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A general theory and procedure for deriving these prediction
intervals is developed using hypothesis testing procedures.
Optimal properties of hypothesis tests carry over to similarly

defined optimal properties of prediction intervals. The intervals



have the ’'similar mean coverage’ property (Aitchison, J. and
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PREDICTION INTERVALS IN
EXPONENTIAL FAMILIES

I. INTRODUCTION

Statistical prediction analysis involves an informative and
a future experiment. Based on n independent random outcomes,

Xlu",X from the informative experiment, it is of interest to

n
construct a region that contains an outcome of the future

experiment, with a specified probability. This region is called

a prediction region for the future outcome, Y .

A prediction region is similar to a confidence set for a
parameter of a distribution, That is, before observing the
results of the informative experiment the probability is 1-a
that we will obtain a region that will contain the outcome, Y, of

the future experiment.

Prediction methods are of several types as described by
Aitchison ,J. and Dunsmore, IR. (1975). In 'Decisive Prediction’,
a prior distribution on the parameter space of the probability
distributions and also a utility function are available. The
idea is to maximize the expected value of the utility function
over all possible prediction regions. The expectation is evaluated
with respect to the 'Predictive Density’, Aitchison ,J. and
Dunsmore, I.R. (1975), of Y given 5?(x1,.",xn) . 'Bayesian

Informative Prediction’ does not require specification of a



utility function., The idea is to choose a prediction region so
that the predictive density is above some point in that region.
‘Informative Tolerance Prediction’ does not use a prior
distribution or utility function and it has two types, Mean
Coverage Tolerance Prediction and Guaranteed Coverage Tolerance

Prediction,

In this thesis we will work with the informative mean
coverage tolerance prediction, We are interested in developing a
technique for obtaining prediction regions by using hypothesis
testing methods. In Chapter II, we will formulate the prediction
problem for the one parameter exponential family of distributions
in terms of hypothesis testing results. Examples of one parameter
exponential distributions will be given in Chapter III and
prediction intervals will be obtained by using the method of
Chapter II. We will suggest an approximation method for some
cases, The generalization to the K-parameter exponential
distribution will be discussed in Chapter IV and an application
of a 'Saddle Point Approximation’, Barndorff-Nielsen (1983) for
obtaining the density function of a sufficient statistic will be
considered. Chapter V has two examples of two-parameter
exponential distributions where prediction intervals are obtained

using the method described in Chapter IV,

Aitchison, J, and Sculthorpe, D. (1965), give a general

framework for Bayesian and non-Bayesian prediction. Hahn, J. G.



(1972) develops simultaneous prediction intervals for the standard
deviation of future samples when sampling from a normal distribution.
Faulkenberry, D. G. (1973), gives a method for obtaining prediction
intervals. The method is based on conditioning on a sufficient
statistic associated with probability distributions of the
experiments, Statistical prediction intervals for observatioms

of a future experiment is discussed by Olsen, D. E. (1974). 1In

his work discrete probability distributions associated with the
experiments are considered. Aitchison, J. and Dunsmore, I.R.
(1975) have a detailed discussion on types of prediction methods
and Chhikara, R.S. and Guttman, I. (1982) give prediction intervals
when sampling from an Inverse-Gaussian distribution. They use
Bayesian Informative and Informative Tolerance prediction techniques.
Given a set of observations from a general linear model and having
prior distribution for parameters, Johnson W. and Geisser S.

(1982) develop a method for assessing the influence of specified
subset of the data when prediction of future observations is of
interest. We will not assume any regression type models and
construct prediction intervals which are based only on outcomes

of the informative experiment. The method of obtaining prediction
intervals in this thesis is developed under the assumption that

the probability distribution of experiments are from a continuous
exponential family, but the method can be applied to a general

case,



II. PREDICTION INTERVALS IN ONE PARAMETER

CONTINUOUS EXPONENTIAL FAMILIES

In this chapter we will formulate the problem of deriving a
prediction region by using hypothesis testing theory. For the
special case of the one parameter continuous exponential family
it will be shown that the optimal properties of the hypothesis
tests carry over to similarly defined optimal properties of

prediction intervals.

2.1, Deriving Prediction Regions Using Hypothesis Tests

Let Xl,...,x

n Vbe independent identically distributed,

(iid) random outcomes of an informative experiment and Y be an
outcome of a future experiment. In order that the informative
experiment should provide information on the future experiment,
there mast be some 1link between the two experiments, Aitchison
and Dunsmore (1975). This link is through the probability
distributions associated with the experiments and is also through
an indexing set of parameters of the distributions. The common
assumptions are that the experiments are being conducted

independently, and the probability distributions are the same.

Let ( Py, © e ® ) denote the probability distribution

associated with the experiments, f(.:0) be its density function,



and let X be the sample space. A family of subsets S(X) of
the sample space, X , is said to constitute a family of prediction
regions for Y based on X=(Xy,...,X,), if the random set S(X)

covers Y with some specified probability. We have

S : Xn—*X

Definition 2.1: S(X) is called a 'Mean Coverage Tolerance

Prediction Region' of Cover (1-a) for Y if

inf Egl Pg{Y ¢ S(X)} 1=
0epm

inf jf f(y:0)£f(x:0)dxdy =1-a .
0epm

xn S(X)

If Egl Pg{Y & S(X)} 1=(1-a) for all © ¢ ® , then S(X) is called
a 'Similar Mean Coverage Tolerance Prediction Region' of Cover

(1-a) .

We will obtain prediction regions by using hypothesis testing
procedures. It will be shown that these prediction regions are

similar mean coverage and also have some optimal properties.

To set up the prediction problem using hypothesis tests, let

X{,eX;  be (iid) outcomes of an informative experiment with

n

density, (f(x:0.), 0, e Oz xeX )andY be an ontcome of a



future experiment with density, (f(y:ey), L e X ),

where ©, and @y are parameter spaces associated with the

probability distributions of the informative and future experiments,

respectively.

Define a 'motional null hypothesis’, Cox and Hinkley
(1974),

H: 0_=

concerning the true parameters of the experiments. Let H, be
an alternative hypothesis and AHa(ey,ex) denote the acceptance

region of a size a test for testing Ho versus Ha‘
Theorem 2.1: For each sample point (x,y) e Xn x X let
Spa ()={ ¥: (z,5) e Aﬂa(ey,ex) }. (2.1.1)
Then Sy (X) is a family of prediction regions for Y with
confidence level (l1-a) . If AHa(ey,ex) is the uniformly

most powerful (1-a) level region in a certain class of acceptance

regions for testing H_  versus H, , then Sy, (X) minimizes

Pgy,ox){ Y & S, (X) } for all (8.,0,) ¢ ©,

where, O, is the parameter space associated with H, .



Proof: By definition of Sga (X)

y & Sg,(x) iff  (x,y) e AHa(ey‘ex)

sHa : A:E"){

and hence

Poy,ex){ T & Sp, () }
=P(gy,0x){ (2.T) & Ag,(05,0,) }=(1-a)

for all (ey‘ex) e 6O, , vhere @°={ (ey,ex) : ey;ex) } .

Therefore sna(g) is a family of prediction regions for Y with

probability, (1-a) .

If S;a(é) is another family of prediction regions for Y
.
with probability, (1-a) and Ap,(0.,0 )= (x,y) : y & Sp,(x) },

then

Pioy,on){ (X.7) & Ag,(0.,0,) }
=P(gy,0x) L Y & Sg,(2) 1=(1-a)

for all (ey,ex) e B, .

So A;a(ey,ex) is the acceptance region of a level «a test for
testing H versus H, . Ana(ey,ex) is assumed to be the UMP in

a certain class of acceptance regions, Therefore



Ploy,6x)! (2.1) & Ag,(6.,6,) } >
P(ey’ex){ (;nY) -4 Ana(eynex) ]
for all (ey,ex) e Oq

and hence

Ploy,6x){ T & Sg (D) } 2 Pgy,ox){ ¥ & Sg, (X) ]

for all (ey,ex) e Oq

We note that the form of the UMP acceptance region depends
on the alternative hypothesis used and as a result the type of

prediction region, sna(g), depends on the alternative hypothesis.

While it seems reasonable that using good or optimal hypothesis
testing procedures should result in good prediction, there are no
formulated criteria available for comparing prediction regions.
Similar criteria for comparing acceptance regions will carry over
to comparing prediction regions, Comparison of unbiased prediction

regions is discussed in section 2.3.

As an example of using an acceptance region to get a
prediction region, 1let Xluu.xn be (iid) outcomes of an
informative experiment with probability distribution, normal
(Ox.cz) and Y be an outcome of a future experiment with probability
2)

distribution, normal (Oy.c . It is assumed that ¢ has a known

valwe. The (1-a) level acceptance region for testing



is

Age(05,0)=( (y.2) : (1+1/m) V2(53) /0 & 23 /9y
where, X=( 2:2;1 x;)/n is the sample mean and Z(1-q/2) is
(1-a/2) percentile of the standard normal distribution. From
(2.1.1) we have

Sga(X)={ v : y ¢ T + o(1+1/m) 2z, 01 )

which is an upper limit prediction for Y with confidence level

1-a.

2.2, The Theory For One Parameter Case

2.2,.1., Formulation Of The Prediction Problem

In terms Of Hypothesis Testing

Definition 2,2: A family of probability measures, P={Pg: 0 ¢6}
on a sample space, X is called a K-parameter exponential family
if, with respect to some o-finite measure, p , it has densities
of the form

£(x:0)=C(0) exp[4(6)T(x) 1h(x) (2.2.1)

where, C:0 —(0,»), Q& —r RK, T:X — RK, h: X — [0,=)



Let random outcomes of an informative experiment, Xl"“'xn’
represent independent and identically distributed, (iid) random
variables according to a one parameter continmous exponential

family of distributions with density function

£(x:0,)=C(8,)exp[0_T(x)]Ih(x)

and let a random outcome of the corresponding future experiment,
Y, be independent of the Xi's and distributed according to the

same family with density function

f(y:ey)=C(9y)exp[0yT(y)]h(y) .

The probability distributions are assumed to be absolutely
continuous. Therefore the o-finite measure, p , Definition 2.2,
is the Lebesque measure and the sample space, X  is the real

line,

In some problems the density functions are not in the form

10

of the 'natural parametrization’, Ferguson (1967), but they can be

reparametrized to get the desired form. The value of a future
outcome, Y, is not known but to formulate the prediction problem
using hypothesis testing techmiques, we pretend at this point
that Y is observed like the X,’s. Hypotheses of the following

forms are of interest.



1, Hy: 6,= y vs Hyq: 0y>0,
2. Ho: Ox= v vs Hazz ey<ex
3. Ho: Ox=0y vs Hasz ey;eex

The choice of the alternative hypothesis depends on the form

of prediction region (interval) desired.
The joint demnsity function of X,Y can be writtem as

f(;,y:Ox,Oy)=Cn(Ox)C(9y)exp[Ox i1 T(xi)+6yT(y)] (2.2.2)

“1i1=1 h(x;)h(y) .

The density function in (2.2.2) is in the form of a two
parameter regular exponential family and therefore Zi=x11 T(Xi)
and T(Y) are jointly complete and sufficient statistics for the
joint distribution of X and Y. Thus it is natural to reduce the

problem to the comnsideration of the sufficient statistics.

