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An exact expression for the probability of no zero-crossings in

time t following an arbitrary zero-crossing is obtained. For the
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probability of no zero-crossings in time t following an arbitrarily

chosen sample point an expression is obtained for small values of t.

A physical situation that gives rise to a random process with the

above covariance function is also discussed.

Finally we discuss the difficulties that impede obtaining a

closed expression for the distribution function F (t) of the interval

between successive zero-crossings. We also obtain a series expan-

sion for F (t) in terms of multiple integrals. The fourth order

information is discussed in some detail and a reduction formula for

the four-variate integral involved is given.
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ON THE DISTRIBUTION FUNCTION OF THE INTERVAL
BETWEEN ZERO-CROSSINGS OF A STATIONARY

GAUSSIAN PROCESS

I. STATIONARY POINT PROCESSES

1. 1. Preliminary Remarks

Definition: A stationary point process is defined by the follow-

ing requirement:

The joint distribution of the number of events in a set of k

fixed intervals is invariant under translation for all k = 1, 2, .

If we consider the case k 1, i. e. , a fixed, closed on the

right interval (tr, tu], an immediate consequence of the definition

would be that the distribution of the number of events in an interval

depends only on the length of the interval. It is easy to show, by con-

sidering two adjacent intervals, that the expected number of events in

an interval is proportional to the length of the interval.

A definition of stationarity weaker than the above requires only

that the first and second order properties of the process are invariant

under a time shift. This is particularly important when we base the

statistical analysis on the first and second order properties.

In what follows we shall assume that the probability of more

than one event occurring in a small interval of length is o(AT)

as AT 0. That is, we shall not allow multiple events. Furthermore,
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we consider all the events to be indistinguishable with the information

at hand, except by where they happen in time or space.

1. 2. The Forward Recurrence Time

In the definition of station.arity mentioned in the section above

we considered the number of events in fixed time intervals following

an arbitrarily chosen time origin. Instead we may consider the se-

quence of random intervals {I.} between successive events follow-

ing an arbitrarily chosen event. Thus the events subsequent to the

chosen event occur at times I' I + I2 ... after that event. Then
l 1

the sequence is a stationary sequence of random variables

since the series of events is stationary. That is, the joint distribu-

tion of any k of the intervals I I..1, 2, is invariant under a

translation along the time axis for all k = 1, 2, ...
To relate the two considerations, the number of events in fixed

time intervals following an arbitrarily chosen time origin and the se-

quence of random intervals between successive events subsequent to

an arbitrarily chosen event, we examine the distribution of the for-

ward recurrence time, that is the interval measured from the arbi-

trary time origin to the next event. This in general, is different from

I which is the time from an arbitrarily chosen event to the next event.

Suppose that starting from an arbitrarily chosen event we con-

sider the interval (0, I1+... +In), where n is large. We suppose



that the mean value of a typical interval I is E(I) = 4 , and that

point over this interval and let W be the time from this sampling

point up to the next event. The sample point will fall in one of the

random intervals I I2' , I. say L. This L will, in gen-
n

ieral,have a different distribution from any of the I., = I, 2, ... , n,

which can be seen from the following:

If ntdt is the number of the {Ii} with lengths in (t, t+dt],

the probability of Lo having length in (t, t+dt] is (see McFadden

[13])

But since

(t)1/ I. Ea) = 4and as noo
n

i=1

we have
tf (t)dt

f (t)dt = (1. 2. 1)
o

This procedure is known as length-biased sampling.

The bias in the sampling is illustrated by considering the mean

value

tntdt

/Ii
i=1

tntdt 1

exists. Choose an arbitrary sample

i=1

3

the variance of I, Var(I) =
o-I

2



By use of (1. 2. 1) we get
co )

E(L0) = S

we have

Thus we have

E(L0) =

2
cr

1 2
E(L0) = 13. + cr = 141+-1 = 1.41+C2(I)]

N. I 2

where C(1) is the coefficient of variance of the {Ii}.

Now consider L = t, a fixed value. The sampling point is
o o

uniformly distributed over a time interval of length to,

ditional distribution of W is given by

(t I = t ) =
W o o

1(x)dx = I2

(t = to)f

t < t.

and substituting from (1. 2. 1) and (1. 2. 3) we have

0 < t < t--0

t)dt

(1. 2. 2)

(1. 2. 3)

4

so the con-

Since the variance of I is given by

2
= E(I-11)2 = E(I2) - 2



co t f (t ) co
1 1R (t),f (t) = 1 o I o dt = f (t )dt =

W t o ILtlo 0 It o

where 11 (t) = Prob(I>t) is the survivor function for I. It is obvi-

ous that

(t) = 1 - F (t),

where F (t) is the marginal distribution function of the random var-

iable I. Since F1(t) is a non-decreasing function of t it follows

from (1. 2. 4) that fw(t) is a non-increasing function of t with

We consider next the times between events which follow the for-

ward recurrence time W. Denote by {Li} this sequence of events

starting with L. It is obvious that the joint distribution of any set

iofthe L., = 1, 2, ... , given that L = t , is the same as the
1 o o

joint distribution of the corresponding set of the I., given that

I =t . That is
o o

L =t o) =

1

p.
=

I =t ), i = 1, 2, ... (1. 2. 6)
o

Consequently, using (1. 2. 1), we have the joint density function

(1. 2. 4)

(1. 2. 5)

5



Let

f (to , t.) =
fLi

(t. IL t )f
Lo' Li

tf (toI o)

= fI. 0
(tIX= to

1

=_51000 0

00

t t.f (t , t.)dt dt.oiI,I. o o
o

2

1 CrI= E(I I.) = + =141+C (I)pi], i = 1, 2, ...
11 0 1 p.

= (t , t.), i = 1, 2, ... .
p. 1 ,I. 0 101

The last relation generalizes (1. 2. 1) and shows that the bias which

appears in the randomly selected interval Lo persists in the follow-

ing intervals.

Using (1. 2.7) we can get the expected value of Li as follows:

E(L) .rt.f (t , t.)dt dt.i L , L. o 3_

0 0 o

(1. 2. 7)

(1. 2. 8)

Cwherep. = orr(I , I.) is the serial correlation coefficient for the
o

stationary sequence of random variables Io, .

Finally, we have a useful extension of (1. 2. 4) connecting the

partial sums of the sequences W, L1, L2, and II, I



and

gi(t) _

(see McFadden [13]).

and

G1
(t) = Prob[W< t]

FW
(t),

tG.( ) = Prob[W+ L1 +. + L . < t],1-1

tF.( ) = Prob[I +... +I.< t
1

where F (t) is the unit step function. Then the density function al-

ways exists and

F._ 1 (t)- Fi(t)

i > 2,

(i=0, 1, 2, )

i = 1, 2, (1. 2. 9)

1. 3. Fundamental Relationship Between Counts of Events and Time
Intervals Between Events

Let Nt be the number of events in an interval of length t,

following the arbitrarily selected point where observation of the pro-

cess begins. The following relationship relate Nt
and the sequence

of random variables W, L L2,... Nt = 0 if and only if W > t,

N <n if and only if W + L + +Ln-1 > t, n = 2, 3, , so
1

that

Prob[Nt=0 = Prob[W> t) = Rw(t), (1. 3. 1)

Prob[Nt< n] = Prob[W+ L +. + Ln_ > t] n> 2.
(1. 3. 2)



Thus, given the distribtuion of the counts, it is possible to get the

distribution of W and the L..
1

The times between events which are of practical and statistical

interest are the I. rather than the L., which are the ones usually

observed. Since, according to (1. 2. 8), the sequence {Li) is not a

stationary sequence it is difficult to deal with.

As mentioned before, Nti the number of events in an interval

of length t, is associated with the random sequence W, L1, L2,...

Denote by Nt(f) the number of events in an interval (0, t], which

(f)starts with but does not include an arbitrary event. That is, Nt

is associated with the random sequence {Id. Thus, we have

,

ProbLNt <11 = Prob[I1+ I +... +Ir> t], r = 1, 2, ... . (1. 3. 3)

To obtain the relationship between the counting processes Nt

and N(f) consider the generating function (see Khintchine [9, p. 34])

k Prob[N (f)= k]t) =

k=0

k[
(t)-Fk+1 (t)] (t),k

k=0 k=1

where we have used (1. 2. 9) in the second and third step.

(1. 3. 4)

8



Thus
ct

Jo

E(N (f) = Mf(t) =

00

(t, u)du = k(t).

Also, the generating function of Nt,

00 00

k=1

k=-.1

t) = Prob N =k
k=0

(f)k Prob[N =lc]

0000

=/ Prob[N (f)>kt ( ),

k=1 k=1

k=0
Gk (t)-Gk+1 (t))

(1. 3. 8)

where Fk(t) is the distribution function of
I1

+ 12 + + I If

9

(1.3.5)

(1. 3. 6)
00

1 k= 1 + (1--)G (t).k
k=1

From (1. 3.5) and (1. 3. 6) we see that

cp(;, t) = 1 + t u.)du, (1,3.7)
11 0

which is the desired relationship.

