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1 INTRODUCTION

Stefan Kaczmarz, (see [6, 7]) in 1937 introduced an iterative algorithm for solving a system

of linear algebraic equations of the form Rf = g in Euclidean spaces. The method is now

called the Kaczmarz method and since then has been rediscovered under di�erent names.

In 1970, the method was rediscovered by Richard Gorden, Robert Bender, and Gabor

Herman under the name Algebraic Reconstruction Technique (ART) [4] and is used in the

�eld of image reconstruction. It is also known by cyclic projection or successive projection

and is closely related to an earlier result by Von Neumann which appeared in some lecture

notes in 1933 but not published until 1950. The applications of this method have advanced

since then from computer tomography to digital signal processing.

The Kaczmarz method iteratively solves system of linear algebraic equations of the form

Rif = gi i = 1, ...,m or Rf = g (1.1)

where R ∈ Rm×n and g ∈ Rm in Euclidean spaces. The iteration is de�ned by

fj+1 = fj +
(gi −Rifj)
‖Ri‖22

(Ri)∗, (1.2)

where fj is the j− th iterate, i = (j mod m)+1, Ri is the i− th row of the matrix R, (Ri)∗

is the transpose of Ri, gi is the i− th component of the right-hand side vector, and ‖Ri‖2

denotes the Euclidean norm of the vector Ri. This notation will be used throughout this

paper. Let f0 ∈ Rn be the starting vector. Kaczmarz originally considered systems with

square matrix and showed that for a nonsingular matrix R, the sequence (fj) converges to

the solution regardless of the initial approximation f0. The algorithm (1.2) above operates
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by �rst taking an arbitrary initial approximation f0 and at each iteration j, the current

iterate is successively projected orthogonally onto the solution hyperplane Rif = gi (see

[14], p.248). To explain the computational steps involved in this method, we will use

a very simple example of 2 × 2 matrix R to demonstrate. Let us consider a system of

two equations and two unknowns: x + 2y = 5 and x − 2y = 1. Each of these equations

represent a hyperplane and when there exist a unique solution to these equations, then the

hyperplanes will intersect at that solution. Basic algebra approach gives us the solution

x = 3 and y = 1 as the unique solution to the equations. We can represent these equations

in matrix form as Rf = g i.e.,

R =

1 2

1 −2

 , f =

f1
f2

 , g =

5
1



R1 =

[
1 2

]
, g1 = 5. Starting with our initial approximation ("guess") f0 =

[
0 0

]∗
,

projecting this initial guess onto the �rst hyperplane, reprojecting the resulting point onto

the second hyperplane, and then projecting back onto the �rst equation, and so on. When

there is a unique solution, the iterations will always converge to that solution ("point") as

in (1.2). So, applying the algorithm in (1.2) to the system of equations above we get that

f1 = f0 +
(g1 −R1f0)

R1(R1)∗
(R1)∗ =

0
0

+

[5]− [1 2

]0
0




[
1 2

]1
2


1
2

 =

1
2



which satis�es the �rst equation x + 2y = 5. This shows that f0 is projected onto the

hyperplane represented by the �rst equation to yield

1
2

 = f1. Next, we project f1 onto

the hyperplane represented by the second equation to get the iterate f2. i.e.,



3

f2 = f1 +
(g2 −R2f1)

R2(R2)∗
(R2)∗ =

1
2

+

[1]− [1 −2
]1

2




[
1 −2

] 1

−2


 1

−2

 =

9
5

2
5



which satis�es the second equation. This illustrates that the sequence of the iterates, in

this case the lines intersect, so the iteration converges as j → ∞ to the solution of the

system of equations. That is, the process continues projecting from one hyperplane to the

other until the approximation fj converges to f =

[
3 1

]∗
.On the other hand, when the

two lines are orthogonal, the sequence will converge in one iteration. We use the �gure

below to illustrate this example.

(a) converges in in�nitely many steps (b) converges in one iteration

FIGURE 1.1: examples where the projections converge

This shows that the Kaczmarz algorithm converges to the solution of the system of equa-

tions if there is a unique solution. However, in general this is not always the case. For

instance, the algorithm does not converge for two parallel equations (see �gure 2 below),

which also corresponds to an inconsistent system which has no solution. Now, if we intro-

duce a third equation 4x + y = 6, then the system of equations become overdetermined



4

inconsistent. The projection of f2 onto this third equation is:

f3 = f2 +
(g3 −R3f2)

R3(R3)∗
(R3)∗ =

9
5

2
5

+

[6]− [4 1

]9
5

2
5




[
4 1

]4
1


4
1

 =

121
85

26
85



the projections from one hyperplane to another between the three equations is trapped in

a triangle pattern but do not converge as j → ∞. We use the �gures below to illustrate

the cases where the Kaczmarz algorithm does not converge.

