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EXISTENCE AND REPRESENTATION THEOREMS FOR A
SEMILINEAR SOBOLEV EQUATION IN BANACH SPACE*

R. E. SHOWALTERY

Abstract. An existence theory is developed for a semilinear evolution equation in Banach space
which is modeled on boundary value problems for partial differential equations of Sobolev type. The
operators are assumed to be measurable and to satisfy coercive estimates which are not necessarily
uniform in their time dependence, and to satisfy Lipschitz conditions on the nonlinear term. Applications
are briefly indicated.

1. Introduction. We shall consider the abstract Cauchy problem for the
nonlinear evolution equation

A Ou(R) + L) = f(t, u(®)

in a separable and reflexive Banach space. The linear operators .#(t) are assumed
to be weakly measurable in t and to satisfy nonuniform coercive estimates over
the Banach space which permit them to degenerate for certain values of ¢. The
family of linear operators #(t) are assumed to be weakly measurable in t. The
nonlinear term f'(t, u) is measurable in ¢t and Lipschitz in u.

Three types of solution are considered : weak, mild, and strong. A mild solution
is (essentially) a weak solution which permits a certain integral representation, and
we shall prove that these two notions differ by a measurability assumption. A
strong solution is a weak solution for which each term in the equation belongs to
a specified Hilbert space for almost every t.

The plan of the paper is as follows. Section 2 contains some technical results
and notation we shall use. These include measurability of vector- and operator-
valued functions, Gronwall’s inequality, and an elementary fixed-point theorem
for Banach space-valued functions.

The weak solution is defined in § 3, where we obtain results on uniqueness,
local existence and global existence under various hypotheses. These results are
used in § 4 to construct the linear propagator (which resolves the linear equation
with f = 0) and thereby to introduce the notion of a mild solution. We prove that
mild solutions (local and global) exist with the same hypotheses as used for existence
of weak solutions.

Strong solutions are introduced in § 5. We give sufficient conditions for a
mild solution to be strong; these conditions are essentially that the operators
A (t) dominate the operators #(t). Finally we obtain independently a sufficient
condition for the existence (and uniqueness) of a strong solution; this condition
requires that the function f be dominated by the operators .Z(t).

2. Preliminaries. For notation and standard material in functional analysis
except as noted below, we shall refer to [11]. The space of continuous linear
operators from the normed linear space X to the normed linear space Y will be
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denoted by L(X, Y), and L(X) means L(X, X). The space L(X, Y) with the uniform,
strong and weak operator topologies is indicated by L (X,Y), L(X,Y) and
L (X, Y), respectively. Absolutely continuous (strongly, weakly) is abbreviated
by AC (respectively, SAC, WAC). An operator-valued function 4:[0, 1] - L(X, Y)
is called SAC from [0, 1] to L(X, Y) if for each x € X the map t — h(t)x is SAC
from [0, 1] to Y, and h is SAC from [0, 1] to L (X, Y) if it is SAC from [0, 1] to the
normed linear space L (X, Y) (see [11, pp. 40-41, 52-53]).

All linear spaces will be over the field C of complex numbers. Each of our
results will hold if the spaces are over the real field R and if conjugate-linearity is
replaced by linearity. The modifications will be obvious.

The antidual of the normed linear space X is the Banach space X’ of conjugate-
linear continuous maps from X to C. If xe X, the map ¢ — ¢(x): X' - C is
continuous and conjugate-linear and hence determines an element Jxe X"
Thisdefinesalinearisometry J: X — X" bytheidentity {Jx, D>y _x = {P, XDy _x.
We say X is reflexive if J is onto, and we identify each Jx e X" with xe X (see
(11, pp. 32-33)).

