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Techniques for computing gravity anomalies by multipole expan-

sions obtained from surface integrals and volume integrals are de-

rived together with a vertical line element method. The results are

compared with exact calculation for right rectangular prisms and

right circular cylinders and the effects of block size and separation

between the field point and source body are evaluated.

For sources near field points, the multipole expansion of volume

integrals corisistantly yielded more accurate approximations of the

gravity field than either vertical line element or surface integrals.

For a given source, the surface integral method compared to vertical

line elements gives a better approximation of the field. As distance

increases, all three techniques yield accurate gravity values. Im-

proved estimates of the gravity field can be obtained by subdividing

the source body into small elements and summing the effect of the
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elements. The 2nd-order or quadrupole term of the expansions is

dominant for near sources while the 0th-order or monopole term be-

comes increasingly important with increasing separation of the source

and field point.
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ON THE MULTIPOLE EXPANSION IN THE COMPUTATION
OF GRAVITY ANOMALIES

INTRODUCTION

The use of gravity measurements as an aid in determining

geologic structures is well known. Subsurface density changes arising

from composition changes or geologic structure yield mass varia-

tions, which can be detected by measuring the gravity fieLd. Since

the disturbing mass parameters are seldom known exactLy, approxi-

mation methods are often more useful than attempts at quite compli-

cated exact calculations.

Various approximation methods have been used for the compu-

tationof gravity anomalies (e.g. Jako sky, 1940). This paper develops

techniques for approximating anomalous mass distributions by multi-

pole expansions and by vertical line elements. Grant and West (1965)

and Bodvarsson (1970) have discussed some aspects of muLtipole ex-

pansions. This paper extends their results and evaluates the accuracy

of the method for test cases using vertical rectangular prisms and

vertical cylinders.

Gravity calculations from either surface integrals or volume

integrals are directly related to the moment of inertia of the dis-

turbing body. Both types of integrals can be expanded in a series of

powers of the distance from the gravity field point to a fixed point ir
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the mass by using Legendre polynomials. The techniques used is to

find the non-vanishing multipole moments or the moments of inertia

of the anomalous body. The mass distribution is then determined

directly from the correspQnding gravity anomalies observed at the

surface of the earth. For the simplified test structures used the

second and fourth terms of a multipole expansion vanish and the gravi-

ty field is described by mono pole and quadrupole terms. With in-

creasing distance of the gravity field point from the body, the mono-

pole term becomes dominant with a corresponding decrease in the

importance of the quadrupole term. Later sections of this paper

discuss the relationship in detail.

The second type of approximation, using vertical line elements,

is useful when the source body is at a considerable depth and the ur-

face of the body can be described by a series of small vertical prisms.

The effects of t7grid size' and distance in calculating good approxi-

mations to the source body are discussed.
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BASIC THEORY OF GRAVITY FIELD

The gravity field of the earth would be constant if the earth

were a uniform, non-rotating sphere. But the earth is an oblate

spheroid and rotates. The earths gravity potential can be expressed

as W v + 2(x2 + where v is the acceleration potential,

is the angular velocity and x, y are the space coordinates of the

point outside of the rotating earth.

Isaac Newton showed that the force of attraction of two bodies

is proportional to the product of the mass and inversely proportional

to the square of the distance between them.

Gmm
F-

r2
(1)

where m,m2 are the masses of the attracting bodies, r is the dis-

tance between them, and G is a universal constant. The value of

the gravitational constant, G

G = 6.67 o8 cm3 sec - gm

For a non-rotating uniform earth, the force exerted on the mass m0

is
GMm0

2
R

(2)

where M is the mass of the earth and R is the radius of the earth.



Using Newton's second law, the gravitational acceleration at the

earth's surface is

F GM
g = = (3)m0 R2

The value of g varies between 978 cm/sec2 at the poles and 983

cm/sec2 at the equator because of the earths oblate shape.

The force of gravity is the resultant of the attraction of the

earth and centrifugal force. The first approximation to the figure of

the earth is a sphere and the second approximation is an oblate spher-

oid. According to the second approximation, gravity o the earth at

latitude O is

g = [1 +(fAf)sin2q] (4)

where g is gravity at the equator, iA-f gravitational flattening =
g-g

1P e
, = -, A ( a

, and a is the equatorial radius.297 g

An attracting body has a potential field (Ramsey, 1940). Since

the potential is a scalar quantity, it is possible to calculate gravity

by using the potential. The gravity field g(r) at any point r in

space is defined as the force per unit mass for the continuous mass

distribution.

gC) = S
dv' (5)

v

Assuming that p(') has a continuous distribution of mass, the



gravity potential is

u() $
-P') dv' (6)

v

Finally the gravity field g(r) is obtained from (5) or from differen-

tiating equation (6). Therefore

g() u(i) [tà

The physical concepts of the gravity field and the gravity poten.-

tial have the same meaning s the electric field intensity and electro-

static potential in electrostatics. It is of importance to discuss

Poisson's equation for the gravity potential

V2u() 4Gp(') (8)

Poisson's equation holds inside the body and gives density information
-.'

when the gravity potential is known. When p(r') = 0, V u(r) 0,

which is called Lap1ace's equation. All gravity problems are solu-

tions of Poisson's equation or Laplace's equation.



