
AN ABSTRACT OF THE THESIS OF

John A. Bertani for the degree of Master of Science in

Computer Science presented on March 19, 1985.

Title: Achieving Portability Through Software Conversion.

Abstract approved:
Redacted for Privacy

Theodore G. Lewis, Assoc. professor

Conversion of software written for one machine or

operating system to equivalent software for another machine

or operating system is shown to be economically attractive

using source-to-source translation. The features of an

automatic converter are described using a Pascal-to-C

translater as an example. Solutions to the problems of

denesting procedures, converting data structures and types,

converting control structures and operators, and converting

semantics in one language into equivalent semantics in

another language are proposed and evaluated in terms of an

algorithmic translator. The results obtained through

experience suggest that algorithmic translation from one

language to another can yield 95 to 99 per cent conversion

without human intervention, leading to significant

improvements over other methods of software conversion.

Achieving Portability Through
Software Conversion

by

John A. Bertani

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed March 19, 1985

Commencement June 1985

APPROVED:

Redacted for Privacy
"Nsoc. 157-Tressor of Computer Science

Redacted for Privacy

Head of -GeliartMent of computer science

Redacted for Privacy

0
Dean of -Gradu School j(

Date thesis is presented March 193 1985

Typed by Judith Sessions for John A. Bertani

TABLE OF CONTENTS

Page

Introduction ,
1

Steps in Converting 4

Conversion Difficulty 6

Design of an Automatic Conversion Tool 9

Conversion of Data Structures 15

Conversion of Control Structures and Operators 20

Conversion of Support Libraries 24

Comparison of Pascal, C and translated C 27

Test Results 33

Concluding Remarks 36

Bibliography 38

LIST OF FIGURES

FIGURE Page

1. Variable Declaration Example 14

2. Procedure-Function Node 15

3. REPEAT-UNTIL of Gen statement () 26

LIST OF TABLES

TABLE Page

I. Results of Wolberg Study 5

II. Wolberg's Rating 7

III. Attribute Table Layout 17

IV. Intralanguage Conversion of Data Types 19

V. Intralanguage Conversion of Data Types 21

VI. Control Structure Mapping, Pascal to C 22

VII. Three Translations of Pascal's WITH statement 23

VIII. Pascal Set statements, C equivalent statements 25

IX. Pascal Support Library mapped to C Support
Library (some Pascal routines are from
UCSD Pascal) 23

Achieving Portability through Software Conversion

Introduction

"Software is portable if it can, with reasonable
effort, be made to run on computers other than
the one for which it was originally written."

Brown (1977)

Software portability has become an important issue

where micros, minis and mainframes are integrated into a

single data processing environment. When micros, minis,

and mainframe hardware is integrated it is necessary to

either standardize operating systems and programming

languages to minimize software development expenditures

and maximize software compatibility or to find a way of

achieving portability by a conversion process. In this

paper we show how software conversion can be automatically

achieved by source language to source language translation.

There are many reasons to consider source-to-source

language translation as a means of software conversion. A

switch to a new operating system; lack of a suitable

compiler in the new environment; or programmers wish to

change their primary language to take advantage of certain

features in the new. language.

Brian Ford (1983) presented a "wish list for easy

transfer and sharing" of software which he considered

2

necessary if numerical algorithms .ire to be converted to

another environment. Peter Wallis (1982) also gave some

recommendations for making software portable.

However, many programmers are faced with the problem

of converting existing software which was written with a

specific goal in mind, in a specific language and, most

likely, under a deadline. More often than not, the issue

of portability was not considered until after the software

was written.

Programs to be converted to another environment but in

the same language often run into problems due to

differences in dialects. Although many attempts have been

made to standardize programming languages, enhanced

versions will always be found and because of the

enhancements, they will proliferate. Enhancements are

made with the intention of making the programmers job

easier but from J portability point of view, make the

conversion programmer's job more difficult.

