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Given image data of a fluid flow, the flow field, hu; vi, governing the evolution of the system can be

estimated using a variational approach to optical flow. Assuming that the flow field governing the

advection is the symplectic gradient of a stream function or the gradient of a potential function—

both falling under the category of a potential flow—it is natural to re-frame the optical flow

problem to reconstruct the stream or potential function directly rather than the components of the

flow individually. There are several advantages to this framework. Minimizing a functional based

on the stream or potential function rather than based on the components of the flow will ensure that

the computed flow is a potential flow. Next, this approach allows a more natural method for

imposing scientific priors on the computed flow, via regularization of the optical flow functional.

Also, this paradigm shift gives a framework—rather than an algorithm—and can be applied to

nearly any existing variational optical flow technique. In this work, we develop the mathematical

formulation of the potential optical flow framework and demonstrate the technique on synthetic

flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated

by a satellite data-verified ocean model of temperature transport. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821188]

We present a method for constructing the velocity field of

a fluid flow from image intensity data. Given that the flow

field is the gradient of a potential function, the potential

can be reconstructed directly, rather than the construct-

ing the components of the flow individually. This allows

an alternative viewpoint of regularizing optical flow and

leads to improved reconstructions, which we demonstrate

on synthetic and data-verified flow structures relevant to

mass transport in fluids.

I. INTRODUCTION

Optical flow is the term used to describe the computa-

tion of a vector field describing the apparent motion between

time-adjacent images of the same scene. Since Horn and

Schunck1 introduced their seminal algorithm, there has been

a substantial literature presenting a variety of approaches to

optical flow, and there is also an extensive literature compar-

ing and contrasting these methods with respect to their com-

putational complexities and abilities to accurately capture

the underlying flow fields (for example, Refs. 2–9).

In the last decade, optical flow algorithms have been

adapted for analyzing fluid flows in connection with and in com-

parison to particle image velocimetry (PIV),10,11 geophysical

fluid flows,12,13 atmospheric motion,2 and laboratory

experimental fluid flows,14 and an extensive survey of the fluids

literature on optical flow is given in Ref. 15. Whereas some

image-based techniques for fluid dynamics analysis require rigid

experimental conditions—such as PIV—optical flow based

techniques can be used in more general settings, and that is one

of the primary reasons for developing optical flow-based

approaches to fluid dynamics analysis. For example, given satel-

lite data, it could be possible to analyze the dynamics of species

transport in the ocean16 or other kinds of pseudo-transport;17

analysis that could not be done from methods like PIV. The pri-

mary challenge in determining whether optical flow is appropri-

ate to use in a given application is understanding how the 2D

image projections of the flow relate to the physical 3D flow,

which heavily depends on the application being studied.

Given time-varying image data, Iðx; y; tÞ, on a spatial

domain X � R2 and a temporal domain ½0; T�, Horn and

Schunck1 modeled the evolution of the image intensities as

an advection governed by

Itðx; y; tÞ ¼ �rIðx; y; tÞ � huðx; y; tÞ; vðx; y; tÞi; (1)

where u and v are the horizontal and vertical components of

the flow field. This model is derived from a local conserva-

tion of intensity and assuming that each of the components

of the flow field is smooth. The flow is computed as a mini-

mizer of

Eaðu; vÞ ¼
ð

X
ðIt þ Ixuþ IyvÞ2 dXþ aRðu; vÞ; (2)

where Rðu; vÞ ¼
Ð
Xu2

x þ u2
y þ v2

x þ v2
y dX was their chosen

regularization and a > 0 is a regularization parameter that
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serves as a weighting factor between the least squares data fi-

delity and the regularization.

