar(s) =
∑
s′

P̂ (s′|s, a)[γV (s′)−M(s, a)]2

77

V (s) = max
a

R(s, a) +M(s, a) −

√
2V ar(s, a) ln(3/δ0)

N(s, a)
− 3γVmax ln(3/δ0)

N(s, a)
(4.5)

We need to define δ0 so that the confidence intervals hold simultaneously with probability 1− δ.

These equations can be iterated to convergence. At convergence, with probability 1−δ, V (s0) ≤
V ∗(s0) ≤ V (s0).

4.2.2 Optimal Policies for C-MDPs

Before delving into additional definitions for C-MDPs, let’s clarify the class of optimal policies

for C-MDPs. It has been shown that, unlike unconstrained MDPs, the optimal policies in C-

MDPs are not necessarily stationary and deterministic and may depend on the starting state

[21, 74]. In standard discounted unconstrained MDPs, one can find optimal policies that are

stationary and deterministic from any state in O
(
|S|2|A|

)
. In a C-MDP with two objectives

(the standard value function and the risk of catastrophe), if the two objectives have unequal

discount factors, then finding deterministic and stationary policies is NP-complete [14, 18, 8].

Optimal policies in C-MDPs with equal discount factors are randomized and stationary for a

fixed starting state. The solution can be found by solving a linear program, where the dual

variables represent the state occupancy measure, if the model is known. In our case where we

only have one constraint, the optimal randomized policy is called a “1-randomized” policy [74].

This means the difference between deterministic and the 1-randomized policy will arise in at

most one state, where the randomized policy may choose probabilistically between two actions

[20].

In this chapter, we focus on finding a best policy in the class of stationary and determinis-

tic policies with performance guarantees, even when a randomized policy is the optimal policy.

It is a challenge to present a randomized policy to stakeholders. Feinberg [19] points out that

implementation of randomized policies is not natural in many applications, and the use of ran-

domization procedures could increase the variance of the expected return. Boutilier and Lu [5]

also give an example of how randomized policy could be undesirable.

78

4.2.3 Additional Definitions for C-MDPs

Let Π be the space of deterministic polices over the constrained MDPM(τ) = 〈S,A, P,RR,
RC , τ, γ, s0〉. Every policy π induces two value functions V π

R and V π
C . We will say two policies

π1 and π2 are equivalent if V π1
R = V π2

R and V π1
C = V π2

C over all states s ∈ S. Let π denote the

set of policies equivalent to π. Let π1 and π2 be two distinct equivalence classes of policies. We

will say that π1 dominates π2 if V π1
R (s0) ≥ V π2

R (s0) and V π1
C ≤ V π2

C . That is, π1 is superior

in either RR or RC or both. An equivalence class is non-dominated if there does not exist an

equivalence class that dominates it.

Let Π(τ) be the space of deterministic policies such that ∀π ∈ Π(τ), V π
C (s0) ≤ τ . These are

the feasible deterministic policies. An optimal feasible deterministic policy π∗τ ∈ Π(τ) satisfies

V
π∗τ
R (s0) ≥ V π

R (s0) ∀π ∈ Π(τ).

Values are defined in the usual way as the expected cumulative discounted return:

VC(s0) = E[RC(s0, π(s0)) + γRC(s1, π(s1)) + . . .+ γtRC(st, π(st)) + . . .],

and

VR(s0) = E[RR(s0, π(s0)) + γRR(s1, π(s1)) + . . .+ γtRR(st, π(st)) + . . .].

An optimal feasible policy π∗τ is not necessarily non-dominated. There might be another

policy π′ that achieves the same VR(s0) but has larger V π′
C (s0) > V

π∗τ
C (s0) that is still feasible.

Define the Lagrangian MDP L(λ) = 〈S,A, P, λRR − (1 − λ)RC , γ, s0〉 whose reward

function is a linear combination of RR and RC .

Claim 1 For any fixed λ, the optimal policy π∗λ for L(λ) is a non-dominated policy.

Proof 10 The argument is by contradiction. If there were a way to increase VR or reduce VC ,

then π∗λ would not be optimal for the Lagrangian MDP.

Definition 11 Let ΠL be the set of all stationary deterministic policies that are solutions to the

Lagrangian MDP for some value of λ.

79

Claim 2 Let λ1 and λ2 be a pair of values such that λ2 = λ1 − δ for some positive δ. Let π1

be a policy that optimizes the Lagrangian for λ = λ1 and π2 be the policy that optimizes the

Lagrangian for λ = λ2. Then one of two cases holds:

Case 1: V π2
C (s0) = V π1

C (s0), and V π2
R (s0) = V π1

R (s0) or

Case 2: π1 6= π2, V π2
C (s0) < V π1

C (s0), and V π2
R (s0) < V π1

R (s0).

Proof 11 Each solution is non-dominated, which means that both VC and VR must change be-

cause otherwise, the non-dominated condition would be violated. Because λ has decreased, less

weight is placed on VR and more weight on VC . Hence VC must decrease, which means that VR
must also decrease.

Claim 3 There exists a value λ∗ such that ∀λ ≤ λ∗, the optimal policy, π∗λ, of the Lagrangian

MDP L(λ) is feasible forM(τ); that is V
π∗λ
C (s0) ≤ τ .

Proof 12 As λ decreases, VC decreases. Hence, at some point, λ = λ∗, VC(s0) ≤ τ , and hence

the optimal policies for the Lagrangian become feasible for the constrained MDP. Let λ∗ be the

largest value of λ for which V
π∗λ
C (s0) ≤ τ .

For computational efficiency, we will not consider all possible values of λ. Instead, we

discretize the space by introducing a precision parameter η. Define ΠL,η to be the class of all

policies in ΠL where λ = kη, for k ∈ {0, 1, . . . , 1/η}. We will restrict our attention to only

these policies.

4.3 PAC-RL for Constrained MDPs

We now consider the problem of finding an approximately optimal policy by sampling from a

simulator-defined Constrained MDP. We introduce the following parameters:

• τ defines the feasibility constraint. A policy π is feasible if V π
C (s0) ≤ τ .

• ε defines a tolerance on the optimality of V π
R (s0).

• ν defines a tolerance on feasibility. We will accept any policy for which |V π
C (s0) −

V ∗C(s0)| ≤ ν, which means that in the worst case, V π
C (s0) = τ + ν.

80

• η controls the numerical precision of the λ values.

• δ is the confidence parameter.

Definition 12 [8]. A deterministic policy π is called ν-feasible if V π
C (s0) ≤ τ + ν for ν ≥ 0.

To obtain a polynomial time sampling algorithm, we need to relax our goal (based on ideas

from Chang [8]). Let ΠL,η(τ) be the set of all policies π ∈ ΠL,η such that V π
C (s0) ≤ τ . These

are the τ -feasible policies. We will be interested in two other policy classes: ΠL,η(τ − ν) and

ΠL,η(τ + ν).

Let π∗(−ν) ∈ ΠL,η(τ − ν) be a policy that is feasible with respect to the threshold τ − ν and

that among all such policies maximizes VR(s0). More precisely, π∗(−ν) = argmaxπ∈ΠL,η(τ−ν)

V π
R (s0).

Denote the value of π∗(−ν) by V ∗(−ν)
R (s0). Our goal will be to output a policy π ∈ ΠL,η(τ +

ν) such that V ∗(−ν)
R (s0)− V π

R (s0) ≤ ε and to do so in polynomial time.

