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Ty, associated with the probability distribution of a future

experiment are developed based on information obtained from n

independent, previously conducted trials of an informative

experiment. The random outcomes of the informative and future

experiments are assumed to be continuous and identically distributed

according to a ICparameter exponential family, and the future

experiment is conducted independent of the informative experiment.

These intervals are of the general forms, S1(tx)=(1.(tx),c0),

S2(tx)=(-0x,II(tx)] and S3(tx)=[L(tx),U(tx)] where II(J, L(.) are

functions of tx , the observed value of a sufficient statistic

for the joint probability distribution of the random outcomes

from the informative experiment.

A general theory and procedure for deriving these prediction

intervals is developed using hypothesis testing procedures.

Optimal properties of hypothesis tests carry over to similarly

defined optimal properties of prediction intervals. The intervals



have the 'similar mean coverage' property (Aitchison, J. and

Dunsmore, I.R. (1975)).

The generalized Newton's method and the IMSL routines are

used for numerical computation of tables for the examples considered.

An application of the saddle point approximation, Barndorff

Nielsen, 0. (1983), for finding an approximate conditional density

function for sufficient statistics associated with the probability

distribution of the experiments is discussed.
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PREDICTION INTERVALS IN
EXPONENTIAL FAMILIES

I. INTRODUCTION

Statistical prediction analysis involves an informative and

a future experiment. Based on n independent random outcomes,

X1, Xn from the informative experiment, it is of interest to

construct a region that contains an outcome of the future

experiment, with a specified probability. This region is called

a prediction region for the future outcome, Y .

A prediction region is similar to a confidence set for a

parameter of a distribution. That is, before observing the

results of the informative experiment the probability is 1a

that we will obtain a region that will contain the outcome, Y, of

the futUre experiment.

Prediction methods are of several types as described by

Aitchison ,S. and Dunsmore, LR (1975). In 'Decisive Prediction',

a prior distribution on the parameter space of the probability

distributions and also a utility function are available. The

idea is to maximize the expected value of the utility function

over all possible prediction regions. The expectation is evaluated

with respect to the 'Predictive Density', Aitchison ,J. and

Dunsmore, I.R. (1975), of Y given A=(xl ' xn) . 'Bayesian

Informative Prediction' does not require specification of a
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utility function. The idea is to choose a prediction region so

that the predictive density is above some point in that region.

'Informative Tolerance Prediction' does not use a prior

distribution or utility function and it has two types, Mean

Coverage Tolerance Prediction and Guaranteed Coverage Tolerance

Prediction.

In this thesis we will work with the informative mean

coverage tolerance prediction. We are interested in developing a

technique for obtaining prediction regions by using hypothesis

testing methods. In Chapter II, we will formulate the prediction

problem for the one parameter exponential family of distributions

in terms of hypothesis testing results. Examples of one parameter

exponential distributions will be given in Chapter III and

prediction intervals will be obtained by using the method of

Chapter II. We will suggest an approximation method for some

cases. The generalization to the Kparameter exponential

distribution will be discussed in Chapter IV and an application

of a 'Saddle Point Approximation', BarndorffNielsen (1983) for

obtaining the density function of a sufficient statistic will be

considered. Chapter V has two examples of twoparameter

exponential distributions where prediction intervals are obtained

using the method described in Chapter IV.

Aitchison, J. and Sculthorpe, D. (1965), give a general

framework for Bayesian and nonBayesian prediction. Hahn, I. G.
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(1972) develops simultaneous prediction intervals for the standard

deviation of future samples when sampling from a normal distribution.

Faulkenberry, D. G. (1973), gives a method for obtaining prediction

intervals. The method is based on conditioning on a sufficient

statistic associated with probability distributions of the

experiments. Statistical prediction intervals for observations

of a future experiment is discussed by Olsen, D. E. (1974). In

his work discrete probability distributions associated with the

experiments are considered. Aitchison, J. and Dunsmore,

(1975) have a detailed discussion on types of prediction methods

and Chhikara, R.S. and Guttman, I. (1982) give prediction intervals

when sampling from an InverseGaussian distribution. They use

Bayesian Informative and Informative Tolerance prediction techniques.

Given a set of observations from a general linear model and having

prior distribution for parameters, Johnson W. and Geisser S.

(1982) develop a method for assessing the influence of specified

subset of the data when prediction of future observations is of

interest. We will not assume any regression type models and

construct prediction intervals which are based only on outcomes

of the informative experiment. The method of obtaining prediction

intervals in this thesis is developed under the assumption that

the probability distribution of experiments are from a continuous

exponential family, but the method can be applied to a general

case.
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II. PREDICTION INTERVALS IN ONE PARAMETER

CONTINUOUS EXPONENTIAL FAMILIES

In this chapter we will formulate the problem of deriving a

prediction region by using hypothesis testing theory. For the

special case of the one parameter continuous exponential family

it will be shown that the optimal properties of the hypothesis

tests carry over to similarly defined optimal properties of

prediction intervals.

2.1. Deriving. Prediction Regions Using Hypothesis Tests

Let X1, Xn be independent identically distributed,

(iid) random outcomes of an informative experiment and Y be an

outcome of a future experiment. In order that the informative

experiment should provide information on the future experiment,

there must be some link between the two experiments, Aitchison

and Dunsmore (1975). This link is through the probability

distributions associated with the experiments and is also through

an indexing set of parameters of the distributions. The common

assumptions are that the experiments are being conducted

independently, and the probability distributions are the same.

Let ( Po, 0 e 9 ) denote the probability distribution

associated with the experiments, f(.:0) be its density function,
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and let X be the sample space. A family of subsets S(X) of

the sample space, )C , is said to constitute a family of prediction

regions for Y based on X=(g1 ..... Xn), if the random set S(X)

covers Y with some specified probability. We have

S : x 0'

Definition 2.1: S(X) is called a 'Mean Coverage Tolerance

Prediction Region' of Cover (1a) for Y if

inf E0 [ P0 e S(X)) l=
0 8

inf f f f(y:0)f(1:0)dsdy =1a .

s e
xn s( ()

If E0[ Pent e S(X)1 l=(1a) for all 0 e e , then S(X) is called

a 'Similar Mean Coverage Tolerance Prediction Region' of Cover

(1a) .

We will obtain prediction regions by using hypothesis testing

procedures. It will be shown that these prediction regions are

similar mean coverage and also have some optimal properties.

To set up the prediction problem using hypothesis tests, let

X1' Xn be (iid) outcomes of an informative experiment with

density, (f(x:0x), Ox e Ox, x e)C ) and Y be an outcome of a
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future experiment with density, (f(y:0y), Oy a p y eX ),

where 8 /3c and py are parameter spaces associated with the

probability distributions of the informative and future experiments,

respectively.

Define a 'notional null hypothesis', Cox and Hinkley

(1974),

H : 9 =00 y x

concerning the true parameters of the experiments. Let Ha be

an alternative hypothesis and Aria(0y,0x) denote the acceptance

region of a size a test for testing Ho versus Ha.

Theorem 2.1: For each sample point (zjy) a )0 xX let

SHa(a)=t y: (Ea) a Alla(ey'eX) ). (2.1.1)

Then SHa(1) is a family of prediction regions for Y with

confidence level (1a) . If Alia(0y,Ox) is the uniformly

most powerful (1a) level region in a certain class of acceptance

regions for testing Ho versus Ha , then SHa( %) minimizes

[ Y SHa (X) for all 0
Y
,0

x
) eaP(0y,8x)

where, ea is the parameter space associated with Ha .
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Proof: By definition of SHa(X)

HHa(I) iff (x,Y) a Ana(0y,0x)

siht : .x

and hence

P(0y,0x){ Y SHa(I)
}

=P(ey,ex)I (LY) e AHa(ey'ex) 1=(1a)

for all (0y,0x) a 00 , where 00=1 (0y,0x) : 0i=02L) 1

Therefore SHa(1) is a family of prediction regions for Y with

probability, (1a) .

If %a( %) is another family of prediction regions for Y

with probability, (1a) and
Alia(ey'ex)=1 ("a) y a HHa(A)

then

P(eYex)f
(L Y) a AL(0y,0x)

=1:0 (ey,ex)( Y e }=(1a)

for all (0y,0 ) 8

So Ana(0y' x ) is the acceptance region of a level a test for

testing Ho versus Ha
AHa(ey'ex) is assumed to be the UMP in

a certain class of acceptance regions. Therefore
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13(ey,ex)f (% Y) a AL(Ely,ex) 1 >

11(ey,e1)( (11J) e AHa(ey'ex) I

for all (ey,0x) a ea

and hence

P(Oy,ex)( Y a 48(1) ) 11(ey,ex)f SHa( %)

for all toy,ex ) 8 ea

We note that the form of the UMP acceptance region depends

on the alternative hypothesis used and as a result the type of

prediction region, SHa(X), depends on the alternative hypothesis.

While it seems reasonable that using good or optimal hypothesis

testing procedures should result in good prediction, there are no

formulated criteria available for comparing prediction regions.

Similar criteria for comparing acceptance regions will carry over

to comparing prediction regions. Comparison of unbiased prediction

regions is discussed in section 2.3.

As an example of using an acceptance region to get a

prediction region, let X1 )111 be (iid) outcomes of an

informative experiment with probability distribution, normal

(ex,a2) and Y be an outcome of a future experiment with probability

distribution, normal OD ,a2 ) . It is assumed that a has a known

value. The (1a) level acceptance region for testing
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H : =0Ho y x

H
a

: 0y<0x

A (0 0 )=4 (y,x) : (1+1/n) -1/2 (yx)/a ZHa y' x (1a/2)

where, 1=( 1 xi)/n is the sample mean and Z(1_a/2) is

(1a/2) percentile of the standard normal distribution. From

(2.1.1) we have

SHa(A)=[ < i + a(1+1/n) 1/2Z(1a/2)

which is an upper limit prediction for Y with confidence level

1a.

2.2. The Theory For One Parameter Case

2.2.1. Formulation Of The Prediction Problem

In terms Of Hypothesis Testing

Definition la: A family of probability measures, P=(Pe: 0 09)

on a sample space, X is called a Kparameter exponential family

if, with respect to some afinite measure, g , it has densities

of the form

f(x:0)=C(0)exp[4(0)T(x)1h(x) (2.2.1)

where, C: Q:e --* RK, T:)( --* RK, h:X--*[0,c0) .
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Let random outcomes of an informative experiment,

represent independent and identically distributed, (iid) random

variables according to a one parameter continuous exponential

family of distributions with density function

f(x:Ox)=C(Ox)exp[8xT(x)]11(x)

and let a random outcome of the corresponding future experiment,

Y, be independent of the Xi's and distributed according to the

same family with density function

f(y:05,)=C(0y)exp[OyT(y)]h(y) .

The probability distributions are assumed to be absolutely

continuous. Therefore the afinite measure, µ , Definition 2.2,

is the Lebesque measure and the sample space, X is the real

line.

In some problems the density functions are not in the form

of the 'natural parametrization', Ferguson (1967), but they can be

reparametrized to get the desired form. The value of a future

outcome, Y, is not known but to formulate the prediction problem

using hypothesis testing techniques, we pretend at this point

that Y is observed like the
Xi 's. Hypotheses of the following

forms are of interest.
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1.

2.

3.

Ho: =0x y

Ho: Ox=0y

Ho: =0x y

vs

vs

vs

Hal: 8Y)ex

Ha2: ey<ex

Ha3: 0y00,

The choice of the alternative hypothesis depends on the form

of prediction region (interval) desired.

The joint density function of X,Y can be written as

f(m,y:ex,ey)--cn(8x)c(9y)exp E: T(xi)+0yT(y)] (2.2.2)

/1.1 h(xi)h(y) .

The density function in (2.2.2) is in the form of a two

parameter regular exponential family and therefore Ei.11 T(Xi)

and T(Y) are jointly complete and sufficient statistics for the

joint distribution of X and Y. Thus it is natural to reduce the

problem to the consideration of the sufficient statistics.