Now let us consider the first moment of
Nt(f)



the derivative of Mf(t) exists for all t

mf (t) = Mf (t) =dt

If we assume that a strong law of large numbers (Parzen [14],

p. 371) holds for the sequence {I} then

m Ea) -11

10

(t). (1. 3. 9)

holds for sufficiently large k. From this and (1. 3. 3) we have, for

large t,

Mf(t) Et(I)
(1. 3. 11)

which agrees with the physical interpretation of E(I) as a long run

average. For the stationary counting process Nt we have

M(t) - (1. 3. 12)
E(I)

for all t, since M(t) = E(Nt) is proportional to t for all t.

Finally,
1 1 (1. 3, 13)

11+. E(I) (1., 3..10)



and the ratio

This C(I), which is called the coefficient of variation of I,

measures roughly departures from the exponential distribution, for

which C(I) = 1.

The autocorrelation sequence is defined by

Covai! Ii+k)
, k = 0 ± I, ± 2, . (1. 4. 4)

crI

Wold [26, p. 66], showed that a sequence {pk} is the autocorrela-

tion sequence for a stationary random sequence {I.} if and only if

Pk can be represented in the form

For the sequence {li} we consider the mean value

'oo
oo

= E(I) = x fI(x)dx = R (x)dx,
0

I

the variance

o- = x2fI(x)ds - [E(I)]2 = 2 xRI(x) x -z, (1. 4. 2)
I
2 S'w oo

0 0

2 2

crI
o-

C
2

(I) -
[E(I)]2 p,2

11

1. 4. Moments of the Interval Between Events and of Counts of Events

(1. 4. 1)

(1. 4. 3)



ç.1T

= f(w) cos kw dw, k = 0, 1, 2, ... , (1.4. 6)
-Tr

the set of Fourier coefficients associated with f(w).

From (1. 4. 6) we see that the inverse relationship is

00

f =1Zir
k=-co

1= --- [1+2 p cos kw], -Tr,< < Tr, (1. 4. 7)
2Tr

k=1

since Pk = P-k for real sequences {Ii}. It follows from (1. 4. 7)

that f(w) is an even function of w.

To obtain higher moments of {I.} we introduce the Laplace

and Laplace-Stieltjes transormations with respect to t and x as

appropriate for the following functions:

Pke-

12

Tr

pk = cos kwdF(w), k = 0, ± 1, ± 2, ...
-Tr (1. 4. 5)

where F(w) is the spectral distribution function. If F(w) is ab-

solutely continuous its derivative f exists and is called the sepc-

tral density function. Then (1. 4. 5) can be written as

p(n, t) = Prob[Nt= n], (1.4. 8)



Fk(x) which, as defined before, is the distribution function of

I1
+ + Ik' and gn(x), defined by (1. 2. 8). Transformation

pairs are defined by

Obvious rearrangements lead to

oo

p*(n, s) = e-stp(n, t)dt,
0

SXf *(s) = dFn(x)n.
0

-g().= cc'
sx

e gn(x)dx.
0

The functions f *(s) and g *(s) are moment generating functions
n n

for the random variables I +... + I and W + L.. + L
n 1 n-1

respectively (see McFadden [13]). Transforming (1. 2. 8) and (1. 3.1)

we obtain

1-f1*(s)
) =

13

(1. 4. 9)

tor **4
1

f*(s)-f* (s)n n+1
-n+1

p*(n, s

1-gi*(s)

g *(s)-g*1 (s)
n+

, n > 1.,

, n > 1,

(1. 4.10)



and the finite sum representations

p*(n, s) 1

[f*1 (s)-2f *(s)+f*n-1 (s)]' n> 2;
2 n+

fn*(s) = 1 -
k=1

n-1

= 1 - p.ns + p.s2

k=0

-k)p*(k. s), n>

(1.4. 12)

(1.4. 14)

Now we can use the above relationships to express the higher moments

of the random variable I in terms of the moments of p(0, t). By

definition E(I) = p.; if we let n = 1 in (1. 4. 14), then differentiate

1 1p*(0, s) - [f ,

(1. 4.

14

11)

*(s)-11+p,s2 1

1 *(s)- 2f *(s)+ 11,p*(]., s) = [f
2 2 1

p.s

Substituting for g(s) in (I. 4. 12) leads to

f *(s) 1 - j.ns + is2 p*(k, s)

j=1 k=0

and n-1

g:(s) = p*(k, s), n> 1. (1.4. 13)

k=0



twice with respect to s we arrive at

*/1(s) = 2143*(0, s) + 4p.spo (0, s) + 2
p*II (0, s). ( 1. 4.15)

1

If p*(0, s) behaves well enough so that po (0, s) and p*11(0, s)

both tend to zero as s 0,

oo

E(12) = f *11(0) = Si p(0, t)dt.
1

0

For the nth moment äf the random variable I we differentiate

(1. 4.14) n-2 times with respect to s, arriving at

f *(n)(s) = n(n- 1 hip*(n-2)(0, s) + 2nilsp*(n-1)(0, s) + p,s2p*(n)(0, s),
1

n> Z. ( 1. 4. 1 7 )

Again if p*(0, s) behaves well enough so the last two terms vanish

as s 0, then

oo

E(In) n(n-1)14, S' tn-2p(0, t)dt, n> 2,
0

( 1 . 4. 1 6 )

(1. 4.18)

15

which shows that the nth moment of I is related to the -2)th

moment of p(0, t).



II. STATIONARY GAUSSIAN PROCESSES

2. 1. Preliminary Remarks

In this chapter we shall consider some of the random variables

associated with a Gaussian process X(t). In particular, we shall

consider the real-valued stationary Gaussian process X(t). The

choice of the random variables is motivated by usefulness in applica-

tion. For example, some such random variables are the number of

times X(t) crosses the t-axis, or some arbitrary level a, or

takes on an extreme value above some other level P, or the time

intervals between such events. These and associated random vari-

ables have considerable importance in communication theory and in

other fields.

Without loss of generality we can assume X(t) to be a zero-

mean process, for if not we would consider the process X(t) EX(t).

Since X(t) is stationary Gaussian it is also strictly stationary

(see Wozencraft and Jacobs [28, p. 184]). Denote by pX(T)
and

S
X

(co) the covariance function and the spectral function, respectively,

of the process X(t); the relationship is

co

p (T) = s cos (.0TdS
X X

0

(see Doob [4, p. 536]).

Finally, we shall denote by X the kth spectral moment,

16

( 2. 1. 1)



X.k =

2. 2.Crossings, Uperossings and Downcrossings

In considering the crossings of our process X(t) of an arbi-

trary level a we have to distinguish between "genuine" crossings

and tangencies. Ylvisaker [30] showed that the number of tangencies

to the level a by X(t) in an interval T is equal to zero with

probability one.

In general, we shall consider cases where X(t) does not have

a sample derivative for all t, though we shall always assume that

X(t) is continuous. A sufficient condition for continuity is that X(t)

be separable (Cram'er and Leadbetter [3, p. 174] ). Thus the tangen-

cies to the level a should be defined in terms of the continuity of

X(t) rather than in terms of differentiability.

Now we are in a position to introduce the following definitions

concerning crossings, uperossings, downcrossings and tangencies of

a continuous function f(t) on the unit interval to the level a.

Definitions: (i) f(t) is said to have an uperossing of the level

a at to if there exists a positive E such that f(t)< a in

(t -E, t), and f(t) > a in (to, to+E ). Denote the number of up-
o o

crossings by f(t) in [0, 1] by U. .

17

(2. 1, 2)
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f(t) is said to have a downcros sing of the level a at t

if there exists an E > 0 such that f(t) > a in (t -E, t ) and
o o

f(t) < a in (t, t -FE ). Let Da denote the number of downcrossings
o o

by f(t) in [0, 1] of the level a.

f(t) is said to have a crossing of the level a at to if

in each neighborhood of to there exist points
t1

and t2 such

that

[f(ti)- ][f(t )- a] < 0.

Let Ca denote the number of crossings by f(t) in [0,1].

) The point to is called a tangency of f(t) to the level a

if f(to) =a and there is a neighborhood of to on which f(t) - a

does not change sign.

Some of the above definitions were used by Ylvisaker [30].

instead of the unit interval we use the interval [t1' t2] the above

definitions apply and, in this case, give t21, Dip]: t2] and

[t t2} for the uperos sings, downcros sings and crossings respec-

tively.

2. 3. Mean Number of Crossings in Time T and Mean Duration of
an Excursion

The general formulas for determining the probability of a cross-

ing of the level a, within a time interval of length t, by the



trajectory of our process X(t), and for the mean time that a real-

ization of X(t) stays above or below a given level, were first given

by Rice [17, 18].

The mean number of crossings of the level a by X(t) within

a time interval of length t, is given by

For a fixed time instant T, ECa(0, t) has a maximum at a = 0 and

approaches zero for large values of a, in agreement with the un-

derlying physical picture.