Definition 13 An algorithm is Lagrangian-PAC-SAFE-RL if, for any C-MDPM(τ) = 〈S,A, P,
RR, RC , τ, γ, s0〉 and any parameters ε > 0, δ ∈ (0, 1), τ ∈ (0, 1], η > 0, and ν > 0 the

algorithm halts in time polynomial in |S|, |A|, 1/(1 − γ), 1/ε, 1/ν, 1/δ, and 1/η and does one

of the following two things:

1. Outputs a policy π ∈ ΠL,η such that with probability 1−δ the following are simultaneously

true:

(a) V π
C (s0) < τ + ν (π is τ + ν feasible)

(b) V ∗(−ν)
R (s0)− V π

R (s0) ≤ ε (the value of π is never less than ε below the value of the

optimal τ − ν feasible policy, and it may be significantly higher)

2. Outputs the message Fail, in which case with probability 1 − δ there does not exist any

policy π ∈ ΠL,η such that V π
C (s0) ≤ τ + ν.

This definition gives us control over how close to feasible the policy is (via ν) and how close to

the optimal feasible policy its VR return is (via ε).

81

4.3.1 Confidence intervals for VR and VC for policy evaluation

Suppose we have drawn a set of samples for various states and actions. For any fixed policy π,

we can perform extended policy evaluation (i.e., extended value iteration with a fixed policy)

to obtain lower and upper confidence bounds on VC(s0) and VR(s0). We will denote these as

V π
C(s0), V π

C(s0), V π
R(s0), and V π

R(s0). Suppose our goal is to determine whether π is feasible

and if it is, then to determine confidence intervals on V π
R (s0). The policy π will be feasible

with probability 1 − δ if V π
C(s0) ≤ τ . Conversely, π is not feasible with probability 1 − δ if

V π
C(s0) > τ .

4.3.2 Confidence intervals for VR and VC for policy optimization

Instead of using a fixed policy, we can set a value of λ and perform extended value iteration

based on the upper confidence bound of the Lagrangian objective. This will define the πUCB(λ)

policy. More generally, we can perform binary search on λ to find three values:

• λlower is the largest value of λ ∈ Λ such that V UCB(λ)
C (s0) ≤ τ . This means that given

our current sample, πUCB(λ) is the “best” policy (in the sense of having the largest λ) for

which we can guarantee with probability 1− δ that it is feasible.

• λupper is the largest value of λ ∈ Λ such that V UCB(λ)
C (s0) ≤ τ . This means that given

our current sample, this is the largest value of λ that we cannot prove is not feasible.

Graphically, the situation looks like the plot in figure 4.1, which shows VR (blue) and VC
(green) as a function of λ.

The solid lines denote the true values of VC and VR. The dashed lines denote the corre-

sponding upper and lower confidence bounds. For purposes of this section, let π∗ be the policy

in Π(τ, η) that maximizes V π
R (s0). That is, π∗ is τ -feasible and among all such policies it maxi-

mizes the VR return.

Claim 4 The optimal value λ∗ ∈ [λlower, λupper] with probability 1− δ.

Proof 13 The optimal value of λ∗ ≥ λlower because we know all policies πλ for λ < λlower are

τ -feasible and V λ
R (s0) increases monotonically with λ. Therefore, there is no reason to consider

λ < λlower. The optimal value of λ∗ ≤ λupper because we know that λupper is the largest value

of λ that could possibly make πλ τ -feasible.

82

𝜆𝑢𝑝𝑝𝑒𝑟 𝜆𝑙𝑜𝑤𝑒𝑟

𝑉 𝑅
𝑈𝐶𝐵(𝜆𝑢𝑝𝑝𝑒𝑟)

(𝑠0)

𝑉 𝑅
𝑈𝐶𝐵(𝜆𝑙𝑜𝑤𝑒𝑟)(𝑠0)

𝜏

Figure 4.1: Graphical representation of confidence intervals for different value of λ. The hori-
zontal axis plots the value of 0 ≤ λ ≤ 1. The solid lines denote the true values of VC and VR.
The dashed lines denote the corresponding upper and lower confidence bounds.

Claim 5 V
UCB(λlower)
R (s0) ≤ V ∗R(s0) ≤ V UCB(λupper)

R (s0) with probability 1− δ

Proof 14 From Claim 4, we know that the optimal value of λ, λ∗ is in [λlower, λupper]. Therefore,

V λlower
R (s0) ≤ V ∗R(s0) ≤ V

λupper
R (s0). The value V UCB(λupper)

R (s0) ≥ V
λupper
R (s0) because at

each state s, it overestimates V λupper
R (s). The value V UCB(λlower)

R (s0) ≤ V λlower
R (s0), because

the value of any policy, such as πUCB(λlower) is a lower bound on the value of the optimal policy,

and V λlower
R (s0) is the optimal policy for λlower.

Note that the gap between V UCB(λupper)
R (s0) and V UCB(λlower)

R (s0) is composed of three

parts. First, there is the width of the upper confidence interval V UCB(λupper)
R (s0)−V UCB(λupper)

R (s0).

Second, there is the difference in the values of the policies πUCB(λupper) and πUCB(λlower), which

we can write as V UCB(λupper)
R (s0) − V UCB(λlower)

R (s0). Finally, there is the width of the lower

confidence interval V UCB(λlower)
R (s0)− V UCB(λlower)

R (s0).

83

4.4 Algorithm

We start by defining extended value iteration for the Lagrangian objective as shown in Algorithm

11. As a side effect, this also computes upper and lower bounds on VR and VC in all states and

on QR(s, a) and QC(s, a) in all state-action pairs.

Now we define a binary search algorithm on λ. Given a set of samples, our goal is to find

λlower and λupper to within tolerance η. The pseudo-code for BINARYSEARCH is shown in

Algorithm 12.

We will apply BINARYSEARCH to find λlower and λupper. Algorithm 13 defines three func-

tions; FINDLOWER, FINDUPPER, and NEXTLARGERLAMBDA. For λlower, we are looking for

the point λ where V λ
C(s0) crosses τ , which is exactly what BINARYSEARCH does. For λupper,

we need to find the point where V λ
C(s0) crosses τ , determine the value on the larger side, and

then find the largest value of λupper that achieves that value. The function NEXTLARGER-

LAMBDA finds the next larger value of λ that will cause the UCB policy to change by calling

LAGRANGIANEVI.

The main algorithm works by maintaining an upper bound V UCB(λ−νupper)
R (s0) on the value

of the best (τ − ν)-feasible policy and a lower bound V
UCB(λ+νlower)

R (s0) on the value of the best

(τ + ν)-feasible policy. Here the notation λ−ν refers the (τ − ν) feasibility and λ+ν refers to

(τ+ν) feasibility. Sampling proceeds in a series of minibatches that cause these bounds to shrink

toward one another. Execution terminates when V UCB(λ−νupper)
R (s0)−V UCB(λ+νlower)

R (s0) ≤ ε. This

is summarized in Algorithm14).

The rationale is the following. The largest value that V ∗(−ν)
R (s0) could have is V UCB(λ−νupper)

R (s0).

The smallest value that πUCB(λ+νlower) could have is V
UCB(λ+νlower)

R (s0). We want the value of

πUCBλ
+ν
lower) to be no less than ε below the value of V ∗(−ν)

R (s0). We attain this by ensuring that

V
UCB(λ+νlower)

R (s0)− V UCB(λ−νupper)
R (s0) < ε. Figure 4.2 shows the above rationale graphically.

