
J-Iuan -Chao Keh

AN ABSTRACT OF THE THESIS OF

Computer Science

for the degree of Doctor of Philosophy in

presented on July 29. 1991

Title: Comprehensive Support for Developing Graphical. Highly Interactive

User Interface Systems

Abstract approved:

A

Redacted for Privacy
ed G. Lewis

The general problem of application development of interactive GUI applications

has been addressed by toolkits, libraries, user interface management systems, and more

recently domain-specific application frameworks. However, the most sophisticated

solution offered by frameworks still lacks a number of features which are addressed by

this research:

1) limited functionality -- the framework does little to help the developer

implement the application's functionality.

2) weak model of the application -- the framework does not incorporate a

strong model of the overall architecture of the application program.

3) representation of control sequences is difficult to understand, edit, and

reuse -- higher-level, direct-manipulation tools are needed.

We address these problems with a new framework design called Oregon

Speedcode Universe version 3.0 (OSU v3.0) which is shown, by demonstration, to

overcome the limitations above:

1) functionality is provided by a rich set of built-in functions organized as a
class hierarchy,

2) a strong model is provided by OSU v3.0 in the form of a modified MVC
paradigm, and a Petri net based sequencing language which together form

the architectural structure of all applications produced by OSU v3.0.

3) representation of control sequences is easily constructed within OSU v3.0

using a Petri net editor, and other direct manipulation tools built on top of
the framework.

In ddition:

1) applications developed in OSU v3.0 are partially portable because the
framework can be moved to another platform, and applications are
dependent on the class hierarchy of OSU v3.0 rather than the operating
system of a particular platform,

2) the functionality of OSU v3.0 is extendable through addition of classes,

subclassing, and overriding of existing methods.

The main contribution of this research is in the design of an application

framework that uses Petri nets as the computational model of data processing in the

synthesized application. OSU v3.0 is the first framework to formalize sequencing, and

to show that complex GUI applications can indeed be quickly and reliably produced

from such a framework.

Comprehensive Support for Developing Graphical, Highly
Interactive User Interface Systems

by

Huan-Chao Keh

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed July 29, 1991

Commencement June 1992

APPROVED:

A n 11

Redacted for Privacy
Professor of Computer Science in charge of major

Redacted for Privacy
-

Chairman of Department of Computer Science

Redacted for Privacy

Dean of Graduate

Date thesis is presented July 29. 1991

Typed by Huan-Chao Keh for Huan-Chao Keh

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my major professor, Dr. T.G.

Lewis, for the guidance, support, helpful discussion and encouragement throughout

this research. I would also like to thank other members in my Ph.D. committee: Dr.

Bella Bose, Dr. Timothy Budd, Dr. Bruce D'Ambrosio, and Dr. Susan Stafford for

their helpful comments and encouragement.

I thank other members of the OSU v3.0 development team: Chung-Cheng Luo,

Walter Wittel, Chi Lai, Kangho Lee, Fangchen Lin, Tong Li, and Kee Yun Chan for

their implementation.

I would also like to thank my wife, Chiou-Mey, for putting up with the

pressure of my work and for providing a warm and loving environment throughout my

Ph.D. study. Lastly, I would like to express my gratitude to my parents and brothers

in Taiwan for their support and encouragement

TABLE OF CONTENTS

1 . Introduction 1

1.1. Graphical User Interface Software is Difficult to Build 1

1.2. The Problem 3

1.2.1. The Need to Increase Functionality and GUI Development

Support 5

1.2.2. The Need for Architectural Models and Abstraction Mechanisms 6

1.2.3. Representation of Control Sequences is Difficult to Understand,

Edit, and Reuse 7

1.2.4. The Need for a Single Conceptual Graphical Model 8

1.3. The Approach 9

1.3.1. MVC-Based Object-Oriented Application Framework 10

1.3.2. Solid Architectural Model and Abstraction Mechanism 11

1.3.3. Representation of Control Sequences is Easy to

Understand, Edit, and Reuse 11

1.3.4. Support for The Development Cycle 12

1.4. The System 13

1.5. Significance of The Work 14

1.6. The Structure of This Thesis 14

References 16

2. A Survey of User Interface Development Tools and Systems 19

2.1. Introduction 19

2.2. Definitions 20

2.3. User Interface Toolkits 22

2.4. User Interface Management Systems 25

2.4.1. Transition Networks 26

2.4.2. Context Free Grammars 28

2.4.3. Events 30

2.4.4. Declarative 32

2.5. Application Frameworks 33

2.6. Interactive Development Systems 36

2.7. Evolution of User Interface Tools and Systems 41

2.8. Conclusion 44

References 46

3. Architecture of OSU v3.0 50

3.1. Introduction 50

3.2. Architecture 50

3.2.1. RezDez 50

3.2.2. Petri Net Editor 52

3.2.3. Graphical Application Builder 52

3.2.4. Browser 53

3.2.5. Simulator 53

3.2.6. Analysis Tools 54

3.2.7. Code Generator 54

4. The OSU Application Framework: A Reusable Design 55

4.1. Introduction 55

4.2. Designing Reusable Designs 58

4.3. Design Objectives 61

4.4. Overview of The MVC-Based OSU Application Framework 63

4.5. The Data Structure Class Library 68

4.6. The Shape Class Library 69

4.7. The Application Framework Classes 70

4.7.1. The Object Class 70

4.7.2. The Controller Class 71

4.7.3. The Model Class 71

4.7.4. The View Class 71

4.7.5. The Application Class 72

4.7.6. The Document and FileDocument Classes 73

4.7.7. The UlObject Class 74

4.7.8. The StdUlObject Class 74

4.7.9. The Pane Class 74

4.7.10. The BasicWindow Class 76

4.7.11. The Command Class 76

4.7.12. The Window Class 77

4.7.13. The Menu Class 78

4.7.14. The MenuBar Class 78

4.7.15. The Palette Class 79

4.7.16. The GraphicsView Class 79

4.7.17. The GraphicsFileDocument Class 80

4.7.18. Other Classes 80

4.8. ExampleDraw: An Example Application 80

4.9. Statistics 82

4.10. OSU Application Framework, MacApp, and ET++ 82

4.10.1. MacApp 83

4.10.2. ET++ 86

4.11. Conclusion 86

References 89

5. Petri-Net-Based Object-Oriented Conceptual Modeling of

Graphical Direct-Manipulation User Interface Systems 91

5.1. Introduction 91

5.2. Annotated Petri Nets 94

5.2.1. Places 94

5.2.2. Tokens 95

5.2.3. Transitions 97

5.2.4. Arcs 97

5.2.5. Transition Firing 98

5.2.6. Initial Marking 99

5.2.7. Hierarchy 100

5.3. OSU Model of GUI Applications 100

5.4. Methodology 105

5.5. Examples 108

5.5.1. MiniDraw 108

5.5.2. HIRS 114

5.6. Reachability Graph Analysis 118

References 121

6. Translation of Annotated Petri Nets into Application Framework

Based C++ Program 123

6.1. Introduction 123

6.2. The Main Algorithm 124

6.3. Places 125

6.4. Transitions 128

6.5. Input Arcs, Output Arcs, and Messages 131

6.6. An Example 135

7. Conclusion 137

7.1. Current Status of OSU v3.0 137

7.2. The Results 139

7.3. Experience 144

7.3.1. Experience with OSU v3.0 144

7.3.2. Experience with C++ 145

7.4. Future Work on OSU v3.0 147

Bibliography 150

Appendix A. OSU Application Framework-Based C++ Code of ExampleDraw 155

Appendix B. The MiniDraw Program Generated Automatically from the

Annotated Petri Net of Fig. 5.4 161

LIST OF FIGURES

Eigure Page

2.1 State transition diagram for a partial dialog example 26

2.2 Context free grammar for the example shown in Fig. 2.1 29

3.1 Architecture of OSU v3.0 51

4.1 OSU Application Framework architecture 64

4.2 The OSU Application Framework class hierarchy 65

4.3 Excerpt of the MacApp class hierarchy 66

4.4 Excerpt of the ET-H- class hierarchy 66

4.5 Message sending in our modified MVC architecture 67

4.6 Data structure class hierarchy 69

4.7 Shape library class hierarchy 70

4.8 Hierarchy of panes and views 75

4.9 An example application created using OSU Application Framework 81

5.1 A modal dialog linked to a window containing four views 102

5.2 Petri net representation of Fig. 5.1 without using hierarchy 104

5.3 Petri net representation of Fig. 5.1 using hierarchy 104

5.4 Annotated Petri net representation of MiniDraw 109

5.5 The marking resulting from firing transition tl (INIT) in Fig. 5.4 110

5.6 The marking resulting from firing transition t3 in Fig. 5.5 111

5.7 The marking resulting from firing transition t2 in Fig. 5.6 112

5.8 Petri net representation of an HIRS 115

5.9 Example dialog box in an HIRS 116

5.10 Reachability graphs for the Petri net in Fig. 5.8 117

6.1 Algorithm for the translation of an annotated Petri net 124

6.2 Algorithm for the translation of a Window place 126

6.3 Algorithm for the translation of a Menu place 127

6.4 Algorithm for the translation of a ModalDialog place 128

6.5 Algorithm for the translation of a transition 129

6.6 Algorithm for the translation of an INIT transition 130

6.7 Algorithm for the translation of a QUIT transition 131

6.8 Algorithm for the translation of a regular transition 132

6.9 Algorithm for the translation of an input arc 133

6.10 Algorithm for the translation of an action message 134

6.11 Annotated Petri net representation of a simple Macintosh application 135

6.12 A C-H- program generated Automatically from the Petri net of Fig. 6.11 136

7.1 MVC Demo application with two scrollable panes containing views 141

LIST OF TABLES

Table Eaga

1.1 User interface development tools and systems: Problems and solutions 3

2.1 The four types of user interface tools and systems 20

4.1 Source code statistics of OSU Application Framework 82

4.2 Overview of related application frameworks 83

7.1 Source code statistics of OSU v3.0 138

7.2 Lines of code required to implement the applications using different tools 141

Comprehensive Support for Developing Graphical, Highly

Interactive User Interface Systems

Chapter 1

Introduction

1.1. Graphical User Interface Software is Difficult to Build

Development of graphical direct-manipulation user interface (GUI) applications

for today's high-powered workstations is complex and time-consuming [4, 8, 9, 18,

19, 20, 21, 26, 27] because they must handle at least two asynchronous input devices

(such as a mouse and keyboard), multiple windows, dynamic or animated feedback,

and elaborate application-specific graphics.

Software developers have recognized the need to reduce the complexity and

time to implement GUI applications and proposed four major approaches to solve this

problem: toolkits, user interface management systems (UIMS's), domain-specific

application frameworks, and interactive development systems. The toolkit approach

provides a collection of reusable components for the programmer to use as building

blocks. A UIMS is a software architecture in which the implementation of an

application's user interface is clearly separated from that of the application's underlying

functionality. A UIMS generally includes implementations of interaction techniques,

such as menus and buttons, but the designer usually gains access to them through a

special purpose specification language. Domain-specific application frameworks, or

simply frameworks, are skeleton programs that contain much of the functionality of

applications in a narrow domain. The interactive development system approach

provides high-level tools to compose a GUI application by sequencing the order of

2

toolkit function calls, and using direct-manipulation editors to design the graphical

objects of the application. Toolkits provide functions which are called by programmer

written code. Frameworks are different than toolkits because they are complete

applications which derive functionality by calling programmer written code. Toolkit

routines are called, while frameworks call programmer-supplied routines.

In an object-oriented framework, the generic functionality of the framework is

provided by a class library that is tailored to the domain of application. Therefore,

frameworks are not general. Rather, frameworks are generic applications which are

made even more specific by specializing the base classes of the built-in class library.

This is the object-oriented paradigm which can be partially automated by the

framework.

Frameworks incorporate more than a class library. They also implement a

design based on some paradigm. Frameworks differ largely according to the paradigm

that guides their design.

In fact, the simplest application that can be synthesized by a framework is an

instance of the framework itself. Such an instance will compile and execute, but do

nothing whatsoever. In fact, this simple application cannot even terminate! Therefore,

it is up to the programmer to add functionality to the framework. How this is achieved,

is the subject of this research.

It should be noted that frameworks are an outgrowth of toolkits and the concept

of a class hierarchy in object-oriented programming. One can speculate that the idea of

a framework evolved from the combined ideas of object-oriented programming,

toolkits, UIMS's, and interactive development systems. In this sense, frameworks

represent the most recent evolution of earlier approaches, and are really

3

indistinguishable from them. Therefore, it is appropriate to develop the concept of a

framework by discussing the evolution of toolkits, UIMS's, interactive development

systems, and finally, frameworks.

1 . 2 . The Problem

Problems with Existing Tools and
Systems

Solution OSU v3.0
Components

Other Solution
Systems

A. Offer too little functionality
and support only small part of
the development task:

1. Contents of application windows:
Do not help the programmer create
application-specific graphics.
The programmer must handle all input
events at a low level.
Intertwined interaction between user
interface and the application logic is
not considered. (e.g. Change
propagation)

2. Common aspects of GUI
applications:
Accessing documents
Undo/Redo of commands
Printing
Managing memory
Manipulating data structures

MVC
Pluggable and
adaptable domain-
specific views
Reusable Design (A
model of interaction
and control of flow
among classes)
Reusable code

MVC-Based
Application
Framework with a
rich set of domain-
specific views
Class Library,
(Structured graphical
objects and Data
structures)

Garnet
OSU v2.0
NeXTstep
MacApp
ET-H-

B. Lack architectural models for
large applications:
Do not help designers decompose and
structure complex GUI applications

Hard to visualize the overall
architecture of the entire GUI
application
No abstraction mechanism

Reusable Design
MVC
Visual Petri net
Net hierarchy
(Subnet)

MVC-Based
Application
Framework
Petri Net Editor
Browser

Smalltalk
MacApp
ET-t+
HyperCard

C. Representation of Control
Sequences:
Hard to understand
Hard to edit
Hard to reuse

Visual Petri net
Net hierarchy
(Subnet)

Petri Net Editor State-Diagram
Interpreter
Rapid/USE
UIMX
OSU 2.0
Trillium

D. Lack a single conceptual
graphical model used for
integrating:
Specification
modeling
Design
Validation
Simulation
Rapid prototyping

Annotated Petri net Petri Net Editor
Code Generator
Simulator (will not

be implemented)
Reachability

Analysis Tool (will
not be implemented)

Garden

Table 1.1 User interface development tools and systems: Problems and solutions

4

Although user interface toolkits, such as the Macintosh Toolbox [1] and Xt for

the X window system [31], hide much of the complexity of graphical user interface

(GUI) programming, difficulties still arise due to the intertwined interaction between

the application's direct-manipulation user interface and logic [27], see Table 1.1. For

example, updating a view on the screen may require both updating the underlying data

structure and broadcasting changes to all other views whose graphical rendering

depends on the same data structure. Also, the programmer must handle all low level

input events and draw graphical objects using the underlying low level graphics

package [21] (see Table 1.1). Furthermore, toolkits may factor out user interface

components, but provide no support for common tasks such as printing, undo and

redo, accessing documents, and manipulating data structures (see Table 1.1). As a

result, code that is common to most GUI applications is rewritten for each application.

More importantly, toolkits do not make clear how to use the toolkit procedures to create

a desired interface [20], because toolkits do not incorporate a model of the application.

Many user interface development systems (UIDS's) have attempted to correct

the problems with toolkits by providing a model, and hiding much of the details of

GUI construction [5, 6, 8, 9, 16, 21, 24, 25, 26]. Most UIDS's help the designer

create GUI objects in a window and/or layout using predefined toolkit items.

Several shortcomings, which are common to most existing UIDS's have limited

their success (see Table 1.1):

A. They offer too little functionality, and support only a small part of the GUI

software development task.

B . They lack architectural models and abstraction mechanisms for large GUI
applications.

5

C. Representation of Control Sequences is difficult to understand, edit, and reuse.

D. They lack a single conceptual, graphical model to be used as a medium for

integrating specification, modeling, design, validation, simulation, and rapid

prototyping.

I 1. 1 1 11

Support

Since most UIDS's only provide a graphical front end to their underlying user

interface toolkit features, they automatically inherit most of the limitations and

shortcomings of the user interface toolkits discussed above. Several systems have

provided a partial solution to this problem. Both Garnet [21] and OSU v2.0 [16]

specify the application-specific graphics by direct manipulation. In addition, the

behavior of these graphical objects at run-time can be specified using dialog boxes and

demonstration. OSU v2.0 provides a set of domain-specific tools, such as GraphLab

[17], which accepts direct manipulation of various graphical objects as input and

produces code modules that implement the run-time behavior of those objects.

However both systems can only generate a limited range of graphical objects' run-time

behavior, since they must rely on graphical or demonstrational specification of the

graphical objects' semantics. Also, they provide no support for various tasks common

to most GUI applications such as printing, undo and redo, and accessing files.

NeXTstep [26] provides an application kit consisting of 38 tested objects.

NeXTstep's Interface Builder allows the designer to graphically place preprogrammed

user interface objects, such as menus, buttons, and palettes, in a window and visually

connect those user interface objects to the application code. However, it does not

address the application-specific graphics at all.

6

Frameworks attempt to correct the shortcomings of toolkits and UIDS's by

providing a complete running application. For example, MacApp [24] and ET++ [29],

provide an object-oriented application framework incorporating common functions,

such as undo and redo, saving and opening, and printing. However, these

frameworks provide only a little support for handling application-specific graphics and

the designer usually has to handle all low level input events and draw graphical objects

using their underlying low level graphics packages. Although application frameworks

provide much more support for developing GUI applications than user interface

toolkits, They are still difficult to use. Clearly, tools that automate the use of application

frameworks are necessary.

1.2.2. The Need for Architectural Models and Abstraction Mechanisms

Most UIDS's do not provide any reusable design methodology to help

designers decompose and structure complex GUI applications. The designer working

with those systems usually has to make up his own methodologies for analysis and

design. Also, they provide no support for the designer to synthesize and visualize the

overall architecture of the entire GUI application at different levels of abstraction.

Smalltalk's Model-View-Controller (MVC) paradigm [3] is a decomposition

technique, designed specifically for modularizing the structure of a GUI application.

However, the traditional argument against the MVC approach is that it does not support

the concept of document. Another argument against MVC is that it separates the

behavior of windows into two different roles: user-input managed by the controller,

and output provided by the view [27]. Unfortunately, this separation does not fit well

with most GUIs where input is always associated with a particular window.

7

Although MacApp and ET++ refine some of the ideas in MVC, much of their

design has violated the MVC discipline. Also, they provide no support for the designer

to visually synthesize the GUI application. Apple's HyperCard [9] provides a very

good architectural model for structuring hypertext systems. The entire hypertext

system is structured as a network of mostly static pages or frames. HyperCard

supports graphical specification of static pages. The designer can graphically define the

text and graphics for the current page, and buttons that cause transitions to other pages.

However, this architectural model is only useful for structuring hypertext systems; it is

not applicable to other types of GUI applications. Also, HyperCard provides no

support for the designer to visualize the overall architecture of the entire hypertext

system being designed. Furthermore, it does not support hierarchical structure in a

hypertext system. This makes the design and browsing of a large hypertext system

more difficult and less effective.

1.2.3. Representation of Control Sequences is Difficult to

Understand. Edit. and Reuse

In most UIDS's, the designer specifies sequences of actions permitted by the

application using a special purpose language. These languages are likely to be

unfamiliar to programmer and interface designer alike [18]. They are poorly structured

in a software engineering sense: they use global variables, nonlocal control flow, and

explicit gotos [20]. Consequently, it can be very difficult for a designer to understand,

edit, and reuse user interfaces written in these languages.

For example, state transition diagrams such as used in Rapid/USE [28] and

Jacob's State-Diagram Interpreter [7] can become an incomprehensible maze of wires

as the interface becomes large. State transition diagrams specify dynamic aspects of the

8

interface as states and events, but they cannot represent the static (linked) structure of

the interface. Thus state transition diagrams are not suitable for expressing a designer's

mental model.

Direct-manipulation UIDS's let designers create user interface sequence by

direct manipulation. Examples include Interface Architect [6], NeXTstep's Interface

Builder [26], OSU v2.0 [16], and Trillium [5]. These systems are usually much easier

for the designer to use. However, when direct-manipulation UIDS's support multiple

levels of sequencing, as in OSU v2.0 and Trillium, it can be difficult for the designer to

modify and reuse the existing user interface specifications because the designer cannot

see the overall structure of the user interface.

1.2.4. The Need for a Single Conceptual Graphical Model

Designers developing systems typically build conceptual models in their heads.

The conceptual model is the abstract representation of a software system as perceived

by the users' community and the development team [14]. To build complex systems,

the developer must abstract different views of the system, build models using precise

notations, verify that the models satisfy the requirements of the system, and gradually

add detail to transform the models into an implementation [23]. A conceptual model

may serve several purposes: (1) reduction of complexity; (2) system specification; (3)

communication with customers; (4) visualization of the system; (5) design; (6)

simulation; (7) validation; and (8) automation of prototype implementation. Although

different models may be used to serve different purposes, it is desirable that a single

model be used to achieve all purposes.

Garden [22] is a conceptual programming environment which allows the

designer to define a conceptual model by giving its visual and textual syntax and its

9

semantics in terms of an object basis. Once the conceptual model is defined, the

designer can use a graphical editor to build programs. However, most existing UIDS's

do not support a conceptual model.

1.3. The Approach

We propose a new approach to framework design with the following features:

it is a capable of modeling both the static and dynamic aspects of GUI
applications at a higher level of abstraction through the use of an object-oriented

application framework that supports a modified MVC design methodology and

embodies most generic functionality required when constructing a GUI
application;

it benefits from known Petri net analysis techniques to verify behavioral
properties of the modeled system;

it produces an executable specification which can be directly executed by a
suitable interpreter to simulate the system being modeled and can be easily
translated into almost any existing implementation language, such as Pascal, C,

and C++.

Due to the fact that graphical rendering and user input are always tightly

coupled in GUI applications, our modified MVC-based framework combines the

functionality of the MVC view and controller into one object (view). Placing

responsibility for input and output in the same object reduces the total number of

objects and the communication overhead between them [18]. Even though our

framework is based on a paradigm that is quite different than the original MVC

paradigm we still call it an MVC paradigm.

10

The proposed Petri-net-based object-oriented conceptual modeling approach

provides solutions to many problems encountered in the development of GUI

applications:

A. The underlying MVC-based object-oriented application framework offers

much more functionality than a user interface toolkit and supports a significant

part of the GUI software development task.

B. It provides a solid architectural model and abstraction mechanism.

C. The representation of control sequences is easy to understand, edit, and reuse.

D. It is able to integrate the phases of specification, modeling, design, validation,

simulation, and rapid prototyping of GUI applications according to the

operational software paradigm [32].

We describe below how this approach may overcome the shortcomings of

existing tools and systems discussed above.

1.3.1. MVC-Based Object-Oriented Application Framework

One of the main advantages of object-oriented programming is that it supports

software reuse. The design of object-oriented application frameworks is probably the

most far-reaching use of object-oriented programming in terms of reusability because it

supports not only the reuse of code but also the reuse of design. As in MacApp and

ET++, the design and implementation of common aspects of most GUI applications,

such as handling windows, undo and redo, saving and opening files, and printing, are

already available in a reusable form.

The change propagation mechanism provided by the MVC approach helps the

programmer deal with the intertwined interaction between the user interface and the

11

application logic. It permits multiple views of the same data to be displayed

simultaneously such that data changes made through one view are immediately reflected

in the others. With the support of a rich set of domain-specific views in the application

framework, the programmer can easily create and manage the application-specific

graphics even without writing any code. In situations where the developer must write

unique code to derive new subclasses, they are easy to create because they can reuse

both the design and implementation from their abstract and concrete superclasses.

1.3.2. Solid Architectural Model and Abstraction Mechanism

As mentioned above, application frameworks are still difficult to use. This

drawback can be significantly reduced by using Petri-net-based visual programming

tools. As long as the application framework becomes mature enough and contains a

rich set of domain-specific view classes, most of the time a GUI application can be

plugged together from existing components by drawing an annotated Petri net. The

source code of the target application is synthesized by merely walking the Petri net.

Annotated Petri nets are also able to represent the linked structure of a GUI

application. The designer, by using a graphical net editor, can see the overall structure

of the GUI application. Furthermore, using hierarchical networks, a designer can

organize a GUI application more effectively than with a flat structure [11].

1.3.3. Representation of Control Sequences is Easy to Understand,

edit. and Reuse

The developer can construct annotated Petri nets using a graphical Petri net

editor. This promotes understandability of the model, facilitates computer aided

12

documentation, lets the developer easily perform graphical modifications on the model,

and promotes reusability of the model through cut-and-paste editing operations.

A criticism which is often raised against ordinary Petri nets is the unmanageable

size of the models of complex systems. This drawback can be reduced by using high

level Petri nets, such as annotated Petri nets [2, 11] and colored Petri nets [10] which

are often more concise and suitable for our purposes. Moreover a further improvement

can be obtained using hierarchy, in which the object representing a subsystem can be

described by a sub Petri net. Hierarchy not only reduces the complexity of the model

but also promotes reusability at the modeling level because subnets can be reusable

components. There are two advantages of annotated Petri nets over state transition

diagrams in specifying GUIs. First, annotated Petri nets are able to represent both the

static (linked) structure and dynamic behavior of a GUI application. State transition

diagrams can only specify dynamic aspects of a GUI application. The second

advantage is that Petri net graphs are usually much smaller than state transition

diagrams, because all reachable states of a modeled system are explicitly represented in

the state transition diagram, but they are implicit in the Petri net specification.

1.3.4. Support for The Development Cycle

The annotated Petri net representing the high-level design of a GUI application

allows previously developed analysis techniques to be used to verify system properties,

such as display complexity, the presence of terminal states, node reachability and

unreachability, and so on. Previous work on annotated Petri nets used reachability

graph analysis techniques to verify the properties of a hypertext-based information

retrieval system [11].

13

Furthermore, because the annotated Petri net is executable, it can be directly

executed by a suitable interpreter to simulate the system being modeled and determine

whether or not it matches the user's requirements.

Finally, the annotated Petri net model itself can be used as a simulation

prototype, since it is executable. This type of prototype can be produced rapidly. Due

to the reusability and translatability of the annotated Petri net model, a program

(implementation) prototype can be easily obtained through automated tools. The

program prototype can then be further refined to produce the final system.

The proposed Petri-net-based object-oriented conceptual model can integrate the

phases of specification, modeling, design, validation, simulation, and rapid

prototyping of GUI applications according to the operational software paradigm.

1. 4 . The System

The annotated Petri net model is the basis of the user interface development

system of Oregon Speedcode Universe version 3.0 (OSU v3.0), an experimental

object-oriented development environment currently under construction at Oregon State

University [11]. Much of the design of OSU v3.0 is based upon the successes and

shortcomings of its predecessor, OSU v2.0.

OSU v2.0 combines a UIMS with a structured design facility which allows a

programmer to quickly prototype the user interface of a given application and then

connect that interface to program design tools traditionally found in most computer-

aided software engineering (CASE) systems [30]. In OSU v2.0 a designer creates a

user interface by showing instead of telling what the user interface should look like and

how the end user will interact with it. OSU v2.0 demonstrated the power of direct-

14

manipulation user interfaces in prototyping by increasing programmer productivity

two- to tenfold [16]. OSU v2.0 is based on a hierarchical sequence language, which

limited its power to develop full applications.

The current implementation of OSU v3.0 consists of the following tools:

1). OSU Application Framework including extensive class library [12].

2). Petri Net Editor used to sequence application code.

3). Browser: Yet another class hierarchy browser.