Let Tx= Et., T(Xi), Ty=T(Y), T=Tx+Ty and A=0y-Ox, then

according to Lehmann (1959), we have

f(tx:ex)--ctx (0x)exp[9xtx]htx(tx)

where, Ctx: Nix (0,02), Tx: Rn R, htx: R

(2.2.3)

[0,=)

f(t
Y
:0
Y
)=C

tY
(0
Y
)exp[0

Y
t
Y
]h
tY

(t
Y

)

and

(2.2.4)



where, Cty: ey --* (0,co), Ty:R --* R, hty:R [0,0)) .

T
x is independent of T By (2.2.3) and (2.2.4), the

joint density of Tx and Ty is

f(tx,ty 0,x,ey)--ctx (0x)Cty(0y)exp[extx+Oyty]

htx(tx)hty(ty)

which implies

f(ty,t:Gx 4)=Ctx(Hx)Cty( 0+49x)expOty+Oxt] (2.2.5)

htx(t ty)hty(ty) , ty I t

The density function in (2.2.5) is in the form of the two

parameter regular exponential family and therefore (Ty,T) are

complete sufficient statistics for 0,0x). Using (2.2.5), the

conditional density of Ty given t is

exp[3ty]htx(tty)hty(ty)
f(ty It,p)- (2.2.6)

ft

expOtylhtx(tty)hty(ty) , tylt

and with the new parametrization hypotheses of interest become

1. H p=p
0. 0

2. Ho: p=p0 0

3. Ho' p=p
0

VS

VS

VS

PO°

Ha2: P<Ho

H POOa 3' o

12
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where, po =0 and ex is a nuisance parameter. Existence of the

nuisance parameter ex does not allow us to find UMP tests for the

hypotheses. Thus in this thesis we will concentrate on unbiased

tests, Ferguson (1967).

Lemma 2.1: 0 =0y(=0), then the conditional density function

of Ty given T=t, under Ho is

f(t
Y
IT=t)

htx(tty )hty(ty )

ht(t)

Proof: If 49x=03,( =0), then ft.% and using (2.2.6) we get

htx (tty)hty(ty )

f(t IT=t)
Y

ht(t)

where, ht(t)= htx(tty)hty(ty)dty .=

(2.2.7)

The following Theorem is based on the method of finding

uniformly most powerful (UMP) unbiased tests in a Kparameter

exponential family of distributions, Ferguson (1967). Notations

will correspond to the cases where X and Y are from one parameter

continuous exponential families and the joint density of Ty and T

is given by (2.2.5). The Theorem can be generalized to the K-
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parameter case which will be stated in Chapter IV.

Theorem 2.2: Let fo=f(tyIT=t), (2.2.7), denote the conditional

density function of T given t under the notional null hypothesis,

no

(1)

if t > z(t)
4

°I. (t y'

0 if t < z(t)

is the UMP unbiased size a test for testing Ho versus Hai and

z(t) can be found from E
§=fto

[
1
(r

y'
T)IT]=a which is equivalent

to

(2) 02(t ,t)=

f dt =a .
z(t)

o y

1 if t < z(t)

0 if ty 1 z(t)

is the UMP unbiased size a test for testing Ho versus Hat and

z(t) can be found from E
11-130

[
2
(T

y'
T)11] =a which is equivalent

to

z(t)

fo ydt =a .
-KO

if ty < zi(t) or ty > z2(t)
(3) (t

3 y'
0 if z

1 (t) I ty < z2 (t)
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is the UMP unbiased size a test for testing Ho versus Hai and

zi(t), z2(t) can be found from

E
P=P0

[
3
(r T)111= a and E13=0 [T y03 (Ty'T)IT]=a EB=Bo [Ty T]

which are equivalent to

z2(t)
('z2(t)z2(t)

f dt =1a and t f dt =(1a) ji t f dt .

jz1(t) izi(t)
y o y y o y

Sometimes some work can be saved when under H
o

there exists

an ancillary statistic, V, for the joint distribution of Ty and T.

An ancillary statistic in this thesis is defined to be a statistic

with a distribution that does not depend on any parameters. If

an ancillary statistic exists, instead of finding the conditional

density, fo, we find the density function of V under Ho. For, by

Basu's Theorem given in Lehmann (1959), since T is a complete

sufficient statistic (C.S.S) for the joint distribution under Ho

and V is an ancillary statistic for the same distribution,

then they are independent.

The following Lemma, Lehmann (1959), will be used for

finding UMP unbiased tests when there exists an ancillary statistic

for the joint distribution of Ty and T under Ho.



Lemma 2.2: Suppose there exists an ancillary statistic,

V=G(Ty,T) for joint distribution of (Ty,T) under Ho Let filo(v)

denote the density function of V under Ho .

(1)

1 if v > z

cfi
1 (v)=

0 if v < z

16

is the UMP unbiased size a test for testing Ho versus Hal provided

G(T
Y1
T) is increasing in t for each t. z can be found from

E [
1(v)]=a

(2)

which is equivalent to

4°2 (v)=

0 if v > z

il if v < z

1: f1,10(v)dv=a .

is the UMP unbiased size a test for testing Ho versus Hat provided

G(Ty,T) is increasing function in t for each t. z can be found

from Ep=p0[02(V)] =a which is equivalent to

(3)

1 if v < z
1
or v > z

2
413(V)=

0 if z1 < v < z2

fao(v)dv=a .

is the UMP unbiased size a test for testing Ho versus Ha3

provided V=G(Ty,T)=a(T)Ty+b(T), a(T)>0 . z1,z2 can be found

from

El3=po [ 03 (V)l= a and Ep.i30[VCD3(V)]= a Efi...90[V]
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which are equivalent to

zi

z

fHo(v)dv=1 a and
2

vfliodv--(1 a) vflIodv

zi cc

A similar result holds if a(T)<0 , Lehmann (1947). 45i

(i=1,2,3) in Theorem 2.2 and Lemma 2.1 are a similar on the

boundary sets Obi O n and have Neyman Structure,

Ferguson (1967).

According to the following Lemma, Lehmann (1947),

zl, z2 in Lemma 2.2 (3) exist.

Lemma 2.3: Let 0<a<1, let f(x) be a density function of a random

variable, X with j'm xsf(x)dx<=, (s=0,1) then, there exist A,B

so that

cA

B
xsf(x)dx = a fa' xsf(x)dx, (s=0,1).

Remark: For any size a test, 45 if distribution of V under Ho

is symmetric about some point A, then Ep.00[Y]=A and we have

Ep=po[V 95(V)]=Ep=po [(VA) 45(V)+A (V)]

=AE
p=fto [ 95(V)]=Aa=a Ep=00[V].
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That is, if V under Ho has a symmetric distribution about

some point A, then any test of size a, , which satisfies

E0.00[45(V)]=a must satisfy Ep=p0IV 45(V)1=a Ep.po[V] and to

find acceptance region for Ho versus we we just solve

f
Ho (v)d a/2

for m where, m=z1 and 2Am=z2. A similar argument to the

above one holds when f
o in the Theorem 2.2 is symmetric about

some point, A.

2.2.2. Monotone Likelihood Ratio Family

of Distributions

Definition 2.3 : A real parameter family of distributions is

said to have a monotone likelihood ratio, if densities (probability

mass functions), f(w:0) exist so that for el < 02,

f(w:02)

f(w:01)

is a nondecreasing function of w, for all w in the set

of existence of f(w:01) and f(w:02).
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Lemma 2.4: Let W be a continuous random variable distributed

according to a one parameter exponential family,fle , with

the density function

f(w:0)=C(0)exp[OT(w)]h(w)

and cumulative distribution function, Fe(w), where

C: 0 , , , R

and T(w) is nondecreasing in w. Then, the family, Pe, has a

monotone likelihood ratio in w and for 02>01 , F82(w) < F91(w),

for all w in the set of existence of f(w:0).

Consider a random sample, from a one parameter

exponential family with density, (2.2.3) and let Y be independent

of the X.
,

(i =1,2, n) from the same family with density, (2.2.4).

By Lemma 2.4, the distributions of X and Y have monotone likelihood

ratio in T(x) and T(y), respectively. Recall definitions of

sufficient statistics Ty, Tx and T from section 2.2.1, and consider

the conditional density of Ty given T=t

f(ty It:8)
exp(Pty]htx(tty)hty(ty)

expOtypitx(tty)hty(ty)
4=

. (2.2.8)
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The distribution associated with the density function in

(2.2.8) has a monotone likelihood ratio in t
Y.

Therefore we

conclude that if X (Y) have monotone likelihood ratio family of

distributions, then the conditional distribution of Ty given T

has also a monotone 1 ikel ihood ratio. In section 2.2.1 we had

13=43y-ex, but in some cases in which a reparametrization is needed

to get natural parametrization for densities (2.2.3) and (2.2.4),

f3 can be defined as 13=g(0y-0x), with g(.) being nondecreasing and

13=0 whenever 0
Y

eg.

Lemma 2.5: Let the conditional density function of Ty given t be

given by (2.2.8), then

(1) Pr3.p1(Ty e (-0*,C2(t)] IT=t1 < Pp=r30(Ty a (--co,C2(t)] IT=t)

for all fii > f30 .

(2) P
fi=f31

(Ty a [C1(01=0 IT=t} < Pp=go (Ty (C1 (0,03) I T60-
for all pi < po .

(3) Po=pifTy a EC1(t),C2(011T=t1 < Pp=potTy a [Ci(t),C2(t)IIT=t1

for all fli # 130

where, peo and Ci(.), i=1,2 are functions of t .

Proof: Let FTYlt be the cumulative distribution associated with
13

conditional distribution of T given t, defined by,

FTylt(c(tv) =-r
P13
(T
y
< Ca) 1T=t) . Use Lemma 2.4 .

'



2.2.3. The Matchuv Of Hypothesis Tests and

Prediction Interval s

A. Ancillary Statistic Does Not Exist

Consider notations and results of section 2.2.1 and suppose

the joint distribution of T and T under H
o does not have an

ancillary statistic, V, and UMP unbiased acceptance regions for

testing Ho versus Hai are found using fo. (See Theorem 2.2.)

According to the results of Theorem 2.2, UMP unbiased

tests for testing Ho versus Hai, (i=1,2,3) are performed as

conditional tests given T=t and as a consequence acceptance

regions are found conditionally. According to our hypotheses

testing formulation of the problem in section 2.2.1, is the

parameter of interest and 0
x is the nuisance parameter. We

denote the conditional acceptance region of Ho versus Hai,

(i=1,2,3), by Ai(fillt). UMP unbiased tests provide UMP acceptance

regions, Lehmann (1959), therefore Ai(P(t) are UMP unbiased

acceptance regions. From Theorem 2.2 we have

A1(1310=f (ty,t) : ty < z(t) )

A2(pit)=( (ty,t) : ty > z(t) 1

A3(pjt) =f (ty,t) : zi(t) < ty < z2(t) ),

(2.2.9)
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where z(.) are functions of t. Lemma 2.5 identifies intervals

which have larger probabilities when parameters of the

distributions are assumed to be the same than if they are

different in some direction. The acceptance regions are

constructed under H
o and note that they have the same forms as

intervals in Lemma 2.5 . Therefore it would be a natural thing

to use acceptance regions to obtain prediction intervals.

Let A1(¢ ilt) be any of the acceptance regions in above.

Boundaries of these regions are functions of T6T
x+Ty which has

unknown value, because T is unknown. We define the prediction

region for T by

Si(tx)=( ty: (ty,t) s A (pit) )

22

so that Si(tx) can be obtained by solving /tow for Ty, where

T-:.Ty+Tx . Assuming z(J functions in Ai(S lt), monotone increasing,

the prediction intervals will be of the forms

Si(tx)=(..,17(tx)]

S2(tx)=[L(tx),c)

s3(tx)-11,(t,),u(tx)]

where, L(tx) and U(tx) are functions of tx ,a and n.

(2.2.10)
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S.(t ) are prediction intervals for Ty, but since T is ax Y'

function of single random variable, Y, then one can use simple

mathematical operations to get prediction interval for Y.

If z(.) are not monotone, then the acceptance regions

will not map necessarily onto prediction intervals of the same

forms. In the following we will give a sufficient condition for

z(.) to be increasing function of t.

