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A HYPERBOLIC STEFAN PROBLEM

R.E. SHOWALTER AND N.J. WALKINGTON

1. Introduction. In order to utilize the balance of energy to calcu-
late temperatures, it is necessary to introduce constitutive assumptions
relating to energy storage, e, and flux, ¢, to the temperature u. Tra-
ditionally, e is chosen proportional to w and ¢ proportional to Vu.
This leads to the classical parabolic heat equation, where a thermal
disturbance is instantly felt throughout the body. Other admissible
constitutive relations allow e and ¢ to depend upon the temperature
history [9],

qt) = — /000 a(s)Vu(t — s)ds.

Selecting a(s) = (k/7)e=(*/7) in the above (cf. [9]) yields

d ~5
(1.1) <1+T&> q= —kVu,

which leads to the hyperbolic telegraphers equation
(1.2) Tcug + cur — kAu =10

in place of the classical heat equation (7 = 0). Such a model will
certainly have an upper bound on the speed of thermal disturbances.

We shall formulate a well-posed free-boundary problem of the Stefan
type [7,13—15] consistent with (1.1) and which contains the telegra-
phers equation (1.2).

2. Energy and phase change models. If a block of ice of unit
volume is subject to a uniform heat source of intensity F' > 0, classical
models predict a temperature increase at the rate of F/c; until the
temperature reaches v = 0. While the ice melts the temperature
remains at zero and the fraction of water, &, increases from 0 to 1 at a
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rate of F//L where L is the latent energy of fusion. When all of the ice
has melted the temperature increases at a rate of F//cy. The constants
c; and ¢y are the specific heats of the ice and water, respectively. In
summary, the energy constant is given by

(2.1) e=C(u)+ L¢

where C(u) = ciu for u < 0, C'(u) = cou for u > 0 and £ € H(uw),
the Heaviside graph of u, is the water fraction. The classical model
(2.1) assumes that the storage and release of heat is instantaneous, this
being compatible with the assumption that the flux is proportional to
the temperature gradient.

We consider here a constitutive energy relation

(2.2) (1 + T%> e= <1 + T@)%) C(u) + LE, €€ H(u)

where T'(u) = ryu if v < 0 and T'(u) = mu if u > 0. Equation (2.2)
may be motivated from a memory dependent model as indicated for
the heat flux ¢ in (1.1). The “delay times” 7 and 72 will be chosen
to match wave speeds in the solid and liquid phases. Repeating the
above experiment using (2.2) for an energy storage model gives the
same temperature rise rate F'/c; until v = 0. Then & jumps from 0
to 7 F/L; thereafter, it increases steadily to 1 where e = L — 7F.
Afterward, temperature increases again, given by

oo (D) femwoem (1 [ ),

The nonclassical feature observed here is that a fraction of water
melts instantly when temperature reaches zero. Note that 7, must
be small, 71 F' < L, for the preceding, and there is a smoothing of the
classical temperature response near the end of the melting interval at
the expense of the discontinuity in latent heat stored at the beginning
of this interval.

3. The Stefan problem. The balance of energy and constitutive
relations (1.1) and (1.2) will be used to formulate a Stefan problem
containing the telegraphers equation. This problem is naturally posed
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in a Hilbert space of distributions. Let G be a domain in Euclidean
space R™ and set Q@ = G x (0,00). The temperature at point z € G
and time ¢t > 0 is u(z,t); from the conductivities of ice and water,
ki and ko, respectively, we define the function K by K (u) = kju for
u < 0 and K(u) = keu for u > 0. Recall that C(u) and T'(u) are
determined similarly from specific heats and delay times. Denote by
Q_,Q, and Qg the subdomains of 2 where u < 0, v > 0 and u = 0,
respectively. Let S, be the boundary of Q2 and S_ the boundary of
Q_in Q. N = (N, N,) is the normal on either Sy or S_ oriented out
of Q4 and into _, respectively, so that it is assigned consistently on
S =S5, NS_, the interface between Q24 and Q_. Hereafter, we assume
that the flux and energy are related to temperature by (1.1) and (2.2),
respectively.

