The Costs of Establishing and Producing Red Raspberries in the Willamette Valley

EM 8534 • April 1993

Ordering information

If you would like additional copies of EM 8534, Red Raspberry Economics: The Costs of Establishing and Producing Red Raspberries in the Willamette Valley, send $\$ 2.00$ per copy to:

Publications Orders
Agricultural Communications
Oregon State University
Administrative Services A422
Corvallis, OR 97331-2119

Red Raspberry Economics

The Costs of Establishing and Producing Red Raspberries in the Willamette Valley

Tim Cross, Brenda Turner,
Bernadine Strik, and Diane Kaufman
Oregon State University

EM 8534 • April 1993

Contents

Section Page
Introduction 1
Assumptions 3
Enterprise Budgets 4
Field Preparation: Year 0 4
Establishment: Year 1 4
Establishment: Year 2 5
Production Year 6
Summary and Conclusions 6
Appendix A 9
Figures
Figure 1. Harvested acreage of Red Raspberries in Oregon, 1980-1991 2
Figure 2. Production and Average Farmgate Price for Red Raspberries in Oregon< 1980-1991 2
Tables
Table 1. Red Raspberry Establishment Year 0, Economic Costs, \$/acre 11
Table 2. Red Raspberry Establishment Year 1, Economic Costs, \$/acre 12
Table 3. Red Raspberry Establishment Year 2, Economic Costs, \$/acre 13
Table 4. Red Raspberry Production Year Economic Costs and REturns, \$/acre 15
Table 5. Net Projected Returns for Alternative Prices and Yields for a Mature Red Raspberry Crop, \$/acre 17

Red Raspberry Economics: The Costs of Establishing and Producing Red Raspberries in the Willamette Valley

Tim Cross, Brenda Turner, Bernadine Strik, and Diane Kaufman ${ }^{1}$

INTRODUCTION

A steady increase of red raspberry acreage in Oregon during the 1980s was accompanied by fluctuating prices and yields per acre. (See Figures 1 and 2 on the following page.) Supply and demand factors influenced price. Yields per acre were affected by adverse weather conditions and fruit rot, especially in 1985, 1986, and 1991. In 1991, the estimated acreage of red raspberries in Oregon was 4,000 acres. Meeker is the predominant commercial cultivar due to its excellent processing qualities. An estimated 98 percent of the raspberries harvested in Oregon were sold for processing and the remaining 2 percent were sold as fresh market berries. The total estimated value of red raspberry sales was $\$ 8.9$ million.

Harvested acreage of red raspberries has doubled in the last 10 years, as shown in Figure 1. Strong demand for berries used for processing and cost-effective mechanical harvesting technologies contributed to this growth. During this same period, total production of red raspberries ranged from 11 million pounds in 1980 to 25 million pounds in 1989. Large fluctuations in production resulted in equally large changes in price.

Figure 2 charts red raspberry production and prices since 1980, and shows that prices ranged from a low of about $\$ 0.29$ per lb in 1980 to a high price of $\$ 0.77$ per lb in 1986.

Red raspberries are an expensive crop to produce. Profit and loss depend greatly on yield and price per pound. A typical field matures 2 years after planting, and averages 15 years in full production. An average mature field is harvested 15 times each year and yields a total of 3 tons per acre.

This study estimates the costs of establishing and producing red raspberries in the Willamette Valley of Oregon. Enterprise budgets are constructed for each year in the establishment process, and a typical production year budget is also presented.

[^0]

Figure 1. Harvested acreage of Red Raspberries in Oregon, 1980-1991.
Source: Miles, Stanley D. 1991 Oregon County and State Agricultural Estimates. SR790, Revised January 1992 (and earlier years).

Production -"- Price
Figure 2. Production and Average Farmgate Price for Red Raspberries in Oregon, 1980-1991.

Source: Miles, Stanley D. 1991 Oregon County and State Agricultural Estimates. SR790, Revised January 1992 (and earlier years).