4). Code Generator: C++ code is synthesized from the OSU Application
Framework, annotated Petri net, and programmer supplied routines.

5). RezDez: Yet another resource editor.

1.5. Significance of The Work

The thesis of this work is that high-level annotated Petri nets and object-

oriented frameworks can provide an appropriate conceptual model for highly graphical

user interface application development. Combining the use of the annotated Petri net

modeling formalism with recent software engineering techniques, such as object-

oriented development, visual programming, direct manipulation specification, and rapid

prototyping can significantly increase programmers' productivity. The work of OSU

v3.0 is particularly significant because it is the first interactive development system that

automates the use of a general purpose application framework.

1.6. The Structure of This Thesis

The remainder of the thesis is organized as follows. Chapter 2 surveys existing

user interface development tools and systems and details the problems with these tools

15

and systems. Chapter 3 presents an architectural overview of OSU v3.0. In Chapter

4, we discuss our objectives in designing the OSU Application Framework, present an

overview of its architecture, and compare our framework with other frameworks. In

Chapter 5, we present the Petri-net-based object-oriented conceptual model of graphical

direct-manipulation user interface systems, use two examples to illustrate the annotated

Petri net design representation, and demonstrate the use of reachability graph analysis

in the area of hypertext-based information retrieval systems. Chapter 6 gives

algorithms for the translation of annotated Petri nets into C++ programs. Chapter 7

discusses the results obtained and the experience gained while working with the OSU

v3.0 project and its implementation language.

16

REFERENCES

1. Apple Computer, Inc. Inside Macintosh, Volume I, 1985, Published by Addison-
Wesley, Reading, MA.

2. Genrich, H.J. and Lautenbach, K. System modeling with high-level Petri nets.
Theoretical Computer Science 13 (1981), 109-136.

3. Goldberg, A. and Robson, D. Smalltalk-80, The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

4. Gorlen, K.E. An object-oriented class library for C++. Software - Practice and
Experience 17, 12 (Dec. 1987), 899-922.

5. Henderson, D.A., The Trillium user interface design environment. In
Proceedings of SIGCHI' 86, Boston, MA, (April 1986), 221-227.

6. Hewlett-Packard Company, HP Interface Architect Developer's Guide.

7. Jacob, R.J.K. A state transition diagram language for visual programming. IEEE
Computer 18, 8 (Aug. 1985), 51-59.

8. Jacob, R.J.K. A specification language for direct-manipulation user interfaces.
ACM Transaction on Graphics 5, 4 (Oct.1986), 283-317.

9. Kaehler, C. HyperCard Power: Techniques and Scripts. Addison-Wesley,
Reading, MA, 1988.

10. Keh, H.C. and Lewis, T.G. HelpDez: Colored-Petri-net-based hypermedia help
system designer. Proc. of 2nd Int. Conf. on Software Eng. and Knowledge
Eng., Skokie Illinois, June 1990, 254-259.

11. Keh, H.C. and Lewis, T.G. Direct-manipulation user interface modeling with
high-level Petri nets. in Proceedings of 19th ACM Computer Science Conference.
(March 1991, San Antonio, Texas), 487-495.

12. Keh, H.C., Wittel, W., and Lewis, T.G. Speedcode: A C++ framework for the
Mac. To appear in Frameworks, The Journal of Macintosh Object Program
Development 5, 3 (Aug. 1991).

13. Keh, H.C., Lewis, T.G., and Luo, C.C. Petri-net-based object-oriented
conceptual modeling of graphical direct-manipulation user interface systems. To
be published.

14. Kung, C.H. Conceptual modeling in the context of software development. IEEE
Trans. Software Eng. 15, 10 (Oct. 1989), 590-602.

17

15. Lee, E. User-interface development tools. IEEE Software 7, 3 (May 1990), 31-
36.

16. Lewis, T.G., Hand loser, F.T., Bose, S. and Yang, S. Prototypes from standard
user interface management systems. IEEE Computer 22, 5 (May 1989), 51-60.

17. Lim, M.H. and Lewis, T.G. Graph Lab: Adding graphical functionality to OSU.
Tech. Report 90-60-8, Dept. of Computer Science, Oregon State Univ., Corvallis,
Oregon.

18. Linton, M.A., Vlissides, J.M. and Calder, P.R. Composing user interfaces with
Inter Views. IEEE Computer 22, 2 (Feb. 1989), 51-60.

19. Myers, B.A. Creating highly-interactive and graphical user interface by
demonstration. Computer Graphics 20, 4 (Aug. 1986), 249-258.

20. Myers, B.A. User-interface tools: Introduction and survey. IEEE Software 6, 1
(Jan. 1989), 15-23.

21. Myers, B.A. et al. Garnet Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

22. Reiss, S.P. Working in the Garden environment for conceptual programming.
IEEE Software 4, 6 (Nov. 1987), 16-27.

23. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, N.J. 1991.

24. Schmuker, K.J. MacApp: An application framework. Byte 11, 8 (Aug. 1986),
189-193.

25. SmethersBarnes. Prototyper User's Manual. P.O. Box 639, Portland, OR,
1987.

26. Thompson, T. The Next Step. Byte 14, 3 (March 1989), 265-269.

27. Ur locker, Z. Abstracting the user interface. Journal of Object-Oriented
Programming 2, 4 (Nov./Dec. 1989), 68-74.

28. Wasserman, A.I. Extending state transition diagrams for the specification of
human-computer interaction. IEEE Trans. Software Eng. SE-11, 8 (Aug. 1985),
699-713.

29. Weinand, A., Gamma, E., and Marty, R. Design and implementation of ET++, a
seamless object-oriented application framework. Structured Programming 10, 2
(1989), 46-57.

30. Yang, S., Lewis, T.G. and Hsieh, C. Integrating computer-aided software
engineering and user interface management systems. Proc. of 22nd Hawaiian Int.
Conf. on System Sciences, Vol. II, 1989.

18

31. Young, D.A. The X Window System Programming and Applications with Xt.
OSF/Motif Ed., Prentice-Hall, Englewood Cliffs, N.J., 1990.

32. Zave, P. The operational versus the conventional approach to software
development. Comm. ACM 27, 2 (Feb. 1984), 104-118.

19

Chapter 2

A Survey of User Interface Development Tools and Systems

2.1. Introduction

User interface software is inherently difficult and expensive to build without

tools that simplify the design and implementation process [21, 28, 32, 33, 35, 36, 43,

44]. Studies have shown that 50 to 80 percent of the code of a typical application is

devoted to user interface aspects. As interfaces become easier to use, they become

harder to create. Highly interactive, graphical, direct manipulation user interfaces

popular on many modern systems are among the hardest to create, since they must

handle at least two asynchronous input devices (such as a mouse and keyboard),

multiple windows, dynamic or animated feedback, and elaborate application-Specific

graphics.

Many user interface development tools and systems have been developed to

simplify and speed user interface software development. This chapter surveys existing

user interface development tools and systems and details the problems with these tools

and systems. User interface development tools and systems can be divided into four

broad categories: user interface toolkits, application frameworks, user interface

management systems (UIMS's), and interactive development systems. Note that many

interactive development systems have also been referred to as UIMS's. We prefer to

distinguish between a user interface management system (UIMS) and an interactive

development system since this distinction more accurately reflects the emphasis of

current user interface tools and systems.

20

2.2. Definitions

This section gives definitions for the four types of user interface development

tools and systems which are summarized in Table 2.1.

Category Key Feature of Tool Examples

User Interface Toolkit Collection of library
procedures, or
classes and methods

Macintosh Toolbox
Inter Views Andrew Toolkit
Grow X Toolkit

UIMS Separation of
user interface and
application

State-Transition-Diagram
Interpreter
Rapid/USE Syngraph
University Alberta UIMS
Sassafras Algae Squeak
Cousin

Application Framework Skeletal application Smalltalk MVC MacApp
ET-H- Vamp

Interactive Development
System

High level tools
supporting
direct manipulation or
graphical specification

OSU Menu lay Trillium
Prototyper Peridot
HyperCard
Interface Architect Garnet
NeXTstep Glazier

Table 2.1 The four types of user interface tools and systems

A user interface toolkit is a library of routines that implement interaction

techniques, where an interaction technique is a way of using a physical input device

(such as mouse, keyboard, tablet, or rotary knob) to input a value (such as command,

number, percent, location, or name) [35]. Examples of implementations of interaction

techniques are menus, graphical scroll bars, and on-screen buttons operated with the

mouse. User interface toolkits generally provide programming abstractions for

building user interfaces. They are typically used by a programmer who writes source

code to invoke and organize the interaction techniques.

A UIMS is a software architecture in which the implementation of an

application's user interface is clearly separated from that of the application's underlying

21

functionality [28]. The goals of UIMS are to provide a single user interface for

multiple applications, to improve productivity, and to provide a modular architecture.

Every UIMS employs some model of user interfaces. This user interface model forms

the basis of the notations used by the UIMS for describing user interfaces and strongly

influences its implementation. A UIMS generally includes implementations of

interaction techniques, such as menus and buttons, but the designer usually gains

access to them through a special purpose specification language. In most UIMSs the

user interface specification is interpreted by a run-time system that is incorporated into

the application.

A paradigm is a pattern of usage of program components such as a call graph in

structured programs or messages in object-oriented programs. The overall design of an

application which defines how functions are called and data are structured is called a

design paradigm.

A domain-specific application framework, or simply a framework here, is a

generic application constructed according to a certain paradigm. An object-oriented

application framework is typically composed of a mixture of abstract and concrete

classes along with a pattern governing interaction and control flow among the classes.

Because the basic set of classes and their models of interaction are shared by all users

of an application framework, it is appropriate to think of an application framework as a

reusable design [51]. However, application frameworks are different from simple

class libraries, and require more work to construct. The basic idea of an application

framework is to provide a skeletal structure for any application. Therefore, an

application framework can also be thought of as the design of an application since this

skeleton must be refined by adding application-specific code before it is useful. An

application framework is used by deriving new concrete classes from existing classes

22

and configuring a set of objects by providing parameters to each object and connecting

them [50]. The domain of the framework is largely determined by the domain of its

class hierarchy.

An interactive development system is an integrated set of high level tools- for

designing, prototyping, executing, modifying, and maintaining user interfaces. In

particular, an interactive development system supports the development, through all

phases of the life cycle, of a user interface by an interface developer who may not be a

programmer. By relieving an interface developer of much of the tedium (i.e., coding)

of producing an interface, a developer can concentrate on the design of the user

interface itself, rather than on its implementation [19]. Many interactive development

systems help the designer use a user interface toolkit, an application framework, or a

UIMS more productively. A comprehensive interactive development system also

provides much support for the development, through all phases of the life cycle, of an

entire graphical user interface (GUI) application.

2.3. User Interface Toolkits

Most window systems come with a user interface toolkit. There are two types

of user interface toolkits: conventional user interface toolkits and object-oriented

toolkits. A conventional user interface toolkit is a collection of procedures that can be

called by application programs. An example is the Macintosh Toolbox [3].

Conventional user interface toolkits were criticized as being too low level and difficult

to use [26, 32]. Object-oriented user interface toolldts have been more successful than

conventional user interface toolkits in implementing direct manipulation user interfaces.

Their success is attributed to the principles of object-oriented design and programming:

encapsulation, inheritance, and dynamic binding. Examples include InterViews [31,

23

32], the Andrew Toolkit (Atk) [38], the GRaphical Object Workbench (GROW) [4],

and the X Toolkit (Xt) [52]. The architecture of all the aboire object-oriented toolkits

except the X Toolkit is influenced by the Smalltalk-80 Model-View-Controller (MVC)

paradigm [10]. The MVC paradigm will be discussed in a later section.

Inter Views

Inter Views, developed at Stanford University, is written in C++ running on the

X window system. It provides a class library of predefined objects and a set of

protocols for composing them. Composition mechanisms are central to the design of

Inter Views. Interactive objects such as buttons and menus are derived from the

interactor base class which defines the communication protocol for all interactive

objects. Inter Views supports the composition of interactive objects (interactors), text

objects, and graphics objects. Interactors are composed by scenes; scene subclasses

define specific composition semantics such as tiling or overlapping. Inter Views

distinguishes between interactive objects which implement a user interface and abstract

objects which encapsulate the underlying data. Interactive and abstract objects are

referred to as views and subjects respectively. Subjects are similar to models, and

views in Inter Views actually behave as controllers and views in the MVC paradigm.

This separation permits different representations of the same data to be displayed

simultaneously such that changes to the data made through one representation are

immediately reflected in the others.

Atk

Atk, developed at Carnegie Mellon University, is implemented with a custom

object-oriented environment called Class. Atk was originally built on a custom

window system and has been ported to X. Atk includes objects that comprise the data

24

to be edited, such as text, bitmaps, and more sophisticated objects such as spreadsheets

and animation editors. Atk's composition mechanism allows these objects to be

embedded into multimedia documents. Like InterViews, Atk supports the separation of

data objects and view objects, and permits multiple views of the same data to be

displayed simultaneously such that a change to the data will be reflected in all of its

views.

GROW

GROW, developed at Schlumberger-Doll Research, is written in Interlisp-D,

uses the object-oriented language Strobe, and runs on Xerox 1100 series workstations.

Objects in GROW can be related through two relationships: composition and graphical

dependency. Like InterViews, composition allows several objects to be combined into

a complex object, which is treated as a unit. Graphical dependencies are data

dependencies (constraints) between attributes of the graphical objects. These

dependencies allow the interface to reflect structural features such as connectivity or

containment. Such dependencies can guarantee that a graphical object stays within a

prescribed area or that two connected graphical objects stay connected when one or the

other is moved.

Xt

Xt for the X window system provides a higher level programming interface to

the underlying X window system. Xt defines widget and composite classes analogous

to interactors and scenes in InterViews. A widget can be considered an abstract class

from which specific user interface components can be derived. Instances of widget are

buttons, text editor windows, forms, or scroll bars. Widgets are organized in a

hierarchy and the layout of the children of a widget is controlled by composite widgets.

25

The Xt Intrinsics defines an architectural model for widgets that allows programmers to

extend the toollcit by creating new types of widgets. Xt is coded in conventional C and

based on object-oriented conventions defined by the Xt Intrinsics to give an object-

oriented flavor.

2.4. User Interface Management Systems

A number of description techniques have been used by existing UIMS s for

describing user interfaces. These techniques can be divided into two broad classes,

depending upon whether they are used in the design of user interfaces or in their

implementation. Design notations can be very informal, since their main purpose is to

record the thoughts of the designer. On the other hand, the notations used in the

implementation of user interfaces must be formal, since they will be used to directly

produce the implementation of the user interface [12].

Ideally, each description technique should be accompanied with a special

purpose specification language. The main goal of these languages is to include

elements of quality user interfaces which will result in the enhancement of programmer

productivity when creating user interfaces. For instance, the special purpose

specification language should offer facilities that allow faster development times, the

ability to experiment with alternative designs, and quick adaptation to different types.

Furthermore, the special purpose specification language should provide non-

programmers easy access to the design and implementation phases of the user interface.

In particular, recent efforts provide the user interface designer with interactive design

tools which aid in creating the visual images which the user will see.

26

We summarize various user interface models of existing UIMS s. The most

accepted user interface models are transition networks, context free grammars, events,

and declarative languages.

2.4.1. Transition Networks

The transition network model is based on state transition diagrams. An

example of a transition diagram is shown in Figure 2.1.

Fig. 2.1 State transition diagram for a partial dialog example

A transition diagram consists of a set of states (represented by circles) and a set

of arcs (represented by arrows leading from one state to another). The states represent

the states in the dialogue between the user and the computer system. In the simplest

form of transition network, each arc is labeled by an action (an input token). The arcs

in the diagram determine how the dialogue moves from one state to another. The user

interface moves from the state at the end of the arc to the state at its head if the user

performs the action labeling the arc. In a given state the user must perform one of the

actions that labels an arc leaving the state. A path through a transition diagram is a

sequence of arcs that lead from the start state of the diagram to one of its final states. A

sequence of user actions is accepted if they label the arcs on a path through the

diagram.

27

A simple form of transition network describes the sequences of actions that the

user can perform but says nothing about the responses generated by the computer. One

way of describing the computer's side of the dialog is to attach actions to the states in

the diagram. When a state is reached, its action is executed. Thus, user actions are

attached to arcs, and program actions are attached to states. Program actions can also

be attached to the arcs. In this case the program action is executed when the arc is

traversed.

The diagram in Figure 2.1 represents a partial dialog in which a user is allowed

to give a command to either create, delete, or move an object. The create command

needs as arguments an object type and a position, the delete command needs as an

argument an object name, and the move command needs an object name and a position.

Note that the diagram is simplified because it is not specified how a command, the

object type, name and position are entered by the user. For instance, a command can

possibly be entered from the keyboard or via a menu.

State transition diagrams have been used extensively in UIMS's. One of the

earliest uses of transition diagrams is the work of Newman in 1968 [35]. Since then,

transition networks have been the basis for a large number of ULMS's, such as Jacob's

State-Transition-Diagram Interpreter [20, 21], Wasserman's Rapid/USE [46] and other

systems [13, 24, 39].

There are two major problems with this type of transition network. First, the

transition diagrams for real user interfaces tend to be very large. To avoid this, a

number of techniques have been developed to partition the diagrams into sub diagrams.

The sub-diagrams are separate diagrams describing one part of the user interface.

28

These are called recursive transition diagrams [12]. Second, the connections between

the user interface and application are made through global variables.

The major advantage is that transition diagrams provide a graphical

representation of the user interface which means they can be displayed and edited on

graphics terminals.

2.4.2. Context Free Grammars

The context free grammar model represents the dialogue between the user and

the computer system using a context free grammar. The basic motivation for this

model is the notion that human-computer interaction is a dialog, as in human-human

communication based on a natural language. Thus, a grammar is used to describe the

dialogue between the user and the computer. There is a major difference between

human-computer interaction and human-human interaction, however. In the former

case two distinct languages are involved, whereas in the latter only one language is

used. That is, in human-computer interaction the user employs one language to enter

commands to the program, whereas the computer uses another to communicate the

results of these commands. The existence of two distinct languages causes numerous

problems when grammars are used to describe user interfaces.

In practice, a grammar is used to describe the language employed by the user to

communicate with the computer, the other direction is described by some other means.

When context free grammars are used to describe user interfaces the terminals are the

primitive actions the user can perform. The terminals are combined by the productions

in the grammar to form higher level structures called nonterminals. The collection of

productions in the grammar defines the language employed by the user in his or her

29

interactions with the computer. One way of describing the computer's side of the

dialog is to attach program actions to each of the productions in the grammar.

An example of a context free grammar is shown in Figure 2.2. This example

represents the same meaning given in Figure 2.1. Here too, we simplified the dialogue

by not specifying how the command, the object type, name and position are entered by

the user.

<Command> ::= <Create> I <Delete> I <Move>
<Create> ::= CREATE <Type> <Position>
<Delete> ::= DELETE <Name>
<Move> ::= MOVE <Name> <Position>
<Position> ::= <X_position> <Y_position>

Fig. 2.2 Context free grammar for the example shown in Fig. 2.1

A number of extensions to context free grammars have been proposed and

implemented in some UIMS's. Most of these extensions deal with error recovery and

undo processing. Three examples of the use of context free grammars in the

construction of user interface are the Syngraph system of Olson [37], Input-output

tools of Van Den Bos [45], and the work of Hanau [14]. We discuss only the

Syngraph system.

Syngraph

The Syngraph [37] system generates interactive Pascal programs from a

description of the input language's grammar. The syntax of the dialogue is expressed

in terms of a modified BNF which uses the logical token names defined in the lexical

specification as well as nonterminals declared in the grammar. The grammar is used to

produce a parser for the dialogue. From the grammar Syngraph deduces information

about how to manage both physical and simulated devices, and how prompting and

30

echoing are performed. Input errors are detected, and can be corrected using

automatically provided rubout and cancel features.

The major advantage of grammar formalisms such as used in Syngraph is that

the structure of the dialogue is clearly represented. This makes automatic analysis of

the user interface possible. However, in most user interfaces the human-computer

dialogue is context sensitive, so they can not be described adequately in any form of

context free grammars. This is true of any user interface that has modes, that is, where

the legality of a command depends on the context of its use. Also, Syngraph does not

provide semantic feedback to show that input has been received.

2.4.3. Events

The event model is not so well established as the other two dialogue models.

This model is based on the concept of events. The input devices are viewed as sources

of events. Each input device generates one or more events when the user interacts with

it. An event has a name or number that identifies the nature of the interaction, plus

several data values that characterize the interaction. When an event is generated, it is

sent to one or more event handlers. An event handler is a process (defined by a

procedure or module) that is capable of processing certain types of events. The event

handler can perform a set of actions according to the event it receives. These actions

may include passing tokens, doing some internal mapping of values, calling application

procedures, generating new events, and creating new event handlers. The obvious

disadvantage of the event notation is that it looks more like a program than transition

diagrams and grammars.

31

One of the earliest uses of this model is in the University of Alberta UIMS [11].

Three other UIMSs that support the event model are Sassafras [18], Algae [8], and

Squeak [6]. Event based UIMSs are explicitly designed to handle multiple processes.

University of Alberta UIMS

The University of Alberta UIMS uses an event language that is an extension of

C. A program in the event language consists of a number of event handlers which are

interpreted by the run-time routines.

Sassafras

Sassafras, a prototype UIMS developed at the University of Toronto, focuses

on supporting concurrent user input from multiple devices. It also supports run-time

communication and synchronization among the modules that make up the user

interface. Sassafras uses a rule-based language for specifying the syntax of dialogues

known as Event-Response Language (ERL). The main elements of ERL are events

and flags. An event is a signal that something has occurred, and it may carry data

relevant to that event. Flags are local variables used to encode the state of the system

and control execution. An ERL specification consists of a list of rules. Each rule

specifies a response to some external event or an action to be taken when some state is

entered.

Algae

Algae uses an event language that is an extension of Pascal. The designer

programs the interface as a set of small event handlers, which Algae compiles into

conventional code.

32

Squeak

Squeak was developed by Cardelli and Pike as a language for processing the

input from mice and keyboard [6]. This language is based on processes and messages

between processes. Their processes are similar to event handlers, and messages serve

the same purpose as events. Squeak supports many concurrent input devices and uses

massage passing for synchronization and communication. Squeak programs are

composed of processes executing in parallel. It has a clever compiler that generates

conventional C code. Unfortunately, Squeak is a fairly difficult language to write in.

Event languages are very difficult to use to create correct code because the

control flow is not localized. Small changes in one part of the program can affect many

other parts. It is also often difficult for the designer to understand the code once it gets

large.

2.4.4. Declarative Language

Declarative languages state what should happen rather than how to make it

happen. The interfaces supported by declarative languages are usually form-based.

The user enters text into fields or selects options from menus or buttons. The

application is connected to the interface through global variables that are set and

accessed by both the application and interface. The advantage of declarative language

based UIMSs is that they free designers from worrying about the sequence of events,

so they can concentrate on the information that is passed back and forth.

33

Cousin

Cousin produces an interface definition centered around form-based interface

abstraction, expressed in an interpreted language. Such an interface definition consists

of a declaration of the form name followed by a sequence of field definitions containing

attributes. Cousin's interface definition language is based on a communication

abstraction between the end-user and application, in which communication takes place

through a set of value-containing slots with one slot for each piece of information the

end-user and application need to exchange. However, Cousin supports only form-

based interfaces.

2.5. Application Frameworks

Much research has been done in creating general-purpose application

frameworks for Smalltalk -80, Macintosh, and X window environments. The basic

idea of an application framework is to take the user interface toolkits one step further

and provide a set of classes that defines a skeletal structure for an application. The

framework has "hooks" to allow an application programmer to plug in objects that

represent the functionality unique to this application. Generic features, such as

handling windows, undo and redo, saving and opening files, manipulating data

structures, and printing, which are always found in a GUI application are already

available in a reusable form. Examples include Smalltalk-80's Model-View-Controller

[10], MacApp [40, 49], ET++ [9, 47, 48], and Vamp [7].

Smalltalk Model-View-Controller

The first widely used framework was Model-View-Controller, the Smalltalk -80

application framework. It showed that object-oriented programming was ideally suited

34

to implementing graphical user interfaces. Smalltalk -80's application framework is

based on a three-part representation known as the Model-View-Controller (MVC). The

model represents the data structure of the underlying application domain, the view

displays data in the model on the screen, and the controller manages all user input

including pointing device, keyboard, and menus which are used to interact with a

screen view. Readers not familiar with MVC are referred to "A Cookbook for Using

the Model-View-Controller User Interface Paradigm in Smalltalk -80" for more details

[27]. Several key concepts of MVC are: (1) views and controllers have exactly one

model, but a model can have one or several views and controllers associated with it; (2)

to maximize code reusability, views and controllers need to know their model

explicitly, but models should not know about their views and controllers; and (3) a

change in a model should be reflected in all of its views, not just the view associated

with the controller that initiated the change.

Smal ltalk's MVC paradigm is a decomposition technique, designed specifically

for modularizing the structure of a GUI application. However, the traditional argument

against the MVC approach is that it does not support the concept of document. Another

argument against MVC is that it separates the behavior of windows into two different

roles: user-input managed by the controller, and output provided by the view.

Unfortunately, this separation does not fit well with most GUIs where input is always

associated with a particular window. Due to the fact that graphical rendering and user

input are always tightly coupled in GUI applications, the functionality of the MVC

view and controller can be combined into one object (view) [25, 44]. Placing

responsibility for input and output in the same object reduces the total number of

objects and the communication overhead between them [32].

35

MacApp

Apple Computer's MacApp is a later application framework designed

specifically for implementing Macintosh applications. MacApp expanded the

functionality of MVC to become a framework for more complete, generic applications.

Although most often used with Object Pascal, MacApp can also be accessed from C++.

Whereas the MVC approach has a three-part representation of the application, MacApp

provides two major components: the document and the view. The document

encapsulates the data structure or the model of an application and knows how to fill the

model with data. The view combines the functionality of the MVC view and controller.

MacApp includes other classes that provide automatic resizing, scrolling, coordinate

transformation, undo/redo of commands, and document management. MacApp's

approach provides a higher level model than either a user interface toolkit or MVC.

Although MacApp refines some of the ideas in MVC, much of its design has

violated MVC discipline [2]. For example, in MacApp, the TDocument class is

designed to be both a Model and a Controller. Therefore, MacApp does not directly

support separation of user input handling from data. Also, the TDocument object

(model+controller) knows a great deal about its TView objects. This can greatly

decrease code reusability. Furthermore, MacApp does not support the change

propagation mechanism; this mechanism must be created by the programmer.

Others

The architecture of MacApp provided the base for ET++ which is implemented

in C++ and runs under Sun Windows, NeWS, and the X window system. Vamp is

another application framework written in C++ and runs on the Macintosh and

36

Microsoft Windows. Vamp is similar to MacApp and ET++ in architecture, but has

less functionality.

2 . 6 . Interactive Development systems

Programming with a user interface toolkit library, an application framework, or

a UIMS specification language tends to be time consuming and tedious. An interactive

development system usually provides a graphical front end to its underlying toolkit

items or application framework features.

Most interactive development systems let the designer define the user interface

through direct manipulation specification instead of a toolkit library or UIMS language.

The concept of direct manipulation is especially useful for naive users who have

no training in using encoded messages. Various studies have shown that direct

manipulation is worth striving for [41]. Most recent user interface development tools

let the designers create a user interface by graphical specification or direct manipulation

instead of textual specification.

OSU

OSU [29] is an interactive development environment which allows a

programmer to quickly prototype Macintosh applications. It consists of a set of high

level tools, such as RezDez, Graphical Sequencer, Program Generator, and several

domain-specific tools. RezDez provides a graphical front end to the underlying

Macintosh Toolbox features and lets designers create and edit icons, menus, windows,

palettes, pictures, dialog boxes, and alerts by directly manipulating on-screen objects.