The above formula goes back to Rice [17, 18], who obtained it

under the hypothesis that S, spectral function, has finitely

many points of increase. The conditions under which (2. 3.1) was de-

rived were weakened by ItO [6], Ylvisaker [30], and others.

The next theorem (see Cramer and Leadbetter [3, p. 177]) gives

a necessary and sufficient condition under which X2 < co, and, con-

sequently, ECa(0, t)< oo.

pot)2[1-PX(T)]
- X = co2c1Sx(o))_< co,Theorem: (i) lim

2 2
T T -co

and

t IX2 -a2/2XoEC(0, t) =
Tr

Xo

If
(ii) the second derivative pX(T) exists and is finite at 'T = 0

If
if an only if X2 < oo. If X2 < oo then px(0) = - X2 and px(T)

(2. 3.1)

19



exists for all T.
11

If
X2

< co it is equal to
pX(0).

Also, from (2.1.1) and

(2.1. 2) we have

oo

Xo = dSX (w) = p(0). (2. 3. 2)

and in this case (2. 3. 1) may be written in the more familiar form

ECa(0, t) = t
pIt

(0) e-a2/ 2p (0)
p (0)

The mean time during which a realization of X(t) stays above

a given level a is given by Rice [17, 18].

P(0)

p (0)

where .(x) is Laplace's integral function.

2. 4. The Variance of the Number of Zeros

The number of zero crossings, N = C(0, T), by the process

X(t) in time duration T is a random variable. Variance is

Var N = E(N-EN)2 = EN2 - (EN)2 ;

,/2p(0)[1-(TT(5))1

since EN is given by (2. 3.1) it is sufficient to compute the second

moment EN2. Let A be the covariance matrix of the random

20

(2. 3. 3)

(2. 3.4)



et al., [22], have obtained

[M
z

(T)-M
2

(T)11/2
2 2 33 34EN = EN + 7 S -T)

2 3/2
Tr" 0 [1-p (T)]

M34(T) M34(T)
1+

[Ma
3 (T)-M342

(T)]2
tan-1

2
{M332 (T)-M3401]1

2

3
ego.,4-

$6 X +p"(T)

0
dT < oo ,

The last expression is quite suitable for machine computation.

The following theorem, Cramer and Leadbetter [3, p. 209],

gives a sufficient condition for the finiteness of the second moment

EN.

Theorem: If, for some 6 >

(2.4. 2)

variables X(ti), X(t2), X1(t1), Xl(t ):

p(T) 0 pi(T)

p(T) 1 -pi(T) 0

21

=A=
0 -p'(T)

X2
-p"(T)

_
p'('r) 0 -p't(T)

X2

T = t2 - t1.

If M..(T) is the cofactor of the ij element of A then Steinberg,

(2.4.1)

dT .
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where
X2

is the second spectral moment and p(T) is the covari-

ance function of the process X(t), then the second moment EN2 is

finite.

2.5. Shot Noise Signals Through Linear Systems

Throughout the last four sections of this chapter we have con-

sidered the zero crossings of a stationary Gaussian process and some

of the related random variables. Direct engineering applications of

these ideas occur in connection with electronics equipment which is

designed to measure frequency by averaging the number of zero cross-

ings in a short time interval. The study of the zero crossings statis-

tics provides additional information which, with the power spectrum

or the autocorrelation function, characterizes a particular random

noise. The firing of missiles from a rolling vessel and rocket guid-

ance systems are two of the many areas of interest in these matters.

In this section we shall discuss a physical example that moti-

vates the study of a stationary Gaussian process. Suppose that the in-

put to a linear system consists of a large number n of impulses oc-

curring at random times and with random amplitudes. Physical ex-

amples are random gusts on airplane surfaces, or random disturb-

ances in a vacuum tube circuit, leading to output voltage fluctuations

known as the shot effect. Let h(t) be the weighting function of the

system; by definition, h(t) measures the response of the system to
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a unit impulse function t time-units after the impulse occurs. For

physical realizability h(t) = 0 for t < 0.

Let us assume that the various impulses occur at randomly oc-

curring points on the time axis, and these successive events are in-

dependent. When X, the number of impulses per second, is small

each impulse stands out as separate entity. As X increases the ef-

fects of individual impulses overlap. The former situation is called

impulse noise, the latter situation is called thermal noise or random

noise, and is the limiting form to which much noise approximates

when there is a superposition of large numbers of small effects.

For fixed i let A(t.) be the set of possible amplitudes oc-

curring at time t.. Assume that A(t.) form a set of mutually in-

dependent random variables with common mean and mean square val-

ues that are independent of the times t.. Then for arbitrary i

and t.,

EA(ti) = a , (2.5. 1)

and

The input random process is expressed by Y(t) and a realization is

given by

Y(t) = A(ti )6 (t-ti), (2. 5. 3)

i=1

(2. 5. 2)



EY(t) =

AT
X (t) = Y(t)h(t-T )dT = A(ti)h(t-ti),

-T
i=1

T
E Y(t)dt

-T
2T

11.1

where 6(t-t.) is an impulse function at t = t.. The output random

process in an interval (-T, T), after passing through a linear sys-

tem with weighting function h(t), is expressed by X(t) with

(2. 5. 4)

since n = AT impulses will occur in (-T, T) if the average den-

sity of impulses is X.

The mean of the input is given by

AT EA(til
lim [

2T

(2. 5. 5)

where the average is taken before the limiting operation on T in

order to secure the existence of the limit. The same argument is

used in (2. 5. 6) and (2.5. 7) below.

For (2.5. 4) it follows that

00

EX(t) lim [(2XTa) TT, h(t-T)dT] = X-a-S h(t-T)&r. (2. 5. 6)

We note that EX(t) = 0 for all t if a = 0, as might be expected.

The power spectral density of the input is defined by F)apoulis

[14, p. 343],



S() = Hai
T co

= lim

2XTa2 XaS (w) = lim
2ITTT--'o

Thus S() is a constant, which implies that the input random pro-

cess has the characteristics of a white noise source.

Corresponding to Sy(w) the input autocorrelation function is

p (T) = X a2 6(T), (2. 5. 9)

where 15(T) is the usual unit impulse function at T = 0. The cor-

responding output spectral density is given by Wozencraft and Jacobs

[z8],

X a2S (w) = IH 0(0)1 ,

Y(t)e-j4.4)`'dt
2

I

-T
2ITT

2irT

In agreement with much observed noise data we can assume that

a = 0. With this hypothesis (2.5.7) may be written in the form

25

(2.5.7)
41111.

E A(ti)A(tk)e e

2XT -jwti -jwtk

i,k=1

(2. 5. 8)

(2. 5.10)

where H(j) is the 'frequency response function of the linear system,



defined by

For a stationary process the input-output autocorrelation functions

are related by

pX(T) Sic°h(a)h(13)py(T + a.-13)da.d13=

0 0

(see Wozencraft and Jacobs [28, Eq. (3. 108)]). Here h(t) = 0 for

t < 0, for physical realizability. Substituting from (2.5. 9) into

(2.5.12) we arrive at

h(t) =
t < 0,

where c/ and c2 are positive constants, c > c1.
1.

co

px(T) = X a SI h(a)h(a+T)d
0
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(2.5.12)

(2.5.13)

(2. 5. 14)

Let the in-

put to the filter be a large number of impulses occurring at random

times with finite density and with random independent amplitudes

co

H(jw) = h(t)e-3(1"tdt. (2.5.11)
0

Let us now consider the output of a low-pass filter with weight-

ing function of the form

-c t -c2t-e t > 0,



of finite mean square pulse strength a2. From (2. 5. 13) and

(2.5. 14) we obtain the covariance function of the output,

2
c2-c1

= X a [
2c1(c1+ c2 2(c1+ c2)

27

-c a -c 2a -c (a+T) -c2(a+T)1-e ][e -e J da,

(2. 5.15)
-c IT! c2-c1 -c2ITI



III. ZERO-CROSSINGS OF A STATIONARY GAUSSIAN PROCESS

3.1. Preliminary Remarks

Throughout this chapter we shall consider and derive some

probabilities of interest in connection with real valued stationary

Gaussian processes, zero mean and covariance function

ap (T)= 1 - +731T3I +0(T4 ). (3. 1. 1)

First we have the definition employed by Slepian [21j.

Definition: The continuous covariance function r(T) is said

to be of class a if, as T approaches zero,

r(T) = I - + 0(lT1 a) , (3.1. 2)

and if r(T) is strictly monotone in some neighborhood, 0 < T < T,

of the origin.

In Chapter II, p. 19, we proved that, for the Gaussian process

X(t),

lim 211-pMJ
- X2T T2

(3. 1. 3)

and that if X2 < co then p"(0) exists and is equal to -X2. , The

covariance function (3.1.1) satisfies the condition (3. 1. 2) for a = 2.

28



Since

urn2[1-p(T)] - 1
T 2

if p(T) is given by (3. 1. 1) it follows from (3. 1.3) that ptt(o)

The covariance function given by (3. 1.1) has the first derivative

zero at the origin, and since p"(0) = -1 it is clear that p (T) is

strictly monotone in the neighborhood of the origin. So, p(T) given

by (3. 1.1) is of class 2.