Definition 2.4: The conditional family of distributions of Ty

given t, (under 110), is said to have a monotone likelihood ratio,

if the ratio

fTy 1t2 (ty)

fTy jti (ty)

is a nondecreasing function of ty whenever t2>ti, for all ty in

the set of existence of fTy
tl and fTy t2

Lemma 2.6: Suppose the conditional distribution of Ty given t,

under H
o' with density function

fTy I t(ty)=

htx(t ty)hty(ty)

ht(t)

has a monotone likelihood ratio, then z(.) are increasing

functions of t.
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Proof: Without loss of generality we will consider z(t) in holt).

Proofs for the other cases are similar.

Al(Slt) is constructed under Ho: ex=ey 0=00) and since

T is a complete sufficient statistic for the joint distribution

of (r T) under Ho , then the following conditional probability

statements, under Ho, do not depend on Ox . (See density function

2.2.5.) We use the method of proof given in Theorem (5), Olsen

(1974).

Pp.00( (Ty,T) a iti(S it) )=PTy it{ Ty < z(t) }=1a (2.2.11)

for all t. The probability associated with Al(olt) is exactly

1a for it corresponds to a test which has Heyman Structure,

Ferguson, (1967).

Using (2.2.11), we have

TYltif Ty < z(ti) "Ty It2 Ty < z(t2) )=1a

for any t1 and t2.

(2.2.12)

Consider t as a parameter of the conditional distribution of

Ty given t, (under Ho) and test T =t1 vs K2: T=t2 , t2>ti.

By NeymanPerson Lemma, the LIMP test of size a is

which is equivalent to

1 if R>c

0 if R<c
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if t >k
(1).

to if t

where R=
fTy I t2 (ty)

fTy Itl (ty)

and c , k are constants to make the tests, size a. Using

(2.2.11), (2.2.12) and having Eti(D) =a implies

sk z(tl)

fTy[tl(ty) dty fTylt1 (ty) dty = 1a,

ois unique, so k=z(t1). We also have

Et2(4"= / fTylt2
k

(ty) dty =Jr°
z( 1t)

fTylt2 y(t ) dty > Et1(1))

which implies

z(ti) < z(ti) IPTy It2 ( Ty )
PTy Itl (

and by using (2.2.12), we get

PTylt2( Ty I z(ti) )<P
Ty It2

Ty S. z(t2)

Therefore z(t2)>z(ti) and z(t) is an increasing function of t.

Using Lemma 2.6 we conclude that z(.) functions are

increasing if
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htz"2-ty)

htz(ti-ty)

is nondecreasing in ty, whenever t2>t1 .

B. Ancillary Statistic Exists

Suppose the joint distribution of Ty and T under Ho has an

ancillary statistic, V=G(Ty,T) . According to Lemma 2.2, UMP

unbiased acceptance regions for testing Ho versus Hai, i=1,2,3,

are found using the density of V under Bo. From Lemma 2.2 we

have

Al(B)=( v: v < z )

A20).( v: v > z )

A30)--f v: zi < v < z2 )

where, z, z1 and z2 are constants not depending on t. V=G(Ty,T)

in Lemma 2.2 is assumed to be an increasing function of T for

given t, therefore G-1(J will be increasing in V for given t.

Since the conditional density of Ty given t, (2.2.8), has a

monotone likelihood ratio in ty, we conclude that the conditional

distribution of V given t has also a monotone likelihood ratio.

This can be seen easily when V=a(T)Ty+b(I), a(I)>0 . From

(2.2.8) we have



f(v1t:S)=
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exp[Sv/a(t)]htx(t- (v-b(t))/a(t)lhty((v-b(t))/a(t))

exp[HvIa(t)]htx(t- ( vb(t))/a(t))htyf(v-b(t))/a(t)Jdv
-=

where, Q(T)=a(T)T+b(T) .

Using the above argument and Lemma 2.4 we have

Pp=p1( VIC2(t) 1T=t 1<12p=p0( V<C2(t) 116t ) for all 13140

pp.pif vlyt) 17=t Ilpp=pot V >C1(t) 1T=t for all typo

Po=pit cim< V <C2(t) 1 T=t )<Pp=p0( C1(45_ V <C2(t) { T=t )

for all ypo

where, C1(t) and C2(t) are functions of t. Therefore the

acceptance regions Ai(S) have larger probability under Ho than

under Hai. Similar to the previous case we define a prediction

region for Ty by

Si(tx)=( ty: v s A1(0)

so that Ai(S) are solved for t by writing V as a function of

T
x and T. The prediction intervals will be of the forms

Sl(tx)=(-=,U(tx))

S2(tx)=[L(tx),..]

S3(t )=IL(tx),U(tx)]

(2.2.13)



provided, G-1(.) is an increasing function of t. For example

if V=a(T)T +bell, then we need (V b(T))/a(1) to be increasing

in T.

2.3. Unbiased Prediction Intervals

and Optimal Properties

Using the acceptance regions we get prediction intervals

which are based on the assumption of equal parameters . If the

parameters are not the same it seems natural to require the

intervals to have small probability of coverage in some sense.

Definition 2.5: Suppose the Pex is probability distribution of a

random sample, ..... and the Pey is probability distribution

of a random variable Y, which is independent of g =( %1, )111).

(1) (a,U(x)] is said to be a (1a) level unbiased prediction

interval for Y iff

1. Eex[PeytY a (-418,U(I)l)]=1a

2. Eex(PeyfY a (=,U(X)l)]<la

for all 0y=0x

for all 0 >0y x

(2) [1.(x),=) is said to be a (1a) level unbiased prediction

interval for Y iff

1. Eex[PeyfY a [L(X),02))]=1 a

2. Eex[PeyfY a EL(X),00)]<1 a

for all 0y 0x

for all 0y<0x

28
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(3) [1.(x),II(x)] is said to be a (1a) level unbiased prediction

interval for Y iff

1. Eex[Poy[Y a [1.(1),U(X)D]=1a

2. Eex[Pey[Y a [L(X),U(X)ill<1a

for all 0
Y
=0

x

for all 040T x

where, L(X), U(X) are functions of X, a and n.

For each of the prediction intervals in Definition 2.5 the

first condition is the property of a 'similar mean coverage

tolerance prediction region' of cover (1a). (See Definition 2.1.)

Definition 2.6: (*,11(x)] is said to be (1a) level uniformly

most accurate unbiased prediction interval for Y, if it is (1a)

level unbiased prediction interval and for any other (1a) level

unbiased prediction interval, e(x) for Y,

Eex[Pey[Y s (=07(I)D1 < Eex[Peya a S'(1)1)

for all 0y>0 . Similar definitions hold for the other cases.

Optimal property of the prediction intervals can be stated

as follows. Let S(X) be a prediction interval for Y and assume

it is constructed under the assumption of equal parameters, ex

and Oy , so that it has more probability coverage under such

assumption. It is natural to define Pey FY e S(I) 1 as a measure

of undesirability when in fact the parameters are unequal in some
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direction. We would like to have a prediction interval which

minimizes the measure. X=(11 ..... Xa) is random and therefore

PAyCY 13 S(X) ) is also random and it is reasonable to minimize

the expected value of undesirability, EexPey fY a S(%))].

Theorem la: Assume distributions of 1 (Y) have monotone

likelihood ratios, so that the conditional distribution of T

given T has also a monotone likelihood ratio. Consider prediction

intervals in (2.2.10), obtained from UHP unbiased acceptance

regions Aiolt). These intervals minimize the corresponding

measures of undesirability.

Proof: Without loss of generality we will establish optimal

property of Si(ta)=(-40,17(ta)). Proofs for the other cases

are similar. Let 951 be any unbiased size a test for testing

Ho versus Hal, with (1a) level unbiased acceptance region,

Al(pft) and (1a) level unbiased prediction interval Si(ta).

yty,t) being unbiased test of size a, implies that it

is a similar on the boundary set and

E *(T T) 1=t1Az, ft 1 y'

in the boundary set , Ferguson (1967) .

Power of

for all (ft,Ox)

is maximized if and only if
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nix Eex,fiE 44(Ty,T) 3 for p>po and all Ox

subject to E(0,0)[ 041:(Ty,T) ] =a ,

for 11=130 and all E(43x=49y).

Since T is a complete sufficient statistic for ex under

Ho and 45
1
* is a similar on the boundary set, then 4)

1
* has

Heyman Structure, Ferguson (1967).

that is

Eex 45I(Ty.,T) 1=

Eex[Ep [ 011(T3,,T) T ]] =a

for all (11,0x) in the boundary set.

or

Therefore the maximization problem is equivalent to

mix Hex Ep 44(Ty,T) t T , for PHO and all Ox

subject to 110(Ers[ 4141(Ty,T) I T ]3=a,

for ii=flo and all 9(0x=43y)

min Eex [Pp( Ty s 4.01t) A for p>po and all Ox4010
subject to E0(Pfi

[ Ty 1
e 4(13 it) }3=1a

for p=po and all 0=(49x= 9y)

but (ty,t) e 4010 iff ty a Si(t1)
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and the maximization problem is equivalent to

min EOx [11Oy 1
[S*(Tx)]] for all 0y>0x (2.3.1)

*
Sl(tx)

subject to Ee[Pe[St(Tx)]]=1a for all 0=(0x=0y) .

By Theorem 2.2 we know 01(ty,t) is the IIMP unbiased for

testing Ho versus Hal, so using 411 4 r 0 and its corresponding

regions in the above equations, we conclude that Si(ta) minimizes

the expected value of measure of undesirability. By (2.3.1) and

unbiasedness property of Si(ta) we have Eea[Pey(S1(Ta))]l1 a for

all 0y>0x, so S
1
(tx) is unbiased prediction interval and has the

optimal property.

A similar argument to Theorem 2.3. holds for the case that

an ancillary statistic for joint distribution of (Ty,T) under Ho

exists. The prediction intervals in (2.2.13) are also the (1a)

level UMAU prediction intervals for Ty.
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III. EXAMPLES: ONE PARAMETER CASE

3.1. The Normal Distribution With Known Mean

Suppose X1,%2, Xn is a random sample from a normal

distribution with the density function

f(x:p,a!)=(2na!)-1/2 exPI-(24)-1 (x-µ)21

and Y is independent of the Xi, (i=1,2 n), with the density

function

f(Y41.0;)=(2114)-1/2 exp[-(20;)-
1(

9
02]

where p is assumed to have a known value and ax>0, ay>0 .

Xi is a sufficient statistic for the joint

distribution of X
1

2
iXn and Y is a sufficient statistic

for the distribution of Y . Without loss of generality assume

that p=0 .

2 _Using ex= -(2nax2 )
-1

Dy= -(2707y)
-1

, -ey-ex

Tx= El=i Xi , Ty=Y2 and T6Tx+Ty we have

l(t-t )
n/2 -1 (t )-1/2

f(t

exPIPt l(t-t )n/2 -1
(4. 1-1/2 dt
..y, Y ' Y

t <t



which has a monotone likelihood ratio in t .

Under Ho :a lc
=ay' V=G(T

Y'
T)=a(T)T

Y
, a(T)=1/T, is distributed

according to Beta(1/2,n/2) distribution, Bickel and Doksum

(1977). Therefore V is an ancillary statistic for the joint

distribution of (T
y'
1) under H

o
and we can use Lemma 2.2 instead

of Theorem 2.2 We have

(1)
P=Po iff a =a

Y x

p>(000 iff ay>(<)a , peo .

34

(2) V is increasing in t for each t. Therefore the conditional

distribution of V given t with parameter p, has also a

monotone likelihood ratio.

(3) V/a(T) is increasing in T. Therefore acceptance regions

will map onto the same form of prediction intervals. (See

section 2.2.3 (B).)

One Sided Ulmer Limit Prediction Interval

(1), (2) and (3) imply that the acceptance region

Al(H)=( v: v<z ) must be used where z , according to Lemma 2.2,

is found from

n((n+1)/2)
fuo(v)dv =a fRo(v) v-1/2(i_v)n/2-1

z n(n/2)n(1/2)



0( v (1, n(k)=
0

for integer k>0.

By using Aim we get

35

dx for real number, k and a(k)= (k -1)!