Wolberg (1983) states that the decision to convert is

basically an economic decision. The three alternatives he

cites are to convert the software, replace the software,

or discard the software. He compared the cost of

converting software to the cost of reprogramming Wolberg

(1978). Walston and Felix (1977)-analyzed a database of 50

software development projects ranging in size from 4000 to

3

467,000 lines and came up with the following equation for

new system development effort of

0.91
Effort = 5.2 * (# of Lines)

Wolberg assumed that reprogramming required

approximately one-half the effort of new system development

and obtained the following relationship:

0.91
Effort = 2.6 * (# of Lines)

r

for reprogramming effort and

0.36
Duration = 3.3 * (# of Lines)

r

for project duration.

Wolberg used a database of 9 completed conversion

projects to obtain the conversion effort equation:

0.47
Effort = 7.14 * (# of Lines)

and a database of 31 completed conversion projects for the

duration equation:

0.22
Duration = 4.1 * (# of Lines)

where for all equations, Effort is in person-months and

Duration is in months. These formulas were obtained for

projects where automated conversion tools were used to

4

partially translate from one system to another (equivalent)

system.

From Table I we can conclude that the larger the

system to be converted the higher the ratio of

reprogramming to conversion effort. However, the conclusion

depends on having an automated "converter" which performs

at least part of the translation with minimal effort.

Steps in Converting

When converting software by source-to-source trans-

lation there are two steps:

I. Translate the original source language into the target

source language. This includes translation of control

structures, operators, declarations, and libraries.

2. Testing and debugging.

Testing and debugging is a normal phase of every software

development project and should progress fairly rapidly in d

conversion project because of the availability of a working

version of the original source code. The main interest of

this paper is the translation process which can be further

broken down into two steps:

1. Automatic translation

2. Manual translation

5

Table I. Results of Wolberg Study

Effort Ratio Duration Ratio

Lines Er/Ec Dr/Dc

30000 1.63 1.29
100000 2.76 1.15
300000 4.48 1.78

1000000 7.61 2.10

6

Automatic translation implies algorithmic conversion.

Algorithmic conversion is any conversion technique that

follows an outline, in a step-by-step, systematic fashion.

High level languages are sufficiently complex that most

automatic converters cannot translate at 100 per cent

efficiency. Here, efficiency is defined as the percentage

target source code that needs no modification, syntactic

or semantic, in order to produce identical results when

implemented in the target environment. As can be seen

from the work of Wolberg, translation efficiency of 95 to

99 per cent becomes a better economic choice as the size

of the original source code program increases.

Conversion Difficulty

Wolberg classified conversions into three categories

and gave them an ease-of-conversion rating (Table II). The

following definitions are used in Table II:

1. Intralanguage: Target language is a different version

of the same source language (e.g. UCSD Pascal to

standard Pascal).

2. Interlanguage: Target language is different from the

source (e.g. Pascal to C)

3. Same Compiler: The source and target both use the same

version of a given language (e.g. a prettyprinter or

an optimizer).

7

Table II. Wolberg's Rating

Source Target

Ease of
Type Lang. Vers. Lang. Vers. Conversion

Intra-
Language

Ll VI Ll V2 Easy to
difficult

Inter-
Language

Ll L2 Difficult
to very
difficult

Same
compiler

Li Vi Ll VI Usually
easy

B

In Table II, 'easy' means algorithmic conversion

results in close to 100 per cent effectiveness.

'Difficult' implies a more complex task; much of the

conversion can be done algorithmically but visual

examination of the results is needed to complete the

translation manually. 'Very difficult' means little help

can be derived from algorithmic translation.

Many automatic interlanguage converters claim a

translation percentage greater than 95 per cent. Even so,

this may mean that some original programs translate 100

per cent while others may have semantic errors introduced

by the translation. As an example, consider the case of

translating Pascal's READLN into an "equivalent" FSCANF

of C.

readln (file, argumentl, argument2);

where 'file" is the file being scanned and 'argumentX" is

the variable being assigned a value. If 'argument]." is an

integer, 'argument2' a character, and READLN's are

translated into FSCANF's, the resulting C code might be:

fscanf (fileptr,"%d%c", &argumentl, &argument2);

This is an acceptable translation only if there are

two values of data in the record of the input file. But

consider the case of reading a string of characters

containing imbedded blanks (as in UCSD Pascal).