The balance of energy requires that for any subdomain G* C G with
outward normal 77

d

— (€+T€I):7/ ((j'—}-’r(j")-ﬁ—}-/ (F +1F").

The form of our constitutive relations suggests that the integrands
will be piecewise smooth in . Writing the integrals as sums over
the smooth portions and their boundaries S and utilizing the Leibnitz
rule to bring the temporal derivative under the integral enables one to
compute

/G* {%(e+7e’)+v-(q’+nj’)}

_ / FrP)+ [ [etre|V(O) + G477 7.
G* SNG*

(3.1)

The formulation of a Stefan problem for processes whose smoothness
is consistent with our constitutive relations follows from the combina-
tion of (1.1), (2.2) and (3.1). The problem is to find functions u,{ on
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Q such that £ € H(u) and

(3.2a)
0 0 . g
o (7.2026_1: +02u> —kyAu=F+7F inQ, -8,
(3.2b)
0 . &
La_f =F+7F in Q- S,
(3.2¢)
0 ou . S
5 (7’101@ +C1U) ~kAu=F+7F inQ -85,
(3.3a)
ou =~
L(1—-¢)+ T2C2 57 Ny =kaVu- N, on 5y,
(3.3b)

<_L£ +TICI%> Ny = k16u N, onS_,

(3.3¢) TiCi [%] N¢ = k;[Vu]N, on S—8,

where 7 = 1 or 2 depending upon u being < 0 or > 0,

(3.3d)
u(s,t) =0, s € 0G, t >0,

(3.4a)
u(z,0) = up(z), z€G,
(3.4b)
Ou
<7'202— + cou + L> =wp(z) where ug(z) >0,
ot =0
(3.4c)
Ou
Tic1 47 + cou =wp(z) where vp(z) <0,
ot =0
(3.4d)

Lé(z,07) = vo(z) where ug(z) =0, z € G.

The temperature in the water and ice is governed by the hyperbolic
telegraphers equations (3.2a) and (3.2c), respectively, and the water
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fraction in the partially frozen region is determined by the ordinary
differential equation (3.2b). Equations (3.3a) and (3.3b) determine the
free surface (at u = 0) in the water and ice, respectively. Where Q has
zero measure the jump conditions (3.3a) and (3.3b) combine to give
the jump in values along S =S5, NS_,

<L 70 [%K(u)D N, = [VK(u)-N,] on S,

This is the counterpart of the usual Stefan constraint (7o = 0). Also
(3.3c) is the classical jump condition along wave fronts. Any of the
classical boundary conditions could be used in place of (3.3d). The
initial conditions u = wup and (e + 7€¢’) = vy are given in (3.4).
Nonlinearities arise from the free surface and the difference in material
properties ¢;, k; and 7; for water (i = 1) and ice (: = 2). Note that
the speeds of propagation of disturbances along the characteristics are
given by (kz/cam)'/? and (k1/cim1)'/? in the respective phases. We
shall require that there be a global signal speed independent of phase;
to fix the ratio of 7y and 75 to obtain a single velocity equal to (1/75)"/?
with 79 > 0 we choose

Tok1 Toks
L= , Ty =
C1 C2

everywhere above.

Under the same smoothness assumptions used to derive the balance
of energy statement (3.1), a computation shows that (3.2) and (3.3)
are equivalent to

0 0K (u) B y
e (TOT +C(u)+L§> —AK(u)=F+71F

in D'(Q). A generalized solution of the Stefan problem (3.2)—(3.4) is a
pair of functions

we Whe(0,T; L(@) (|10, T; Hy (@), €€ L¥(Q)
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which satisfy

(3.5a)
% <7’0%K(U(t)) + C(u(t)) + L{(t)) — AK (u(t))
=F+7F', ae. tel0,T],
(3.5)
u(t) € Hy(G) and &(t) € H(u(t)) for all t € [0,T],
(3.5¢)

u(0) = uy, (T()%K(u) +C(u) + Lf) (0) = wvp.