ASSUMPTIONS

Many individuals were involved in this study, including growers, university researchers, and Extension staff. Throughout the study, a number of broad assumptions were made to provide a common basis for analysis.

1) A typical red raspberry producer in the North Willamette Valley raises 20 acres of raspberries on a 300 -acre farm. The previous crop was strawberries. A land lease charge is included to reflect the costs of owning or leasing land.
2) A machine shed and all farm machinery and equipment are owned by the operator, with the exception of a machine harvester. An over-the-row harvester is leased for $\$ 14,000$ per year.
3) Machinery and equipment depreciation and repair costs are based on agricultural engineering estimates.
4) The soil is uniform throughout the 20acre field.
5) Owner labor is valued at $\$ 10$ per hour and is used for cultivation, chemical applications, irrigation, planting, training canes, rodent control, and hauling during harvest.
6) Hired labor is valued at $\$ 7$ per hour, which includes all costs associated with withholding taxes, record keeping, and payroll. All hired labor is paid on an hourly basis with the exception of labor used for pruning and tying canes. These two operations are paid at a piece rate.
7) The irrigation system consists of a $\$ 10,000$ moveable big reel gun. It has a zero salvage value and is depreciated using the straight-line method over 17 years. This study assumes the water is pumped from a well, and electricity for pumping costs \$2 per acre-inch. Irrigation is not always required, however, and irrigation needs will vary from place to place and year to year. Ownership costs for the pump and mainline are included in the land lease charges.
8) The trellis has a total value of $\$ 19,600$, a zero salvage value and is depreciated using the straight line method over a 17-year life.
9) Fungicides, fertilizers, herbicides, and insecticides are broadcast banded. The chemical costs and rates of application are based on the typical chemicals recommended for use by the growers providing data for this analysis. Price and application rates vary depending on need and individual preference. Follow the directions and precautions on the label of the specific products.
10) The interest rate is 10 percent for operating and long-term capital provided by the owner.
11) Inflation and income taxes are not taken into account in these budgets.

ENTERPRISE BUDGETS

The following enterprise budgets estimate the gross revenue, variable costs, and fixed costs incurred in the establishment and production of red raspberries in the Northern Willamette Valley. Operations listed provide a guideline for new and potential producers and a comparison or budgeting tool for established growers. Each budget represents one calendar year. Land preparation
constitutes all operations in year 0 . Year 1 is the establishment or planting year. In year 2, an immature crop is harvested followed by full production of a mature crop in years 3 through 17. The budgets are shown in the appendix, and each is discussed briefly below. All costs and returns are estimated on a per-acre basis.

FIELD PREPARATION: YEAR 0

In year 0 , a soil test for nematodes and base metals determines the quantity of lime and nutrients to be applied. A custom lime application, several tilling operations, and custom tarp fumigation for insects, disease, and weed seeds adequately prepare the soil for planting in year 1. Costs for year 0 are shown in Appendix Table 1.

The total variable cost in year 0 is $\$ 1,406$. This includes repair and maintenance of machinery and equipment, custom operations, and labor. Fixed costs include land rent of $\$ 150$ per acre, depreciation, insurance, and interest on capital. Total fixed cost is $\$ 288$ with resulting total cost $\$ 1,694$.

ESTABLISHMENT: YEAR 1

The enterprise budget for Year 1 is shown in Appendix Table 2. In the spring of year 1, rototilling prepares the soil for planting. Meeker is planted due to its excellent processing characteristics. The raspberry plants are spaced 2.5 ft by 10 ft for a total of 1,750 hills per acre. The total plant cost is $\$ 440$ per acre ($\$ 0.25$ each $\times 1,750$) and the labor cost for a five-person planting crew is $\$ 38$ per acre. Fertilizer is applied twice and an herbicide for weed control is applied once. All spray and fertilizer applications are broadcast banded.