3. 2. The Interval Between Successive Zero-Crossings of the
Process X(t)

One of the outstanding problems-- still unsolved in its entirety--

in the mathematical theory of noise is the determination of the distri-

bution of the randomly varying intervals between axis crossings.

For Gaussian noise Rice [17, 18] has given an approximate re-

sult and has discussed the difficulties which impede a more accurate

solution. The first exact solution for a very special case of the prob-

lem was obtained by Wong [27]. In what follows we shall study the

process considered by Wong [27], discuss some of the results obtained

by him and obtain some new results concerning probabilities of inter-

est.

Let I be a random variable denoting the interval between suc-

cessive zero-crossings of X(t). Let F (t) = Prob[I<t] be the

29



distribution function of I, and let f (t) dFi(t)
at be the corre-

sponding density function.

Wong [27] considered the real-valued stationary Gaussian pro-

cess X(t), mean zero and covariance function

3 ,TIp(T) = EX (t+T)X(t) I /43

r_
3 2r2 (t)]3 2

F (t) 1I 2ir
3- 2r 2(t)

and

f1(t)
4

1 -21T1/43
e (3. 2.1)

which is a special case of (3. 1.1), a = 4/Nr-. By using recent re-

sults in the theory of Brownian motion Wong [27] was able to obtain

the following exact expressions for distribution and density functions

respectively:

1 2 2,11- 2r 2(t)+-r r (t), r(t)J+ K[r(t)]
3- 2r2(t)

The three complete elliptic functions are defined as

(3. 2. 2)

[1-2r2(t)J11 2 E[r(t)]+ [1- 2r 2(Oil/ 2 [K[r(t)]- E[r
[1-r2(t)][1+ 2r"(t)] 3-2r2 (t) r2 (t)

30

8[1- 2r 2(t)]3/ 2
3 1 2
4 2

r(t)]- K[r 4)) (3. 2. 3)2 2 2[3- 2r(t)][1+2r (t)]

where

r(t) = -e-t/43) (3. 2. 4)



E(k) =
Tr/2

Ni 1- k2 sin2

Tr/ 2

K(k) = r 9
2

0 tvl-k sin cp

Tr/ 2
chp

1
(v k) k < 1,

(l+v sin 9) 41- sin2 (19

'

the first, second and third forms respectively.

It should be noted that (3. 2. 2) and (3. 2. 3) were obtained under

the condition X(0) = 0 in the horizontal window sense of Kac and

Slepian [8].

Remarks are now in order about the physical situation that gives

rise to the random process considered by Wong [27]. We will now

show that the covariance function given by (3. 2. 1) stems from the ex-

ample discussed in Section 2.5. That is, pass a random process

Y(t) --consisting of a large number of impulses occurring at random

times with random amplitudes A(t), such that EA(t) = a = 0 and

a2 independentndependent of time--through a lowpass filter with response

function

-c .t -c t
t> 0,

h(t) = (3. 2. 5)
t < 0,

where c1, c2 are positive constants with c2> c1. We proved

31
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that the output random process X(t) has the covariance function of

(2.5.15), which may be written out as

..... --,

2 c -c -clit -c2Iti
X a 2 I e e

X(t) = -
2

c2-1- c1 cl c2

For
c1

= 1/43, c2 = N/3 and X a2 = 2q3 this takes the form

3 -ITIN3r 1 -21TIN3
PX(T) = e

11- e

which may be regarded as the covariance function associated with out--

put of a lowpass filter with weighting function of the form (2.5.14),

pure noise input.

3. 3. First Moment of the Interval I Between Successive Zeros

The expected value of the random variable I as given by

oo oo

E(I) = tfT(t)dt = [1-F1(t)]dt
0 1 0

3

2Tr Ss°

[1-2r2(013/2

3-2r2(t)

(3. 2. 6)

(3. 2.7)

(3. 3.1)

1 2 2J1- 2r 2(t)r (t), 0)1+ 7 KO)] dt.
2 3-2r"(t)

As it stands it is a difficult integral to evaluate. A simple approach

is to calculate the mean value of the random variable I; in Chapter

II we showed that the mean number of zero-crossings in time t of



the process X(t) is given by

M(t) = E[ t)] = L j_ P )

p(0)

For an X(t) with the covariance function of (3. 2. 1) the mean nuxn-

ber of zero crossings in time t is

M(t) = E[C0(0, t)] = Lir . (3. 3. 3)

Substitution into (1. 3.11) leads to

E(I) = iT, (3. 3.4)

which, as indicated previously, holds for t >> 1. This result agrees

with that of Rice {191

Equation (3. 3. 1) suggests that

27r2
-

Coo [1- 2r 2(0)3/2 3 1 2 2f11-2r2(t)
3 Tr1[ - 4+2r (t)'r(t)]+ K[r(t)] dt .j03- 2r (t) 3- 2r2(t)2

(3. 3.5)

Rainal [16], established by numerical analysis that this is indeed the

case.

3.4. Zero-Crossings as a Stationary Point Process

In Chapter I we defined and studied the stationary point process.

We now apply the theory of stationary point processes to the zero-

33

(3. 3. 2)
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crossings of the Gaussian process X(t). To do that we have to show

that the zero-crossings of X(t) form a stationary point process in

the sense of the definition of Chapter I.

Since X(t) is a stationary Gaussian process it follows that

X(t) is also strictly stationary (Wozencraft and Jacobs [28, p. 184]).

That is, all joint density functions are invariant to any translation in

time origin. Hence, the instants at which X(t) crosses the time

axis form a stationary point process in the sense of the definition of

Chapter I.

The interpretation of the zero-crossings in terms of the station-

ary point process is sometimes very convenient. In this section we

make the identification and obtain some useful results. In practice

the random sequence W, L1, L2, ... is the one observed, rather

than the random sequence I, I2, , which has been considered so

far. For that reason it is of statistical and practical importance to

obtain some probabilities of interest with respect to the former ran-

dom sequence.

We proved in Chapter I that the density function of the forward

recurrence time W is related to the distribution function of the

random variable I by the relation

R (t) 1-F (t)
f (t) - E(I) E(I)



Using (3. 2. 2) and (3. 3. 4) we arrive at

3

fW(t)
[1- 2r 2(0)3/2-

3-.2r2(t)

and

1 tz(t) = sgn [X(T)]dT.
0

F(t) is the cumulative distribution function associated with the ran-.

dom variable z(t).

In what follows we shall obtain an exact expression for the

probability that X(t) does not cross the zero-axis in a time inter-

val t.

The probability of no zeros in time t following an arbitrary

1 2
2

+ 2r (t),r(t)]+ 2 1-2r (t)K[r(t)]
3- 2r 2(t)

(3. 4. 1)

The probability Q(t) that a random process does not cross

the zero axis in a given time interval of length t has important ap-

plications in communication theory. In a recent paper Stralthov and

Kurz [23] obtained a family of upper bounds on Q(t). However, they

found that only one member of the family provides useful results in

the case of a stationary Gaussian process X(t). In particular,

< q2,

where
1

q2 = z(t)dFz(t)
-1
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zero-crossing can be obtained in an exact form, using (3. 2. 2):

ProbjNt(f)=0] = Prob[I>t] = 1 - F1(t)
(3.4. 2)

[1-2r2(t)]3/2 3 1 2
[- +-r (t),r(t)]+ 2 1-2r2(t) K[r(t)]

3- 2r 2(t) 4 2 3- 2r 2
(t)

On the other hand, the probability that no zero-crossings will

occur in an interval of length t following an arbitrarily chosen

sample point is given by

Prob[Nt=0] = Prob[W>t) = 1 - Fw(t)

= 1 - S f (a)da,
0

36

(3 4. 3)

where fW(t) is given by (3. 4, 1). The integral in the last equation

can not be obtained in a closed form for all values of t, though it can

be obtained in an exact form--as we shall see in the next section--for

small values of

Finally, we consider the probability P[T] that X(t) be non-

negative for 0 < t < T. This is of interest as a means of describing

the duration of the excursions of the process from its mean. From

its definition it is clear that P[T] is a nonincreasing function of T

which assumes the value one-half for T = 0.

Since Nt = 0 implies that either X(t) > 0 Or X(t) < 0 in

the interval of time duration T then



1 1P[ T] =
Prob[NT=0 -2 1-F (T)].

3. 5 Some Results for Small t

If we let p(t)dt be the probability that X(t) has at least one

zero in the interval (t, t+ dt) then

p(t) =1

(see Slepian [20]). Thus, for small t,

Prob[Nt> 1

This last result agrees with Korolyuk's theorem (see Leadbetter [10]).

Using (3.4. 3) we have

Prob[Nt> = 1- Prob[N = = 1- [1-Fw(t)J Fw(t). (3.5. 2)

Comparing (3. 5. 1) and (3. 5. 2) we have, small t only,

Fw(t) = . (3. 5. 3)

Substituting into (3. 4. 4) we arrive at

P[T] = 7[1-F (T)] =
2

(3. 5. 4)

$P(a)dc =
Tr

0
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(3. 4. 4)

(3.5. 1)



small t only.