It will always be assumed that F € W (0, T; H~!(G)) so it is implicit
in (3.5a) that the term “ro(d/dt)K (u)(t) + C(u) + LE(E)” belongs to
Wb (0,T; H *(G)). Hence, the initial conditions are meaningful.

4. Existence-uniqueness of a generalized solution. Theorem
1 below will be used to demonstrate that problem (3.5) is an evolution
equation with solutions determined by a semi-group of contractions on
a Hilbert space.

Theorem 1. Let V and H be Hilbert spaces with V dense and
continuously imbedded in H. Denote by A:V — V' and C : H — H'
the Riesz maps onto their respective dual spaces and let B : V. — V'
be a (possibly multi-valued) mazimal monotone operator . Assume
f e Whi(0,7;V"), uyp € V and vy € V' are given such that there
is a b € B(ug) with b — vy € H'. Then there exists a unique pair u €
Whe(0,T; H), w € L®(0,T; V') such that Cu' +w € WH>(0,T; V"),
w(t) € B(u(t)) for all t € [0,T],

(4.1) (Cu' +w) + A(w) = f in L=(0,T; V'),
and w(0) = ug, (Cu' + w)(0) = vy.

It remains to recover the weak form of the Stefan problem (3.5) as a
special case of (4.1). Make the change of variable U = K (u) and observe
that H(U) = H(u). Then choose H = L*(G) = H' and Cu = Tcu for
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u € H. Similarly, let V = H}(G) and define A € L(V, V') by the scalar
product,

AU(U):/ VU - Vv, U,v € Hy(G),
G

so A = —A is a distribution-valued Laplace operator. Finally, we de-
fine B({U) = C o K~ Y(U) + LH(U), the indicated monotone operator
obtained from the L2-realization of the (multi-valued) maximal mono-
tone graph C o K=1(-) + LH(-). That is, w € B(U) if and only if
w=CoK Y U)+ L¢ = ou+ LE with U = K(u) and € € H(u) a.e. in
G.

Theorem 2. Assume that F € W21(0,T; H-Y(G)), up € H}(G),
& € L>®(G) with & (z) € H(uo(z)) for a.e. x € G, and vy € L*(G)
are given. Then there exists a unique generalized solution of the Stefan

problem (8.5).

Proof. 1t is clear from the above that Theorem 1 holds in our situation
and that if U is the solution of (4.1), then u = K ~1(U) satisfies the
generalized Stefan problem (3.5). O

As with the classical Stefan problem the initial conditions (3.5¢)
change when v = 0 on a set of positive measure in the initial state.
When approaching initial values through Q% or Q~, u and u; are
prescribed. When approaching the initial values through Qg, the water
content £(z,07) € (0,1) must be specified.

5. The one-phase problem. The single-phase case of the Stefan
problem is the description of the melting of a (partially) frozen portion
Qo of the region by heat transferred from the melted portion 2, and
the corresponding displacement of the common interface S. As before,
Q. and €y are the regions where v > 0 and u = 0, respectively,
and we let 7,c and k be the parameters corresponding to the melted
region. While Theorem 2 can accommodate this problem, it is usual
to stipulate the extra condition that v > 0 in 2. This stipulation is
inconsequential for the classical Stefan problem since the classical heat
equation satisfies a maximum principle, so the constraint v > 0 will be
satisfied “automatically” from the nonnegativity of the initial data and
boundary conditions.
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Proceeding as in Section 3 we define a generalized solution to the one
phase Stefan problem as a pair of functions u, £ for which

we Whe(0,T; L(@) (|17, T; Hy (@), €€ L¥(Q)

(5.1a)

%(Tcu'(t) + cu(t) + LE(t)) — kAu(t) =0, a.e. t €[0,T],
(5.1b)

u(t) > 0in Hy(G) and £(t) € H(u(t)) for all t € [0,T],
(5.1c)

u(0) = uo, (reu’ + cu + LE)(0) = vp.

As in the classical case, the one-phase problem (5.1) leads to a
variational inequality. To see this, let U(t) = f; u, known as the
freezing indez, and set

E(U) = ctU"(t) + cU'(t) + AU(t) — vo + L.