This formulation is appropriate for computing “flow”

fields associated with rigid-body motions of non-reflectant

surfaces, but different physical models can also be incorpo-

rated into the data fidelity to use such an approach for com-

puting fluid flows. Rather than assuming a system evolves

according to Eq. (1), Corpetti et al. proposed in Refs. 18–22

to model a fluid system as evolving according to the continu-

ity equation,

Itðx; y; tÞ ¼ �divðIðx; y; tÞhuðx; y; tÞ; vðx; y; tÞiÞ; (3)

resulting in an optical flow energy of the form

Eaðu; vÞ ¼
ð

X
ðIt þ divðIhu; viÞÞ2 dXþ aRðu; vÞ; (4)

where Rðu; vÞ is an appropriate regularization scheme and u
and v depend on x, y, and t (which we drop from the notation

from here on). They proposed to regularize using the

“second-order div-curl regularization” of Ref. 23, which is

given by

Rðu; vÞ ¼
ð

X
krdivðhu; viÞk2 þ krcurlðhu; viÞk2 dX: (5)

Their work served as motivation for Kohlberger et al.24 to

reformulate the optical flow problem, using the same regula-

rization, in order to reconstruct the components of the

Helmholtz decomposition of the flow, allowing to capture

the curl-free and divergence-free components (though not

the laminar component). This was a departure from classical

optical flow, where the flow components are computed along

the horizontal and vertical axes.

The approach presented here is largely motivated by

that work and also shifts from reconstructing the horizontal

and vertical components of the flow and focuses on flows

that can be represented as the gradient of a potential function

or as the symplectic gradient of a stream function. Whereas

large-scale fluid flows, such as oceanic flows, are almost

never globally representable by a single potential function,

many local dynamical structures of interest, such as vortices

and outflows (sources), can be modeled in this way, and we

demonstrate that our method captures these local structures

quite well. This is a simpler model than that used in Ref. 24,

but it presents several advantages. First, our methods are

simpler to implement computationally, as it requires solving

one minimization problem rather than two coupled problems.

More importantly, the approach described in the sequel

allows to impose scientific priors, via regularization, directly

on the potential rather than on the separate div-free and curl-

free or u-v components of the flow.

When combined with different regularization schemes,

the two system evolution models, (1) and (3), lead to a collec-

tion of optical flow algorithms—via minimizing (2) and (4)

for a range of regularization schemes. In this work, we cast

these evolution models into a generalized framework for

reconstructing flow fields that can be locally represented by a

single potential or stream function, and the flow reconstruction

results are valid in the domain where the assumption of a sin-

gle potential or stream is valid. In Sec. II, we introduce the

stream/potential function approach to optical flow and

describe its advantages, specifically in terms of its regulariza-

tion. Section III presents reconstructions of synthetic flows

using the optical flow algorithms derived from Eqs. (2) and

(4), as well as the flows computed within the stream/potential

framework and an associated error analysis; the same is done

in Sec. IV for two examples of oceanic flows.

II. A STREAM/POTENTIAL FUNCTION FRAMEWORK
FOR OPTICAL FLOW

The vector fields governing many kinds of fluid flows

are “potential flows,” i.e., the flow field is locally the gradi-

ent of a potential function. The potential function is denoted

by w, and the formulations of the system evolutions corre-

sponding to Eqs. (1) and (3) in this framework are

It ¼ �rI � rw; and (6)

It ¼ �divðIrwÞ: (7)

Define the operator A by

Aw ¼ ðrI þ IrÞ � rw; (8)

then the optical flow energies (2) and (4) can be reformulated

as

EaðwÞ ¼
ð

X
ðIt þrI � rwÞ2 dXþ aRðwÞ; and (9)

EaðwÞ ¼
ð

X
ðIt þ AwÞ2 dXþ aRðwÞ; (10)

respectively, where RðwÞ is an appropriate regularization of

the potential function. Note that Eq. (10) reduces to Eq. (9)

in the case that Iðr � rwÞ ¼ 0, but the gradient of Eq. (10)

does not reduce to the gradient of Eq. (9) (which is important

for computing minimizers of the energies).

There are several advantages to this formulation. The

first primary advantage is that any flow field reconstructed

this way will necessarily be a potential flow, a scientific prior

not imposed when reconstructing the components of the flow

individually. The second advantage is that it allows to regu-

larize the potential function directly.