Si(tx)=[0,txz/(1z)]

which is the (1a) level uniformly most accurate unbiased (IMAM

upper limit prediction interval for Ty. Since Ty/Tx has

Fdistribution under Ho , then nz/(1z) is (1 -a) percentile of

Fdistribution with (1,n) degrees of freedom.

One Sided Lower Limit Prediction Interval

A similar argument to the previous one holds and we use

A2(S)={ v: v>z where z is found from

fz

J
fHo (v)dv =a

O

By solving A20), the (1a) level UMAU lower limit prediction

interval for T is S
2(t )=It xz/(1z),40). nz/(1z) is a percentile

of Fdistribution with (1,n) degrees of freedom.
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Two Sided Prediction Interval

According to (1), (2) and (3), we need to use the acceptance

region A30).( v: zl< v <z2 where z1 and z2 are found from

1

:1 1

fft(v)dv=1a and fzi vf1o(v)dv=(1a) vflio(v)dv (3.1.1)

:2 z2 0

It is easier to obtain equaltailed prediction interval.

That is, assume the distribution of V is symmetric about some point

when Ho is true. In this case second equation in (3.1.1) is not

needed (See the remark in section 2.2). To get right values

of z1 and z2 , in this case we need to solve the two equations in

(3.1.1), for Beta(1/2,n/2) is not a symmetric distribution. zi

and z2 can not be found in a closed form so an approximation

method is needed.

The Generalized Newton's Method

Consider a system of two equations

fM(a,b)=0

1K(a,b)=0

where, M(,.) and I(.,.) are some functions of a and b. We will

use Young and Gregory (1972), to explain the 'Generalized Newton's

Method' by which values of a and b for the above equations can
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be found approximately. We find

a M(a,b)
M
ao a= ao

as

Mbo

a M(a,b)

8 b
I b=bo

a K(a,b)

Kao la"0
8 a

Kbo
a K(a,b)

a b
b=bo

where a
o and b

o are initial values for a and b , respectively.

If M(ao,b0)==0 and W(ao,b0)==0 , then sic, and 1)0 are the right

values of a and b. Otherwise we find

/=Kao Mbo Mao Kbo

aril° ( M(ao'bo)Kbo )1(ao,b0)%0 )/S

bi=b0 + ( B(ao,b0)Mao M(ao,b0)Kao .

If Wal,b1)==0 and K(al,b1)=0 , then al and b1 are the right

values of a and b. Otherwise we let ao=a1 and bo=bi and repeat

the above steps until roots of the equations can be found.
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Consider the following facts about the Beta distribution.

Fact I: Suppose a random variable, X, is distributed according to

Beta(r,$), s>0, r>0, 0< x <1 . Then

n(r+s)
(1) f(n)r, xr-1(1 _x)s-1

n(r) n(s)

r

(2) xf(x)= -----f(y) where, Y Beta(r+1,$)
r+s

r

(3) WU
r+s

Fact II Let X Beta(r,$) , 0 < < 1 , r>0, s>0 ,

and

n(r+s)
M(a,b)=. ib

a n(r) n(s)
xr(1-x)s-ldx -(1-a)=0

n(r+s+1)
K(a,b)= J :r(1-x)s-ldx -(1-a)=0 . Then

a n(r+1) n(s)

3[M(a,b)] n(r +s)

Ma-
ar-1(i _a)s-1

as n(r) n(s)

n(r+s)

br-1(1-b) s-1
n(r) n(s)

u(r+s+1)

n(r+1) n(s)
ar(1 a)s 1



and

and
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n(r+s+1)
Kb-

n(r+1) n(s)
br(1 -b)s -1 .

Using Fact I equations in (3.1.1) can be written as

z2 n(n/2+1/2)
v-1/2(2_0n/2 -1dv=1-a (3.1.2)

z1 n(1/2) n(n/2)

(22 n(n/2+3/2)

J22 n(3/2) n(n/2)

respectively.

v3/2 -1 (1-v)n/2 -1dv=1-a ,

We apply Fact II and the Generalized Newton's Method along

with MDBETA routine in IMSL library to obtain approximate values

of 2
1

and z
2 in (3.1.2) . Values of z1 and z 2

are given in

table A. Solving A3(B) for ty, we get

S3(tx)=[tx22/(1-21),tx22/(1-z2)] .

Note that when µ is not zero prediction intervals for

(T-02 are

S2(tx)=[0,t:2/(1-2)]

S2(tx)=It:2/(1-0,02)

S3(tx)=[t:21/(1-21), * /(1-x2)]
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where, tx= L, 1=1 (xi-02 and z , xi , z2 are defined as

before for each case.

Remark: X Normal (g,a2) iff exp(X) Lognormal (a..02).

Using results of Example 3.1 and the relationship between

Normal and Lognormal random variables, the prediction intervals can

be obtained when sampling is from Lognormal (11,02) distribution

with known g .

Numerical Example:

Each run of a process produces a large batch of ball

bearings whose diameter (mm) are normally distributed with known

mean, 11=8 (mm) and unknown variance, a2 . From a particular

batch a sample of 15 ball bearings is chosen at random and

their diameter are found to be

8.07 , 8.15 , 8.06 , 7.79 , 7.85 , 8.02 , 8.07

8.17 , 8.11 , 8.09 , 7.96 , 9.02 , 8.20 , 7.97 , 8.12.

Suppose the process is to be run in future. For a randomly

selected ball bearing from a batch, find .90 level, one and two

sided prediction limits for its squared deviation of diameter

from 11 =8 (mm) .

According to the notation used in Example 3.1, we have
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t:= ):: k (xi-02 =1.2061 , n=15 .

Upver Limit Prediction:

Si(tx)=[0,4z/(1z)]=[ 0 , 0.246848]

where, nz/(1z) = 3.07 is 90th percentile of Fdistribution

with (1,15) degrees of freedom.

Lower Limit Prediction:

S1(tx)=[4z/(1z),)=(0.00131 , =)

where nz/(1z) =0.0163 is 10th percentile of Fdistribution

with (1,15) degrees of freedom.

Two sided Prediction:

S3(tx)=[4z1/(1zi),txz2/(1z2)]=[0.000962 , 0.601519]

where z1=0.000797 and z2=0.332769 are found from Table A

for n=15 and a=.10 .

3.2. The Normal Distribution With Known Variance

Let X1, XII be a random sample from a normal distribution

with the density function

Lka;wx,"k4 exP[ -1/2a2 (x-01)2],
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and Y be independent of the Xi, (i=1,2 ..... n) with the deniity

function

f(y:Oy,a)=(2na2 )-1/2 exp(-1/2a2 (y-07)2]

whereais known and XeR,Ye R.

Tx=E11.1 Xi and T =Y are sufficient statistics for

the distributions of al Xn) and Y, respectively. Without

loss of generality we assume, a=1 .

f(ty,tx :0x,0y)=(n-1/2/20exp [(-1/2)(n+0;)] (3.2.1)

exp[extx+Oyty]exp[(-1/2)(tl/n + t p)]

Let B=(9y-Ox)/(1/n+1), 1,=(nOn+6y)/(n+1), U=Ty-Tx/n and

T=Tx+Ty . Then (3.2.1) implies

f(u,t:B,y)=C(P,y)exp[pu+Tt]h(u,t) (3.2.2)

where coo) and h(u,t) can be obtained from (3.2.1). But we

will not need these for deriving the prediction intervals. U is

increasing in Ty and is being used for simplicity. The statistic,

V defined by

V=[(n+1)/20-1/2 U

=[(n+1)/n]-1/2 Ty -[n(n+1)]-1/2 T

=a(T)T +b(T)



is increasing in Ty for each t and under H0:0y=0x has standard

normal distribution. Therefore V is an ancillary statistic

and Lemma 2.2 will be used instead of Theorem 2.2. We have

(1) P=P0 iff ep 8z

13>MP0 iff Oy>(<)ex P0=0
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(2) V is increasing in T for each t. Therefore the conditional

distribution of V given t with parameter p, has a monotone

likelihood ratio. (See section 2.2.3 (M.)

(3) [Vb(T)]/a(T) is an increasing function of T. Therefore

acceptance regions will map onto the same form of prediction

intervals. (See section 2.2.3 (B).)

(4) The distribution of V under Ho is symmetric about zero.

Hence the remark in section 2.2.1 applies.

One Sided Boner Limit Prediction Interval

(1), (2) and (3) imply that Ai(11) =(v : v<z I must be used,

f

z

where according to Lemma 2.2, z is found from f H0(v)dv=1a.

Having the value of z from the table of the standard normal

distribution and using Al(B) , the (1a) level upper limit UMAII

prediction interval for Y is

Si(t=) =( = ,(tx/n)+z(l/n +1)1/2].
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One Sided Lower Limit Prediction Interval

A similar argument to the above one holds. Using

A2(0)[ v: v>z ], the (1a) level lower limit UNAU prediction

interval for Y is S2(tx)=[(tx/n)z(1 /n +1)1/2, = ) , where z is

a percentile of the standard normal distribution.

Two Sided Prediction Interval

According to (1), (2) and (3), A3(P)=[ v: zil v 1z2 must

be used. From property (4) we have, z2=z1 where z2 is the (1a/2)

percentile of the standard normal distribution. (1a) level UNAU

prediction interval for Y is

s3(t.).[(t.in)+z (1121 +1)1/2),(t./n)+z2(1 /n 41)1/21.

Remark I. If a #1 , then

Si(tx)=( 02 Atx/n)+az(lin +1)1/2]

S2(tx)=[(tx/n)+az(1/n +1)1/2, co)

S3(tx)=[(tx/n)+azi (1/n +1)1/2, (tx/n)+az2(1/n +1)1/2]

where z, z1 and z2 are defined as before for each case.

Remark II: X Normal (g,a2) iff exp(X) Lognormal (11,a2)

Usingresultsof Example 3.2 and the relationship between

Normal and Lognormal random variables, the prediction intervals
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can be obtained when sampling is from Lognormal (µ,a2) distribution

with known a .

3.3. The Negative Exponential Distribution

Suppose is a random sample from a Negative

Exponential distribution with the density function

f(x:7x)=1/7x aap[a/yx] , yx>0, x>0

and Y is independent of the Xi, (i =1,2, n) with the density

function

f(y:7y)=1/yy exp(y/yy] , yy>0, y>0 .

The Negative Exponential family with the above density

functions is a monotone likelihood ratio family.

(Tx221.1 Xi, Ty=Y) is a sufficient statistics for the joint

distribution of (;,Y). Let 9x=-1/yx, Oy= '4/Ty S=(0yOx) and

T=Tx+Ty. We have,

exp[St ](t t ) n-1

f(tY t:13)= St
exp[Sty](tty)n1

, tyit

0

Under null hypothesis, Ho: yy=yx , V=G(Ty,T)=a(T)/T,

a(T)=1/T, has Beta(1,n) distribution, Bickel and Doksum (1977).



Therefore V is an ancillary statistic for the joint distribution

of Cyal under Ho and we can use Lemma 2.2 instead of Theorem

2.2 . We have

(1)
P=Po iff yy=yz Y

iff 0 =0

pm% iff yy>(<)yx iff Oy>(<)Ox , 00=0 .
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(2) V is increasing in T for each T. Therefore the conditional

distribution of V given t with parameter 0, has a monotone

likelihood ratio. (See section 2.2.3 (B).)

(3) V/a(T) is an increasing function of t. Therefore

acceptance regions will map onto the same form of prediction

intervals. (See section 2.2.3 (B).)

One Sided Uvver Limit Prediction Interval

(1), (2) and (3) imply that Ai(13) =(v : v<z ) must be used.

f

z

According to the Lemma 2.2, z is found from fHo(v)dv=1a ,

-4X)

where fHo(v) is density of Beta(1,n). Using A1(13) , the (1a)

level upper limit UMAU prediction interval for Y is

Si(tx)=(,txz/(1z)).