An integration in time of (5.1a) yields E(U) = L(1 — £(¢)). Since
&(t) € H(U'(t)) we obtain the variational inequality

(5.2) E(U) >0, U'(t) >0, EU)(U'(t))=0, 0<t<T,

for a solution of (5.1a) and (5.1b). This is easily resolved by Theorem 1.
In fact, if we let H be the maximal monotone graph given by H(r) =
{1} for r > 0 and H(0) = (—o0, 1], then we can write (5.2) formally as

(5.3a)
%(Tcu'(t) eult) + LE®)) — kAu(t) = 0, ae. £ € [0,T],
(5.3b)

u(t) € Hy(G) andé(t) € H(u(t)) for allt € [0,1].

Certainly (5.3b) implies that the constraint u(t) > 0 is satisfied. If we
choose A and C as in the proof of Theorem 2 but set B(u) = cu+LH (u),
we obtain from Theorem 1 the following
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Theorem 3. Assume ug € H}(G), & € L>®(G) and vy € L*(G)
with &o(x) € H(up(z)) and up(z) > 0 for a.e. x € G. Then there exists
a unique v € WH(0,T; L*(G)) N L>(0,T; H}(G)) and £ : [0,T] —
L?(G) which satisfy (5.3) and (5.1c).

2
N

Although Theorem 3 provides a solution of the telegraphers equation
on Q,, which is nonnegative on 2, we emphasize that it is not neces-
sarily a generalized solution of (5.1). The following example illustrates
the problem.

Example. Let a > 0. Choose A = [(1 + 472a?)c/47k]'/? and define
u(z,t) = exp(—t/27) cos(at) sin(Az) for z € G = (0,7/)) in R! and
0 <t < m/2a. It is easy to check that u satisfies (5.1) and (5.3) (with
¢ = 1 since u > 0) up until time tg = 7/2a. At that time Q. decreases
instantly to the empty set. In order to continue as a solution of (5.1a)
or (5.3a) the jump condition [rcu; + L] = 0 must be satisfied. That
is,

(5.4) reuy(td) + LE(tT) = L — Tcaexp (é) sin(Az).

Suppose we continue along the solution of (5.3) as given by Theorem
3. Then wu(t§) > 0, so

E(z,tf) <1 (%) exp (é) sin(Ax).

If a is sufficiently large, there is an interval around z = 7/2X in which
(z,tf) < 0. Thus, (5.1b) is violated and more than L units of latent
heat were absorbed by the material. Suppose instead we continue
along a solution of (5.3a) for which & > 0. Then (5.4) shows that
for a sufficiently large there is an interval around z = 7/2)\ in which
ut(m,tf{ ) < 0; hence, u is strictly negative for some time afterward.
Thus, (5.1b) is violated and the material has a region Q_ which is
supercooled. In particular, there is no generalized solution of (5.1) with
the given data.

Finally, we shall comment on two other models that have been
presented and solved, in the case of one (spatial) direction, using the
method of characteristics. Both models assume that the energy is
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proportional to temperature (e = C(u) + LH(u)) and use (1.1) to
define the flux; however, they treat the free surface differently. In both
instances the energy relation [e] N; = [g]- N, is imposed. Li [10] obtains
a second condition by requiring the temperature to be continuous while
Freedman [8], following [14], imposes [rq|N; = [K(u)]N,. This later
condition is meaningful only in the one dimensional problem and, in
general, leads to discontinuous temperatures.

Like the model presented here, the above models require compatibility
conditions to hold for the initial data near the free surface (£ €
H(u), etc.); however, in [8] several nontrivial compatibility conditions
between the initial temperature and flux are required in order to
guarantee a solution. In particular, the flux, ¢, has to be suitably small;
this is rather inconsistent with the plan that these nonclassical models
were intended for problems involving high temperature gradients (and
correspondingly large fluxes) [1-6]. Clearly, the problems with our
model arise when the derivative u’ is large, which will occur when
large fluxes occur. There appears to be a technical problem with the
model [10] for the one phase problem with zero initial temperature
and prescribed temperature boundary conditions. In this situation
Li demonstrates that the problem is ill posed; this is unique to that
particular model.
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