4.5 Correctness and Polynomial Running Time

To prove correctness, we must show that, under appropriate conditions, the CONSTRAINEDDDV

algorithm will terminate at line 18. Specifically, we will prove the following claim:

Claim 6 If ΠL,η(τ − ν) and ΠL,η(τ + ν) are non-empty and 0 < λ∗ < 1, then with probability

1− δ, CONSTRAINEDDDV will terminate at line 18.

84

Algorithm 11 LAGRANGIANEVI(λ, η, δ)
1: repeat
2: for each state s where N(s) > 0 do
3: for each action a do
4: if N(s, a) = 0 then
5: Q

λ
R(s, a) := Vmax; Qλ

R
(s, a) := 0

6: Q
λ
C(s, a) := 1; Qλ

C
(s, a) := 0

7: else
8: {Empirical Bernstein Bound backups for VR}
9: {VR upper bound}

10: MR(s, a) :=
∑

s′ P̂ (s′|s, a)γV
λ
R(s′)

11: V arR(s, a) :=
∑

s′ P̂ (s′|s, a)[γV
λ
R(s′)−MR(s, a)]2

12: UpperCIR(s, a) :=
√

2V arR(s) ln(3/δ)
N(s,a) + 3γVmax ln(3/δ)

N(s,a)

13: Q
λ
R(s, a) := min{Vmax, R(s, a) +M(s, a) + UpperCIR(s, a)}

14:

15: {VR lower bound}
16: MR(s, a) :=

∑
s′ P̂ (s′|s, a)γV λ

R(s′)

17: V arR(s) :=
∑

s′ P̂ (s′|s, a)[γV λ
R(s′)−MR(s, a)]2

18: LowerCIR(s, a) :=
√

2V arR(s) ln(3/δ)
N(s,a) + 3γVmax ln(3/δ)

N(s,a)

19: Qλ
R

(s, a) := max{0, R(s, a) +MR(s, a)− LowerCIR(s, a)}
20: {Empirical Bernstein Bound backups for VC}
21: {VC upper bound [not shown; exactly analogous to the above]}
22: {VC lower bound [not shown; exactly analogous to the above]}
23: end if
24: end for
25: {Now update the UCB policy}
26: πUCB(λ)(s) := a∗ := argmaxa λQ

λ
R(s, a)− (1− λ)Qλ

C
(s, a)

27: V
λ
R(s) := Q

λ
R(s, a∗)

28: V λ
R(s) := Qλ

R
(s, a∗)

29: V
λ
C(s) := Q

λ
C(s, a∗)

30: V λ
C(s) := Qλ

C
(s, a∗)

31: end for
32: until no Q value changes by more than η

85

Algorithm 12 BINARYSEARCH(λleft, λright, τ, η, function Bound)

1: {Goal: Find Bound(λleft) ≤ τ ≤ Bound(λright) and λright − λleft ≤ η}
2: {The Bound function can be either V λ

C(s0) or V λ
C(s0) }

3: λ := 1
4: repeat
5: λlast := λ
6: λ = ηd 1

2η (λleft + λright)e
7: if λ = λleft or λ = λright then
8: if λlast = λleft then
9: λ := λright

10: else
11: λ := λleft
12: end if
13: end if
14: LAGRANGIANEVI(λ, η, δ)
15: B = Bound(λ)
16: if B ≤ τ then
17: λleft := λ
18: end if
19: if τ ≤ B then
20: λright := λ
21: end if
22: until λright − λleft ≤ η
23: return (λleft, λright)

Proof 15 We must show that the conditions of line 17 will be satisfied. Let us start with the first

condition that λ+ν
lower = λ−νupper. Suppose exploration proceeds until the confidence intervals on

VC(s0) have width 2ν (so that V λ
C (s0)− ν < V λ

C (s0) < V λ
C (s0) + ν). We will show that by this

point—if not sooner—the first condition will be satisfied. Given that ΠL,η(τ − ν) is non-empty

and λ∗ ∈ (0, 1), the value of λ−νupper will be less than 1. At λ = λ−νupper, by the definition of λ−νupper
we must have

V λ
C(s0) < τ − ν < V λ+η

C (s0).

Add 2ν to all sides to obtain

V λ
C(s0) + 2ν < τ + ν < V λ+η

C (s0) + 2ν.

86

𝜆𝑢𝑝𝑝𝑒𝑟
−𝜈

𝑉 𝑅
𝑈𝐶𝐵(𝜆𝑙𝑜𝑤𝑒𝑟

+𝜈)
(𝑠0)

𝜏 − 𝜈
𝜏

𝜏 + 𝜈

𝜆𝑙𝑜𝑤𝑒𝑟
+𝜈

𝑉 𝑅
𝑈𝐶𝐵(𝜆𝑢𝑝𝑝𝑒𝑟

−𝜈)
(𝑠0)

Figure 4.2: Graphical representation of confidence intervals for λ+ν
lower and λ−νupper. The horizon-

tal axis plots the value of 0 ≤ λ ≤ 1. The solid lines denote the true values of VC and VR. The
dashed lines denote the corresponding upper and lower confidence bounds.

Algorithm 13 FINDLOWER & FINDUPPER

Function FINDLOWER (λleft, λright, η, τ)

(λleft, λright) := BINARYSEARCH(λleft, λright, η, τ, V
λ
C(s0))

return λleft
End
Function FINDUPPER(λleft, λright, η, τ)

(λleft, λright) := BINARYSEARCH(λleft, λright, η, τ, V
λ
C(s0))

λleft := NEXTLARGERLAMBDA(λright)
return λleft

End
Function NEXTLARGERLAMBDA (λ)

for k = λ/η + 1 to 1/η do
LAGRANGIANEVI(kη, η, δ)

if V UCB(kη)
C (s0) > V

UCB(λ)
C (s0) then

return kη
return 1

End

87

Algorithm 14 CONSTRAINEDDDV(s0, τ, ν, F, ε, δ, γ, Rmax)

1: λ+ν
lower := 0

2: λ−νupper := 1
3: CheckFeasibility:=true
4: loop
5: λ−νupper = FINDUPPER(0, 1,max(0, τ − ν), η)

6: λ+ν
lower = FINDLOWER(0, 1,min(1, τ + ν), η)

7: if CheckFeasibility then
8: LAGRANGIANEVI(0, η, δ)
9: if V UCB(0)

C (s0) ≥ τ − ν then
10: {we have a proof there is no (τ − ν)-feasible policy}
11: return No feasible policy
12: else if V UCB(0)

C (s0) < τ − ν then
13: {we have a proof that there is a (τ − ν)-feasible policy}
14: CheckFeasibility:=false
15: end if
16: end if
17: if

(
λ−νupper = λ+ν

lower

)
and

(
V
UCB(λ−νupper)
R (s0)− V UCB(λ+νlower)

R (s0) ≤ ε
)

then

18: return
(
Success, πUCB(λ+νlower)

)
19: end if
20: Explore for a minibatch of B samples using DDV on πUCB(λ−νupper)

21: end loop

The left hand side is equal to V λ
C(s0) because the confidence intervals have width 2ν. Similarly,

the right hand side is equal to V λ+η
C (s0). Substituting these in gives

V
λ
C(s0) < τ + ν < V

λ+η
C (s0).

This satisfies the definition of λ+ν
lower. Therefore, λ = λ+ν

lower.