(a) overdetermined systems (b) two parallel lines

FIGURE 1.2: examples where the projections do not converge

In this case we turn to other modi�ed versions of the method to improve convergence. For

example, to reduce the e�ect of the "chaotic" behavior and to accelerate the convergence,

some kind of smoothing, also known as relaxation parameter, is frequently introduced into

the Kaczmarz algorithm, extending it to

fj+1 = fj + ω
(gi −Rifj)
‖Ri‖22

(Ri)∗ (1.3)

where ω is a relaxation parameter that extends the projections either in front of the
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hyperplane (ω < 1), exactly on the hyperplane (ω = 1), or beyond the hyperplane (ω > 1),

and we assume henceforth that 0 < ω < 2 (see, [1] p. 217). Below are �gures illustrating

the result in for ω < 1 and ω > 1 conditions on ω in the consistent case.

(a) ω < 1 (b) ω > 1

FIGURE 1.3: conditions on ω in the consistent case

In this paper we will �rst look at Kaczmarz method [6] in the Hilbert space settings using

the concepts of projections and relaxation parameter. We will then introduce Whitney and

Meany's version of Kaczmarz method [16] and give an example. We will then look at the

convergence properties of randomized extended Kaczmarz method in the �nite dimensional

setting based on the recent paper of Anna Ma, Deanna Needell, and Aaditya Ramdas (see

[8]).

1.1 Organization of the paper

In section 2, we will look at Kaczmarz method in the Hilbert space, introduce Whitney and

Meany's version of Kaczmarz method [16] and give an example. Section 3, will look at the

convergence properties of randomized extended Kaczmarz method in the �nite dimensional

setting based on the paper of Anna Ma, Deanna Needell, and Aaditya Ramdas (see [8]).
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2 KACZMARZ METHOD IN HILBERT SPACE

In the early 1930's Von Neumann [15] and later in 1962 Halperin [5] proved results for

iterative projection methods in Hilbert space and then in 1977 McCormick [9] investigated

the Kaczmarz method in Hilbert spaces. We will �rst consider the Kaczmarz method

for projections following the presentations ( in [5, 2, 12]) and then, we will also look at

the relaxed form of the Kaczmarz method. In a later section, we refer to Whitney and

Meany relaxed version of the Kaczmarz method ([16]) which makes use of the relaxation

parameter.

Let Pj be the orthogonal projection operator onto a closed subspaceMj for j = 1, ..., r of a

Hilbert space H and let PM be the projection operator onto the intersectionM = ∩rj=1Mj

In this paper we will use the theorem in [12] and also our proof is along the same general

lines as in [12], in that the steps of this proof are each well digested.

Theorem 2.1. Let Pj (j = 1, ..., r) be the orthogonal projection onto a closed subspace

Mj of a Hilbert space H and let PM be the orthogonal projection onto the intersection M

= ∩rj=1Mj. If Q = Pr...P1 then Qk → PM strongly as k →∞. That is, for each x ∈ H

lim
k→∞

Qkx = PM (x)

The following lemma is essential for the proof we give of Theorem 2.1.

Lemma 2.1. For each x in the Hilbert space H, ‖Qkx−Qk+1x‖ → 0 as k →∞

Proof. Let x be in H. Since Q is a product of projections, we have ‖Q‖ ≤ 1 which

guarantees that the sequence
{
‖Qkx‖

}
is decreasing. It is bounded below and so converges.

In particular,

‖Qkx‖ − ‖Qk+1x‖ → 0 (2.1)
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as k → ∞. By the Pythagorean theorem, we have that for any orthogonal projection P

and for any x in H

‖x− Px‖2 = ‖x‖2 − ‖Px‖2. (2.2)

In order to use the Pythagorean theorem, we take operators that are related by projection

and de�ned as Qj = PjQj−1. Let Q0 = I and Qr = Q. Then, the triangle inequality and

(2.2) with QjQ
kx in place of x give

‖Qkx−Qk+1x‖2 = ‖
r−1∑
j=0

(QjQ
kx−Qj+1Q

kx)‖2 ≤ [

r−1∑
j=0

‖QjQkx−Qj+1Q
kx‖]2

≤ r
r−1∑
j=0

‖QjQkx− Pj+1QjQ
kx‖2 = r

r−1∑
j=0

(‖QjQkx‖2 − ‖Pj+1QjQ
kx‖2)

= r(

r−1∑
j=0

‖QjQkx‖2 −
r∑

n=1

‖QnQkx‖2) let n = j + 1

= r(‖Q0Q
kx‖2 − ‖QrQkx‖2) = r(‖Qkx‖2 − ‖Qk+1x‖2)

From (2.1) we have that r(‖Qkx‖2−‖Qk+1x‖2)→ 0 since ‖Qkx‖− ‖Qk+1x‖ → 0. Hence,

the claim of lemma 2.1 follows.

Now, for the proof of Theorem 2.1. We will use lemma 2.1 and continuity to show that

Qky → 0 strongly when y lies in [R(I −Q)] (the closure of the range of (I −Q)).