9

readln (file, astring);

Given the translation criteria above, this would translate

into:
fscanf (fileptr, "%s", astring);

In Pascal REAOLN scans the input string until an end-

of-line marker is reached, but in C, FSCANF would stop at

the first blank, tab or end-of-line character. An

appropriate translation would be:

fgets (astring, DIMENSIONOF_STRING, fileptr);
astring[strlen(astring)-1] = 0;

This type of problem can be handled as a special case

by an automatic converter. Hcwever, translations are

generally full of special cases and adding code to detect

them would only increase the code size and the execution

time. For many of the special cases it might be better to

manually change the code after visual inspection.

Design of an Automatic Conversion Tool

The design of an automatic conversion tool can be

accomplished by examining the basic components of the

source and target languages. Of primary importance are

the data types and declarations, the instructions and

10

operators, and the support libraries. Of lesser importance

is the data storage methods associated with each language.

A converter is similar to a compiler in function: to

convert programs written in a source language to an

equivalent program written in another (target) language.

However, a converter is different from a compiler in many

respects.

A typical compiler might consist of the following

parts:

1. Lexical analyzer

2. Parser
a. syntactic analyzer
b. symbol table
c. parse tree

3. Semantic Analyzer

4. Code Generator

A converter normally consists of the following:

1. Preprocessor

2. Lexical Analyzer

3. Parser
a. symbol table
b. parse tree

4. Code Generator

A preprocessor is a program used to prepare the source

code for translation. A converter does not need a syntactic

analyzer because the source language, having been compiled,

is free of syntax errors. For the same reason, the

11

converter does not need a semantic analyzer. A parse tree

is necessary if the languages are different in structure

and a line-by-line translation is not possible.

For languages with similar constructs, the target

language can be generated directly from the input tokens

passed to it by the lexical analyzer. The more common

case encountered in conversion is a mix of similar and

dissimilar structures. In this case the preprocessor is

necessary to simplify the converter.

As an example, consider a converter for translating

Pascal source language programs into some other target

language. A Pascal program consists of a sequence of

declarations followed by a single compound statement. The

declarations consist of:

I. labels

2. constants

3. types

4. variables

5. procedures and functions

Each procedure or function may contain its own set of

declarations in addition to its own single compound

statement.

. Nesting is achieved by declaring procedures and

functions inside the program and also inside other

procedures and functions. Most Pascal compilers use a

12

recursive descent parsing algorithm to make one pass over

the source code, translating on a line-by-line basis.

However, this simple approach does not work for a

converter if the target language does not support nested

procedures. Instead, a preprocessor must de-nest the

Pascal procedures before they can be translated by

syntactic analysis.

The preprocessor examines the source code with the

following objectives in mind:

1. de-nest the Pascal program

2. create a global symbol table (for rewriting the

declarations)

3. move non-local, non-global identifiers to the

global symbol table (including all types and

constants).

4. simplify or rephrase dissimilar statements and

operations (such as WITH and set operations).

5. create a pseudo Pascal program in a format

acceptable to the translator.

The preprocessor uses a stack to deal with de-nesting

of procedures and functions. Since the body of the

program, procedures, and functions is of no concern to the

preprocessor (except for simplifying or rephrasing) only

data declarations need be stored. A typical variable

13

declaration and the structure created from it are shown in

Figure 1.

When the preprocessor encounters a nested function or

procedure, it places the current structure on a stack,

creates a new structure as shown in Figure 2, and analyzes

the declaration section of the nested procedure or

function. It continues to push structures onto the stack

and create new ones until it reaches the instruction list

of the procedure or function it is analyzing.

After analyzing the nested procedure/function, the

entire procedure/function can be written to an intermediate

file, the current structure discarded, and the stack popped

to resume analysis. (In practice this is done using

recursion.) Following this procedure, the entire Pascal

program is denested.

A side effect of the de-nesting algorithm is that non-

local, non-global identifiers are left "homeless". The

preprocessor adds these declarations to the declarations

kept in the global data structure. To avoid conflicts in

naming of identifiers, the preprocessor can prepend a

prefix (based on the procedure or function in which it was

declared) to the identifier to distinguish it from other

like-named identifiers.