= n - T -0 —
Let T = i=1 T(Xi), TY—T(Y). T—Tx"'Ty and B—Oy 6., then

according to Lehmann (1959), we have
f(tx:Ox)=Ctx(Ox)exp[extx]htx(tx) (2.2.3)
where, Cy : 6, — (0,2), T,: RT . R, hyrt R — [0,®) and

f(ty:Oy)‘-‘-Cty(Oy)exp[eyty]hty(ty) (2.2.4)

11



where, C @)y — (0,®), Ty:R — R, hty:R — [0,=).

ty:

T, is independent of Ty’ By (2.2.3) and (2.2.4), the

joint density of Tx and Ty is

f(t,, ty: Ox,Oy) =Ctx(9x)cty(9y) exp [Oxtx+9yty]
htx(tx)hty( ty)

which implies

f(t (2.2.5)

v’ t :Ox,B)=Ctx(9x)Cty( B+9x)exp[ﬁty+9xt]

, to £t

htx( t-ty) hty( ty) y

The density function in (2.2.5) is in the form of the two

parameter regular exponential family and therefore (Ty.T) are

complete sufficient statistics for (B,0.). Using (2.2.5), the
conditional density of Ty given t is
exp[Bt_lh,  (t-t_)h  (t )
y_tx y v 3 (2.2.6)

f(ty 't.B)=

t
j exp[Bt Ih, (t-t )b, (t.) , t.<t

and with the new parametrization hypotheses of interest become

1. H;: B=B, vs Halz B>B,
2. HO: B=B, vs Hyq: B<B,
3. Hy: B=B, vs Hy3: B#B,

12
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where, B, =0 and 6, is a nuisance parameter, Existence of the
nuisance parameter Ox does not allow us to find UMP tests for the
hypotheses. Thus in this thesis we will concentrate on unbiased

tests, Ferguson (1967).

Lemma 2,1: If 9x=9y(=9), then the conditional density function

of Ty given T=t, under H, is

htx(t_ty)hty(ty) (2.2.7)

f(t_|T=t)=
y b, (t)

Proof: 1If 9x=9y(=9), then =B, and using (2.2.6) we get

hy ( t-ty) hty( ty)

f£(t |'r=t)=
v hy (t)

t
where, h (t)= S_@ heg(t=to)h, (to)dt .

The following Theorem is based on the method of finding
uniformly most powerful (UMP) unbiased tests in a K-parameter
exponential family of distributions, Ferguson (1967). Notations
will correspond to the cases where X and Y are from one parameter
continuous exponential families and the joint density of Ty and T

is given by (2.2.5). The Theorem can be generalized to the K-



14

parameter case which will be stated in Chapter IV.

Theorem 2.2: Let f°=f(tle=t), (2.2.7), denote the conditiomal
density function of Ty given t under the notional null hypothesis,

H) .

1 if t. > z(t)
(1) Py (t_,t)=
y 0 if  t_ < z(t)

is the UMP unbiased size a test for testing H, versus H ; and

z(t) can be found from EB=B°[ ¢1(Ty,T)‘T]=a which is equivalent

to
f dt_=a .
J;(t) ey
1 if ty < z(t)
(2) ¢2(ty.t)=
0 if ty > z(t)

is the UMP unbiased size a test for testing Ho versus Ha2 and
z(t) can be found from EB=B°[ ¢2(Ty,T)|T]=a which is equivalent
to

z(t)
S f dt_=a.

-

1 if t. < zq(t) or t_ > z,(t)
(3)  P3(t,.t)= { v vo o2

0 if 29 (£) &t £ 2,(t)
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is the UMP unbiased size a test for testing Ho versus H 3 and

z4(t), zz(t) can be found from
Egepol P3(Ty,T) [T1= a and Eggo[Ty $3(Ty,D) [Tl=a Eg_po [T, [T]

which are equivalent to

z9(t) z9(t) ®
Sz (5 fodty=1-a  and L (t)tyfodty=(1—a) j.@ tofodt,.
1 1

Sometimes some work can be saved when under H, there exists
an ancillary statistic, V, for the joint distribution of Ty and T.
An ancillary statistic in this thesis is defined to be a statistic
with a distribution that does not depend on any parameters. If
an ancillary statistic exists, instead of finding the conditional
density, fo’ we find the density function of V under Ho. For, by
Basu’s Theorem given in Lehmann (1959), since T is a complete
sufficient statistic (C.S.S) for the joint distribution under H,
and V is an ancillary statistic for the same distribution,

then they are independent.

The following Lemma, Lehmamn (1959), will be used for
finding UMP unbiased tests when there exists an ancillary statistic

for the joint distribution of Ty and T under H,.
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Lemma 2.2: Suppose there exists an ancillary statistic,

V=G(Ty.T) for joint distribution of ('I'y.'l') under Hy . Let fg (v)

denote the density function of V under B, .

1 if vz
(1) ¢1(V)=
0 if v <z

is the UMP unbiased size a test for testing Ho versus H 4 provided
G(Ty,'l') is increasing in ty for each t. z can be found from
(-]
EB=B°[ P,(V)1=a which is equivalent to f fro(vldv=a .
z
1 if v <z
(2) ¢2(V)=
0 if v,z
is the UMP unbiased size a test for testing H, versus H , provided
G(Ty.T) is increasing function in t_ for each t. 2z can be found

y
z
from EB=B°[ P,(V)l=a which is equivalent to J- fo(v)dv=a .
-

1 if v < zy or Vv > Zg
(3) ¢3(V)=
0 if zq {v{ Zy

is the UMP unbiased size a test for testing H, versus Ha3
provided V=G(Ty,T)=a(T)Ty+b(T). a(T)>0 . zq,z4 can be found
from

E13=B°[ $3(V)]=a and E3=B°[V P3(V)]l=a E13=3°[V]



which are equivalent to

z

) 2
fHo(v)dv=1—a and
Zl Zl

-]
vigodv=(1-a) j vigodv .
A similar result holds if a(T)<0 , Lehmann (1947). ¢i
(i=1,2,3) in Theorem 2.2 and Lemma 2.1 are a similar on the

boundary sets @bi= e 0 g and have Neyman Structure,

o ai

Ferguson (1967).

According to the following Lemma, Lehmann (1947),

Zy, 2y in Lemma 2.2 (3) exist.

Lemma 2,3: Let 0<a<1, let f(x) be a density function of a random

-]
variable, X with I x3f(x)dx<{=, (s=0,1) then, there exist A,B

so that

A ®
J x3f(x)dx = a f x5f(x)dx, (s=0,1).
B )

Remark: For any size a test, @ if distribution of V under Ho

is symmetric about some point A, then EB=B°[V]=A and we have

Eg_polV ¢(V)]=EB=B°[(V—A) DdV)+A (W]
=AEg_gol @(V)I=Aa=a Eg_g,[V].
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That is, if V under H, has a symmetric distribution about
some point A, then any test of size a, @ , which satisfies
EB=B°[¢(V)]=0. must satisfy EB=B°[V ? (V) ]1=a EB=B°[V] and to

find acceptance region for Ho versus Ha3' we just solve

m
J fho (V)dv=a/2
for m where, w=zy and 2A-m=z2. A similar argument to the
above one holds when fo in the Theorem 2.2 is symmetric about

some point, A,

2.2;2. Monotone Likelihood Ratio Family

of Distributions

Definition 2.3 : A real parameter family of distributions is
said to have a monotone 1ikelihood ratio, if densities (probability

mass functions), f(w:8) exist so that for 91 < 92.

is a nondecreasing function of w, for all w in the set

of existence of f(w:6;) and f(w:0,).



19

Lemma 2.4: Let W be a continuous random variable distributed

according to a one parameter exponmential family, ';’09 , with

the density function
f(w:0)=C(8)exp[0T(w)]lh(w)

and cumulative distribution function, Fe(w), where
c:e —-R, TW—R, n:W—o>Rr, © CR

and T(w) is nondecreasing in w. Then, the family, 'f-/)e, has a
monotone likelihood ratio in w and for 0,50, , Fgo(w) £ Fgq(w),

for all w in the set of existence of f(w:0).

Consider a random sample, Xl""’xn from a one parameter
exponential family with demsity, (2.2.3) and let Y be independent
of the X., (i=1,2,...,n) from the same family with density, (2.2.4).
By Lemma 2.4, the distributions of X and Y have monotone likelihood
ratio in T(x) and T(y), respectively. Recall definitioms of

sufficient statistics Ty, T_and T from section 2.2.1, and consider

X

the conditional density of Ty given T=t

exp[Bt_lh, _(t—-t_)h__(t_)
£(ty | t:)= Yy vVE YL e

t
S exp[Bty]htx(t—ty)hty(ty)
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The distribution associated with the density function in
(2.2.8) has a monotone likelihood ratio in to. Therefore we
conclude that if X (Y) have monotone 1ikelihood ratio family of
distributions, then the conditional distribution of Ty given T
has also a monotone likelihood ratio. In section 2.2.1 we had
B=0y-9x, but in some cases in which a reparametrization is needed
to get natural parametrization for demsities (2.2.3) and (2.2.4),

B can be defined as B=g(0y—0x), with g(.) being nondecreasing and

p=0 whenever 0y=0x.

Lemma 2,5: Let the conditional demsity function of Ty given t be

given by (2.2.8), then

(1) Pggy(Ty & (-=,Cp(8)]|T=t} & Pg_g (T & (==,Cy(t)][T=t)

for all Bl > Bo .

(2) Pp_pi (T, & [Ci(t),=) |T=t} ¢ PgpolTy & [C1(2),=) | T=t}

for all By < B, .

for all By # Bo -
where, B =0 and Ci(.), i=1,2 are functions of t .
Proof: Let F%‘y't be the cumulative distribution associated with

conditional distribution of Ty given t, defined by,

F%‘Y|t(C(t))=PB{Tyg C(t)|T=t} . Use Lemma 2.4 .



2.2.3. The Match-up Of Hypothesis Tests and

Prediction Intervals

A, Ancillary Statistic Does Not Exist

Consider notations and results of section 2.2.1 and suppose
the joint distribution of Ty and T under H, does not have an
ancillary statistic, V, and UMP unbiased acceptance regions for

testing Ho versus H , are found using P (See Theorem 2.2.)

According to the results of Theorem 2.2, UMP unbiased
tests for testing Ho versus H ., (i=1,2,3) are performed as
conditional tests given T=t and as a consequence acceptance
regions are found conditionally. According to our hypotheses
testing formulation of the problem in section 2.2.1, B is the
parameter of interest and Ox is the nuisance parameter. We
denote the conditional acceptance region of H, versus Hai’
(i=1,2,3), by A (B {t). UMP unbiased tests provide UMP acceptanmce

regions, Lehmann (1959), therefore Ai(Bit) are UMP unbiased

acceptance regions. From Theorem 2.2 we have

Ay (Blt)=( (to.t) : ty < z2(t) )
Ay (B ft)={ (ty.t) Pty ) z(t) } (2.2.9)

Ag(Blt)={ (tgt) ¢ zy(t)  tg € 25(8) 3,

21
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where z(.) are functions of t. Lemma 2.5 identifies intervals
which have larger probabilities when parameters of the
distributions are assumed to be the same than if they are
different in some direction. The acceptance regions are
constructed under H, and note that they have the same forms as
intervals in Lemma 2.5 . Therefore it would be a natural thing

to use acceptance regions to obtain prediction intervals,

Let Ai(ﬂ j{t) be any of the acceptance regions in above.
Boundaries of these regions are functions of 'l‘='l‘x+'l‘y which has
unknown value, because 'l‘y is unknown, We define the prediction

region for 'l‘y by
Sj(tp)={ ty: (t,t) e A;(Blt) }
so that Si(tx) can be obtained by solving Ai(BIt) for Ty' where

T=Ty+'l‘x . Assuming z(.) functions in A (B |t), monotome increasing,

the prediction intervals will be of the forms

Sl(tx)=(—°.U(tx)]
Syt )=[L(t,),=) (2.2.10)

S3(t )=[L(t,),U(t )]

where, L(tx) and U(tx) are functions of ty .0 and n.
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si(tx) are prediction intervals for Ty, but since Ty is a
function of single random variable, Y, then one can use simple

mathematical operations to get prediction interval for Y.

If z(.) are not monotone, then the acceptance regions
will not map necessarily onto prediction intervals of the same
forms. In the following we will give a sufficient condition for

z(.) to be increasing function of t.

Definition 2,4: The conditional family of distributions of T}
given t, (under Ho). is said to have a monotone likelihood ratio,
if the ratio

ny ‘tl (ty)

is a nondecreasing function of t_ whenever t2>t1, for all t_ in

y y

the set of existence of ny t1 and ny t2 -

Lemma 2.6: Suppose the conditiomal distribution of Ty given t,

under Ho, with density function

By, (t=t )by (t)

f (t )=
Ty |ty
h,(t)

has a monotone likelihood ratio, them z(.) are increasing

functions of t.
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Proof: Without loss of genmerality we will comsider z(t) in Ay (Bit).
Proofs for the other cases are similar.