Graphical Sequencer lets designers specify the sequencing information of the user

interface objects created in RezDez. Application-specific code can be generated from

37

domain-specific tools and connected to the user interface through Graphical Sequencer.

For example Graph Lab [30], a domain-specific tool, accepts direct manipulation of

various graphical objects as input and produces code modules that implement the run-

time behavior of those objects. A special purpose specification language, based on a

hierarchical tree structure, is used to record the sequencing information gathered by

Graphical Sequencer. Programmer Generator takes the special purpose specification

language as input and generates Pascal Source code as output. However, OSU can

only generate a limited range of graphical objects' run-time behavior, since they must

rely on graphical or demonstrational specification of the graphical objects' semantics.

Also, its underlying hierarchical tree-based specification language has limited the range

of interfaces it can create.

Menu lay

Menu lay [5] is a high level development tool which serves as the front end of

the UIMS developed at the University of Toronto. Menu lay allows a programmer to

directly manipulate user interface objects in much the same way as the RezDez portion

of OSU. It also lets the designer specify the graphical and functional relationships

within and among the displays making up a menu-based system. Specifications made

using Menu lay are automatically converted into C code which can be compiled and

linked with application-specific routines. User interactions with the resulting

executable module are then handled by a table-driven run-time support system.

However, Menu lay generates code which can only operate within a single window on

the screen. Also, its table-driven run-time support system does not support semantic

feedback which is a characteristic of direct manipulation user interfaces.

38

Trillium

The Trillium system [15] supports prototyping of copying machine interfaces

and allows designers to build and test control panels. Trillium is similar to Menu lay,

with the added capability of immediate interpretation of the user interface. Trillium

interfaces can be played back on demand as they are designed. However, Trillium

cannot link user interface configurations to form a sequence that mimics the actual

application.

Prototyper

SmethersBarnes' Prototyper [42] is a commercial system similar to OSU.

Prototyper allows designers to create Macintosh application interfaces by direct

manipulation. However, the application's behavior must be written in a conventional

language and linked to the interface for execution.

Peridot

Peridot [33, 34] lets a designer create direct manipulation interfaces such as

menus, buttons, and scroll bars by direct manipulation of primitive objects such as

rectangles, circles, lines, and text. Peridot differs from other user interface

development tools in that it uses rule-based inferencing and allows the designer to

create user interfaces by demonstration. Each object-object relationship that can be

inferred is represented in Peridot as a simple condition-action rule. Rules are also

known as constraints. Peridot generates conventional procedures that implement the

interface specification. Procedures created by Peridot can be called from application

programs or used in other user interface procedures created by demonstration.

However, Peridot does not help with the coding of the semantics of the application.

39

Also, Peridot offers no way to use existing toolkit items or create application-specific

graphics that will appear in an application window.

Interface Architect

HP Interface Architect [17] is an interactive development tool for designing,

testing, and delivering fully-functional application user interfaces based on the

OSF/Motif standard. Interface Architect is based on UIMX [28] which is another

interactive development tool under development by Visual Edge Software and Hewlett-

Packard. It lets designers interactively create and place widgets on the screen. The

OSF/Motif widget set includes buttons, lists, menus, and many other widgets needed

to create a complete application interface. The behavior of the application can be added

by using widget callbacks and action procedures coded in C. Interface Architect's

built-in C interpreter allows the designer to test the entire application as it is built.

However, like Trillium, Interface Architect cannot link user interface configurations to

form a sequence that mimics the actual application. Also, Interface Architect provides

no support for creating application-specific graphics that will appear in an application

window.

HyperCard

Apple's HyperCard [23] supports graphical specification of hypertext systems.

The entire hypertext system is structured as a network of mostly static pages or frames.

The designer can graphically place the text items, graphics, and buttons in a page and

specify the linked relationships among those pages that make up the entire hypertext

system. HyperCard provides a very good architectural model for structuring

information retrieval systems. However, this architectural model is useful only for

structuring hypertext systems; it is not applicable to other types of GUI applications.

40

Also, HyperCard provides no support for the designer to visualize the overall

architecture of the entire hypertext system being designed. Furthermore, it does not

support hierarchical structure in a hypertext system. This makes the design and

browsing of a large hypertext system more difficult and less effective.

Garnet

Garnet [36] is a user interface development environment consisting of a user

interface toolkit and a set of high level tools. The design of Garnet is influenced by

Peridot. Garnet's Lapidary interface builder provides a graphical front end to most of

the underlying toolkit features. Lapidary lets the designer specify an application's

graphical aspects pictorially. In addition, the behavior of these graphical objects at run-

time can be specified using dialog boxes and by demonstration. Relationships among

graphical objects are specified using constraints. However, like OSU, it can only

generate a limited range of graphical objects' run-time behavior, since both systems

must rely on demonstrational specification of the graphical objects' semantics.

NeXTstep

NeXTstep [43] is an object-oriented development environment in which every

NeXT program lives. Instead of using a user interface toolkit, NeXTstep uses an

application kit to help the designer implement the basic functions that a GUI application

needs to run. NeXTstep's Interface Builder allows the designer to graphically place

preprogrammed user interface objects, such as menus, buttons, and palettes, in a

window and visually connect those user interface objects to the application code. The

description of those user interface objects and their connections to application code is

stored in a definition file which is created by Interface Builder. The description file is

then interpreted by a run-time system. Although the application kit, a class library

41

consisting of 38 tested objects, offers more functionality than user interface toolkits, it

is still far behind application frameworks in providing both reusable design and

implementation. Also, application-specific functions must be coded in Objective-C.

Glazier

Glazier [1] is a knowledge-based tool for constructing special purpose

windows for Smalltalk-80 applications. Glazier is based on the Smalltalk-80 MVC

application framework. Windows are interactively specified in a Glazier window -- the

designer specifies type and location of panes (subviews in Smalltalk terminology)

through mouse motions. As a new window is specified, Glazier automatically

constructs the necessary Smalltalk class and methods. Panes can contain text, bitmaps,

lists, dials, gauges, or tables. The behavior of a pane is determined by Glazier as a

function of the pane type and related defaults. However, the designer is usually

required to change those Smalltalk methods generated by Glazier to produce the

behavior desired. Also, Glazier cannot link windows together to form a sequence that

mimics the actual application.

2.7. Evolution of User Interface Tools and Systems

A first solution to reduce the complexity of GUI programming was the

invention of so called conventional user interface toolkits. Conventional user interface

toolkits, such as the Macintosh Toolbox, are too low level and difficult to use and

extend. The problems with conventional user interface toolkits have widened interest

in UIMSs. However, the UIMS approach has certainly not been very successful for

developing direct manipulation user interfaces. Two major problems with UIMSs have

limited their success. The UIMS approach has attempted to separate the code that

implements the user interface from the code for the application itself. But direct

42

manipulation user interfaces usually require that semantic information be used

extensively for controlling feedback, which is in contrast to the initial goal of strictly

separating the user interface from the application logic. Another problem is that the

special purpose specification languages used by most existing UIMSs are difficult to

understand and write in.

In contrast to conventional user interface toolkits and UIMSs, recent object-

oriented user interface toolkits have been successful in implementing direct

manipulation user interfaces. Their success is attributed to the principles of object-

oriented design and programming: encapsulation, inheritance, and dynamic binding.

Although recent user interface toolkits use object-oriented programming to improve

flexibility and extensibility by dynamic binding and inheritance, the functionality of

these toolkits is still inadequate for substantially easing the GUI application building

process.

User interface toolkits generally support only a small part of the GUI software

development task and provide little or no support for a nonprogramming user. Many

user interface toolkits do not help programmers create the most important part of the

application -- the graphics that typically appears in an application window. In

particular, the programmer must handle all low level input events and draw graphical

objects using the underlying low level graphics package.

Also, the toolkit approach does not define an overall structure for an

application. This application structure is therefore often given as a program skeleton

that can be copied and modified to fit the application's requirements. But skeletons are

not a promising solution because they duplicate code which should go into a library and

because they make application code more complex and less manageable.

43

Furthermore, user interface toolkits factor out only user interface components

and provide no support for various tasks common to most GUI applications such as

printing, undo and redo, accessing documents, and managing memory. As a result,

code that is common to most GUI applications, such as prompting the user for the

name of the file to load, or warning the user if he/she does not save his/her work, is

rewritten for each application. Clearly, a more general solution is possible -- one that

includes not only user interface components, but other general characteristics of

applications.

The problems with object-oriented user interface toolkits have led to the creation

of application frameworks. The design of object-oriented application frameworks is

probably the most far-reaching use of object-oriented programming in terms of

reusability since it supports not only the reuse of code but also the reuse of design. A

mature application framework will have a large class library of concrete subclasses of

each abstract class, so that most of the time an application can be plugged together from

existing components. Even when new subclasses are needed, they are easy to create

because they can reuse both the design and the implementation from their abstract

superclasses and most of the work of using an application framework is configuring or

connecting objects together. Since programs that configure a set of objects are very

stylized, it is natural to think that they can be written automatically [50].

One of the major disadvantages of both user interface toolkits and application

frameworks is that they are often difficult to use. Graphical user interfaces, such as

Microsoft Windows or that of the Macintosh, have hundreds of function calls in the

application program interface (API) for managing the display, controlling the mouse,

dealing with fonts, printing and so on. More sophisticated environments, such as OS/2

Presentation Manager and Unix Open Look, have over a thousand functions in the

API. Also, application frameworks usually include many classes and methods that

implement the abstract design of an application. For instance, MacApp provides about

70 classes and over 1200 methods, and ET++ consists of 234 classes with 2343

methods. It is often not clear how to use the functions or classes and methods to create

a desired user interface or a GUI application. Clearly, high level tools that automate the

use of user interface toolkits and application frameworks are necessary. Another

disadvantage of most existing application frameworks is that they provide only a little

support for handling application-specific graphics. This drawback can be significantly

reduced by incorporating a rich set of pluggable, domain-specific views into an

application framework.

Interactive development systems can help the designer use a user interface

toolkit or an application framework more productively. However, most existing

interactive development systems only provide a graphical front end to their underlying

user interface toolkits, thus they automatically inherit most of the limitations and

shortcomings of the user interface toolkits themselves. Surprisingly, general purpose

application frameworks, such as MacApp and ET++, have not been used as a basis of

any existing interactive development systems. Note that the MVC application

framework used in Glazier and the application kit used in NeXTstep's Interface Builder

are not considered as general purpose application frameworks.

2.8. Conclusion

Applications developed for today's graphical high-resolution workstations

provide users with a consistent, easy-to-use interface. However, these benefits come

at the expense of a steep learning curve and longer development times when using

45

traditional programming languages such as C. Even relatively simple applications

require hundreds or thousands of lines of code to run properly in a graphical

environment. Given the complexity of developing for a highly interactive, graphical,

direct manipulation user interface, it is not surprising that there has been a tremendous

adoption of object-oriented programming in this area.

The traditional UIMS approach has certainly not been as successful as the

object-oriented user interface toolkit and application framework approaches. Even with

object-oriented toolkits and application frameworks, programming for a highly

interactive, graphical interface remains challenging. Although application frameworks

provide much more support for developing GUI applications than user interface

toolkits, they are still general purpose programming environments. Therefore,

interactive development tools that automate the use of object-oriented application

frameworks are clearly needed.

46

REFERENCES

1. Alexander, G.H. Painless panes for Smalltalk windows. in Proceedings of
OOPSLA '87, (Oct. 1987, Orlando, Florida), 287-294.

2. Alger, J. Using Model-View-Controller with Mac App. Frameworks, The Journal
of Macintosh Object Program Development 4, 2 (May 1990), 4-14.

3. Apple Computer, Inc. Inside Macintosh, Volume I, 1985, Published by Addison-
Wesley, Reading, MA.

4. Barth, P.S. An object-oriented approach to graphical interfaces. ACM
Transaction on Graphics 5, 2 (April 1986), 142-172.

5. Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C. Towards a
comprehensive user interface management system. Computer Graphics 17, 3
(July 1983), 35-42.

6. Cardelli, L. and Pike, R. Squeak: A language for communicating with mice.
Computer Graphics 19, 3 (July 1985), 199-204.

7. Ferrel, P.J. and Meyer, R.F. Vamp: The Aldus application framework. in
Proceedings of OOPSLA '89, (Oct. 1989, New Orleans), 185-189.

8. Flecchia, M.A., and Bergeron, R.D. Specifying complex dialogs in Algae. In
Proceedings of SIGCHI and Graphics Interface' 87, Toronto, Canada, (April
1987), 229-234.

9. Gamma, E., Weinand, A., and Marty, R. ET++ -- An object oriented application
framework in C++. In proceedings of ECOOP '89, ed. C. Stephen, Cambridge
University Press, 283-297.

10. Goldberg, A. and Robson, D. Smalltalk-80, The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

11. Green, M. The University of Alberta User Interface Management System.
Computer Graphics 19, 3 (1985), 205-213.

12. Green, M. A survey of three dialogue models. ACM Transaction on Graphics 5,
3 (July 1986), 244-275.

13. Guest, S.P. The use of software tools for dialogue design. Int. J. Man-Mach.
Stud. 16 (1982), 263-285.

14. Hanau, P.R. and Lenorovitz, D.R. Prototyping and simulation tools for
user/computer dialogue design. Computer Graphics 14, 3 (July 1980), 271-278.

47

15. Henderson, D.A., The Trillium user interface design environment. In
Proceedings of SIGCHI' 86, Boston, MA, (April 1986), 221-227.

16. Hayes, P.J., Szekely, P.A., and Lerner, R.A. Design alternatives for user-
interface management systems based on experience with Cousin. In Proceedings
of SIGCHI' 85, San Francisco, CA, (April 1985), 169-175.

17. Hewlett-Packard Company, HP Interface Architect Developer's Guide.

18. Hill, R.D. Supporting concurrency, communication, and synchronization in
human-computer interaction -- The Sassafras UIMS. ACM Transaction on
Graphics 5, 3 (July 1986), 179-210.

19. Hix, D. and Schulman, R.S. Human-computer interface development tools: A
methodology for their evaluation. Comm. ACM 34, 3 (March 1991), 74-87.

20. Jacob, R.J.K. A state transition diagram language for visual programming. IEEE
Computer 18, 8 (Aug. 1985), 51-59.

21. Jacob, R.J.K. A specification language for direct-manipulation user interfaces.
ACM Transaction on Graphics 5, 4 (Oct.1986), 283-317.

22. Johnson, R.E. and Foote, B. Designing reusable classes. Journal of Object-
Oriented Programming 1, 2 (June /July 1988), 22-35.

23. Kaehler, C. HyperCard Power: Techniques and Scripts. Addison-Wesley,
Reading, MA, 1988.

24. Kamran, A. and Feldman, M.B. Graphics programming independent of
interaction techniques and styles. Computer Graphics 17, 1 (Jan. 1983), 58-66.

25. Knolle, N. T. Variations of Model-View-Controller. Journal of Object-Oriented
Programming 2, 3 (Sep./Oct. 1989), 42-46.

26. Knolle, N. T. Why object-oriented user interface toolkits are better. Journal of
Object-Oriented Programming 2, 4 (Nov./Dec. 1989), 26-49.

27. Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming
1, 3 (Aug./Sep. 1988), 26-49.

28. Lee, E. User-interface development tools. IEEE Software 7, 3 (May 1990), 31-
36.

29. Lewis, T.G., Handloser, F.T., Bose, S. and Yang, S. Prototypes from standard
user interface management systems. IEEE Computer 22, 5 (May 1989), 51-60.

30. Lim, M.H. and Lewis, T.G. GraphLab: Adding graphical functionality to OSU.
Tech. Report 90-60-8, Dept. of Computer Science, Oregon State Univ., Corvallis,
Oregon.

48

31. Linton, M.A. and Calder, P.R. The design and implementation of Inter Views. In
USENIX Proceedings and Additional Papers C++ Workshop, USENIX Assoc.,
Berkeley, CA, (Nov. 1987), 256-268.

32. Linton, M.A., Vlissides, J.M. and Calder, P.R. Composing user interfaces with
Inter Views. IEEE Computer 22, 2 (Feb. 1989), 51-60.

33. Myers, B.A. Creating highly-interactive and graphical user interface by
demonstration. Computer Graphics 20, 4 (Aug. 1986), 249-258.

34. Myers, B.A. Creating interaction techniques by demonstration. IEEE Computer
Graphics and Applications 7, 9 (Sept. 1987), 51-60.

35. Myers, B.A. User-interface tools: Introduction and survey. IEEE Software 6, 1
(Jan. 1989), 15-23.

36. Myers, B.A. et al. Garnet - Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

37. Olson, D.R. and Dempsey, E.P. SYNGRAPH: A graphic user interface
generator. Computer Graphics 17, 3 (July 1983), 43-50.

38. Palay, A.J. et al.. The Andrew Toolkit: An overview. In USENIX Proceedings
Winter Technical Conference, Dallas, Texas, (Feb. 1988), 9-21.

39. Schulert, A.J., Rogers, G.T., and Hamilton, J.A. ADM -- A dialog manager. In
Proceedings of SIGCHI' 85, San Francisco, CA, (April 1985), 177-183.

40. Schmuker, K.J. MacApp: An application framework. Byte 11, 8 (Aug. 1986),
189-193.

41. Shneiderman, B.
IEEE Computer

42. SmethersBarnes.
1987.

43. Thompson, T. The Next Step. Byte 14, 3 (March 1989), 265-269.

44. Urlocker, Z. Abstracting the user interface. Journal of Object-Oriented
Programming 2, 4 (Nov./Dec. 1989), 68-74.

45. Van Den Bos, J. Plasmeijer, M.J., and Hanel, P.H. Input-output tools: A
language facility for interactive and real-time systems. IEEE Trans. Software Eng.
SE-9, 3 (March 1983), 247-259.

Direct manipulation: A step beyond programming languages.
16, 8 (Aug. 1983), 57-69.

Prototyper User's Manual. P.O. Box 639, Portland, OR,

46. Wasserman, A.I. Extending state transition diagrams for the specification of
human-computer interaction. IEEE Trans. Software Eng. SE-11, 8 (Aug. 1985),
699-713.

49

47. Weinand, A., Gamma, E., and Marty, R. ET++ - An object oriented application
framework in C++. In proceedings of OOPSLA '88 (San Diego, CA, Sep.
1988), 46-57.

48. Weinand, A., Gamma, E., and Marty, R. Design and implementation of ET++, a
seamless object-oriented application framework. Structured Programming 10, 2
(1989), 46-57.

49. Wilson, D.A., Rosenstein, L.S., and Shafer, A. Programming with Mac App.
Addison-Wesley, Reading, MA, 1990.

50. Wirfs-Brock, R.J. and Johnson, R.E. Surveying current research in object-
oriented design. Comm. ACM 33, 9 (Sep. 1990), 259-264.

51. Wirfs-Brock, A., Johnson, R., Cunningham, W., and Linton, M. Panel:
Designing reusable designs -- Experiences designing object-oriented frameworks.
In proceedings of ECOOP / OOPSLA '90 (Ottawa, Canada, Oct. 1990), 234-234.

52. Young, D.A. The X Window System Programming and Applications with Xt.
OSF/Motif Ed., Prentice-Hall, Englewood Cliffs, NJ., 1990.

Chapter 3

Architecture of OSU v3.0

3.1. Introduction

50

The annotated Petri net model is the basis of the user interface development

system of Oregon Speedcode Universe version 3.0 (OSU v3.0), an experimental

object-oriented development environment currently under construction with Macintosh

MPW C++.

3.2. Architecture

OSU v3.0 consists of an MVC-based object-oriented application framework

called OSU Application Framework and a set of integrated high level tools for

specification, modeling, simulation, validation, and rapid prototyping of GUI

applications. The OSU v3.0 architecture is pictured in Figure 3.1. The OSU v3.0

approach supports several important development activities: creation of user interface

objects; specification of the intended graphical user interface application; generation of

an annotated Petri net model; simulation of the modeled graphical user interface

application; analysis of the modeled graphical user interface; and program generation

from the annotated Petri net model. We briefly describe each tool below. The OSU

Application Framework will be discussed in detail in Chapter 4.

3.2.1. RezDez

The RezDez tool allows the designer to create and edit icons, menus, windows,

panes, palettes, pictures, cursors, dialog boxes, and alerts. The designer directly

manipulate the shape, size, and position of the user interface objects on the screen. The

descriptions of user interface objects are then saved in a binary resource file.

Static Descriptions
of User Interface

Objects

MPW
Text Editor

Application-
Specific
C++ code

Graphical
Application

Builder

Petri Net
Editor

Simulator

Annotated
Petri Net
Model

Anylysis
Tools

Code Generator

C++ Source Program

Fig. 3.1 Architecture of OSU v3.0

51

Browser)
OSU

Application
Framework

..1

52

3.2.2. Petri Net Editor

The Petri Net Editor tool serves as the modeling and specification tool. It also

provides a graphical front end to most of the underlying application framework features

and produces an executable specification (model) which is the design representation of

the modeled system and can be easily translated into a C++ program. The Petri Net

Editor lets the designer explicitly build a Petri net and assign various kinds of

"inscriptions" to the elements of the net. The internal representation of the Petri net

model can also be saved in a textual form for later use. By using the Petri Net Editor,

the developer can construct annotated Petri nets, working directly with their graphical

representation. The Petri Net Editor lets the developer easily perform graphical

modifications on the model. Also, it permits the creation of subnets which can be used

as reusable components to build complex GUI applications.

3.2.3. Graphical Application Builder

An alternative approach to the construction of the annotated Petri net model is to

allow the designer to do "reverse specification", interactively manipulating user

interface objects, and to generate the formal specification from there. The Graphical

Application Builder tool allows the designer to specify how the user interface objects

and application-specific objects should be sequenced (linked structure) and how these

user interface objects should behave in the intended system. It collects information

from the designer by a combination of dialogs and direct manipulation of the on-screen

objects. An annotated Petri net model is automatically constructed as the designer

specifies, using the Graphical Application Builder, the behavior of the intended system.

At any point in building the sequence, the designer is allowed to refer to the graphical

53

representation of the Petri net to obtain a global view of the intended system which has

been specified so far.

3.2.4. Browser

The Browser tool allows the designer to navigate through the application

framework class hierarchy, retrieve desired features if necessary, and visualize the

connection between the sequence and the class hierarchy.

3.2.5. Simulator

Interactive simulation provides an easy and very effective way to reveal bugs

during design. Since the annotated Petri net model is executable, it can be directly

executed by a suitable interpreter to simulate the system being modeled and determine

whether or not it matches the user's requirements. Due to the fact that the annotated

Petri net representation of a GUI application may involve application-specific classes

and domain-specific view classes, written in the target language, simulation of the

entire GUI application needs to have a built-in interpreter of the target language.

However, all the standard graphical user interface portions of a GUI application can be

simulated with a simple Petri-net-based controller guided by the Petri net execution

rules. Also, some behavioral properties for domain-specific views can be simulated

without a built-in interpreter. For example, by displaying a domain-specific view's

clipping pane (a rectangular area) in its containing window, simulation can be

performed to see if the view is scrolled or scaled correctly when its containing window

(superpane) scrolls or changes in size.

The Simulator tool sets the initial state of the modeled system according to the

initial marking of the net, and then executes the system by using the user's inputs.

54

Simulation can be controlled either by the firing of enabled transitions from the

displayed annotated Petri net or by directly selecting enabled items from the user

interface objects displayed on the screen.

3.2.6. Analysis Tools

Analysis tools based on previously developed reachability graph analysis

techniques can be implemented for analyzing the Petri net design representation of a

system to determine system properties such as display complexity, the presence of

terminal states, node Teachability and unreachability, and so on. These properties can

be related to specific situations in the actual systems. In Chapter 5, we will illustrate

the use of reachability graph analysis techniques using an example from the application

area of hypertext-based information retrieval systems.

3.2.7. Code Generator

The Code Generator takes an annotated Petri net as input and produces an OSU

Application Framework-based C++ program as output. Most generated C++ classes

are derived classes from the existing classes in the OSU Application Framework. The

translation of annotated Petri nets into the OSU Application Framework-based C++

programs will be discussed in Chapter 6.

55

Chapter 4

The OSU Application Framework: A Reusable Design

4.1. Introduction

Object-oriented user interface toolkits, such as Inter Views [12, 13] and the X

Too lkit [22], have been much more successful than traditional user interface toolkits,

like the Macintosh Toolbox [2], and user interface management systems (UIMS's) in

implementing graphical direct manipulation user interfaces (GUI's) [8, 9, 11]. Their

success is attributed to the principles of object-oriented design and programming:

encapsulation, class inheritance, and dynamic binding. Object-oriented design is ideal

for implementing graphical direct manipulation user interface (GUI) software systems

because the objects on the screen correspond to real object instances in the actual

system.

Although recent user interface toolkits use object-oriented programming to

improve flexibility and extensibility by dynamic binding and inheritance, the

functionality of these toolkits is still inadequate for substantially easing the GUI

application building process. User interface toolkits generally offer too little

functionality and support only a small part of the GUI software development task.

Many user interface tool dts do not help programmers create the most important part of

the application -- the graphics that typically appears in an application window [14]. In

particular, the programmer must handle all low level input events and draw graphical

objects using the underlying low level graphics package. Also, the toolkit approach

does not define an overall structure for an application. This application structure is

therefore often given as a program skeleton that can be copied and modified to fit the

application's requirements. However, skeletons are not an appropriate solution since

56

they duplicate code, which should go into a library, and make application code more

complex and less manageable [18]. Furthermore, user interface toolkits only factor out

user interface components and provide no support for various tasks common to most

GUI applications such as printing, undo and redo of commands, and accessing

documents. As a result, code that is common to most GUI applications, such as

prompting the user for the name of the file to load, or warning the user if he/she does

not save his/her work, is rewritten for each application. Clearly, a more general

solution is possible an application framework that includes not only user interface

components, but other general characteristics of applications.

One of the main advantages of object-oriented programming is that it supports

software reuse. Reusability provides a suitable way to improve software quality as

well as reduce development costs of the software life cycle. It is easy to see how

object-oriented programming makes program components more reusable, but in the

long run the reuse of design is probably more important than the reuse of code [20].

The design of object-oriented application frameworks is probably the most far-reaching

use of object-oriented programming in terms of reusability since it supports not only

the reuse of code but also the reuse of design.

An object-oriented application framework is typically composed of a mixture of

abstract and concrete classes along with a model of interaction and control flow among

the classes [21]. The basic idea of an application framework is to take the user

interface toolkits one step further and provide a skeleton for implementing an

application or application subsystem. The application framework has "hooks" to allow

an application programmer to plug in objects that represent the functionality unique to

this application. Generic features, such as handling windows, undo and redo of

57

commands, saving and opening files, and printing, which are always found in a GUI

application are already available in a reusable form.

An application framework can be thought of as the design of an application

since this skeleton must be refined by adding application-specific code before it is

useful [7]. A framework is used by deriving new concrete classes from existing

classes and configuring a set of objects by providing parameters to each object and

connecting them. A mature application framework will have a large class library of

concrete subclasses of each abstract class, so that most of the time an application can be

plugged together from existing components. Even when new subclasses are needed,

they are easy to create because they can reuse both the design and the implementation

from their abstract superclasses.

Although there are existing application frameworks, such as MacApp [15, 19]

and ET++ [5, 17, 18], for easing the development of GUI applications, they do not

provide any reusable development methodology to help designers decompose and

structure complex GUI applications. The designer working with these systems usually

has to make up his/her own methodologies for analysis and design [1].

Smalltallc's Model-View-Controller (MVC) paradigm [6] is a decomposition

technique, designed specifically for modularizing the structure of a GUI application.