A second pass over the source code converts the

intermediate file to C one line at a time. In creating

the pseudo Pascal program for the translator portion of

14

Declaration: list : array (1..1001 of integer;

Structure:

VA,e NODE
Nam.: list. TYFE NODE CONPNOOE YPE NODE
LOCAL

ARRAYOF Predefined type:

integer

type

next
trIpe

component
nextnext

ttiPe

next

100

type

next

FIGURE 1. Variable Declaration Example

Previous
Name : GET ID

Labels

Constants
Types

Variables
Next

V

FIGURE 2. Procedure-Function Node

15

16

the conversion process, the preprocessor creates a file in

which everything is declared before it is used (except

pointers). As the translator processes each line it

creates a symbol table entry for each identifier and keeps

a table of attributes so that at any time information can

be retrieved about each identifier. The data structure

used in this case is an array of structures whose contents

are outlined in Table III.

As the translator processes a procedure or function it

appends parameters and local declarations to the attribute

table. When it is ready to process the statements, all

the information necessary to generate the target code is

available. Once it has finished processing the procedure

or function it removes the parameters and local

declarations from the symbol table and moves on to the next

procedure/function or main body.

Conversion of Data Structures

Ease of conversion of data structures is based on the

similarity of the two languages involved. Obviously, the

more restricted the target language is in terms of

available data types, the more difficult the conversion

process will be. Consider the conversion of Pascal both

to another dialect of Pascal and to C. Table IV shows the

data types involved in intralanguage conversion of data

types.

itemtype

1 boolean
2 char
3 integer
4 real
5 subrange

6 string
7 pointer
3 long
9 packed
10 array
11 record
12 set
13 file

17

var

Table

name

III. Attribute Table Layout

supertype lower upper

1st var name ptr see /1 see 42

1st var name ptr see 41 see 42

1st var name ptr see 41 see 42

1st var name ptr see #1 see 02

1st var name ptr see 41 see 42 points to
array dim

1st var name ptr see 41 see 42 string dim
1st var name ptr see see 12 type pointer
1st var name ptr see see M2 size of long

1st var name ptr see 41 see #2 type pointer
1st var name ptr see 11 see 12 ptr to 1st dim

1st var name ptr see 41 see 42 1st field ptr

1st var name ptr see 41 see #2 type ptr
1st var name ptr see 41 see 12 type ptr (0 if

14 array dim pointer
to sub-
range;
0 if

const
15 var next name ptr

var of
this
type

16 const integ- name ptr
erized
value
if char
int or
boolean

17 type ptr 1st var name ptr

13 union
19 procedure name ptr

20 function name ptr

ptr to next
dim (last
points to
type)

type pointer

see 43

see #1

see 41
see 41

see #1

no structure)
lower upper if const
if const

1 if call
by reference;
0 if call
by value

see 42

1st field
1st formal
parameter
1st formal
parameter

Note 41: This field is zero if not a type within a type like
records, files, sets, and arrays. Otherwise it is a pointer to

the type's superstructure.

pointer to
actual type

pointer to
return type

18

Note 02: This is the next field pointer. It points to the next
type field within a record.

Note 13: This field is the constant type. The types are:
1 char
2 float
3 integer
4 string
5 long

Comments on some of the itemtypes listed above:

Type 17 records are dummy type records. UPPER of a type 17
record points to its actual type. This type of record is used
for several reasons, the most common being where say SOUL is
declared as type BOOLEAN and BOO is declared as type 300L. Then
FOOL gets a type 1 record in the attribute table and BOO gets a

type 17. Now each record can point to the linked list of
variables that were declared having type BOO or SOUL.

Arrays have a type 10 record in the attribute table. UPPER
points to a type 14 record which is an array dimension record.
If there is more than one dimension, the SUPERTYP field in tne
type 14 record points to the next type 14 record, The SUPERTYP
field in the last type 14 record points to the record that
contains the type of the array. Type 14 records have a zero in

their VAR field if the lower and upper bounds of the dimension
are in the LOWER and UPPER fields. Otherwise VAR points to a

subrange record.

Subrange records point to array dimension records and the lower
and upper value for the subrange are in the LOWER and UPPER
fields of the array dimension record.