So, for y ∈ R(I − Q) lemma 2.1 shows the sequence (Qk) of Q converges to zero on the

range of (I − Q). That is ‖Qky‖ → 0 strongly for y ∈ R(I − Q). We will show that the

same holds for y ∈ [R(I −Q)] using continuity. Take y ∈ [R(I −Q)]. Given ε > 0, we

need to �nd N such that for k ≥ N , ‖Qky‖ < ε. Now, choose y1 ∈ R(I − Q) so that

‖y − y1‖ < ε
2 and take N such that for k ≥ N , ‖Qky1‖ < ε

2 .

‖Qky‖ = ‖Qk(y − y1) +Qk(y1)‖

≤ ‖Qk(y − y1)‖+ ‖Qky1‖
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≤ ‖(y − y1)‖+ ‖Qky1‖ since ‖Qk‖ ≤ 1

<
ε

2
+
ε

2

= ε.

To prove the convergence, we need the following lemma.

Lemma 2.2. [10] Let Q be a linear map in H with ‖Q‖ ≤ 1, then

N (I −Q) = N (I −Q?).

Proof. Suppose Qf = f then ‖f‖2 = 〈Qf, f〉 = 〈f,Q∗f〉 ≤ ‖f‖2 with equality in Cauchy-

Schwarz only when Q∗f = f as ‖Q∗f‖ ≤ ‖f‖.

Conversely, if Q∗f = f then the preceding argument gives Q∗∗f = f or Qf = f Therefore,

N (I −Q) = N (I −Q?).

Lemma 2.3. N (I −Q) =M . The proof is trivial.

Since we know that the Hilbert space H has the decomposition H = [R(I −Q)]⊕N (I −

Q∗), then by lemma 2.2 we have H = [R(I −Q)] ⊕ N (I − Q). For any x in H we have

the orthogonal decomposition x = y + z with y in [R(I −Q)] and z in M .

Then multiplying both sides of the orthogonal decomposition of x by Qk, we get Qkx =

Qky +Qkz, and since Qky → 0 and Qkz = z for all k, we have that Qkx = Qky +Qkz =

Qky + z → z strongly as k →∞. Thus, Qkx→ z strongly as k →∞.

We state and prove a theorem parallel to theorem 2.1 by replacing Pj with I − ωI + ωPj

for 0 < ω < 2. That is;

Theorem 2.2. Let Tj = (1 − ω)I + ωPj (j = 1, ..., r) with Pj an orthogonal projection

onto the closed subspace Mj of a Hilbert space H and let PM be the orthogonal projection
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onto the intersection M = ∩rj=1Mj. If T = Tr...T1 then T k → PM strongly as k →∞.

That is, for each x ∈ H

lim
k→∞

T kx = PM (x)

Proof. For each x in H, we will show that ‖T kx − T k+1x‖ → 0 as k → ∞. Since T is a

contraction, we have ‖T‖ ≤ 1 which guarantees that the sequence
{
‖T kx‖

}
is decreasing.

It is bounded below and so converges. In particular,

‖T kx‖ − ‖T k+1x‖ → 0 (2.3)

as k → ∞. In the previous theorem, we used the Pythagorean theorem to state the fact

that for any orthogonal projection P and for any x in H

‖x− Px‖2 = ‖x‖2 − ‖Px‖2. (2.4)

But here, we have that

‖x− Tx‖2 = ‖(ωI − ωP )x‖2 since x− (I − ωI + ωp)x = (ωI − ωp)x (2.5)

= ω2‖(I − P )x‖2 (2.6)

= ω2(‖x‖2 − ‖Px‖2). (2.7)

Next, we have that

‖Tx‖2 = 〈(1− ω)x+ ωPx, (1− ω)x+ ωPx〉

= (1− ω)2‖x‖2 + 2 〈(1− ω)x, ωPx〉+ ω2‖Px‖2

= (1− ω)2‖x‖2 + 2(1− ω)ω 〈Px, Px〉+ ω2‖Px‖2

= (1− ω)2‖x‖2 + 2(1− ω)ω‖Px‖2 + ω2‖Px‖2
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= (1− ω)2‖x‖2 + (2ω − ω2)‖Px‖2

Now, subtracting ‖Tx‖2 from ‖x‖2 we get

‖x‖2 − ‖Tx‖2 = (1− (1− ω)2)‖x‖2 − (2ω − ω2)‖Px‖2

= (2ω − ω2)‖x‖2 − (2ω − ω2)‖Px‖2

= (2ω − ω2)(‖x‖2 − ‖Px‖2)

= (2ω − ω2)
1

ω2
‖x− Tx‖2 from (2.5)

=
ω(2− ω)

ω2
‖x− Tx‖2

=
2− ω
ω
‖x− Tx‖2

Hence,

‖x− Tx‖2 = ω

2− ω
(‖x‖2 − ‖Tx‖2)

= K(‖x‖2 − ‖Tx‖2) where K =
ω

2− ω
and since 0 < ω < 2, K is positive.