Readers not familiar with MVC are referred to "A Cookbook for Using the Model-

View-Controller User Interface Paradigm in Smalltalk -80" for more details [10]. To

simplify and speed GUI software development, we designed and implemented an

MVC-based application framework called OSU Application Framework. The OSU

Application Framework defines much of a Macintosh application's standard user

interface, generic behavior, and operating environment so that most of the time the

58

programmer can concentrate on implementing the application specific parts. The

incorporation of the MVC paradigm into the object-oriented application framework

provides a reusable design methodology to decompose and structure complex GUI

applications so that developers do not have to reinvent analogous design methodologies

on their own. The change propagation mechanism provided by the MVC approach

helps the programmer deal with the intertwined interaction between the user interface

and the application logic. It permits multiple views of the same data to be displayed

simultaneously such that data changes made through one view are immediately reflected

in the others.

Due to the fact that the design of application frameworks (reusable designs) has

to support the reuse of design, it is much more difficult than the design of class

libraries. Abstract classes play a very important role in designing application

frameworks since a reusable design is expressed as a set of abstract classes. In the

next section we will explain how a set of abstract classes can represent a reusable

design. In this chapter we assume that the reader has a basic knowledge of the

MacApp or ET++ programming environment.

4.2. Designing Reusable Designs

There are two important features that distinguish an object-oriented language

from a conventional language: polymorphism caused by late-binding of procedure calls

and class inheritance. The polymorphism leads to the idea of using the set of messages

that an object understands as its type, and class inheritance leads to the idea of an

abstract class. Readers not familiar with the polymorphism and inheritance are referred

to the books by Budd [3] and Cox [4]. A class that exists only to define the common

properties of its subclasses is called an abstract class. Other classes are known as

59

concrete classes. The programmer will never create an instance of an abstract class,

only of a concrete class. Abstract classes are an important part of the application

framework design since they not only define behavior that is shared by many classes,

they also provide a reusable design for their subclasses.

One important characteristic of an application framework is that the methods

defined by the user to tailor the framework will often be called from within the

framework itself, rather than from the user's application code. The application

framework often plays the role of the main program in coordinating and sequencing

application activity. This inversion of control gives frameworks the power to serve as

extensible skeletons. This power, however, comes from the careful design of abstract

classes.

The most important aspects of an application framework that is reused is the

interface or specification of objects. The interface or specification of an object is given

by the set of messages that can be sent to it. Thus, the interface between objects is

defined by the sets of messages which they expect each other to understand. The

interface among objects is often implemented as a set of abstract classes. Abstract

classes together with the polymorphism makes the design and implementation of an

application framework possible.

When building an application framework, the implementation of an abstract

class usually uses three types of methods to describe the conventions between subclass

and superclass. They are called base methods, abstract methods, and template

methods.

Base methods provide behavior that is useful to subclasses. The purpose of

base methods is to implement in one class behavior which can be inherited by

60

subclasses. For example, the TObject class in MacApp defines the base method

Clone() which copies the object and its instance variables exactly and can be directly

inherited by all the subclasses of TObject.

Abstract methods provide default behavior which subclasses are expected to

override. The default behavior does not do anything particularly useful, and subclasses

are expected to reimplement the entire method. The purpose of abstract methods is to

fully define the responsibilities of subclasses. Thus, the programmer who subclasses

an abstract class uses the abstract methods defined in the abstract class as a

specification. For example, the abstract class TDocument in MacApp defines Do Read()

and Do Write() abstract methods which provide default behavior and are expected to be

overridden by the programmer who subclasses TDocument.

Template methods provide step-by-step algorithms. Each step can invoke an

abstract method, which the subclass must override, a template method , or a base

method. The purpose of a template method is to provide an abstract definition of an

algorithm. The subclass must implement specific behavior to provide the services

required by the algorithm. Thus, template methods define the model of interaction and

control flow among classes that make up an application framework. For example, the

template method ReadFormFile() defined in the TDocument class invokes the abstract

method Do Read() which must be overridden by subclasses of TDocument.

An abstract class and its methods therefore serve as a minimal specification of

each of its subclasses. When a framework is used, abstract methods must be

overridden, while base and template methods should be directly inherited. Template

methods together with the polymorphism feature of an object-oriented programming

61

language provide "hooks" in the framework to allow an application programmer to plug

in objects that represent the functionality unique to this application.

4.3. Design Objectives

Our objectives in designing the OSU Application Framework differ in some

respects from other application frameworks, such as MacApp and ET++, which try to

provide a set of abstract and concrete classes upon which programmers can build their

applications. We designed the OSU Application Framework with the following

objectives:

(1) Allow most of the work of using the OSU Application

Framework to be automated with Petri-net-based visual programming

tools. An application framework is used by deriving new concrete classes from

existing classes and configuring a set of objects by providing parameters to each object

and connecting them. A mature application framework should have a large class library

of concrete subclasses, so that most of the time an application can be plugged together.

Since programs that configure a set of objects are very stylized, Petri-net-based visual

programming tools can be provided to generate them automatically. The OSU

Application Framework must be designed to fit well with the annotated Petri net

model.

(2) Adapt the MVC paradigm to our model of an application

framework. The MVC paradigm is an approach to decompose and structure GUI

applications. It permits multiple views of the same data to be displayed simultaneously

such that data changes made through one view are immediately reflected in the others.

Indeed, the MVC approach is the natural solution to the development of many types of

GUI applications [1]. Although MacApp and ET++ refine some of the ideas in MVC,

62

much of their design has violated the MVC discipline. For example, in MacApp, the

TDocument class is designed to be both a Model and a Controller. Therefore, MacApp

does not directly support separation of user input handling from data. Due to the fact

that graphical rendering and user input are always tightly coupled in GUI applications,

we will combine the functionality of the MVC view and controller into one object

(view). Placing responsibility for input and output in the same object reduces the total

number of objects and the communication overhead between them [13, 16].

(3) Separate standard user interface objects from the view objects.

In practice it is inconvenient to apply MVC to every user interface concept. For

example, it is unnecessary to implement a menu with the MVC approach since user

interfaces seldom require multiple views of the same menu data. We would like to

distinguish between standard user interface objects (e.g. all standard user interface

items of the Macintosh Toolbox) and views. Standard user interface objects usually

have predetermined interactive behavior. However, the interactive behavior of view

objects is application-dependent

(4) Provide a rich set of domain-specific view classes. Due to the

fact that many user interface toolkits and application frameworks do not help the

programmer create the most important part of the application -- the graphics that

typically appears in an application window, the programmer is usually required to write

a significant amount of code to handle the contents of application windows. This

drawback can be significantly reduced by providing a rich set of pluggable and

adaptable domain-specific view classes in the OSU Application Framework. Also, a

rich set of pluggable and adaptable domain-specific view classes makes the framework

easier to learn and use since the user needs to understand only the external interface of

the domain-specific view classes. Thus, this kind of a framework is called a black-box

63

framework [7]. Furthermore, a black-box framework is better at serving as the

foundation of an interactive development system. That is, it is easy to build a high

level tool to automate the use of the framework.

(5) Provide a general mechanism to undo/redo multiple

commands. Undoable commands are a very important part of user friendly

applications because they allow novice users to explore applications without the risk of

losing data. We see the need to provide a general mechanism for executing commands

and support undo/redo of multiple commands. Commands are created by a View in

response to an event. Each window object maintains two stacks, i.e., a Redo stack and

an Undo stack. After a newly created Command is executed or a Command popped off

the Redo stack is redone, it is pushed onto the Undo stack. A Command popped off

the Undo stack will be pushed onto the Redo stack, after it is undone.

4.4. Overview of The MVC-Based OSU Application Framework

The OSU Application Framework is written in MPW C++ and built on top of

the Macintosh Toolbox. The architecture of the OSU Application Framework is shown

in Figure 4.1. The OSU Application Framework is divided into three parts: the data

structure class library, the shape class library, and the application framework classes.

Figure 4.2 shows the class hierarchy of the OSU Application Framework. The data

structure class library is rooted at the Collection class; the shape class library is rooted

at the Shape class; and others are application framework classes. The data structure

class library defines general useful data structures, such as arrays, lists, sets. The

shape library supports various kinds of shapes and defines the user interface for

creating and manipulating these shapes. The application framework classes define

much of a Macintosh application's standard user interface, generic behavior, and

64

operating environment. In order to show the differences between our framework,

MacApp, and ET++, the simplified class hierarchies of MacApp and ET++ are also

given in Figure 4.3 and Figure 4.4 respectively.

GUI Application

OSU Application Shape
Application
Framework

Framework
Classes

Class
Library

Class
Data Structure Class LibraryHierarchy

Macintosh Toolbox

Fig. 4.1 OSU Application Framework architecture

The Application class is much smaller than MacApp's TApplication. The

Application object manages a list of all the windows used by the program, runs the

main event loop, and dispatches events to the appropriate objects to handle them. The

programmer will always subclass Application and each program will have one, and

only one, instance of that subclass. Document encapsulates the data structure or the

model of an application and knows how to fill the model with data. Note that

Document is not a subclass of Controller as in MacApp and ET++. The abstract class

Command not only supports Undo and Redo operations but also helps structure

complex applications. The Command objects are normally pushed onto the Undo stack

by Menu, Palette, or Window objects and pushed onto the Redo stack and popped off

the Redo and Undo stacks by Window objects only.

Controller

Application

Clipboard

Objectz
Command

Ul Object

StdUlObject View

65

Shape

GraphicsFileDocument

Menu

Control

Basic Window

Other
Domain-Specific

Views

I
Other

Domain-Specific
File Documents

Palette

Modal Dialog

Radio Button Userltem

ModelessDialog

Picture EditText Scroll Bar Button StaticText Check Box Icon

VScrollBar HScrollBar

Fig. 4.2 The OSU Application Framework class hierarchy

TPtrBased
DoublyLinkedList

IMbject

ITEvtHandier

66

TCommand

Window

Fig. 4.3 Excerpt of the MacApp class hierarchy

IObject 1

Command EvtHandler

J
Colle

ITreeView IDialog View I TextView

Fig. 4.4 Excerpt of the ET++ class hierarchy

67

Each Pane object has its own coordinate system and clips the drawing of a view

to a rectangular area (the pane's frame). It also handles scrolling the view displayed in

it. Panes can be installed within other panes, so this results in a hierarchical

subpane/superpane relationship. The Window object can contain subpanes and is

always the topmost pane in the subpane/superpane hierarchy.

Application

NNE 1111

Window

Model / Document

= Event Dispatching Message

= Model Access/update Message

Wm. = Change Propogation Message

Fig. 4.5 Message sending in our modified MVC architecture

The relationship among documents, views, and windows is important. In

general, a user's program follows a three-step process in creating a new domain-

specific view to display the data in the model filled by a document. First, the menu or

68

the application object creates and initializes the window that will hold the view

object(s). Then, the window creates and initializes its document. Finally, the

document creates and initializes the view object(s).

-Figure 4.5 shows the message flow diagram in our modified MVC architecture.

The standard interaction cycle in the modified MVC architecture can be described as

follows. The Application controller is used as the top level event handler or dispatcher.

When the user takes some input action, the Application controller will either handle this

event or dispatch it to the Menu, Palette, or the Window/Pane controller depending

upon the type of the event. The Menu, Palette, or Window/Pane controller then

dispatches the event to the appropriate view. After handling the event, the view notifies

the model to change itself and the model in turn broadcasts change messages to its

dependent views. Views can then query the model about its new state, and update their

display if necessary. In what follows the term "MVC" refers to our modified MVC.

In the following three sections we will further describe many of the important

classes in the OSU Application Framework. The descriptions below are introductory

and describe the current state of the framework. As with most frameworks, the source

code header and implementation files should be consulted for more detailed

information.

4.5. The Data Structure Class Library

The data structure class library is a portable collection of classes similar to those

of Smalltallc [6] collection classes. Figure 4.6 shows the class hierarchy of the data

structure class library. It includes generally useful abstract data types such as

Ordered Collection, Set (Hash table), ObjList (linked list), and Dictionary. We have

used these data structure classes extensively for the implementation of the OSU

69

Application Framework itself and the set of high level tools in OSU v3.0. The data

structure class library is rooted at the Collection class shown in Figure 4.2.

Fig. 4.6 Data structure class hierarchy

4.6. The Shape Class Library

Graphics are an important part of most GUI applications. Many applications

provide features that create and manipulate a collection of shapes. These include

applications whose primary function is to create drawings, as well as applications with

other primary functions, to which graphics are secondary. Unfortunately, there isn't

any standard code in either the Macintosh Toolbox or MacApp to implement structured

graphics. The result is that there are subtle differences between applications in how the

user manipulates shapes.

Our solution to this problem is to implement a standard shape library which can

be used in any application that manipulates shapes. Figure 4.7 shows the class

hierarchy of the shape class library. The class hierarchy of the shape library is rooted

at the Shape class shown in Figure 4.2. Our shape library defines the user interface for

70

manipulating shapes once and for all, resulting in more consistency among these

applications and less programming to create them. Our shape library handles various

kinds of shapes, so that it is usable in a variety of applications. It also allows the

programmer to customize and extend the way shapes are manipulated through

subclas sing.

Oval Segments

Circle

Shape
I

Composite

Polygon

I Line

IArrow Line

Rounded
Rectangle

Open Polygon Rectan

Square

Fig. 4.7 Shape library class hierarchy

4.7. The Application Framework Classes

4.7.1. The Object Class

Triangle

The OSU Application Framework is single rooted and all other classes shown

in Figure 4.2 are subclasses of the abstract class object. Object defines a base method,

Clone(), and three abstract methods: ReadFromO, WriteToO, and Equal(). Clone()

71

copies the object and its instance variables exactly and can be directly inherited by

subclasses. Read From() and Write To() are overridden in subclasses to read and write

an object to and from disk. The Equal() method is overridden in subclass to compare

objects.

4.7.2. The Controller Class

Controller is an abstract class, forming a root for any classes that handle input

from the mouse or keyboard. It is roughly equivalent to the TEvtHandler class in

Mac App. Controller defines abstract event handling methods, such as DoKeyDown()

and DoMouseCommand(), for subclasses like Application, Window, and View. All

methods defined in the Controller class are expected to be overridden in subclasses.

4.7.3. The Model Class

Model is an abstract class which supports the MVC paradigm by maintaining a

list of views dependent on its data. Model defines the methods: Changed() and

Notify() for implementing change propagation. In our framework, the data structure

classes such as lists and arrays, are subclassed from the Model class. For this reason,

it is usually unnecessary to subclass the Model class directly, unless you need a model

of unusual data. The data structures are provided with methods to allow modification

of the object's data. When these methods are invoked, they call the model's Changed()

function which in turn calls Notify(). Notify() sends the Model Updated() message to

each dependent view.

4.7.4. The View Class

The View abstract class is responsible for the graphical rendering of model data

within panes. Views draw inside a pane, and panes are inside windows. Each view

72

object draws relative to an origin of (0, 0) positioned at the upper left hand corner of

the enclosing pane. The pane class takes care of offsetting the origin of the view to

account for its position within a pane and window, and also clipping the view so that it

does not draw outside of its enclosing pane.

When a model sends the Model Updated() message to a view, the view sends a

View Update() message to all the panes in its superPaneList. The pane in turn

"focuses" the view and calls its Draw Contents() method. If the view is visible, its

Draw() method is called and drawing takes place on the screen within the bounds of the

clip region.

Mouse Down events are converted by the template method

DoMouseCommand() to single, double, triple clicks, or drags and dispatched to the

appropriate abstract view methods which are expected to be overridden in subclasses

such as domain-specific views or user written subclasses of View. These methods

include DoSingleClick(), DODoubleClickO, DoTripleClick(), and DoDragO. Note that

the template method DoMouseCommand() may be overridden if the programmer wants

to handle any unusual mouse actions. Key Down events are handled in a similar

manner.

4.7.5. The Application Class

The Application class manages a list of all the windows used by the program,

runs the main event loop, and dispatches events to the appropriate objects to handle

them. The programmer will always subclass Application and each program will have

one, and only one, instance of that subclass. At a minimum, the abstract method

Create Menus() must be overwritten in the subclass to create a Menu Bar object and

install the application's menu objects into it. When the application class is instantiated

73

(the first action in the GUI application's C function "main"), its constructor initializes

the Macintosh Toolbox routines. The abstract method Initialize() is usually overridden

in the subclass of Application to perform domain-specific initialization. As the

application program starts, the template method Run() of the Application class invokes

the Initialize() and Create Menus() methods and then starts the main event loop.

4.7.6. The Document and File Document Classes

Document encapsulates the data structure or the model of an application and

knows how to fill the model with data. Our Document class, unlike MacApp and

ET++, is not an event handler. The data that fills a model does not necessarily come

from a file. It may come from RAM-based data structures. We have separated the

File Document class from the Document class so that a document does not have to be

disk-based. The abstract method Create Views() must be overridden in subclasses to

create all necessary views for the model. The File Document class knows how to open

and close files and provides the means for reading and writing data to and from files on

disk.

The File Document class manages the logic of putting up dialogs to get file

names to open (load from disk) and save. It also puts up a dialog that asks the user if a

modified file document (really the model's data) should be saved before closing.

File Document defines the abstract methods Do Read() and Do Write() which are usually

overridden in subclasses. A file document is usually created by the Create Document()

method of the Window class.

74

4.7.7. The UlObject Class

The UlObject class provides two instance variables (fID and fName) for the

storage of the object's ID and name, and base methods to get and set the variables.

These variables are used to obtain the references to the desired user interface objects.

The method GetWindowByName() defined in the Application class, for example, uses

fName to obtain the reference to the desired window object.

4.7.8. The StdUlObject Class

The StdUlObject class provides an instance variable for the storage of the

object's resource ID, and base methods to get and set the variable.

4.7.9. The Pane Class

The Pane class positions, scrolls, and clips views within a window, as well as

directing Mouse Down and Key Down events received by a window to the proper view.

Pane Objects can have a single base view or one or more subpanes, allowing for a

hierarchical display of panes within panes in a window. The root of the hierarchy is

the pane from which windows are subclassed, and the leaf nodes contain the views.

Figure 4.8 shows a hierarchy of panes and views.

Panes are initialized with a location and size which positions them within the

enclosing window, and if the pane is a leaf, the number of scroll bars and a pointer to

the view. Each pane has a pane rectangle that encloses the entire pane and is framed by

a one pixel line. Inset one pixel within this pane rectangle is a view rectangle that

defines the clipping region when drawing the view. If the pane has a vertical and/or

horizontal scroll bar, then the appropriate edge of the view rectangle is inset further.

75

Fig. 4.8 Hierarchy of panes and views

When a Mouse Down is received by a window, it is passed along to the root

pane. If the pane has scroll bars, and the Mouse Down was enclosed in one of their

rectangles, the DoMouseDown message is passed along to the scroll bar object.

Otherwise, the Mouse Down is passed to the view, or to the appropriate subpane,

whichever is enclosed in the pane. If the user scrolls a view, the framework calculates

a new offset for the view, scrolls the bits within the view rectangle on the screen, and

updates (redraws using the new origin) the area filled with the background color after

the screen bits are scrolled.

Another function provided by the Pane class is bringing panes and views into

"focus". Focus Pane() is invoked before a pane is adorned (framed with a one pixel

line and the scroll bars redrawn). The Focus Pane() method sets the graphics port to the

correct (enclosing) window, sets the clip rectangle to the pane's rectangle, and draws

the frame and scroll bars. In a similar manor, Focus View() sets the port, but also takes

76

into account both the local location of the pane and the amount it is currently scrolled to

calculate the clip rectangle.

Calculating new values for the pane rectangle, view rectangle, and scroll bars is

done automatically when a window is resized or zoomed if the pane it encloses is

initialized to "sizeVariable". Usually panes within panes are initialized to "Size Fixed".

All this takes place without the need for the user to write any code or subclass

the Pane class. Every pane is simply an instance of the framework's Pane class. The

user may, at times, wish to override the Adorn(), MouseInPane(), and

DoSetupMenus() methods to customize the panes behavior.

4.7.10. The Basic Window Class

The Basic Window class is an abstract superclass common to windows,

dialogs, and palettes. It holds the window's Window Ptr and its constructor

automatically inserts a pointer to itself into the window list maintained by the

application object. It also contains methods to drag a window.

4.7.11. The Command Class

The abstract class Command supports undo and redo of multiple commands.

Command objects are temporary objects that carry out user requests while storing

information about the previous state so the user can undo the operation if required.

Due to the fact that command objects consume a great deal of memory space, Current

implementation of OSU Application Framework supports only five levels of undo/redo

operations. However, this is sufficient for most applications. You generally use many

different subclasses of Command -- one for each type of user action that you want to be

undoable. These include: typing characters, mouse operations such as drawing and

77

dragging, and menu or palette items such as Delete and Rotate. Command objects

should be used when the user action will change data in the model of the application.

Command objects are created by several methods in a View object in response

to an event. These methods include DoMouseCommand(), DoKeyCommand(), and

several other menu/palette item related methods such as DoCut(). Command objects

are stored in the Redo and Undo stacks defined in the Window class. Newly created

Command objects are executed and managed by Window, Menu Bar or Palette objects.

Typing and mouse command objects are managed and executed by the Window class;

menu command objects are managed and executed by the Menu Bar class; and palette

command objects are managed and executed by the Palette class. Command objects

which have been undone or redone are managed by Window objects only. Three

abstract methods: DoItO, Undo It(), and Redo It() are often overridden in subclasses to

implement undoable command. Application programs will never perform commands

directly but simply instantiate commands objects and pass them to OSU Application

Framework. A menu command, for example, will be automatically invoked by the

template method HandleMenuCommand() defined in the Menu Bar class.

The abstract class Command is a very good example of the reuse of an abstract

design. it not only eases the implementation process substantially but also helps the

programmer to modularize complex applications into small and more manageable

pieces.

The Window class implements standard window manipulation functions such

as resizing and zooming. It also implements many event handling methods defined in

the Controller class such as DoMouseDownO, DoKeyDownO, DoActivateEvtO, and

78

DoUpdateEvt(). It also supports menu commands such as DoNew(), DoOpen(),

DoClose(), DoSave(), Undo(), and Redo(). Our framework implements multiple

levels of undo and redo operations, and the Undo and Redo stacks are contained in the

Window class. The template method Undo() undoes the command on the top of the

Undo stack. After a command is undone, it is popped off the Undo stack and then

pushed onto the Redo Stack. The template method Redo() redoes the command on the

top of the Redo stack. After a command is redone, it is popped off the Redo stack and

then pushed onto the Undo Stack. The Window object is also responsible for creating

the document object and subpanes. The abstract methods Create Document() and

CreateSubpanes() must be overridden in subclasses to create the document and

subpanes in the Window object.

4.7.13. The Menu Class

The abstract class Menu implements standard menu operations such as enabling

and checking menu items, and provide default behavior for handling menu commands.

The abstract method DoMenuCommand() must be overridden in subclasses to dispatch

menu commands to the appropriate View methods. DoMenuCommand() will be

invoked by the template method HandleMenuCommand() of the Menu Bar class. The

abstract method DoSetupMenus() is often overridden in subclasses to enable or check

menu items.

4.7.14. The Menu Bar Classes

The Menu Bar class contains and handle menu objects. It provides methods for

the user to install and remove menu objects. It also dispatches menu commands to the

responsible menu object. The template method HandleMenuCommand() executes the

menu command by invoking the abstract method Do It() which is overridden in the

79

subclass of Command and push it onto the undo stack of the frontmost window object

if it is an undoable command. When there is a Mouse Down event in the menu region,

HandleMenuCommand() is invoked by another template method DoMouseDownEvt()

defined in the Application class. In most cases, the programmer is not required to

subclass MenuBar.

4.7.15. The Palette Class

The abstract class Palette is similar to the combination of the Menu and

Menu Bar classes. It supports multi-dimensional palettes and implements standard

palette operations such as turning on or off the highlighting of palette items. It also

handles undoable palette commands in a similar way to the Menu Bar class which

handles undoable menu commands. The template method DoMouseDown() executes

the palette command by invoking the abstract method Do It() which is overridden in the

subclass of Command and push it onto the undo stack of the frontmost window object

if it is an undoable command. The abstract method DoMouseCommand() must be

overridden in subclasses to dispatch palette commands to the appropriate View

methods.

4.7.16. The Graphics View Class

The domain-specific class Graphics View is a subclass of the abstract superclass

View. It uses the underlying shape library to implement standard shape manipulation

operations, such as Cut, Rotate, and Select All, found in most conventional drawing

programs. It also provides hooks to allow the Menu Bar and Palette objects to be

connected with the Graphics View object. The palette object, for example, can send the

message SetPaletteState() to the GraphicsView object so that the Graphics View object

knows what kind of shape should be drawn next. The Graphics View class overrides

80

the abstract methods DoSingleClick(), DoDoubleClick(), DoTripleClick(), and

Do Drag() defined in its abstract superclass View to support standard mouse actions.

To create simple drawing programs, the programmer can directly instantiate

Graphics View objects. Also, the programmer can subclass Graphics View to

implement application-specific operations such as checking the consistency of a graph

diagram.

4.7.17. The GraphicsFileDocument Class

The domain-specific GraphicsFileDocument class comes with the domain-

specific View class Graphics View. It overrides the abstract methods Do Read() and

Do Write() defined in its abstract superclass File Document. Do Read() reads shape data

from a disk file into a linked list (shapeList) of shapes, while Do Write() writes shape

data from a linked list to a disk file. Standard document operations, such as opening

and closing files and putting up dialogs to get file names or to ask the user if a modified

file should be saved before closing, are inherited from the abstract superclass

File Document.

4.7.18. Other Classes

Other classes such as Clipboard, Alert, Dialog, Control, and their subclasses

simply provide an easy-to-use, object-oriented interface to the underlying Macintosh

Toolbox routines.

4.8. Example Draw: An Example Application

Figure 4.9 shows a screen dump of the Example Draw application in order to

give an idea of what kind of applications our framework supports. The Example Draw

application instantiates the domain-specific Graphics View and GraphicsFileDocument

81

a File Edit Pattern

Fig. 4.9 An example application created using OSU Application Framework

classes. The Example Draw supports: 1) moving, dragging, and zooming of windows,

2) multiple concurrently displayed windows, (3) concurrent editing of two drawings in

two scrollable subpanes contained in the window, 4) broadcasting changes in the

model (shapeList) to its two dependent views enclosed by the two subpanes, 5) setting

the pattern in which succeeding shapes will be drawn, and 6) file and dialog

management for reading and writing the model data to and from a file on disk. The

main difference is that the implementation of Example Draw based on the OSU

application Framework required about 300 lines of C++ code whereas the

implementation of the same application based on the Macintosh Toolbox required at

82

least 20 times as such. The source code that implements the Example Draw application

is listed in Appendix A.

4.9. Statistics

The current implementation of the OSU Application Framework consists of 82

classes with 874 methods and 16038 lines of C++ code. The source code statistics for

each part of the OSU Application Framework is given in Table 4.1. To write a typical

Macintosh application, the programmer only needs to know the details of a subset of

these classes and methods.

OSU Application
Framework Component

Number of
Classes

Number of
Methods

Number of
Lines of Code

Framework Classes 46 436 8976

Data Structure Library 26 311 4938

Shape Library 15 196 2124

Total 82 874 16038

Table 4.1 Source code statistics of OSU Application Framework

4.10. OSU Application Framework, MacApp, and ET++

This section gives a brief overview of MacApp and ET++, identifies their

shortcomings, and compares them with our application framework. Table 4.2

summarizes the differences between the OSU Application.Framework, MacApp, and

ET++.