We shall need to discuss the adjoint of a map Te L(X, X'). If x € X, the map
y = LTy, x>x _x:X — C is continuous and linear, so this determines a T'xe X’
for which <{T'x,y)>x_x = Ty,x)>x.—x for all ye X. This defines the map
T' e L(X, X'). The adjoint of the map Te L(X, X') is the map T*e L(X", X')
defined by (T*y, x>y _x = (¥, Tx>yn_x for ye X", x e X. Comparing this with
the above, we have for x, ye X,{T* o Jy, x>y, _x = {Jy, TxDyn_x» = {TX, YDy _x
= {T'y, x)x _x. This shows that T* o J = T’, so when we identify X and J(X)
we see that T* is an extension of T'. When X is reflexive, we have T* = T’ under
the indicated identification, and this will simplify many of the duality arguments
to follow (see [11, pp. 42-43]).

For strongly measurable functions ¢t — x(t) from the real interval I to the
Banach space X we shall use exclusively the Bochner integral with respect to
Lebesgue measure on I. If 1 < p < oo, LP(I, X) is the Banach space of strongly
measurable functions x(-):I — X for which

1/p
”x”LP(X) = (j [x()% dt) < 0,
1

and | x|.»x is the norm. Similarly, L*(I, X) is the Banach space of strongly
measurable functions x(-):I — X for which the norm ||x|| ) = ess sup {|x(t)|x:
te I} is finite (see [11, pp. 71-89]).

When the Banach space X is separable, the notions of weak measurability
and strong measurability of X-valued functions are equivalent. The following
similar result for operator-valued functions will be useful.

PRrOPOSITION 2.1. Let X and Y be separable Banach spaces and h:[0,1]
— L(X,Y) a bounded function. Then h is measurable (in the strong operator
topology) if and only if there is a sequence of countably-valued measurable functions
h,:[0,1] - h([0,1]) € L(X, Y) such that h(t) > h(t) in L(X,Y), uniformly in
te[0, 1].

LEMMA 2.2. Let X and Y be separable Banach spaces and {T,:a€ A} = L(X,Y).
There is a countable subset {T, :n = 1} which is strongly dense in {T,:a € A}.
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Proof. By considering subsets of the form {T,:n — 1 < [T, x.y) < 1}, we
may assume the T, are uniformly bounded. Consider the space I' (Y) = {(y,):y,€ Y
and Y’ |y,ly < co}. Since Y is separable there is a sequence {n,} dense in Y;
those sequences in I'(Y) of the form (1,,,%,,, -+ , #l,, 0,0, - - -) are dense in 1Y),
so I'(Y) is separable.

Let the sequence {&,} be dense in X and define a map ¢:L(X, Y) — I'(Y) by
A(T) = (TENNENx2%:k 2 1) for Te L(X,Y). Since {¢(T,):ax€ A} is a subset of
the separable I'(Y), it is separable, and hence has a dense subset of the form
{¢(T,,):n = 1}. Thus for any Ty, f € 4, there is a sequence (¢(T,,): T, € {T,,}) such
that ¢(T,,) = ¢(Tp) in I'(Y). Then T, (&) — T(&,) in Y for every k = 1. But {&,}
dense in X and {T,} bounded imply that T,, - T; in L(X, Y).

Proof of Proposition 2.1. Let {T,:n = 1} be a strongly dense subset of the
range h([0, 1]). Since h([0, 1]) is bounded, the topology induced on it by L(X, Y)
is metrizable, and the metric is given by p(T,U) = ;":1 (T — U)xjly/
(1 + (T — U)x}|,)2/, where {x;:j = 1} is dense in the unit sphere of X. If h is
measurable in Ly(X, Y), then each of the maps ¢t — |(h(t) — T,)x,ly is measurable
[11,p.72)andsothenist — p(h(t), T,). Foranye > 0,eachofthesetsE, = {¢t€[0,1]:
p(h(t), T,) < &} is measurable with U{E,:n = 1} = [0, 1]. The function defined on
[0,1]by h(t) = T,forte E, ~ U{E;:1 £ j < n} is measurable, countably-valued
in h([0, 1]) and p(h(¢), h(t)) < ¢ on [0, 1]. The converse is clear.

Finally we cite an elementary inequality and corresponding fixed-point
theorem [4], [9].