STATEMENT OF THE PROBLEM

Multipole methods for the approximate calculations of gravity

using surface and volume integrals are derived in this paper and

compared with exact solutions to evaluate the accuracy of the com-

putations. There is also another approximation using vertical line

elements. The approximation by volume integrals is the most accu-

rate and convenient to use among these three approximations. In

general, however, the accuracy of computation of gravity by approxi-

mation methods depends upon the dimensions of the body and the

distance of the field point from the body.

An exact calculation of gravity for vertical rectangular prisms

is obtained from triple integrals. The gravity field of vertical cylin-

ders is obtained from the complete elliptical integrals of the first

and the second kind and Heuman's Lambda function. These computa-

tions are quite often complicated.

Finally it is also possible to discuss the 0th-order and the

2nd-order approximation obtained from the multipole expansions.
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EXACT GRAVITY FIELD CALCULATION
FOR VERTICAL PRISMS AND CYLINDERS

Exact Expression of Gravity for a Right Rectangular Prism

This result has been derived by Nagy (1965) but without details.

In this paper, the mathematical procedure will be given in more

detail.

ci

'7

z

Y

Figure 1. A right rectangular prism and the Cartesian coordinate
system.
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The gravity field of the volume element, Lw , is given by

FGp (9)

where G is the gravitational constant, p is the density contrast,

and r = 'i x2+y2+z'. The total vertical component of the field is

F GpS jcoseGpçzdz

y2 Z2 zdzF, Gp dxS dy$
2 2 2 3/2z y z1 (x +y +z

Let L1
S(x2Z+z2)3I2

z(x2+y2+z2)_3/2dz

and u x2+y2+z2

' 1 -3/2 -1/2 1
Then L duu --U

2 2 21/21 2 (x+y+z)

Let L2$L1dy = dy

From the formula

= In (x + Jx2 + a2),
\ X +a

1

2

dyIn(y+Jx2+y2+z2)
+y +z



Let L3 = Ldx - (y + x2+y2+z dx

/222Now let w = n (y+ q x +y +z ) and differentiate with respect to x

dw= 1 X
dx

+ 2+2+

From the formula, Sudv uv Svdu

$ n (y + x2y2+z2) dx = xn(y + x2+y2+z2)

r xcLx-jx
2Z 2 2 2(y+\ +y +z ) (x +y +z

2xdx________L3 = xn(y+2+y2+z2)

2r_______________Let Tl /222/222(y+vx +y +z
) 'vx +y +z

Let R = y + 2+2+2

2 2 2 2x = (R-y) y - z

= R2- 2Ry- z2

2 2 2 2(R-y) x +y +z

(Ry)dR2(R-y)dR 2xdx, dx =

NI (R-y)2-y2-z
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T
x2 (R-y) dR

3 R(R-y)
I 2 2 2

./ (R-y) -y -z

JR2-2Ry-z2 dR

From the formulas

b(dx (dx
dx '..j + + a

2where Xa+bx+cx

c>0

r dx 1 -1 bx+2a
) a>O

.) X"J3 x'.Jb2-4ac

Let X = -z2 + ( 2y)R + R2

_____________ dR
S

2R2
R2- 2Ry-z2 - 5

R2Ry-z2 iR2 2Ry-z2

522 2

RRy-z

where 5
dR

= (\1R2 Ry-J2 + R +(-y))
R -2Ry-z

= In (x + R y)



ii
dR 1 1 yR+2(z2)and ___________ = sin (

RJR2-2Ry-z2 z R42+4z2

1 1 -yR-z2
z

Therefore

T x-yn(x+R-y) zsin(
R'Jy +z

-'= - [xn(y+ ) - x+yin(x+R-y) +zsin
R / 2

+

22- 1 + + +T+ Z
2 2 I 2 2x +y +z ) qy +z

1
2 2

= -{xn(y+r)-c+yn(x+r)z sin Z +Y +y.r

(y+r)

I 2 2 2where r 1x +y +z

FinalLy

X y iZ H2 j 2
I

2 1z2+y2+yr
IF Gp 1 I xin(y+r)+yn(x+r)_zsin

(y+r)Jy2+z2z x1 Jy1 iz1

x2 y2 z2 -1 2 2
xn(y+r)+yn(x+r) ______

X1 Y1 Z1 (y+r)fy2+z2

ly z _______ _______/2 2 2;J l 2 x2n(y+Jx+y2+z2)+yin(x2+x2+y +z
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2
1 Z +y+yy +Z -x1n(y+x+y +z(y+x+y2 2+z

2 2 2

yn(x1+Jx+y2+z2) +
_1 Y +y +y +z j

zsrn I(y+x+y2+z2)
z

=1
1

2n(y+x+y+z2)+y n(x +x2+yZ+z2)
2 2 2

i
2+2+J22+2

- x1in- z sin
(y2+x+y2+ z

2z +y+y2 x+y
- y2n (x +Jx+y+z2) +z Sin _________

+ + +

- x2n (y1 + Jx2 + y + z2) - y1ln (x2 + + + z2)

2 2z + y1 + y1 + + 2

+x1ln (y1 + Jx+y+z2)z sin _______________

(yl +Jx+Y+z2
22

+y1n(x1+Jx+y+z2) _1-zSin
+ J;;-i;i-;;3-

i

2 2 2
= x2n (y + +y +z ) +y n(x +xZ+y2+z)

2 2 2 2 2 2 2 2 2

1 222222
-- z sin

2
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2 2__________ z +y +y
y2in(x1+x+y2+zZ) 1 2 2 2

2 2
+

2 (y2+x+y±z)

xin (y1 +x+
2

y+z) - y1in (x2+x+y+z)