19

Table IV. Intralanguage Conversion of Data Types

Pascal MT+

BYTE
WORD
LONGINT

MS Pascal

WORD
REAL4
REAL8
INTEGER4
STRING (N)
LSTRING (N)
SUPER ARRAYS
ADR OF
ADS OF

UCSD Pascal

0..255
0..65535
INTEGER [X]

UCSD Pascal

0..MAXWORD
(1)

(1)
INTEGER [X]
PACKED ARRAY [I..N] OF CHAR
STRING [N]
ARRAYS
(2)

(2)

(1) since there are no equivalent types in UCSD Pascal, the
programmer making the conversion must decide whether to
replace with standard real numbers or create a library of
extended real operations.

(2) Since there is no egivalent in UCSD Pascal, the programmer
must decide on the course of action to take with the
address-of types.

20

Table V shows the interlanguage conversion of the data

types.

Conversion of Control Structures and Operators

The conversion of control structures can be broken

down into two obvious groups. First and easiest to

translate are the constructs in which a version exists in

both the source language and the target language with

slight syntactic differences. Table VI shows the mapping

between Pascal and C control structures.

The other group is the control structures in which

there are no equivalent constructs in the target language.

An example of this is Pascal's WITH statement. The

algorithm to translate WITH can take three forms. The

first is to prepend the with variable to the appropriate

fields contained within the the WITH statement list. The

second is similar to the first but takes advantage of C's

macro preprocessor. Instead of prepending the WITH variable

to each appropriate field element, it is assigned to a

local variable (created by the translator) using the

'#define' mechanism. The third algorithm is similar to

the second but does an actual assignment rather than a

macro substitution. Table VII shows how WITH statements

are translated using each algorithm.

Operators can also be broken into two groups. If there

is a counterpart in the target language then the conversion

21

Table V. Interlanguage Conversion of Data Types

UCSD Pascal

BOOLEAN
INTEGER
INTEGER [N]
REAL
CHAR
STRING
ARRAY (some type)
RECORD
VARIANT RECORD
ENUMERATED TYPE

SETS
FILES

,e

INT
INT
REAL or CHAR (1) or LONG
FLOAT (or DOUBLE)
CHAR
CHAR [X]
type

UCT
[X]

STR--
UNION
INT (for versions void
of enumerated types)
bits of CHAR array
STRUCT containing file

element type and
file pointer

(1) The programmer can convert the UCSD long integers to
ASCII strings and use some well-known algorithms to
simulate long arithmetic.

22

Table VI. Control Structure Mapping, Pascal to C

IF <condition> THEN
<statement-list>

ELSE
<statement-list>

if (<condition>)
<statement-list>

else
<statement-list>

FOR lcy:minitial TO final DO for (icy = initial; Icy <= final; lcv + +)
<statement-list> <statement-list>

REPEAT
<statement-list>

UNTIL <condition> ;

do
<statement-list>

while (!<condition>) ;

WHILE <condition> DO while (<condition>)
<statement-list> <statement-list>

CASE <expression> OF
<constant>: <stat-list>

switch (<expression>) I

case <constant>: <stat-list>
break;

END }

23

Table VII. Three Translations of Pascal's WITH statement

WITH a record_struct DO BEGIN /* with a record struct do */
field! := a record Ttruct.iieldl = _____,
field2 := a record struct.field2

END;

WITH a record_struct 00 BEGIN idefine withp0 a_record_struct
field! := . {

field2 :. ;
withp0.fieldl = ;

ENO withp0.field2 = ;

l

fundef withp0

WITH a record_struct DO BEGIN withp0 = 8a_record_struct;
field! := __; f

field2 := ;
withp0->fieldl .

ENO; withp0->field2 = ;

}

24

is easy and similar to a word processing 'change'

operation. If there is nc counterpart, then the operations

must be simulated. Operators that do not have a target

language complement can be simulated with library calls to

routines performing the same operation.The most obvious of

this group in the Pascal-to-C translator is the set

operators. Table VIII shows the Pascal set operators and

the equivalent C library routine.

The code generation format for statement lists is

similar to the recursive algorithm found in many compilers.

From Table VI we see that the translation of REPEAT-UNTIL

calls for the translation of a statement list. Figure 3

shows the part of a procedure (called Gen Statement) that

translates this construct.