The trellis consists of 150 steel posts and 16 wooden end posts with anchors. A single 12-gauge top wire and 214 -gauge side wires
with clips complete the trellis. The cost of constructing the trellis is included as an operational cost, and the materials are depreciated over a 17-year life.

The moveable big gun reel is used to apply six sets of irrigation at 1 inch per set during the dry months. Also in the spring, a fungicide for root rot is applied. Labor is hired twice to train the canes onto the wires as the plants grow. In the fall, labor is hired to tie the canes at a piece rate of $\$.09$ per hill. Although a fall/winter fungicide application for disease control is not listed in this budget, some growers apply it.

The total variable cost in year 1 is $\$ 1,584$ per acre and the total fixed cost is $\$ 559$. In addition to the fixed costs mentioned in year 0 fixed costs include interest on year 0 establishment cost at 10 percent and interest
and depreciation on the irrigation system. The total cost in year 1 is $\$ 2,143$, and the cumulative total establishment costs are $\$ 3,837$.

ESTABLISHMENT: YEAR 2

The pre-harvest operations in year 2 begins with two fungicide applications for disease control, a weed and a root rot spray, and two fertilizer applications (see Appendix Table 3). An application for primocane suppression is necessary. Rodent control begins in year 2 and requires 1 hour of owner labor per acre. Two bee hives per acre are rented at $\$ 10$ each in mid to late spring and the crop is irrigated three times prior to harvest. Pheromone traps are placed throughout the field to monitor the insect population.

Before and during harvest insecticides and fruit rot sprays are applied. The order and time of each application depends on bloom time and weather conditions. The chemicals used are rotated to reduce risk of build-up to resistance and increase the spectrum of coverage. An immature crop is picked 10 times in year 2. Machine harvest is preferred over hand picking due to lower costs. The harvest costs of $\$ 376$ per acre include the labor costs of a five-person crew, and machinery and equipment maintenance. Hauling for $\$ 8.50$ per acre represents labor and truck costs. A total of $4,000 \mathrm{lbs}$ are harvested and the price is $\$.50$ per lb. Thus the total gross revenue in year 2 is $\$ 2,000$ per acre.

Following harvest, labor prunes and ties the canes at $\$ 0.23$ per hill. Pruned canes are left on the ground between rows and flailed. Irrigation continues after harvest, and a final application for root rot is applied in late summer or fall. Also, an annual cover crop is seeded in late summer, at a rate of 60 lbs per acre, and a cost of $\$ 0.20$ per lb . Such miscellaneous items as gloves and small hand tools total $\$ 75$ per acre.

Total cost in year 2 is $\$ 3,085$. Variable costs are $\$ 1,752$, and fixed costs are $\$ 1,333$. The net return after accounting for the small crop harvested is $-\$ 1,085$. Cumulative establishment cost at the end of year 2 is $\$ 4,922$. This establishment cost must be allocated over the 15 -year productive life of the red raspberry planting. An annual payment of $\$ 647.11$ will just repay this amount plus interest in 15 years. This amortized establishment is included as a noncash fixed cost in the production year budget.

PRODUCTION YEAR

The final budget shown in Appendix Table 4 represents the full production years. In 2 out of every 3 production years, an insecticide for crown borer control is applied in the spring. Every other full production year, a single tissue analysis is performed to check nutrient levels. The analysis costs $\$ 32.50$. These operations are included in this budget on an annualized basis. Weed, pest, and disease controls are the same as year 2.

The crop is harvested 15 times and produces a total yield of $6,000 \mathrm{lbs}$ per acre. The price remains constant at $\$ 0.50$ per lb for a total gross income of $\$ 3,000$ per acre. The total variable harvest cost is $\$ 576$, including the hauling cost of $\$ 13$. Total variable cost is $\$ 2,032$. Fixed cost, including the amortized establishment cost, is $\$ 1,785$. The return over variable cost is $\$ 968$ per acre, while the return over total cost is estimated to be -\$817 per acre.