Since nT
Y
/T

x
under H

o has Fdistribution with (2,2n) degrees

of freedom, then nz /(1 z) is (1a) percentile of Fdistribution

with (2,2n) degrees of freedom.
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One Sided Lower Limit Prediction Interval

A similar argument to the above one holds. Using

A2(0.4 v: v>z 1, the (1a) level lower limit UMAU prediction

interval for Y is S2(tx).=[txz/(1z), m ) . nz/(1z) is a

percentile of Fdistribution with (2,2n) degrees of freedom.

Two Sided Prediction Interval

According to (1), (2) and (3) we need to use the acceptance

region A3(1)=( v: zl< v <z2 ). Using Lemma 2.2, z1 and z2 are

found from

Szl
fHo(v)dv=1a and fzi vfHo(v)dv=(1 a) Ello(V) (3.3.1)

z2 z2

where Elio(V)=1/(n71-1) .

Equations in (3.3.1) can be written as

and

respectively.

(1z1)n (1z2)n =(1a)

z1(1z1)n z2(1z2)n

(3.3.2)

However it is impossible to solve the equations in (3.3.2)

and find z
1
and z

2 in terms of n and a, in closed forms. Hence

an approximation method like the 'Generalized Newton's Method'

given in Example 3.1 must be used. According to the notation

used in Example 3.1 we have



M(a,b): (1-a)n-(1-b)n-(1-a)=0

K(a,b): a(1-a)n-b(1-b)n=0

8[M(a,b)]
M
a
- n(1-a)27-1

8a

(3.3.3)

8[M(a,b)]

Mb= -n(1-b)fr-1
8b

8[K(a,b)]
Ka- -(1-a)n'4[(1-a)-na]

8a

8[K(a,b)]
Kb= =(1-b)lt-1[Ab-(1-b)] .

ab

Using the equations (3.3.3), a program is written for the

Generalized Newton's Method and values of z1, z2 for the equations

(3.3.2) are listed in Table B. Using the acceptance region

A30), the (1-a) level UMAU two sided prediction interval for T

is

S3( ti)= I tazi / (1-zi),txz2I(1-z2)] .

A Numerical Ezamule:

The time (hours) of first failure of an electrical device is

48
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assumed to be distributed according to the Negative Exponential

distribution. 15 of this particular device are selected from

production line at random and the times to first failure of each

are found to be

62 , 74 , 19 , 18 , 209 , 409 , 57 , 46 ,

13 , 29 , 231 , 46 , 5 , 25 .

If we are to select another device of the same type,

a natural question to be ask is concerned with the maximum time

period that the device can work before it fails. Suppose an

answer to the question is to be given with .90 level confidence.

According to our notation in Example 3.3,

tx=Ei=1. xi = 1243 n=15

and the upper limit prediction interval is

Si(tx)=[0 , tiz/(1z)] , 206.338].

where nz/(1z)=2.49 is 90th percentile of Fdistribution with

(2,30) degrees of freedom. Therefore based on the 15 previously

observed values, we predict with .90 confidence that the device

might work 206.23 hours before it fails.

If the question is how early a randomly selected device can

fail, then we need to find a lower limit prediction interval
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S2(tx)=[txx/(1x), 02)=[8.759 , 02 )

where nz/(1z)=0.1057 is 10th percentile of Fdistribution

with (2,30) degrees of freedom.

For two sided prediction interval, we have

S3(tx)=[txxl/(1zi),txx2/(1z2)]=46.7335 , 359.3905]

where, zi=0.005388 and z2=0.224284 for n=15 and a=.10

are obtained from Table B.

The above prediction intervals are based on assumption that

quality of production of the device remains unchanged over the

time. That is to say, the probability distribution associated

with the time of failure of the device is exponential with fixed

unknown parameter over the time.

3.4. The Weibull Distribution With Known Shape Parameter

Let be random sample from a Weibull distribution

with the density function

f(x:a,y)=(7/11) x7-1 expExTbil µ >0 , y>0, x>0 (3.4.1)

The shape parameter, y is assumed to be known. The density

function in (3.4.1) is a one parameter exponential family and has
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a monotone likelihood ratio in x.

Define W=XY . Then

f(w:p)=(1/p) exp[w/g1 , p>0, w>0

which is the density function of a Negative Exponential distribution.

Using the results of Example 3.3 the prediction intervals for a

future outcome based on observed values of X1 %n are

s2(tx)=t0, ft,z/(1z)11/Ti

El(tx)=Utiz/(1z)11/I,=)

E3(tx)=[(txz2/(1z2) 117,(txx2/(1z2))1/Y]

tx=2:1-1 xi and z, z1 and z2 are defined as in the Example 3.3.
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IV. GENERALIZATION OF THE PREDICTION PROBLEM

TO KPARAMETER CASE

In this Chapter we will generalize the method of obtaining

prediction intervals when the distributions of informative and

future experiments are from a Iparameter exponential family.

4.1. Formulation Of The Problem In Terms

Of Hypothesis Testing

Let XII be (iid) random outcomes of an informative

experiment with the density function

f(x:Ox)=C(0x)exp[AxT(x)]h(x)

where TOO and ex are Kdimensional realvalued vectors. Suppose

Y is as yet an unknown outcome of a corresponding future experiment,

independent of the Xi,(i=1,2 ..... n) and with the density function

f(r0y)=C(0y)exp[lyT(y)]h(y)

where 0 is also a Kdimensional realvalued vector.

Since Y is a single random variable then all components of

0 are not identifiable. We will assume

ey--(ely"T) ex=(elz,Y) and y=(02 0k)
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Hypotheses which will be considered are

H 0Ho: 91z=8

H 0 =0Ho. lx ly

H 0Ho:
lx=0ly

vs Hal: ely>elx

vs Hat' ely)elx

vs Ha3:

The joint density function of ( %,Y) is

(4.1.1)

f(A,y:evey).cn(9.)c(9y)exp
RI'lx I] 11.1 Tiud+elyTl(y)]

exp[ ejc Tj(xi)+Ti(y))]n11.1 h(xi)h(y). (4.1.2)

Let Tix= , Tiy=Ti(y) , TrTix+Tiy,

Tx=(Tlx Tkx) , Ty=(Tly,. ,Tky) , T=(Ti,T2 , Tk) and

15=e1y 441x' (j= 2, then the density in (4.1.2) can be

written as

"E'Y:1317'elx)=Cn(elx 00C(13+01x,T)exp[ST1 y+01,T1] (4.1.3)

exp( j=2 OjTj] n1.1 h(xi)h(y)

which is the density function of a 1E+1 parameter exponential

family. By factorization Theorem, Lehmann (1959),

(T1y,T1 , Tk) are jointly sufficient statistics for
(0'elx'T)'

Similar to Chapter II, we reduce the problem to the consideration

of the sufficient statistics. 16(T1,T2 Tk) is a complete and

sufficient statistic for (0x,y) when Ho is true. Thus for testing

the hypothese we need the conditional distribution of Tly given t.
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According to Lehmann (1959), we have

f(tly:ey)=Ctl y(6y)exp[Olytly]htly(tly)

f(kx:ex)=Ctx(ex)wxPEelxtlx+ 1:1.2 ejtjxiihtx(tx)

which implies

f(tly:6y)f(tx:9x)=f(tly,ti,t2x kkx: 11,4301x,Y) (4.1.5)

=Ctly( P+01x,y)Ctx(Ox)expOtly+Oixti+ /j k 8jtjx1
htx(titiy,t2x tkx))htly(tly) .

(4.1.4)

Using (4.1.5), the conditional density of Tly given t can be

written as

exp[fttly]htx(titly,w2 w
k))htly(tly)

f(tly t:0)= (4.1.6)
exp[fitly]htx(titly,w2 wk)htly( tly)dtlym

where wi=tj K(tly) , tjk= Ij(tly) , j=2,3 k , for some

functions ly.) , because Y is a single random variable and all

components of Ty=(Tly,. .,Tky) can be obtained from Tly .

The conditional density function in (4.1.6) is the density

function of a one parameter exponential family and therefore has

a monotone likelihood ratio in Tly . (See Section 2.2.2.)

When an exponential family has more than one parameter,

it is difficult and sometimes impossible to find htx(.) for

the density function of tx,
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Saddle Point Approximation, Barndorff-Nielsen (1983)

Let In be (iid) random variables with the density

function

where

f(x:0)=C(0)expI0 T(x)]h(x)

T : X Rk0 :8 Rk

h : X R C : () (0,04.

The 'Saddle Point Approximation' to the density function of

Tn= Eijl_i Tad is

f(tx:0)c2(22T)k/2 li(9)F1/2 exp[04tx]

[C(0)C-1(9)ln

(4.1.7)

A
where 0 = Maximum Likelihood Estimator of 0

and
- 32 Log f(x:0)

i(6) = 19=0
a2 e

is the observed Fisher Information Matrix. The order of the

approximation is 0(n-1) .

According to the Saddle-Point Approximation, htx(*)
in

(4.1.4) is approximated by

ii(gx)1 -1/2 exp[(24x)tx]C-n(8x)

where, ex is the Maximum Likelihood Estimator of On based on

xn
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EXAMPLE I. The Negative Exponential Distribution

Let X1, Xn be a random sample with the density function

f(x:0)=0 exp[0 x] , 0>0, x>0 .

Tx= E1.2 Xi is a sufficient statistic for the joint

distribution of X
1 Xn . We have

Z=n(tn)-1

I L(A) I 1/2 .n3/2(tx)-1

Cn(4)=(tx /n)n

Using (4.1.7), the SaddlePoint Approximation to the density

function of Tx is

f(tx:0)Z

A A
(0)11 t:lexp(-0tx]

(2n)1/2 n(w-1/2)nig_n]
(4.1.8)

which is the exact density function of Tx except for the

denominator part which is an approximation to g(n) according to

Stirling's formula. The negative exponential distribution

belongs to a one parameter exponential family. Therefore we

could have obtained the exact distribution of Tx which is

Gamma (n, 0)



57

Example II. The Gamma Distribution With Unknown

Parameters

Let X1 ,...,X be a random sample from a Gamma distribution

with the density

f(x:p,y)=(y)P exp[(p-1)Log(x) Tx] IT-1(p)

where, x>0 p>0 , y >0 . We assume that p is large so that

the Stirling's Approximation to n(p) can be used.

Txm( T1x=2:1=1 Xi , T2x=2:1.1 Log(3i) ) is a twodimensional

sufficient statistic for the joint distribution of X2,,Xn and

we have

ik5[1.0g(tixin) t2X/n]-1

A A
Ym(nP)/tlx

li(;),;) 1/2 = (2;)1/2 ; In

Cn(M)= (n(;)/0)n

Using (4.1.7), htx (.,.) is approximated by

htx(tlx1t2x)
(n)4

(;)(3n)/2 (t1,)14-1 expu442,]

For this problem the exact form of h x(m) can not be

obtained.
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Similar arguments to the Theorem 2.2 and Lemma 2.2 will

be applied to obtain UMP unbiased tests and as a result UMP

unbiased acceptance regions.

Theorem 4,1 : Consider the conditional density of Tly given T,

(4.1.6), and the hypotheses of interest, (4.1.1).

(1) A1(11 10={ (tly,t) : tly < z(t) ) is the (1-0 level UMP

unbiased acceptance region for Ho versus Hal and z(t) is found

0 ly
z(t) f dt

(2) A2(0 (t)=( (tly,t) : tly > z(t) ) is the (1a) level UMP

unbiased acceptance region for Ho versus Ha2 and z(t) is found

from

f
o
dtly =a

( 3 ) A3(filit)=C (tly,t) : zi(t) < tly < z2(t) is the (1a)

level UMP unbiased acceptance region for Ho versus Hai and

zi(t) , z2(t) are found from

z2(t)
f
o
dt

1y=1a and ..i'

z2(t)
cc

tlyfodt1y=(1a) tlyfodtly '
z
1
(t) z

1 (t) JJ co

where fo is the conditional distribution of Tly given T , under

Ho , which can be obtained by letting fit=0 in (4.1.6).
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If there exists an ancillary statistic, V=G(Tiy,T) for the

joint distribution of (T1r,10, under Ho , then by Basus Theorem,

V and T are independent and distribution of V under Ho can be

used to obtain the UMP unbiased acceptance regions.