In order to minimize Eq. (10) using a gradient-based

algorithm, we must compute the gradient of EaðwÞ with

respect to w. A direct calculation gives that the gradient and

Hessian of E0 are

rE0 ¼ 2A�ðIt þ AwÞ and r2E0 ¼ 2A�A; (11)

where A� is the operator adjoint of A. In particular, since the

Hessian of E0 is positive semi-definite, E0 is a convex

functional.

For flows that are locally incompressible, rather than

representing the flow as the gradient of a potential function,

they can instead be represented as the symplectic gradient,

rHw ¼ h�wy;wxi, of a stream function. In this case, the
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operator A is replaced by the operator A0 defined by

A0w ¼ ðrI þ IrÞ � rHw, and the optical flow energies are

given by

EaðwÞ ¼
ð

X
ðIt þrI � rHwÞ2 dXþ aRðwÞ; and (12)

EaðwÞ ¼
ð

X
ðIt þ A0wÞ2 dXþ aRðwÞ: (13)

The potential and stream formulations lead to the same com-

putational approaches, so the remaining analysis is performed

only for the potential function formulation. Examples for

each formulation are given in Sec. III.

A. Regularization of the potential function

There are two primary reasons to regularize any varia-

tional optimization problem. The first reason is to ensure that

the resulting optimization problem is well-posed, which is to

say that the solution to the regularized problem exists, is

unique, and is stable with respect to perturbations in the

input data. Moreover, it is desirable that the regularized solu-

tion closely approximates a minimizer to the unregularized

energy, when the regularization parameter is small. In prac-

tice, even regularized optical flow problems are often not

well-posed, as uniqueness of minimizers is rarely achievable,

due to the way the data fidelity depends on the input data.

The second primary reason to regularize a variational

optimization problem is to impose scientific priors on the

computed solution. Given that even regularized optical flow

computations are generally not well-posed, this is the fun-

damental purpose for regularizing optical flow. Neither of

the energies (2) nor (4) allows to impose scientific priors on

the flow itself, as they both regularize the components,

rather than the flow as a whole. The same is true of the

Helmholtz decomposition given in Ref. 24, where the regu-

larization is imposed jointly on the div-free and curl-free

components of the flow. There is some justification for reg-

ularizing the components, as images are 2D projections of

the flow that will generally not exactly obey the same

physics as the flows themselves. Nonetheless, it is desirable

to be able to enforce that the computed flow is constructed

using the same physical principles that are assumed on the

flow itself.

It is clear that imposing scientific priors on the flow is

not equivalent to imposing the same prior on the components

of the flow, but the problem is more subtle than that.

Suppose it is known that a given flow is sparse. Sparse recon-

struction is often performed using L1 regularization,25 which

in the case of Eq. (2) or Eq. (4) would imply that

Rðu; vÞ ¼
ð

X
juj þ jvj dX: (14)

With this regularization, however, the Euler-Lagrange equa-

tions for u and v couple u and v only in the terms correspond-

ing to the data fidelity and not in the terms corresponding to

the regularization. In this sense, the regularizations of u and

v occur independently. Thus, the solution will favor a sparse

u and a sparse v, but this does not imply that the flow field

will be sparse since the complements of the supports of u
and v need not largely overlap. This is just to say that u could

be 0 in many places and v could be 0 in many places, but

they need not be 0 in the same places. Within the potential

function formulation of optical flow, imposing sparsity on

the computed flow field is quite natural. The regularization

that will accomplish this is the total variation of the potential

function,

RðwÞ ¼
ð

X
jrwj dX: (15)

(Note that the total variations of rw and rHw are equal, so

the same result holds for the stream formulation.) The poten-

tial function formulation allows to impose the sparsity

directly on the flow, which does not occur when reconstruct-

ing u and v separately.

Since optical flow computations are rarely well-posed,

the fundamental point here is that choosing regularization

schemes for optical flow does not follow the classical, math-

ematical guidelines found in the inverse problems literature.

Instead, regularizing optical flow should be viewed as a part

of the modeling of the flow. For example, in Ref. 26, a regu-

larization scheme is derived that is the most general regulari-

zation not penalizing rigid body motion, making it a natural

regularization scheme for flows that are combinations of

pure rotations, translations, etc. Mathematically, it means

that the computation of the flow takes place in a highly re-

stricted space of affine mappings, but it is more important to

analyze the properties of such functions than it is to define

and analyze the space rigorously.