Sensitivity analysis was used to examine the effects of varying price and yield on net projected returns over total cost. The results of this analysis are shown in Appendix Table
5. This table shows that net projected returns are negative for yields of 2,000 to $4,000 \mathrm{lbs}$ per acre if prices are $\$.80$ per lb or less. Yields of 6,000 to $8,000 \mathrm{lbs}$ per acre generally result in positive returns at prices above $\$ 0.50$ per lb. Estimated returns are positive for prices above $\$ 0.40$ per lb at yields of $10,000 \mathrm{lbs}$ per acre.

Note in Figure 2 that prices and production usually move in opposite directions. In years of high production, prices are low. Low production years result in higher prices. Over the last 12 years, nominal average prices have exceeded $\$ 0.70$ per lb twice, and fallen below $\$ 0.40$ per lb three times. During the other seven years of this time period, prices ranged between $\$ 0.40$ and $\$ 0.70$ per lb. Based on Table 5 and assuming that production costs have remained constant, we conclude that producers realizing yields of greater than $6,000 \mathrm{lbs}$ per acre have produced at long term breakeven or profitable levels. Yields of less than $6,000 \mathrm{lbs}$ per acre have likely resulted in economic losses.

SUMMARY AND CONCLUSIONS

Red raspberry acreage in Oregon has doubled over the last 12 years. Yields have fluctuated due to weather and growing conditions. Prices have likewise fluctuated due to yield and market variations. Almost all red raspberry production is used in processed products.

The establishment costs of red raspberries are as follows:

Year	Total	Cost
Cumulative		
Cost		

After making a number of assumptions, this study estimated the total economic establishment cost of red raspberries to be $\$ 4,922$ per acre. This is calculated by the sum of the total cost of establishment years 0,1 , and 2 . Amortizing this cost over a 15 year productive life results in an annual charge of $\$ 647$ per acre for repayment of establishment costs. Once the raspberries reach full production, returns over total cost (including the amortized establishment cost) were estimated to be $\$-817$ per acre for the base analysis.

Returns increase at higher prices and yields. Over the long run, this study estimates that at yields of $6,000 \mathrm{lbs}$ per acre, prices of $\$ 0.64$ per lb or greater are required to
breakeven or earn profits. Prices or yields below these levels suggest periods of economics losses, during which ownerprovided labor and capital will likely not receive the rates budgeted in the study ($\$ 10$ per hour and 10 percent interest, respectively).

Producers who wish to evaluate their own costs and returns should use this study as a guide. Any individual farm's red raspberry production costs and returns will differ from the results estimated and discussed in this report. Use these budgets as a starting point and modify them according to experience and future outlook.

Appendix A

Table 1. Red Raspberry Establishment Year 0 Economic Costs, \$/acre.

VARIABLE COST Description	Labor	Machinery	Materials	Total
LAND PREPARATION				
Soil Test	0.00	0.00	1.95	1.95
Subsoil	24.20	16.10	0.00	40.30
Plow	12.10	9.92	0.00	22.02
Lime (Custom)	0.00	0.00	100.00	100.00
Disc \& Harrow	24.20	16.71	0.00	40.91
Rototill (2x)	48.40	33.37	0.00	81.77
Tarp Fumigate (Custom)	0.00	0.00	1000.00	1000.00
Remove Tarp	10.00	0.00	0.00	10.00
Rototill	24.20	16.69	0.00	40.89
Total LAND PREPARATION				1337.84
Operating Capital Interest	0.00	0.00	68.62	68.62
Total VARIABLE COST				1406.46
FIXED COST Description		Unit		Total
CASH Cost				
Machinery \& Equipment Insurance		acre		8.87
Land Lease		acre		150.00
Total CASH COST				158.87
NONCASH Cost				
Machinery \& Equipment-Depreciation \& Interest		acre		129.10
Total NONCASH Cost				129.10
Total FIXED Cost				287.97
Total of ALL Cost				1694.43

Table 2. Red Raspberry Establishment Year 1 Economic Costs, \$/acre.