Aj(BIt) is constructed under H: °x=°y (B=B,) and since
T is a complete sufficient statistic for the joint distribution
of (T},T? under Ho. then the following conditional probability
statements, under H,, do not depend on Ox . (See density function
2.2.5.) Ve use the method of proof given in Theorem (5), Olsen

(1974).

Ppapol (TyoT) & Aj(BIt) }=Pp | ({ Ty < 2(t) J=1-a  (2.2.11)

for all t. The probability associated with Al(Btt) is exactly
1-a for it corresponds to a test which has Neyman Structure,
Ferguson, (1967).

Using (2.2.11), we have

for any t; and t,.

Consider t as a parameter of the conditional distribution of
Ty Siven tn (nnder BO) and test KI: T=t1 vs Kz: T=t2 » tz)tlc

By Neyman-Person Lemma, the UMP test of size a is

[1 if Rdc

0 if R¢c

which is equivalent to



1 if t_Ok
O= y
0 if tygk
f (t.)
T; t2
where R= y ‘ y

and ¢ , k are constants to make the tests, size a, Using

(2.2.11), (2.2.12) and having E,1(®?)=a implies

k z(t1)

® is unique, so k=z(t1). We also have

Et2(®)=g ny[tz(ty) dty =I ny(tz(ty) dty 2 Eq (D)
k z(tl)

which implies

Pryjeal Ty £ 2(tg) 3 Ppoyeq O Ty < 2(tg) 3
and by using (2.2.12), we get

PTyltz{ Ty Lz(ty) X PTylt2{ Ty L z(ty) L

Therefore z(tz)zz(tl) and z(t) is an increasing function of t.

Using Lemma 2.6 we conclude that z(.) functions are

increasing if

25
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is nondecreasing in ty, whenever t2)t1 .

B. Ancillary Statistic Exists

Suppose the joint distribution of Ty and T under Ho has an
ancillary statistic, V=G(Ty.T) . According to Lemma 2.2, UMP
unbiased acceptance regions for testing Ho versus Hai' i=1,2,3,

are found using the density of V under Ho. From Lemma 2.2 we

have
AAB)={ v: vz}
Ay(B)={ vi v 2z}
Ay(B)={ v: 2y <V <2y )

where, z, z; and z, are constants not depending on t. V=G(Ty.T)
in Lemma 2.2 is assumed to be an increasing function of Ty for

given t, therefore G—l(.) will be increasing in V for given t.

Since the conditional density of Ty given t, (2.2.8), has a
monotone likelihood ratio in ty' we conclude that the conditional
distribution of V given t has also a monotone 1ikelihood ratio.

This can be seen easily when V=a(T)Ty+b(T). a(T)>0 . From

(2.2.8) we have
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exp[Bv/a(t)]htx[t— (v—b(t))/a(t)}hty[(v—b(t))/a(t)}

f(vit:p)=

Q(t)
5 explBv/a(t)Ihy, (t= (v-b(t))/alt) I {(v-b(t))/a(t)}dv

where, Q(T)=a(T)T+b(T) .

Using the above argument and Lemma 2.4 we have

Ppap1{ VCa(t) |T=t }<Pp_g { VKCp(t) | T=t }  for all By>B,
Ppop1{ V2C;(t) T=t J<Pg_g V€ (t) | T=t }  for all By<B,
Pppg1l C1(£)C V <Cy(t) | T=t J<Pg_po { C1(£)S V LCy(t) | T=t }

for all B,#B,

where, C;(t) and C,(t) are functions of t. Therefore the
acceptance regions A,(B) have larger probability under H, than

under Hai' Similar to the previous case we define a prediction

region for T} by
Si(tx)=[ ty: v e Ai(B) }

so that A;(B) are solved for ty by writing V as a function of

Tx and T}. The prediction intervals will be of the forms

S1(t)=(~=,0(t )]
Sp(t )=[L(t,),=] (2.2.13)

S3(ty)=[L(t,),0(t,)]



provided, G-l(.) is an increasing function of t. For example
if V=a(T)Ty+b(T), then we need (V-b(T))/a(T) to be increasing

in T,

2.3. Unbiased Prediction Intervals

and Optimal Properties

Using the acceptance regions we get prediction intervals
which are based on the assumption of equal parameters ., If the
parameters are not the same it seems natural to require the

intervals to have small probability of coverage in some sense.

Definition 2,5: Suppose the Pex is probability distribution of a

random sample, Xl,...,Xn

of a random variable Y, which is independent of X=(X,...,Xp).

(1) (-—»,0(x)] is said to be a (1-a) level unbiased prediction

interval for Y iff

1. Eex[Pey{Y g (~=,0(X)1}1=1~a for all 9y=9x
2. Eex[Pey{Y g (~=,0(X)1}1<{1~a for all 9y>9x

(2) [L(x),®) is said to be a (1-a) level unbiased prediction

interval for Y iff

1, Eex[Pey{Y e [L(X),=)}]=1-a for all 9y=9x

2. Eg.[Pg (Y e [L(D),=)}1d-a for all 6,<0,

and the Pey is probability distribution

28
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(3) [L(x),U(x)] is said to be a (1-a) level unbiased prediction

interval for Y iff

1, EOx[POy[Y s [L(X),0(X)]1}]=1-a for all oy=ex

2. EOx[POy[Y s [L(X),0(X)]1}1<1~a for all Oysﬂex
where, L(X), U(X) are functions of X, a and n.

For each of the prediction intervals in Defimition 2.5 the
first condition is the property of a 'similar mean coverage

tolerance prediction regiom’ of cover (1-a). (See Definition 2.1.)

Definition 2.6: (-=,U(x)] is said to be (1-a) level uniformly
most accurate umbiased prediction interval for Y, if it is (1-a)
level unbiased prediction interval and for any other (1-a) level

unbiased prediction interval, S‘(_x_) for Y,
Ege[Pgy{Y & (-=,U(D)1}] ¢ Eg [Py (Y & S"(D)}]

for all Oy)e'x. Similar definitions hold for the other cases.

Optimal property of the prediction intervals can be stated
as follows. Let S(X) be a prediction interval for Y and assume
it is constructed under the assumption of equal parameters, 0,
and Oy ,» so that it has more probability coverage under such

assumption. It is natural to define Pey {Y ¢ S(X) } as a measure

of undesirability when in fact the parameters are unequal in some
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direction. We would like to have a prediction interval which
minimizes the measure. §=(X1,...,Xn) is random and therefore
Pey{Y e S(X) } is also random and it is reasonable to minimize

the expected value of undesirability, Eex[PGy {Y ¢ S(X)11.

Theorem 2.3: Assume distributions of X (Y) have monotone
likelihood ratios, so that the conditional distribution of Ty
given T has also a monotone 1ikelihood ratio. Consider prediction
intervals in (2.2.10), obtained from UMP unbiased acceptance
regions Ai(ﬂlt). These intervals minimize the corresponding

measures of undesirability.

Proof: Without loss of generality we will establish optimal
property of S§;(t )=(~=,U(t_)]. Proofs for the other cases
are similar. Let ¢I be any unbiased size a test for testing
H, versus Hal' with (1-a) level unbiased acceptance region,

A;(Nt) and (1-a) level unbiased prediction interval SI(tx).

¢I(ty,t) being unbiased test of size a, implies that it

is a similar on the boundary set and
Bge,pl ?1(T,.T) I=a for all (B,0,)
in the boundary set , Ferguson (1967) .

Power of ¢I is maximized if and only if
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mgx  Eg, gl 7(T.,T) ] for B>, and all _

subject to E(O,ﬂ)[ ‘PI(Ty,T) l=a ,

for p=f, and all 9=(0x=0y).

Since T is a complete sufficient statistic for Ox under
H, and ¢I is a similar on the boundary set, then ¢I has
Neyman Structure, Ferguson (1967).
that is
*
on.ﬂ[ ¢1(Ty)T) ]=

EgelEg [ $3(T,D) I T 11=a
for all (a,ox) in the boundary set.

Therefore the maximization problem is equivalent to

mgx  Eq[E; [ @3(T,T) [T 1], for p>B, and all O,
91

subject to EO[Eﬂ [ Q)I(Ty,T) | T 11=q,
for p=f, and all 9=(Ox=0y)
or

A;(:'i:) EOx[Pﬂ{ 'l‘y g AI(Nt) 11 for BB, and all o,

subject to EO[PB{ 'l‘y e AI(ﬂlt) }1=1~a

for p=B, and all 9=(0x=9y)

* . *
but (to,t) e A (Blt)  iff ¢t e Sy(t;)
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and the maximization problem is equivalent to
,min  Eg [Pg [S](T )11 for all 656, (2.3.1)
S7(ty)

subject to EOIPOISI(Tx)]]=1-a for all 0=(0x=0y) .

By Theorem 2.2 we know ¢1(ty,t) is the UMP unbiased for
testing Ho versus Hal’ sO using ¢1(ty,t) and its corresponding
regions in the above equations, we conclude that sl(tx) minimizes
the expected value of measure of undesirability. By (2.3.1) and
unbiasedness property of S;(tx) we have Eex[PGy{sl(Tx)}]-g-a for
all 0y>0x, so S,(t;) is unbiased prediction interval and has the

optimal property.

A similar argoment to Theorem 2.3. holds for the case that
an ancillary statistic for joint distribution of (Ty,T) under H
exists. The prediction intervals in (2.2.13) are also the (1-a)

level UMAU prediction intervals for Ty.



III. EXAMPLES: ONE PARAMETER CASE

3.1. The Normal Distribution ¥With Known Mean
Suppose X,.X,,..,X; is a random sample from a normal

distribution with the density functiom
£(x:p,02)=(2162) 712 expl-(262)71 (x-p)?]

and Y is independent of the X;, (i=1,2,...,n), with the density

function
f(y:u.a§)=(2m¥§,)—1/2 exp [—(2«%)-1(57—;1)2]

where p is assumed to have a known value and ox>0, oy>0 .

2;1 X% is a sufficient statistic for the joint
distribution of X;,....X, and Y2 is a sufficient statistic
for the distribution of Y . Without loss of generality assume

that =0 .

— 2,-1 e 2,-1 =
Using O,=-(2n03) ~ , 8y (Znoy) » B ey—ex ’

T = Zli; 1 x% , Ty:yz and T=T,+T, we have

_+ yn/2 -1 -1/2
exp[Bty](t ty) (ty)

f(ty t:ﬂ)=jt

_+ yn/2 -1 -1/2
o exp[ﬂty](t ty) (ty) dty , ty_<_t

33
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which has a monotone likelihood ratio in t_.

Under no"’x:"y' V=G(TY,T)=a(T)Ty , a(T)=1/T, is distributed
according to Beta(1/2,n/2) distribution, Bickel and Doksum
(1977). Therefore V is an ancillary statistic for the joint
distribution of (Ty.T) under H  and we can use Lemma 2.2 instead

of Theorem 2.2 . We have

(1) B=B, iff o =0y
B)(()Bo iff "y)'(()"x » Bo=0 .
(2) V is increasing in ty for each t. Therefore the conditional

distribution of V given t with parameter $, has also a

monotone 1ikelihood ratio.
(3) V/a(T) is increasing in T. Therefore acceptance regions
will map onto the same form of prediction intervals. (See

section 2.2.3 (B).)

One Sided Upper Limit Prediction Interval

(1), (2) and (3) imply that the acceptance regiom
Aj(B)={ v: v<z } must be used where z , according to Lemma 2.2,

is found from

1 7((n+1)/2)
S fno(V)dv =a ’ fno(v)= —— v-1/2(1_v)n/2-1
z n(n/2)n(1/2)
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-]

0 v €1, n(k)= I x¥"1¢"Xdy  for real number, k and n(k)=(k-1)!
0

for integer k>0.

By using A;(B) we get
Sl(tx)=[0.t12/(1—z)]
which is the (1-a) level uniformly most accurate unbiased (UMAU)
upper limit prediction interval for Ty. Since Ty/Tx has
F-distribution under l!o , then nz/(1-z) is (1—a) percentile of

F-distribution with (1,n) degrees of freedom.