For the data fidelity in Eq. (2), adapting the regulariza-

tion has been explored in some detail by Weickert et al. in

Ref. 27. Their analysis primarily describes the framework in

which one can implement different regularizations, and they

give several examples. The effect of different regularization

schemes for optical flow in a fluid dynamics setting is

addressed in Refs. 12 and 13, though the authors there use a

different data fidelity term.

Table I shows 6 regularization terms for potential-based

optical flow. The simplest regularization term, R1—which is

actually a step backward from the Horn-Schunck method—

is to use the H2ðXÞ norm of the potential function. This regu-

larization has the advantage that it is coercive and strictly

convex, which ensures the uniqueness in H2ðXÞ of minimiz-

ers to the optical flow functional, which, as noted above, is

not of primary importance for optical flow. The second regu-

larizer, R2, is the Horn-Schunck regularization. The regulari-

zation R4 comes from the “engineering strain tensor”

formulation of optical flow, a full description and explana-

tion of which can be found in Ref. 26. Finally, R5 is the

potential and stream function form of the first-order “div-

curl” regularization proposed by Suter.23

The gradient of each of the above regularizations results

in a linear contribution to the Euler-Lagrange equation, as do

the fidelity terms. Thus, a first-order necessary condition that

w� be a minimizer of Eq. (10) regularized with R2 is that it

be a solution to the linear PDE

033134-3 Luttman et al. Chaos 23, 033134 (2013)
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½2A�Aþ aðBþ B�Þ�w ¼ �2A�It; (16)

where A is given by Eq. (8) and B ¼ D�xxDxx þ D�yxDyx

þD�xyDxy þ D�yyDyy. Here, Dxx is the second derivative opera-

tor, and D�xx its operator adjoint. In practice, the derivatives

are computed using finite differences in a matrix form, and

the adjoint operator reduces to a matrix transpose. Equation

(16) can be solved using iterative techniques or direct meth-

ods for solving sparse linear systems. In practice, we use a

direct LU factorization for solving all linear Euler-Lagrange

equations. Note that when the regularization results in a lin-

ear contribution to the Euler-Lagrange equation, the matrix

B is self-adjoint, and Eq. (16) simplifies to ðA�Aþ aBÞw
¼ �A�It, in which case a Cholesky factorization is also pos-

sible. This simplification is not the case in general for regula-

rizations contributing nonlinearly to the Euler-Lagrange

equation. See Ref. 28 for an analysis of total variation regu-

larization for optical flow in the potential and u-v formula-

tions of optical flow.

Regularizations R2 and R3 will be used to demonstrate

the potential and stream function approaches to computing

optical flow in Sec. III; all 6 regularizations are compared in

Sec. III B for both formulations (9) and (10); and in Sec. III A

we address the selection of the regularization parameter.

III. SYNTHETIC FLOWS

In this section, we demonstrate the performance of

potential and stream function-based optical flow for captur-

ing several different kinds of flows. For our initial experi-

ments, we begin with a potential or stream function, evolve

an initial density, and reconstruct the function from two time

instances of the density evolution. The first example is a

flow with potential function

wðx; yÞ ¼ sinðxÞcosðyÞ: (17)

We integrate the initial density shown in Fig. 1(a) forward in

time under the evolution model (3) to the density shown in

Fig. 1(b), under the flow field

rwðx; yÞ ¼ hu; vi ¼ hcosðxÞcosðyÞ;�sinðxÞsinðyÞi: (18)

By construction, this is a potential flow, but it is not a stream

flow, as it corresponds to a source in the flow, which is

compressible.

Fig. 1(c) shows the true flow by which image (a) was

evolved to (b), and Fig. 2 shows computed reconstructions

for the potential function formulation and the u-v formula-

tion. The reconstructions computed within each formulation

are shown for both the continuity equation (first row) and

conservation of intensity (second row) evolution models and

regularizations R2 (first and third columns) and R3 (second

and fourth columns). For this flow both the potential function

approach and the u-v approach produce correct flow fields

with both evolution models and both regularizations. Both

formulations show larger errors around the boundary of the

image with R3 and the continuity equation evolution model.