Slepian [21] obtained several lower bounds for P[T]. In par-

ticular, he obtained for p (T), a nonnegative covariance function of

Class 2, the bound

P[T]

The value we obtained for P[T] in (3. 5. 4) agrees with (3. 5.5)

for small t and gives the lower bound.
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IV. THE METHOD OF ENVELOPES

4.1. Preliminary Remarks

Suppose (t) is a function of time which oscillates about an

arbitrary level; we may try to find a nonnegative function A(t)

which is easier to investigate, such that I (t)1 < A(t) for all

and I (t)1 = A(t) for some t. A function A(t) of that type may

be denoted as an envelope of g(t). For example, if t(t) is of the

simple form

t( t) = C cos(wt+ 0)

it is clear that (t)I < C and thus we can define the envelope func-

tion as A(t) = C.

When the waveform is a realization of a stochastic process it is

not obvious how the envelope should be defined. Rice [17, 18], Buni-

movitch [1], Dugundji [5] and others have given precise mathematical

definitions for the envelope in such cases. In what follows we shall

present these definitions and investigate the question of equivalence.

Rice's Definition. First we write the real waveform X(t) as

39

X(t) = /Cn cos(wnt+ On), (4. 1. 1)

then select a frequency q called the "midband frequency". Using



this selected frequency (4. 1. 1) can be written in the form

X(t) = cos[(on-q)t + 0n+qt]

= Ac cos qt - As sin qt,

where

Ac =/Cn cos[(con-q)t+ On], As = /Cn sin[(con-q)t+
en].

The envelope A(t) is now defined to be

A(t) = [A 2+ A 2j1/ 2. (4. 1. Z)

Dugundji's Definition. If X(t) is a real waveform let X(t)

be its Hilbert transform. That is,

oo
A 1 x(a)
X(t) =

oo
t-a dct,

where the principal value of the integral is always used. Define the

"pre- envelope" function to be the complex valued function

X*(t) = X(t) + i2(t).

The envelope function A(t) is then defined by

A(t) = IX*(t)I. (4. 1. 3)

40
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Using the definition (4. 1. 3) Dugundji [5] proved that A(t) as defined

by (4. 1. 2) is independent of the choice of the midband frequency and

that his definition of the envelope agrees with that of Rice [17, 18]

whenever the latter is applicable.

Zakai [31] has pointed out that Dugundji's results remain true

when the time averages are replaced by ensemble averages, regard-

less of ergodicity. The only requirement is that the process be wide

sense stationary.

Throughout this chapter we shall consider stationary Gaussian

processes of the form

X(t) = A(t) cos (t), (4. 1. 4)

where the envelope A(t) and the phase angle f(t) are independent

random variables. We can regard X(t) as the projection of A(t)

on the x-axis. The projection of A(t) on the y-axis at the same in-

stant of time,

Y(t) = A(t) sin . (t) (4. 1. 5)

is the Hilbert transform of X(t), as given by the definite integral.

Dugundji [5] has established that X(t) and Y(t) have the same

distribution, the same correlation function p(T), the same spectral

density function S(w), and they are uncorr elated. That is,

pX(T) = p (T) = p(T), (4. 1. 6)



and

Without loss of generality we can consider X(t) to have zero mean

2and variance
o-X

= 1.

4. Z. Distribution Densities of the Envelope and the Phase

The probability that A(t) lies between a and a + da is

given by

Prob(a< A< a+ da) = S.cf(x, y)dxdy, (4. 2. 1)

a<x2 +y2 <a+da

where f(x, y) is the joint distribution function of X(t) and y(t).

That is 22X +y

f x, y e
21

Actually f(x, y) should be written fx, (x, y), but for simplicity

of notation we dropped the subscripts and we shall continue doing so

throughout this chapter. A change to polar coordinates leads to the

Rayleigh distribution,

2

f(a) = a e-a /2 0 < a < oo.

42

-oo < x < oo, -oo < y < co. (4. 2. 2)

4. 2. 3)

r(0)= (0) = 0. (4. 1. 7)



The phase angle §(t) is uniformly distributed over the interval

[ 0, 2Tr]; that is,

O<q2<Z1T. (4. 2. 4)

4. 3. Second Order Densities of the Envelope and the Phase

The system of random variables

X1 = X(t), X2 = X(t+T),

Y1 = Y(t), Y2 = Y(t+T ),

is by assumption a. system of Gaussian variables with zero mean,

hence the four dimensional density function f(x1, x2, y1, y2) is

uniquely determined by the covariance matrix

M =

1 p(T) 0 r (T)

p (T) 1 - r (T) 0

0 - r (T) 1 p (T)

r (T) 0 p(T) 1

where we have used the fact that p(-T) = - p(T). The four dimen-

sional density function corresponding to the above covariance matrix

is given by

1
f(x x, y . y ) =-- exP2 1 (2n)2 IM I1/2

-1CT),

43

4. 3. 1)

1
f(yo) 2n,

(4. 3. 2)



where !MI is the determinant of M,

C =

and CT is the transpose of C. Hence

2222
x1+x2+y1+y21f(x1,x2,y1,y2)- 2a2 exP[- 2 + 2 (x1x2"13r2) +-7 (xi 2-x2Y1)1

4Tr 2a a a

(4. 3. 3)
where

a2 = 1 p2(T) - r2(T) = 1 - p2 - r2. (4. 3. 4)

To obtain the four dimensional density function of the system of ran-

dom variables

Al = A(t), A2 = A(t+T),

= f(t), = f(t+T )

we make the substitution

= al cos
x2 = a cos yo2,

= a sin ç, y2 = a2 sin cp 2,

into (4. 3. 3), arriving at
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f(a ,a2) =

where

22
ala2 al+a2exp (- 2)I

a2 2a

a a
1 2

1.11-
2

a2

1 i'Tr x cosde,I0(x) =
-Tr

e
0
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2 2

ala2 a +a a
a2 a1a2f (a , a2,91 ,92) - 2 2 exP[- 1 22+ 12 p cos ((pi.

2
r sin (co - )] ,

41.a 2a a a
2 1

(4. 3. 5)
0 al' a2'

or, using the notation,

y = arctan

the density function takes on the form

22
a1a2 al +a21

a2 2
f(a ,a , xp

21 2cp,cp2 2 2 +
2

J1-a cos
((p2

-y)j,
4Tr a 2a a

(4. 3. 6)
0< a a2,27

Integration with respect to (PI and rp 2 over the 27r-square leads to

22
al +a2a a p (

ex- 7 2 2Tr 2Tr a a
1 2 N/ 2s exp[i- 1-a cos((p2-(pi-y)jd(pid(p2

4Tr2a2 0 0 a

is the Bessel function of the first kind of order zero. Expression

(4. 3. 7)



(4. 3. 7) was first obtained by Rice [17, 18].

Integration of (4. 3. 6) with respect to a1
and a2 leads to

g(Pi, (P2) = a,

00 51,00

1 1
)da da

1 2
0 0

22
1

c co c a1+a2a1a2 exp [-
2a24Tr2a2 j0

aia2 2

--2-41-a cos (92-91-y)]da1da2. (4. 3. 8)
a

and since
oo

K(z) = e-z cosh 0d , z> 0,
0

is the modified Bessel function of the second kind (see Watson [24,

p. 182] ) we can write

2 oo zr./1-a2cos (9 -a
f(91, (P2) = ,71.2 z e K(z)dz.

With the help of the transformation

a1
= atsr; e&",

(4. 3.8) may be written as

-0/2a2 - aNz e

coC e-z cosh0d
j_00

dz,
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This in turn can be evaluated (see Watson [24, p. 410]) to yield the

desired end result

where

agn, 2 2
4ir

=
1

-a2 cos (cp

a relation obtained by MacDonald [12].

4. 4. The Density Functions of the Time Derivatives of the Phase
Angle and of the Envelope

We shall assume that the envelope function and the phase angle

are differentiable or, equivalently, that the original random process

X(t) is differentiable. The time derivative of the phase 41(0 is,

by definition,

'i(t) = lirn 11(t+TT"(t) .

4-

To determine the density function of t(t) we pass from the density

(4. 3. 9) of the system of random variables 1.1 = (t) and /, =(t+T)

to the density function of the system or random variables
2l and

1,1'
then integrate the expression obtained with respect

to all possible values of1 and, finally, pass to the limit as T
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Tr +arcsin (3
(4. 3. 9)

(1-02)3/-2

- (4. 3. 10)



Carrying out the procedure described we arrive at

^
2a T= lim

T 11.

Tr

1
+ arcsin p

+

1-13 (1432)3/22

a
2 - (0) +2(0)]T2,

p2 = _ pon2T2 - [(°) (0),
2 . 2 2 .. .2 2

1 - 13 z [ep-r(0)] T - [p(0)+r (OW .