2 221 1 +x1in(y1 +x+y+z2)+z2sin
2(yl +x2+y+z)

2 2
_1 2Yl +y1X+)r+Z

+ y1in (x1 +x+y+z2) - z2sin
(y1 +x+y+z2)

- x in (y +x2+y2+z) y in (x + x2+y+z)
2 2 2 2

2 2
1 12 21 +x1in (y++y2+)2 2+z1 sin

2(y2+ +z
2 1

2 2 /2 2 2
1

xl +y2 +z1
+ yin (x1 + x+y2z) - zi sin

(y+x1 +y2+z1)ZZ

+x2in (y1 + Jx+y+z) +y1in(x2+x+y+z)

- z sin 1
- x1in (y1 +x+y+z)

1 (y1+x2+y1+z1

2 2
_1 lYlYl

- y1in(x1 +Jx+y+z) +z1sin
(y1 ±x+y+z)



Let = F I Gp

7 rzzz I 2 2 2

(
y+t x2+y1+z2 y2+'I x2+y+z1

++f
/ /222
/ y1+'J x1+y1+z2

xnI11 /222y1+q x1+y1+z1

/222y2+/ x1+y2+z1
/222y2+J x1+y2+z2

( x1+J +y+z x2+Jx+y+z
+ + + 2+

222
xl + J xl ++Z2 x2+'4/222x+y1+z1

x2+ /222
q

/ 22 /222
/ - Z2+y2+y x+y2+Z2
sin

21 /222122(y2+I x1+y2+z2) J

2 2 / 2 2 2

1

?.J x1+y2+z2
- sin

(y+J x+y+z) J y+z

22 /2 22
z2+y1+y1I x2+y1+z2

(y1 + J x+y+z) J y+z

14
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2 2 4 2 2 4

-1
+

(y1+ x+y+z) y+z

/ 22 /2 Z 2

/ . .-

z1+y2+y2\J x2+y2+z1
-

K1
x+y+z) y

2 2 12 2

-1
Z1+y2+y2./ x1+y2+Z1

-sin
J

2 2 / 2 2 2

-1 z1+y1+y1Jx2+y1+z1

(y1+x+y+z) J

22 lz 22
-1 Z1+y1+y1 4 x1+y1+z1

+

(y1+J x+y+z) J

Hence the total vertical component of the field is

F Gp (10)
z

The coordinate system is taken as the rectangular Cartesian coordi-

nate system for computation of the vertical gravity.

Exact Epression of Gravity for a Right Circular Cylinder

Exact expression of gravity of the right circular cylinder has

been derived by Kolbenheyer (1962) and Nabighian (1962).
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Figure 2. A right circular cylinder and its parameters.

The vertical component of gravity at p which the depth of ai is

2Gp [ K(k1) + J (1+x)2+a2E(k.) + aX0(.,kJ-aJ
(1+x) +a

(11)

where G is the gravitational constant

p is the density

x--
a

a i1,2
K and E are the complete elliptical integrals of the
first and the second kind with parameter k.

k
i (1+x)2+a2
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X (q , k) is Heuman's Lambda function
0

a
rpi = SIn

z 2-'.i(1-.x) +a

The vertical gravity is obtained from subtraction of two depths.

tg = Eg1 - g2 (12)



MULTIPOLE APPROXIMATIONS

Finite Structures (Volume Integrals)

This method has been discussed by Grant etal. (1965). The

gravity potential at any point outside a body is

u() - Gf dv1 (13)

where G is the gravitational constant and p() is the density

throughout a volume v. It is worthwhile to find a simplified expres-

sion for equation (13)

Figure 3. The gravitational potential between the point of observa-
tion, P, and a body, V.

To do this we express the distance between a body point and the field

point as
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00

1 1 1 \' r'
/r2+r'2-Zrr'cos

P(cos 0) r'< r (14)

where P is the Legendre polynomial of orderL

The gravity potential becomes

u(r) =- ) (r') (L)P (cosO) dv' (15)
r r

Grantetal. (1965) have discussed this problem in detail.

Equation (15) can be rewritten as
00 mi m

u(r) -
$v 1(r')(r')yr(0o, ) dv'

r

00 m1 ym(6q,)
(16)mj= b r1

.=O m

m 4irG r j mwhere b 2.+1 v
p(r )(r ) y (00,20)dv

The b constitute multipole moments expressed in imaginary

form. The multipole moments can be reduced to simple algebraic

forms with a proper choice of the origin and axis of the coordinate

system. In the coordinate system (x, y, z) used here, the origin lies

at the center of mass and the spatial axes coincide with the body

axes a, 1, and v



z
'I

a,13, y Body axes

X, Y, Z Spatial axes

Figure 4a. Generalized coordinate for a vertical finite structure.
A special case where the body axes and spatial axes
coincide has been used in numerical calculations.
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It is convenient to change Equation (16) into a real form since

all the multipole moments are real
m m

u(r)
BY

(17)

OmO

m m m * m * m mwhere B Y1 = b + b

jmj
(0, q) cos m q P (cos 0)

B= (26im) ç p(rt)(rcosmP)mI(cos00)dvt

1 =m
where ô

Since Equation (1 7) is an infinite number of multipole moments,

they can hardly all be determined. Grant etal. (1965) show that (17)

is convergent. The first three terms of Equation (17) are usually

sufficient to approximate most gravimetric measurement.