Now let us consider the second condition. Once λ+ν
lower = λ−νupper = λ, the second condition

becomes V UCB(λ−νupper)
R (s0)− V UCB(λ+νlower)

R (s0) = V
UCB(λ)
R (s0)− V UCB(λ)

R (s0) < ε. This is a

simple constraint on the width of the confidence interval for V UCB(λ)
R (s0). Hence, if the condi-

tion is not already satisfied, then additional sampling will shrink the confidence interval to the

point where it is satisfied. Hence, the algorithm will terminate at line 18 in CONSTRAINEDDDV.

88

We can also show the following.

Claim 7 If there is no (τ − ν)-feasible policy, then the CONSTRAINEDDDV algorithm will

terminate at line 11.

Proof 16 During the exploration we either observe V UCB(0)
C (s0) ≤ τ − ν or V UCB(0)

C (s0) >

τ − ν. In the former case, we have a proof that there exists a (τ − ν)-feasible policy, and the

algorithm explores until it meets the termination condition. In the latter case, we have a proof

that there is no feasible policy, so the CONSTRAINEDDDV terminates at line 11.

Theorem 9 CONSTRAINEDDDV requires polynomial sample size and terminates in polyno-

mial computation time.

Proof 17 Collecting total number of samples N = Õ
(
(|S|2|A|V 3

max)/(ε3(1− γ)3)
)

ensures

that every state-action pair is sufficiently sampled [42]. We can fix the total number of mini-

batches to T and then select the size of each minibatch so that the number of samples in each

batch grows quadratically. The result is that the confidence intervals shrink by (approximately)

a constant amount 1/T in each iteration (similar to doubling trick in [35]).

After each minibatch, we need to perform two binary searches. The number of times L

through the main loop of BINARYSEARCH algorithm will be the solution to η ≥ 1/2L, which is

L = log2 1/η. Each iteration of BINARYSEARCH algorithm requires a call to LAGRANGIANEVI.

Each such call has worst-case time O(|S|2|A|). Each call to FINDUPPER also requires a

call to NEXTLARGERLAMBDA, which requires O(1/η). Putting this all together, we obtain

Õ
(
(T |S|2|A|V 3

max)/(ηε3(1− γ)3)
)
, which is polynomial.

4.6 Experiments

We report four experiments. First, we study the GridWord domain shown in Figure 4.3(a) (there

is one starting state, one goal state, and two catastrophic states). Our goal is to gain some

intuition about the C-MDP formulation. Specifically, we look at the policies for λ = 0 and

λ = 1.

In Figure 4.3, we assume the model is known. The solid lines show the optimal policy for

λ = 1 (maximizing the reward), and the dotted actions show the optimal policy for λ = 0 (min-

imizing the risk). Notice that even for unequal discount factors, we are able to find a desirable

policy, which may not be optimal. The main difference between the policies for discounted and

89

S0 GoalCAT CAT

Actions:

(a) γ = 0.95 and γC = 0.95

S0 GoalCAT CAT

Actions:

(b) γ = 0.95 and γC = 1

Figure 4.3: Derived policies for the GridWorld domain; solid arrows are when λ = 1 and dotted
arrows are when λ = 0. When both policies agree on an action in a cell, only one is shown.

undiscounted risk is that for discounted risk the best stationary deterministic policy that mini-

mizes the risk takes the discount into account and moves toward the goal more slowly than the

undiscounted risk policy.

In the second experiment, we solve for the optimal policy when the MDP is known while

varying λ and the constraint threshold τ . Our goal is to determine the right answer and see the

impact of τ and λ. Figure 4.4 shows the value of reward (VR) and value of risk (VC) in the

starting state for the GridWorld domain while varying the value of λ (4.4(a)) and while varying

the value of τ (4.4(b)). There is no feasible policy when τ = 0.

In Figure 4.4(a), we see that when λ is close to 1, we can easily reduce VC without any

impact on VR. As λ shrinks, VC and VR both shrink gradually, so that for values of τ in the

range (0.185 to 0.1), there continues to be little impact on VR. However, when λ goes from 0.1

to 0.0, we see a huge drop in VR for very little gain in VC . This kind of sudden drop causes

difficulty for obtaining PAC results. The problem is that in this region, the confidence intervals

on VR will be very wide, and it can require a huge number of training samples to shrink them

enough to achieve a width of ε.

In the third experiment, we compare the sample complexity of CONSTRAINEDDDV against

three benchmark algorithms: GW-MLE, εg-greedy GW-MLE, εg-greedy UCB. GW-MLE is the

improved version of the algorithm of [27], which basically maximizes the Lagrangian defined as

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ

V_R
V_C

(a) Varying λ

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Risk Threshold (τ)

λ

V_R

V_C

(b) Varying τ

Figure 4.4: Value of reward and risk while varying λ and risk threshold (τ) for the GridWorld
domain.

L(λ̂) = 〈S,A, P̂ , λ̂RR − (1 − λ̂)RC , γ, s0〉, where λ̂ is the maximum likelihood estimate of λ

calculated over the MDP with transition probability P̂ and reward functions RR and RC . The

GW-MLE algorithm samples along the induced πλ̂ policy at each mini-batch. UCB algorithm

calculates πUCB = argmaxaQR(s, a) and samples along the πUCB policy. Since the UCB

algorithm ignores the risk in its default operation, we have added an adjustable εg parameter for

better exploration. The algorithms are modified to have stopping condition similar to the lines 9

and 17 in Algorithm 14 .

We compared these algorithms on the GridWorld MDP and two instances of the tamarisk

domain. In these experiments, we learn the model by sampling from the simulator. Tamarisk

problem instances are configured with the number of river segments (E = 3) and the number

of slots (H = 1) and (H = 2) (for more detail see [66]). For the (E = 3, H = 1) problem,

the starting state was NTE (one site contains a native species, one is invaded by tamarisk, and

one site at the bottom of river is empty). For the (E = 3, H = 2) instance, the starting state

is NTEEEE (one site contains a native species and an invasive species and the rest of the sites

in the river are empty). A catastrophic state is any state in which there are no natives (species

extinction). The goal state is that all sites are fully occupied by native species. We optimized the

value of εg for εg-greedy GW-MLE and εg-greedy UCB algorithms among the candidate values

εg ∈ {0.01, 0.1, 0.25}. After sampling a minibatch of size B = 1000 we update the model

91

1E+3

1E+4

1E+5

1E+6

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f S
am

pl
es

Risk Threshold

CONSTRAINED-DDV

epsilon-UCB

GW-MLE

epsilon-GW-MLE

(a) GridWorld

1E+4

1E+5

1E+6

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f S
am

pl
es

Risk Threshold

CONSTRAINED-DDV

epsilon-UCB

GW-MLE

epsilon-GW-MLE

(b) Tamarisk R = 3 and H = 1

1E+5

1E+6

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f S
am

pl
es

Risk Threshold

CONSTRAINED-DDV

epsilon-UCB

GW-MLE

epsilon-GW-MLE

(c) Tamarisk R = 3 and H = 2

Figure 4.5: Comparison of number of samples taken by each algorithm to reach to the termina-
tion point.

92

and calculate the corresponding confidence bounds. We calculate λupper and λlower every 8000

samples.

In these experiments, γ = γC = 0.95, δ = 0.01, η = 0.01, and ν = 0.025. For the

GridWorld domain, ε = 0.2, and for the Tamarisk problems ε = 1. The algorithms terminate

either if the width of the confidence interval falls below εRmax or if 3 million samples are drawn.