Thus,

‖x− Tx‖2 = K(‖x‖2 − ‖Tx‖2) (2.8)

Let Q0 = I and for j = 1, ..., r recursively de�ne Qj = ((1 − ω)I + ωPj)Qj−1 i.e. Qj =

TjQj−1 , so that Qr = T . The triangle inequality and (8) with QjT
kx in place of x lead

to

‖T kx− T k+1x‖2 = ‖
r−1∑
j=0

(QjT
kx−Qj+1T

kx)‖2 ≤ [

r−1∑
j=0

‖QjT kx−Qj+1T
kx‖]2

≤ r
r−1∑
j=0

‖QjT kx−Qj+1T
kx‖2
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= r
r−1∑
j=0

(‖TjQj−1T kx− Tj+1QjT
kx‖2) since Qj+1 = Tj+1Qj

= r

(
ω

2− ω

)r−1∑
j=1

‖Qj−1T kx‖2 −
r∑

n=1

‖QnT kx‖2
 from above

= rK(‖Q0T
kx‖2 − ‖QrT kx‖2)

= rK(‖T kx‖2 − ‖T k+1x‖2) since Q0 = I and Qr = T .

From (2.3) we have that rK(‖T kx‖2−‖T k+1x‖2)→ 0 since ‖T kx‖−‖T k+1x‖ → 0. Hence,

the claim of lemma 2.1 follows. This shows the sequence (T k) of T converges to zero on

the range of (I−T ). So T ky → 0 strongly that is ‖T ky‖ → 0 for y ∈ R(I−T ). Therefore,

from the proof of theorem 2.1 we know this remains true for y in [R(I − T )] and orthogonal

decomposition of any x ∈ H according to [R(I −Q)]⊕N (I −Q) by lemma 2.2. We can

conclude that T kx→ PMx strongly as k →∞ for any x ∈ H.

The theorem above only shows that the sequence of iterates Qk(x) and T k(x) converge

to PM (x) for every x. We will now consider the relaxed version of Kaczmarz method

which was �rst presented by Whitney and Meany who called it the single pattern LMS

(least mean squares) algorithm [16]. Here and throughout this paper, S will denote the

pseudoinverse of R. The pseudoinverse (S) satis�es the following properties.

1. RSR = R S is an n×m matrix

2. SRS = S

3. (RS)∗ = RS

4. (SR)∗ = SR

We will let R{i} where i = 1, 2, 3, 4 denote the conditions of the pseudoinverse S. We will

make some conclusions from the conditions of the pseudoinverse;

(RS)2 = RSRS = R(SRS) = RS. So RS is a projection and since (RS)∗ = RS, it is an



12

orthogonal projection. Similarly, SR is an orthogonal projection. So R(RS) ⊆ R(R). To

see that R(RS) = R(R), we note from RSR = R that R(R) = R(RSR) ⊆ R(RS). We

claim that R(SR) = R(R∗). SR = (SR)∗ = R∗(S)∗, so R(SR) = R(R∗(S)∗) ⊆ R(R∗).

But from condition (1) above we have that R∗ = R∗(S)∗R∗. So R(R∗) = R(R∗(S)∗R∗) ⊆

R(R∗(S)∗).

Here we will look at the method applied to the linear algebraic equation Rf = g where

R ∈ Rm×n and g ∈ Rm. Whitney and Meany relaxation algorithm has the form (see [3],

p.140-141)

fj+1 = fj − ωeTi (gi −Rifj)R∗ei

= (I − ωR∗eie∗iR)fj + ωgiR∗ei

where I is the n × n identity matrix, ω is a scalar, 1 ≤ i ≤ n and i ≡ (j mod m) + 1.

We will use the diagonal matrix D = diag (1/‖R∗ei‖22) to normalize the linear algebraic

equation Rf = g to obtain the normalized problem D1/2Rf = D1/2g. Then the relaxation

algorithm above takes the form

fj+1 = fj − ω
e∗i (g

i −Rifj)
‖R∗ei‖22

R∗ei (2.9)

= (I − ωPi)fj + ω
gi

αi
R∗ei (2.10)

= [(1− ω)I + (ωI − ωPi)]fj + ω
gi

αi
R∗ei (2.11)

= [(1− ω)I + ω(I − Pi)]fj + ω
gi

αi
R∗ei (2.12)

= [(1− ω)I + ωP⊥i ]fj + ω
gi

αi
R∗ei (2.13)

where

Pi =
R∗eie

∗
iR

‖R∗ei‖22
, αi = ‖R∗ei‖22 (2.14)
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This algorithm (2.10) is clearly a relaxed version of the Kaczmarz method applied to the

linear algebraic system Rf = g. Let Qk,j(ω) = (I − ωPk) · · · (I − ωPj) (k ≥ j) and

Qk,j(ω) = I (k < j). So Qk,j(ω) is a product of contractions and hence a contraction.