A detailed error analysis is given in Sec. III B.

Another flow structure to be reconstructed is that about

a hyperbolic fixed point, so the next example is to compute

the flow determined by the stream function

wðx; yÞ ¼ x2 � y2; (19)

on R2. The true flow is shown in Fig. 3(c) on the window

½�0:5; 0:5� � ½�0:5; 0:5�, and the two time instances between

which the flow is computed are shown in images (a) and (b).

In this case, the conservation of intensity (6) and conti-

nuity equation (7) models result in the same density evolu-

tion, since r � rHw ¼ 0. (Note also that, when integrating

this density forward in time, the stream function and u-v for-

mulations result in the same evolution, so it is appropriate to

TABLE I. Six potential (stream) function regularization schemes with descriptions.

Regularization term Purpose of regularization

R1

Ð
Xw2 þ w2

x þ w2
y þ w2

xx þ w2
yy dX Ensures uniqueness of minimizers in H2ðXÞ

R2

Ð
Xw2

xx þ w2
xy þ w2

yx þ w2
yy dX Horn-Schunck regularization

R3

Ð
Xw2

x þ w2
y dX Corresponds to regularization of u and v via the L2ðXÞ norm

R4

Ð
Xðwxx � wyyÞ

2 þ ðwxy þ wyxÞ
2 dXþ

Ð
Xw2

yxx þ w2
xyy dX Strain tensor regularization, does not penalize rigid motion26

R5

Ð
Xðwxx þ wyyÞ

2 þ ðwxy � wyxÞ
2 dX Provides smoothness and does not penalize hyperbolic flow (div-curl reg.23)

R6

Ð
Xðwxx � wyyÞ2 þ ðwyx � wxyÞ2 dX Provides smoothness and does not penalize rotational flow

FIG. 1. Diffusive Flow—Images (a) and (b) show the initial and final time

instances of the density evolution according to (7) with potential function

given by Eq. (18). The true flow field is shown in (c).
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compare the reconstruction techniques on data generated

from either approach.) Nonetheless, the reconstructed flow

fields given by the two different models are not the same, as

the gradients of the corresponding optical flow functionals

do not coincide. Fig. 4 shows the reconstructions of the flow

between Figs. 3(a) and 3(b).

In the case of either regularization and either evolution

model, the stream function approach gives a reasonable

reconstruction. The u-v method gives a reasonable recon-

struction for either evolution model when regularized with

R2 but does not give a reasonable reconstruction with either

evolution model when regularized with R3. This is due to the

fact that the pair hu; vi that minimizes Eq. (4) or Eq. (2)

when regularized with R3 is not a stream flow. That is to say

that the u- v approach with regularization R3 fails to enforce

the model of a stream flow.

Our third physical structure we wish to reconstruct is

that of a vortex—or gyre—so we integrate forward an initial

density according to Eq. (7) with

wðx; yÞ ¼ sinðpxÞsinðpyÞ; (20)

on R2, where we visualize just the subset ½0; 1� � ½0; 1�. This

represents the flow about an elliptic fixed point. As above,

the two models (6) and (7) result in the same density evolu-

tion. The true flow is shown in Fig. 5(c), and the two time

instances between which the flow is computed are shown in

images (a) and (b).

As can be seen in Fig. 6, this example tells a similar

story to the previous. The stream function reconstruction

methods reconstruct the gyre flow, regardless of the evolu-

tion model or regularization, whereas the u-v approach is

only capable of producing a reasonable reconstruction with

the conservation of intensity model and R2.