2 BmYm
(18)

.0 m=O r

The vertical component of gravity L.g(p) is obtained by differ-

entiating Equation (18). The coefficients of I 1 and the coefficient

B vanish by symmetry.



Hence

BgYg
.-u(r) r

where

and

Rewriting (19)

0
Y1

0 3 2Y2= (cos

Y2 3 cos 2q) sin20

B BO(3cos2O_1) 3B2cos2p sin2e

2 + 2
r 3 3

2r r

V

Figure 4b. Spherical polar coordinates

22

(19)

(20)

The spherical polar coordinates (r, 0, -p ) can be transformed

into the rectangular coordinates (Figure 4b)
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a rsinOcos

rsinOcosq2

r cosO

where 0 < çø < 2ir and 0 < 0 < ,

Therefore equation (20) becomes

B B°(3y 2-r2) 3B2( 22)
-.u(r) = + 2 __2 (21)

2r r

/2 2 2where r= /a + +

Finally the vertical component of gravity g(P) is obtained

by differentiating (21)

6 y 15B2
g(P)

r3 2r7
(9a2+9y2 6)

r7
2

Hence the vertical gravity at the depth of h as measured from the

center of mass is

B0h B°h 15B2h

r Zr7
[9(a2-I-2)-6h2]-

r2
(a2-132) (22)

Using equation (22), the dimension and shape of the disturbing

body may be estimated by the moments determined from the field

measurements if the density is known for the homogeneous body. It

is also important to locate the center of gravity of the disturbing

body before performing the potential analysis. The coordinate of the



center of gravity, (, ), is expressed as follows:

ds = xLg(x,y) ds

g(x, y) ds çyg(x, y) ds

by Gauss' theorem

çLg(xy)ds = 2irGM

where M is the disturbing mass.

Therefore

24

2irGM
(xLg(x,y) ds (23)

2iTGM
çYg(x,Y)ds

Semi infinite Structures (surface integrals)

In potential theory (e. g., Kellogg, 1953), the volume integrals

are usually used in the mathematical derivations. However, for prac-

tical cases, it is often convenient to transform volume integrals over

homogeneous bodies into surface integrals. This transformation has

been discussed by Bodvarsson (1970). In this paper, the mathemati-

cal procedure will be given in more detail.

The acceleration of gravity due to a finite body B at a field

point P is
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g(P) =G v (24)BprPQ

where G is the gravitational constant, rQ is the distance from

P to the source point Q, and p (Q) is the density of body B at

Q. If the density p is constant inside body B, the density gradient

can be expressed by the delta function

vp(Q) = pö (Q -

where D is a point on the surface S of the body B and n is the

inward normal vector to the surface S . Therefore

g(P) Gp ç
QD)(D)

dv Gp ç (25)rQ Q .s r5

where B? is the bounded volume by the surface which completely

encloses the body B and r5 is the distance from the observation

point to a point on the surface of the body.

The acceleration in the direction of the unit vector T is

g(P) = GP(n(DI da (26)

Equation (26) shows that the volume integral can be transformed into

a surface integral on the condition that the density p is constant.

Equation (26) can be used to calculate the vertical gravity ig(P)

in case of structures bounded by vertical lateral faces such as the

vertical rectangular prism and the vertical circular cylinder. It is
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often possible to approximate complicated bodies in nature as simple

bodies for geophysical work. From equation (26), TI 0 on the

vertical lateral faces. Hence it is necessary only to compute of

gravity of the top and the bottom for finite bodies. As the gravity

difference between the top and the bottom is found easily, this tech-

nique is suitable for model calculations. If the structure is semi-

infinite, is it only necessary to compute gravity of the top. Thus

the surface integral approximation method is useful for semi- infinite

bodies in contrast to the volume integral approximation method.

Equation (26) can be expanded in a series of multipoles, which

is a useful method in potential theory.

P(x, y, z)

Figure 5. The Cartesian coordinate system for a vertical semi-
infinite structure.
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It is convenient to assume that the origin of the coordinate

system is located at the center of gravity of the surface of body T

and that the spatial axes coincide with the principal axes of the body,

T.

I 2r5 = q r +(r ) - 2rr cosO

1 1
= ___________ (z7)r5 r'..Jl +a2- 2ai.

where a and cos 0 The expansion of equation (27) has

been discussed by Kellogg (1953)

Since I2a - a 2 < 1, equation (27) can be expanded by the

binomial theorem, then

1 1- - (P(s) + P1(p) a + P2(v) a2 + )r

= aP() (28)

where P0 = 1, P1(s) = P()
1 fl
I d 21nP (EL_I)

n n n2 n! dj.

is a Legendre polynomial of nth order.

pda
Eg (P) = Gp Ii(5) da G r

S

PS LS PS



G ) aP()da
n S

1I 1 1 2
G ( pda + pr'P1()da+ p(rt) P2()da + ..)

G (S1 +S2 + S3 +

From Equation (29), the first term S1 is

m
S pda -

I r S r

where m is the sheet mass of body T.

The second term S is

xx
S = pr'P1()da where P1(g) cosO =

+ VY + zzt

2 2r rr'

1

{ S(pxx? + pyy' + pzz') da 3
Sr

1 - - -
(xxm + yym + zzm)

(29)

where F, and are coordinates of the center of gravity of the

surface.