LemMMA 2.3. Let Z(-)e L*([0, 1], R) satisfy for some a = O the inequality

2.1) 0Z2Z) 2o + J‘t K(t)Z(z) dx
0
for te [0, 1], where K(-)e L([0, 1], R), K(t) = 0. Then
(2.2) Z(t) £ aexp {Jq K(7) dt}
0
forte[0,1].

LEMMA 2.4. Let X be a Banach space and F a map of the closed and bounded
subset M of L™([0, 1], X) into itself satisfying

IFu)(®) — (Fo)(oly < f K(@lu(z) — v(oly de
for te[0,1], where K(-)e L'([0,1],R) and each K(t) = 0. Then there exists

exactly one solution in M of the equation F(u) = u.

3. The weak solution. Let V be a reflexive and separable Banach space; the
norm is given by |v|, and the V' — V antiduality by (¢, v). Let a > 0 and assume
that for each te I, = [0, a] we are given a continuous sesquilinear form m(t; -, -)
on V. This defines a family of operators .#(t) e L(V, V') by the identity

(3.1 m(t;x,y) = {AME)x,y), x,yeVv.

Let b > 0, xo € Vand By(xy) = {x€ V:|x — xq|y < b}. Assume that we are given
a function f:1, x By(x,) — V.
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DEFINITION. A function x:1, — V is a weak solution of the Cauchy problem
(32 AMOX'(1) = f(t, x(1)), x(0) = xo

if it is SAC with range in By(x,), weakly differentiable a.e. on I, and (3.2) is satisfied
forae.tel,.

Remark. It follows [11, p. 88] that x'e L!(I,, V) is a strong derivative a.e.
with x(t) — x(s) = [! x'(z) dv. It suffices to require that x be WAC and a.e. have a
weak derivative x' € LY(I,,, V).

The results of this section on weak solutions of (3.2) are obtained from
combinations of the following assumptions listed here for reference.

(I) There is a measurable function k:I, — (0, 00) such that [m(t; x, x)|
> k() x|} for xe V,ae.on I,.
(II) Thereisameasurable function Q:I, — [1, co)such that| f(t, x) — f(t, y),-
< 0(0)x — yly for x, y € By(x,) a.e. on I, and Q/k e L'(I,, R).
(III) For each pair, x, y € ¥, the function ¢t — m(t; x, y):1, —» C is measurable.
(IV) For each x € By(x,), the function ¢t — f(t, x): I, - V' is (weakly) measur-
able. For a.e. t€ I, the function x — f(t, x) is continuous from B,(x,)
with the norm topology to V' with the weak (= weak*) topology.

Suppose (I) holds; then for a.e. tel, the operator .#(t):V — V' is an iso-
morphism with |.#~'(t)ll Ly, < k(t)"'. To see this, note from (3.1) and (I) that
k(t) x|z < |.4(t)y|xly, and hence k(t)x|, < |.#(t)x|y.. This shows that .(t) is
injective with closed range in V'. Hence the range of .#(t) is the annihilator in V'
of the null space of the adjoint .Z(t)' [4, pp. 180-181], [11, p. 44]. But .#(t) satisfies
the same conditions as .#(t), so it has a trivial null space. Thus .#(t) is onto V’
and the result follows from the inequalities above.

Let x; and x, be weak solutions of (3.2) on I, and assume (I) holds. Then we
obtain the estimate

Ixi(t) — x50y < KOS, x,(0) = St X0y

Since x; — x,:1, = Vis SAC with summable derivative, we have
t

(3.3) x1(t) — x,(t) = x,(0) — x,(0) + f (X1 (s) — x5(s)) ds
0

on I,. If we also assume (II), then we obtain the estimate

B4 1x1(1) = x,(0y = 1%1(0) = x,(0)ly + fo k(s) ™1 Q(s)lx4(s) — x5(s)ly ds.

This yields the following.

THEOREM 1. Assume (1) and (I1). Then there is at most one weak solution of
(3:2) on I,. If {x,(-)} is a sequence of weak solutions of the equation (3.2) with
initial conditions x,(0), n = 0, then x,(0) — x,(0) in V implies that x,(t) > x,(t) in
V, uniformly on I ,.