A. Regularization parameter selection

The selection of the regularization parameter for optical

flow techniques has not been widely addressed in the optical

flow literature, and there are important issues that should be

noted. The value of the regularization parameter is important

in nearly all applications, and for optical flow that is espe-

cially true. In order to choose the appropriate value of the

FIG. 2. Diffusive Flow—Reconstructed flow fields using R2 and R3 and evolution models (6) and (7) within the w and u-v optical flow frameworks. Both

frameworks result in reasonable reconstructions with both evolution models and both regularizations, though both w and u-v approaches show errors around

the boundary for R3 in model (7) (images (b) and (d)). Mean angular errors are given in Table II.

FIG. 3. Hyperbolic Flow—Images (a) and (b) show the initial and final time

instances of the density evolution according to Eq. (7) with potential func-

tion given by Eq. (19). The true flow field is shown in (c).
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regularization parameter a, it is possible to use a classical

method such as the L-curve,29,30 U-curve,31,32 or generalized

cross-validation (GCV), and its generalizations.33,34 It is

well-known that each of these methods—despite being ubiq-

uitous in the literature—have limitations (for example, Refs.

35 and 36). Fig. 7 shows the mean angular error (MAE,

see Sec. III B) vs. regularization parameter curves for the

gyre flow, reconstructed using the stream function approach

with regularizations R4 (on the top and R2 (on the bottom).

For regularization R4, the U-curve method selects a

regularization parameter that is very close to the minimum

mean angular error, but the other two methods select param-

eters whose corresponding MAE is almost twice the mini-

mum. The success of the U-curve in the first case is not a

general result, and none of these three methods for regulari-

zation parameter selection performs well with regularization

R2. This suggests that the development of regularization pa-

rameter selection algorithms specific to optical flow is im-

portant future work.

For each reconstruction in this work, we have performed

an exhaustive search to find a regularization parameter that

approximately minimizes the MAE (described further in Sec.

III B). Each of the images presented in figures above shows

the best reconstruction that can be achieved with these formu-

lations, with respect to the regularization parameter choice.

B. Error analysis

In order to quantitatively demonstrate the improvement

of the stream function approach, we compute the modified

mean angular error37 for each of the 3 flows of the previous

section with each of the 6 regularization schemes in Table I,

as well as several combinations of regularizations that ensure

uniqueness of the flow.

Table II shows the mean angular error for the potential

(top half of table) and u-v formulations (bottom half of table)

of optical flow with both the continuity equation-based and

conservation of intensity-based evolution models and all 6

regularization schemes described in Table I. For the hyper-

bolic flow, the potential function formulation results in a

smaller mean angular error than the u-v formulation for both

evolution models and all regularization schemes. The best

reconstruction is computed by the potential function approach

FIG. 5. Gyre Flow—Images (a) and (b) show two later time instances of an

initial density that has been evolved according to Eq. (7) with stream func-

tion given by Eq. (20). The true flow field is shown in (c).

FIG. 4. Hyperbolic Flow—Reconstructed flow fields using R2 and R3 and evolution models (6) and (7) within the w and u-v optical flow frameworks. The

stream function method successfully reconstructs the flow for both regularizations and both evolution models, whereas the u-v approach cannot successfully

reconstruct with regularization R3 in either evolution model. Mean angular errors are given in Table II.
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with the conservation of intensity data fidelity and R3, with a

mean angular error of 0:057�.
The gyre flow is better reconstructed using the stream

function formulation with the continuity equation and all

regularizations, as the u-v approach fails to accurately recon-

struct the gyre using the continuity equation with any regula-

rization. With the conservation of intensity evolution model,

the u-v approach does reconstruct the gyre well with all regu-

larizations except R3. The best reconstruction is computed

with the stream function approach, conservation of intensity,

and R2, with a mean angular error of 1:1�.
With the conservation of intensity data fidelity, the w

approach well reconstructs the diffusive flow with all regula-

rizations, but the u-v approach gives lower mean angular

errors for all regularizations with conservation of intensity

and with R4, R5, and R6 with the continuity equation. The

best reconstruction is computed with u-v, conservation of in-

tensity, and R2 þ R3, with a mean angular error of 0:647�,
though the potential function formulation with conservation

of intensity and R2 þ R3 results in an MAE of only 0:782�.
The potential function formulation captures two of the

dynamical structures we wish to compute using optical tech-

niques better than the classical u-v formulation, elliptic fixed

points (like the gyre flow) and hyperbolic fixed points (like

in the hyperbolic flow). The u-v formulation results in a

lower mean angular error relative to the potential function

formulation around a source (like the diffusive flow), but the

potential function framework still does a good job of captur-

ing the structure.