We report the number of samples drawn at termination in Figure 4.5. The results are aver-

aged over 10 independent runs, and the vertical axis is plotted on a log scale. Error bars indicate

one standard deviation. The GW-MLE and εg-GW-MLE algorithms perform very poorly; much

worse than CONSTRAINEDDDV. In many cases, they hit the 3 million maximum sampling bud-

get without achieving the desired confidence interval width. CONSTRAINEDDDV and εg-UCB

give much more similar performance, if εg is properly tuned. CONSTRAINEDDDV almost al-

ways requires smaller sample sizes, particularly for small values of τ (which would be the values

normally encountered in a real application). This is presumably because CONSTRAINEDDDV

focuses its exploration on the parts of the MDP visited by policies with low VC , whereas εg-UCB

is only maximizing VR. However, these MDPs exhibit a “critical point”, where the required sam-

ple size grows quite large. At couple of those critical points, CONSTRAINEDDDV and εg-UCB

require the same sample size, but the CONSTRAINEDDDV sample size exhibits more variance.

In the final experiment, the average values of the lower bounds for reward and catastrophe

and the value of VR − V
UCB(λνlower)

R at the termination point are reported. Figure 4.6 shows

the mean V UCB(λνlower)

R , VR − V
UCB(λνlower)

R , and V UCB(λνlower)

C values obtained by running the

CONSTRAINEDDDV algorithm on the GridWorld domain for five independent runs. In these

experiments, ε = 0.05 and ν ∈ {0.025, 0.01, 0.007}. Figures 4.6(a) and 4.6(c) show both

V
UCB(λνlower)

R and V UCB(λνlower)

C for different ν are the lower bounds on the true values. Figure

4.6(b) shows V UCB(λνlower)

R is ε/2 close to the true VR value as the PAC-Safe-RL definition

claims. Note that when ν = 0.025 and τ = 0.1 there is no (τ − ν)-feasible policy.

4.7 Conclusion

Many computational sustainability problems involving MDPs must be concerned with catas-

trophic outcomes such as species extinction. One approach to this is to limit the probability of

catastrophic outcomes by imposing a constraint on the MDP policy, which converts the MDP

into a Constrained MDP (C-MDP). Previous work on simulation-based MDP planning for con-

strained MDPs has not provided formal guarantees. This chapter is the first to provide an algo-

93

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Risk Threshold

\nu=0.025

\nu=0.01

\nu=0.007

V_R

(a) V UCB(λνlower)

R

0 0.2 0.4 0.6 0.8 1

Risk Threshold

\nu=0.025

\nu=0.01

\nu=0.007

V_C

0.025

0.01

0.007

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

V_
R-

\u
nd

er
lin

e{
V}

_R

Risk Threshold

\nu=0.025

\nu=0.01

\nu=0.007

(b) VR − V
UCB(λνlower)

R ; when ν = 0.025 and τ = 0.1 there is
no (τ − ν)-feasible policy.

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

Risk Threshold

\nu=0.025

\nu=0.01

\nu=0.007

V_C

(c) V UCB(λνlower)

C

Figure 4.6: Plots of V UCB(λνlower)

R , VR − V
UCB(λνlower)

R , and V UCB(λνlower)

C on the vertical axis
for three values of ν in the GridWorld domain.

94

rithm with formal guarantees by extending the notion of PAC-RL algorithms to PAC-Safe-RL

algorithms. We proved that this new algorithm, CONSTRAINEDDDV, is PAC-Safe-RL. Our

experiments demonstrated that CONSTRAINEDDDV is also able to match or beat the sample

complexity of very competitive baseline algorithms that lack formal performance guarantees.

95

Chapter 5: Conclusion

5.1 Conclusion

This thesis has addressed the problem of unconstrained and constrained MDP planning in nat-

ural resource management when the MDP is defined by an expensive simulator. In this setting,

the planning phase is separate from the execution phase, so there is no tradeoff between explo-

ration and exploitation. Instead, the goal is to compute a PAC-optimal policy while minimizing

the number of calls to the simulator. The policy is designed to optimize the cumulative dis-

counted reward starting in the current real-world state s0. Unlike in most published RL papers,

which typically assume that the MDP is ergodic, the starting state of our ecosystem management

problems is typically a transient state.

Chapter 2 has made two contributions. First, it showed how to combine the Good-Turing

estimate with the L1-confidence region of Weissman et al. [73] to obtain tighter confidence

intervals (and hence, earlier termination) in sparse MDPs. Second, it showed how to use occu-

pancy measures to create better exploration heuristics. It introduced a new policy-independent

upper bound µ on the occupancy measure of the optimal policy and applied this to define the

DDV-UPPER algorithm. It also employed an occupancy measure µOUU based on the “optimism

under uncertainty” principle to define the DDV-OUU algorithm.

The µ measure is potentially of independent interest. Like the value function computed dur-

ing value iteration, it does not quantify the behavior of any particular policy. This means that

it can be computed without needing to have a specific policy to evaluate. However, the DDV-

UPPER exploration heuristic did not perform very well. We have two possible explanations for

this. First, µ can be a very loose upper bound on the optimal occupancy measure µ∗. Perhaps

this leads DDV-UPPER to place too much weight on unfruitful state-action pairs. Second, it

is possible that while DDV-UPPER is optimizing the one-step gain in ∆∆V (s0) (as it is de-

signed to do), DDV-OUU does a better job of optimizing gains over the longer term. Further

experimentation is needed to determine which of these explanations is correct.

Our DDV-OUU method gave the best performance in all of our experiments in Chapter 2.

This is yet another confirmation of the power of the “Optimism Principle” [6] in exploration.

96

Hence, we recommend it for solving simulator-defined MDP planning problems. We are apply-

ing it to solve moderate-sized instances of our tamarisk MDPs. However, additional algorithm

innovations will be required to solve much larger tamarisk instances.

Chapter 3 has made three main contributions. First, it has developed optimal sampling strate-

gies for Monte Carlo policy evaluation using both local and trajectory-wise forms of the Hoeffd-

ing and empirical Bernstein bounds. Second, it provided experimental evidence that for policy

evaluation the trajectory-wise bounds generally out-perform the local bounds except in a few

special cases. Third, it introduced two new MDP planning algorithms, LGCV and LLGCV,

for simulator-defined MDPs. These algorithms combine trajectory-wise confidence intervals

with local confidence intervals to reduce the number of samples needed to achieve target levels

of accuracy. The LGCV algorithm combines a local upper bound with a global lower bound.

Although this performs well on some problems, it exhibits poor performance on others. The

LLGCV algorithm extends LGCV by intersecting both the local and global lower bounds. Al-

though this requires computing additional confidence intervals, it eliminates LGCV’s failure

cases. Hence, LLGCV provides a robust method that can obtain significant improvements over

previous methods.

Chapter 4 has studied limiting the probability of catastrophic outcomes by imposing a con-

straint on the MDP policy, which converts the MDP into a C-MDP. Many computational sus-

tainability problems must deal with catastrophic outcomes such as species extinction. Previous

published work on MDP planning for constrained MDPs has not provided formal guarantees.

This chapter is the first to provide an algorithm with formal guarantees by extending the notion

of PAC-RL algorithms to PAC-Safe-RL algorithms. We proved that this new algorithm, CON-

STRAINEDDDV, is PAC-Safe-RL. Our experiments demonstrated that CONSTRAINEDDDV is

also able to match or beat the sample complexity of very competitive baseline algorithms that

lack formal performance guarantees.

5.2 Future Work

Promising directions for future research are summarized as follows.