The third term S3 is

1
S3 Sp(r1)2P()

r

= {3(xx' +yy' +zz')2- (rr')2] da
2r



1
{

3p(xxt)2da+ $3( ')2d + S3p(zzi)2da
2r

+ ¶2.3p(xxTyy)da + S2.3p(yy'zz')da + j2.3p(xx'zz')da

(
px2(ix1)2+(yr)2+(z)2)da +

+
2 2 +(y')2 +(z')2)da )]p z ((x

S

{3(x2M1+y2M +z2M )+6(xyM +yzM
2 3 xy yz

2r

+ xz M) (x2M1-x2M4xM3+y2M1+y2M+y2M3+z2M1+z2M

+z2M3)]

The products of inertia are zero when the axes coincide with

the principal axes of the moments of inertia. M1, M2 and M3 are

the moments of inertia of the x-axis, y-axis, and z- axis of the sur-

fce of the body T.

After rearrangement

221 r2 2 2 2
S3 L

(x -y )(M1-M2) +(y -z )(M2-M3)+(x -z )(M1-M3)]
2r

If the origin of the coordinates is located at the center of gravi-

ty on the surface and the coordinate axes coincide with the principal

axes of the moments of inertia, the gravity acceleration at the

depth of z is
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Lg.(P) = G{ + ( (x2y2)(M1M2) +(y2z)(M2-M3)

+(x2z2)(M M ))] (30)
1 1 3

IZ 'where r. jx +y +z.
I

This asymptotic expression holds well when the distance r is

large compared to the dimensions of the body. This approximate

method is more convenient for infinite structures. For mathemati-

cal models, the right rectangular prism and the right circular cylin-

der with flat top and bottom are given. Assuming that the surface of

the top and bottom of the body is flat, the mass of the sheet per unit

area C pK .n p, and M3 0. Hence, the vertical gravity is

g(P) g1 g2 (31)

Conygce and Truncation of Seriepressions

There are different ways to prove the convergence of Equations

(14) and (27). It is convenient to prove the convergence with corn-

plex functions.

From equation (27)

.12
= \P r + (r ) 2rr cosO

1

1 1 r'
= (l2cosO+ 2)2 r'

11r r
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1

2 2r5 r (l 2cosO+2)2

2 jO -.iOr (l-e )(l-e
1

1 1 jO . 2Hence ( 1 ne ) -10 (32)rp r (l-e
The expansion in powers of ri is absolutely convergent if

1 and He1 < 1 Since 1e10
I

1e10 1 for all

real value of 0 , both conditions of equation (32) are satisfied when

11<1.
The expansions are absolutely and uniformly convergent if

< < 1, Hence the series expressions in equations (14) and

(27) for the potential can be integrated term by term. But it is too

difficult to carry out the infinite integration. The simple and trun-

cated expression gives a good and finite form for many practical

purposes. In this paper, the second and the fourth term vanish if

the origin is located at the center of gravity or the center of mass

and the body axes coincide with the spatial axes in the symmetrical

bodies. The fifth term is small as compared to the whole expres-

sions. Hence the first and the third term are mainly discussed

in this work.
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VERTICAL LINE ELEMENT APPROXIMATION

Various investigators (Vacquier, 1967; Danes, 1960) have used

small rectangular prisms to model three-dimensional geologic struc-

tures. The source body is divided into a number of small vertical

prisms with heights chosen to correspond to the body outlines. The

gravity field of the body is determined by summing the gravity effect

of the individual prisms at a field point. An extension of this tech-

nique is to replace the small prisms with one-dimensional vertical

bars located at the center of each element.

0

"i

p

'z

Figure 6. The vertical line element AB for the prism .P2C

The gravity field for regular distribution of a vertical line

elements (Figure 6) is given by



C
zdz

= Gp12
h-

(12+2)3/2

Gp12 h

GPrL2 +f() +() +... h << 12+h2

j
GL Gp12(ch)3
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(33)

where r I 2
+ hZ , G is the gravitational constant, p is the

density contrast, I is the separation of two adjacent vertical line

elements, h is the depth to the center of element and c is the

height of the element.
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MODEL CALCULATIONS AND COMPARISON OF METHODS

Comparison of Vertical Line Elements and Volume Multipoles

Grant and West (1965) have discussed the accuracy of numerical

calculations obtained from multipole moments for the case of the

rectangular vertical prism. From Equation (22) and Figure 6

GP1 Gpl2ch
[( 212) (312 2h2)] (34)

/2 2where r .t I + h and I is the length of the surface thmensi.on and

is also a distance of axis of two adjacent vertical rectangular prisms.

It is of interest to compare this result with the vertical line

element technique. From Equation (34) and taking the limit as 1- 0,

- g(P) Gp12(ch)3

Thus the approximation obtained by using vertical line elements is
2 3

3 Gpl (ch)larger than that from volume multipoles by
r7

For a test model, a rectangular body with horizontal dimen-

sions of 2km, a thickness of 2 km and with the upper surface at a

depth of 3 km was constructed. The exact gravity field was calcu-

lated from Equation (10). To evaluate and compare the accuracy of

the approximate solutions, the source body was successively divided

into 1, 16, 100, 625, and 2500 equal prisms. The gravity field using



a]

y

2km

akn

Figure 7a. Subdivisions of the source body.

gravity stations

/
0

t i/J
Q 0 0 0

0

0 0

0 0 0 0

0 0 0

Figure 7b. The vertical gravity of an equal prism at the
axis of an adjacent prism.



Table 1. Comparison of Results of Volume Integrals and Vertical Line Elements
No. of Exact Volume Vertical Relative Relative Dimension
Blocks Values Integrals Line Error Error c. g. s.