Proof. These results follow from the preceding inequality (3.4) and Lemma 2.3
with Z(t) = |x,(t) — x,(t)},,. That this function is bounded follows from (3.3),
since x|, x, € L'(I,, V).

We consider next the existence of solutions.

LeMMA 3.1. Assume (1) and (111). Then the operator-valued map t — 4 ~*(t):1,
— L(V', V) is measurable.
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Proof. Since k(t) >0 on I, and k is measurable, the sets defined by
J, = {tel,:k(t) = 1/n},n = 1, are measurable and U{J,:n = 1} = I,.

The function .#:1, — L,(V, V') is measurable by (III) and V" = V; hence
it is measurable I, - L(V, V') since V' is separable [11, pp. 34, 74-75]. Letm = 1;
the restriction of .# to J,, is strongly measurable, so by Proposition 2.1 there is a
sequence of countably-valued measurable functions .#,:J,, —» #(J,) < L(V, V")
such that, for t € J,,,, #(t) > A(t)in L(V, V')as k — co. Since each .# (t) e .#(J,,),
we have [y ()lngry) S KOTP S m, so for ¢V, |4 O — 4 Oly
= M O AME)x — M(O)X)y £ mM()x — M(t)x], - 0 as k— . Hence
M1 J,, - L(V', V) is measurable for every m = 1, and this yields the desired
result.

LemMA 3.2. Assume (1), (111) and (IV). If x:1, - B,(x,) is measurable, I, —> V,
then the functiont — M~ *(t) o f(t, x(t)):1, — V is measurable.

Proof. For every ¢ € V' we have

(o, MTIOf (&, x(O)> = {f(t, (@), A~ ()b,

where .4~ '(ty:V' — V is the adjoint of .#!(t), so it suffices to show that
f(t, x(t)) and .4 ~'(t) ¢ are measurable in V' and V, respectively.

By Lemma 3.1, .# '(t) is measurable, so the identity <y, .# '(t)¢)
=<, M (W) for  in V' implies that .4~ '(t)¢ is weakly (hence strongly)
measurable.

Since V' is separable and V is reflexive, the measurability of f(¢, x(¢)) will
follow from that of t — {f(t, x(t)), v) for every v e V. Suppose first that x:1, - V
is a countably-valued function assuming the value x; on G;, where {G;:j = 1} is
a measurable partition of I,. Let ¢(t) be the characteristic function of G;. Then
we have f(¢, x(t)) = Y. { f(t, x )¢(t):j = 1} on I,; each term is measurable by (1V),
so f(t, x(t)) is measurable when x(t) is countably-valued. But any measurable
function is a strong limit of countably-valued functions, so the result follows from
the continuity requirement in (IV).

THEOREM 2. Assume (I), (II), (III) and (IV). Let x,€V be such that
|f(t, xo)ly: < Q(t)bgonl,,wherec e 1,ischosensothat [; Q(t)k(r) ™" dt < b(by + b)™".
Then there exists a (unique) weak solution of (3.2) on I..

Proof. Define M to be those continuous functions x e L*(I,, V) for which
x(t) € By(x,) on I,. For any x € M the function t — .# ~'(t) f(t, x(t)) is measurable
I, — V by Lemma 3.2, and we have the estimate |.# ~(t) f(t, x(t))l, < k()" 'Q(t)
-(by + b) on I.. Hence the function is integrable, and we can define on I, the
function

(3.5) [Fx](t) = x4 + f M(5)f (s, x(s)) ds.
0

It follows that |[Fx](t) — x|y < b, so F maps M into itself. Finally we have from
(I1) that |[Fx](t) — [Fy](®t)y = j'(’) Q(s)k(s) ™ |x(s) — y(s)ly ds, so Lemma 2.4 asserts
that there is a unique x € M for which

(3.6) x(t) = xo + Jﬂ MY($)f (s, x(s)) ds

on I,. But this is equivalent to being a weak solution of (3.2) (see [11, p. 88]), so
the result follows.
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THEOREM 3. Assume (1), (I), (I11), (IV) and By(xo) = V. Let x4 € V be such that
[ f(t, xo)ly < Q(t)bg on 1,. Then there exists a unique weak solution of (3.2) on I,.