83

Framework
Feature

OSU
Application
Framework

MacApp ET++

Implementation
Language C ++

Object Pascal
C++

C++

Window System Macintosh Macintosh SunWindow,
X, NeWS

Data Structures Support Basic Support Support

Shape Library Support No Support Basic Support

Application Class Small Big small

Menu Class Yes No Yes

Menu Handling Direct Message Target Chain Target Chain

MVC Modified Violated Violated

Spearation of View and
Other UI Objects Yes No

Partial
Separation

Undo/Redo Multiple Levels Single Level Single Level

Graphical Specification Yes Yes No

Composite Objects No No Yes

Table 4.2 Overview of related application frameworks

4.10.1. MacApp

Apple Computer's MacApp is an application framework designed specifically

for implementing Macintosh applications. MacApp expanded the functionality of MVC

to become a framework for more complete, generic applications. Although most often

used with Object Pascal, MacApp can also be accessed from C++. Whereas the MVC

approach has a three-part representation of the application, MacApp provides two major

84

components: the document (TDocument) and the view (TView). Similar to our

application framework, TDocument encapsulates the data structure or the model of an

application and knows how to open and close files. The TView class combines the

functionality of the MVC view and controller. MacApp includes classes (see Figure 4)

that provide support for various tasks which are common to most GUI applications

such as printing, handling windows, undo/redo of commands, accessing files, and

managing memory.management. MacApp's approach provides a higher level model

than either a user interface toolkit or MVC.

While MacApp can reduce GUI application development time and decrease the

amount of source code, a number of shortcomings with it have limited its helpfulness.

Although MacApp refines some of the ideas in MVC, much of its design has violated

MVC discipline. For example, in MacApp, the TDocument class is designed to be both

a Model and a Controller since TDocument is a subclass of TEvtHandler (see Figure

4.3). Therefore, MacApp does not directly support separation of user input handling

from data. TDocument is neither a generic model class (it deals only with files) nor a

generic controller class (it contains data). Also, the TDocument object

(model+controller) knows a great deal about its TView objects. This can greatly

decrease code reusability. Furthermore, MacApp does not support the change

propagation mechanism; this mechanism must be created by the programmer. Since

MVC discipline is almost non-existent in MacApp, the MacApp community has

generally agreed that MacApp falls short in providing a reusable design methodology.

MacApp does not have a menu class so that the responsibility of the menu class

is distributed to other event handling classes such as TApplication, TView, and

TDocument. This violates the encapsulation rule of object-oriented design and makes

MacApp application difficult to maintain and adapt to change. Having many objects

85

that can handle menus leads to the use of "target chain" (a linked list of event handlers)

in Mac App. When the user chooses any enabled menu item, the TApplication object

sends the DoMenuCommand() and DoSetupMenus() messages to each of the event

handlers in the target chain. Our experience with MacApp has shown that the use of

target chain makes it difficult to debug MacApp applications since users do not have

much control over the target chain. Our framework, however, does not use a target

chain and requires that the DoMenuCommand() and DoSetupMenus() messages be sent

directly to the appropriate object.

Another drawback of MacApp is that the TApplication class is too big.

TApplication handles many tasks, such as document management, command

management, and menu management, which other classes should handle them. Also,

MacApp does not support the separation of standard user interface objects and view

objects. The TView class is a superclass of all other visual user interface classes.

TView contains many instance variables (e.g. fShown and fSizeDeterminer) and

methods (e.g. Focus() and Adjustsize()) which standard user interface objects such as

control items (e.g. buttons) will never use. Also, most standard user interface objects

do not need the coordinate transformation and clipping handling functionality provided

by the TView class. These problems make the TView class heavyweight and can lead

to a large space or performance overhead when using hundreds or thousands of views

in an application.

Finally, unlike the OSU Application Framework, MacApp provides little

support for manipulating commonly used data structures and no support for creating

and managing various shapes.

86

4.10.2. ET++

The architecture of MacApp provided the base for ET++ which is implemented

in C++ and runs under Sun Window, NeWS, and the X window system. ET++

overcomes several shortcomings of MacApp (see Table 4.1). Like OSU, the

Collection class of ET-H- (see Figure 4.4) is the base class for data structure classes;

and the Application class is much smaller than MacApp's TApplication. Also, ET++

provides a general change propagation mechanism available to all objects. The Object

class maintains a list of dependents allowing any objects to be added or removed from

the list. ET++ also provides a composition mechanism that allows non-standard user

interface objects to be constructed from low-level graphical structures such as lines,

rectangles and texts. However, the composition mechanism is based on declarative

layout specification and ET++ does not provide an interactive tool, like Macintosh

Res Edit, to let the designer graphically layout groups of objects. Also, like MacApp,

MVC discipline is almost non-existent in ET++. While ET-H- has a menu class, it still

uses "target chain" for menu handling operations and the responsibility of the menu

class is distributed to other event handling classes such as Application, View, and

Document.

4.11. Conclusion

The problem of too little functionality is addressed in our framework by using

an object-oriented approach that encourages both the reuse of design and the reuse of

code. Reusable design is supported by the incorporation of change propagation, the

flow of events from the Application Class to the responsible objects, and management

of views within panes, into our framework. Domain-specific view classes, like

Graphics View, can help the programmer create and manage the application-specific

87

graphics that typically appears in an application window. Our framework also

accommodates document (file) management, undo and redo of multiple commands,

commonly used data structures, and the shape library with little or no subclassing. Our

Example Draw application illustrates the degree of functionality that can be achieved by

writing around 300 lines of new code and reusing the design and code in our

framework. These same characteristics also provide support for a larger part of the

development task.

Another common problem with existing application frameworks, lack of an

architectural model for large applications, is also helped by our framework which helps

decompose and structure complex GUI applications via the MVC reusable design

methodology.

The major disadvantage of using existing application frameworks is that it

requires a steep learning curve to use them. Our experience in using the OSU

Application Framework has shown that it is much easier to learn and use than Mac App.

This is partially because our framework is smaller than MacApp, but also because the

design of our framework is much better than MacApp's.

Although the OSU Application Framework is not mature enough at the time of

this writing, some preliminary results have shown that the amount of code that must be

written to create an application using the OSU Application Framework is considerably

less than the amount required when using only the Macintosh Toolbox. As stated in

Section 4.8, the implementation of Example Draw based on the OSU application

Framework required about 300 lines of C-H- code whereas the implementation of the

same application based on the Macintosh Toolbox required at least 20 times as such.

88

The implementation of the OSU v3.0 Petri Net Editor tool can also illustrate the high

reusability of the OSU Application Framework classes.

89

REFERENCES

1. Alger, J. Using Model-View-Controller with Mac App. Frameworks, The Journal
of Macintosh Object Program Development 4, 2 (May 1990), 4-14.

2. Apple Computer, Inc. Inside Macintosh, Volume I, 1985, Published by Addison-
Wesley, Reading, MA.

3. Budd, T. An introduction to object-Oriented programming. Addison-Wesley,
Reading, MA, 1990.

4. Cox, B. Object oriented programming: An evolutionary approach. Addison-
Wesley, Reading, MA, 1986.

5. Gamma, E., Weinand, A., and Marty, R. ET++ -- An object oriented application
framework in C++. In proceedings of ECOOP '89, ed. C. Stephen, Cambridge
University Press, 283-297.

6. Goldberg, A. and Robson, D. Smalltalk-80, The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

7. Johnson, R.E. and Foote, B. Designing reusable classes. Journal of Object-
Oriented Programming 1, 2 (June/July 1988), 22-35.

8. Keh, H.C. and Lewis, T.G. A survey of user interface development tools and
systems. Submitted to Comm. ACM.

9. Knolle, N. T. Why object-oriented user interface toolkits are better. Journal of
Object-Oriented Programming 2, 4 (Nov./Dec. 1989), 26-49.

10. Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming
1, 3 (Aug./Sep. 1988), 26-49.

11. Lee, E. User-interface development tools. IEEE Software 7, 3 (May 1990), 31-
36.

12. Linton, M.A. and Calder, P.R. The design and implementation of InterViews. In
USENIX Proceedings and Additional Papers C++ Workshop, USENIX Assoc.,
Berkeley, CA, (Nov. 1987), 256-268.

13. Linton, M.A., Vlissides, J.M. and Calder, P.R. Composing user interfaces with
InterViews. IEEE Computer 22, 2 (Feb. 1989), 51-60.

14. Myers, B.A. et al. Garnet Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

90

15. Schmuker, K.J. MacApp: An application framework. Byte 11, 8 (Aug. 1986),
189-193.

16. Ur locker, Z. Abstracting the user interface. Journal of Object-Oriented
Programming 2, 4 (Nov./Dec. 1989), 68-74.

17. Weinand, A., Gamma, E., and Marty, R. ET++ An object oriented application
framework in C++. In proceedings of OOPSLA '88 (San Diego, CA, Sep.
1988), 46-57.

18. Weinand, A., Gamma, E., and Marty, R. Design and implementation of ET++, a
seamless object-oriented application framework. Structured Programming 10, 2
(1989), 46-57.

19. Wilson, D.A., Rosenstein, L.S., and Shafer, A. Programming with Mac App.
Addison-Wesley, Reading, MA, 1990.

20. Wirfs-Brock, R.J. and Johnson, R.E. Surveying current research in object-
oriented design. Comm. ACM 33, 9 (Sep. 1990), 259-264.

21. Wirfs-Brock, A., Johnson, R., Cunningham, W., and Linton, M. Panel:
Designing reusable designs -- Experiences designing object-oriented frameworks.
In proceedings of ECOOP / OOPSLA '90 (Ottawa, Canada, Oct. 1990), 234-234.

22. Young, D.A. The X Window System Programming and Applications with Xt.
OSF/Motif Ed., Prentice-Hall, Englewood Cliffs, N.J., 1990.

91

Chapter 5

Petri-Net-Based Object-Oriented Conceptual Modeling of Graphical

Direct-Manipulation User Interface Systems

5.1. Introduction

This chapter discusses the OSU v3.0 model of graphical direct-manipulation

user interface (GUI) systems. OSU v2.0 has been based on a hierarchical sequence

language, however, OSU v3.0 uses annotated Petri nets as the underlying specification

language. Although the approach presented in this chapter can also be applied to other

direct-manipulation user interface platforms, we will use Macintosh direct-manipulation

user interface terminology for discussions throughout this chapter. In what follows the

term "OSU" refers to OSU v3.0 unless explicitly stated otherwise.

Petri nets have gained popularity over the past few years as a formal model for

concurrent and asynchronous systems, given their graphical expressiveness and the

capability of carrying out general validations using previously developed analysis

techniques [18]. Petri nets have been used to model conventional user interfaces. For

example, van Biljon [21] used extended Petri nets to specify man-machine dialogues.

A criticism which is often raised against Petri nets is the unmanageable size of

the models of complex systems; however this drawback can be reduced by using high

level Petri nets, such as colored Petri nets [7, 9] and annotated Petri nets [1, 10, 17]

which are often more concise and suitable for the analysis of the described systems.

Moreover a further improvement can be obtained if models based on those nets contain

hierarchy, in which the object representing a subsystem can be described by an

autonomous net exchanging messages, through the movement of tokens, with other

92

objects of the system. Annotated Petri nets are high level Petri nets, since they can be

given a sophisticated semantics by assigning various kinds of "inscriptions" to the

elements of the net [2].

Graphical direct-manipulation user interface software is inherent difficult and

expensive to build without tools that simplify the design and implementation process

[6, 13, 16, 20]. Many user interface development systems (UIDS's) [3, 4, 5, 8, 14,

15] have attempted to facilitate the development of GUI application, but with little

success. Since most UIDS's only help the designer create toolkit components in a

window and/or layout and use predefined toolkit items, only modest improvements in

productivity can be expected from them. Several shortcomings which are common to

most existing UD3Ss have limited their use (see Table 1.1):

A. They offer too little functionality, and support only small part of the GUI
software development task.

B . They lack architectural models and abstraction mechanisms for large GUI

applications.

C. Representation of Control Sequences is difficult to understand, edit, and reuse.

D. They lack a single conceptual, graphical model to be used as a medium for

integrating specification, modeling, design, validation, simulation, and rapid

prototyping.

To overcome the above shortcomings, we propose an object-oriented

conceptual modeling approach for constructing GUI applications. The conceptual

model is the abstract representation of a software system as perceived by the users'

community and the development team [12]. The proposed conceptual modeling

approach uses an annotated Petri net notation for representing the object-oriented

concepts and the underlying objects themselves and has the following features:

93

it is a visual and formal approach which is capable of modeling both the static and

dynamic aspects of GUI applications at a higher level of abstraction through the

use of an object-oriented application framework that supports the model-view-

controller (MVC) design methodology and embodies most generic functionality

required when constructing a GUI application;

it benefits from known Petri net analysis techniques to verify behavioral

properties of the modeled system;

it produces an executable specification which can be directly executed by a

suitable interpreter to simulate the system being modeled and can be easily

translated into almost any existing implementation language, such as Pascal, C,

and C++;

it is able to integrate the phases of specification, modeling, design, simulation,

validation and rapid prototyping of GUI applications within the framework of the

operational software paradigm [23].

As discussed in Chapter 4, the underlying MVC-based OSU Application

Framework offers much more functionality than a user interface toolkit and supports a

significant part of the GUI software development task. Another common problem with

existing application frameworks, lack of an architectural model for large applications, is

helped by the MVC reusable design methodology which helps decompose and structure

complex GUI applications and by the annotated Petr net which represents the linked

structure of a GUI application. The annotated Petri net basis provides an abstract

graphical representation of the modeled system and can be used as a medium for

specification, documentation, design, simulation, validation, and rapid prototyping.

94

Furthermore, the graphical representation and the use of net hierarchy promote the

understandability, editability, and reusability of the model. Readers not familiar with

Petri nets, application frameworks and MVC are referred to the articles by Peterson

[18], Wirfs-Brock [22], and Krasner [11] respectively.

The remainder of this chapter is organized as follows. The annotated Petri nets

are described in Section 2. In Section 3 the OSU model of GUI applications is

discussed. Section 4 presents a methodology, based on annotated Petri nets, for

object-oriented conceptual modeling of GUI applications. In Section 5, we use two

examples to illustrate the use of the annotated Petri nets as a high-level design

representation and their application to the modeling of GUI applications. Section 6

demonstrate the use of reachability graph analysis techniques using an example from

the application area of hypertext-based information retrieval systems.

5 . 2 . Annotated Petri Nets

In order for the model to be translatable into a program, we have added certain

annotations to the Petri net. These annotations permit the incorporation of messages to

invoke their corresponding methods (functions) and the specification of conditional

flow and execution order of concurrently activated paths. We also include inhibitor

arcs [18] in the annotated Petri net. Throughout this section, the term "window(s)"

may refer to any combination of window(s), modeless dialog(s), modal dialog(s), and

alert(s) dependent upon the context.

5.2.1. Places

Places are drawn in the net as circles. Each place is labeled with a unique name

(e.g. P1) and has a type (e.g. MENU). Each place represents a user interface object

95

class or an application-specific object class. User interface places are associated with

resource IDs. Resource IDs are used to retrieve the static descriptions of the user

interface objects from an application's binary resource file. For example, the resource

ID associated with a WINDOW place may be used to retrieve the descriptions of the

window object itself, its subpanes, the document created by the window, and the views

created by the document. A subpane's description includes several pieces of

information, such as its upper-left corner location in the coordinates of the superpane,

its vertical and horizontal coordinates, the ID of the view which it clips, whether or not

any change in size of the superpane directly alters the subpane's size, and the shape of

cursor as the mouse moves into the pane. The description of a view may include the

view ID, the size of the view, the view class name, and the name of the file containing

the view class. Places representing application-specific classes are associated with file

and class names which are used to locate the application-specific classes stored in text

files. Also, external variables of simple types can be declared and associated with each

user interface place. A Petri net place may also represent a subnet, so this results in the

concept of hierarchy in the model. Subnets are associated with subnet IDs which can

be used to obtain their definitions.

$.2.2. Tokens

Tokens are represented as dots inside circles. Each dot is displayed in either

black or gray. Each place can contain more than one token, and each token represents

an instance of that place type. Tokens carry pieces of information. For each user

interface place type, a set of attributes is defined and tokens in each place will have a

specific token type. Attributes carried by tokens can be modified or given initial values

from the firing of transitions, described below.

96

The number of tokens k in a place indicates that k instances of that type are

currently instantiated. In addition, the number of tokens k in a user interface place also

indicates that there are k instances of that user interface class currently displayed on the

screen. Black tokens denote active instances (e.g. menus and the frontmost window),

while gray tokens denote inactive ones (e.g. other inactive windows). The precise

appearances of the user interface objects displayed on the screen are determined by the

current values of the attributes of their corresponding tokens. For example, some

attributes are used to determine if a menu item should be disabled or a dialog control

item (e.g. push button, check box, and radio button) should be deactivated.

Priority, one of the attributes carried by tokens, is an integer constant that is

used to determine which user interface objects are active. It is also used to determine

the front-to-back position of a window. Tokens can be blackened or dimmed

dependent upon their priority values. Only tokens with the highest priority (normally

zero) are displayed in black. Places representing application-specific classes contain

only gray tokens. Priority values may be modified from the firing of transitions. For

example, firing a transition representing the activation of an inactive window will

change the value of the priority associated with the token representing that window to

zero (highest priority) and modify the values of priority carried by other tokens to

reflect the changes on the front-to-back positions of windows. The priority associated

with the token representing a modal dialog or an alert instance is always zero and will

never be changed since when a modal dialog or an alert is visible, it's always the

frontmost window and remains frontmost until the user dismisses it.

97

5.2.3. Transitions

Transitions are drawn in the net as bars labeled with unique names. Each

transition represents a mouse (or keyboard) action (single click, double click, or drag)

performed on a mouse-selectable (or type-in) area in one of the user interface objects

represented by the input places of the transition. Although a transition may have many

input places, only one of them can be the owner of the transition. Implicit predicates

can be inscribed on transitions. They are boolean expressions to be evaluated on some

of the attributes of the tokens present in the input places of the transitions. For

example, given a transition t representing a mouse action on the fifth control item (item

5) in a modeless dialog d represented by a token x, for t to be enabled, d must be the

frontmost window (x.priority == 0) and the control item is active (((x.itemState &

Ox0010) » 4) == 1). There are two types of special transitions: INIT and QUIT.

INIT transitions are represented as double bars and the firing of an INIT transition can

be thought of as entering a system. QUIT transitions are displayed as black rectangles

and the firing of a QUIT transition represents quitting a system (e.g., selecting the Quit

item from the File menu). INIT transitions do not have any input places, while QUIT

transitions do not have any output places.

5.2.4. Arcs

Places and transitions are connected by directed arcs. Input arcs and inhibitor

arcs connect places to transitions and output arcs connect transitions to places. The

firing of a transition is conditioned by the presence of tokens in each of its input places.

It can be interesting in the field of direct manipulation user interface to condition this

firing by the absence of tokens in one or several of these input places. This allows, for

example, the conditioning of the choice of a menu item or the selection of a modeless

98

dialog button by the absence of a modal dialog or an alert. This can be represented by

the definition of inhibitor arcs which condition the firing of a transition by the absence

of tokens in the associated input places. An inhibitor arc from a place to a transition

has a small circle rather than an arrowhead at the transition. For graphical conciseness,

a bold place is used to indicate that an inhibitor arc is drawn from the place to each of

the transitions owned by all other places.

Messages can be inscribed on the output arcs of transitions. A message is the

name of a function with any associated parameters. Sometimes, it is necessary to

include the class name as part of the message to resolve ambiguities. Messages can be

interpreted to determine the initial values of the attributes carried by the tokens which

are created by the transition firing or to change the values of the attributes carried by the

tokens which have caused the transition to fire. Predicates and sequence numbers can

also be inscribed on the output arcs of transitions to provide the net with more

semantics. Predicates permit the specifications of conditional flow in the net.

Predicates associated with the output arcs of transitions are boolean expressions whose

values (either true or false) are dependent upon the current state of the net, the values of

external variables, or the results of interpreting boolean messages during the firing of

transitions. Sequence numbers are integer constants which can be used to determine

the execution order of concurrently activated paths at the moment of firing a transition.

$.2.5. Transition Firing

A transition may fire if it is enabled and is enabled if all of the following

conditions are met: 1) each of its input places connected by input arcs has at least one

token; 2) the implicit predicate inscribed on it is satisfied; and 3) the places associated

with inhibitor arcs of the transition do not have any tokens. A transition fires by: 1)

99

removing one token satisfying the predicate from each of the input places connected by

input arcs; 2) interpreting the messages inscribed on the output arcs to determine the

values of attributes carried by the existing and newly created tokens; 3) evaluating the

boolean expressions attached to the output arcs of the transition; and 4) adding tokens,

according to the sequence numbers inscribed on output arcs, to only those output

places which correspond to the truth value of the boolean expressions. The firing of

transitions which have both inputs and outputs from the same place (self-loops) may be

thought of as consisting of modifying the values of old tokens according to the

messages inscribed on the output arcs instead of removing old tokens and adding new

ones. Note that the firing of a transition may result in side effects which change the

values of attributes carried by existing tokens that are not involved in the firing of the

transition. However, the side effects from the firing of a transition do not affect the

distribution of tokens resulting from the firing of the transition. Note that the firing of

a QUIT transition clears all places of tokens.

5.2.6. Initial Marking

To begin the firing of a Petri net, an INIT transition must be fired. Firing an

INIT transition is equivalent to activating a system. After an INIT transition is fired, it

is disabled and remains disabled until the system is activated again. The initial marking

represents the initial distribution of tokens into places in the net and specifies the initial

values of the attributes of each token in the initial marking. The initial marking can be

obtained after the firing of an INIT transition. Messages, predicates, and/or sequence

numbers inscribed on the output arcs of the INIT transition are interpreted and/or

evaluated during the firing of the INIT transition to generate the initial marking. In

what follows we shall use the term "marking" to represent both the distribution of

100

tokens and the current values of the attributes of each token in the net unless explicitly

stated otherwise.

$.2.7. Hierarchy

As mentioned above, a Petri net place may also represent a subnet. This results

in a natural hierarchy in the model. For large software systems consisting of

subsystems, a Petri net place (subnet) may represent a subsystem, resulting in one

form of abstraction. Another form of abstraction will be discussed in a later section.

The execution of a Petri net is affected by the presence of hierarchy in the following

way. When a token is added to a subnet place p representing a subsystem, the user

interface objects corresponding to those places which contain at least one token in the

initial marking of the lower level subnet are displayed on the screen. Execution in the

lower level subnet continues concurrently with the enabled transitions in the higher

level net. The execution in the lower level subnet terminates if one of the enabled

transitions, connected by p through input arcs, at the higher level net is fired.

Otherwise, the execution continues in the lower level subnet until no transitions in it are

enabled.

5.3. OSU Model of GUI Applications

The OSU model based primarily on an annotated Petri net represents the

relationships that link individual user interface objects and user-defined classes together

into a GUI software system. The logical structure of the annotated Petri net which is

used for representing the design of a GUI application can then be translated into source

code that implements both the user interface and the functionality of the application. In

our Petri net representation model, the user-defined classes are only statically

101

represented, since transitions do not have input arcs coming from the places

representing user-defined classes.

In summary, the OSU model of the user interface of a GUI application employs

both the linked structure and the execution semantics of an annotated Petri net to

describe all possible execution paths that a user may follow through the user interface.

The annotated Petri net can then describe the user interface of a GUI software system

representation model in which the Petri net structure embodies the linked structure of

the user interface; the marking describes the state of the user interface; and the evolution

of the marking describes the functioning of the user interface. During execution, the

current marking determines which user interface objects are presented to the user and in

what manner and/or at which locations they should be presented. The transitions

enabled under the current marking determine which items associated with which user

interface objects are currently selectable. When the user clicks on one of the selectable

items, one of the enabled transitions is fired. Firing an enabled transition results in a

new marking, thus causing the presented user interface objects to change as well. The

execution of the user interface terminates when a marking is reached in which no

transitions are enabled.

However, the execution control of the graphical direct-manipulation user

interface can be represented by the Petri net model in two ways. The first method does

not use the model's hierarchy, while the second method uses the model's hierarchy.

The use of hierarchy provides another form of abstraction. Abstraction is an important

technique for dealing with the problem of complexity. The goal of abstraction in

modeling is to isolate those aspects that are important for some purpose and suppress

those aspects that are unimportant [19]. Proper use of abstraction for modeling GUI

applications allows the same model to be used more efficiently for design and analysis.

(Cancel)

102

Figure 5.1 shows that a dialog is linked to an MVC simulation window through the OK

push button. It will be used as an example to illustrate the use of abstraction to reduce

the complexity of the Petri net model. The dialog has three control items: a Cancel

push button, an OK push button, and a static text item. The window contains four

views that are Numeric view, Dial view, Dice view, and Model view. The Model view

is used to show the state of the model upon which other three views are dependent.

The execution semantics of the linked structure specify that a mouse click in the OK

push button will result in the removal of the dialog from the screen and the display of

the simulation window on the screen.

Shaw the PIVC Simulation.

C OK)

..a MK simulation

Views and controllers Model

numeric
view:

@ Model Stet.: -99
M

Dependent Viewe:
Dial view: Dlco mew

Numeric view
Dial view
Dice view

.

_ \ -

' ;f 1

C Roll)

Fig. 5.1 A modal dialog linked to a window containing four views

The linked user interface objects shown in Figure 5.1 can be represented by the

Petri net model in two ways. The first method does not use the model's hierarchy and

103

assumes that each place in a Petri net represents a lower level object (e.g. a push button

or a view). The dialog can then be represented by a Petri net fragment consisting of

four places (three control items and the owning window) and two transitions and each

transition is connected to all of these places through input arcs. Similarly, the

simulation window can be represented by another Petri net fragment consisting of five

places (four views and the owning window) and each transition is connected to all of

them. When the dialog is connected to the simulation window by the transition

representing the OK push button, an output arc is created from the transition to each of

the places in the Petri net fragment representing the simulation window. Figure 5.2

illustrates this representation.

The second representation technique uses the model's hierarchy and provides

another form of abstraction. This approach is currently in use in the OSU user

interface model. This method uses abstraction to reduce the complexity inherent in

direct-manipulation user interfaces by encapsulating a number of separate related

objects within a single conceptual entity. For example, a dialog encapsulates individual

dialog control items and their owning window at a higher, abstract level at which the

items together with the owing window form a single entity. This approach closely

models the concept of the standard Macintosh user interface. In the Macintosh user

interface, for example, every control (button or dial) does not have its own existence

and belongs to exactly one window called its owning window.

With these abstractions, the dialog can be represented as a simple lower level

Petri net in which each place represents a component of the dialog and is not connected

to any transitions. Then, at the higher level, the dialog will be represented by a single

place connected to two transitions through input arcs. Also, the simulation window

can be represented using the same technique as the dialog. When the dialog is

104

D.1 : Owning Window of Dialog D

D.2 : StaticText of Dialog D

D.3 : OK PushButton of Dialog D

D.4 : Cancel PushButton of Dialog D

W.1 : Owning Window of W

W.2 : Numeric View in W

W.3 : Dial View in W

W.4 : Dice View in W

W.5 : Model View in W

tl : Click in the Cancel PushButton (D3)

t2 : Click in the OK PushButton (34)

t3 : Click in the Close Box of W

t4 : Click in the Content Region of W

Fig. 5.2 Petri net representation of Fig. 5.1 without using hierarchy

D : DIalog
D.1 : Owning Window

D.2 : StaticText
D.3 : OK PushButton

D.4 : Cancel PushButton

W: Window Containing Four Views
W.1 : Owning Window

W.2 : Numeric View

W.3 : Dial View

i W.4 : Dice View
W.5 : Model View

a : Click in the Cancel PushButton (D3)

t2 : Click in the OK PushButton (D4)

6 : Click in the Close Box of W
t4 : Click in the Content Region of W

Fig. 5.3 Petri net representation of Fig. 5.1 using hierarchy

connected to the simulation window by a transition, an output arc is created from the

transition to the single window place. This construction is illustrated by Figure 5.3.