Theorem 1,2: Suppose there exists an ancillary statistic,

V=G(Tiy,,T) for the joint distribution of (T1441), under Ho. Let

fHo(v) denote the density of V under Ho.

(1) Al(S)=[ v : v < z ) is the (1a) level UMP unbiased

acceptance region for testing Ho versus Hal and z is found from

fHo(v)dv =a ,

z

provided V is increasing in T17 for each t .

(2) A2(0=fv:v>z) is the (1a) level UMP unbiased

acceptance region for testing Ho versus Hat and z is found from

jz
fHo(v)dv =a ,

provided V is increasing in T for each t .

(3) A30)=4 v : zi < v < z2 is the (1a) level UMP unbiased

acceptance region for Ho versus Hai and z1, z2 are found from



Z2
z2

fHo(v)dv=(1a) and jr vfHo(v)dv=(1a) vfHo(v)dv
z2 zi

provided, V=G(T1y,1) =a(T)T1y+b(T), a(t)>0 .

4.2. Obtaining The Prediction Intervals

A. Ancillary Statistic Does Not Exist

Since the conditional density of Tly given t, (4.1.6), has a

monotone likelihood ratio in Tir therefore according to Lemma

2.4, the acceptance regions in Theorem 4.1 have more probability

under Ho than under the corresponding alternative hypotheses.

Similar to Chapter II, we use Aio I t) to obtain prediction

intervals. Define

Si(tx)=( tly : (tly,t) a Ai(lit It) 1, i=1,2,3 .

That is, the acceptance regions must be solved for tly by writing

t=(tly+tlx,t2ii-t2x tky+tkx) ,to obtain the corresponding

prediction intervals. We get

Si(tx)=(=,U(tx)]

Sl(tx)=EL(tx),=)

Si(tx)=IL(tx),C(tx)]

provided z(.) functions in the acceptance regions are

(4.2.1)
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increasing. Note that t can be written as function of tly and t1.

Using (4.1.6) and a similar argument to Lemma 2.6, a sufficient

condition for z(.) to be increasing is that

* *

htz'tltly'w2 w k'

htx(t1tly'w2 wk)

must be nondecreasing in tly , whenever ti>ti ,..., tk>tk

* *
where w.J =t.

J
K (t

lY
,) t

JY J
=K.(t

lY J J
) and w.=t. Ki(tly)

j =2,3 k , for some functions Ki .(.) (See the density

function in (4.1.6)). L(.) and U(.) are function of

t =(t
lx .

tkx)' n and a .

The prediction intervals in (4.2.1) are obtained from the

(1a) level UMP unbiased acceptance regions and they have similar

properties to the ones mentioned in Chapter II.

(1)

(2)

E (91z,y)( P(01y,7) Si(Tx) I 1=1a '

for all 01 y=01x and all y=(02,...,0k). That is, Si(rx),

i=1,2,3 are 'Similar Mean Coverage Tolerance Prediction

Regions' of cover (1a), Aitchison and Dunsmore, (1975).

E(01x,y)( P(Gly,y) Si(Tx) l ] <1a ,

0

for all 91y > and all T=°92 00.

E(013t,y)[ P(Oly,y) S2(Tx) I ] < 1a

for all 01y < Oix and all y =(92, 0k )
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E
(01x,y)

[ P (01y,c) ( S3(Tx) ) ,

for all Oly 0 Oix and all 7 02 ,

(3) Si(Tx) are 'Uniformly Most Accurate Unbiased' (UMAU),

Prediction intervals. (See Definition 2.6.)

B. Ancillary Statistic Exists

In Theorem 4.2 we assumed that the ancillary statistic,

V=G(Tiy,T), is an increasing function of Tiy for any T .

Since the conditional distribution of Tly given T (4.1.6),

has a monotone likelihood ratio in T
ly1

then the conditional

distribution of V given t also has a monotone likelihood ratio in

V for each t. By Lemma 2.4, the acceptance regions in Theorem 4.2

have more probability under Ho than under the corresponding

alternative hypotheses and they will be used to derive the prediction

intervals. Define

We have

Si(tx)=( tly : v a Ai(P) ), i=1,2,3 .

Si(tx)=(=,U(tx))

S1(tx)=EL(tx),G0

Si(tx)=M(tx),U(tx)] .

That is, Si(tx) is obtained by writing

(4.2.2)
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ta-4(t1 +tly' t2x+t2y ***** tkiftky)

in ING(T,Tiy) and solving Ai(f1) for t17. Acceptance regions will

map onto the same form of prediction intervals, provided G-1(.)

is increasing in T17. The prediction intervals in (4.2.2) are

obtained by using (1a) level IMP unbiased acceptance regions

and therefore have the same properties as the prediction intervals

in (4.2.1).
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V. EXAMPLES: i PARAMETER CASE (K=2)

As examples of i parameter exponential families, the Normal

and the InverseGaussian distributions will be considered and the

method of Chapter IV will be used to obtain the (1a) level UMAU

prediction intervals for a future outcome.

5.1. The Normal Distribution With Unknown Parameters

Let X1 Xn be a random sample from a normal

distribution with the density function

)-1 exp[_(202)(2a2) e R, x>0, a>0f(x:Px,02)=(2wa2

and Y be independent of the Xi,(i=1,2,,n) with the density

function

f(Y:Pra2)=(2wa2)-1 exp[(2a2)-1(yµy)] g Is x>0 a>0

We assume that gx, gy and a are unknown parameters and

prediction intervals for Y are of interest. To get

a natural parametrization let

2 2 _ (2 2)-1
elx=Pza ' lygya ' T-- a Tlz= 1 Xi'

T2z= El=1 Xi ' Tly=Y ' T2y=Y2 , Tj =Tjx +Tjy ,(j=1,2) , then

the joint density of (1,1) can be written as

f(x,y:Oix,Oly,y)=(w/y) (n+1)/2exp ((1011+81;)/4y]

exp [Glytly+8lztlx+Tt2] (5.1.1)



and

To simplify the problem let

13.(1/n +1)-1(0147-01x)

0=(n+1)-1(n0121+01y)

Then (5.1.1) is equivalent to

f(Laqi$,Y,0)=COLT,e)exp[ft(tly-tix/n)+Oti+yt2] (5.1.2)

where C(.,.,.) is a function of parameters, , y and O.

Under Ho :
gy=lix (ely= elx),

(T1,T2) are jointly complete and

sufficient statistics for (9,1) .

Define

U=Tifaix/n

V=G(U,T)=BU[T2-(n+1)-1(1+nU2)]-1

B=(n(n-1)/(n+1)) 1/2

(5.1.3)

V is increasing in U and it can be shown that under Ho it

has student's t-distribution with (n-1) degrees of freedom.

Therefore V is an ancillary statistic for the joint distribution

of (U,T1,T2) when Ho is true, and conditions of Theorem 4.2 (1),

(2) are satisfied. We have

(1) 111=11, iff ely=elx iff p=p0

p >(()px iff >(()01, iff wok , 130=0.
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(2) (5.1.2) implies that the conditional distribution of U given
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t=(ti,t2) has a monotone likelihood ratio. Since V is

increasing in U, then the conditional distribution of V given

T also has a monotone likelihood ratio. Thus acceptance

regions based on V need to be used to obtain prediction

intervals.

(3) Distribution of V is symmetric about zero. Therefore

the remark given in section 2.2.1 applies in this case.

One Sided Upper Limit Prediction Interval

(1) and (2) imply that the acceptance region, Al(S)=( v :v<z )

must be used. According to Theorem 4.2, z is found from

flio(v)dv=a , flio(v) is the density of tdistribution with (n-1)
z

degrees of freedom. We have

where

V s Al(3) iff Tly < tlz/n + z((n+1)Q/n(n-1)1
1/2

(1= E 11.1 (x1-1)2

One Sided Lower Limit Prediction Interval

A similar argument to the above one holds. Using A20) in

Theorem 4.2 we get

S2(t1)=(tix/n + z((n+1)Q/n(n-1)1 1/2 ,c0)

where z is a percentile of tdistribution with (m-1) degrees of

freedom.



Two Sided Prediction Interval

The Statistic V in (5.1.3) is not a linear function of U.

Therefore the condition of Theorem 4.2 (3) is not satisfied.

Define

W=U[T2Tigu+1)]-1/2 3

W is linear in U for each t(t1,t2) and is related to V by

where

V=BW[1 1012/(1+1)]-1/2

B=[n(n-1)/(n+1)]1/2 .

Under Ho , W is independent of T and is an ancillary
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statistic because it is a function of another ancillary

statistic, V. The condition of Theorem 4.2 (3) satisfies for W.

But for hypotheses testing purposes, W and V are equivalent test

statistics, for V is an increasing function of W. Therefore

the acceptance regions associated with the two tests are equivalent

and as a result , A3(11)=[ v : z1 < v < z2 ) can be used where,

zi and z2 are a/2 and (1a/2) percentile of tdistribution with

(n-1) degrees of freedom, for the distribution of V is symmetric

about zero when Ho is true. Using A30), we have

S3(tx)= zi((n+1)Q/n(n-1)) 1/2

t1z /n z2(61+1)Q/ntn-1»
1/2]
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5.2. The InverseGaussian Distribution

With Unknown Parameters

The InverseGaussian distribution or first passage time

distribution which has a skewed and unimodel density function is

a two parameter exponential family. Chhikara (1975), discusses

hypothesis testing in single and two sample cases for the

InverseGaussian distribution. Chhikara and Folks (1975),

discuss sampling distribution and statistical inference related

to this distribution. A very useful background about this

distribution can be found in a paper by Folks and Chhikara

(1978), in which they present test of hypothesis, estimation,

confidence interval, regression and analysis of variance based on

the InverseGaussian distribution. For application, the

distribution has been considered as a model for emptiness of dam

by Hasofer (1964), and Lancaster (1972), applied it as a model

for duration of strikes. When no obvious choice of distribution

for a data with considerable skewness is suggested, Chhikara and

Folks (1978), suggest the InverseGaussian over the Lognormal

distribution.

Let X1 %n be a random sample from an InverseGaussian

distribution with the density function

f(x:px,0)=(0/(2nx3)) 1/2 exg -9(x...gx)2/(211x2x)]

x>o, e>o, IQ°
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and Y be independent of the Xp(i=1,2 n) with the density

function

f(Y:Py,e)=[0/(21ty3
)]1/2 oxp[Ae_ 2_.,

ty-py, /%zpy y,,

y>0, 0>0, gy>0 .

We assume that gx , gy and 0 are unknown parameters

and prediction intervals for Y based on the outcomes of X1 X
n'

are of interest. Let

T1x="TA-1 Xi , Tly=Y , T2x= Ei.j. X11 , T2y=Y1 , (5.2.1)

011 = -(0/2)gx 2 , 01y=-(0/2)p-5,2 , y =-8/2 , TrTix+Tiy (j=1,2) ,

0=bign+1 Mely7elx] Xm(nelx+ely )(n+1)-1 and U=Ti y7T1x/12

The joint density function of (X,Y) can be written as

f(x,Y:11,X09)=C(0,X,y)expOu+Xti+-02 W1=1 a(xi) y]-3/2 (5.2.2)

where C( ) is a function of parameters, y , and 0. The

joint distribution of (U,T1,12) is a three parameter exponential

family and Under Ho:gy=gx (Oly01x) , T6(T1,T2) is a complete

sufficient statistic for (X,i) . Therefore the conditional

distribution of U given t=(t1,t2) is a one parameter exponential.

Define

W=Un(n+1)]1/2 (n +1)11 [A-n(n+1) 2u2]
-1/2

where A=(T1T2-(n+1)2)(T1+U)(T1-nU) .
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According to Chhikara (1975), the conditional density of W

given t=(t1,t2) under Ho, is

fHo(wIti,t2)=(n-1)-1/2(beta(1/2,(n-1)/2))-1(1+w2/(n-1))n/2 (5.2.3)

[1+ (n-1)(n+1)-1 w(tit2(n+1)2)1/2 utit2_(n_i)2)w2+4n(n_i)J -1/2]

where beta(.,.) is the beta function and co<w<go .

W is nondecreasing in U. But W is not ancillary statistic

for the joint distribution of (11,T1,T2) when Ho is true, for the

density function in (5.2.3) depends on t1 and t2 (Basu's Theorem).