Applying I − ωP1, · · · , I − ωPm in succession, (2.10) gives

fkm = Qm,1(ω)f(k−1)m + ω

m∑
i=1

Qm,i+1(ω)
gi

αi
R∗ei (k = 1, 2, · · · ). (2.15)

De�ne the n×m matrix A(ω) whose i− th column vector is Aei = ωQm,i+1(ω)
R∗ei
αi

A(ω) = ω

[
Qm,2(ω)

R∗e1
α1

, · · · , Qm,m+1(ω)
R∗em
αm

]
. (2.16)

In terms of A(ω) (2.15) becomes

fkm = Qm,1(ω)f(k−1)m +A(ω)g. (2.17)

We will need later that the right hand side of (2.16) is a linear combination of the columns

of R∗.

Lemma 2.4. R(R∗) is invariant under Qm,j for all j.

Proof. To show that Qm,jR
∗z belongs toR(R∗), it su�ces to show Qm,jR

∗z lies in N (R)⊥.

Take v ∈ N (R) then Pkv = 0 for all k, so (I − ωPk)v = v and thus

〈Qm,jR∗z, v〉 =
〈
R∗z,Q∗m,jv

〉
= 〈R∗z, (I − ωPj) · · · (I − ωPm)v〉

= 〈R∗z, v〉

= 0 since R∗z ∈ R(R∗) and v is orthogonal to R(R∗).
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Next, we evaluate A(ω)R. Let Aei = Qm,i+1(ω)
R∗ei
αi

. Multiply both sides by e∗iR, we get

Aeie
∗
iR = ωQm,i+1(ω)

R∗eie∗iR
αi

.

So

A(ω)R =

m∑
i=1

Aeie
∗
iR =

m∑
i=1

Qm,i+1(ω)ωPi since Pi =
R∗eie

∗
iR

αi

=
m∑
i=1

(Qm,i+1(ω)−Qm,i(ω)) since Qm,i = Qm,i+1(I − ωPi)

= Qm,m+1(ω)−Qm,1(ω) = I −Qm,1(ω)

We will rewrite (2.15) by considering the recurrence relation

Wk = Qm,1(ω)Wk−1 +A(ω), (2.18)

where W0 is an arbitrary n×m matrix. If (2.18) is multiplied by g, we obtain (2.15) with

fkm =Wkg (k ≥ 0).

Theorem 2.3. Let R be a m × n real matrix and let the matrices Wk(k ≥ 1) be de�ned

by (2.18), where Qm,1(ω) and A(ω) are de�ned as above, W0 is an arbitrary matrix, and

0 < ω < 2.

Then
∑∞

i=1Q
i
m,1A(ω) converges and with W (ω) denoting the sum

(i) Wk → (I − SR)W0 +W (ω), S is the pseudoinverse of R

(ii) W (ω) ∈ R{1,2,4}, but W (ω) /∈ R{3}

in general R{i} is the conditions of the pseudoinverse (S)

(iii) If rank(R) = n, then Wk → (R∗DR)−1R∗D when ω → 0

Proof. First, we show ‖Qm,1|R(R∗)‖ < 1. ‖(I − ωPi)y‖2 < ‖y‖2 unless (I − ωPi)y = y.

Thus ‖Qm,1(y)‖2 < ‖y‖2 unless (I−ωPi)y = y for all i, or y ∈ N (R). Since R(R∗) is �nite
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dimensional and by lemma 2.4 is invariant under Qm,1, there exists z in the unit sphere in

R(R∗) such that

‖Qm,1|R(R∗)‖ = ‖Qm,1z‖2.

Then, by the preceding ‖Qm,1(z)‖2 < ‖z‖2 = 1. Let α = ‖Qm,1|R(R∗)‖. Since

‖Qm,1|R(R∗)‖ = α < 1, if z ∈ R(R∗), then by induction

‖Qkm,1(ω)z‖2 ≤ αk‖z‖2 (k ≥ 1). (2.19)

Now the recurrence relations (2.18) leads to the formula

Wk = Qkm,1(ω)W0 +

(
k−1∑
i=0

Qim,1(ω)

)
A(ω). (2.20)

Since I−ωPi = (1−ω)I+ωP⊥i , by theorem 2.3 Qkm,1(ω) converges to orthogonal projection

on

∩R(P⊥i ) = ∩R(I − Pi) = ∩N (Pi) = N (R).