105

The execution semantics specify that a token arriving at a higher level place causes a

token to appear in each of the places in the lower level net. Since the lower level net

contains no transitions, execution may continue only by firing enabled transitions in the

higher level net.

5.4. Methodology

The concepts and notation that support our conceptual modeling techniques

have been presented in Section 5.2.. We now discuss the process for formulating an

annotated Petri net model. In this section we present a methodology for object-oriented

conceptual modeling of GUI applications through the use of the OSU Application

Framework, which embodies most generic functionality required when constructing a

GUI application.

The methodology consists of building an executable model of a GUI application

by deriving new concrete object classes from existing object classes in the OSU

Application Framework and connecting a set of concrete object classes through their

message interfaces. It uses the annotated Petri net notation for representing object-

oriented concepts and the underlying objects themselves. The executable model can

then be directly executed by a suitable interpreter.

The first step of the methodology is the determination of the generic user

interface object classes that are to be subclassed to make up the user interface portion of

the modeled system. The object class determination process can be outlined as

follows. First, a generic user interface object class is chosen from the OSU

Application Framework. This is done by drawing a typed user interface place. We

then specify the value of an instance variable which determines the visual characteristics

of the selected user interface object class. For the WINDOW object class, for example,

106

the visual characteristics may include the type, size, and location of the window object,

the description of its subpanes, and the information about the views which are to be

displayed in the window or subpanes. We do this by associating a resource ID with

the typed user interface place.

The second step of the methodology is the derivation of new concrete classes

from the generic user interface object classes selected above through subclassing and

inheritance. That is, when a generic user interface object class has to be specialized

into a subclass, we customize it to add new application-specific data (instance

variables) and behavior (methods). Adding new application-specific data to a generic

user interface object class can be done by declaring external variables and associating

them with the place representing it. We then determine which mouse-selectable (type-

in) areas in the user interface object will initiate action messages when mouse

(keyboard) actions are performed on them to add new behavior. This is done by

drawing transitions for each user interface place and connecting each place to its owned

transitions through input arcs. Note that some mouse-selectable areas will initiate

default action messages defined in the OSU Application Framework. For example,

when the user clicks in a view displayed in a window, the window, by default, will

send a DoMouseCommand(...) message to the view. This implies that you should not

draw a transition for representing the mouse action performed on this view unless you

want to override the default behavior.

The third step of the methodology is the determination of the underlying

application-specific object classes which implement the application-specific functions.

This corresponds to drawing places of type APPL and associating the file and class

names with them.

107

The fourth step is the determination of the message connections between the

various concrete object classes (user interface object classes and application-specific

object classes). That is, we specify what objects receive what action messages sent by

what objects. So, the required action is drawing output arcs which connect the

transitions owned by places representing message-sending object classes to those

places representing message-receiving object classes and associating messages with

those output arcs. An object can be both the sender and receiver of an action message

at the same time. This can be represented as a transition which has both the input arc

and the output arc with a message annotation from the same place (self-loop). When a

transition is not connected to its owing place through an output arc, this implies the

corresponding object sends a message Do Close() to itself.

After the first four steps, this methodology produces an executable specification

(annotated Petri net model) which describes the static, structural aspects of the modeled

system. This executable specification can then be directly executed by a suitable

interpreter. Thus the dynamic, behavioral aspects of the modeled system can be

brought out by executing the annotated Petri net model. The movement of tokens in the

net can be viewed as message passing among all of the objects that make up the

modeled GUI software system. The marking describes the state of the system and the

evolution of the marking describes the functioning (state transition) of the system.

During execution, the current marking determines which user interface objects

are presented to the user and in what manner and/or at which locations they should be

presented. The transitions enabled under the current marking determine which items

associated with which user interface objects are currently selectable. When the user

clicks on one of the selectable items, one of the enabled transitions is fired. Firing an

108

enabled transition results in a new marking, thus causing the presented user interface

objects to change as well. The execution of the GUI application terminates when a

marking is reached in which no transitions are enabled.

5.5. Examples

Now, we would like to use two examples, a conventional drawing program

called Mini Draw and a hypertext-based information retrieval system (HIRS), to

illustrate the use of annotated Petri nets as a high-level design representation, and their

application to the modeling of GUI applications.

5.5.1. Mini Draw

The example Mini Draw application supports multiple concurrently displayed

windows, cut-and-paste editing operations, reading and writing data to and from

document files on disk, undo and redo of multiple commands, and setting the pattern in

which succeeding shapes will be drawn.

Figure 5.4 shows the annotated Petri net design representation for the example

Mini Draw application. The WINDOW place is worth noting in the annotated Petri net

graph. We previously noted that a WINDOW place also contains information about the

views which are to be displayed in the window and the file and class names of the

document that creates the views. In the Mini Draw example, the window place is

associated with only one view object class called Graphics View. The object class that

handles the creation of the GraphicsView object is called GraphicsFileDocument. The

domain-specific Graphics View class is a subclass of the View class, while the domain-

specific GraphicsFileDocument class is a subclass of File Document (See Figure 4.2).

The GraphicsFileDocument class encapsulates the data structure (model), a linked list

p6

P1

About MiniDraw

t20 OK

P2
tS R

tl

Disable (4)

o()

EnableItem(4)

Ena

k(1)

P4

109

ight(1)

0

CheckMar (2)
UnCheckMar (1)

(3) Chec k(1)

eItem(5) eItem(5) UnChec ark(2)
t10 Copy tl 1 Paste t13

t12 SlectAll

View::DoCut(GraphicsVie .:DoPaste(t14
aphicsVie ::DoCopy(Black

Enablel
Ena leltem(3

(3)

t3 t4 t5 t7
Ope Close Save

.

.

ew()
Old() Save()

Quit

GraphicsView::Se .1 State(1)

t15

Gr View::DoSelectAll() GraY

GraphicsView::SetPagern(1

GraphicsView::SetPattern

Crap View::SetPalState(4)

GraphicsView: etPalState(2)

Graphics View:. tPalState(3)

t16 t17 t18 t19

SelectionTool Square Rectangle Circle

Hi: t(3)
Hig t(1) Hig ight(2)

Highl. t(4)

P5

Fig. 5.4 Annotated Petri net representation of MiniDraw

p6

P1

*ght(1)

ew()

Disable (4) k(1)
About Mini Draw ...

110

E.nableItesn(4)

Ens. (3) Chec k(1)

UnChec ark(2)

t20 OK

P2

P4 Pattern
MENU

131 CheckMar (2)
UnCheckMar (1)

t8 R

eItem(5)

t10 Co
eItern(5)

tl 1 Paste
t12

GraphicsVie
::DoCopy(

0 View::DoCut(
aphicsVie

SlectAll

.:DoPaste t14

t13

Enablel (3)
Ena leltem(3
t3 t4 t5

Close

Ope Old()
ew()

Black A
t15

Gra. , sView::DoSelectAll() Gray

GraphicsView::SetPauern(1a
Save Quit

Save()

GraphicsView::Se tate(1)

Graphics View: etPalState(2)

Graphics View:.

t17t16
SelectionTool

GraphicsView::SetPattern

Grap View::SetPalState(4)

etPalState(3)

t18

Rectangle

(3)

Hight' t(4)

Square

Hi: t(1) Hig ight(2)
Hig

P5
PALETTE

128

t19

Circle

Fig. 5.5 The marking resulting from firing transition tl (INIT) in Fig. 5.4

P1

t1

.ght(1)

111

Disable (4) k(1)
About Mini Draw ...

p6

t20

P2

EnableItem(4)

Ena (3)

Pattern
MENU

131 CheckMar

UnCheckMar

Ena
t3

File
MENU

129

leltem(5)

t10 Copy tl 1 Paste t13
t12 SlectAll

View::DoCut(Graphics Vie .:DoPaste(t14
aphicsVie ::DoCopy Black A

t15

eltem(5)

Enablel (3)
leltem(3

t4 t5
Close

Ope Old()

t7
Save Quit

Save()
WINDOW

128

GraphicsView::Se

Grap View::DoSelectAll() Gray4

GraphicsView::SetPaulern(1)

GraphicsView::SetPattem)

Crap View::SetPalState(4)

Graphics View: etPalState(2)

GraphicsView:. etPalState(3)

t16 t17 t18 t19
SelectionTool Square Rectangle Circle

Hi
Hig

Hig ight(2)
ht(3)

High!' t(4)

P5

Fig. 5.6 The marking resulting from firing transition t3 in Fig. 5.5

P1

ight(1)

Disable (4) Chet k(1)
About Mini Draw ... w0

112

p6

P4

Edit
MENU

130

Pattern
MENU

131 CheckMart(2)
EnableItem(4) UnCheckMart(1)

&
Ena (3) Chec k(1)

&
eItem(5) UnChec ark(2)

tll Paste t13
t12 SlectAll

() phi. View::DoCut(GraphicsVie .:DoPaste(
aphicsVie ::DoCopy(

t20 OK

P2 eItem(5) E

t8 Red t10 Copy

Enablel m(3)
Ena leltem(3

t.3 t4 t5 t. t7
Close Save Quit

Ope Old() Save()

w()

t14
Black A

t15

View::DoSelectAll() Gray4

GraphicsView::SetPanern(1)

GraphicsView::Se State(1)

GraphicsView::SetPattem)

Grap View::SetPalState(4)

GraphicsView: etPalState(2)

GraphicsView:. etPalState(3)

t16 t17 t18 t19

SelectionTool Square Rectangle Circle

Hig (3)
Hi: t(1) Hig ight(2)

Hight' t(4)

P5

Fig. 5.7 The marking resulting from firing transition t2 in Fig. 5.6

113

of shapes, of the Graphics View class and provides the means for reading the data from

a file into the model and writing the data in the model out to a file. Messages sent to the

GraphicsView object must be explicitly represented in the annotated Petri net model.

For example, the GraphicsView::DoCut() message inscribed on the output arc of the

transition t10 (the menu item Cut) indicates that the Edit menu object will send the

Do Cut() message to the Graphics View object in the window when the user chooses the

menu item Cut from the Edit menu. However, messages sent to the

GraphicsFileDocument object are not explicitly shown in the design representation,

since the GraphicsFileDocument object does not have a controller's function and thus

will never handle any user input (keyboard, mouse, and menus) directly. As discussed

in Chapter 4, after the Graphics View object handles the user input, it notifies the

model encapsulated in the GraphicsFileDocument object to change itself and the model

in turn broadcasts change messages to its dependent views (See Figure 4.5).

When the Mini Draw application is launched (transition INIT is fired), the

Application object does the following things: 1) it creates the Apple, File, Edit, and

Pattern menus, a window, and the tool palette; 2) it sends the message Disablehem(4)

to the File menu to disable the fourth item (Save), the message CheckMark(1) to the

Pattern menu object to mark the first menu item (Black) with a check mark, the

message Open New() to the window object to initialize the document that will create the

Graphics View object, and the message Highlight(1) to the Palette object to highlight the

first tool (Arrow); and 3) it sends the Draw Yourself() message to each of the created

user interface objects to draw itself on the screen. Note that the Draw Yourself()

messages are not explicitly shown in the design representation, since they are implied

by the output arcs of the INIT transition. This stage is equivalent to the initial state of

the Mini Draw application. During this initial state, shown in Figure 5.5, all transitions

114

except t 1 (INIT) and t6 (Save) are enabled. The user may choose any one of the

enabled items to fire. Transition t6 is not enabled since the implicit predicate inscribed

on it is false (Save disabled). When the user chooses the File menu item New (t3 is

fired), the File menu creates a new window object and then sends the messages

Open New() and Draw Yourself() to the window object, and the message Enableltem(3)

to the File menu itself to enable the menu item Close. Since the menu item Close may

be disabled by the Application object during execution, the message Enableltem(3)

must be sent to File menu each time after a new window is created. The newly created

window becomes the frontmost (active) window, while the previous active window is

made inactive. Figure 5.6 shows this state. The black token in the WINDOW place

represents the active window, while the gray token represents the inactive window.

During this state, if the user chooses the Apple menu item "About Mini Draw ..." (t2 is

fired), an alert containing the description of the Mini Draw application is displayed on

the screen. When the alert is visible, it becomes the frontmost window and other two

windows are made inactive. This state is shown in Figure 5.7. Note that the bold

ALERT place implies that an inhibitor arc is drawn from this place to each of the

transitions owned by all other places. During this state, the only enabled transition is

t20, since all other transitions are conditioned by the absence of tokens in the ALERT

place (P6). The only action the user can take is clicking in the OK button to dispose the

alert. Execution will continue until the user chooses the menu item Quit to quit the

Mini Draw application.

$.5.2. HIRS

Figure 5.8 shows the Petri net model of the structure of a hypertext-based

information retrieval system (HIRS). This HIRS consists of only dialog boxes and

will be used, in the next section, as an example to illustrate the analytic power of the

115

Fig. 5.8 Petri net representation of an HIRS

116

J r
.:..

l'al
?...:E:

Ede

r

Printing
You can print notes, notebooks,

and handbooks:
1. Select one or more icons or

frames.
2. Move or copy them to the

printer icon.
3. Type the number of copies

and choose "OK" .

The system formats the items for
the printer and puts them into
the print queue. Moved. items

rn to the desktop, whilereturn
items a discarded.n

oy.
.1 r

PrintBr
v

0
*ON 11:= (MOVE) (co)P1 (DESKTOP) (QUEUE)

Fig. 5.9 Example dialog box in an HIRS

Petri net formalism. In this example, the HIRS database is a collection of hypertext

nodes containing resource descriptions of dialog boxes. Each of the places in the Petri

net represents a DIALOG type. Each of the transitions except INIT and t1 in the Petri

net represents the event of clicking a PushButton. The transition tl represents the event

of typing into a type-in box (EditText item). Each of the dialog boxes in the HIRS may

contain any combination of StatText, ICON, PICT, EditText, and PushButton items in

which StatText, PICT and ICON items are used for conveying information to users;

EditText items are used for obtaining inputs from users; and PushButton items are used

as hypertext links where users can click with the mouse to get to other dialog boxes in

the system. Figure 5.9 shows an example dialog box. This information retrieval

system supports two types (privileged and restricted) of users. Privileged users are

allowed to retrieve and browse the entire information, but restricted users are not

permitted to see those dialog boxes containing privileged information. HIRS enforces

117

Node# Node Type Marking Node# Node Type Marking

1 interior 10000000000000000000 1 interior 10000000000000000000
2 interior 01000000000000000000 2 interior 00100000000000000000
3 interior 00011000000000000000 3 interior 00000110000000000000
4 interior 00000001100000000000 4 interior 00000000010000000000
5 interior 00000001001100000000 5 interior 00000000000111000000
6 interior 00000000000000010000 6 interior 00000000000001001110
7 dup 2 01000000000000000000 7 interior 00000000000000000001
8 interior 00000110000000000000 8 dup 2 00100000000000000000
9 interior 00000000010000000000 9 interior 00000000000000100000
10 interior 00000000000111000000 10 dup 7 00000000000000000001
11 interior 00000000000001001110 11 terminal 00000000000000000000
12 interior 00000000000000000001 12 dup 1 10000000000000000000
13 interior 00100000000000000000
14 dup 8 00000110000000000000
15 terminal 00000000000000000000
16 interior 00000000000000100000
17 dup 12 00000000000000000001
18 terminal 00000000000000000000
19 dup 1 10000000000000000000

(a) Privileged Users (b) Restricted Users

Fig. 5.10 Reachability graphs for the Petri net in Fig. 5.8

118

browsing restrictions on users by asking for a password to be entered into the type-in

field of a displayed dialog box. Place P1 of the Petri net shown in Figure 5.8

represents the type of this dialog box.

5 . 6 . Reachability Graph Analysis

Reachability graph represents information about the reachable markings and

occurrence sequences in a net. Reachability graph analysis involves the enumeration of

the set of reachable markings for a given initial marking, followed by the graph

theoretic analysis of the resulting directed graph. Though reachability graph analysis

techniques can be applied to verify properties of systems in many application areas, we

discuss below how Petri-net-based OSU can benefit from these analysis techniques

using a simple example, shown in Figure 5.10, from the area of hypertext-based

information retrieval systems.

A simplified version of Peterson's algorithm [18] is used to generate

reachability graphs. Figures 5.10a and 5.10b show the reachability graphs for the Petri

net in Figure 5.8 for privileged and restricted users respectively. To simplify the

analysis, we have ignored the attributes carried by tokens and assumed that predicates

inscribed on transitions are always true. Each node in the graph structure represents a

Petri net state; the state number is indicated in the box and the marking (distribution of

tokens) for each state is listed in the table below the graph. Each arc leaving a node is

labeled with the number of the transition that must fire to create the marking at the end

of the arc. Graph nodes are classified as being interior, duplicate, or terminal. Interior

nodes are nodes that have successors, duplicate nodes are nodes that appear elsewhere

in the graph, and terminal nodes are nodes for which no transitions are enabled and

thus no successors exist.

119

From analyzing the reachability graph for a Petri net, we can gain information

about the properties of an HIRS. The maximum number of tokens in all reachable

markings determine the maximum number of dialog boxes required to be

simultaneously displayed on the screen. The maximum number of tokens can be found

by scanning all nodes in the reachability graph. This information can be used to

determine a reasonable screen layout (e.g. tiling a screen with dialog boxes) or to avoid

overcrowding the screen. For the reachability graphs shown in Figure 5.10, the

maximum number of tokens is 4 (node 11 in Figure 5.10a and node 6 in Figure

5.10b). With the aid of this information, the designer may want to change the sizes

and/or locations of displayed dialog boxes. By scanning all the reachable markings in

the reachability graph for an HIRS, we can also determine which dialog boxes can or

cannot be simultaneously displayed when the HIRS is executed. For example, from

the reachability graphs shown in Figure 5.10, we can determine that four dialog boxes

(places P14, P17, P18, and P19 of node 11) can be concurrently displayed while

dialog boxes represented by places P11 and P13 can never be simultaneously browsed.

This information may be used to locate design errors.

From the reachability graph analysis, we can also verify that all nodes in an

HERS can be reached via some path and/or certain nodes can never be reached from a

particular marking. This information provides the basis for an HIRS to enforce

browsing restrictions. For the HIRS shown in Figure 5.8, a privileged user can reach

node 2 with the marking (01000000000000000000) shown in Figure 5.10a and, from

that marking, he is allowed to see the rest of the dialog boxes in the system. A

restricted user, on the other hand, can never reach the marking

(01000000000000000000). Instead, he can reach node 2 with the marking

(00100000000000000000) shown in Figure 5.10b but, from this marking, he may not

120

see those dialog boxes (places P2, P4, P5, P8, P9, P11, and P16) containing

privileged information. It is also possible to verify that a user can return to the state

where he started browsing. From the reachability graphs shown in Figure 5.10, we

know that both privileged and restricted users can return to their states (node 7

duplicates node 2 in Figure 5.10a and node 8 duplicates node 2 in Figure 5.10b) where

they started browsing.

121

REFERENCES

1. Bruno, G. and Marchetto, G. Process-translatable Petri nets for the rapid
prototyping of process control systems. IEEE Trans. Software Eng. SE-12, 2
(Feb. 1986), 590-602.

2. Genrich, H.J. and Lautenbach, K. System modeling with high-level Petri nets.
Theoretical Computer Science 13 (1981), 109-136.

3. Henderson, D.A., The Trillium user interface design environment. In
Proceedings of SIGCHI' 86, Boston, MA, (April 1986), 221-227.

4. Hewlett-Packard Company, HP Interface Architect Developer's Guide.

5. Jacob, R.J.K. A state transition diagram language for visual programming. IEEE
Computer 18, 8 (Aug. 1985), 51-59.

6. Jacob, R.J.K. A specification language for direct-manipulation user interfaces.
ACM Transaction on Graphics 5, 4 (Oct.1986), 283-317.

7. Jensen, K. Coloured Petri nets and the invariant-method. Theoretical Computer
Science 14 (1981), 317-336.

8. Kaehler, C. HyperCard Power: Techniques and Scripts. Addison-Wesley,
Reading, MA, 1988.

9. Keh, H.C. and Lewis, T.G. HelpDez: Colored-Petri-net-based hypermedia help
system designer. Proc. of 2nd Int. Conf. on Software Eng. and Knowledge
Eng., Skokie Illinois, June 1990, 254-259.

10. Keh, H.C. and Lewis, T.G. Direct-manipulation user interface modeling with
high-level Petri nets. in Proceedings of 19th ACM Computer Science Conference.
(March 1991, San Antonio, Texas), 487-495.

11. Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming. 1, 3 (Aug./Sep. 1988), 26-49.

12. Kung, C.H. Conceptual modeling in the context of software development. IEEE
Trans. Software Eng. 15, 10 (Oct. 1989), 590-602.

13. Lee, E. User-interface development tools. IEEE Software 7, 3 (May 1990), 31-
36.

14. Lewis, T.G., Handloser, F.T., Bose, S. and Yang, S. Prototypes from standard
user interface management systems. IEEE Computer 22, 5 (May 1989), 51-60.

122

15. Myers, B.A. User-interface tools: Introduction and survey. IEEE Software 6, 1
(Jan. 1989), 15-23.

16. Myers, B.A. et al. Garnet Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

17. Nelson, R.A., Haibt, L.M. and Sheridan, P.B. Casting Petri nets into programs.
IEEE Trans. Software Eng. SE-9, 5 (Sept. 1983), 590-602.

18. Peterson, J.L. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs, N.J. 1981.

19. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, N.J. 1991.

20. Urlocker, Z. Abstracting the user interface. Journal of Object-Oriented
Programming. 2, 4 (Nov./Dec. 1989), 68-74.

21. Van Biljon, W.R. Extending Petri nets for specifying man-machine dialogues.
Int. J. Man-Mach. Stud. 28 (1988), 437-455.

22. Wirfs-Brock, R.J. and Johnson, R.E. Surveying current research in object-
oriented design. Comm. ACM 33, 9 (Sep. 1990), 259-264.

23. Zave, P. The operational versus the conventional approach to software
development. Comm. ACM 27, 2 (Feb. 1984), 104-118.

123

Chapter 6

Translation of Annotated Petri Nets into Application Framework

Based C++ Programs

6.1. Introduction

This Chapter gives algorithms for the translation of annotated Petri nets into

OSU Application Framework-based C++ programs. The basic translation rules are:

Each user interface place p in the Petri net is mapped into a derived class d of its

corresponding user interface abstract class in the OSU Application Framework.

Places representing application-specific classes do not need to be translated.

Each transition t of p is mapped into a public member function f of d.

Each action massage inscribed on the output arcs of t is mapped into a message-

sending statement in f

Our discussion on the translation of annotated Petri nets will be divided into

four parts. The first part explains the main algorithm for the translation of an annotated

Petri net. The second part discusses how a user interface place is translated into a

derived class. The translation of a transition into a public member function is discussed

in the third part. The fourth part explains how to translate the input arcs, output arcs,

and action messages. Note that inhibitor arcs are useful for controlling interactive

simulation, but they do not need to be translated since the conditioning of the transition

firing represented by an inhibitor arc is automatically handled in the generated code.

Finally, we will give an example OSU Application Framework-based C++ program

generated by using the translation algorithms discussed in this section. Note that a

procedure prefixed with either "GenerateDef' or "WriteDef' writes output to a header

124

(definition) file, while a procedure prefixed with either "Generate Imp" or "Write Imp"

writes output to an implementation file.

6.2. The Main Algorithm

Figure 6.1 gives the main algorithm for translating an annotated Petri net into a

C++ source program. Code is generated by traversing the annotated Petri net graph

using a breadth-first walk, producing code at each place and transition. This is done

with a queue for backtracking, and a mark to prevent walking in a cycle or using

previously traversed places/transitions. The walk terminates when the queue is empty,

assuming that all places/transition have been processed.

TranslatePetriNet(PetriNet) {
placeQueue = CreatePlaceQueueO;

TranslatelNITTransition(PetriNet->lNITTransition, placeQueue); (Fig 6.6)

while not Empty(placeQueue) do {

aPlace = GetPlace(placeQueue);

case aPlace->type of {

WindowPlace:

TranslateWindow(aPlace, placeQueue); (Fig 6.2)

MenuPlace:

TranslateMenu(aPlace, placeQueue); (Fig 6.3)

ModalDialogPlace:

TranslateModalDialog(aPlace, placeQueue); (Fig 6.4)

1;

1;

};

Fig. 6.1 Algorithm for the translation of an annotated Petri net

125

6.3. Places

There are many types of user interface places including Window, Menu,

Palette, Modal Dialog, ModelessDialog, Alert, Note Alert, Stop Alert, and Caution Alert.

Each user interface place has a list of user defined variables and a list of transitions.

Although each transition may have many input places, it belongs to one and only one

input place. Transitions in the transition list of a place may or may not belong to the

place; only those transitions which belong to the place will be translated. Every user

interface place is translated into a derived class; the translation steps are:

Use the place type, resource ID, and place ID to generate the head of the derived

class.

Use the list of user defined variables to generate instance variables of the derived

class.

Use the list of transitions to generate public member functions of the derived class.

Derived classes usually have to override some abstract methods (functions)

defined in their superclasses. These abstract methods are "hooks" provided by the

framework to allow an application programmer to plug in user - defined functions in the

derived classes that represent the functionality unique to this application. Those user-

defined functions will be automatically called from within the framework itself. For

examples, a derived Window class has to override the Create Document() method, a

derived Menu class has to override the DoMenuCommand() method, and a derived

Modal Dialog class has to override the DoMouseDown() method.

The abstract Window class in the OSU Application Framework can

automatically handle the mouse down, key down, activate/deactivate, and update

events. Therefore, a derived Window class has to override only the CreateDocument()

126

method. Figure 6.2 gives the algorithm for the translation of a Window place. Note

that we have omitted the part for translating the list of transitions since a Window place

generally does not own any transitions. The reason is that the standard behavior of a

window is completely handled by the OSU Application Framework and the user

seldom overrides the standard behavior.

TranslateWindowPlace(place, placeQueue) {
className = MakeClassName(place->type, place->resourcelD,

place->placelD);

GenerateDefSubClass(place->type, className);

GenerateDefInstanceVariables(place->userDefinedVariables);

GenerateDefConstructor(className, place->resourcelD);

GenerateDefMemberFunction ("CreateDocumentO ");

Generatel mpHeadOfMemberFunction (className, "CreateDocumentO ");

Writelmp("return new", place->documentClassName);

GeneratelmpTailOfMemberFunctionO;

};

Fig. 6.2 Algorithm for the translation of a Window place

For a Menu place, each transition in its transition list corresponds to a menu

item. Each transition is translated into a member function of the derived Menu class so

that when the user chooses one of the Menu items, its corresponding function is

executed. To support undo/redo of menu commands, the DoMenuCommand()

function in the abstract Menu class must be overridden. The job of the

DoMenuCommand() function is to activate appropriate member functions when the

user chooses different menu items. Therefore, a switch (menultem) statement is

generated in the DoMenuCommand() function. The statement for each case expression

inside the switch (menultem) statement will be generated when each transition in the

transition list is translated. Note that the DoMenuCommand() function returns a

127

Command object. Figure 6.3 gives the algorithm for the translation of a Menu place.

The translation of a Palette place is similar to that of a Menu place. The only difference

is that the derived Palette class has to override the DopaletteCommand() function

instead of the DoMenuCommand() function.