Therefore, fRo(w It1,t2) need to be used to get the MO unbiased

acceptance regions (Theorem 4.1). We have

(1) P 'Py x iff 0
1
7=01x iff p=p0

ityxopx iff pcopo , P0=0-iff 017)(001x

(2) IT is increasing in Tiy and the conditional distribution of II

given t=(t1,t2) has a monotone likelihood ratio, because it

is one parameter exponential. Since W is increasing in U,

then the conditional distribution of W given t also has a

monotone likelihood ratio. Thus the acceptance regions

based on W need to be used to obtain prediction intervals.

(Lemma 2.6.)

(3) W is not an ancillary statistic.



One sided Prediction Interval

To get one sided upper limit prediction interval, (1) and

(2) imply that the acceptance region A1(pjt) =( w : w(z(t) } need

to be used, where from Theorem 4.1 we have

where

flio(wIti,t2)dw=a (5.2.4)

z(t)

The expression, (5.2.4) is equivalent to

F st
[z(t)](n-1)(n+1)-1 N(n-2)/2 (1Fst[z*(01)=1a

W(t1
t2(n-1)2)/(t1t2(n+1)2)

zs(t)=N2(t)+4n(n-1)W[t1t2
(n-1)2]1/2

(5.2.5)
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Fst(.) is the cumulative distribution of the Student's

tdistribution with (n-1) degrees of freedom, Chhikara (1975).

From (5.2.5) we can not find z . This fact is mentioned in a

paper by Chhikara and Guttman (1982), where they show that one

sided prediction intervals can be obtained if 'Bayesian informative

prediction' approach is used.

A similar argument to the above one holds when the lower

limit prediction interval is of interest.

Two sided Prediction Interval

To find the two sided prediction interval, according to



72

Theorem 4.1 (3), we need to solve

and

cz2(t)
fito(w (t)dw

Jz1(t)

fz2(t)
co

wfRo(w I t)dw =(1a) wfHo(w t)dw .

Jz1(t)
03

The function L( w)=wfHo(w I 0 is an odd function of w and is

symmetric about w=0. Therefore

wfRo(w It)dw =0

and as a result zi(t)=z2(t). Based on this fact and (5.2.5) we

conclude that zi(t) and z2(t) must be found from

F st [z2(0]Fst Iz
1
(t)]=1a (5.2.6)

That is, zi(t), z2(t) are independent of t and are a/2 and

(1a/2) percentiles of tdistribution with (n-1) degrees of

freedom, respectively.

According to Theorem 4.1, we need to use the acceptance

region A3(plt) =( w: z2 < w < z2 }. But W2 under Ho has

Fdistribution with (1,n-1) degrees of freedom, Chhikara, (1975).

Therefore
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z1 < w < z2 iff w2 < m ,

where m is (1a) percentile of Fdistribution with (1,n-1)

degrees of freedom. Hence instead of the acceptance region,

A3(8 It), we can work with the equivalent region which is based

on Fdistribution.

According to Chhikara and Guttman (1982), inverting

w2 < m provides the two sided prediction interval for Tly=Y ,

where

S3(tx)=C[n/tix +(nAm/2(31-1))] +

[(n(n+1)Am)/(n-1)tix)+(nAm)2/4(n-1)211/2)-1

A=E1.1 (1/xi z-1) .

They mention that there is a positive probability to get

a negative real number for the lower limit of S3(tx) , and since

T1y>0, the solution must be restricted to the positive real line.

1. If ((n-1)ti1Am/n)>O, we get two sided prediction interval.

2. If ((n-1)t11Am/n)<O, lower limit will be obtained using + sign

in S3(tx) and upper limit would be c* .
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APPENDIX A

The following program uses 'The Generalized Newton's Method'

and MDBETA routine of IMSL library to find values of z1 and z2

for the two sided prediction interval, when the distribution of

informative and future experiments are normal with known mean, p=0.

(Example 3.1.)

PROGRAM A
REAL S,R,X0,70,AL,A,B,C,GX,GY,HX,HY,J,P1,P2
REAL P3,P4,RXY,GXY,TOL,X1,Y1,L,K
INTEGER SI,RI
REAL*8 G1,G2,G3,G4,G5,DGAMMA
WRITE(*,*) 'VALUES OF AL,R,X0,YO ARE='
READ(*,'(F4.2,1X,F4.2,1X,F10.8,1X,F10.8)') AL,R,X0,Y0
DO 60 N=2,100
S=N*R
A=R+S
IR+S+1
C=R+1
G1=DGAMMA(R)
G2=DGAMMA(S)
G3=DGAMMA(C)
G4=DGAMMA(A)
GS=DGAMMA(B)
SI=INT(S)
RI=INT(R)

20 GX=(-G5/(G3*G2))*((X0**RI)*((1-X0)**(SI-1)))
GY=(G5/(G3*G2))*((Y0**RI)*((1-Y0)**(SI-1)))
HX=(-G4/(G1*G2))*((X0**(RI-1))*((1-X0)**(SI-1)))
11/=(G4/(G1*G2))*((Y0**(RI-1))*((1-Y0)**(SI-1)))
J=GX*HY-RX*GY
CALL MDBETA (YO,R,S,P1,IER)
CALL MDBETA (XO,R,S,P2,IER)
CALL MDBETA (YO,C,S,P3,IER)
CALL MDBETA (XO,C,S,P4,IER)
HXY=P1 -P2-(1 -AL)

GXY=P3 -P4 -(1 -AL)

X1=X0+(HXY*GY-GXY*HY)/7
Y1=Y0+(GXY*HX-HXY*GX)/3"
TOL=1.E-3
K=ABS(GXY)
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Lr-ABS(HXY)

IF(L.GT.TOL) GO TO 25
IF(L.GT.TOL) GO TO 25
GO TO 30

25 X0=X1
YO=Y1
GO TO 20

30 WRITE (*,40) N,X0,Y0
40 FORMAT(10X,I2,4X,F8.6,4X,F8.6)
60 CONTINUE

END
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TABLE A

Values of 21 and 22 to find (1-a) level prediction

interval S3(tx)=[txxl/(1-zi),txx2/(1-z2)], where

n 2tx= i=1 xi and X
1 ' n are (iid) normal with mean, g=0 .

(3xample 3.1.)

n
a=.01

21 z2

a=.05

21 22

2 .000044 .993295 .001158 .966407

3 .000043 .969367 .000878 .902746

4 .000035 .926041 .000701 .831825

5 .000029 .878583 .000582 .764553

6 .000025 .830216 .000497 .704107

7 .000022 .783645 .000433 .650803

8 .000019 .740034 .000384 .604028

9 .000017 .699760 .000344 .562940

10 .000016 .662814 .000312 .526716

11 .000014 .629010 .000285 .494631
12 .000013 .598095 .000263 .466066

13 .000012 .569798 .000243 .440505

14 .000011 .543853 .000227 .417517

15 .000011 .520017 .000212 .396752
16 .000010 .498064 .000200 .377912

17 .000009 .477817 .000188 .360749

18 .000009 .459083 .000178 .345050

19 .000008 .441685 .000169 .330635

20 .000008 .425523 .000161 .317362

21 .000008 .410471 .000153 .305102

22 .000007 .396431 .000147 .293746

23 .000007 .383293 .000140 .283197

24 .000007 .370973 .000135 .273370

25 .000006 .359406 .000129 .264196

26 .000006 .348539 .000124 .255619

27 .000006 .338277 .000120 .247570

28 .000006 .328625 .000116 .240018

29 .000006 .319459 .000112 .232900

30 .000005 .310813 .000108 .226197

31 .000005 .302601 .000105 .219862

32 .000005 .294814 .000102 .213874

33 .000005 .287421 .000099 .208204

34 .000005 .280380 .000096 .202822

35 .000005 .273668 .000093 .197710
36 .000005 .267281 .000090 .192852
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n
a=.01

zl z2

a=.05

zl z2

37 .000004 .261161 .000088 .188222

38 .000004 .255333 .000086 .183811

39 .000004 .249732 .000084 .179596

40 .000004 .244392 .000082 .175576

41 .000004 .239275 .000080 .171730

42 .000004 .234358 .000078 .168048

43 .000004 .229628 .000076 .164517

44 .000004 .225112 .000074 .161136

45 .000004 .220753 .000073 .157890

46 .000004 .216576 .000071 .154774

47 .000003 .212514 .000069 .151770

48 .000003 .208620 .000068 .148884

49 .000003 .204877 .000067 .146108

50 .000003 .201254 .000065 .143431

51 .000003 .197755 .000064 .140851

52 .000003 .197755 .000063 .138357

53 .000003 .191112 .000062 .135958

54 .000003 .187970 .000061 .133640

55 .000003 .184937 .000059 .131401

56 .000003 .181953 .000058 .129227

57 .000003 .179085 .000057 .127126

58 .000003 .179085 .000056 .125096

59 .000003 .173645 .000055 .123132

60 .000003 .171017 .000055 .121222

61 .000003 .171017 .000054 .119371

62 .000003 .166026 .000053 .117579

63 .000003 .163641 .000052 .115840

64 .000003 .161326 .000051 .114152

65 .000003 .161326 .000050 .112507

66 .000002 .156861 .000050 .110913

67 .000002 .156861 .000049 .109362

68 .000002 .152659 .000048 .107857

69 .000002 .150631 .000048 .106389

70 .000002 .148661 .000047 .104961

71 .000002 .148661 .000046 .103574

72 .000002 .144877 .000046 .102220

73 .000002 .143045 .000045 .100900

74 .000002 .143045 .000044 .099616

75 .000002 .139548 .000044 .098366

76 .000002 .137821 .000043 .097137

77 .000002 .137821 .000043 .095948
78 .000002 .134565 .000042 .094785
79 .000002 .133022 .000042 .093658

80 .000002 .133022 .000041 .092546

81 .000002 .129951 .000041 .091460

82 .000002 .128491 .000040 .090407
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n
a=.01

z1 z2

a=.05
zi z2

83 .000002 .128491 .000040 .089373

84 .000002 .125680 .000039 .088369

85 .000002 .124273 .000039 .087376

86 .000002 .122933 .000038 .086412

87 .000002 .122933 .000038 .085461

88 .000002 .120335 .000037 .084545

89 .000002 .120335 .000037 .083638

90 .000002 .117838 .000036 .082755

91 .000002 .117838 .000036 .081885

92 .000002 .115407 .000036 .081034

93 .000002 .114282 .000035 .080210

94 .000002 .114282 .000035 .079394

95 .000002 .112046 .000035 .078602

96 .000002 .112046 .000034 .077808

97 .000002 .109838 .000034 .077045

98 .000002 .109838 .000034 .076293

99 .000002 .107786 .000033 .075563

100 .000002 .106778 .000033 .074840

a=.10 a=.20

zl z2
z1 z2

2 .004301 .932366 .016681 .863320

3 .003332 .843863 .012584 .748045

4 .002651 .759054 .009963 .653086

5 .002197 .685161 .008234 .577110

6 .001872 .622300 .007005 .515941

7 .001630 .568951 .006092 .465995

8 .001442 .523445 .005391 .424597

9 .001293 .484338 .004831 .389800

10 .001172 .450456 .004377 .360181

11 .001071 .420869 .003999 .334686

12 .000987 .394836 .003682 .312521

13 .000914 .371773 .003413 .293082

14 .000852 .351209 .003179 .275901

15 .000797 .332769 .002976 .260609

16 .000749 .316147 .002797 .246914

17 .000706 .301089 .002636 .234579

18 .000668 .287386 .002494 .223412

19 .000634 .274862 .002367 .213254

20 .000604 .263376 .002252 .203977

21 .000576 .252806 .002148 .195470

22 .000550 .243048 .002052 .187643

23 .000527 .234010 .001965 .180417
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n zi