Proof. Let u(t) = by exp f§ k(s)™'Q(s)ds and define M to be the continuous
functions in L*(I,, V) for which |x(f) — X¢|y < u(t) — b, for all tel,. For any
x € M we have

(3.7 | =1 (5) f (s, X))y < k(s)™'Qs)(1x(s) — Xoly + bo),

so the boundedness of x implies that we can define Fx € L*(I,, V) by (3.5). Also
we have from (3.7) the estimate

IFX)(0) — xoly < fo k()™ Q(s)uls) ds = u(t) — bo

so Fx e M. Lemma 2.4 applies again to give the result.

Remark. The estimate (3.7) is a growth condition on the second term in
f(t, x) and results from the Lipschitz condition in (II) and the above estimate on
f(¢, xo)- This combination of hypotheses has advantages in applications. (See,
for example, the discussion following (6.9).) In particular, it applies directly to
linear equations.

4. The mild solution. In addition to the forms {m(¢; -, -):t € 1,}, the function
f, and the space V as in § 3, suppose we are given a second family {i¢; -, -):tel,}
of continuous sesquilinear forms on V. As before each of these determines an
operator £(t) e L(V, V') by the identity

Iit; x,y) = <L1O)x, y>, x,yeV.
We shall consider weak solutions of'the equation
4.1) ME)X'(8) + L()x(t) = f(t, x(¢))
and its linear homogeneous counterpart
4.2) AM)xX(t) + L()x(t) =0

under assumptions like the following.
(V) For each pair x, y e V, the function t — I(t; x, y):I, - C is measurable,
and there is a measurable function K:I, - R such that |lt;x, y)|
< K0\ xlylyly, x,ye V a.e. on I, and K/ke L(1,, R).
Our purpose in considering (4.1) is to separate the nonlinear term and char-
acterize those weak solutions which have an integral representation sharper than
(3.6). With the assumption (V), the equation (4.1) is certainly no more general
than (3.2), since the assumptions (II) and (IV) hold for f(t, x) — £(t)x whenever
they hold for f(¢, x). Hence the results of § 3 apply to (4.1) when we assume (V).
Consider the linear equation (4.2). If we assume (), (I1I)and (V), then Theorem 3
asserts that for each x, € V and s € I, there is a unique weak solution x(¢) of (4.2)
which satisfies x(s) = x,. This solution is characterized by the integral equation

43) x0) = % — | #QLOXO &, el
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From Lemma 2.3 it follows that

(4.4) IX(@ly = [Xoly exp

f (K(/KE)

For each t e I, we see from Theorem 1 that the dependence of x(t) on x, is linear
and from (4.4) that it is continuous from V to V. Hence, for each t, se I, there is a
unique G(t,s)e L(V) defined by G(t,s)x, = x(t), where x(t) is given by (4.3).
We summarize this construction as the following result.
ProprosiTION 4.1. Assume (I), (III) and (V). Then there is a function
G:1, x I, > L(V) for which:
(i) for each x, €V the function x(t) = G(t, s)x, is the unique solution of (4.3);
(i) Gisa linear propagator[5]: G(t,s) = G(t, £)G(&, s), G(t, t) = I fort,s,E€l,;

(ii)) 1G(t, 9)llLr) = exp |f; (K(E)/K(E)) del;

(iv) foreachsel,, G(-,s):I,—> L(V)is SAC,

(v) foreachtel,, G(t, -):1, > L(V) is continuous.

COROLLARY. In addition to the above, assume that both of the functions M
and & :1,— LV, V') are a.e. separably-valued. Then for each s€ I, the function
G(-,s):1, = L(V) is the unique continuous solution of

Glt,s) =1 - f ML Q)G s) de,

(vi) G(-,s):I, > L(V)is SAC, and

(vii) for eachtel,, G(t,-):1,— L(V)is SAC.