TranslateMenuPlace(place, placeQueue) {
className = MakeClassName(place->type, place->resourceID,

place->placelD);

GenerateDefSubClass(place->type, className);

GenerateDefInstanceVariables(place->userDefinedVariables);

GenerateDefConstructor(className, place->resourcelD);

GenerateDefMemberFunction ("DoMenuCommand(menultem) ");

GeneratelmpHeadOfMemberFunction (className,

"DoMenuCommand(menuItem)");

1;

WriteImp("switch(menuItem)");

for each arc a in place->inputArcList do {

if a->transition->belongTo = place then {

GenerateImpCaseStatement(place->type,a->transition->itemNumber,

"Do Item");

TranslateTransition(a->transition, place, placeQueue); (Fig 6.5)

1;

1 ;

GeneratelmpTailOfMemberFunctionO;

Fig. 6.3 Algorithm for the translation of a Menu place

The translation of a Modal Dialog place is also similar to that of a Menu place.

Instead of overriding the DoMenuCommand() function, the derived Modal Dialog class

has to override the DoMouseDown() function. When the user clicks in a control item

(e.g., a push button), the DoMouseDown() function will be called from within the

OSU Application Framework. Like the DoMenuCommand() function, the job of the

128

DoMouseDown() function is to activate appropriate member functions when the user

chooses different control items. Unlike the DoMenuCommand() function, the

DoMouseDown() function does not return a Command object. This implies that the

action activated by clicking in a control item can not be undone. Figure 6.4 gives the

algorithm for the translation of a ModalDialog place. The translation of a

ModelessDialog place, an Alert place, a NoteAlert place, a StopAlert place, and a

CautionAlert place is similar to that of a ModalDialog place.

TranslateModalDialog(place, placeQueue) {
className = MakeClassName(place->type, place->resourcelD,

place->placeID);

GenerateDefSubClass(place->type, className);

GenerateDeflnstanceVariables (place- >userDefinedVariables);

GenerateDefDeclareConstructor(className, place- >resourcelD);

GenerateDefMemberFunction("DoMouseDown(itemHit)");

GeneratelmpHeadOfMemberFunction (className, "DoMouseDown(itemHit)");

Writelmp("switch(itemHit) ");

for each arc a in place->inputArcList do {

if a->transition->belongTo = place then {

GenerateImpCaseStatement(place->type,

a->transition->itemNumber,"DoItem");

TranslateTransition(a->transition, place, placeQueue); (Fig 6.5)

1;

};

GenerateImpTail0fMemberFunction();

};

Fig. 6.4 Algorithm for the translation of a ModalDialog place

6 . 4 . Transitions

Figure 6.5 gives the algorithm for the translation of a transition. There are three

types of transitions: INIT transitions, QUIT transitions, and regular transitions. The

129

translation methods for different types of transitions are different. An INIT transition

does not have input arcs. The translation of an INIT. transition is to generate a derived

Application class and a main() function. The derived Application class has to override

the Initialize() function which is defined in the abstract Application superclass.

TranslateTransition(theTransition, place, placeQueue) {

GenerateDefMemberFunction ("Doltem ", theTransition->itemNumber);

className = MakeClassName(place->type, place->resourcelD,

place->placelD);

GeneratelmpHeadOfMemberFunction (className, "Do Item",

theTransition->itemNumber);

if (place->type = Menu Place) or (place->type = Palette Place) then

Writelmp("Command *cmdObj = nil;");

case theTransition->type of {

Quit Transition:

TranslateQuitTransition(theTransition); (Fig 6.7)

Regular Transition:

TranslateRegularTransition(theTransition, placeQueue); (Fig 6.8)

}

if (place->type = Menu Place) or (place->type == Palette Place) then

Writelmp("return cmdObj;");

GeneratelmpTail0fMemberFunction();

1;

Fig. 6.5 Algorithm for the translation of a transition

The body of the initialize() function will be generated during the translation of

the output arcs of the INIT transition. Firing the INIT transition is equivalent to

launching the application. As the application starts, the Run() function defined in the

abstract Application superclass will automatically call the Initialize() function defined in

the derived Application class. The job of the Run() function is to call the initialize()

function and then start the main event loop. The generated main() function always

130

contains three statements: "My Application * theApplication;", "theApplication = new

MyApplication;", and "theApplication->run();". The algorithm for the translation of an

INIT transition is shown in Figure 6.6.

TranslateINITTransition(INnTransition, placeQueue) (
SortBySequenceNumber (INlTTransition - >outputArcList);

GenerateDefSubClass("Application ", "My Application");

GenerateDefMemberFunction ("InitializeO ");

GeneratelmpHeadOfMemberFunction("MyApplication ", "Initialize() ");

for each arc a in INITTransition->outputArcList do {

Writelmp("if', a->predicate);

className = MakeClassName(a->outputPlace->type,

a->outputPlace->resourceID, a->outputPlace->placelD);

GeneratelmpNewStmt (a- >outputPlace - >type, className);

for each message m in a->messageList do

GeneratelmpSendMessageStmt(a->outputPlace->type, m); (Fig 6.10)

if not a->outputPlace->marked then {

a->outputPlace->marked = true;

Insert(a->outputPlace, placeQueue);

};

}

};

GenerateImpTail0fMemberFunction();

GeneratelmpMainFunction("MyApplication ");

Fig. 6.6 Algorithm for the translation of an INIT transition

The translation of both a QUIT and a regular transition is different from that of

an INIT transition. Each QUIT or regular transition corresponds to either a palette

item, a menu item or a control item, so that a corresponding public member function

must be generated for a QUIT or regular transition. A QUIT transition does not have

output arcs. The QUIT transition usually corresponds to the File menu item Quit.

Firing the QUIT transition is equivalent to quitting the application. After the translation

131

of the input arcs of the QUIT transition, the statement "gApplication- >TerminateO;"

will be generated in its corresponding public member function. Note that the OSU

Application Framework maintains the global variable gApplication which always refers

to the one Application object. The algorithm for the translation of an QUIT transition is

shown in Figure 6.7.

TranslateQuitTransition(theTransition) {
WriteImp("gApplication->Terminate0");

};

Fig. 6.7 Algorithm for the translation of a QUIT transition

A regular transition may have both the input arcs and output arcs. Figure 6.8

gives the algorithm for the translation of a regular transition. The following three rules

are used to guide the translation of a regular transition.

If an input place of the transition is not one of its output places, the statement

"DoClose();" is generated for this input place.

If an output place of the transition is not one of its input places, a new instance of

this output place type is created and the messages inscribed on the output arc are

sent to this newly created instance.

If a place serves as both the input place and output place of the transition, the

messages inscribed on the output arc connecting the transition to the place are sent

to an existing instance of the place type.

6 . 5 . Input Arcs, Output Arcs, and Messages

The translation of input arcs is to generate code that ensures that the transition can be

fired if and only if each of its input places contains at least one token. For example, the

132

TranslateRegularTransition(theTransition, placeQueue)
toBeClosedPlaceList = CreatePlaceList();

for each arc a in theTransition->inputArcList do {

Insert(a->inputPlace, toBeClosedPlaceList);

if theTransition->belongTo <> a->inputPlace then

TranslatelnputArc(a->inputPlace); (Fig 18)

};

SortBySequenceNumber(theTransition->outputArcList);

for each arc a in theTransition->outputArcList do {

if a->predicate <> nil then

Write Imp("if", a->predicate);

if a->outputPlace in toBeClosedPlaceList then {

Remove(a->outputPlace, toBeClosedPlaceList);

for each message m in a->messageList do

GeneratelmpSendSelfMessageStmt (m);

}

else {
className = MakeClassName (a- >outputPlace- >type,

a->outputPlace->resourcelD, a->outputPlace->placelD);

GeneratelmpNewStmt(a->outputPlace->type, className);

for each message m in a->messageList do

GeneratelmpSendMessageStmt(a->outputPlace->type,m); (Fig 6.10)

if not a->outputPlace->marked then {

a->outputPlace->marked = true;

Insert(a->outputPlace, placeQueue);

};

for each place p in toBeClosedPlaceList do {

className = MakeClassName(p->type, p->resourcelD, p->placelD);

GeneratelmpDoCloseStmt(p->type, className);

1;

Fig. 6.8 Algorithm for the translation of a regular transition

133

transition representing the Close menu item of a File menu has two input places; one

represents the Menu object class, and the other represents the Window object class.

The Do Close() function of the Close menu item can be activated if and only if both the

File menu and a Window object are displayed on the screen. The algorithm for the

translation of an input arc is shown in Figure 6.9.

TranslateInputArc(place) {
className = MakeClassName(place->type, place->resourcelD,

place->placelD);

case place->type of {

Menu Place:

Writelmp("menuObject = GetMenuObject(",className,");");

Writelmp("if (menuObject = nil) return;");

Window Place:

Writelmp("windowObject = GetWindowObject(",className,");");

Writelmp("if (windowObject == nil) return;");

ModalDialogPlace:

Writelmp("modalDialogObject = GetWindowObject(",className,");");

Writelmp("if (modalDialogObject = nil) return;");

};

1;

Fig. 6.9 Algorithm for the translation of an input arc

The translation of the output arcs is performed during the translation of the

transitions. Each output arc of a transition may have a list of action messages inscribed

on it. The action messages inscribed on an output arc of a transition are sent from the

owning input place of the transition to the output place connected by the output arc.

For each output arc of a transition, if the output place is the same as one of the input

134

places, the receiver object of the action messages inscribed on the output arc must be

the existing sender object itself. Otherwise, a new object instance of the output place

type must be created and the action messages are sent to it.

For a Window places, the action messages are sent to either the Window object

itself or a View object contained in the Window object. Messages sent to a View object

are prefixed with the class name of the View object. The algorithm for the translation

of an action message is shown in Figure 6.10.

GenerateSendMessageStmt(placeType, message) {
case placeType of {

Menu Place:

Writelmp("menuObject > ", message,";");

Window Place:

if the message is sent to a view object then {

Writelmp("viewObject = GetViewByName(",

getClassName(message), ");");

Writelmp("viewObject - > ", getFunctionPart(message),";");

}

else
Writelmp("windowObject > ", message,";");

ModalDialogPlace:

Writelmp("modalDialogObject > ", message,";");

1;

Fig. 6.10 Algorithm for the translation of an action message

135

6 . 6 . An Example

Figure 6.12 gives an example OSU Application Framework-based C++

program which is generated from the annotated Petri net design representation shown

in Figure 20 using those translation algorithms discussed above. Appendix B gives the

MiniDraw program generated from the annotated Petri net representation of Figure 5.4.

Fig. 6.11 Annotated Petri net representation of a simple Macintosh application

136

// in header files
class MyApplication : public Application (
public:

void Initialize();
):
class Menu128P1 : public Menu (
public:

Menu128P1() : (128) (SetClassName("Menu128P1");)
Command * DoMenuCommand(int menultem);
Command * DoIteml();
Command * DoItem2();

}:
class ModalDialog129P2 : public ModalDialog (
public:

ModalDialog129P2() : (129) (SetClassName("ModalDialog129P2");)
void DoMouseDown(int itemHit);
void DoltemlO;

);
// in implementation files
void MyApplication::Initialize()

Menu128P1 *menuObject;
menuObject = new Menu128P1;
menuObject- >Enableltem(1);

)

main()
MyApplication *theApplication;
theApplication = new MyApplication;
theApplication->RunO;

Command * Menu128P1::DoMenuCommand(int menultem)
switch(menultem) {
case 1:

return DoItemlO;
case 2:

return DoItem2O;
}

)

Command * Menu128P1::DoIteml() (
Command *cmdObject = 0;
Enablehem(2);
ModalDialog129P2 *ModalDialogObject;
ModalDialogObject = new ModalDialog129P2;
ModalDialogObject->Draw();
return cmdObject;

)

Command * Menu128P1::DoItem20 (
Command *cmdObject = 0;
gApplication- >TerminateO;
return cmdObject;

void ModalDialog129P2::DoMouseDown(int itemHit)
switch(itemHit)
case 1:

DoIteml();
break;

)

void ModalDialog129P2::DoIteml() {
DoCloseO;

Fig. 6.12 A C++ program generated Automatically from the Petri net of Fig. 6.11

137

Chapter 7

Conclusion

7.1. Current Status of OSU v3.0

The implementation of OSU v3.0 is not complete at the time of this writing

(July, 1991). The OSU Application Framework, RezDez, Petri Net Editor, and Code

Generator are working. While framework design is an iterative process, we do not

expect our core framework to grow significantly. Figure 4.2 illustrates that most of the

growth will be in domain-specific pluggable views and domain-specific

File Documents.

The functionality of the RezDez tool of OSU v2.0 has been enhanced to

support the creation of pane resources and multi-dimensional palettes.

The Petri Net Editor tool is mostly complete. It allows the designer to construct

a GUI application by drawing an annotated Petri net on the screen. It also allows for

reading and writing the annotated Petri net specification to and from files on disk. The

abstraction mechanism and the capability for ensuring the legality of an annotated Petri

net have not been provided yet, although their implementation is expected to be

complete in about three months.

The Code Generator tool is functioning. It takes an annotated Petri net drawn

with the Petri Net Editor tool as input and produces OSU Application Framework-

based C++ as output.

The Browser tool is about half done. Currently, the Browser tool can process

the set of (the OSU Application Framework) C++ header files, display its

138

corresponding class hierarchy diagram on the screen, and allow the user to select a

desired method (function).

The Graphical Application Builder has been designed, but not implemented.

The Simulator and analysis tools have not been designed yet.

Table 7.1 gives the source code statistics for each component of OSU v3.0.

The source code statistics for each part of the OSU Application Framework is shown in

Table 4.1. The current implementation of OSU v3.0 consists of 23746 lines (184

classes with 1287 methods) of C++ code and 21343 lines of Pascal code.

OSU v3.0 Component Number of
Classes

Number of
Methods

Number of
Lines of Code

OSU Application Framework 82 874 16038

Petri Net Editor 48 280 4989

Browser 9 65 1937

Code Generator 45 68 782

Subtotal 184 1287 23746

RezDez (Implemented in Pascal) 21343

Total 184 1287 45089

Table 7.1 Source code statistics of OSU v3.0

139

7.2. The Results

The OSU v3.0 approach provides solutions to many problems (see Table 1.1)

encountered in the development of GUI applications.

The OSU Application Framework offers much more functionality than a user

interface toolkit and supports a significant part of the GUI software development task.

The design and implementation of common aspects of most GUI applications, such as

handling windows, undo and redo of multiple commands, saving and opening files,

and manipulating shapes and data structures, are already available in a reusable form.

The change propagation mechanism provided by the MVC approach helps the

programmer deal with the intertwined interaction between the user interface and the

application logic. It permits multiple views of the same data to be displayed

simultaneously such that data changes made through one view are immediately reflected

in the others. With the support of a rich set of domain-specific views in the application

framework, the programmer can easily create and manage the application-specific

graphics even without writing any code. In situations where the developer must write

unique code to derive new subclasses, they are easy to create because they can reuse

both the design and implementation from their abstract and concrete superclasses.

A strong model is provided by OSU v3.0 in the form of a modified MVC

paradigm, and a Petri net based sequencing language which together form the

architectural structure of all applications produced by OSU v3.0. The MVC paradigm

provides a reusable design methodology for decomposing and structuring complex

GUI applications. As long as the OSU Application Framework becomes mature

enough and contains a rich set of domain-specific view classes, most of the time a GUI

application can be plugged together from existing components by drawing an annotated

140

Petri net. The source code of the target application is synthesized by the Code

Generator tool which merely walks the annotated Petri net. Annotated Petri nets are

also able to represent the linked structure of a GUI application. The designer, by using

the Petri Net Editor tool, can see the overall structure of the GUI application.

Furthermore, using hierarchical networks, a designer can organize a GUI application

more effectively than with a flat structure.

Representation of control sequences of a GUI application is easily constructed

within OSU v3.0 using RezDez, Browser, and Petri Net Editor. It is also easy to

understand, edit, and reuse. The developer can construct annotated Petri nets using the

Petri Net Editor tool. This promotes understandability of the model, facilitates

computer aided documentation, lets the developer easily perform graphical

modifications on the model, and promotes reusability of the model through cut-and-

paste editing operations. Petri net hierarchy not only reduces the complexity of the

model but also promotes reusability at the modeling level because subnets can be

reusable components.

Although not yet completed, OSU v3.0 already is capable of supporting a

significant part of GUI software development. Table 7.2 summarizes the results

obtained from using the Macintosh Toolbox, OSU Application Framework, and Petri

Net Editor to develop the same GUI applications. The number in each entry of Table

7.2 indicates the number of lines of C++ code required to implement the application

using the tool. Table 7.2 shows that the amount of code that must be written to create

an application using the OSU Application Framework is considerably less than the

amount required when using only the Macintosh Toolbox.

141

Tool Used

Application Built

Macintosh
Toolbox

AppOSUlication
Framework

Petri Net
Editor

Sum
&
of OSU

Application

MVC Demo 3000 300 100 16330

MiniDraw 7000 300 0 16330

ExampleDraw 8000 300 0 16330

Petri Net Editor
(As of June 15, 1991)

6000 2500 18530

Browser
(As of June 15, 1991)

4700 2000 18030

Table 7.2 Lines of code required to implement the applications using different tools.

MVC Demo

Fig. 7.1 MVC Demo application with two scrollable panes containing views

142

The OSU Application Framework can reduce the amount of source code you,

need to implement the MVC Demo application, Example Draw (see Section 4.8) and

Mini Draw (see Section 5.5.1) by a factor of 10 to 25. An output screen showing the

general appearance of the MVC Demo program is shown in Figure 7.1 The MVC

Demo window contains two scrollable panes, each with a different view of our model's

data. When the model's data is changed by a Mouse Down event in one of the panes,

both of the views are automatically updated to reflect the new state of the model.

Although both Example Draw and Mini Draw have much more functionality than the

MVC Demo application, their implementation required almost the same amount of

source code (300 lines). This implies that programmers can use many features in our

framework without writing any extra code. The implementation of the OSU v3.0 Petri

Net Editor and Browser also illustrates the high reusability of the OSU Application

Framework classes.

Furthermore, when it is necessary to step beyond using the Petri net Editor in

order to create domain-specific views, documents, or other application-specific classes,

we feel that our framework is much easier to use than Mac App. We outline some of

the more important reasons below:

1) Currently, the implementation of the OSU Application Framework is only

about 30% of the size of Mac App. Our framework is considerably smaller than

MacApp, while still providing a complete application framework (16K lines to

MacApp's 53K). Since both frameworks remain largely white-box (vs. black-box), it

is necessary for the user to read the source code of the framework to write new

domain-specific subclasses. Less code means less of a learning curve.

143

2) Our MVC-based design provides a reusable design methodology for

decomposing and structuring complex GUI applications so the developer is free from

reinventing analogous design methodologies on their own.

3) The Data Structure and Shapes class libraries provide standard reusable code

for a variety of GUI applications, and can be easily extended if necessary.

Although our framework is general enough to support the development of any

GUI application, for now it is best suited to building conventional drawing programs

like Mini Draw, and tree and graph editing programs such as class hierarchy diagram

editors and the Petri Net Editor. When more domain-specific View and File Document

classes are implemented, we expect our framework to be able to significantly reduce the

development time and decrease the amount of source code required for developing

many other types of GUI applications.

As discussed in Chapter 4, a mature application framework will have a large

class library of concrete subclasses of each abstract class, so that most of the time an

application can be plugged together from existing components. Since programs that

configure a set of objects are very stylized, our Petri Net Editor can be used to generate

them automatically. Table 7.2 shows that Example Draw and Mini Draw can be

automatically generated without writing any code.

In situations where the developer must write unique code to derive new

subclasses, they are easy to create because they can reuse both the design and

implementation from their abstract and concrete superclasses. Table 7.2 also shows

that the programmer has to write about 100 lines of source code in order to develop the

MVC Demo program. The programmer has to subclass the Graphics View class and

144

override only one method (DoMouseDown()) to add new behavior. The newly created

subclass is connected with other classes using the Petri Net Editor tool.

7.3. Experience

Our experience with OSU v3.0 has convinced us of the importance of object-

oriented design and programming in facilitating the implementation of graphical direct

manipulation user interfaces and OSU v3.0 itself. This section describes the

experience gained while working with OSU v3.0 and its implementation language

C++.

7.3.1 Experience with OSU v3.0

During the two years of OSU v3.0 development, several applications evolved

which were used to test the functionality and usability of the OSU Application

Framework. The most interesting applications are the Petri Net Editor and Browser

tools. Both the Petri Net Editor and Browser were first implemented using only the

Macintosh Toolbox since the implementation of our framework and these tools started

at the same time. When our framework became available for use, we reimplemented

the Petri Net Editor and Browser using the framework. First, the reimplementation of

the Petri Net Editor and Browser demonstrated the high reusability of our framework

classes. Second, we found that our framework is much easier to learn and use than

MacApp since all members in our development team could become familiar with it in

about a week.

From a project management point of view, we feel that copying and modifying

existing code to fit the requirements of different tool components of a large system is

not the correct way to achieve software reuse. This approach was used in

145

implementing OSU v2.0, resulting in a system which contains a lot of code

redundancies and is less manageable. On the contrary, OSU v3.0 is a well factored

system with no code redundancies. This is achieved by organizing commonly used

code into class hierarchies which are compiled into libraries.

An object-oriented application framework transfers a lot of control flow from

application code to the framework itself. This characteristic allows the addition of new

functionality and/or modification of the control flow of the OSU Application

Framework without affecting existing applications.

Finally, the use of the graphical annotated Petri net model as the underlying

specification language of OSU v3.0 simplified the development of OSU v3.0 itself.

Due to the graph structure of Petri nets, the algorithms used by our code generator

could be easily developed and the size of our code generator is very small (less than

900 lines of code). The design of our framework was also helped by the graphical

Petri net representation of GUI applications. Furthermore, all members in our

development team used the graphical representation of annotated Petri nets to

communicate and discuss with one another.

7.3.2 Experience with C++

Using C++ as the implementation language of OSU v3.0 has worked extremely

well. C++ is a practical language for object-oriented programming, and large, general-

purpose application frameworks such as the OSU Application Framework can be

constructed with it. In addition to the object-oriented concepts, C++ provides some

other features that improved the programming interface as well as the code of OSU

v3.0. Default values for parameters are used extensively in the constructors of OSU

146

v3.0 classes and provide flexible and easy-to-use method interfaces. In line functions

are often used to avoid the run-time overhead of small functions.

Another major benefit of C++ is its strong type checking. Both the argument

list and the return type of every function call are type checked during compilation.

During the development of OSU v3.0, the strong type checking ability of C++ proved

to be so valuable, in fact, many inconsistencies were detected and reported at compile-

time.

OSU v3.0 has been developed with a MPW C++ version supporting multiple

inheritance but we decided to use only single inheritance, because multiple inheritance

is not easy to use and in the majority of OSU v3.0 components, multiple inheritance is

not required to express the programs. We feel that single inheritance is adequate for

developing OSU v3.0 and yields simpler code. The way we eliminate multiple

inheritance is to replace inheritance by embedding an object rather than inheriting from

its class. The current class hierarchy of the OSU Application Framework is easy to

understand and maintain and we doubt whether our framework would have the same

clear class hierarchy had multiple inheritance been used.

Since object-oriented programming and C++ were relatively new to most

members of the OSU v3.0 development team, a significant portion of our time was

spent in learning object-oriented programming and the C++ programming language.

This extra effort was worth while, however, owing to the significant improvements in

both programming productivity and system extensibility we experienced.

147

7. 4 . Future Work on OSU v3.0

Much work remains to be done with OSU v3.0. Some examples of further

work that should be done are the following:

1) A rich set of pluggable and adaptable domain-specific views should be

designed and implemented. Since our framework remains largely white-box (vs.

black-box), it is necessary for the user to understand the implementation of the

framework to write new application domain specific subclasses. Currently, our

framework contains only one domain-specific view class, GraphicsView. Another

domain-specific view class, TextEditView, is currently under development. However,

it is necessary to supply our framework with a rich set of view classes that provide the

application-specific behavior for various application areas, such as MIS, database

systems, and CAD. These domain-specific view classes must be implemented in an

extensible and reusable manner. For example, a GridViewfTableView class and its

subclasses are useful for building views of spreadsheets, tables of data, and lists of

data on the screen. More specialized view classes, if necessary, can be easily derived

from domain-specific view classes through subclassing.

Also, a rich set of pluggable and adaptable domain-specific view classes makes

the framework easier to learn and use since the user needs to understand only the

external interface of the domain-specific view classes. Thus, this kind of a framework

is called a black-box framework. Furthermore, a black-box framework is better at

serving as the foundation of an interactive development system. That is, it is easy to

build a high level tool to automate the use of the framework.

148

2) The File Document class of our framework should be extended to handle

multiple files. Currently, each file document is associated with only one file. This may

restrict the types of GUI applications our framework can support. For example, a view

in a database application may need data from two or more files and any changes made

through this view may need to update the data in more than one disk file.

3) The dependency (change propagation) mechanism should be enhanced to

minimize the amount of view updating needed. Our current implementation of the

dependency mechanism forces all dependent views to update themselves whenever a

particular aspect of the model changes. A more efficient way is to update only those

views that are relevant to the changed aspect of the model. One way to achieve this is

to give each view the name of one aspect of the model that it is concerned with

displaying and enhance the Changed() and Notify() methods (defined in the Model

class) with an aspect parameter. When a model sends itself the message

Notify(someAspect), all dependent views are sent the message update(someAspect).

The update(aspect) method defined in the view class compares the aspect parameter

with the name of the view. If they are not identical, the view does nothing. Otherwise,

the view sends itself a Draw() message which causes it to redisplay the new model

information.

4) The Code Generator should be enhanced to automatically produce a makefile

so that the programmer does not need to manually handle source code files to create the

makefile for building an application.

5) The Graphical Application Builder should be implemented. Although the

goal of both the Petri Net Editor and Graphical Application Builder is to construct the

annotated Petri net model of a GUI application, many designers may prefer to do

149

"reverse specification", directly manipulating on-screen user interface objects to

generate the formal specification (annotated Petri net model).

150

Bibliography

1. Alexander, G.H. Painless panes for Smalltalk windows. in Proceedings of
OOPSLA '87, (Oct. 1987, Orlando, Florida), 287-294.

2. Alger, J. Using Model-View-Controller with Mac App. Frameworks, The Journal
of Macintosh Object Program Development 4, 2 (May 1990), 4-14.

3. Apple Computer, Inc. Inside Macintosh, Volume 1, 1985, Published by Addison-
Wesley, Reading, MA.

4. Barth, P.S. An object-oriented approach to graphical interfaces. A CM
Transaction on Graphics 5, 2 (April 1986), 142-172.

5. Bruno, G. and Marchetto, G. Process-translatable Petri nets for the rapid
prototyping of process control systems. IEEE Trans. Software Eng. SE-12, 2
(Feb. 1986), 590-602.

6. Budd, T. An introduction to object-Oriented programming. Addison-Wesley,
Reading, MA, 1990.

7. Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C. Towards a
comprehensive user interface management system. Computer Graphics 17, 3
(July 1983), 35-42.

8. Cardelli, L. and Pike, R. Squeak: A language for communicating with mice.
Computer Graphics 19, 3 (July 1985), 199-204.

9. Cox, B. Object oriented programming: An evolutionary approach. Addison-
Wesley, Reading, MA, 1986.

10. Ferrel, P.J. and Meyer, R.F. Vamp: The Aldus application framework. in
Proceedings of OOPSLA '89, (Oct. 1989, New Orleans), 185-189.

11. Flecchia, M.A., and Bergeron, R.D. Specifying complex dialogs in Algae. In
Proceedings of SIGCHI and Graphics Interface' 87, Toronto, Canada, (April
1987), 229-234.