-*P(0)-i2(0)
-

21[0-i(0)]2+[-"6(0)-i2(0)])3/2

(4. 4. 1)

a result obtained by Bunim.ovitch [1]. As 0, a 0, 92

and y 0, so 13, as defined by (4. 3. 10) tends to unity and the

expression on the right side of (4.4. 1) becomes indeterminant. To

resolve this difficulty we expand a2, 13, arcsin 13 and (1-132) in

powers of T, then allow T 0. Taking into account that

p(0) = 1, r(0) = 0, ;1(0) = 0

and that ii(0) exists, a fact which is implied by the assumption that

X(t) is differentiable, we get

By assumption j1(0) exists, so by the theorem of Chapter II,

48

(4. 4. 2)

(4. 4. 3)

(4. 4. 4)

Substituting the last three expressions into (4. 4. 2) and taking the limit

we get

(4. 4. 5)



15(0) = - X2,

where X
2

is the second spectral moment. Also, since

oo

r (T) = Sx (co ) sin T
oo

we have

i*(0) =
oo

(co )do.) = .

Thus the quantities (0) and i.(0), determining the form of the

density *), are uniquely determined by the spectral density Sx(w)

of the original random process X(t). Equation (4. 4. 5) may now be

written in the form

fP) - 2 2 3/2
2[P-X1) + (X2-X1 )

occurring in 4. 4. 6) may be represented as

X - X 2 =°°
(.0-X1

)2
SX

kOdu,
2 1

(4. 4. 6)

(4. 4. 8)

so may be considered as the "mean width of the spectrum".

Formula (4. 4. 6) shows that the f(ip) is symmetric about the
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The difference

A
2

= X
2 - X12 (4. 4. 7)
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value ip = X and not about the origin. Accordingly the probability
1

of increase of the phase, Prob(ip> 0), is not equal to the probability

of its decrease, Prob(ip< 0), where

and

2

00 X2-X1
dip1 51Prob(ip> 0) = -2-

0 [(P-X1 )2+2-X12)13/2

2120 X -X
Prob(ip< 0) = 2 312 dc7,

[VP-X1"2-X1

1
Xi

= (1-:\-5.-7-2)

(4. 4. 9)

(4.4. 10)

To calculate the density function of the time derivative of the

envelope function we consider the mean value theorem in the form

a2(t+T) = al (t) + T a (t). (4. 4. 11)

Equation 4. 3. 7 can be written in the form

f(al' a2)

a al+Ti. (-1) 2a1+2a1a1T +al T2 a a +T6. )

1 -- .
)Io

a2
exp

2a2 a2
N11a2]

(4. 4.12)

To obtain the joint density function f(ai, y of the envelope and of

its time derivative we have to multiply gal, a2) by T and then let

T 0, as in the derivations of (4. 3. 13). That is,



2 . .

=
1 ITTal

exp
(a1+Tal) 2a

+2a1 1
a T+a2 2 a (a

urn l+TA..
2T0 2a2

)I
a2a

(4.4. 13)

As 0, a2 tends to zero as so the argument of the Bessel

function increases without limit. For large values of x the asymp-

totic representation of Io(x) is in the form

a

42Tr(1-a2')a(a+Th)

ex
Io(x) 2Trx

f ,"a = ae 12/2,62-a2
2Tr e

where the error decreases as x increases (see Whittaker and Wat-

son [25, p. 373]).

Equation (4. 4. 13) can now be written in the form

2.22
= urnTa(a+Ta) exp

2 a2

a +2a.a.T+a T
) exp a(a+Ta),/ 2

T-4-0 a2 2a

where the subscript is omitted from al and1. Since 'IS(0) = -X2

and i(0)
X1

the limiting procedure yields

where t is defined by (4. 4. 8). Since the density function of the
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(4. 4. 14)

(4.4. 15)

(4. 4. 16)



amplitude is given by

-a2/2f(a) = a e a> 0,

expression (4. 4. 16) may be written in the form

f(a, = f(a)f(a)

where
1 a2 2

f(a) = e- , -oo < a < oo,

(4.4. 17)

(4. 4. 18)

is the density function of the time derivative of the amplitude A(t).

4. 5. Density Distribution of the Interval Between Successive Zero
Crossingsof a Narrow Band Stationary Gaussian Process

The random functions occurring in applications are never na.r-

row band since it is impossible to point out a range of frequencies

outside of which S() = 0. However, if the spectral density has a
X

sharp maximum the spectrum can be considered as approximately

narrow band.

The density function f1(t) of the random interval I between

successive zero-crossings can only be determined for a special case,

as we saw in Chapter III. However, it is easy to obtain an approxi-

mate result in the case of narrow band noise.

If X(t) is a narrow band stationary Gaussian process and X1

is the average frequency of the energy spectrum of the process, then
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X(t) can be written in the form (see Bunimovitch [2] )

X(t) = A(t) cos /.(t) = A(t) cos [Xit+O(t)], (4. 5. 1)

where A(t) and I.(t) are functions which vary slowly relative to

cos X1 t. The random function S2(t) varies slowly over one period

of time and, consequently, beginning with an arbitrary instant of

time in (4. 5. 1), we have for the determination of the time T during

which the phase changes by

X1T
+ S.ZT 2Tr.

That is,

T
2Tr

X. +S12
1

For the interval of time I during which X(t) is above (below) the

zero level we can write the approximation

IT ITI =
2 X

1

Thus the density function of the random variable I is given by

Trf (t) =
2 TT

t

Substituting for WO from (4. 4. 6) we have

2
TrAf1 (t) -

Tr 2 Z 3/ 2 '2[(T-Xi) ]

where A
2 is given by (4. 4. 7).
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(4. 5. 2)

(4. 5. 3)



V. THE INTERVAL BETWEEN ZERO-CROSSINGS OF A
STATIONARY GAUSSIAN PROCESS

5. 1. Preliminary Remarks

In the present chapter we shall consider stationary Gaussian

processes, first considering an arbitrary random process.

The determination of the distribution function, FI(t), of the

random interval, I, between successive zero-crossings of X(t)

is difficult to obtain in a closed form, as we mentioned in Section

3.2.

Approximate expressions, as well as upper and lower bounds

for Fi(t), have been obtained by Rice [17, 18], McFadden {13a,13b},

Slepian [21, 21a], Longuet-Higgins [1 1 a, 11b] and Strakhov and Kurtz

[23], among others.

We shall discuss here some of the difficulties that impede the

obtaining of a closed expression for FI(t). Also, we shall obtain a

series expansion for F1(t) in terms of multiple integrals. The

multiple integrals involved in obtaining the first, second and third

order information were discussed by Kac [7a], Cramer [2a], Kamat

[8a] and Nabeya [13c]. Finally, we shall discuss in some detail the

fourth order information and show that the four-variate integral in-

volved can be reduced to a double integral, much easier for numerical

computations.
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= q (t. , t. , t. )A. A. ... A.
n

11 12 1k 11 12 ik
(5. 2.1)

is the probability that X(t) has at least one zero in each of the in-

tervals (t. , t. +A. ), ... , (t.
1

,
1 i

t. +A ). Since the events e. = 1
11 11 11 k k k 1

and e. = 0, (i = 1, 2, ..., n) are mutually exclusive the total reliable
1

event expressed, such that the value of ei is not indicated, is given

by

55

5. 2. The Probability of No Zero-Crossings in a Given Time Interval

Let Q(T) be the probability that a random process X(t) does

not cross the zero axis in a given time interval (to' to+T). Con-

sider a ti-partition of the (t ,t +T) segment by the points.
o o

to <t < n-1 <t
o

+ T = tn,

and let

t. - t1. = A., i = 1, 2, ... , n.
1-

Let us introduce the random variables e., defined as follows:
1

= 1 if at least one zero of X(t) occurs in (t. , t.],
1- 1

e. 0 if no zeros of X(t) occur in (t t ].i- 1' i

Thus

Prob = 1, = 1, , e. = 1]
lk



By definition

Prob [ei= 0, , en= 0] = 1 -

ii
Prob (e. = 1) + Prob (e, =1,e. =1)

11 11 12

< i2

+ (- aProb (el= 1, , en= 1)

(5. 2. 4)

-56

Prob [el= 0,..., ei_1= 0, ei= 1, ei+1= 1, ' en= 1]

+ Prob [e.= 0, e. = 0, ei= 0, e.+1
= 1, , e= ]

1 n

Prob [ e
1

0 e= 1 e= 1]. (5. 2.2)
1- 1+1

Thus

Prob [e = 0, , e.1 = 0, ei = 0,
e.1+1

= 1, ... e=1]
1-

Prob [e1= 0, ei_1= 0, e.1 = 1' '
e= 1]

1+ n

- Probe.1 = 0, e.=
e.1+1

= 1, e = 1].
1- n

(5. 2. 3)

To obtain an expression for Prob [el= 0, ..., en= 0], in which only

probabilities of the form of (5.2. 1) will appear we use the formula

(5. 2. 3) n times on Prob [e1= 0, , n= 0]. This expression is

t ihesum of 2n terms in which each e. ( = 1, 2, ... , n) either does

not , e. .= 1, ..
11 12 13

le.= ] (0 <i1 < i2 < ... < i < n) is encountered only once and its
ik k

sign is determined by k. That is



Q(T) = lim Prob [e1= 0, , n= 0] (5. 2.5)

We now show that

by following a method used by Hilbert [5d, p. 8] to prove a formula

similar to (5. 2. 6) given by Fredholm.