Conversion of Support Libraries

If the support library of the source language cannot

interface with the target language, then the support

routines will have to be simulated with a new support

library. Most often the same names can be used in the new

support library with the same arguments unless there

happens to be a name conflict in the target language. If

the same names are used in both libraries then the

statements containing these calls can be processed without

many changes. It is then only necessary to write the

support library routines for the target language.

Table VIII. Pascal Set statements, C equivalent statements

Pascal Operation C Function

setl := set2 + set3;

setl := set2 - set3;

setl := set2 * set3;

setl := [1,2,3..6,7];

if (x in setl) then

setl = p2c_s_union (set2, set3);

set]. = p2c_s_diff (set2, set3);

setl = p2c_s_intrs (set2, set3);

setl = p2c_set (1,2,3,t_o,6,7,e_n_d);

if (p2c_s_in (x,setl))

if (setl = set2) then if (p2c_s_eql (setl,set2))

25

Gen statement();
{

switch (statement_type) {

case REPEAT:
fprintf (out, "do Dn");
Gen Statement();
get_token();
if (strcmp (token,"until") != 0)

Error ();
fprintf (out, "while (!");
Gen Expression();
eoln();
break;

/* end of switch */
}

26

FIGURE 3. REPEAT-UNTIL of Gen statement()

27

In many cases, the target language support library

contains routines that are semantically equivalent to the

source language support routines. The translator can then

translate the procedure/function call to the equivalent

call in the target language. (Often this entails a

rearrangement of the arguments in the parameter list). This

would eliminate the overhead of two procedure calls in the

compiled version of the target language. Table IX shows

the mapping of some Pascal support library routines to the

C support library.

Comparison of Pascal, C and translated C

One of the criticisms of high level code that comes

out of an A-to-B translator is that it is an A program

with B syntax. This is true! The translator is not an

intelligent program. It translates on a token-by-token

basis and does not do any context analysis. But, a

compiler for the B language only recognizes B syntax and

will generate code according to what it sees. The code

generated for A and the code generated for B are different

as the following examples of a Pascal-to-C translation

illustrate. The first example is the benchmark Sieve of

Erastothenes. The second example is a Pascal WITH

statement of which there is no equivalent in C. Both

examples were run in the UNIX operating system using the

pc compiler for Pascal and the cc compiler for C.

Table IX. Pascal Support Library mapped to C Support Library
(some Pascal routines are from UCSO Pascal)

Pascal Routine

assign(file,name);
reset(file)

blockread (filename,
buffer,
count)

C Function

file = fopen(name,"r")

fread (buffer,
size,
count,
filename.fileptr)

blockwrite (filename, fwrite (buffer,
buffer, size,
count) count,

filename.fileptr)

concat (sl,s2,s3,...) sprintf (temp,format,sl,s2,s3....)

dispose (ptr) free (ptr)

exit (program) exit (0)

exit (routine_name) longjmp (env, value)

get (filename) read (filenum,
buffer,
length)

halt exit ()

new malloc (size)

put (filename) write (filenum,
buffer,
length)

read[in] ([filename],
variable-list)

reset (filename,
[,external_file])

rewrite (filename,
[,external_file])

write[ln] ([filename,]
variable_list)

fscanf (fileptr,
format,
variable-list)

reset (filenum,
external_file)

rewrite (filenum,
external_file)

fprintf (fileptr,
format,
variable_list)

28

29

Example 1 Sieve of Erastothenes

C version - from Kern

#include <stdio.h>
#define SIZE 8190
#define FALSE 0

#define TRUE 1

#define MTIMES 10

char flag[SIZE + 1];

main()

int i,j,k,count,prime;

printf ("10 iterations: ");

for (i = 1; i <= NTIMES; i++) {

count = 0;

for (j = 0; j <= SIZE; j++)
flaj[j] = TRUE;

for (j = 0; j <= SIZE; j++)
if (flag[j])

prime = j + j + 3;
for (k = j + prime; k <=
SIZE; k += prime)

flag[k] = FALSE;
count++;

1

printf ("%d primes.\n", count);
exit(0);

Pascal Version - Public Domain Software

program sieve;
const

SIZE = 8190;
NTIMES = 10;

var
i,j,k,count,prime : integer;
flag : array [1..SIZE] of boolean;

30

begin
write ('10 iterations: ');
for i := 1 to NTIMES do begin

count := 0;
for j := 1 to SIZE do

flag[j] := true;
for j := 1 to SIZE do begin

if flag[j] then begin
prime := j + j + 3;
k := j + prime;
while k <= SIZE do begin

flag[k] := false;
k := k + prime;

end;
count := count + 1;

end;
end;

end;
writeln (count, ' primes.');

end.