GROSS INCOME	Description	Quantity	Unit	\$/Unit	Total
Red Raspberries		4000	lbs	0.50	$\underline{2000.00}$
Total GROSS Income					2000.00
VARIABLE COST	Description	Labor	Machinery	Materials	Total
PRE HARVEST					
Spray		4.84	4.21	21.00	30.05
Fungicide	1.0 acre $\times 2$				
Spray		4.84	4.21	95.00	104.05
Herbicide	1.0 acre $\times 7$				
Fungicide	1.0 acre $\times 1$				
Fertilize (2x)		9.68	6.60	100.00	116.28
Fertilizer	0.40 ton $\times 2$				
Spray		4.84	4.21	10.00	19.05
Fungicide	1.0 acre $\times 1$				
Spray		4.84	4.21	6.38	15.42
Cane Suppression	1.0 acre $\times 6$				
Spreader/Sticker	1.0 acre $\times 1$				
Disc \& Harrow		24.20	16.71	0.00	40.91
Rodent Control		10.00	0.00	0.00	10.00
Bee Rental		0.00	0.00	20.00	20.00
Bees	2.0 hives x				
Irrigate (3x)		30.00	0.00	6.00	36.00
Electricity	3.0 inch $\times 2$				
Scouting		5.00	0.00	1.20	6.20
Pheromone Traps	1.0 acre $\times 1$				
Spray		4.84	4.21	6.50	15.55
Insecticide	1.0 acre $\times 2$				
Spray		4.84	4.21	22.00	31.05
Rat Control	1.0 acre $\times 2$				
Spray		4.84	4.21	28.50	37.55
Insecticide	1.0 acre $\times 6$				
Rot Control	1.0 acre $\times 2$				
Spray		4.84	4.21	18.00	27.05
Rot Control	1.0 acre $\times 1$				
Spray		4.84	4.21	37.00	46.05
Insecticide	1.0 acre $\times 1$				
Rot Control	1.0 acre $\times 2$				
Disc \& Hanrow		24.20	16.71	0.00	40.91
Total PRE HARVEST					596.10
Harvest					
Picking		357.00	18.92	0.00	375.92
Hauling		4.40	3.98	0.00	8.38
Total HARVEST					384.30

Table 3. Red Raspberry Establishment Year 2 Economic Costs and Returns, $\$ /$ acre (cont’d).

VARIABLE COST	Description	$\underline{\text { Labor }}$	Machinery	Materials	Total
POST HARVEST					
Subsoil		12.10	8.05	0.00	20.15
Prune \& Tie Twine	1.0 acre $\times 40.00=40.00$	402.50	0.00	40.00	442.50
Flail Mow		12.10	10.21	. . 0.00	22.31
Irrigate (4x)		40.00	0.00	8.00	48.00
Electricity	4.0 inch $\times 2.00=8.00$				
Spray		4.84	4.21	87.50	96.55
Fungicide	1 acre $\times 140.00=87.50$				
Plant Cover Crop Seed	$60.0 \mathrm{lb} \times 0.20=12.00$	12.10	6.92	12.00	31.02
Miscellaneous		0.00	0.00	75.00	75.00
Total POST HARVES					735.52
Operating Capital		0.00	0.00	36.08	36.08
Total VARIABLE CO					1752.00
GROSS INCOME mi	VARIABLE COST				248.00
FIXED COST Descrip			Unit		Total
CASH Cost					
Machinery \& Equ	nt Insurance		acre		11.78
Picker Lease			acre		700.00
Land Lease			acre		150.00
Total Cash Cost					861.78
NONCASH Cost					
Interest on Investm			acre		214.31
Irrigation System-	eciation \& Interest		acre		29.41
Trellis-Depreciatio	Interest		асте		57.64
Machinery \& Equi	nt-Depreciation \& Interest		acre		169.72
Total NONCASH Cos					471.08
Total FIXED Cost					1332.86
Total of ALL Cost					3084.86
NET PROJECTED RETURNS					-1084.86