One natural direction is to explore the benefits of other confidence interval methods, such

as Kullback-Leibler divergence [24], extensions of empirical Bernstein bound using Anderson’s

inequality [68], Bernstein-like derivation bound for the missing mass [40], and improvements

on the Good-Turing estimate [50, 70]. Moreover, as shown in this thesis, Monte-Carlo policy

97

evaluation based on empirical Bernstein bound outperformed the other studied bounds. However,

performing the policy improvement step wasn’t efficient. Another research direction is to apply

global confidence intervals for Monte-Carlo policy improvement in an efficient way.

The other direction is incorporating other exploration methods in RL and multi-armed bandit

literature. For example, in RL literature, posterior sampling [69] algorithm has been developed

to minimize regret (PSRL [52, 51]). In such settings, it has been shown experimentally to be

better than UCB methods. The open research question is whether posterior sampling might be

useful for PAC algorithms that must halt and output a policy. In multi-armed bandit literature,

LUCB [37] has been proposed for finding the best PAC m-arms, where m could be one. How

can one extend the similar algorithms from multi-armed bandits to MDPs?

In this thesis we studied algorithms to compute optimal solutions exactly for discrete MDPs.

One can expand the proposed exploration algorithms to continuous MDPs with linear function

approximation [54, 43]. Moreover, recent advances in deep reinforcement learning for (non-

linear) value function approximation and policy gradient suggest applying the proposed methods

in this thesis to find approximate optimal solutions using deep architectures. One approach is to

estimate the occupancy measure using a parameterized representation as a deep architecture [41]

and use the heuristic in this thesis for exploration. One trend in deep reinforcement learning is

using ensemble methods to support robustness and safety [56]. Osband et al. [53] proposed boot-

strapped DQN to adapt posterior sampling for deep exploration. The algorithm uses (bootstrap)

data to approximate a distribution over Q values, and samples accordingly. Could we apply our

algorithms to bootstrap confidence intervals using this architecture?

The constrained MDP algorithm presented in this thesis is an instance of multi-objective

sequential decision making, where a decision maker faces multiple conflicting objectives [58,

57]. The biggest challenge with CONSTRAINEDDDV is that it only considers policies that can

be produced by the Lagrangian. These are a subset of the complete Pareto set of non-dominated

policies. There are methods in the Operations Research (OR) literature for finding all points in

the Pareto set, and extending CONSTRAINEDDDV to do this is an important next step.

98

Bibliography

[1] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[2] Jean Yves Audibert, Remi Munos, and Csaba Szepesvári. Exploration-exploitation trade-
off using variance estimates in multi-armed bandits. Theoretical Computer Science, 410
(19):1876–1902, 2009.

[3] Mohammad Gheshlaghi Azar, Remi Munos, and Hilbert J Kappen. On the sample com-
plexity of reinforcement learning with a generative model. In Proceedings of the 29th
International Conference on Machine Learning (ICML 2012), 2012.

[4] Richard Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[5] Craig Boutilier and Tyler Lu. Budget allocation using weakly coupled, constrained
Markov decision processes. https://static.googleusercontent.com/
media/research.google.com/en//pubs/archive/45291.pdf, 2016.

[6] Lucian Buşoniu and Remi Munos. Optimistic planning for Markov decision processes.
In 15th International Conference on Artificial Intelligence and Statistics (AI-STATS-12),
2012.

[7] Iadine Chadès, Tara G. Martin, Samuel Nicol, Mark A. Burgman, Hugh P. Possingham,
and Yvonne M. Buckley. General rules for managing and surveying networks of pests,
diseases, and endangered species. Proceedings of the National Academy of Sciences of the
United States of America, 108(20):8323–8, 2011.

[8] Hyeong Soo Chang. Sleeping experts and bandits approach to constrained Markov decision
processes. Automatica, 63:182 – 186, 2016. ISSN 0005-1098.

[9] Hyeong Soo Chang, Jiaqiao Hu, Michael C Fu, and Steven I Marcus. Simulation-based
algorithms for Markov decision processes. Springer Science & Business Media, 2013.

[10] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, 23(4):493–507, 1952.

[11] Mark Crowley. Using equilibrium policy gradients for spatiotemporal planning in forest
ecosystem management. IEEE Transactions on Computers, 63(1):142–154, 2014.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45291.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45291.pdf

99

[12] Thomas G Dietterich, Majid Alkaee Taleghan, and Mark Crowley. PAC optimal planning
for invasive species management: improved exploration for reinforcement learning from
simulator-defined MDPs. In Association for the Advancement of Artificial Intelligence
AAAI 2013 Conference (AAAI-2013), 2013.

[13] Joseph M DiTomaso and Carl E Bell. Proceedings of the Saltcedar Management Workshop.
www.invasivespeciesinfo.gov/docs/news/workshopJun96/index.html, Rancho Mirage, CA,
1996.

[14] Dmitri A. Dolgov and Edmund H. Durfee. Stationary deterministic policies for constrained
MDPs with multiple rewards, costs, and discount factors. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05), pages 1326–1332, Ed-
inburgh, Scotland, 2005.

[15] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed bandit
and Markov decision processes. In Proceedings of the 15th Annual Conference on Compu-
tational Learning Theory, pages 255–270, London, 2002. Springer-Verlag.

[16] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping con-
ditions for reinforcement learning. In Tom Fawcett and Nina Mishra, editors, Machine
Learning, Proceedings of the Twentieth International Conference (ICML 2003), August
21-24, 2003, Washington, DC, USA, pages 162–169. AAAI Press, 2003.

[17] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping condi-
tions for the multi-armed bandit and reinforcement learning problems. Journal of Machine
Learning Research, 7:1079–1105, 2006.

[18] Eugene A Feinberg. Constrained discounted Markov decision processes and Hamiltonian
cycles. Mathematics of Operations Research, 25(1):130–140, 2000.

[19] Eugene A Feinberg. Optimality of deterministic policies for certain stochastic control prob-
lems with multiple criteria and constraints. In Mathematical Control Theory and Finance,
pages 137–148. Springer, 2008.

[20] Eugene A Feinberg and Uriel G Rothblum. Splitting randomized stationary policies in
total-reward Markov decision processes. Mathematics of Operations Research, 37(1):129–
153, 2012.

[21] Eugene A Feinberg and Adam Shwartz. Constrained discounted dynamic programming.
Mathematics of Operations Research, 21(4):922–945, 1996.

[22] Claude-Nicolas Fiechter. Efficient reinforcement learning. In Proceedings of the Seventh
Annual ACM Conference on Computational Learning Theory, pages 88–97. ACM Press,
1994.

100

[23] Claude-Nicolas Fiechter. Design and Analysis of Efficient Reinforcement Learning Algo-
rithms. PhD thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1997.

[24] Sarah Filippi, Olivier Cappé, and Aurélien Garivier. Optimism in reinforcement learning
and Kullback-Leibler divergence. In Communication, Control, and Computing (Allerton),
2010 48th Annual Allerton Conference on, pages 115–122. IEEE, 2010.

[25] Mark Arnold Finney et al. FARSITE: Fire area simulator: model development and eval-
uation. US Department of Agriculture, Forest Service, Rocky Mountain Research Station
Ogden, UT, 2004.

[26] Javier Garcı́a and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16:1437–1480, 2015.

[27] Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control
under constraints. J. Artif. Intell. Res.(JAIR), 24:81–108, 2005.

[28] Alborz Geramifard. Practical Reinforcement Learning Using Representation Learning And
Safe Exploration For Large Scale Markov Decision Processes. PhD thesis, Massachusetts
Institute of Technology, 2012.