12. Gamma, E., Weinand, A., and Marty, R. ET++ -- An object oriented application
framework in C++. In proceedings of ECOOP '89, ed. C. Stephen, Cambridge
University Press, 283-297.

13. Genrich, H.J. and Lautenbach, K. System modeling with high-level Petri nets.
Theoretical Computer Science 13 (1981), 109-136.

14. Goldberg, A. and Robson, D. Smalltalk-80, The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

151

15. Gorlen, K.E, An object-oriented class library for C++. Software - Practice and
Experience 17, 12 (Dec. 1987), 899-922.

16. Green, M. The University of Alberta User Interface Management System.
Computer Graphics 19, 3 (1985), 205-213.

17. Green, M. A survey of three dialogue models. ACM Transaction on Graphics 5,
3 (July 1986), 244-275.

18. Guest, S.P. The use of software tools for dialogue design. Int. J. Man-Mach.
Stud. 16 (1982), 263-285.

19. Hanau, P.R. and Lenorovitz, D.R. Prototyping and simulation tools for
user/computer dialogue design. Computer Graphics 14, 3 (July 1980), 271-278.

20. Henderson, D.A., The Trillium user interface design environment. In
Proceedings of SIGCHI' 86, Boston, MA, (April 1986), 221-227.

21. Hayes, P.J., Szekely, P.A., and Lerner, R.A. Design alternatives for user-
interface management systems based on experience with Cousin. In Proceedings
of SIGCH1' 85, San Francisco, CA, (April 1985), 169-175.

22. Hewlett-Packard Company, HP Interface Architect Developer's Guide.

23. Hill, R.D. Supporting concurrency, communication, and synchronization in
human-computer interaction -- The Sassafras UIMS. ACM Transaction on
Graphics 5, 3 (July 1986), 179-210.

24. Hix, D. and Schulman, R.S. Human-computer interface development tools: A
methodology for their evaluation. Comm. ACM 34, 3 (March 1991), 74-87.

25. Jacob, R.J.K. A state transition diagram language for visual programming. IEEE
Computer 18, 8 (Aug. 1985), 51-59.

26. Jacob, R.J.K. A specification language for direct-manipulation user interfaces.
ACM Transaction on Graphics 5, 4 (Oct.1986), 283-317.

27. Jensen, K. Coloured Petri nets and the invariant-method. Theoretical Computer
Science 14 (1981), 317-336.

28. Johnson, R.E. and Foote, B. Designing reusable classes. Journal of Object-
Oriented Programming 1, 2 (June/July 1988), 22-35.

29. Kaehler, C. HyperCard Power: Techniques and Scripts. Addison-Wesley,
Reading, MA, 1988.

30. Kamran, A. and Feldman, M.B. Graphics programming independent of
interaction techniques and styles. Computer Graphics 17, 1 (Jan. 1983), 58-66.

152

31. Keh, H.C. and Lewis, T.G. HelpDez: Colored-Petri-net-based hypermedia help
system designer. in Proc. of 2nd Int. Conf. on Software Eng. and Knowledge
Eng., Skokie Illinois, June 1990, 254-259.

32. Keh, H.C. and Lewis, T.G. Direct-manipulation user interface modeling with
high-level Petri nets. in Proc. of 19th ACM Computer Science Conference.
(March 1991, San Antonio, Texas), 487-495.

33. Keh, H.C., Wittel, W., and Lewis, T.G. Speedcode: A C++ framework for the
Mac. To appear in Frameworks, The Journal of Macintosh Object Program
Development 5, 3 (Aug. 1991).

34. Keh, H.C. and Lewis, T.G. A survey of user interface development tools and
systems. Submitted to Comm. ACM.

35. Keh, H.C., Lewis, T.G., and Luo, C.C. Petri-net-based object-oriented
conceptual modeling of graphical direct-manipulation user interface systems. To
be published.

36. Knolle, N.T. Variations of model-view-controller. Journal of Object-Oriented
Programming 2, 3 (Sep./Oct. 1989), 42-46.

37. Knolle, N.T. Why object-oriented user interface toolkits are better. Journal of
Object-Oriented Programming 2, 4 (Nov./Dec. 1989), 26-49.

38. Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming
1, 3 (Aug./Sep. 1988), 26-49.

39. Kung, C.H. Conceptual modeling in the context of software development. IEEE
Trans. Software Eng. 15, 10 (Oct. 1989), 590-602.

40. Lee, E. User-interface development tools. IEEE Software 7, 3 (May 1990), 31-
36.

41. Lewis, T.G., Handloser, F.T., Bose, S. and Yang, S. Prototypes from standard
user interface management systems. IEEE Computer 22, 5 (May 1989), 51-60.

42. Lim, M.H. and Lewis, T.G. GraphLab: Adding graphical functionality to OSU.
Tech. Report 90-60-8, Dept. of Computer Science, Oregon State Univ., Corvallis,
Oregon.

43. Linton, M.A. and Calder, P.R. The design and implementation of InterViews. In
USENIX Proceedings and Additional Papers C++ Workshop, USENIX Assoc.,
Berkeley, CA, (Nov. 1987), 256-268.

44. Linton, M.A., Vlissides, J.M. and Calder, P.R. Composing user interfaces with
InterViews. IEEE Computer 22, 2 (Feb. 1989), 51-60.

45. Myers, B.A. Creating highly-interactive and graphical user interface by
demonstration. Computer Graphics 20, 4 (Aug. 1986), 249-258.

153

46. Myers, B.A. Creating interaction techniques by demonstration. IEEE Computer
Graphics and Applications 7, 9 (Sept. 1987), 51-60.

47. Myers, B.A. User-interface tools: Introduction and survey. IEEE Software 6, 1
(Jan. 1989), 15-23.

48. Myers, B.A. et al. Garnet - Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

49. Nelson, R.A., Haibt, L.M. and Sheridan, P.B. Casting Petri nets into programs.
IEEE Trans. Software Eng. SE-9, 5 (Sept. 1983), 590-602.

50. Olson, D.R. and Dempsey, E.P. SYNGRAPH: A graphic user interface
generator. Computer Graphics 17, 3 (July 1983), 43-50.

51. Palay, A.J. et al.. The Andrew Toolkit: An overview. In USENIX Proceedings
Winter Technical Conference, Dallas, Texas, (Feb. 1988), 9-21.

52. Peterson, J.L. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs, N.J. 1981.

53. Reiss, S.P. Working in the Garden environment for conceptual programming.
IEEE Software 4, 6 (Nov. 1987), 16-27.

54. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, N.J. 1991.

55. Schulert, A.J., Rogers, G.T., and Hamilton, J.A. ADM -- A dialog manager. In
Proceedings of SIGCHI' 85, San Francisco, CA, (April 1985), 177-183.

56. Schmuker, K.J. MacApp: An application framework. Byte 11, 8 (Aug. 1986),
189-193.

57. Shneiderman, B. Direct manipulation: A step beyond programming languages.
IEEE Computer 16, 8 (Aug. 1983), 57-69.

58. SmethersBarnes. Prototyper User's Manual. P.O. Box 639, Portland, OR,
1987.

59. Thompson, T. The Next Step. Byte 14, 3 (March 1989), 265-269.

60. Urlocker, Z. Abstracting the user interface. Journal of Object-Oriented
Programming 2, 4 (Nov./Dec. 1989), 68-74.

61. Van Biljon, W.R. Extending Petri nets for specifying man-machine dialogues.
Int. J. Man-Mach. Stud. 28 (1988), 437-455.

62. Van Den Bos, J. Plasmeijer, M.J., and Hanel, P.H. Input-output tools: A
language facility for interactive and real-time systems. IEEE Trans. Software Eng.
SE-9, 3 (March 1983), 247-259.

154

63. Wasserman, A.I. Extending state transition diagrams for the specification of
human-computer interaction. IEEE Trans. Software Eng. SE-11, 8 (Aug. 1985),
699-713.

64. Weinand, A., Gamma, E., and Marty, R. ET++ - An object oriented application
framework in C++. In proceedings of OOPSLA '88 (San Diego, CA, Sep.
1988), 46-57.

65. Weinand, A., Gamma, E., and Marty, R. Design and implementation of ET++, a
seamless object-oriented application framework. Structured Programming

10, 2 (1989), 46-57.

66. Wilson, D.A., Rosenstein, L.S., and Shafer, A. Programming with Mac App.
Addison-Wesley, Reading, MA, 1990.

67. Wirfs-Brock, R.J. and Johnson, R.E. Surveying current research in object-
oriented design. Comm. ACM 33, 9 (Sep. 1990), 259-264.

68. Wirfs-Brock, A., Johnson, R., Cunningham, W., and Linton, M. Panel:
Designing reusable designs Experiences designing object-oriented frameworks.
In proceedings of ECOOP / OOPSLA '90 (Ottawa, Canada, Oct. 1990), 234-234.

69. Yang, S., Lewis, T.G. and Hsieh, C. Integrating computer-aided software
engineering and user interface management systems. Proc. of 22nd Hawaiian Int.
Conf. on System Sciences, Vol. II, 1989.

70. Young, D.A. The X Window System Programming and Applications with Xt.
OSF/Motif Ed., Prentice-Hall, Englewood Cliffs, N.J., 1990.

71. Zave, P. The operational versus the conventional approach to software
development. Comm. ACM 27, 2 (Feb. 1984), 104-118.

Appendices

155

Appendix A

OSU Application Framework-Based C++ Code of Example Draw

//
// OSU Application Framework-Based C++ Code of ExampleDraw
//

#ifndef CLAPPLICATION_H
#include "clapplication.h"
#endif
ifndef CLMENU_H
#include "clmenu.h"
#endif
ifndef CLMODEL_H
#include "clmodel.h"
#endif
#ifndef CLWINDOW_H
#include "clwindow.h"
#endif
#ifndef CLVIEW_H
#include "clview.h"
#endif
#ifndef CLPALETTE_H
#include "clpalette.h"
#endif
#ifndef DESK
#include <Desk.h>
#endif
#ifndef __QUICKDRAW__
#include <Quickdraw.h>
#endif
#ifndef CLCollection_First
#include "CLCollection.h"
#endif
#include "cldialog.h"
#include <textedit.h>
#include <dialogs.h>
#include <traps.h>
#ifndef CLDOCUMENT_H
#include "cldocument.h"
#endif
#ifndef CLGraphicsView_H
#include "a_clGraphicsView.h"
endif

#define MAX MENU OBJ 4
#define BASE_MENU _ID 256
#define WIND _ID 256

//
// Declaration of myView 1 and myView2 variabls
//

156

CLGraphicsView *myViewl;
CLGraphicsView *myView2;

//
// My Window
//

class My Window : public CLWindow
public:

MyWindow():(WIND_ID) ();
class CLDocument * Create Document();
void CreateSubPanesO;

);

CLDocument * MyWindow::CreateDocumentO i
return new CLGraphicsDocument(this);

)

void MyWindow::CreateSubPanesO
CLPane *myPanel;
CLView *aView;
Point thePaneSize, theLocation;

SetPt(&thePaneSize, 150, 200);
SetPt(&theLocation, 10, 50);
myPanel = new CLPane(this, this, false, true);
aView = GetViewByName("MyViewl");
myViewl = (CLGraphicsView*)aView ;
myPanel->ICLPane(&thePaneSize, &theLocation, 3, aView);
AddSubPane(myPanel);
myPanel = new CLPane(this, this, false, true);
SetPt(&thePaneSize, 150, 200);
SetPt(&theLocation, 170, 50);
aView = GetViewByName("MyView2");
myView2 = (CLGraphicsView*)aView ;
myPanel->ICLPane(&thePaneSize, &theLocation, 3, aView);
AddSubPane(myPanel);

I

//
// MyFileMenu
//

class MyFileMenu : public CLMenu f
public:

class CLCommand * DoMenuCommand(short pItemNumber) ;
MyFileMenuO:(BASE_MENU_ID + 1) 0

);

class CLCommand * MyFileMenu::DoMenuCommand(short pItemNumber)
(

class MyWindow * aWindowObj ;

CheckOnlyltem(pltemNumber);
switch (pltemNumber)

case 1 :
MyWindow * myWind = new MyWindow;

157

myWind->Initialize0;
myWind- >DrawO;
break ;

case 2:
aWindowObj = (MyWindow *) (gApplication->GetWindowObject(FrontWindow()));
if (aWindowObj)

aWindowObj -> DoOpenO;
break ;

case 5 :
aWindowObj = (MyWindow *) (gApplication->GetWindowObject(FrontWindow0));
if (aWindowObj)

aWindowObj -> DoSaveO;
break ;

case 12 :
gApplication->Terminate0;
break ;

return 0 ;

//
// MyEditMenu
//

class MyEditMenu : public CLMenu
public:

class CLCommand * DoMenuCommand(short pItemNumber) ;
MyEditMenu0:(BASE_MENU ID + 2)

);

class CLCommand * MyEditMenu::DoMenuCommand(short pItemNumber)

switch (pIternNumber) {
case 1 :

myViewl->Undo() ; // not a command object, user can't undo
break ;

case 3 :
return myViewl->Cut() ;

case 5 :
return myViewl->Paste0 ;

case 8 :

myViewl->SelectA110 ; // not a command object, user can't undo

return 0 ;
1

//
// MyPatternMenu

class MyPattemMenu : public CLMenu
public:

class CLCommand * DoMenuCommand(short pIternNumber) ;
MyPatternMenuo:(BASE_MENU _ID + 3)

158

class CLCommand * MyPattemMenu::DoMenuCommand(short pItemNumber)
(switch (pItemNumber)

case 1 : // Black
return myViewl->SetPattern(qd.black) ;

case 2 : // White
return myViewl->SetPattern(qd.white) ;

case 3 : // Gray
return myView 1 ->SetPattem(qd.gray) ;

case 4 : // LightGray
realm myViewl->SetPattem(qd.ltGray) ;

)

)

//
// MyAppleMenu
//

class MyAppleMenu : public CLMenu
private:

Str255 name;
short temp;
CLUserAlert *aboutMini;

public:
class CLCommand * DoMenuCommand(short plietnNumber)

(

if (pItemNumber == 1)
aboutMini = new CLUserAlert(128);
aboutMini->DrawO;
delete aboutMini;

)
else (

1

return 0;
1;

GetItem(fMenuHandle,pItemNumber,name);
temp = OpenDeskAcc(name);

public:
MyAppleMenuo:(BASE_MENU_ID) f I

);

//
// MyPalette
//

class MyPalette : public CLPalette
public :

MyPalette(short pPaletteId):(pPaletteId) ();
class CLCommand * DoMouseCommand(short pItemHit);

);

CLCommand * MyPalette::DoMouseCommand(short pItemHit)(
short ShapeTool ;

switch (pItemHit)
case 1 :

159

case 2 :

case 3 :

case 4 :

case 5 :

case 6 :

case 7 :

case 8 :

ShapeTool = selectionTool ;

break ;

ShapeTool = Rectangle ;
break ;

ShapeTool = RoundRect ;
break ;

ShapeTool = Oval ;
break ;

ShapeTool = Line ;
break ;

ShapeTool = ArrowLine ;
break ;

ShapeTool = Diamond ;
break ;

ShapeTool = Label ;
break ;

myView 1 ->CLSetCurrentShapeTool(ShapeTool) ;
return CLPalette::DoMouseCommand(pltemHit);

);

//
// MyApplication
//

class MyApplication : public CLApplication
public :

CLMenuBar * CreateMenusO;
void Initialize();

};

CLMenuBar * MyApplication::CreateMenusOt
CLMenu * aMenuObj;
CLMenuBar * aMenuBarObj = new CLMenuBar;
aMenuObj = new MyAppleMenuO;
aMenuObj- >AddRsrcO;
aMenuBarObj->AddMenu(aMenuObj);
aMenuObj = new MyFileMenu;
aMenuBarObj->AddMenu(aMenuObj);
aMenuObj = new MyEditMenu;
aMenuBarObj->AddMenu(aMenuObj);
aMenuObj = new MyPatternMenu;
aMenuBarObj->AddMenu(aMenuObj);
aMenuBarObj->CheckMenultem(257, 2);
return aMenuBarObj;

);

void MyApplication:Initiali7e0
MyPalette * myPalette 1 = new MyPalette(128);

160

myPalettel->Draw0;
My Window * myWind = new My Window;
myWind->Initiali7e0;
myWind- >DrawO;

)

I/
// main function
II

main() f
// make instance of application object
MyApplication * myApp = new MyApplication;

// run the application
myApp- >RunO;

)

161

Appendix B

The MiniDraw Program Generated Automatically from the
Annotated Petri Net of Fig. 5.4

//
// myAlert.h
//
#include "cldialog.h"
#ifndef MYALERT H
#define MYALERT_H

class NoteAlert_129_6 : public CLNoteAlert
public:

NoteAlert 129_60:(129) SetName("NoteAlert_129_6");)
virtual void DoMouseDown(short pItemllit);
void DoItemlO;

) ; II end of class NoteAlert_129_6
#endif MYALERT_H .

//
// myWindow.h
//
#include "clwindow.h"
#include "clpalette.h"
ifndef MYWINDOW_H
#define MYWINDOW_H

class Palette_128_5 : public CLPalette
public:

Palette_128_50:(128) SetName("Palette_128_5");
class CLCommand * DoMouseCommand(short pItemHit);
class CLCommand * DoItem10;
class CLCommand * DoItem2O;
class CLCommand * DoItem3O;
class CLCommand * DoItem40:

) ; // end of class Palette_128_5

class Window_128_7 : public CLWindow [
public:

Window_128_70:(128) SetName("Window_128_7"); 1
class CLDocument * CreateDocumentO;
void CreateSubPanes0 ;

) ; // end of class Window_128_7
#endif MYWINDOW_H

//
// myMenu.h
//
#include "clmenu.h"
#ifndef MYMENUH
#define MYMENU H

162

class Menu_127_1 : public CLMenu
public:

Menu_127_10:(128)
class CLCommand * DoMenuCommand(short pMenultem);
class CLCommand * DoIteml 0;

); fi end of class Menu_127_1

class Menu_128_2 : public CLMenu
public:

Menu_128_20:(129)
class CLCommand * DoMenuCommand(short pMenultem);
class CLCommand * DoItem I 0;
class CLCommand * DoItem2O;
class CLCommand * DoItem3O;
class CLCommand * DoItem4O;
class CLCommand * DoItem5O;

) ; fi end of class Menu_128_2

class Menu_129_3 : public CLMenu (
public:

Menu_129_30:(130)
class CLCommand * DoMenuCommand(short pMenultem);
class CLCommand * DoItem10;
class CLCommand * DoItem2O;
class CLCommand * DoItem3O;
class CLCommand * DoItem4O;
class CLCommand * DoItem5O;
class CLCommand * DoItem6O;

); fi end of class Menu_129_3

class Menu_1304 : public CLMenu
public:

Menu_130 40:(131)
class CLCommand * DoMenuCommand(short pMenultem);
class CLCommand * DoItem10;
class CLCommand * DoItem2O;

); // end of class Menu_130_4
#endif MYMENU_H

//
// myApplication.h
//
#include "clapplication.h"
#include "clmenu.h"
#ifndef MYAPPLICATION_H
#define MYAPPLICATION_H

class MyApplication : public CLApplication
public:

CLMenuBar * CreateMenus0;
void InitializeO;

) ; // end of class MyApplication
endif MYAPPLICATIONH

//
// myAlert.cp

163

#include "myAlert.h"
#pragma segment myAlert

void NoteAlert_129_6::DoMouseDown(short pItemllit)
switch(pItemHit)
case 1:

DoItemlO; break;
) fi end of switch(pItemHit)

} // end of DoMouseDown(pItemHit)

void NoteAlert_129_6::DoItemlO t
DoCloseO;

// end of member function
// end of file myAkrt.cp

//
// myWindow.cp
//
#include "myWindow.h"
#include "myApplication.h"
#include "CLGraphicsView.h"
#pragma segment myWindow

CLCommand * Palette_128_5::DoMouseCommand(short pItemHit) (
switch(pItemHit) (
case 4:

case 3:

case 2:

case 1:

return DoItem40;

return DoItem30;

return DoItem20;

return DoIteml();
} fi end of switch(pItemHit)

) // end of DoMouseComrnand(pItemllit)

CLCommand * Palette_128_5::DoItem10
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*)gApplication->GetWindowDyName("Window_128_7");
if (!Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*)Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPalState(1);
Hilighthem(1);
return cmdObj;

) // end of member function

CLCommand * Palette_128_5::DoItem20
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_7Obj;
Window_128_7Obj =

(Window_128_7*)gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;

164

CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*)Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPalState(2);
Hilightltem(2);
return cmdObj;

) fi end of member function

CLCommand * Palette_128_5::DoItem30 (
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj =

(Window_128_7*)gApplication->GetWindowByName("Window_128_7");
if (!Window_128_70bj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*)Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPalState(3);
Hilightltem(3);
return cmdObj;

) fi end of member function

CLCommand * Palette_128_5::DoItem40 (
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj =

(Window_128_7*)gApplication->GetWindowByName("Window_128_7");
if C! Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*)Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPalState(4);
Hilightltem(4);
return cmdObj;

) // end of member function

class CLDocument * Window_128_7::CreateDocumentO
return new CLGraphicsDocument(this,"TEXTVMINI);

1 11 end of CreateDocument0

void Window_128_7::CreateSubPanes0
CLPane *myPanel;
CLView *aView;
Point thePaneSize, theLocation;
SetPt(&thePaneSize, fWindPtr->portRectsight, fWindPtr->portRect.bottom);
SetPt(&theLocation, 0, 0);
myPanel = new CLPane(this, this, false, true);
aView = GetViewByName("CLGraphicsView");
myPanel->ICLPane(&thePaneSize, &theLocation, 3, aView);
AddSubPane(myPanel);

1

fi end of file myWindow.cp

//
// myMenu.cp
//
#include "myMenu.h"

165

#include "myWindow.h"
#include "myAlert.h"
#include "myApplication.h"
#include "a_CLGraphicsView.h"
#pragma segment myMenu

CLCommand * Menu_127_1::DoMenuCommand(short pMenultem) {
switch(pMenultem)
case 1:

return DoItemlO;
// end of switch(pMenultem)

// end of DoMenuCommand(pMenultem)

CLCommand * Menu_127_1::DoItem10
CLCommand *cmdObj = 0;
NoteAlert 129_6 *NoteAlert_129_60bj = new NoteAlert_129_6;
NoteAlert_129_6Obj- >DrawO;
return cmdObj;

) fi end of member function

CLCommand * Menu_128_2::DoMenuCommand(short pMenultem) (
switch(pMenultem) (
case 5:

case 4:

case 3:

case 2:

case 1:

return DoItem5O;

return DoItem4O;

return DoItem3O;

return Doltem2O;

return DoItemlO;
} // end of switch(pMenultem)

) // end of DoMenuCommand(pMenultem)

CLCommand * Menu_128_2::DoItemlO
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj = new Window_128_7;
Window_128_70bj->Initialize();
Window_128_7Obj- >DoNewO;
EnableMenultem(3);
return cmdObj;

) fi end of member function

CLCommand * Menu_128_2::DoItem2O
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_7Obj = new Window_128_7;
Window_128_70bj->Initiali7e0;
Window_128_70bj->DoOpeno;
EnableMenultem(3);
return cmdObj;

// end of member function

CLCommand * Menu_128_2::DoItem30
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj =

166

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
Window_128_7Obj->DoClose0;
return cmdObj;

) // end of member function

CLCommand * Menu_128_2::DoItem4O
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_70bj) return 0;
Window_128_7Obj->DoSave();
return cmdObj;

1/ end of member function

CLCommand * Menu_128_2::Doltem5O I
CLCommand *cmdObj = 0;
gApplication- >TerminateO;
return cmdObj;

) fi end of member function

CLCommand * Menu_129_3::DoMenuCommand(short pMenultem) (
switch(pMenuItem) (
case 6:

case 5:

case 4:

case 3:

case 2:

case 1:

return DoItem6();

return DoItem50;

return DoItem40;

return DoItem30;

return DoItem20;

re= DoItem10;
) fi end of switch(pMenultem)

) // end of DoMenuCommand(pMenultem)

CLCommand * Menu_129_3::DoItemlO (
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
Window_128_70bj->Unc100;
return cmdObj;

) // end of member function

CLCommand * Menu_129_3::DoItem20 I
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_7Obj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
Window_128_7Obj- >RedoO;
return cmdObj;

167

) fi end of member function

CLCommand * Menu_129_3::DoItem30
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_ 128_ 7Obj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj- >DoCutO;
EnableMenultem(5);
return cmdObj;

) fi end of member function

CLCommand * Menu_129_3::DoItem40
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_70bj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_ 128_ 7Obj-> GetViewByName ("CLGraphicsView ");
CLGraphicsViewObj- >DoCopyO;
EnableMenultem(5);
return cmdObj;

) // end of member function

CLCommand * Menu_129_3::DoItem50
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_ 128_ 7Obj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj- >DoPasteO;
return cmdObj;

fi end of member function

CLCommand * Menu_129_3::DoItem60
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_7Obj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->DoSelectA110;
EnableMenultem(3);
EnableMenuItem(4);
return cmdObj;

) // end of member function

168

CLCommand * Menu_130_4::DoMenuCommand(short pMenultem)
switch(pMenultem) (
case 2:

return DoItem20;
case 1:

return Do Item10;
) // end of switch(pMenultem)

) // end of DoMenuCommand(pMenultem)

CLCommand * Menu_130_4::DoItem1 0 f
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj = (Window_128_7*)

gApplication->GetWindowByName("Window_128_7");
if (!Window_128_7Obj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPattern(qd.black);
CheckMenultem(1);
return cmdObj;

) // end of member function

CLCommand * Menu_130_4::DoItem20 i
CLCommand *cmdObj = 0;
Window_128_7 *Window_128_70bj;
Window_128_70bj =

(Window_128_7*) gApplication->GetWindowByName("Window_128_7");
if (!Window_128_70bj) return 0;
CLGraphicsView *CLGraphicsViewObj;
CLGraphicsViewObj =

(CLGraphicsView*) Window_128_70bj->GetViewByName("CLGraphicsView");
CLGraphicsViewObj->SetPattem(qd.gray);
ChecicMenultem(2);
return cmdObj;

) // end of member function
// end of file myMenu.cp

//
// myApplication.cp
//
#include "myApplication.h"
#include "myWindow.h"
#include "myMenu.h"
#include "myAlert.h"

CLMenuBar * MyApplication::CreateMenusO (
CLMenuBar *menuBa,
menuBar = new CLMenuBar,
Menu_127_1 *Menu_127_10bj = new Menu_127_1;
menuBar->AddMenu(Menu_127_10bj);
Menu_128_2 *Menu_128_2Obj = new Menu_128_2;
menuBar->AddMenu(Menu_128_20bj);
Menu_128_20bj->DisableMenultem(3);
Menu_129_3 *Menu_129_3Obj = new Menu_129_3;
menuBar->AddMenu(Menu_129_30bj);

169

Menu_130_4 *Menu_130_40bj = new Menu_130 4;
Menu_130 4Obj->CheckMenuItem(1);
menuBar->AddMenu(Menu_130_40bj);
return menuBar,

)

void MyApplication::InitializeO (
Palette_128_5 *Palette_128_50bj = new Palette_128_5;
Palette_128_50bj->Hilightltem(1);
Palette_128 5Obj->Draw0;
Window_lii_7 *Window_128_70bj = new Window_128_7;
Window_128_70bj->lnitialize0;
Window_128_7Obj- >DoNewO;

) /1 end of Initialize0
// end of file myApplication.cp

//
// main.cp
//
#include "myApplication.h"
My Application *theApplication;
maja0 f

theApplication = new MyApplication0;
theApplication->Runo;

)