IV. APPLICATIONS AND EXAMPLES

We now highlight our method with examples from

oceanographic data sets.

FIG. 6. Gyre Flow—Reconstructed flow fields using R2 and R3 and evolution models (6) and (7) within the w and u-v optical flow frameworks. In this case, the

u-v approach can only reconstruct the vortex with the conservation of intensity evolution model and R2, whereas the stream function method reconstructs the

gyre with either model or regularization. Mean angular errors are given in Table II.

FIG. 7. Regularization Parameter Selection—The two plots show examples

of the mean angular error versus regularization parameter, for the gyre flow

reconstruction within the stream function framework for regularizations R4

(left) and R2 (right). In each case, the regularization parameters selected by

the L-curve, U-curve, and Generalized Cross Validations methods are shown.
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TABLE II. Mean angular error of flow field reconstructions for hyperbolic (Fig. 4), gyre (Fig. 6), and diffusive (Fig. 2) flows within the potential function for-

mulation (top half of the table) and within the u-v formulation (bottom half of the table). For each data set, the MAE is computed for the Continuity Equation

(CE) (7) and the Conservation of Intensity (CI) (6) evolution models. The errors are given for each of the 6 regularization schemes described in Table I, as

well as two schemes that ensure uniqueness of minimizers for the potential function approach, R1 þ R2 and R1 þ R3, and one scheme that ensure uniqueness

for the u- v approach, R2 þ R3. There is no u- v formulation for R1.

Flow field Evolution

potential, w model R1 R2 R3 R4 R5 R6 R1 þ R2 R1 þ R3

Hyperbolic Cont. Eq. 0:096� 0:091� 0:082� 0:093� 0:100� 0:093� 0:091� 0:088�

Hyperbolic Cons. Int. 0:062� 0:062� 0:057� 0:062� 0:062� 0:062� 0:062� 0:057�

Gyre Cont. Eq. 30:824� 3:195� 9:813� 10:206� 9:843� 10:751� 3:897� 32:064�

Gyre Cons. Int. 20:749� 1:100� 1:637� 1:746� 1:713� 1:721� 1:100� 21:863�

Diffussive Cont. Eq. 8:622� 1:616� 11:560� 4:110� 4:028� 6:002� 1:616� 8:622�

Diffussive Cons. Int. 2:755� 2:756� 1:275� 2:170� 2:144� 2:170� 2:169� 0:782�

Flow field Evolution

u – v model R1 R2 R3 R4 R5 R6 R1 þ R3 R2 þ R3

Hyperbolic Cont. Eq. � 1:706� 47:094� 2:084� 1:400� 2:292� � 1:706�

Hyperbolic Cons. Int. � 1:141� 27:383� 1:509� 1:509� 1:576� � 0:602�

Gyre Cont. Eq. � 42:680� 40:991� 43:133� 41:975� 36:376� � 40:560�

Gyre Cons. Int. � 2:624� 48:573� 2:610� 2:618� 2:661� � 2:489�

Diffussive Cont. Eq. � 2:710� 8:678� 2:782� 2:666� 0:957� � 2:700�

Diffussive Cons. Int. � 0:647� 1:104� 0:895� 0:895� 1:228� � 0:647�

FIG. 8. Sea Surface Temperature Flow—Images (a) and (b) show two sea surface temperature along the coast of Oregon (USA) from two different days in

August 2002. Images (c) and (d) show the optical flow field, computed using the stream function method with R2 and R3 regularizations, images (e) and (f)

show the optical flow field, computed using the potential function method with R2 and R3 regularizations, and images (g) and (h) show the optical flow field

using the traditional u-v approach with R2 and R3. In all cases, the reconstruction is computed using the conservation of intensity evolution model. Note that

the stream function approach captures the vorticial structures in the flow, which are not captured by either the potential or u-v methods.
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A. An example using sea surface data