[29] Mohammad Gheshlaghi Azar, Rémi Munos, Mohammad Ghavamzadeh, and Hilbert Kap-
pen. Reinforcement learning with a near optimal rate of convergence. Technical report,
Radboud University Nijmegen, 2011.

[30] Irving John Good. The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3):237–264, 1953.

[31] Kim M. Hall. Optimal Spatial-Dynamic Resource Allocation Facing Uncertainty: Inte-
grating Economics and Ecology for Invasive Species Policy. Doctoral dissertation, Oregon
State University, 2014. URL http://hdl.handle.net/1957/52661.

[32] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[33] J. Hof. Optimizing spatial and dynamic population-based control strategies for invading
forest pests. Natural Resource Modeling, 11:197–216, 1998.

[34] Rachel M. Houtman, Claire A Montgomery, Aaron R Gagnon, David E. Calkin, Thomas G.
Dietterich, Sean McGregor, and Mark Crowley. Allowing a wildfire to burn: estimating the
effect on future fire suppression costs. International Journal of Wildland Fire, 22:871–882,
2013.

[35] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

http://hdl.handle.net/1957/52661

101

[36] Sham M. Kakade. On the Sample Complexity of Reinforcement Learning. Doctoral disser-
tation, University College London, 2003.

[37] Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. PAC subset selec-
tion in stochastic multi-armed bandits. In Proceedings of the 29th International Conference
on Machine Learning (ICML-12), pages 655–662, 2012.

[38] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49:260–268, 1998.

[39] Michael J Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. In IJCAI, pages 1231–1324,
1999.

[40] Bahman Yari Saeed Khanloo and Gholamreza Haffari. Novel Bernstein-like concentration
inequalities for the missing mass. arXiv preprint arXiv:1503.02768, 2015.

[41] Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep suc-
cessor reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

[42] Lihong Li. Sample complexity bounds of exploration. In Reinforcement Learning, pages
175–204. Springer, 2012.

[43] Lihong Li, Michael L Littman, and Christopher R Mansley. Online exploration in least-
squares policy iteration. In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, pages 733–739. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2009.

[44] Shie Mannor, O Mebel, and H Xu. Lightning does not strike twice: robust MDPs with
coupled uncertainty. In Proceedings of the 29th International Conference on Machine
Learning (ICML 2012), 2012.

[45] David McAllester and Luis Ortiz. Concentration inequalities for the missing mass and for
histogram rule error. Journal of Machine Learning Research, 4:895–911, 2003.

[46] David McAllester and Robert E Schapire. On the convergence rate of Good-Turing esti-
mators. In Proceedings of the Thirteenth Annual Conference on Computational Learning
Theory, pages 1–6, 2000.

[47] Michael E. Moody and Richard N. Mack. Controlling the spread of plant invasions: the
importance of Nascent Foci. Journal of Applied Ecology, 25(3):1009–1021, 1988.

[48] Rachata Muneepeerakul, Simon A Levin, Andrea Rinaldo, and Ignacio Rodriguez-Iturbe.
On biodiversity in river networks: a trade-off metapopulation model and comparative anal-
ysis. Water Resources Research, 43(7):1–11, 2007.

102

[49] Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for large MDPs
and POMDPs. In UAI 2000, pages 406–415. Morgan Kaufmann Publishers Inc., 2000.

[50] Alon Orlitsky, Narayana P. Santhanam, and Junan Zhang. Always Good Turing: asymp-
totically optimal probability estimation. Science, 302(5644):427–431, 2003.

[51] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning. arXiv preprint arXiv:1607.00215, 2016.

[52] Ian Osband, Dan Russo, and Benjamin Van Roy. (More) efficient reinforcement learning
via posterior sampling. In Advances in Neural Information Processing Systems, pages
3003–3011, 2013.

[53] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped DQN. arXiv preprint arXiv:1602.04621, 2016.

[54] Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space Markov decision
processes. In AAAI. Citeseer, 2013.

[55] Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Mathematical Statistics. Wiley, 1994.

[56] Aravind Rajeswaran, Sarvjeet Ghotra, Sergey Levine, and Balaraman Ravindran. EPOpt:
learning robust neural network policies using model ensembles. arXiv preprint
arXiv:1610.01283, 2016.

[57] Diederik Marijn Roijers. Multi-Objective Decision-Theoretic Planning. PhD thesis, Uni-
versity of Amsterdam, 2016.

[58] Diederik Marijn Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A sur-
vey of multi-objective sequential decision-making. Journal of Artificial Intelligence Re-
search, 2013.

[59] Daniel Sheldon, Bistra Dilkina, Adam Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon
Conrad, Carla Gomes, David Shmoys, W. Allen, and O. Amundsen. Maximizing the spread
of cascades using network design. In Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence, pages 517–526, 2010.

[60] Trey Smith and Reid Simmons. Focused real-time dynamic programming for MDPs:
squeezing more out of a heuristic. In AAAI 2006, pages 1227–1232, 2006.

[61] Scott M Stenquist. Saltcedar Management and Riparian Restoration Workshop.
www.invasivespeciesinfo.gov/docs/news/workshopSep96/index.html, Las Vegas, NV,
1996.

103

[62] Alexander Strehl and Michael Littman. An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331,
2008.

[63] Alexander L Strehl and Michael L Littman. An empirical evaluation of interval estima-
tion for Markov decision processes. In 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), pages 128–135, 2004.

[64] Umar Syed, Michael Bowling, and Robert Schapire. Apprenticeship learning using linear
programming. In International Conference on Machine Learning, Helsinki, Finland, 2008.

[65] Istvan Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight
exploration complexity bounds. In Johannes Fürnkranz and Thorsten Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning (ICML-10), June
21-24, 2010, Haifa, Israel, pages 1031–1038, 2010.

[66] Majid Alkaee Taleghan, Thomas G. Dietterich, Mark Crowley, Kim Hall, and H. Jo Albers.
PAC optimal MDP planning with application to invasive species management. Journal of
Machine Learning Research, 16:3877–3903, 2015.

[67] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approxi-
mation. In ICML 2014, volume 32, 2014.

[68] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. In AAAI, pages 3000–3006, 2015.

[69] William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3):285–294, 1933.

[70] Gregory Valiant and Paul Valiant. Estimating the unseen: improved estimators for entropy
and other properties. In Neural Information Processing Systems 2013, pages 1–9, 2013.

[71] Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2):117–186, 1945.

[72] Thomas J Walsh, Sergiu Goschin, and Michael L Littman. Integrating sample-based plan-
ning and model-based reinforcement learning. In Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, Atlanta, GA, 2010.

[73] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Wein-
berger. Inequalities for the L1 deviation of the empirical distribution. Technical report, HP
Labs, 2003.

[74] Alexander Zadorojniy, Guy Even, and Adam Shwartz. A strongly polynomial algorithm
for controlled queues. Mathematics of Operations Research, 34(4):992–1007, 2009.

104

APPENDICES

105

Appendix A: Proofs of the Main Result

A.1 Proof of Theorem 8

Suppose the current optimistic policy at time t is πt = πUCB and the current maximum likeli-

hood transition estimates at time t are P̂ t. Following the same argument as [16] and the bounds

on V πt
(s0), we can bound Q∗(s0, a) − Q(s0, a) ≤ Q(s0, a) − Q(s0, a). This means that by

bounding Q(s0, a) − Q(s0, a) ≤ ε(1 − γ)/2 for a = πt(s0) we can guarantee |V πt(s0) −
V ∗(s0)| < ε. We therefore compute the sample size required to get ∆Q(s, a) ≤ ε(1− γ)/2 for

all (s, a).