Proof. # and £ are weakly measurable and a.e. separably-valued so they are
uniformly measurable [11, p. 75]. Thus the map t —».# ~'(t)L(t):1, — L(V) is
summable, and Lemma 2.4, with X = L (V) and M the set of continuous x € X

for which |x(z) — I|| < exp (If! k(£)™'K(&) d€]) — 1, shows there is an operator-
valued function which satisfies

M(t,s) =1 — f M OLEOME, 3) dE.

But for x, € V, the function t - M(t, s)x, is the unique solution of (4.3),so M = G.
That each G(-,s)is SAC in L (V) follows from the integral representation above,
and this fact, the identity

G(t,sy) — G(t,sz) = G(t, 5,){G(s2,0) — G(sy,0)}G(O, 5,)

and the uniform boundedness of G imply the last result.

Assume (I), (III) and (V), and let x(¢t) be a weak solution of (4.1). Since
s — G(s,0) is a.e. strongly differentiable and G(0,s) = G~ '(s,0) is strongly con-
tinuous, it follows [4, pp. 136-137] that G(0, s) is differentiable and (d/ds)G(0, s)
= —G(0, s)[(d/ds)G(s, 0)]G(0, s) = +G(0,s).# ™ (s)L(s) ae. on I,, where d/ds
denotes the strong derivative. Since x(t) is differentiable a.e. we have
(4.5) (d/ds)[G(O, s)x(s)] = G(0, 5)[x'(s) + M~ '(s)ZL (s)x(s)]
and hence from (4.1) follows

(4.6) (d/ds)[G(O, 5)x(s)] = G(O, s)-4~'(s)f (s, x(s))
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a.e. on I,. Since x(t) is a weak solution it follows that the right side of (4.5) is in
LY(I,, V) so we may integrate (4.6). If .# and & are a.e. separably-valued in
L,(V), then SAC of G(0, s) in L, (V) and that of x:I, —» V imply that G(0, s)x(s) is
SAC in V and we integrate (4.6) to obtain (after operating with G(t, 0)) [11, p. 88]

4.7) x(t) = G(t,0)xq + f G(t, )4~ (s)f (s, x(s))ds.
0

This is the desired integral representation.

DEerINITION. Assume (I), (I1I) and (V). A mild solution of (4.1) is a continuous
function x:1, — V which satisfies (4.7). (In particular, the integrand belongs to
L'(I,,V)foreachtel,.

In the special case of equation (3.1), which is obtained from setting ¥ = 0
and hence G(t, s) = I, it follows by comparing (4.7) with (3.6) that mild solutions
are equivalent to weak solutions. Our next result states the relation between
weak and mild solutions in the general case.

THEOREM 4. Assume (1), (II1) and (V). Then a mild solution of (4.1) is a weak
solution of (4.1); a weak solution is a mild solution if M and &£ are a.e. separably-
valued.

Proof. The second statement was proved in the discussion preceding the
definition of mild solution. If x:I, - V is a mild solution, then from

x(t) = G(t,0) {xo + ft G(0, s).4 " '(s)f (s, x(s)) ds}
0

it follows that x is strongly differentiable a.e., satisfies (4.1) a.e. and x' e L'(I,, V).
Thus we need only to verify that x is WAC (see Remark following definition of
weak solution).

Letve Vand ¢ € V'. Applying ¢ to the identity
t
G(t, 00 = v — f MO LOGE, O dé
0

and then taking the indicated adjoints give us the weak integral identity

(G*(t,0)p, 0> =<, v) — f (G*E, 02 A "(&)*¢, vy de.
0

From this we obtain the strong integral

G*(t, 00 =  — f GH(E, 0\ LX)l (&) b de

in V' from estimates like (iii) of Proposition 4.1 and the measurability of adjoints.
From this we see that t — G*(,0)¢:I, > V' is SAC. But we already know
t— Xo + f(') G(0, s).# () f (s, x(s)) ds: I, — V is SAC, so it follows from (¢, x(t)>
= {G*(t,00¢, x5 + [} G(O, )2 ~*(s) f (s, X(s)) ds) that x(t) is WAC on I,,.