One Sided Lower Limit Prediction Interval

A similar argument to the previous one holds and we use

Ay(B)={ v: v2z } where z is found from

z
jo fio (v)dv =a

By solving AZ(B)’ the (1-a) level UMAU lower limit predictiom
interval for '1‘y is Sz(tx)=[txz/(1—z),°). nz/(1-z) is a percentile

of F-distribution with (1,n) degrees of freedom.
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Two Sided Prediction Interval

According to (1), (2) and (3), we need to use the acceptance

region A (B)={ v: 2z;{ v {2z, } where z7 and z, are found from

1
vigo (V) dv=(1-a) j‘o vigo(v)dv (3.1.1)

j‘ﬁ fro(v)dv=1-a and J‘ 1
%2 2
It is easier to obtain equal-tailed prediction interval.
That is, assume the distribution of V is symmetric about some point
when H  is true. In this case second equation in (3.1.1) is not
needed (See the remark in section 2.2). To get right values
of zq and Zy » in this case we need to solve the two equations in
(3.1.1), for Beta(1/2,n/2) is not a symmetric distribution. zqy

and Z, can not be found in a closed form so an approximation

method is needed.

The Generalized Newton's Method
Consider a system of two equations

{M(a,b)=0

K(a,b)=0

where, M(.,.) and K(.,.) are some functions of a and b, We will
use Young and Gregory (1972), to explain the ’'Genmeralized Newton’s

Method’ by which values of a and b for the above equations can
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be found approximately. We find

9 M(a,b)
M= 'a=a
2 a

o

9 M(a,b)

My 0=

ab

| 3 K(a,b)
K, .~ ‘ a=a
J a

9 K(a,b)
Kb°= —_— 'b=b°
b

where a, and bo are initial values for a and b , respectively.
If M(ao,b°)=0 and K(ao,bo)zo » then a  and b, are the right

values of a and b, Otherwise we find

K90 b0 ~ Ma0o Kpo
a;=a_ + ( M(ao'bo)xbo - K(a,,b )My, )/T
by=b, + ( K(ag,b )M, - M(a ,b )K,  )}/T .
If M(al,bl)zo and K(al,bl)zo » then a; and b; are the right

values of a and b. Otherwise we let a =ay and b°=b1 and repeat

the above steps until roots of the equations can be found.
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Consider the following facts about the Beta distribution.

Fact I: Suppose a random variable, X, is distributed according to

Beta(r,s), s>0, r>0, 0 x <1 . Then

n(r+s)
(1) f(x)= xT1(1-x)s"1
n(r) n(s)
r
(2) xf(x)= f(y) where, Y Beta(r+l,s)
r+s
r
(3) EIX]= .
r+s

Fact II, Let X ~ Beta(r,s) , 0 (X (1, r>0, s>0,

b n(r+s)
M(a,b)= —_— 15514z —(1-a)=0
a n(r) =n(s)

and
b n(r+s+l)
K(a,b)= — T (1-x)%1dx -(1-a)=0 . Then
a n(r+l) n(s)

9[M(a,b)] n(zr+s)
M= = - gT1(1-4)5"1
da n(r) n(s)
n(r+s)
= er—— br—l(l_b)s—l
x(r) n(s)
n(r+s+l)
K=- ———  a%(1-2)5"1

n(r+l) n(s)
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n(r+s+1)
and = bT(1-b)571 |
n(r+l) n(s)
Using Fact I equations in (3.1.1) can be written as
z n(n/2+1/2)
jz —_— U2(1¢)0/2 “g4m1q (3.1.2)
zy n(1/2) n(n/2)
and
z n(n/2+3/2)
s 2 T 321 a2 g,
z; n(3/2) n(n/2)
respectively,

We apply Fact II and the Generalized Newton’s Method along
with MDBETA routine in IMSL library to obtain approximate values
of zy and z, in (3.1.2) . Values of z; and z, are given in

table A, Solving Az(B) for t_, we get

y

Sg(t)=[t 2,/ (1-21) , t 20/ (1-25)1 .

Note that when p is not zero prediction intervals for
(-1)2  are
S, (t)=[0,ty2/(1-2)]
Sy(t )=[tyz/(1-2) =)

S3(ty)=[tez,/(1~2,) , taz,/(1-25) ]
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where, t;= Zli;l (xi-u)z and z , z; , 2z, are defined as

before for each case.

Remark: X ~ Normal (u,cz) iff exp(X) ~ Lognormal (u,cz).

Using results of Example 3.1 and the relationship between
Normal and Lognormal random variables, the prediction intervals can
be obtained when sampling is from Lognormal (11.62) distribution -

with known pu .
Numerical Example:

Each run of a process produces a large batch of ball
bearings whose diameter (mm) are normally distributed with known
mean, p=8 (mm) and unknown variance, 02 . From a particular

batch a sample of 15 ball bearings is chosen at random and

their diameter are found to be

8.07 , 8.15 , 8.06 , 7.79 , 7.85 , 8.02 , 8.07 ,

8.17 , 8.11 , 8.09 , 7.96 , 9.02 , 8.20 , 7.97 , 8.12.

Suppose the process is to be run in future. For a randomly
selected ball bearing from a batch, find .90 1level, one and two
sided prediction limits for its squared deviation of diameter

from p=8 (mm) .

According to the notation used in Example 3.1, we have
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ty= 33, (x;w? =1.2061 , a=15 .

Upper Limit Prediction:

Sq(t)=[0,t3z/(1-z)1=[ 0 , 0.246848]

where, nz/(1-z) = 3,07 is 9oth percentile of F-distribution

with (1,15) degrees of freedom,

Lower Limit Prediction:

S, (t )=[tsz/(1-2) ,©)=[0.00131 , =)

where nz/(1-z) =0,0163 is 10tk percentile of F-distribution

with (1,15) degrees of freedom,

Two sided Prediction:

S3(t)=[t3z1/(1-2,) ,taz,/ (1-2,)1=[0.000962 , 0.601519]

where z1=0.000797 and z2=0.332769 are found from Table A

for n=15 and a=.10 .

3.2, The Normal Distribution With Known Variance

Let Xl.....Xn be a random sample from a normal distribution

with the density function

w f(x:Ox,c)=(2myz)-1/2 exp[-1/2062 (x-ex)zl.
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and Y be independent of the X, (i=1,2,...,n) with the density

function
£(y:0,0)=(2n02)"1/2 exp[-1/202 (7-6.)%
where o is known and X e R, Y ¢ R,

T = Z!i;l X; and T=Y are sufficient statistics for
the distributions of (xl,...,xn) and Y, respectively., V¥ithout

loss of generality we assume, o=1 .

£(ty,t,:0,,0)=(a"/2/2m)expl(-1/2) (z02+02)]  (3.2.1)

expl0,t +0_t Joxp[(-1/2) (t3/n +t3)]
Let B=(9y-9x)/(1/n+1), 7=(n0x+9y)/(n+1), U=Ty—Tx/n and

T=Tx+Ty. Then (3.2.1) implies
f(u,t:p,y)=C(B,y)exp[Butytlh(u,t) (3.2.2)

where C(B,y) and h(u,t) can be obtained from (3.2.1), But we
will not need these for deriving the prediction intervals, U is
increasing in Ty and is being used for simplicity. The statistic,
V defined by
V=[(n+1)/n]-1/2 U
=lm+1) /2172 T a1 17/2 T

=a(T) Ty+b (T)



is increasing in Ty for each t and under H‘;,:Gy=9x has standard

normal distribution. Therefore V is an ancillary statistic

and Lemma 2.2 will be used instead of Theorem 2.2. We have
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(1) B=g, iff 0,=6,
ﬁ)(()ﬁo iff Gy)(<)9x » Bo=0 .
(2) V is increasing in Ty for each t. Therefore the conditional

distribution of V given t with parameter B, has a monotone

likelihood ratio. (See section 2.2.3 (B).)

(3) [V-b(T)]1/a(T) is an increasing function of T. Therefore

acceptance regions will map onto the same form of prediction

intervals., (See section 2.2.3 (B).)

(4) The distribution of V under H, is symmetric about zero.

Hence the remark in section 2.2.1 applies.

One Sided Upper Limit Prediction Interval

(1), (2) and (3) imply that Aj(B)={v : v{z } must be used,
z
where according to Lemma 2.2, z is found from J' fpo(v)dv=1-a,

-—CD
Having the value of z from the table of the standard normal
distribution and using Al(p) , the (1-a) level wupper 1limit UMAU

prediction interval for Y is

$p(t)=( == ,(t /a)+z(1/a +1)1/2],
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I S ——— A — A ————  ——————— e .

A similar argument to the above one holds. Using
Ay(B){ v: v2z )}, the (1-a) level lower limit UMAU prediction
interval for Y is Sz(tx)=[(tx/n)-z(1/n +1)1/2, © ) , where z is

a percentile of the standard normal distribution.

Two Sided Prediction Interval

According to (1), (2) and (3), Ag(B)={ v: z;< v {z, ]} must
be used. From property (4) we have, zy=—z; vhere z, is the (1-a/2)
percentile of the standard normal distribution. (1-a) level UMAU

prediction interval for Y is
S3(ty )=[(t /n)+z,(1/n +1)1/2) »(tg/n)+z,(1/n +1)1/2] .

Remark I, If o #1 , then

S;(tg)=( —= ,(t /n)+0z(1/n +1)1/23
S,(t )=[(t /n)+oz(1/n +1)1/2, = )

S3(t)=[(t /n)+ozy(1/n +1)1/2, (¢ _/n)+oz,(1/n +1)1/2]
where 1z, zq and z, are defined as before for each case.
Remark II: X ~ Normal (p,o02) iff exp(X) ~ Lognormal (u,cz)

Usingresultsof Example 3.2 and the relationship between

Normal and Lognormal random variables, the prediction intervals
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can be obtained when sampling is from Lognormal (p.cz) distribution

with known o .

3.3. The Negative Exponential Distribution

Suppose Xl.....Xn is a random sample from a Negative

Exponential distribution with the density function
f(x:'yx)=1/'yx expl-x/v.]1 , 1,50, x>0

and Y is independent of the Xi. (i=1,2,...,n) with the density

function

f(y=’!y)=1/7y exp[-ylyy] , '{y)O. y0 .

The Negative Exponential family with the above density

functions is a monotone likelihood ratio family.

=S n
(Te=2_5

i=1 X

i’ Ty=Y) is a sufficient statistics for the joint
distribution of (X,Y). Let 6,=-1/y,, y=--1/‘yy ’ B=(6y-9x) and

T=Tx+Ty. We have,

explpt_1(t-t_)"1
y y , t.<t .

f(ty t:B)=It

_ n—-1 .
) exp[Bty](t ty) dty

Under null hypothesis, Hy: vy=vy , V=G(T,T)=a(T)/T,

a(T)=1/T, has Beta(l,n) distribution, Bickel and Doksum (1977).
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‘Therefore V is an ancillary statistic for the joint distribution

of (Ty,T) under Ho and we can use Lemma 2.2 instead of Theorem

2,2 . Ve have

0

(1) B=B, iff Ty=ry iff  0.=6,

B>()B, iff 12 (Qygy iff 03(K)6, , B,=0 .

(2) V is increasing in Ty for each T, Therefore the conditional
distribution of V given t with parameter B, has a monotone

likelihood ratio. (See sectiom 2.2.3 (B).)

(3) V/a(T) is an increasing function of t. Therefore
acceptance regions will map onto the same form of prediction

intervals., (See sectiom 2.2.3 (B).)

One Sided Upper Limit Prediction Interval

(1), (2) and (3) imply that Aj(B)={v : v{z ] must be used.
z

According to the Lemma 2.2, z is found from “’ fgo(v)dv=1-a ,
-0

where fg,(v) is density of Beta(l,n). Using A;(B) , the (1-a)

level upper limit UMAU prediction interval for Y is
S1(t )=(-=,t_z/(1-2)].