(

2) Elements of Volume of Line Unit
(mgal) (mgal) (mgal) .(%) (%)

1 3.421 3.415 3,870 0.18 13.12 200, 000:

16 0.392 0.389 0,449 0.08 14.54 50,000

100 0.066 0.065 0.075 0,02 13.64 20,000

625 0.011 0.011 0,012 0 9,10 8,000

2500 0.003 0.003 0.003 0 0 4,000

h = 3 km depth to the center of mass.
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volume multipoles and vertical line elements was calculated for each

case and compared with the exact value (Table I).

From Table I, one can see that the approximation from volume

integrals using 625 rectangular prisms reproduce the exact field,

while the approximation using vertical line elements requires 250(

rectangular prisms for the same accuracy. Therefore the approxi-

mation from vertical line elements should not be used unless the body

is subdivided into a number of small rectangular prisms because the

method is performed from a one-dimensional vertical bar.

Monopole and Quadrupole Approximations

It is interesting to discuss the 0th-order (the monopole term)

and the 2nd-order (the quadrupole term) approximation from the

multipole expansion.

From Equation (22)

Gp.C2cz Gpi2cz 2 2 2 2g (P)
v 8r7

)(3y -2z )] (35)
r



11

Y

= b = 1 km
= 2 km

Model I
Model II
Model III

z

Figure 8. Monopole approximation for a small cube.

Equation (35) is derived from the rectangular prism with the

equal length of the surface dimension (a b = ). There is only the

monopole term when c = . or y : z : "[3 . Therefore the

monopole approximation for the computation of gravity can be a good

approximation if the body is divided into a number of cubes with small

surface dimensions relative to the distance to the field point.

The numerical computations of the gravity field due to the arbi-

trary rectangular block are performed from equation (35). The

values of Tables 2, 3, 4 and 5 show how the 0th-order and the 2nd

order approximatio.n hold with decreasing the dimension of the sub-

division. According to values from these tables, the closer the field

point is to the body, the smaller the dimension of the subdivision
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should be in order to use the monopole approximation. It is not neces-

sary to divide the body into many small regular cubes when the field

point is located at great distance. As shown in Table 4, it is possible
3

to use the monopole approximation as g Gp h in case the rec-

tangular block is divided into two regular cubes and r > 3d where r

is the distance of the field point and d is the length of the dimension

of the regular cubes. Hence it giveè the same formula as a sphere

whose total mass is concentrated at the center of mass. It is also

obvious that the 2nd-order approximation is more accurate than the

0th-order approximation when the field points get close to the body

which is shown on Table 3. If the rectangular block is divided into

16 regular cubes, the gravity values are slightly different from the

other table values because there are so many computational proce-

dures, which makes errors. Therefore, it is good to divide the

rectangular block into the small cubes where the 2nd-order approxi-

mation holds well in order to use the monopole approximation as

shown on Table 4,

It is also interesting to discuss the monopole and the quadrupole

term, As shown on Figure 11 and 12,. the monopole terms are more

than 95% cf the total gravity. If the field point is located just above,

or very close to the body, the monopole terms are over estimated,

which means that the approximation from the multipole expansion

decreases accuracy. As the field point is moved farther, the



Table 2. Exact Calculation (mgal)

z(km)
1 3y(km)

0 20.247 3.991 1.609

1 3.975 2. 564 1.338

2 1.017 1.148 0.865

3 0.383 0.545 p.518

Table 3. Monopole and Quadrupole Approximations for Model I
( 1 block) (mgal)

z( km)
y(km)

1 2 3

a b

40

0 13.340 23.345 3.338 3.960 1.482 1.606

1 4.716 4.274 2.386 2.565 1.266 1.338

2 1.193 1.014 1.179 1.151 0.854 0.865

3 0.422 0.382 0.569 0.545 0.524 0.518

a the 0th-order approx. b = the 2nd-order approx.
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Table 4. Monopole Approximation for Model
II ( 2 cubic blocks) (mgal)

z(km)
y(km) 1 2 3

0 29.644 4.032 1.612

1 4. 094 2. 562 1. 338

2 1.021 1.148 0.865

3 0.384 0,545 0. 518

Table 5. Monopole Approximation for Model
III( 16 cubic blocks) (mgal)

z(km)
y(km) 1 2 3

0 37.657 4.235 1.642

1 3.833 2.590 1,353

2 0.995 1.140 0.866

3 0.378 0. 54 0,517
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monopole term is dominant. Therefore as great distance, the Oth

order approximation can be a good approximation. Similarly if the

body is divided into small cubes, it is also possible to use the O-th

order approximation.

According to Figure 11 and 1 2, the ratio of the monopole term

to the total gravity values is increasing from 4 km with increasing dis-

tance, while the ratio of the quadrupole term to the total gravity values

is decreasing gradually. These graphs show that the other higher-

order terms are negligible as compared to these two main terms by

knowing A/E and B/E, where E is the exact value and A, B are

the monopole and the quadupole term, respectively.