Thus Qkm,1 → PN (R) = (I−SR). Since ‖Qm,1|R(R∗)‖ = α < 1 the series
∑∞

i=0Q
i
m,1(ω)A(ω)

converges. Setting

W (ω) =

∞∑
i=0

Qim,1(ω)A(ω).
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Then

W (ω)R = lim
k→∞

(
k−1∑
i=0

Qim,1(ω)

)
A(ω)R

= lim
k→∞

(
k−1∑
i=0

Qim,1(ω)

)
(I −Qm,1(ω))

= lim
k→∞

(I −Qkm,1(ω))

= I − PN (R)

= I − (I − SR) = SR since PN (R) = I − SR

. (2.21)

Multiplying (2.21) on the right by SR, one has

W (ω)R =W (ω)RSR = lim
k→∞

(SR−Qkm,1(ω)SR) = SR. (2.22)

Since the columns of Qkm,1(ω)A(ω) belong to R(R∗) for k = 1, 2, · · · , the columns of W (ω)

belong to R(R∗). Hence from (2.19), Qkm,1(ω)W (ω)→ 0, when k →∞. Multiplying (2.21)

on the right by W (ω), one has

W (ω)RW (ω) = lim
k→∞

(W (ω)−Qkm,1(ω)W (ω)) =W (ω).

Also, (2.21) shows thatW (ω)R is symmetric and that RW (ω)R = RSR = R. ThusW (ω)

satis�es the �rst, second and fourth conditions of pseudoinverse. We may deduce from

(2.20), (2.21), and (2.22) that

Wk → (I − SR)W0 +W (ω) (2.23)

when k → ∞. If rank(R) = n, then R(R∗) has dimension n. The in�nite series∑∞
k=0Q

k
m,1(ω) therefore converges to (I −Qm,1(ω))−1, and
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hence, W (ω) = (I −Qm,1(ω))−1A(ω). Now when ω → 0,

1

ω
(I −Qm,1(ω))→

m∑
i=0

Pi = R∗DR

and

1

ω
A(ω)→ R∗D.

It follows that when ω → 0,

W (ω) =

[
I −Qm,1(ω)

ω

]−1 A(ω)
ω
→ (R∗DR)−1R∗D.

We can easily check that (R∗DR)−1R∗D ∈ R{1,2,4}.

Example 2.1. Let R =


1 0

cos θ sin θ

0 1

, R∗ =
1 cos θ 0

0 sin θ 1

 and set ω = 1. Then

Qm,i(ω) = (I − ωPm) · · · (I − ωPi)

Q3,1(ω) = (I − ωP3)(I − ωP2)(I − ωP1)

so

Q3,1(1) = (I − P3)(I − P2)(I − P1) since ω = 1

P1 is projection on

1
0

. I−P1 is projection on

1
0


⊥

=

0
1

, so has matrix representation

0
1

[0 1

]
=

0 0

0 1

.
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P2 is projection on

cos θ
sin θ

. I − P2 is projection on

cos θ
sin θ


⊥

=

− sin θ

cos θ

,
so has matrix representation

− sin θ

cos θ

[− sin θ cos θ

]
=

 sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

.
P3 is projection on

0
1

. I − P3 is projection on

0
1


⊥

=

−1
0

, so has matrix represen-

tation

−1
0

[−1 0

]
=

1 0

0 0

.
Then

Q3,1(1) =

1 0

0 0


 sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ


0 0

0 1


=

0 − sin θ cos θ

0 0



Q3,2(1)R
∗e1 =

1 0

0 0


 sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ


1
0

 =

sin2 θ
0


Q3,3(1)R

∗e2 =

1 0

0 0


cos θ
sin θ

 =

cos θ
0


Q3,4(1)R

∗e3 = I

0
1

 =

0
1


but

A(1) = [Q3,2(1)R
∗e1, Q3,3(1)R

∗e2, Q3,4(1)R
∗e3]
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A(1) =

sin2 θ cos θ 0

0 0 1

 .

So

W (1) = (
∞∑
i=0

Qi3,1(1))A(1)

=


1 0

0 1

+

0 − sin θ cos θ

0 0


A(1)

=

1 − sin θ cos θ

0 1


sin2 θ cos θ 0

0 0 1


=

sin2 θ cos θ − sin θ cos θ

0 0 1

 .

Hence

RW (1) =


1 0

cos θ sin θ

0 1


sin2 θ cos θ − sin θ cos θ

0 0 1



=


sin2 θ cos θ − sin θ cos θ

sin2 θ cos θ cos2 θ − sin θ cos2 θ + sin θ

0 0 1

 ,
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which is not symmetric. Therefore, W (ω) need not satisfy the third condition of the pseu-

doinverse.

Next, we give the actual pseudoinverse (S) of the matrix R in this case. That is,

S = (R∗R)−1R∗

But

R∗R =

1 cos θ 0

0 sin θ 1




1 0

cos θ sin θ

0 1

 =

1 + cos2 θ sin θ cos θ

sin θ cos θ 1 + sin2 θ



and let

B = (1 + cos2 θ)(1 + sin2 θ)− (sin θ cos θ)(sin θ cos θ)

= 1 + sin2 θ + cos2 θ + sin2 θ cos2 θ − sin2 θ cos2 θ

= 2 since sin2 θ + cos2 θ = 1.