To illustrate the method, we consider an image sequence

generated from a Regional Ocean Model System (ROMS)

along the Oregon Coast.38 Oceanic flows are three-

dimensional but are dominated by Coriolis force, balanced by

pressure gradients, or so-called geostrophic balance. The geo-

strophic balance condition is often used to create 2D flow

equations to understand and model features of ocean surface

dynamics. The most well developed theories go under the

monikers of geostrophic turbulence and surface quasi-

geostrophic turbulence.39 Both theories are transport equations

of a scalar quantity by a non-divergent flow, which conserve

an infinity of invariants. That is, the quasi-geostrophic equa-

tions have a Hamiltonian structure.40,41 Alternatively, we can

also introduce constraints that we expect to hold only for lim-

ited areas of the surface flow, like eddies.42 Here, we simply

show an illustrative example of how such prior information

can be easily added to an optical flow model.

Fig. 8 shows two time instances of sea surface tempera-

ture off the coast of Oregon, U.S.A. (images (a) and (b)). The

data are generated from an 3D ocean model along the Oregon

shelf that includes wind-driven and tidal flows, and is

informed by satellite data.38 The model covers 540 by 300 km

(between approximately 41 to 46 N, and �125 to �124 W)

with an hourly temporal resolution, and 1 km horizontal reso-

lution. The model is verified against both buoy data and satel-

lite data, in particular sea surface temperature (SST) data

from the Geostationary Operational Environmental Satellite

(GOES). The coastal SST data used here is taken from hourly

simulation results from the first week of August, 2002.

Two time instances of the flow are shown in Fig. 8, as

are the computed optical flow fields using the potential,

stream and u-v formulations of the continuity equation-based

optical flow with regularization R2. In general, it would not

be known ahead of time if the flow is better computed

assuming incompressibility or not, so it makes sense to com-

pare not just the potential function method vs. the u-v
method but also the potential function vs. stream function

formulations.

The stream function formulation correctly reconstructs

the vortices in the flow, whereas neither the potential nor the

FIG. 9. GOCI Flow—Images (a) and (b) show products movements in the seas of South Korea. Image (c) shows the optical flow field, computed using the

stream function method with R2 regularization. Image (d) shows the reconstructed second image by evolving first image forward in time under the evolution

model (3) with the computed flow field as shown in image (c). The mean relative error is 2.21% per grid point, whereas the mean relative error using the u-v
formulation is 5.32%.
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u-v method is capable of doing so. In order to analyze the dy-

namics of the flow, it is thus best to assume the incompressi-

bility of the flow and to compute the vector field using the

stream function formulation. This vector field can then be

used to determine things like mass transport and coherent

sets. Beginning directly from the image data allows to deter-

mine the flow dynamics without the use of the model.43

B. Example from GOCI satellite

To verify the accuracy of the stream function method,

we apply our method to a new data set which represents

product movements in the seas of South Korea. The data are

obtained from a geosynchronous satellite from South Korea

called “GOCI.” The images (a) and (b) in Fig. 9 are 10 min

apart from each other. In this case, we compute the vector

field using these two images as shown in image (c) in Fig. 9.

In the absence of a known vector field, a study of image evo-

lution can serve to validate the method. Now, we integrate

the first image shown in Fig. 9(a) forward in time under the

evolution model (3) with the computed flow field shown in

Fig. 9(c) to reconstruct the second image. The reconstructed

second image is shown in Fig. 9(d).

To compare the actual image and the reconstructed

image, the relative error was computed over the image do-

main and then averaged the magnitude of the error over the

domain to obtain mean relative error. The mean relative error

for the stream function approach is 2.21% and the u-v
approach is 5.32%.

V. CONCLUSIONS

We have presented an alternative formulation to the op-

tical flow problem. Rather than reconstructing the compo-

nents of the flow governing an image intensity evolution, we

directly reconstruct the flow potential. By regularizing the

potential function, we are able to impose scientific priors

directly on the flow, rather than on the components of the

flow, thus respecting the underlying physics governing the

fluid flow.
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