COROLLARY. Assume (1), (I1), (III) and (V). Then there is at most one mild
solution of (4.1).

Proof. Every mild solution is a weak solution and there is at most one weak
solution.
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THEOREM 5. Assume (1), (II), (III), (IV) and (V). Let x,€V be such that
| f (&, X0y < Q(t)by on I,. Then there is a ¢, 0 < ¢ < a, such that there exists a
(unique) mild solution of (4.1) on I,. If additionally B(x,) = V, then there is a mild
solutionon I,.

Proof. Let x(-) be strongly continuous from I, to V and x(¢) € B,(x,) for all
tel,. For any ¢eV’, the map s — (@, G(t,s).4 '(5)f(s, x(s))> = <G*(¢t, )¢,
M () f (s, x(s))> is measurable by Lemma 3.2 and Proposition 4.1(v). Also we
have the estimates of Proposition 4.1(iii) and (II), which show that the map
s — G(t, s).4# " (s)f(s, x(s)) is in L'(I,, V) for any teI,. Also, for t, t € I, we have

f Git, )4~ () (5, x(s)) ds — f " Gle, )4 (5)f (s, x(9) ds
(0] 0
438) — [G(t,0) — G(x,0)] f "GO, )4 (5)f (5, x(s)) s

0

+ f t G(t, s)4 () (s, x(s)) ds

and this difference converges to zero in V as t — 7. Thus, for any x as above we
define a continuous function by

[Fx](t) = G(t,0)x, + Jt G(t, s)AM ~1(s)f (s, x(s)) ds.
0
Finally, the estimate
I[[Fx](t) — Xoly = [G(t,0)xq — Xoly + exp {fo (K/k)} (bo + b) L (Q(s)/k(s)) ds

shows that for ¢ sufficiently small, F maps the set M of those continuous functions
x:I, — V with every x(t) € B,(x,) into itself. The estimate of Lemma 2.4 follows
from (II), so F has a unique fixed point. When B,(X,) = V, we may proceed as in
Theorem 3.

5. The strong solution. Let V be the reflexive and separable Banach space of
§3. Let H be a Hilbert space with norm and inner product given by |h|; and
(hy, hy)y, respectively. Assume V is a dense subset of H (so H is separable) and the
injection V<& H is continuous. Thus we have |v|y < ¢|v]y on V for some ¢ > 0.
If we identify H and its antidual H' by the theorem of F. Riesz [4, pp. 43-44], we
then have V<& H < V', the second injection following by duality from the first,
and also (x, y)g = <{x,y> on H x V under the indicated identification.

Let {#(t):tel,} and {£(¢):tel,} be the families of operators in L(V, V")
constructed in §§ 3 and 4. Define M(t) and L(t) to be the respective restrictions of
A(t) and L(t) to H. These restrictions are unbounded operators on H with
respective domains given by D(M(t)) = {xe V:.4(t)x € H} and D(L(t)) = {xe V:
Z(t)x € H}. Note that an element x € V is in D(M(t)) if and only if the conjugate-
linear map y — m(t; x, y):V — C is continuous with respect to the topology
induced by H on V (which is weaker than that of V). (See [4, pp. 62-67] for an
elementary discussion and references.)
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DEFINITION. A strong solution of (4.1) is a weak solution for which each term
of the equation is in H a.e. on I,. This is equivalent to writing

(5.1) M()x'(t) + Lie)x() = f(t, x(t) ae.

We note that (5.1) is an equation in H whereas (4.1) is an equation in V.

Our first result is a sufficient condition for the linear propagator to generate
strong solutions.