Pascal-to-C Translator Version

#include "stdio.h"
#define TRUE 1

#define FALSE 0
#define SIZE 8190
#define NTIMES 10

int
int

flag [8192] ;

i ,

j

k ,

prime ,

count ;

main()

printf("Zs\n","10 iterations: ");

for (i = 1; i <= NTIMES; i++) {

count = 0;
for (j = 0; j <= SIZE; j++)

flag[j] = TRUE;
for (j = 0; j <= SIZE; j++)

if (flag[j]) (

prime = j j 3;
k = j + prime;
while (k <= SIZE) {

flag[k] = FALSE;
k = k + prime;

31

count = count + 1;
}

1

printf("%d%s\n",count," primes.");

From the two C programs, it can be seen that there are

only a few differences (other than Initialization and

I/O) to be noted:

for (k = j + prime; k <= size; k += prime)
flag[k] = false;

versus

k = j + prime;
while (k <= size) {

flag[k] = false;
k = k + prime;

Clearly, the two pieces of code perform the same

function and the assembly language versions show that

therets

is only a slight difference in the code produced by

the compiler for each C version.

addl3 -12(fp),-4(fp),r0 addl3 -12(fp),-4(fp),r0
movl r0,-8(fp) movl r0,-8(fp)L26:

L26:
cmpl -8(fp),$100 cmpl -8(fp),$100
jgtr L25 jgtr L25
movl -8(fp),r0 movl -8(fp),r0
clrl flag[rO] clrl flag[rO]

L24: addl3 712(fp),-8(fp),r0
addl2 -12(fp),-8(fp) movl r0,-8(fp)
jbr L26 jbr L26

L25: L25:

32

However if a comparison is made of the code from the C

compiler to that from the Pascal compiler below it shows

quite a difference.

addl3
movl
L6:
movl
cvtbl
cmpl
jgtr
moval
subl3
clrb
addl3
movl
jbr
L7:

prime, j,r0

k,r0
T100,r1
rO,r1
L7
flag,r0

$1, k,r1
(rO)[rl]
prime, k,r0

TO, k

L6

Example 2 Pascal WITH statement

Here the purpose is to show the difference in the code

from the two compilers.

Pascal code

with aptr'.next^ do begin
varl := 1;
var2 := 2.0;
next := nil;

end;

Pascal-to-C translator Version

withp0 = aptr->next;

withp0->varl = 1;

withp0->var2 = 2.0;
withp0->next = NULL;
}

Assembly language versions

L6:

movl *$aptr,sp
movl 12(r0),r11
movl $1,(r11)
. data
. align 2

. double Od2.0000e+00

. text
movd L6,4(r11)
ctrl 12(r11)

33

movl aptr,r0
movl 1-2(r0),-4(fp)
movl $1,*-4(fp)
.data
. align 2

L24:
. double 0d2.0000e+00
. text
movl -4(fp),r0
movd L24,4(r0)
movl -4(fp),r0
clrl 12(r0)

An A program with B syntax does have at least one

advantage. Programmers converting their high level code

from A to B may not be familiar with the target language.

A gradual change from language A to language B would be the

preferred course. However, because of other conditions,

this is not possible. A translator producing A-flavored

code in language B is an acceptable alternative. The

programmer will recognize the syntax more easily and, as he

becomes familiar with the new language, can phase out the

old language's syntax.

Test Results

The Pascal-to-C translator was used to convert

approximately 24,000 lines of Pascal source code to C.