Since nTy/'l‘x under H, has F-distribution with (2,2n) degrees
of freedom, them =nz/(1-z) is (1-a) percentile of F-distribution

with (2,2n) degrees of freedom.
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A similar argument to the above one holds., Using
Ay(B)={ v: v2z }, the (1-a) level lower limit UMAU prediction
interval for Y is  Sy(t,)=[t z/(1-2), » ) . =nz/(1-2) is a

percentile of F-distribution with (2,2n) degrees of freedom,

0 Sided Prediction Interval

According to (1), (2) and (3) we need to use the acceptance
region A3(B)={ v:i z9 v {zy }J. Using Lemma 2.2, zq and z, are
found from

z z
s 1 fno(v)dv=1-a and I 1 foo(v)dv=(1—a) EHo(V) (3.3.1)

22 22
where Eﬂo(V)=1/(n+1) .

Equations in (3.3.1) can be written as

(1-z1)" - (1~2,)" =(1-a)
and (3.3.2)
zl(l—zl)n - 22(1-22)n =0
respectively.
However it is impossible to solve the equations in (3.3.2)
and find zq and Zq in terms of n and a, in closed forms. Hence
an approximation method like the ’'General ized Newton’s Method’

given in Example 3.1 must be used, According to the notation

used in Example 3.1 we have



M(a,b): (1-a)%-(1-b)2-(1-a)=0
K(a,b): a(1-a)®-b(1-b)2=0

9[M(a,b)]
M= =-n(1-a)%"1
da

(3.3.3)

d[M(a,b)]
M= =n(1-5)2"1
ab

9[K(a,b)]
Ka= —_— =(1—a)n-1[(1—a)-na]
da

9[K(a,b)]
=(1-b) " 1 [nb-(1-b)] .

x‘b=

ab

Using the equations (3.3.3), a program is written for the
Generalized Newton’s Method and values of Z1, Zg for the equations
(3.3.2) are listed in Table B, Using the acceptance region
A3(B), the (1-a) level UMAD two sided prediction interval for Ty
is

S3(t,)= [tlel(l—zl).txz2/(1-z2)] .

A Numerical Example:

The time (hours) of first failure of an electrical device is

48



assumed to be distributed according to the Negative Expomential
distribution. 15 of this particular device are selected from
production line at random and the times to first failure of each

are found to be

62 , 74 , 19, 18, 209 , 409 , 57 , 46 ,

13,29, 231, 46 , 5, 25 .

If we are to select another device of the same type,
a natural question to be ask is concerned with the maximum time
period that the device can work before it fails., Suppose an

answer to the question is to be given with .90 level confidence.
According to our notation in Example 3.3,
te=D ;-1 X; = 1243, n=15
and the upper limit prediction interval is
5y (t)=[0 , t z/(1-z)] =[0 , 206.338].

where =nz/(1-z)=2.49 is 90th percentile of F~distribution with

(2,30) degrees of freedom. Therefore based on the 15 previously

observed values, we predict with .90 confidence that the device

might work 206.23 hours before it fails.

If the question is how early a randomly selected device can

fail, then we need to find a lower limit prediction interval

49
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Sz(tx)=[txz/(1-z), ©)=[8.759 , @ )

where nz/(1-z)=0.1057 is 10tk percentile of F-distribution

with (2,30) degrees of freedom.

For two sided prediction interval, we have
Ss(tx)=[tx11/(1-zl)otx12/(1-12)1=[6.7335 » 359.3905]

where, z1=0.005388 and z2=0.224284 for n=15 and e=.10

are obtained from Table B.

The above prediction intervals are based on assumption that
qual ity of production of the device remains unchanged over the
time. That is to say, the probability distribution associated
with the time of failure of the device is exponential with fixed

unknown parameter over the time,

3.4. The Weibull Distribution With Known Shape Parameter

Let xl,”"xn be random sample from a Weibull distribution

with the density function

fx:p,y)=(y/p) 71 exp[-x¥/p] p>0 , ¥>0, x>0 (3.4.1)

The shape parameter, y is assumed to be known., The density

function in (3.4.1) is a one parameter exponential family and has
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a monotone likelihood ratio in x.

Define W=XY ., Then
f(w:p)=(1/p) expl-w/p]l , u>0, w0

which is the density function of a Negative Exponential distribution.
Using the results of Example 3.3 the prediction intervals for a
future outcome based on observed values of Xl.....Xn are
S,(t)=[0, (t_z/(1-2)}1/"]
8;(t)=[{t_2z/(1-2)}1/7 =)

Sg(t)=[(t 2,/ (1-21 )17, (t 2,/ (1-2,)) 1/

t.= E!il':l x'{ and z, z4 and z, are defined as in the Example 3.3.



52

IV. GENERALIZATION OF THE PREDICTION PROBLEM

TO K-PARAMETER CASE

In this Chapter we will generalize the method of obtaining
prediction intervals when the distributions of informative and

future experiments are from a K—parameter exponential family,

4.1, Formulation Of The Problem In Terms

Of Hypothesis Testing
Let X4,...,X; be (iid) random outcomes of an informative
experiment with the density function

£(x:0_)=C(6_)exp[6_T(x)Ih(x)

where T(X) and Ox are K-dimensional real-valued vectors. Suppose
Y is as yet an unknown outcome of a corresponding future experiment,
independent of the Xi,(i=1.2,...,n) and with the density function
7/
f(y.Oy)=C(9y)exp[9yT(y)]h(y)

where Oy is also a K-dimensional real-valued vector,

Since Y is a single random variable then all components of

Oy are not identifiable, We will assume

s/ Ve / /7 /
9y=(91y97)’ 9x=(91x97) and Y=(92’ooo’ek) .



53

Hypotheses which will be considered are

Ho: 01x=91y vs Hal: 01y>01x
HO H legely Vs Haz : 01y>01x (4 1. 1)

Ho: 91x=91y vs Has H Oly#elx .
The joint density function of (X,Y) is

£(x,y:0,,0,)=C"(8,)C(8 ) expl8;, D §g Ty(x;)+6, Ty (y)]

expl 3555 050 3 Guy T;(x+T;(y) Indy B(x;)h(y). (4.1.2)

- n - -

Lot Tye= 30 =1 Tyl » TypTi®) . Ty Ty
Tx=(T1x“”'Tkx) » Ty=(T1y1000:Tky) » T=(T1:T2:000:Tk) and
B=01y—91x, (j=2,...,k), then the density in (4.1.2) can be

written as

f(;,y:B,y,le)=cn(91x,7)C(B+01x,7)exp[ﬂT1y+01xT1] (4.1.3)

expl 3 ;.5 6,T;1 n}y h(xy)n(y)

which is the density function of a K+1 parameter expomential
family, By factorization Theorem, Lehmann (1959),

(le'Tl'“"Tk) are jointly sufficient statistics for'(B,le,yL
Similar to Chapter II, we reduce the problem to the comnsideration
of the sufficient statistics. TE(TI,TZ”N”Ti) is a complete and
sufficient statistic for (Ox,y) when H, is true. Thus for testing

the hypothese we need the conditional distribution of le given t.
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According to Lehmann (1959), we have

f(tlyzey)=Ct1y(9y)exp[Olytly]htly(tly)

.0 )= k
£(t;:0,)=C;z(6,)expl0;,ty + EJ'=2 jtix

(4.1.4)
11h, (t)

which implies

htx(tl_tlyptzxpooopth))htly(tly) .

Using (4.1.5), the conditional density of le given t can be

written as

explBty lh, _(ti=t: ,Wo,ec.,w))h o (t, )
ly""tx' "1 “1y* "2 k7 Ttlyt "1y (4.1.6)
exp[ﬂtly]htx(tl‘tlyp'z:ooop'k)htly(tly)dtly

-

where j=t:j - Kj(tly) , tjk=xj(t1y) , 32,3,...,k , for some

functions Kj(.) » because Y is a single random variable and all

components of Ty=(T1y“”'Tky) can be obtained from le .

The conditional density function in (4.1.6) is the density
function of a one parameter exponmential family and therefore has

a monotone 1ikelihood ratio in le . (See Section 2.2.2.)

When an exponential family has more than one parameter,
it is difficult and sometimes impossible to find h, () for

the density function of t,, (4.1.4)



Saddle Point Approximation, Barnmdorff-Nielsen (1983)

Let X;,...,X, be (iid) random variables with the density

function

£f(x:0)=C(0) exp[O/T(x) 1h(x)

where 0 :0 - Rk T: X — Rk

The ’'Saddle Point Approximation’ to the demsity function of

= n
Tp= D 51 T(X) s

£(t,:0) > (2m) %2 13(0) |12 expl(6-8)t,1  (4.1.7)

[ce)c"1(s)1®
A
where © = Maximum Likelihood Estimator of ©
- 32 Log f(x:0
A g £(x:0) A
and 1{8) = ' =0
2 e

is the observed Fisher Information Matrix., The order of the

approximation is O(a" 1) .

According to the Saddle-Point Approximation, htx(') in

(4.1.4) is approximated by
1180171/ expl(-8_)t_1¢"2(8)

h o
where, 6

xl)"opxn .

is the Maximum Likelihood Estimator of Ox based on

55
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EXAMPLE I. The Negative Exponential Distribution

Let Xy,...,X be a random sample with the density function

£(x:0)=0 expl[0 x] , 650, x>0 .

I.= El;=1 X; 1is a sufficient statistic for the joint

distribution of xl,...,xn . ¥We have

p -1
6=n(t )
11(8) | "1/2 =n3/2(¢ )71

C2(@)=(t, /n)®

Using (4.1.7), the Saddle-Point Approximation to the density
function of T; is
A A
n .n-1
(0)" t “expl[-Ot_]

f(t_:0) (4.1.8)
T (21:)1/2 n(n—1/2)exp[—n]

which is the exact demnsity function of T, except for the
denominator part which is an approximation to n(n) according to
Stirling’s formula, The negative exponmential distribution
belongs to a one parameter exponential family. Therefore we
could have obtained the exact distribution of T, which is

Gamma (n, ©) ,
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Example II., The Gamma Distribution With Unknown

Parameters

Let X;,..,X, be a random sample from

with the density

f(x:p,7)=(y)P expl(p-1)Log(x) -

where, x>0, p>0, v>0 . VWe assume that p

the Stirling’s Approximation to n(p) can be

a Gamma distribution

vx] ﬂ‘l(p)

is large so that

used.

T,=( Ty,= 3 3=1 %i » Tap=) j-q Log(Xy) ) is a two-dimensional

sufficient statistic for the joint distribution of Xqsee,X, and

we have

P=.5[Log(t, /n) - t, /n]”

T=(ap) /ey

li. 7 | 7V2 = (2912 7

A ,\'\
C2(p.7)= (n(p)/3P)®

1

Using (4.1.7), htx(“‘) is approximated by

- (ﬁ)(S-n)/Z (tlx)np—l exp[_stzx]

h, (ty_,t, ) =
tx'"1x’ "2x (n)nﬁ

For this problem the exact form of htx(u.) can not be

obtained.



Similar arguments to the Theorem 2.2 and Lemma 2.2 will
be applied to obtain UMP unbiased tests and as a result UMP

unbiased acceptance regions.

Theorem 4.1 : Consider the conditional demsity of le given T,

(4.1.6), and the hypotheses of interest, (4.1.1).

(1) A, Jt)={ (tly't) Ptgy & z(t) } is the (1-a) level UMP

unbiased accepfance region for H, versus Hoq and z(t) is found

f dt =q ,
5z(t) o "ly

(2) A8 | t)={ (tly't) P otyg 2 z(t) } is the (1—-a) level UMP
unbiased acceptance region for H, versus H,, and z(t) is found

from
z(t)
S fodtly =q .
(3) Az(Bit)={ (tly,t) :ozq(t) £ tlyg zo(t) } is the (1-a)

level UMP unbiased acceptance region for H, versus H 5 and

zl(t) , zz(t) are found from

58

Zy (t) Zy (t) @

z4 (t) z4 (t)

where fo is the conditional distribution of le given T , under

H, , which can be obtained by letting P=0 in (4.1.6).
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If there exists an ancillary statistic, V=G(T1y.'l‘) for the
joint distribution of (le,'l'), under Ho , then by Basu's Theorem,
V and T are independent and distribution of V under H, can be

used to obtain the UMP unbiased acceptance regions.