Volume and Surface Integral Approximations for Vertical
Rectangular Prisms and Cylinders

The approximations from volume and surface integrals are comrn-

puted by Equations (22) and (31). It is assumed that the rectangular

prism has a 1 km, b c 2km, the depth to the center of the

mass, h 3 km, while the cylinder has R = 1 km, and h 3 km with

unit density, p 1gm/cm3. For simplified calculations, the field

point is moved from the origin (x y 0) to Y- axis with x = 0 with

constant depth. The values of Tables 6 and 7 show the computational

results comparing with the exact calculations. As shown on Figures

9 and 10, these approximations converge to the exact values with

icreasing the distance of the field point.
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Table 6. Numerical Calculations for a Right Rectangular Prism

Exact Surface (1) Volume (2) Relative (1) Relative (2)
d/h Value Jute. Inte. Error Error

(ingal) (mgal) (mgal) (%) (%)

0 3.066 3.031 3.088 1,14 0.72

1/6 2,947 2. 930 2. 960 0. 58 0. 44

1/3 2.629 2.635 2.626 0.23 0.11

1 1.073 1.074 1.070 0.09 0.28

4/3 0.650 0.650 0.650 0 0

5/3 0.408 0.408 0.408 0 0

2 0. 267 0. 267 0. 267 0 0

7/3 0.182 0.182 0.182 0 0

8/3 0. 129 0. 129 0, 129 0 0

3 0.094 0, 094 0.094 0 0

10/3 0.071 0.071 0.071 0 0
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I
I

0 1/3 2/3 1

d /h

Figure 9. Vertical gravity vs d/h for a right rectangular prism.
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Table 7, Nurnrical Calculations for a Right Circular Cylthder

Ecact Surface Volume Solid Relative (1) Relative (2) Relative (3)
a/h Value Ire. Inte. Angle Error Error Error

(mgal) (mgl) (mgal) (mgalL (°%L (%)

0 14,932 11787 14.48,7 14.077, 21,06 2.98 5,73

1/3 13.602 12.998 13.518 12.894 4.44 0.62 5.21

2/3 10. 293 10.622 10. 348 9.968 3. 20 0. 53 3. 16

1 6.758 6.861 6.768 6.748 1.52 0.15 0.15

4/3 4.217 4.228 4.216 4.292 0.26 0.02 1.78

2 1.740 1.737 1.740 1.780 0.17 0 2,30

8/3 0. 833 0. 831 0. 833 0. 847 0.02 0 1,68

3 0.605 0.605 0.605 0.614 0 0 1,49

10/3 0.452 0.452 0.452 0,458 0 0 1.33

4 0. 270 0.270 0. 270 0.273 0 0 1. 11

5 0.142 0,142 0.142 0.143 0 0 0,70

6 0. 083 0.083 0.083 0.084 0 0 1,20

20/3 0.061 0.061 0.061 0.061 0 0 0

Nettleton (1942) has discussed the solid angle method by using g (p) = x G x p x t where
is a solid angle, C is the gravitalional constant, p is the ded1sity coutrast, and t is the thick-
ness of the cylinder, The solid angle values are obtained from Musket etal, (1956).
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J1

1 Exact calculation
2 Surface integral
3 Volume integral
4 Solid angle

oil
I I

2 8/3 10/3

Yl

d/h

Figure 10. Verttcal gravity vs d/h for a right circular cylinder.
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P1 = A/E, Q1 = AlE
P2 = B/C, Q2 = B/E

where A monopole term
B = quadrupole term
CA+B
E = exact value
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Figure 11. The ratio of the monopole and quadrupole term to the total or exact values vs. d/h for

a right circular cylinder by surface integrals.
J
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Figure 12. The ratio of the monopole and quadrupole term to the total or exact values vs d/h
for a right circular cylinder by volume integrals.
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DISCUSSION

Approximations using multipole expansions hold well when the

distance to the field point is large compared to the dimensions of the

body. The values of Tables 1, 2, 3, 4, and 5 show how these approxi-

mation methods hold according to the distance of the field point.

Tables 6and7 also show that theapproximations from surface integrals

have larger errors than the volume integral approximations for the

same body.

The errors of the approximation from the multipole expansion

depend upon the relationship between the body dimension and the dis-

tance of the field point. In order to use these approximation, the dis-

tance of the field point should be at least three times the length of the

body dimension, i. e., r> 3d.

It is of importance to make many gravity stations at appropriate

distances from each other, which is shown on Figures 7a and 7b.

When the field point is very close to the cylindrical body, it may be

more convenient to use the solid angle approximation method unless

the thickness of the cylinder is great.

It is also worthwhile to discuss the vertical line element approxi-

mation and the approximation from volume integrals. The values of

Table 1 show how many subdivisions are needed to converge to the

accuracy for these approximation methods. The vertical line element
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approximation is mainly a function of the length of the surface dimen.

sion and the distance of the field point. It is obvious that the approxi-

mation from volume integrals is more accurate than the vertical line

element approximation. For the vertical line element approximation,

the horizontal dimension of the subdivided rectangular blocks should

be so small that they may be approximated by the vertical line bar.

In order to obtain successive approximations fast, it is convenient

to make a constant and small distance of axis of two adjacent vertical

rectangular blocks.

Finally it is interesting to discuss the monopole term and the

quadrupole term from surface and volume integrals. According to

Figures 11 and 12 it is possible to use the 0th-order approximation

(the monopole term) at great distance. Similarly it is also possible

to use the monopole approximation when the body is divided into a

number of regular cubes with small dimensions compared to the dis-

tance to the field point, e. g.,, Tables 3, 4, and 5.
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CONCLUSIONS

Gravity interpretation by the approximate methods is very use-

ful for geophysical prospecting, because the exact calculation is very

often complicated, time-consuming, and laborious. Moreover, the

approximate methods from potential theory are inverse problems to

find out the shape and size of the anomalous body. The anomalous

body could be determined directly from the corresponding gravity

anomalies observed along the surface.