Then

(R∗R)−1 =

1 + cos2 θ sin θ cos θ

sin θ cos θ 1 + sin2 θ


−1

=
1

B

 1 + sin2 θ − sin θ cos θ

− sin θ cos θ 1 + cos2 θ


=

1

2

 1 + sin2 θ − sin θ cos θ

− sin θ cos θ 1 + cos2 θ


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So

S = (R∗R)−1R∗

=
1

2

 1 + sin2 θ − sin θ cos θ

− sin θ cos θ 1 + cos2 θ


1 cos θ 0

0 sin θ 1


=

1

2

 1 + sin2 θ cos θ +− sin2 θ cos θ + sin2 θ cos θ − sin θ cos θ

− sin θ cos θ − sin θ cos2 θ + sin θ + sin θ cos2 θ 1 + cos2 θ


=

1

2

 1 + sin2 θ cos θ − sin θ cos θ

− sin θ cos θ sin θ 1 + cos2 θ

 .
Thus, it follows that S is a left inverse of R:

SR = (R∗R)−1R∗R = I where is identity matrix

=
1

2

 1 + sin2 θ cos θ − sin θ cos θ

− sin θ cos θ sin θ 1 + cos2 θ




1 0

cos θ sin θ

0 1


=

1

2

 1 + sin2 θ + cos2 θ sin θ cos θ − sin θ cos θ

− sin θ cos θ + sin θ cos θ sin2 θ + 1 + cos2 θ


=

1

2

2 0

0 2

 since sin2 θ + cos2 θ = 1

=

1 0

0 1

 = I

Theorem 2.4. For any matrix R ∈ Rm×n and any g ∈ Rm. Let the vectors fk(k ≥ 1) be
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de�ned by (2.10) with 0 < ω < 2 and f0 arbitrary. Then

lim
k→∞

fk = f(ω) = PN (R)f0 +W (ω)g

and the speed of convergence is linear. If Rf = g has a solution then f(ω) is a solution

for any f0, and W (ω)g is the minimum norm solution. If rank(R) = n then f(ω) →

PN (R)f0 + (R∗DR)−1R∗Dg

Proof. Suppose g 6= 0 and let an n×m matrixW0 be determined so thatW0g = f0, and let

Wk be de�ned as in the previous theorem. Then fkm =Wkg → (I − SR)W0g +W (ω)g =

(I − SR)f0 +W (ω)g = f(ω)
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3 CONVERGENCE PROPERTIES OF THE RANDOMIZED

EXTENDED KACZMARZ METHOD

The Kaczmarz method being one of the most popularly used iterative algorithm for solv-

ing linear algebraic systems of the form Rf = g, has undergone a lot of modi�cations and

extensions in recent years to become faster and more e�cient. One of the important modi�-

cations of the original Kaczmarz algorithm is the so-called randomized Kaczmarz algorithm

which was introduced by Strohmer and Vershynin [13] who proved that it converges with

expected exponential rate for consistent, overdetermined linear algebraic systems. An in-

teresting follow up was immediately done by Deanna Needell to analyze the behavior of

the randomized method for the case where the linear system is corrupted by noise [11].

3.1 Randomized Kaczmarz method

Here, we will describe the randomized Kaczmarz method proposed by Strohmer and Ver-

shynin [13]. Consider the linear algebraic system Rf = g as in (1.1), taking R, g as

inputs and starting from an arbitrary initial approximation for f (for example, f0 = 0),

the Randomized Kaczmarz method repeats the following in each iteration. First, a row

i ∈ {1, · · · ,m} is chosen at random with probability proportional to its Euclidean norm,

i.e.,

Pr(row = i) =
‖Ri‖22
‖R‖2F

,

where ‖R‖F is the Frobenius norm of matrix R, i.e., ‖R‖2F =
∑m

i=1‖Ri‖2 =
∑m

i=1

∑n
j=1R

2
ij .

Then, project the current iterate onto that row, i.e.,

fj+1 = fj +
(gi −Rifj)
‖Ri‖22

(Ri)∗ (3.1)
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where R∗ again denotes the (conjugate) transpose of R. One can easily see that Rf = g

can be updated iteratively as

Rifj+1 = gi (3.2)

The main result of (3.1) states that fj converges exponentially fast to the solution of (1.1),

and the rate of convergence depends on the scaled condition number κ(R) = ‖R‖F ‖R−1‖2

Theorem 3.1. Let f∗ be the solution of Rf = g and assume that R has full column rank.

Then (3.1) converges to f∗ in expectation, with the average error

E‖fj − f∗‖22 ≤ (1− κ(R)−2)j · ‖f0 − f∗‖22. (3.3)

To prove this theorem, we will �rst show that

E‖fj+1 − f∗‖2 ≤ (1− κ(R)−2) · ‖fj − f∗‖2, where E is expectation conditioned on fj .