Theorem 4.2: Suppose there exists an ancillary statistic,
V=G(T1y,'l') for the joint distribution of (le,'l‘), under H,. Let

fHo(V) denote the density of V under H,.

(1) Aj(B)={ v : v {2z} is the (1-a) level UMP unbiased

acceptance region for testing Ho versus Hal and z is found from

j‘ fno(v)dv =a ,
z

provided V is ihcreasing in le for each t .

(2) AyB)={ v: v 2z} is the (1-a) level UMP unbiased

acceptance region for testing H, versus H,, and z is found from

z
j fHO(V)dv =a ,

-

provided V is increasing in le for each t .,

(3) Ag(B)={ v : z9 £ v<{zy} is the (1-a) level UMP unbiased

acceptance region for Ho versus Ha3 and zq, 2o are found from
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] Z2
I fHo(v)dv=(1—a) and J vigo(V)dv=(1-a) I vfno(v)dv
21 Zl -

provided, V*G(Tiy,T)=a(T)Tiy+b(T). a(t)>o0 .

4.2, Obtaining The Prediction Intervals

A. Ancillary Statistic Does Not Exist

Since the conditional demsity of le given t, (4.1.6), has a
monotone 1ikelihood ratio in le, therefore according to Lemma
2.4, the acceptance regions-in Theorem 4.1 have more probability
under Ho than under the corresponding alternative hypotheses.
Similar to Chapter II, we use A,(B | t) to obtain prediction

intervals. Define
Si(tx)={ tly H (tly,t) e Ai(ﬂ |t) }p i=1p203 .

That is, the acceptance regions must be solved for tly by writing
t=(t1y+t1x't2y+t2x"“'tky+th) ,to obtain the corresponding

prediction intervals. We get

s1‘tx)=[L‘tx)'°) (4.2.1)

81 (t )=[L(ty),U(t,)]

provided z(.) functions in the acceptance regions are
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increasing. Note that t can be written as function of tIy and te.
Using (4.1.6) and a similar argument to Lemma 2.6, a sufficient

condition for z(.) to be increasing is that

* * *
htx(tl—tly‘WZ‘ Y ‘w k)

htx(tl—tly"Z' PR "k)

must be nondecreasing in tly , whenever t;)tl seses t;)tk ,
 *

where wj'tj - Kj(tly) , tjy—Kj(tly) and "j"tj - Kj(tly) ,

ji=2,3,...,k, for some functions Kj(.) (See the density

function in (4.1.6)). L(.) and U(.) are function of

tx=(t1x““'th)' n and a .

The prediction intervals in (4.2.1) are obtained from the
(1-a) level UMP unbiased acceptance regions and they have similar

properties to the ones mentioned in Chapter II.

(1) E (o1x,1 [ Pro1y,y) [ 84(Ty) } I=1-a
for all Oy =6; and all 7=(6,,...,8,). That is, S;(T)),
i=1,2,3 are 'Similar Mean Coverage Tolerance Prediction

Regions’ of cover (1-a), Aitchison and Dunsmore, (1975).

(2) Eo1x,) [ Prory,yy 51T } 1 e,

7/
for all Oly ) le and all Y=(92:ooo‘6k)o

Eo1x,y)[ Ploty,y) { So(Tg) } 1 < 1-a
/£
for all 6,5 < 67, and all y=(0,,...,0¢).
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Eo1x,7) [ Pory,7) [ S3(Tp) 11 ¢1-a

for all @;  # ©;_ and all y=(8,,...,0;).

(3) 84(T,) are 'Uniformly Most Accurate Unbiased’ (UMAU),

Prediction intervals, (See Definition 2.6.)
~ B. Ancillary Statistic Exists

In Theorem 4.2 we assumed that the ancillary statistic,
V=G(T1y,T), is an increasing function of le for any T .
Since the conditional distribution of le given T (4.1.6),
has a monotone likelihood ratio in le, then the conditional
distribution of V given t also has a monotone likelihood ratio in
V for each t. By Lemma 2.4, the acceptance regions in Theorem 4.2
have more probability under Ho than under the corresponding
alternative hypotheses and they will be used to derive the prediction

intervals, Define

Si(tx)={ tly s vV E Ai(B) }, i=1,2,3 .

Ve have
5; (t)=[L(t}) ,=) (4.2.2)

81 (tp)=[L(t;),0(t )] .

That is, S;(t;) is obtained by writing
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t=(ty ttyo tayttogseeestygttyy)

in V=G(T,T1y) and solving A;(B) for t1y‘ Acceptance regions will
map onto the same form of prediction intervals, provided G-l(.)
is increasing in le. The prediction intervals in (4.2.2) are
obtained by using (1-a) level UMP unbiased acceptance regions
and therefore have the same properties as the prediction intervals

in (4.2.1).



V. EXAMPLES: K-PARAMETER CASE (K=2)

As examples of K—parameter exponential families, the Normal
and the Inverse~Gaussian distributions will be considered and the
method of Chapter IV will be used to obtain the (1-a) level UMAU

prediction intervals for a future outcome.

Let xln“,xn be a random sample from a normal

distribution with the density function

f(x:ux,cz)=(2n62)_1 exp[-(262)-1(x-ux)] , By € R, 330, 030

and Y be independent of the X;,(i=1,2,...,n) with the density
function

f(y:uy,62)=(2ncz)_1 exp[-(262)—1(y—uy)] - R, x>0, oX0 .

We assume that Hys My and o are unknown parameters and
prediction intervals for Y are of interest. To get

a natural parametrization let

= a2 = 2 e (2x2y—1 = n
0157150 © OIY—FYc » 1==(207) » T14= j=1 Xj»
= n 2 = =y2 = .
Ty 2 3m1 X3 » Tyye¥ , Tp =¥, Ty=T; 4T, ,(j=1,2) , then

the joint demnsity of (X,Y) can be written as

£(2,7:01,,050.7)=(=n/7) " (** 1) Zoxp[(a0,2+0,2) /47]

expl0g t1 +04 ty, +rty] . (5.1.1)
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To simplify the problem let

B=(1/n +1)"1(0,_-0,.)
and 1y “1x
o=(n+1)"1(n0, 40, ) .

Then (5.1.1) is equivalent to
f(;.y:ﬁ,y,0)=C(B.1,O)exp[B(tly-tlx/n)+0t1+7t2] (5.1.2)
where C(.,.,.) is a function of parameters, B , y and O,

Under Ho : hy=hy (01y=011), (TI'TZ) are jointly complete and

sufficient statistics for (O,7) .

Define
U=T1y-Tlx/n
V=6(U,T)=BU[T,~(n+1) 1 (12+n0%)171 (5.1.3)

B=(n(n-1)/(n+1))1/2

V is increasing in U and it can be shown that under Ho it
has student’s t-distribution with (n-1) degrees of freedom.
Therefore V is an ancillary statistic for the joint distribution
of (U'TpTz) vhen H, is true, and conditions of Theorem 4.2 (1),

(2) are satisfied. We have

(1) Ry=Hy iff 01y=le iff B=B,

g (Ony iff 01,5()05,  iff BB, , By=0.

(2) (5.1,2) implies that the conditional distribution of U given



66

t=(t;,t5) has a monotone likelihood ratio. Since V is
increasing in U, then the conditional distribution of V given
T also has a monotone likelihood ratio. Thus acceptance
regions based on V need to be used to obtain prediction

intervals,

(3) Distribution of V is symmetric about zero. Therefore

the remark given in section 2.2.1 applies in this case.

One Sided Upper Limit Prediction Interval

(1) and (2) imply that the acceptance regiom, A{(B)={ v :v&z }
must be used. According to Theorem 4.2, z is found from
@«
S fpo(v)dv=a , fg (v) is the density of t-distribution with (n-1)
z

degrees of freedom. We have

Ve A(B) iff Ty, & ty,/n+ z{(a+1)Q/a(a-1)}1/2

ly
where 0= 2: ?=1 (xi-"i)2 .

A similar argument to the above one holds. Using A,(B) in

Theorem 4.2 we get
S2(tx)=[t1x/n + z{(n+1)Q/n(n_1)}1/2.w)

where z is « percentile of t-distribution with (n—1) degrees of

freedom.
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Two Sided Prediction Interval

The Statistic V in (5.1.3) is not a linear function of U,
Therefore the condition of Theorem 4.2 (3) is not satisfied.
Define

¥=U[T,-13/(2+1)171/2 )

W is linear in U for each t=(t1,t2) and is related to V by

V=BW[1- oW2/(n+1)1"1/2
where B=[1.'t(n--1)/(n+1)]1/2 .

Under H ¥ is independent of T and is an ancillary

0’
statistic because it is a function of another ancillary

statistic, V. The condition of Theorem 4.2 (3) satisfies for W.
But for hypotheses testing purposes, W and V are equivalent test
statistics, for V is an increasing function of W. Therefore

the acceptance regions associated with the two tests are equivalent
and as a result , Ag(B)={ v: z; {v<z,) canbe used where,

zqy and z, are a/2 and (1-a/2) percentile of t—distribution with

(n-1) degrees of freedom, for the distribution of V is symmetric

about zero when H, is true. Using A(B), we have

S4(t )=[t; /n + 2, {(n+1)Q/n(2-1)}1/2

t1,/n + 2o {(n+1)@/n(a-1)}1/21 |
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5.2, The Inverse—Gaussian Distribution

¥With Unknown Parameters

The Inverse-Gaussian distribution or first passage time
distribution which has a skewed and unimodel density function is
a two parameter expomential family. Chhikara (1975), discusses
hypothesis testing in single and two sample cases for the
Inverse—Gaussian distribution. Chhikara and Folks (1975),
discuss sampling distribution and statistical inferemce related
to this distribution. A very useful background about this
distribution can be found in a paper by Folks and Chhikara
(1978), in which they present test of hypothesis, estimation,
confidence interval, regression and analysis of variance based on
the Inverse—Gaussian distribution. For application, the
distribution has been considered as a model for emptiness of dam
by Hasofer (1964), and Lancaster (1972), applied it as a model
for duration of strikes. When no obvious choice of distribution
for a data with considerable skewness is suggested, Chhikara and
Folks (1978), suggest the Inverse—Gaussian over the Lognormal

distribution,

Let xln".xn be a random sample from an Inverse-Gaussian

distribution with the density function

£(x:p_,0)=[6/(2nx>)11/2 expl-0(x-p )%/ (2p,20)] ,

x>0, 650, p >0



and Y be independent of the Xi,(i=1,2.....n) with the density

function

f(y:py.e)=[e/<zny3>11/2 exp[—e(y-uy)z/(Zuyzy)] ,

y>0, >0, py)O .

We assume that By » MKy and © are unknown parameters
and prediction intervals for Y based on the outcomes of Xl,...,Xn,

are of interest. Let

= n = = n ¢1 —v-1
o -2 = -2 = = ==
01,=—(8/2)u, "> , 0 ==(0/2)yu7* , v=-0/2 , T;=T; +T;o (j=1,2) ,

p=In/(n+1)1[0; -0y, 1 , A=(28; +0, ) (n+1) ™" and U=Ty Ty /n .
The joint density function of (X,Y) can be written as
f(;.y:B,x,7)=C(ﬂ,x,y)exp[Buﬂ.tlﬂtz] [1i1=1 n(x,) y]-S/2 (5.2.2)

where C(.,.,.) is a function of parameters, vy , A and B. The
joint distribution of (U'TI'TZ) is a three parameter expomnential
family and Under Ho:py=px (91y=011) » T=(T4,Tp) is a complete
sufficient statistic for (A,y) . Therefore the comditional
distribution of U given t=(t1,t2) is a one parameter expomential.
Define
¥=[(n(2+1)11/2 (2+1)U [A-n(a+1)?02171/2

where A=(T1T2—(n+1) 2) (T;+0) (Tl"nU) .