All models in this paper are mathematical models, which can

be good natural shapes, too, because it is convenient to approximate

a certain body as a simple body such as a prism or a cylinder in

nature.

The approximation by surface integrals is good for the semi-

infinite body, while the approximation by volume integrals is good for

the finite body. According to the numerical calculations, the latter

is more accurate than the former.

The approximation obtained from vertical line elements depends

upon the surface unit area and the depth. In order to use this approxi-

mation, it is important to make a constant and small distance of

axis of two adjacent vertical rectangular blocks.

Since a very fine gravimeter can measure within an accuracy of

± z-3 rnicrogals, all the numerical calculation in this paper gives

three digits beyond the decimal point by round-off.

L
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APPENDIX A

THE EXACT EXPRESSION OF THE GRAVITY
OF THE RIGHT VERTICAL CIRCULAR CYLINDER

This method has been discussed by Kolbenheyer (1962),

Nabighian (1962), and Parasnis (1961). Kolbenheyer and Nabighian

expressed the gravity of the right circular cylinder in closed form by

means of complete elliptical normal integrals of the first, the second,

and the third type with parameters K and X which depend upon the

dimension of the cylinder and upon the position of the top point. On

the other hand, Parasnis (1961) gives the infinite series form. In

this paper, Kolbenheyer's ç1962) and Nabighians (1962) methods are

chosen because ParasnisT (1961) method is hardly accurate for small

value of a (the ratio of depth to radius).
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The vertical gravity at P is derived by Kolbenheyer (1962)

and Nabighian (1962).

g( P) = 2G p [
1

K( k) + (1 +x) 2+ a2 ( k)
(l+x) +a2

+ aX0 (, k) - ira]

where G is the gravitational constant,

p is the density contrast

x xIR , aa0/R
K and E are the complete elliptical integrals of the

first and the second kind with parameters k

and k) is Heuman's Lambda
(1+x)2 + a2

function with q.

_1
'p = sin a

/ 2 2t (Lx) + a

K, E, and X0(p, k) could be obtained from the tables by Byrd

and Friedman (1954) or Heuman (1941). But as far as the accuracy

is concerned, it is more accurate to compute directly by computer

by using Chebishev Approximation developed by Hastings (1955).

This paper tells how to use Chebishev Approximation.



pirl2 d
K(k) = ________ where 0<k< I

"I -ksin

K(k)j (a0+a1 xn±

2where = 1 - k

a0 1.3862, 9436, 112

a1 = .0966, 6344, 259

a2 .0359, 0092, 383

a3 = .0374, 2563, 713

a4 .0145, 1196, 212

b0 = . 5

b1 = .1249, 8593, 597

b2 = .0688, 0248, 576

b3 = .0332, 8355, 346

b4 = .0044, 1787, 012

E(k) ç d where 0 < k < 1
JO

E(k) (1 +a1+ +a54) + b1 + . + b4) x

2where 11 = 1 - k

a1 = .443 2, 5141, 463

a2 .0626, 0601, 220

a3 = .0475, 7383, 546

a4 = .0173, 6506, 451

b1 = . 2499, 8368, 310

b2 = .0920, 0180, 037

b3 = .0406, 9697, 526

b4 .0052, 6449, 639

K(k) and E(k) can be computed with error of less than 1. 6 x 10

Heuman1s Lambda function is combined by complete elliptical

integrals
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X0 (ço, k) [KE(, k') + EF(ço, ks)]

where K and E are the complete elliptical integrals of the first and

the second kind and F(p, k) and E(q, k) are the incomplete elliptical

integral of the first and the second kind.

k'2 1 - k =

(P dçF(p,k) \ 2 2Ji k' sin q:)

(2 / 2 2E(p, k) .f
1 - k sin p dp

After the binomial expansion of the incomplete integrals, they

can be integrated term by term.

Let q2 sin dp and q4 sin çü dp

therefore
Sifl COS 1 çd = sincosç)q2

2 2 I, 2

.3
sin __ pcosço 3

4 4 42

1 2m-1 2m-1
q sin (pcosq7+ q

2m 2m 2m 2m-2

where m = 1, 2, .. and =



Hence Heuman's Lambda function is

k) {Eq0 - (2-E) q2k - (4K-3E)q4k4

1.1. '6 1l"(2n-3)
24.6 (6K - 5E)q6k - 24 2n

{2nK- (2n_1)E] q2 kZn_ .}
The numerical calculation in this paper is truncated at 20th term,

which is good enough for the actual gravity measurement.

It is very important to know the characteristic of Lambda

function:

x=o

iTO<x< 1- 0< ,<

x1 -

x>1 cp< .71

aand X0(*p,k) - _____
Ji+a

and X0(p,k)

and X0(q, k) 1

and X0(rr- q', k) 2 X0(p, k)



PARASNIS METHOD

Parasnis' (1961) estimated the gravity anomaly of a right ver

tical circular cylinder assuming that the anomaly is proportional to

the plane area.

! 2 2
(i) g = 2Gp {z z z +a + z+a} xO

2 1 2

Gpa {z2+(xa) z2+(x+a)2 + z+(x+a)2(ii) g
2x

+(xa)2 } x>a

(iii) g 2Gp {z2 - - {F(x+a) + F(x-a)}

( F(x-a) - F(x+a)}] x<a

where a is radius, z1 and z2 are the depth of the top and bottom,

x is the distance from the axis to the observation point, and

F(t) = +t +t2