Where non-standard Pascal was used, manual file preparation

was done before passing the source code through the

automatic preprocessor. An example of manual file

preparation is MS Pascal's LSTRING super type which uses

34

parentheses to declare maximum length. The efficiency of

translation was broken down as follows:

1. 99% - syntactically, semantically correct

2. 1% - semantically incorrect

3. 0% - no attempt at translation

In this particular project, there were no instances of

non-translatable code. The 1% category consisted of the

following problems:

1. Some of the procedures and functions required the use

of the address operator on strings and records passed

as parameters. E.g.

proc call (argl, addr(arg2));

where arg2 is a record and ADDR is an operator that

computes the address of its argument. C does not

allow a structure to be passed as a parameter, only a

pointer to a structure. The ADDR function is not

given a special case status hence the translator

converts record parameters to pointer parameters but

does not drop the ADDR operator. A C string variable

name is already the address of the first element and

thus does not need the address computed.

2. Different return value for the POS function. Pascal

returns 0 when the substring can not be found in the

35

target string. The C equivalent function returns -1.

All references to POS and to any variable assigned the

return value of POS needed to be checked in both

subscript and conditional expressions. The C POS

function was later changed to return a value of zero.

This worked for translated strings because the

translator subtracted 1 from all string subscripts (to

account for the difference in starting subscripts).

3. The SIZEOF operator in Pascal accepted type names as

arguments. The conversion process simply passed the

argument through to the output file. The C SIZEOF

operator would not recognize a Pascal type that does

not have a C equivalent. E.g. type anarray = array

[0..100] of integer;

4. RETURN statements inside functions. When the

translator converted functions, it generated a RETURN

statement if it encountered the function name on the

left hand side of an assignment statement. In cases

where the function value was given a default value

before any processing was done an error was introduced

into the file. Because this was foreseen, a comment

was generated indicating the possible error.

5. Intrinsic functions. The majority of dialects of

Pascal have their own intrinsic functions. Many of

36

these functions have equivalents in C or could be

easily rewritten in C. But for those in which no

suitable substitute could be found a stub was

generated and flagged.

6. Operating system dependent code.

Concluding Remarks

Wolberg sees program enhancem,:nt as a "natural

activity within the realm of a conversion project". That

is, enhancing the maintainability and the portability may

be desired effects. If portability development is

undertaken after the software development stage, a desired

side effect of the conversion process might be the

standardization of the software so that it may be ported to

another environment in the future without too much extra

work. This standardization can be incorporated in the

automatic conversion tool such that the high level target

language is as standard as possible. Thus, if the program

is moved to another environment using the same language,

the source language will be very close to being a subset of

the target language. If it is moved to an environment in a

new language, the standard flavor of the code will make the

design of another automatic converter an easier task.

We have shown by example, how a Pascal-to-C translator

works and that such a translator has been implemented and

37

used for conversions by the authors. The techniques

discussed can be generalized to other translators. We

predict that source-code-to-source-code translation will

become an increasingly important method of software

conversion.

38

BIBLIOGRAPHY

Brown, P.J. 1977. Software Portability. Cambridge
University Press. Cambridge, England.

Ford, B. 1983. "Software Transfer and Sharing,"
Programming for Software Sharing. Reidel
Publishing Company. Dordrecht, Holland.

Jensen, K. and Wirth, N. 1974. The Pascal User Manual and
Report. Springer-Verlag.

Kern, C.O. 1983. "Five Compilers for CP/M-80." Byte Vol. 8,
No. 8.

Kernighan, B.W. and Ritchie, D.M. 1978. The C Programming
Language. Prentice-Hall, N. J.

Oliver, P. 1979. "Software Conversion and Benchmarking."
Software World, Vol. 10, No. 3, pp. 2-11.

Peterson, J.L. 1984 "Translating Pascal into C," IEEE
Software, Vol. 1, No. 3, pp. 82-86.

Wallis P.J.L. 1982 Portable Programming. John Wiley &
Sons. New York, NY.

Walston, C.E. and Felix, C.P. 1977. "A Method of
Programming
Measurement and Estimation," IBM Systems Journal.
Vol. 17, No. 1, pp. 54-73.

Wolberg, J.R. 1978. "Comparing the Cost of Software
Conversion to the Cost of Reprogramming." SIGPLAU
Notices, Vol. 16, No. 4, pp. 49-59.

Wolberg, J.R. 1983. Conversion of Computer Software.
Prentice-Hall, Englewood Cliffs, NJ.