70

According to Chhikara (1975), the conditional density of W

given t=(t;,ty) under H,, is

fro(wlty,t)=(a-1)"1/2(beta(1/2,(n-1)/2)) 11 +w2/(a-10)"/2 (5.2.3)

[1+ (-1 (D7D wityt,~(+1) /2 [(¢,t,-(a-1)D)wl+4n(-1)171/2)
where beta(.,.) is the beta function and = -o{wl=

W is nondecreasing in U, But W is not ancillary statistic
for the joint distribution of (U'TI'TZ) when H is true, for the
density function in (5.2.3) depends on t; and t, (Basu’s Theorem).,
Therefore, fHo("tl'tZ) need to be used to get the UMP unbiased

acceptance regions (Theorem 4.1). Ve have

(1) g iff 91y=Glx iff B=B,

i (Ong  AEf 0 (08;,  iff  BX(<)B, . By=0.

(2) U is increasing in le and the conditional distribution of U
given t=(t1,t2) has a monotone 1ikelihood ratio, because it
is ome parameter exponential. Since W is increasing in U,
then the conditional distribution of W given t also has a
monotone 1likelihood ratio. Thus the acceptance regions
based on W need to be used to obtain prediction intervals.

(Lemma 2.6.)

(3) W is not an ancillary statistic,
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One sided Prediction Interval

To get one sided upper limit prediction interval, (1) and
(2) imply that the acceptance region A1(B,t)=( w : wlz(t) } need

to be used, where from Theorem 4.1 we have

S fno("tlptz)d""'a . (5.2.4)
z(t)

The expression, (5.2.4) is equivalent to

F, [2(0)1=(a-1)(a+1)" 2 N=D/2 (1p  [2%(6)])=1a

(5.2.5)
where N=(tyty=(2-1)2)/ (t; tp=(2+1)?)

2* (0)=[22(£) +4n(2-1)1/ [t t,=(-1)211/2

F () is the cumulative distribution of the Student’s
t-distribution with (n-1) degrees of freedom, Chhikara (1975).
From (5.2.5) we can not find z . This fact is mentioned in a
paper by Chhikara and Guttman (1982), where they show that omne
sided prediction intervals can be obtained if 'Bayesian informative

prediction’ approach is used.
A similar argument to the above one holds when the lower
limit prediction interval is of interest.
Two sided Prediction Interval

To find the two sided prediction interval, according to



Theorem 4.1 (3), we need to solve

zz(t)

s £h0 (W | £)dw =(1-a)
Zl(t)

and

s 0 wig (w | t)dw =(1-a) s wigo (v | t)dw .
zl -®

The function L(w)=wfp (w|t) is an odd function of w and is

symmetric about w=0. Therefore

r wig (w | t)dw =0

—C0

and as a result zl(t)=-z2(t). Based on this fact and (5.2.5) we

conclude that zl(t) and zz(t) must be found from
Fst[zz(t)]—FSt[zl(t)]=l—a . (5.2.6)

That is, zl(t), zz(t) are independent of t and are @/2 and
(1-a/2) percentiles of t-—distribution with (n—1) degrees of

freedom, respectively.

According to Theorem 4,1, we need to use the acceptance
region As(ﬂlt)={ wi zq {w<z,]}. But %2 under H, has
F-distribution with (1,n-1) degrees of freedom, Chhikara, (1975).

Therefore

72
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~
I~
B

14

29 L wlzy iff w

where m is (1-a) percentile of F-distribution with (1,n-1)
degrees of freedom. Hence instead of the acceptance region,
A3(B | t), we can work with the equivalent region which is based

on F~-distribution,

According to Chhikara and Guttman (1982), inverting

'2 {m provides the two sided prediction interval for T1y=Y R

S3(t )={[n/t;  +(nAm/2(n-1))] %
[(n(a+1)Am)/ (2-1) t; ) +(nAm) 2/4(n-1) 211/2)72
where
Agzggl (l/xi -x—l) .
They mention that there is a positive probability to get

a negative real number for the lower limit of s3(tx) ,» and since

T1y>0, the solution must be restricted to the positive real 1linme.

1. If ((n~1)-t; Am/n)>0, we get two sided prediction interval.
2, If ((n-l)-tlem/nKO, lower limit will be obtained using + sign

in SS(tx) and upper limit would be « .
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APPENDIX A

The following program uses 'The Generalized Newton's Method’

and MDBETA routine of IMSL library to find values of z; and z,

for the two sided prediction interval, when the distribution of

informative and future experiments are normal with known mean, p=0.

(Example 3.1.)

20

PROGRAM A

REAL S,R,X0,Y0,AL,A,B,C,6X,6Y,HX,HY,J,P1,P2
REAL P3,P4,HXY,GXY,TOL,X1,Y1,L,K

INTEGER SI,RI

REAL*8 G1,G2,G3,G4,G5,DGAMMA

WRITE(®,*) 'VALUES OF AL,R,X0,Y0 ARE='
READ(*,'(F4,.2,1X,F4,.2,1X,F10.8,1X,F10.8)’) AL,R,X0,Y0
DO 60 N=2,100

S=N*R

A=R+S

B=R+S+1

C=R+1

G1=DGAMMA(R)

G2=DGAMMA( S)

G3=DGAMMA(C)

G4=DGAMMA (A)

G5=DGAMMA (B)

SI=INT(S)

RI=INT(R)
GX=(-G5/(G3*G2) ) *((X0**RI)*((1-X0)**(SI-1)))
GY=(G5/(G3%G2))* ((YO**RI)*((1-Y0)**(SI-1)))
HX=(~G4/(G1%*G2))*((X0**(RI-1))*((1-X0)**(SI-1)))
HY=(G4/(G1%G2))*((YO**(RI-1))*((1-Y0)**(SI-1)))
J=GX*HY-HX*GY

CALL MDBETA (YO,R,S,P1,IER)

CALL MDBETA (XO,R,S,P2,IER)

CALL MDBETA (YO,C,S,P3,IER)

CALL MDBETA (X0,C,S,P4,IER)

HXY=P1-P2-(1-AL)

GXY=P3-P4-(1-AL)

X1=XO0+ (HXY*GY-GXY*HY) /J
Y1=YO+(GXY*HX-HXY*GX)/J

TOL=1.E-3

K=ABS(GXY)
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30
40
60

L=ABS(HXY)
IF(K.GT.TOL) GO TO 25
IF(L.GT.TOL) GO TO 25
GO TO 30

X0=Xx1

Y0=Y1

GO TO 20

WRITE (*,40) N,X0,Y0
FORMAT(10X,12,4X,F8.6,4X,F8.6)
CONTINUE

END
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Values of

z1 a

TABLE A

nd zy to find (1-a) level prediction

interval S3(tx)=[txz1/(1—z1),txzzl(l—zz)], where

= n 2
ty= 2 =1 ¥i

(3xample 3.1.)

and Xl,...,X

31

.000044
.000043
.000035
.000029
.000025
.000022
.000019
.000017
.000016
.000014
.000013
.000012
.000011
.000011
.000010
.000009
.000009
.000008
.000008

- 000008

.000007
.000007
.000007
.000006
.000006
.000006
.000006
.000006
.000005
.000005
.000005
.000005
.000005
.000005
.000005

a=,01

n

Zy

.993295
.969367
.926041
.878583
.830216
.783645
.740034
.699760
.662814
.629010
.598095
.569798
.543853
.520017
.498064
.477817
.459083
+441685
.425523
.410471
.396431
.383293
.370973
.359406
.348539
.3382717
.328625
+319459
.310813
.302601
.294814
.287421
.280380
.273668
.267281

are (iid) normal with mean, p=0 .

a=.05
z1 22
.001158 .966407
.000878 .902746
.000701 .831825
.000582 .764553
.000497 .704107
.000433 .650803
.000384 .604028
.000344 .562940
.000312 .526716
.000285 .494631
.000263 .466066
.000243 .440505
.000227 417517
.000212 .396752
.000200 .377912
.000188 .360749
.000178 .345050
.000169 .330635
.000161 .317362
.000153 .305102
.000147 .293746
.000140 .283197
.000135 .273370
.000129 .264196
.000124 .255619
.000120 .247570
.000116 .240018
.000112 .232900
.000108 .226197
.000105 .219862
.000102 .213874
.000099 .208204
.000096 .202822
.000093 .197710
.000090 .192852
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37
38
39
40
41
42
43
44
45
46
417
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

Z3

.000004
.000004
.000004
.000004
.000004
.000004
.000004
.000004
.000004
.000004
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000003
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002

a=,01

Z2

.261161
.255333
.249732
+244392
.239275
.234358
.229628
.225112
.220753
.216576
.212514
.208620
.204877
.201254
.197755
.197755
.191112
.187970
.184937
.181953
.179085
.179085
.173645
.171017
.171017
.166026
.163641
.161326
.161326
.156861
.156861
.152659
.150631
.148661
.148661
.144877
.143045
.143045
.139548
.137821
.137821
.134565
.133022
.133022
.129951
.128491

a=.05
z3

.000088
.000086
.000084
.000082
.000080
.000078
.000076
.000074
.000073
.000071
.000069
.000068
.000067
.000065
.000064
.000063
.000062
.000061
.000059
.000058
.000057
.000056
.000055
.000055
.000054
.000053
.000052
.000051
.000050
.000050
.000049
.000048
.000048
.000047
.000046
.000046
.000045
.000044
.000044
.000043
.000043
.000042
.000042
.000041
.000041
.000040

Zy

.188222
.183811
.179596
.175576
.171730
.168048
.164517
.161136
.157890
.154774
.151770
.148884
.146108
.143431
.140851
.138357
.135958
.133640
.131401
.129227
.127126
.125096
.123132
.121222
.119371
.117579
.115840
.114152
.112507
.110913
.109362
.107857
.106389
.104961
.103574
.102220
.100900
.099616
.098366
.097137
.095948
.094785
.093658
.092546
.091460
.090407
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83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

a=.01
1

.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002
.000002

a=,10
1

.004301
.003332
.002651
.002197
.001872
.001630
.001442
.001293
.001172
.001071
.000987
.000914
.000852
.000797
.000749
.000706
.000668
.000634
.000604
.000576
.000550
.000527

L]

.128491
.125680
.124273
.122933
.122933
.120335
.120335
.117838
.117838
.115407
.114282
.114282
.112046
.112046
.109838
.109838
.107786
.106778

L]

.932366
.843863
.759054
.685161
.622300
.568951
.523445
.484338
.450456
.420869
.394836
.371773
.351209
.332769
.316147
.301089
.287386
.274862
.263376
.252806
.243048
.234010

3

.000040
.000039
.000039
.000038
.000038
.000037
.000037
.000036
.000036
.000036
.000035
.000035
.000035
.000034
.000034
.000034
.000033
.000033

31

.016681
.012584
.009963
.008234
.007005
.006092
.005391
.004831
.004377
.003999
.003682
.003413
.003179
.002976
.002797
.002636
.002494
.002367
.002252
.002148
.002052
.001965

a=,05

a=,20

L]

.089373
.088369
.087376
.086412
.085461
.084545
.083638
.082755
.081885
.081034
.080210
.079394
.078602
.077808
.077045
.076293
.075563
.074840

Z3

.863320
.748045
.653086
.577110
.515941
.465995
.424597
.389800
.360181
.334686
.312521
.293082
.275901
.260609
.246914
.234579
.223412
.213254
.2039717
.195470
.187643
.180417
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

|

.000505
.000486
.000467
.000450
.000434
.000420
.000406
.000393
.000381
.000370
.000359
.000349
.000339
.000330
.000322
.000314
.000306
.000298
.000292
.000285
.000278
.000272
.000266
.000261
.000255
.000250
.000245
.000241
.000236
.000232
.000227
.000223
.000219
.000215
.000212
.000208
.000205
.000201
.000198
.000195
.000192
.000189
.000186
.000184
.000181
.000178

a=,10
)

.225616
.217800
.210507
.203682
.197288
.191277
.185623
.180291
175257
.170497
.165987
.161707
«157645
.153779
.150099
.146588
.143240
.140042
.136982
.134051
.131246
.128555
.125973
.123488
.121102
.118807
.116596
.114466
.112410
.110430
.108519
.106673
.104885
.103157
.101487
.099871
.098302
.096782
.095310
.093883
.092497
.091149
.089842
.088571
.087337
.086136