Proof. Lets assume that Rf = g has a solution, then by orthogonality fj+1− f∗ is orthog-

onal to fj+1 − fj . So, it holds that ‖fj+1 − f∗‖2 = ‖fj − f∗‖2 − ‖fj+1 − fj‖2. Taking

expectation of both sides by we obtain

E‖fj+1 − f∗‖2 = ‖fj − f∗‖2 − E‖fj+1 − fj‖2

= ‖fj − f∗‖2 − E

[∥∥∥∥gi −Rifj‖Ri‖2
(Ri)∗

∥∥∥∥2
]

de�nition of iteration

= ‖fj − f∗‖2 − E
[
(gi −Rifj)2

‖Ri‖4
‖(Ri)∗‖2

]
take scalars outside norm

= ‖fj − f∗‖2 − E
[
(Rif∗ −Rifj)2

‖Ri‖2

]
cancellation and use of Rif∗ = gi

= ‖fj − f∗‖2 −
m∑
i=1

‖Ri‖2

‖R‖2F
(Ri(fj − f∗))2

‖Ri‖2
de�nition of expectation

= ‖fj − f∗‖2 −
1

‖R‖2F

m∑
i=1

(Ri(fj − f∗))2 ‖R‖2F does not depend on i
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= ‖fj − f∗‖2 −
1

‖R‖2F
‖R(fj − f∗)‖2 ‖Rf‖2 =

m∑
i=1

(Rif)2

= ‖fj − f∗‖2
(
1− ‖R(fj − f∗)‖2

‖R‖2F ‖fj − f∗‖2

)
common factor of ‖fj − f∗‖2

≤
(
1− ‖R‖

2‖fj − f∗‖2

‖R‖2F ‖fj − f∗‖2

)
‖fj − f∗‖2

=

(
1− ‖R‖

2

‖R‖2F

)
‖fj − f∗‖2 cancel common term ‖fj − f∗‖2

=

(
1− 1

‖R‖2F ‖R−1‖2

)
‖fj − f∗‖2

=

(
1− 1

κ(R)2

)
‖fj − f∗‖2 ‖R‖2F ‖R−1‖2 = κ(R)2

=
(
1− κ(R)−2

)
‖fj − f∗‖2

Now, we will apply the law of total expectation and induction law on j to obtain (3.3),

that is

E‖fj − f∗‖2 = Ej−1
[
E‖fj − f∗‖2

]
≤ Ej−1

(
1− κ(R)−2

)
‖fj−1 − f∗‖2 from (3.1) the base case j = 1 is proved

=
(
1− κ(R)−2

)
Ej−2

[
Ej−1‖fj−1 − f∗‖2

]
=
(
1− κ(R)−2

)
Ej−2

(
1− κ(R)−2

)
‖fj−2 − f∗‖2

=
(
1− κ(R)−2

)2 Ej−3 [Ej−2‖fj−2 − f∗‖2] take scalars outside the expectation

=
(
1− κ(R)−2

)2 Ej−3 (1− κ(R)−2) ‖fj−3 − f∗‖2
=
(
1− κ(R)−2

)3 Ej−4 [Ej−3‖fj−3 − f∗‖2]
Now, let k be a natural number with k ≤ 3 be given and suppose (3.3) is true for k − 1
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and show it holds for k. Then

E‖fk − f∗‖2 =
(
1− κ(R)−2

)k−1 Ek−k [Ek−k+1‖fk−k+1 − f∗‖2
]

=
(
1− κ(R)−2

)k−1 E0

[
E1‖f1 − f∗‖2

]
=
(
1− κ(R)−2

)k−1 [E1‖f1 − f∗‖2
]

=
(
1− κ(R)−2

)k−1 (
1− κ(R)−2

)
‖f0 − f∗‖2

=
(
1− κ(R)−2

)k ‖f0 − f∗‖2

Thus, (3.3) holds for j = k which completes the proof.

3.2 Randomized Extended Kaczmarz method

. The randomized Kaczmarz method in the case of inconsistent systems fails to converge

to the least square solution as we will expect, since the method at each iteration projects

completely onto a selected solution space without being able to reduce the error term. To

overcome this, Zouzias and Freris [17] suggested a version of the randomized Kaczmarz

method which iteratively reduces the compoonent of g orthogonal to the range of R by

random projection. This method, named the randomized extended Kaczmarz method has

the following iteration formulation, which can be initialized by setting f0 = 0 and z0 = g:

fj+1 := fj +
(gi − zij −Rifj)

‖Ri‖22
(Ri)∗, zj+1 = zj −

〈
R(j), zj

〉
‖R(j)‖22

R(j). (3.4)



27

Here, a random column j ∈ {1, ..., n} is chosen with a probability proportional to its

Euclidean norm, i.e.,

Pr(column = j) =
‖R(j)‖22
‖R‖2F

, (3.5)

where R(j) denotes the jth column of R. Here, zj estimates the component of g which is or-

thogonal to the range of R, allowing for the iterates fi to converge to the true least-squares

solution of the system. Zouzias and Freris [17] proved that the randomized extended Kacz-

marz method converges linearly in expectation to this solution fLS .
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