From (5. 2. 4) and (5. 2. 6)

Prob [e1= 0, . , en= 0]

=1 -

dk, n

k=0

(-1 ) C
k! j

0 ...SO cik(ti
)dt

dt' k

i < ...<
(t. , , t. )A ... A.

k 11 lk 11 lk

1

k!
11

i

t.

2" ik=1

, t. 6. A. ... A .
1k 11 12 lk

(5. 2. 8)
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(5. 2. 6)

+ (-1)nqn(ti, , tn)A 1... An

= 1 - d +d2, n - (-1)ndn, n
(5. 2. 7)

where



Denote

1

(t. . . . , tk)dt1. .
dtkk k! clkr

0 0

(5. 2. 9)

Since q (t" t ) as defined by (5.2. 1) is a density function and
k 1 k

thus is Riemann integrable,

(k = 1, 2, ) (5. 2.10)urn dk, n = 6k

To prove (5. 2. 6), v.Pe have to show that

lim 1-d +...±d = 1 - + -, n n,n 1 2

The infinite series

1 -
61

+
82

-
83

+ . . .

is convergent, since the integral of qk(t17 tk) over the k.-

dimensional cube is always less than or equal to unity for all positive

integers k.

Thus given a positive E there exists a positive integer N

such that for n> N

I (1-614-... ±6N) - ±6n)I E (5.2. 11)

and

IC(T) - N+...±
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where f (xi, . . , xn, xi', ...
tion of the Zn random variable

dX(t)X.X= (t.), X.' - 1dt t=ti:

59

For every k the sequence tdk,
is Cauchy, thus there exists

a positive integer M1 such that for m > MI

E

1(1-d1, N+. . . ±dN, ) - (1-d1,N+m+. ±dN,N+m I <
(5. 2. 12)

Also because of (5. 2. 10) there exists a positive integer M2 such

that for m > M
2

1(1-d1, N+m+. ±dN,N+m) _ (1_51+.

From the last two inequalities we have

E

1(1-d1,N+.. . ±dN,N) - (1-51 +... ±5N)1 <

The inequalities (5. 2. 11), (5. 2.12) and (5.2. 13) complete the proof.

By generalizing an expression given by Rice [17, 18] for the

probability that X(t) has a downcros sing (t1' t1+dt1) and an up-

crossing in (tz, tz+dtz) (see also McFadden [13b] ) qn(ti, tz,..., tn)

can be written in the form

oo co

qn , tn) . . . 1 xi. . . xnlf (0, ..., 0; x f x
dx1

dx '
1 n n

_co _co (5. 2. 14)

)1 <

= I, , n.

is the joint probability density func-



The distribution function F1(t) of the interval between suc-

cessive zero-crossings is related to Q(t) by

FI(t) = Prob(I < t) = 1 - Prob(I > t) = 1 - Q(t). (5. 2.15)

Thus the density function f1(t) of the random variable I is given

by

dF (t)
f1(t)

= dt Q(t)
(5.2. 16)

Rice's formula ([17, 18] 3-4.11) can be obtained from (5.2. 6) by dif-

ferentiating with respect to T. He also took as an approximation

for f1(T)

VT) q2(T)

when T = t2 - t1 is "small. "

Expression (5. 2.8) for Q(T) was obtained for an arbitrary

random process. Q(T ) can be obtained if we compute qn(t1,t2,...,tn)

for all positive integers n. As we shall see in the next section,

qn(ti, ...,tn) can only be expressed in terms of elementary func-

tions for n < 3 when X(t) is a stationary Gaussian process.

Also, if we require that X(0) = 0 in the horizontal window sense

(see Kac and Slepian [8]) this would complicate some probabilities of

interest. In this case the random variables X(ti), X(t2),..., X(t)
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are no longer jointly Gaussian and their joint density is given by

where

R =

f(x' ,...)xn),

61

where f(x', xo, xl, xn) is a Gaussian joint density of the uncon-

ditioned random variables X'(0), X(0), X(ti), , X(tti).

5. 3. The Density Function qn(ti,...,tn) for a Stationary Gaussian
Process

Throughout the rest of this chapter we shall consider X(t) to

be a stationary Gaussian process with covariance function

The covariance matrix of the 2n

(i = 1, 2, ..., n) is given by

P11 P Ptn 11

random variables X. and X!
1 1

Pnn Pn1
_
pin

n
-13

j

_An
rnn

(5. 3. 2)

-Pnl -Pnl

EX(t)X(t+T) = p(T) = P (5. 3. 1)



form

The covariance matrix R can be written in the partioned

Y =

R=
R11 R12

R21 R22

For a Gaussian process it is known that

1 exp [- yTR-ly]f(x . x x, ) -1" n' 1" n 22 )nIR 1/2

(5. 3. 4)

where yT is the transpose of

R-1 is the inverse of R and IR is the determinant of R.

62

(5 3. 3)

where

P11 Pln 11

R11 = R12 =

Pn n1

-P71 ln

R
2

= -R
1

and R22 =
if

-Pn



where

Z'T = (x' x' ).
1' ' n

-Let us denote the inverse matrix of R by S = R1The
matrix S, partitioned in the same manner as R, can be written

in the form

Substituting from (5. 3. 4) into (5. 2. 9) we get

Co

qn(tr ...,tn) _ 112 xn' I expl- R22Z1d1 1 T -.1

(2ir) IR I _Co _co

S=

IR
MI=

[Rill
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(5. 3. 5)

(5. 3. 6)

-1Denote S22 = M = [11,..]. By using a result on compound matrices

(see [5a, p. 21]) we have

(_1)2nR ( 1 2 . . . n
(n+1 n+2 2n 1 2 ... n

) - (1 2 ... 2n\n+1 n+2 2n
1 2 2n)

or equivalently,
IR111

1S221 = 1111

That is,

(5. 3. 7)



The matrix M = [p.ii] is the covariance matrix of ' 2(X'1 X'' .°
.,XT ),

n

given that X1 = X2 = ... = X = 0. For, if f(xl xr ... x' lx ... x )
n

denotes the conditional probability density of (Xi, ... , Xt"i) for

given values of (X1, ..., Xn), we have

and

f(x',
1

where

Thus when X. = = 1, 2, , n we have, by using (5. 3. 4)

and (5. 3. 7),

, 10, 0, , 0) - exp[- TM Z'],
(21T)n/21MI1/2

1 1 -1

(5. 3. 8)

By substituting from (5. 3.4) y = Z' which is a generalization of the

two dimensional case given by Cramr ([2a, p. 15]).

The expression on the right hand side of the last equation is

recognized as the Gaussian density function, G(Z', M) of the ran-

dom variables X' ... , X'n'

f(X19 1, xi%)

Xn)
f(x1 xn)

1 1 T -1exp [- Z R 11Z ,f(x ,xn) - 2 1/2
27r

R111

with covariance matrix

Using (5. 3.8) Equation (5. 3.5) can be written in the form

64



Let
13vii -

1/2
(11-11..)11 J3

and
(P. ..)1/2

13

00 00

=s G(t, N)dt1. .
-00 - 00
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coo
1-

1/2 .3...,t; Sc.°
Ix' x' I G(V, M)dx'... dx' .

1 n 1 n
_oo

(5. 3. 9)

so that N = [vi.j1 is the covariance matrix of the new random van-

ables ti, (i = 1, 2, n).

Equation (5. 3. 9) is now written in the form

1/2

=
(4111122tinn) Sc°

tv2 ... I tn N)dt 1... dn.
(27r)

IR
111

-oo -oo

Thus the problem is reduced to evaluating integrals of the form

(5.3. 10)

(5. 3.11)

where G(t, N) is the joint Gaussian density function of

with covariance matrix N = [v. .1.

5. 4. First, Second and Third Order Information

For n = 1,

(5. 4.1)



Equation (5.3.10) gives for n = 1

-p o" 1/2 p lc; )1/2

ql(t) J = -
2Trpo 1

po

This result was first obtained by Kac [7a].

For n = 2

00

=2 1
_oo

1 (t2-q22exp -2v1212)

The double integral on the first quadrant is

2

exp

at
2 1/2

21r(1-v12)

1 22
2 (1+2-2v122)
2.rr(i

v2 )1/2
12

1 1/2
=---[(1-v2 +v12 cos-1(-v12)]

27r

-1If we replace v12 by v12 , qby Tr - q (where co = cos vi 2),

we obtain corresponding expressions for, say

12
soots exp

0 -co

1 2 2
- (t1-q2+2v 2tlt2)

1

q
2 1/2 1

211-(1-v12)

which is the double integral on the third quadrant of the (t , )

plane. On adding these expressions we have, finally,

at2

dy1.
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(5. 4. 2)



4
J2 - 2 1/2

cosec q[1+(- (p)cot (p]
2Tr(1-v12)

This expression for q2 (t1, t2) agrees with that of Rice ([17, 18]

Equation 3.4-10). See also Cramer and Leadbetter [3, p. 212].