GROSS INCOME	Description	Quantity	Unit	\$/Unit	Total
Red Raspberries		6000	lbs	0.50	3000.00
Total GROSS Income					3000.00
Variable CosT	Description	Labor	Machinery	Materials	Total
PRE HARVEST					
Spray		4.84	4.21	21.00	30.05
Fungicide	1.0 acre $\times 2$				
Spray		4.84	4.21	95.00	104.05
Hemicide	1.0 acre $\times 7$				
Rot Control	1.0 acre $\times 1$				
Spray		4.84	4.21	10.00	19.05
Insecticide	$2.0 \mathrm{lb} \times 5.00$				116.28
Fertilize (2x)		9.68	6.60	100.00	116.28
Fertilizer	0.4 tons $\times 2$				
Spray		4.84	4.21	10.00	19.04
Fungicide	1.0 acre $\times 1$			6.38	15.42
Spray		4.84	4.21	6.38	15.42
Cane Suppression	1.0 acre $\times 6$				
Spreader/Sticker	1.0 acre $\times 1$				
Disc \& Harrow		24.20	16.71	0.00	
Rodent Control		10.00	0.00	0.00	10.00
Bee Rental		0.00	0.00	20.00	20.00
Bees	1.0 acre $\times 2$				
Irrigate (3x)		30.00	0.00	6.00	36.00
Electricity	3.0 inch $\times 2$				620
IPM Scouting		5.00	0.00	1.20	6.20
Pheromone Traps	1.0 acre $\times 1$				15.55
Spray		4.84	4.21	6.50	15.55
Insecticide	1.0 acre $\times 6$				
Spray		4.84	4.21	22.00	31.05
Rot Control	1.0 acre $\times 2$				
Spray		4.84	4.21	28.50	37.55
Insecticide	1.0 acre $\times 1$				
Rot Control	1.0 acre $\times 2$				
Spray		4.84	4.21	18.00	27.05
Rot Control	1.0 acre $\times 1$				46.05
Spray		4.84	4.21	37.00	46.05
Insecticide	1.0 acre $\times 1$				
Rot Control	1.0 acre $\times 2$				
Disc \& Harrow		24.20	16.71	0.00	40.91
Total PRE HARVEST					615.14
HARVEST					
Picking		535.50	28.39	0.00	
Hauling		6.60	5.96	0.00	12.56
Total HARVEST					576.45

Table 5. Net Projected Returns for Alternative Prices and Yields for a Mature Red Raspberry Crop (\$/acre).

	Yield (lbs.)				
Price (\$/lb.)	$\underline{5}, 000$	$\underline{4,000}$	$\underline{6,000}$	$\underline{8,000}$	$\underline{10,000}$
0.30	$-2,833$	$-2,425$	$-2,017$	$-1,609$	$-1,202$
0.40	$-2,633$	$-2,025$	$-1,417$	-809	-202
0.50	$-2,433$	$-1,625$	-817	-9	798
0.60	$-2,233$	$-1,225$	-217	791	1,798
0.70	$-2,033$	-825	383	1,591	2,798
0.80	$-1,833$	-425	983	2,391	3,798

Extension Service, Oregon State University, Corvallis, O.E. Smith, director. This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties.

Oregon State University Extension Service offers educational programs, activities, and materialswithout regard to race, color, national origin, sex, age, or disability-as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Oregon State University Extension Service is an Equal Opportunity Employer.

[^0]: 1 Tim Cross, Extension Agricultural Economist, Brenda Turner, Student Research Assistant, Bemadine Strik, Extension Horticulture Specialist, and Diane Kaufman, Extension AgentNorth Willamette Research and Extension Center, Oregon State University.