We use the same style of proof as Proposition 1 in [62]. Let (s∗, a∗) = argmax(s,a) |Q(s, a)−
Q(s, a)|. For a given optimistic policy π, we use the largest value of variance as V arπ(s0, π(s0)) =

γ2V 2
max/4. Therefore,

max
(s,a)
|Q(s, a)−Q(s, a)|

= Q(s∗, a∗)−Q(s∗, a∗)

= R(s∗, a∗) +
∑
s′

P̂ (s′|s∗, a∗)γV (s′) +

√
2V ar(s∗, a∗) ln(3/δ0)

N(s∗, a∗)
+

3γVmax ln(3/δ0)

N(s∗, a∗)

− R(s∗, a∗)−
∑
s′

P̂ (s′|s∗, a∗)γV (s′) +

√
2V ar(s∗, a∗) ln(3/δ0)

N(s∗, a∗)
+

3γVmax ln(3/δ0)

N(s∗, a∗)

≤ γ
∑
s′

P̂ (s′|s∗, a∗)
(
V (s′)− V (s′)

)
+ γ

√
2V 2

max ln(3/δ0)

N(s∗, a∗)
+

6γVmax ln(3/δ0)

N(s∗, a∗)

≤ γmax
s
|V (s)− V (s)| + γ

√
2V 2

max ln(3/δ0)

N(s∗, a∗)
+

6γVmax ln(3/δ0)

N(s∗, a∗)

≤ γmax
(s,a)
|Q(s, a)−Q(s, a)| + γ

√
2V 2

max ln(3/δ0)

N(s∗, a∗)
+

6γVmax ln(3/δ0)

N(s∗, a∗)
.

106

Now, we have

max
(s,a)
|Q(s, a)−Q(s, a)| ≤ 1

(1− γ)

(
γVmax

√
2 ln(3/δ0)

N(s, a)
+

6γVmax ln(3/δ0)

N(s, a)

)
.

To make ∆Q(s, a) ≤ ε(1−γ)/2 for all (s, a), we need to bound the right-hand side of the above

equations as follows:

γVmax

√
2 ln(3/δ0)
N(s,a) + 6γVmax ln(3/δ0)

N(s,a) ≤ ε(1−γ)
2√

2 ln(3/δ0)
N(s,a) + 6 ln(3/δ0)

N(s,a) ≤
ε(1−γ)
2Vmaxγ

.

We use δ0 = 6δ
2π2|S||A|t2 in the following derivation instead of the value δ0 = δ

2|S||A|t(t+1) to

make the derivation simpler:

√
2 ln(

π2|S||A|m2

δ
)

m +
6 ln(

π2|S||A|m2

δ
)

m = ε(1−γ)
2Vmaxγ

6

(√
ln(

π2|S||A|m2

δ
)

m +
√

2
12

)2

= 1
12 + ε(1−γ)

2γVmax

ln(
π2|S||A|m2

δ
)

m =

[√
1
6

(
1
12 + ε(1−γ)

2γVmax

)
−
√

2
12

]2

ln(π2|S||A|)+ln(1
δ

)+2 ln(m)

m =

[√
1
6

(
1
12 + ε(1−γ)

2γVmax

)
−
√

2
12

]2

One can derive the above using simple algebra. We use the following substitutions to make the

equations easier to follow. Let c1 = ln(π2|S||A|) + ln(1
δ), c2 =

[√
1
6

(
1
12 + ε(1−γ)

2γVmax

)
−
√

2
12

]2

,

and u = ln(m). Then, the last equation becomes:

(c1 + 2u)e−u = c2.

107

Define x = 0.5c1 + u and substitute:

xe−x = 0.5c2e
−0.5c1 .

Replacing x = −y gives

yey = −0.5c2e
−0.5c1 ⇒ y = W−1(−0.5c2e

−0.5c1),

where W is Lambert W function. By tracing back the substitutions, we end up with a sample

complexity of

m = e
−0.5(ln(π2|S||A|)+ln(1

δ
))−W−1

(
−0.5∗

[√
1
6

(
1
12

+
ε(1−γ)
2γVmax

)
−
√
2

12

]2
e−0.5∗(ln(π2|S||A|)+ln(1

δ
)))

)
.

We use an upper bound on Lambert W function to eliminate it:

m = e
−0.5(ln(π2|S||A|)+ln(1

δ
))−2 ln(0.5∗

[√
1
6

(
1
12

+
ε(1−γ)
2γVmax

)
−
√
2

12

]2
e−0.5∗(ln(π2|S||A|)+ln(1

δ
)))
.

Therefore, the sample complexity for the maximum variance is

m =

√
π2|S||A|

δ

 1√
1
6

(
1
12

+
ε(1−γ)
2γVmax

)
−
√
2

12

4

.

108

Repeating the above steps with V ar = 0, we obtain

6γVmax ln(
π2|S||A|m2

δ
)

m = ε
2(1−γ)

ln(
π2|S||A|m2

δ
)

m = ε(1−γ)
12γVmax

ln(π2|S||A|)+ln(1
δ

)+2 ln(m)

m = ε(1−γ)
12γVmax

m = e
−0.5(ln(π2|S||A|)+ln(1

δ
))−W−1

(
−0.5∗ ε(1−γ)

12γVmax
e−0.5∗(ln(π2|S||A|)+ln(1

δ
))
)

m = e
−0.5(ln(π2|S||A|)+ln(1

δ
))−2 ln

(
0.5∗ ε(1−γ)

12γVmax
e−0.5∗(ln(π2|S||A|)+ln(1

δ
))
)
.

Therefore, the sample complexity for this case is

m =

√
π2|S||A|

δ

(
1

ε(1−γ)
24γVmax

)2

.

Therefore, asymptotic sample complexity for both cases is

O

(
|S||A|

√
|S||A|
δ

R2
maxγ

2

ε2(1−γ)4

)
.

	Introduction
	Contribution
	Organization

	PAC Optimal MDP Planning with Application to Invasive Species Management
	Introduction
	Definitions
	Managing Tamarisk Invasions in River Networks
	Previous Work on Sample-Efficient MDP Planning
	Improved Model-Based MDP Planning
	Tighter Statistical Analysis for Earlier Stopping
	Improved Exploration Heuristics for MDP Planning
	Experimental Evaluation on Exploration Heuristics

	Summary and Conclusions

	Combining Global and Local Confidence Intervals for More Efficient MDP Planning
	Introduction
	Problem Definition, Notation, and Confidence Interval Methods
	Global (Trajectory-wise) Confidence Intervals
	Local Confidence Intervals
	The Occupancy Measure

	Monte Carlo Policy Evaluation
	Optimal Allocation of Sampling
	Experimental Comparison of Global and Local Confidence Intervals for Policy Evaluation

	Policy Optimization
	Experimental Evaluation
	Concluding Remarks

	Efficient Exploration for Constrained MDPs
	Introduction
	Problem Definition and Notation
	Extended Value Iteration
	Optimal Policies for C-MDPs
	Additional Definitions for C-MDPs

	PAC-RL for Constrained MDPs
	Confidence intervals for VR and VC for policy evaluation
	Confidence intervals for VR and VC for policy optimization

	Algorithm
	Correctness and Polynomial Running Time
	Experiments
	Conclusion

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendices
	Proofs of the Main Result