a=.10

z2 zi

a=.20
z2

24 .000505 .225616 .001885 .173725

25 .000486 .217800 .001812 .167511

26 .000467 .210507 .001743 .161726

27 .000450 .203682 .001680 .156324

28 .000434 .197288 .001621 .151273

29 .000420 .191277 .001566 .146536

30 .000406 .185623 .001516 .142087

31 .000393 .180291 .001467 .137899

32 .000381 .175257 .001423 .133951

33 .000370 .170497 .001380 .130223

34 .000359 .165987 .001340 .126696

35 .000349 .161707 .001303 .123355

36 .000339 .157645 .001267 .120186

37 .000330 .153779 .001233 .117174

38 .000322 .150099 .001201 .114311

39 .000314 .146588 .001171 .111582

40 .000306 .143240 .001142 .108982

41 .000298 .140042 .001114 .106500

42 .000292 .136982 .001088 .104129

43 .000285 .134051 .001063 .101860

44 .000278 .131246 .001039 .099689

45 .000272 .128555 .001016 .097608

46 .000266 .125973 .000995 .095612

47 .000261 .123488 .000974 .093695

48 .000255 .121102 .000954 .091854

49 .000250 .118807 .000935 .090084

50 .000245 .116596 .000916 .088381

51 .000241 .114466 .000898 .086741

52 .000236 .112410 .000881 .085160

53 .000232 .110430 .000865 .083637

54 .000227 .108519 .000849 .082167

55 .000223 .106673 .000833 .080749

56 .000219 .104885 .000819 .079377

57 .000215 .103157 .000804 .078051

58 .000212 .101487 .000791 .076769

59 .000208 .099871 .000777 .075530

60 .000205 .098302 .000765 .074328

61 .000201 .096782 .000752 .073164

62 .000198 .095310 .000740 .072037

63 .000195 .093883 .000729 .070944

64 .000192 .092497 .000717 .069883

65 .000189 .091149 .000706 .068853

66 .000186 .089842 .000696 .067853

67 .000184 .088571 .000685 .066882

68 .000181 .087337 .000675 .065939

69 .000178 .086136 .000666 .065021
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zl

a=.10

z2 zi

a=.20

z2

70 .000176 .084967 .000656 .064129

71 .000173 .083831 .000647 .063262

72 .000171 .082723 .000638 .062417

73 .000169 .081644 .000629 .061594

74 .000166 .080593 .000621 .060792

75 .000164 .079571 .000613 .060013

76 .000162 .078569 .000605 .059250

77 .000160 .077596 .000597 .058509

78 .000158 .076646 .000589 .057785

79 .000156 .075723 .000582 .057081

80 .000154 .074816 .000575 .056391

81 .000152 .073932 .000568 .055718

82 .000150 .073071 .000561 .055063

83 .000148 .072228 .000554 .054421

84 .000147 .071407 .000548 .053796

85 .000145 .070599 .000541 .053183

86 .000143 .069813 .000535 .052584

87 .000142 .069039 .000529 .051998

88 .000140 .068290 .000523 .051427

89 .000138 .067552 .000517 .050867

90 .000137 .066832 .000511 .050320
91 .000135 .066124 .000506 .049783

92 .000134 .065432 .000500 .049257

93 .000133 .064759 .000495 .048745

94 .000131 .064095 .000490 .048242

95 .000130 .063448 .000484 .047750

96 .000128 .062806 .000479 .047264
97 .000127 .062184 .000474 .046792

98 .000126 .061573 .000470 .046328

99 .000125 .060976 .000465 .045875

100 .000123 .060388 .000460 .045429
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APPENDIX B

The following program uses the 'Generalized Newton's Method'

to find values of z1 and z2 for the two sided prediction interval,

when the distribution of informative and future experiments are

Negative Exponential. (Example 3.4.)

PROGRAM B
REAL IC,L,AL,X0,Y0,X1,Y1,GX,GY,HX,HY,GXLIIILA,TOL
INTEGER N,I
WRITE (*, *)'VALVES OF AL,X0,Y0 ARE= '

READ (*,'(174.2,1X,F8.6,1X,F8.6)9 AL,XO,YO
DO 60 N=2,100

20 GX=N*((1-10)**(N-1))
GY=N*MY0)**(N-1))
HX=1X0)**(N-1))*(1X0N*X0)
BY=1Y0)**(N-1))*(N*Y0(1Y0))
A=GX*BYRi*GY
GXY=((1X0)**N)({1Y0)**N)(1AL)
HXY=X0*((1X0)**N)Y0*((1-10)**N)
X1=X04-(BXY*GYGXY*HY)/A
Y1=Y0f(GXY*BIHXY*GX)/A
TOL=1.E-5
K=ABS(GXY)
L=ABS(HXY)
IF(L.GT.TOL) GO TO 25
IF(L.GT.TOL) GO TO 25
GO TO 30

25 X0=X1
YO=Y1
GO TO 20

30 WRITE(*,40) N,X0,Y0
40 FORMAT(4X,I3,4X,F8.6,4X,F8.6)
60 CONTINUE

END
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TABLE B

Values of z and d z2 to find (1-a) level prediction

interval S3(tx)=Itxzi/(1-zi),txz2/(1-z2)], where

te, Ell1 xi and Xi XII are (iid) negative exponential.

(example 3.3.)

a=.01
z1 22

a=.05

21 12

2 .003276 .941193 .016119 .865752

3 .002411 .859294 .011774 .752865
4 .001900 .778032 .009247 .659005
5 .001565 .705910 .007605 .583406

6 .001330 .643602 .006455 .522246

7 .001155 .590076 .005606 .472169
8 .001021 .544232 .004953 .430557

9 .000915 .504565 .004436 .395516
10 .000828 .470030 .004017 .365644
11 .000757 .439755 .003669 .339902
12 .000697 .413029 .003378 .317502
13 .000645 .389291 .003128 .297842
14 .000601 .367885 .002914 .280453
15 .000562 .348887 .002726 .264936
16 .000528 .331708 .002562 .251068

17 .000498 .316116 .002416 .238570

18 .000471 .301908 .002286 .227251

19 .000447 .288906 .002169 .216951
20 .000426 .276962 .002063 .207541
21 .000406 .265961 .001967 .198910
22 .000388 .255790 .001880 .190965

23 .000371 .246368 .001800 .183629

24 .000356 .237605 .001727 .176833

25 .000342 .229442 .001659 .170521

26 .000329 .221823 .001597 .164644

27 .000317 .214687 .001539 .159157

28 .000306 .207992 .001485 .154023

29 .000296 .201700 .001435 .149209
30 .000286 .195780 .001388 .144687
31 .000277 .190191 .001344 .140429

32 .000269 .184914 .001302 .136416
33 .000261 .179924 .001263 .132624

34 .000253 .175190 .001227 .129038

35 .000246 .170700 .001192 .125641

36 .000239 .166437 .001160 .122416
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37 .000233 .162375 .001129 .119354

38 .000227 .158509 .001100 .116441

39 .000221 .154827 .001072 .113666

40 .000216 .151305 .001045 .111021

41 .000210 .147943 .001020 .108496

42 .000205 .144727 .000996 .106082

43 .000201 .141644 .000973 .103773

44 .000196 .138694 .000951 .101563

45 .000192 .135859 .000931 .099446

46 .000188 .133141 .000911 .097414

47 .000184 .130532 .000891 .095465
48 .000180 .128016 .000873 .093590

49 .000176 .125600 .000855 .091789

50 .000173 .123270 .000838 .090055

51 .000170 .121032 .000822 .088386

52 .000166 .118864 .000807 .086777

53 .000163 .116780 .000791 .085227

54 .000160 .114764 .000777 .083730
55 .000157 .112713 .000763 .082285

56 .000155 .110936 .000749 .080889

57 .000152 .109023 .000736 .079539

58 .000149 .107272 .000724 .078234

59 .000147 .105571 .000712 .076971

60 .000144 .103924 .000700 .075747

61 .000142 .102325 .000689 .074562
62 .000140 .100778 .000678 .073415
63 .000138 .099270 .000667 .072300

64 .000135 .097813 .000657 .071221
65 .000133 .096396 .000647 .070173
66 .000131 .095018 .000637 .069155

67 .000129 .093676 .000627 .068165

68 .000128 .092377 .000618 .067205

69 .000126 .091110 .000609 .066270

70 .000124 .089883 .000601 .065362

71 .000122 .088681 .000592 .064478

72 .000120 .087518 .000584 .063617

73 .000119 .086380 .000576 .062779

74 .000119 .086380 .000568 .061963

75 .000116 .084230 .000561 .061167

76 .000116 .084230 .000554 .060392
77 .000113 .082149 .000546 .059638

78 .000113 .082149 .000539 .058901
79 .000110 .080166 .000533 .058181
80 .000110 .080166 .000526 .057479

81 .000107 .078274 .000520 .056794
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n
a=.10

z1 z2 zi

a=.20
z2

23 .003559 .154147 .007092 .122898

24 .003414 .148341 .006804 .118188

25 .003280 .142957 .006538 .113824

26 .003157 .137950 .006292 .109771

27 .003042 .133280 .006064 .105997

28 .002936 .128916 .005852 .102473.

29 .002837 .124828 .005654 .099176

30 .002744 .120992 .005470 .096084

31 .002657 .117384 .005296 .093179

32 .002575 .113985 .005134 .090445

33 .002498 .110777 .004981 .087866

34 .002426 .107744 .004837 .085430

35 .002358 .104873 .004701 .083126

36 .002293 .102150 .004573 .080943

37 .002232 .099566 .004451 .078871

38 .002174 .097108 .004336 .076903

39 .002119 .094769 .004226 .075030

40 .002067 .092541 .004122 .073247

41 .002017 .090414 .004023 .071546

42 .001970 .088383 .003928 .069922

43 .001925 .086441 .003838 .068371

44 .001881 .084583 .003752 .066886

45 .001840 .082803 .003670 .065465

46 .001801 .081096 .003591 .064103

47 .001763 .079458 .003516 .062797

48 .001726 .077885 .003443 .061542

49 .001692 .076372 .003374 .060337

50 .001658 .074918 .003307 .059178

51 .001626 .073518 .003243 .058063

52 .001595 .072169 .003181 .056989

53 .001565 .070869 .003122 .055954

54 .001537 .069615 .003065 .054956

55 .001509 .068404 .003010 .053993

56 .001482 .067235 .002957 .053063

57 .001457 .066105 .002905 .052164

58 .001432 .065012 .002856 .051296

59 .001408 .063955 .002808 .050456

60 .001384 .062931 .002761 .049643

61 .001362 .061940 .002717 .048855

62 .001340 .060980 .002673 .048093

63 .001319 .060049 .002631 .047353

64 .001299 .059146 .002590 .046637

65 .001279 .058270 .002551 .045941

66 .001260 .057419 .002513 .045266

67 .001241 .056593 .002475 .044611

68 .001223 .055790 .002439 .043974
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z1

a=.10
z2 zl

a =.20

z2

69 .001205 .055010 .002404 .043355
70 .001188 .054251 .002370 .042753
71 .001172 .053513 .002337 .042168
72 .001155 .052795 .002305 .041599
73 .001140 .052096 .002274 .041045
74 .001124 .051414 .002243 .040505
75 .001109 .050751 .002213 .039979
76 .001095 .050104 .002185 .039467
77 .001081 .049474 .002156 .038968
78 .001067 .048859 .002129 .038481
79 .001054 .048260 .002102 .038006
80 .001041 .047675 .002076 .037543
81 .001028 .047104 .002051 .037091
82 .001015 .046546 .002026 .036650
83 .001003 .046002 .002002 .036219
84 .000991 .045470 .001978 .035798
85 .000980 .044950 .001955 .035387
86 .000968 .044442 .001932 .034985
87 .000957 .043946 .001910 .034592
88 .000947 .043460 .001889 .034208
89 .000936 .042985 .001867 .033832
90 .000926 .042520 .001847 .033464
91 .000916 .042066 .001827 .033105
92 .000906 .041620 .001807 .032753
93 .000896 .041184 .001788 .032409
94 .000887 .040757 .001769 .032071
95 .000877 .040340 .001750 .031741
96 .000868 .039930 .001732 .031417
97 .000859 .039529 .001714 .031100
98 .000851 .039135 .001697 .030789
99 .000842 .038750 .001680 .030484

100 .000834 .038371 .001663 .030185