For n = 3 the q3(t1, t2, t3) can be obtained by using some

integrals calculated by Nabeya [13c] and Kamat [8a], which give

00 ooJ3 =N )d dt
1 2 3 2 3_oo _oo _oo

2 3/2r 11/2 -1 . -1
(T r) + (v23+v13)sin v23.1+ (v31-i-v_v )Z3 21'sln v31.2

v..-Kv, .vkilj 1

2vij k [ xi v2.)]1/2
-vki ki

I sin-11,12.3],
(v124-v"31v32'

where v.. are the partial correlation coefficients defined ask

j, k = 1, 2, 3. (5. 4. 6)

Substituting from (5.4. 5) into (5. 3. 10) for n = 3 we have
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(5.4. 5)

4 2 -1
1+ (2v+cosv1 )

vi 2

2 1/2 -v12)2i(1-v12)

2

, 2

1-v12/

= [ (1-v212 )1/2 + (-I-I-cos-1v12)].-rr v12 2

Substituting in (5. 3.10) for n = 2 we have

(5. 4. 3)

,1/2
441111221 [(1-v2 1/25--]

12) +v 12(+cos2

-1 ,
v .

12)
-q2(t1, t2) 2, 2 2 ,1/2

IPO-P12) (5. 4. 4)



(2102INI1/2
SE exP( 2

T(0) 1

0

where v. = 1, i = 1, 2, 3, 4.

The transformation

carries (5.5. 1) into

where

11/2

(111111221133/ 1/2 -
3

111/2

INI + /(vz3+vizvi )sin1v23.1

1R11
(5.4.7)

and the significance of the is outlined in (5. 4.5).

5.5. The Four-Variate Case

For the four-variate Gaussian distribution the contribution

from the positive orthant is given by

00

x. -
1

(21N1)112

(0) 41N17/2
J4 - P

2 4

v..t.t.
1 j
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(5.5.1)

(5.5. 2)

11/2
2 3/2 (111111231/33' 11/2 - 1q3(t it3)(--d IN1 +/ (v23+1,12vi3)sin v23. ti

(27r)3121R1111/2



Thus
00

.14 Sc.C.Cx
-00

811N17/2

ir2

X2X3x4

i=1

oo

F4 = syss ex(-
0

i,j=1

1

i,j=1

v..x.x.
i) j dx1dx2dx3dx4)

(i)where i= 1, 2, ..., 5, are obtained from (5. 5. 3) with the
4

signs of (± v..), i j, in each PG) taken in accordance with the
4

following sign pattern:

v12 v13 v14 v23 v24 v34

1 + + + + + +

2 + + _ + _

3 + _ + _ +

4 - + - - +

5 - - - + + +

The quadruple integral P4' as given by (5. 5. 3), can be ob-

tained by differentiation with respect to v.i from the following

four-variate integral

i,j=1
jv..x.x. dx1 dx2 dx3 dx4 )
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oo

P4 = Ex1x2x3x4 exp - v..x.x. dx1dx2dx3dx4 (5. 5. 3)
13 a. 3

(5. 5. 4)

(5. 5. 5)

(5. 5. 6)



For instance,

a2F(1) 1 4P
4 4 av12av34

The four-variate integrals I = 1, 2, ... , 5,
4

essentially by the same differentiation, the difference being merely

in the insertion of the appropriate signs of (± v..), i j, in

accordance with (5. 5. 5).

5. 6. A Reduction Formula for F4

The four-variate integral F

probability theory. Gupta [56, par. 6] gave an excellent survey of

the attempts that had been made to evaluate F4 and pointed out

that it cannot be obtained in closed form.

In this section we shall show that the four-variate integral F

can be reduced to a double integral. The transformation

Tr
x = r cos 01 cos 02 cos 03, < 0 <

x2 = r cos 01 cos 02 sin 03' O. <
2

x3 = r cos 01 sin Oa,

x4 = r sin 0 ,

carries (5. 5. 6) inc.°

Tr0 < 0 <

0 < r < co,

are obtained
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(5. 5. 7)

4

4
is a well-known integral in



s Tr/2, Tr/2 ir/2s, co
r

F4 = expL-r2 (1+2v c2c2c s3+ 2v c2c c s
12 1 2 3 13 1 2 3 2

0 0 0 0

2+ 2vit4cisic2c3+2v23cic2s2s +2v24cisic2s3+ 2v3 cisis2)]

X r3c21c2 drc1.01 d02 c103 .

Integration with respect to r yields

Tr/2
1

F4 = gss [
1+2v12 c12c22c3s3 +

2v13 c12c2c3 s2 +2v14 c1s1 c2 c3 +2v23
c12c2 s s2 3

0
-2 2

+ 2v24c1s1c2s3+ 2v34clsls cic2d01(102(103. (5. 6.1)

The substitution = tan. 01 in (5. 6. 1) leads to

co Tr/2Tr/2
1

F4 = dt
dO2 S 0103c2[

(l+t2)+ 2v12c2c3s3+ 2v13c2c3s22
0 0 0

+ 2v tc c + 2v c s s + 2v tc s + 2v ts
14 2 3 23 2 2 3 24 2 3 34 2,-2

The integration with respect to t is easily eavluated, giving

coo
2

c dt[1+2v12c2c3s 2v13c2s2c3+2v2 c2s2s3.
0

2 -2+ 2t(v c c +v c s +v s )+t14 2 3 24 2 3 34 2'

1+13 1-1 1+13

(I+2a-P)(1+a+13)
+ 2 1/22(1+20.42 3 2

tan
(1+2a-P )
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(5. 6. 2)



1 an 13

2 1 22)(1+2a))(1+2a) 2(1+2a-P2)3/2 (1+2a-P )

where

2v12c2c3s3 + vi3c2s2c3 + v23c2s2s3,

(5. 6. 4)

= 13(9 e3) = v14c2c3 + v24c253 v34s2"

Substituting (5. 6. 3) into (5. 6. 2) we finally have

Tr/2 Tr/2
-1 1+131

F4 j do de ( 1+13 + tan
3 1+a+P

(1+2a-132)1/20
2

')0 2(1+2a-p2)2

Finally, from (5. 3. 10) and (5. 6. 5),

11/2 1.?

q4(t1, , t3, t4) - dO
(111111221133444' Tr' "

(2Tr)2IR I1/2

5. 7. Some Special Cases

If all v..
1.3

=

1 tan
1+2a 2(1+2a-P2)1/2

-1

Tr/2
1

dO3 2
1+2a+13

1+13

X1+( 1+13 1
+ tan-1a+P

2(1+2a-P2)1/2 (1+2a-132 )1/2

1 tan-1 P
1+2a 2(1+2a-P2)2 (1+2a-132

1/2

(1+2ap_p)1/2

(5. 6. 5)
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(5. 6. 6)

, 4) are all small Plackett [15a] gave the



approximation

1 1

F4 8 41r2

Substituting in (5. 5. 4)

INI

-I- cos_

and by (5. 5.7)

)cos-1(-v23)]'4

(i) 1

P4 2 2 2 1/2
16ir [(1-v12)(1-v34)]

In this case

p4(i)
1

2 2 1 2 '16ir [(1-v12)(1-v34

1
12

v12 1
v2301v230 01
v34

17/2

34 271.4[0..v212)(1_v324)]1/2

where

0

= (1-v4 )(1-v2
2

) - v23 . (5. 7.4)
3 1

For the covariance matrix N to be positive definite

2 , 2
(1-v34)(1-vi2)>

i= 1, 2, ... , 5.
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(5. 7. 1)

(5. 7. 2)

(5. 7. 3)

[cos -1(- vi2)cos-1(-v34)+cos-1(_vi3) cos-1(
vz4)



From (5. 7. 3) and (5. 7. 4) we finally have

q4(t t2' t t4)

2 2 2 7/2
5[(1-v12)(1-v34)-v23]

2 2 1/2
Zir4 [(1-v12)(1-v34)]

and correspondingly

2 2 2 7/2
P. 1/2[0 - v )(--115(11111/22/133- 44) 121 34)- v231

q4(t t3, t4)
2 2 1/2

8Tr
61

11/2[(1-1)12)(1-v34)]

If, in addition, v2 = 0 we have the simple approximation

5( LI.
)1 2 (

2 2 113
11' 22' 33' 44' E-1-v12)"-v34"

6
IR 11/2

A second special case is the diagonal matrix, which means that

the random variables t 2'
and t4 are uncorrelated and

1

2
Swxe-x2/2 1

(27r)"0 4Tr

and

,t2't3't4)- 4,_ 11/2
(1111112211331144)

16
1(

111
Tr I

.1/2

The final special case is obtained when v.. = 1, i, j = 1,2,3,4.

In this case and4 all reduce to the same Gaussian
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(5. 7. 5)



variate, giving

and

J4
1 1/2

(111111221/ 31/44)
.1/2
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