Z

.001885
.001812
.001743
.001680
.001621
.001566
.001516
.001467
.001423
.001380
.001340
.001303
.001267
.001233
.001201
.001171
.001142
.001114
.001088
.001063
.001039
.001016
.000995
.000974
.000954
.000935
.000916
.000898
.000881
.000865
.000849
.000833
.000819
.000804
.000791
.0007717
.000765
.000752
.000740
.000729
.000717
.000706
.000696
.000685
.000675
.000666

a=,20

Zy

.173725
.167511
.161726
.156324
.151273
.146536
.142087
.137899
.133951
.130223
.126696
.123355
.120186
117174
.114311
.111582
.108982
.106500
.104129
.101860
.099689
.097608
.095612
.093695
.091854
.090084
.088381
.086741
.085160
.083637
.082167
.080749
.0793717
.078051
.076769
.075530
.074328
.073164
.072037
.070944
.069883
.068853
.067853
.066882
.065939
.065021
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70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Z

.000176
.000173
.000171
.000169
.000166
.000164
.000162
.000160
.000158
.000156
.000154
.000152
.000150
.000148
.000147
.000145
.000143
.000142
.000140
.000138
.000137
.000135
.000134
.000133
.000131
.000130
.000128
.000127
.000126
.000125
.000123

a=.10
L]

.084967
.083831
.082723
.081644
.080593
.079571
.078569
.077596
.076646
.075723
.074816
.073932
.073071
.072228
.071407
.070599
.069813
.069039
.068290
.067552
.066832
.066124
.065432
.064759
.064095
.063448
.062806
.062184
.061573
.060976
.060388

Z3

.000656
.000647
.000638
.000629
.000621
.000613
.000605
.000597
.000589
.000582
.000575
.000568
.000561
.000554
.000548
.000541
.000535
.000529
.000523
.000517
.000511
.000506
.000500
.000495
.000490
.000484
.000479
.000474
.000470
.000465
.000460

a=.20
]

.064129
.063262
.062417
.061594
.060792
.060013
.059250
.058509
.057785
.057081
.056391
.055718
.055063
.054421
.053796
.053183
.052584
.051998
.051427
.050867
.050320
.049783
.049257
.048745
.048242
.047750
.047264
.046792
.046328
.045875
.045429
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to find values of z; and Zy for the two sided prediction interval,

APPENDIX B

The following program uses the '‘Generalized Newton's Method’

when the distribution of informative and future experiments are

Negative Exponential. (Example 3.4.)

20

25

30
40
60

PROGRAM B

REAL K,L,AL,X0,Y0,X1,Y1,GX,6Y,HX,HY,GXY,HXY,A, TOL
INTEGER N,I

WRITE (*,*)'VALUES OF AL,X0,Y0 ARE= '
READ (*,’'(F4.2,1X,F8.6,1X,F8.6)') AL,X0,Y0
DO 60 N=2,100

GX=—N*( (1-X0)**(N-1))
GY=N*((1-Y0)**(N~-1))

HX=( (1-X0) #*(N-1) ) *(1-X0-N*X0)

HY=( (1-Y0) **(N-1) ) *(N*Y0-(1-Y0))
A=GX*HY-HX*GY

GXY=( (1-X0) **N)-( (1-YO0) **N)-(1-AL)
HXY=X0%*( (1-X0) **N)-Y0* ( (1-YO) **N)
X1=X0+ ( HXY*GY-GXY*HY) /A

Y1=YO+ (GXY*HX-HXY*GX) /A

TOL=1,E-5

K=ABS(GXY)

L=ABS(HXY)

IF(K.GT.TOL) GO TO 25

IF(L.GT.TOL) GO TO 25

GO TO 30

X0=X1

YO=Y1

GO TO 20

WRITE(*,40) N,X0,Y0

FORMAT (4X, 13,4X,F8.6,4X,F8.6)

CONTINUE

END
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TABLE B

Values of z; and 2z, to find (1-a) level prediction
interval S3(tx)=[tlel(1—zl),txzzl(l—zz)], where
t= Z lil=1 x; and Xg,...,X; are (iid) negative expomential,

(3xample 3.3.)

a=.01 a=,05

n Z1 Z z )

2 .003276 .941193 .016119 .865752
3 .002411 .859294 .011774 .752865
4 .001900 .778032 .009247 .659005
5 .001565 .705910 .007605 .583406
6 .001330 .643602 .006455 .522246
7 .001155 .590076 .005606 .472169
8 .001021 .544232 .004953 .430557
9 .000915 .504565 .004436 .395516
10 .000828 .470030 .004017 .365644
11 .000757 .439755 .003669 .339902
12 .000697 .413029 .003378 .317502
13 .000645 .389291 .003128 .297842
14 .000601 .367885 .002914 .280453
15 .000562 .348887 .002726 .264936
16 .000528 .331708 .002562 .251068
17 .000498 .316116 .002416 .238570
18 .000471 .301908 .002286 .227251
19 .000447 .288906 .002169 .216951
20 .000426 .276962 .002063 .207541
21 .000406 .265961 .001967 .198910
22 .000388 .255790 .001880 .190965
23 .000371 .246368 .001800 .183629
24 .000356 .237605 .001727 .176833
25 .000342 229442 .001659 .170521
26 .000329 .221823 .001597 .164644
27 .000317 .214687 .001539 .159157
28 .000306 .207992 .001485 .154023
29 .000296 .201700 .001435 .149209
30 .000286 .195780 ~.001388 .144687
31 .000277 .190191 .001344 .140429
32 .000269 .184914 .001302 .136416
33 .000261 .179924 .001263 .132624
34 .000253 .175190 .001227 .129038
35 .000246 .170700 .001192 .125641

36 .000239 .166437 .001160 .122416



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Z1

.000233
.000227
.000221
.000216
.000210
.000205
.000201
.0001%6
.000192
.000188
.000184
.000180
.000176
.000173
.000170
.000166
.000163
.000160
.000157
.000155
.000152
.000149
.000147
.000144
.000142
.000140
.000138
.000135
.000133
.000131
.000129
.000128
.000126
.000124
.000122
.000120
.000119
.000119
.000116
.000116
.000113
.000113
.000110
.000110
.000107

a=.01

)

.162375
.158509
.154827
.151305
.147943
.144727
.141644
.138694
.135859
.133141
.130532
.128016
.125600
.123270
.121032
.118864
.116780
.114764
.112713
.110936
.109023
.107272
.105571
.103924
.102325
.100778
.099270
.097813
.096396
.095018
.093676
.092377
.091110
.089883
.088681
.087518
.086380
.086380
.084230
.084230
.082149
.082149
.080166
.080166
.078274

Z

.001129
.001100
.001072
.001045
.001020
.000996
.000973
.000951
.000931
.000911
.000891
.000873
.000855
.000838
.000822
.000807
.000791
.000777
.000763
.000749
.000736
.000724
.000712
.000700
.000689
.000678
.000667
.000657
.000647
.000637
.000627
.000618
.000609
.000601
.000592
.000584
.000576
.000568
.000561
.000554
.000546
.000539
.000533
.000526
.000520

a=.05

Zy

.119354
.116441
.113666
.111021
.108496
.106082
.103773
.101563
.099446
.097414
.095465
.093590
.091789
.090055
.088386
.086777
.085227
.083730
.082285
.080889
.079539
.078234
.076971
.075747
.074562
.073415
.072300
.071221
.070173
.069155
.068165
.067205
.066270
.065362
.064478
.063617
.062779
.061963
.061167
.060392
.059638
.058901
.058181
057479
.056794
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82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

a=.01
Zl 22
.000107 .078274
.000105 .076473
.000105 .076473
.000102 .074753
.000102 .074753
.000100 .073110
.000100 .073110
.000098 .071535
.000098 .071535
.000095 .070028
.000095 .070028
.000093 .068584
.000093 .068584
.000091 .067198
.000091 .067198
.000090 .065863
.000090 .065863
.000088 .064584
.000088 .064584
a=,10
zl 12
.031962 .807394
.023287 .683340
.018275 .587757
.015025 .514046
.012752 .456108
.011074 .409582
.009785 371498
.008765 .339796
.007936 .313020
.007251 .290118
.006674 .270313
.006183 .253023
.005758 .237783
.005388 224284
.005063 212229
.004775 .201398
.004518 .191615
.004287 .182736
.004078 .174641
.003889 .167231

.003717 .160423

a=,05
Zl 22
.000513 .056125
.000507 .055473
.000501 .054834
.000495 .054211
.000490 .053601
.000484 .053004
.000479 .052422
.000473 .051840
.000468 .051293
.000463 .050747
.000458 .050213
.000453 .049690
.000448 .049177
.000443 .048675
.000439 .048182
.000434 .047690
.000430 .047228
.000426 .046764
.000421 .046309
a=,20
zq Zy
.063480 .722374
.046211 .592487
.036275 .499781
.029839 .431370
.025336 .379105
.022011 .337982
.019457 .304826
.017432 .277548
.015789 .254723
.014429 .235350
.013284 .218704
.012308 .204243
.011465 .191577
.010730 .180386
.010084 .170428
.009511 .161510
.008999 .153476
.008540 .146203
.008125 .139587
.007749 .133543
.007406 .128000
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

a=.10
21 22
.003559 154147
.003414 .148341
.003280 .142957
.003157 .137950
.003042 .133280
.002936 .128916
.002837 .124828
.002744 .120992
.002657 .117384
.002575 .113985
.002498 1107717
.002426 .107744
.002358 .104873
.002293 .102150
.002232 .099566
.002174 .097108
.002119 .094769
.002067 .092541
.002017 .090414
.001970 .088383
.001925 .086441
.001881 .084583
.001840 .082803
.001801 .081096
.001763 .079458
.001726 .077885
.001692 .076372
.001658 .074918
.001626 .073518
.001595 .072169
.001565 .070869
.001537 .069615
.001509 .068404
.001482 .067235
.001457 .066105
.001432 .065012
.001408 .063955
.001384 .062931
.001362 .061940
.001340 .060980
.001319 .060049
.001299 .059146
.001279 .058270
.001260 .057419
.001241 .056593
.001223 .055790

3

.007092

.006804
.006538
.006292
.006064
.005852
.005654
.005470
.005296
.005134
.004981
.004837
.004701
.004573
.004451
.004336
.004226
.004122
.004023
.003928
.003838
.003752
.003670
.003591
.003516
.003443
.003374
.003307
.003243
.003181
.003122
.003065
.003010
.002957
.002905
.002856
.002808
.002761
.002717
.002673
.002631
.002590
.002551
.002513
.002475
.002439

a=.20

Z2

.122898
.118188
.113824
.109771
.105997

.102473

.099176
.096084
.093179
.090445
.087866
.085430
.083126
.080943
.078871
.076903
.075030
.073247
.071546
.069922
.068371
.066886
.065465
.064103
.062797
.061542
.060337
.059178
.058063
.056989
.055954
.054956
.053993
.053063
.052164
.051296
.050456
.049643
.048855
.048093
.047353
.046637
.045941
.045266

.044611

.043974
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69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

3

.001205
.001188
.001172
.001155
.001140
.001124
.001109
.001095
.001081
.001067
.001054
.001041
.001028
.001015
.001003
.000991
.000980
.000968
.000957
.000947
.000936
.000926
.000916
.000906
.000896
.000887
.000877
.000868
.000859
.000851
.000842
.000834

a=.10

L]

.055010
.054251
.053513
.052795
.052096
.051414
.050751
.050104
.049474
.048859
.048260
.047675
.047104
.046546
.046002
.045470
.044950
.044442
.043946
.043460
.042985
.042520
.042066
.041620
.041184
.040757
.040340
.039930
.039529
.039135
.038750
.038371

1

.002404
.002370
.002337
.002305
.002274
.002243
.002213
.002185
.002156
.002129
.002102
.002076
.002051
.002026
.002002
.001978
.001955
.001932
.001910
.001889
.001867
.001847
.001827
.001807
.001788
.001769
.001750
.001732
.001714
.001697
.001680
.001663

a=.20

Z2

.043355
.042753
.042168
.041599
.041045
.040505
.039979
.039467
.038968
.038481
.038006
.037543
.037091
.036650
.036219
.035798
.035387
.034985
.034592
.034208
.033832
.033464
.033105
.032753
.032409
.032071
.031741
.031417
.031100
.030789
.030484
.030185
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