PROPOSITION 5.1. Assume (1), (I11), (V) and in addition :

(VD) for ae. tel,, we have D(M(s)) < D(L(t)) for s€ I,, and there is a K, €

L(I,, R) such that ||L)M ™ ()| Ly < Ky(s) when 0 S s <t £ a

Then for x,e€ D(M(0)) the function x(t) = G(t,0)x, is the strong solution of the
homogeneous equation

(5.2) M(t)x'(t) + L(t)x(t) = 0.
Proof. Consider the linear space X of all elements x € L*(I,, V) for which

x(t) e D(L(t)) ae.onl,
and
ILC )X ooy = €ss sup {|LEOX(E)|p:te ]} < oo,

(Note that for each v € V, the map t — (L(¢)x(t), v)y = {&'(t)v, x(t)) is measurable
by (V) and the measurability of x(-); V is dense in H, so this means ¢t — L(£)x(¢): I,
— H is measurable.) Since each L(t) is closed, it follows that X with the norm
Ixllx = max {[x]| o, v)> ILC-)X(- )l Loqr, i)} is @ Banach space.

Let xe X and t€ [0, a]. For &€ I, = [0, (] we have M~ Y()L(&)x(&) € D(M(E))
< D(L(t)) by (VI), and from (1) the estimate |M ~ *(E)L(§)x(E) y < c| M~ (LX)l
< k(&) YLE)X(E)g < k(&) '|x]lx. In (V) we may assume K = 1, and hence
k(&)~! is in L'(I,, R), without loss of generality. Since Lemma 3.2 implies
& - M~ Y(EL(E)x(E) is measurable I, — V and since V< H is continuous, the map
is measurable I, » H, hence in L!(I,, H). Also from (VI) follows the estimate
ILOM ~HOLEXE)g = K((QILEX(E)lg < Ki(©)lx]|x. For each ve V the map
& = (LM ~YELE)x(E), v)y = (L' (t, M~ ()L (E)x(E)) is measurable and V is
dense in H, so the map ¢ — L(t)M ~ Y(§)L(&)x(&) is in L(I,, H). Since L(t) is closed
we have [§ M~ YEL(E)x(E) d¢ belongs to D(L(t)) and

(5:3) L(r) Jo MY OLEx() dE = fo LM~ (OLE)x(&) dE

(see [11, p. 83] for a proof).
Consider the function defined a.e. on I, by (5.3). From the estimates

= ||K1||L1(1.,,R)”x||x
H

L) f M OLEXE) dE

and

| 0 M OLEXE) d

= MK i, myll X x>
| 4
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it follows that this function is in X. Finally, since x,€ D(M(0)) and |L(t)x,|g
=< K(0)|M(0)xy| 4 the function F defined by

(5.4) [Fx](t) = xo — j MY OLE)X(E) dg, tel,,
0
maps X into itself and satisfies

IFxy — Fx,lx < max {[|(K/K)| Ligg,rys 1K il m} %1 — Xallx.

By the usual arguments, it follows that there is a unique x € X for which Fx = x,
and this is the strong solution of (5.2). By the uniqueness of weak solutions it
follows that x(t) = G(t, 0)x,.

COROLLARY. Assume (1), (II1), (V) and (VI). Then for x,€ D(M(s)), s€ [0, al,
the function x(t) = G(t, s)x, is the strong solution of (5.2) on [s, a].

THEOREM 6. Assume (1), (111), (V) and (V1). Let x, € D(M(0)) and f:1, x By(x,)
— H be given with | f(t, )y < Q,()g(x|y), where g:[0, 0] — [0, co] maps bounded
sets into bounded sets and the measurable function Q (- )is such that QK € L*(I,, R).
Then any mild solution of (4.1) is a strong solution.

Proof. Let u( - ) be a mild solution. For s € [0, a], define y(s) = M ~(s) f (s, u(s)).
The function t — x(t, s) = G(t, s)y(s):[s, a] — D(L(t)) is the strong solution of (5.2),
and hence has the representation x(t,s) = y(s) — [f M~ (&)L(E)x(&, s) dé. This
follows from the previous corollary since y(s) e D(M(s)). From (5.3) we obtain
the estimates

IL()x(t, s)l g = 1LO)Y(s)a + f K (OILEX(E, )l

< K (9)Q(s)g(lu(s)ly) + fs ‘K {OILOX(E, 5)lg dE
and Lemma 2.3 thus gives
IL@)x(, 9ln < Ky(5)Q1(s)g(u(s)ly) exp {fs Ky(&) di}
for 0 < s < t < a. By an argument like that preceding (5.3), one can use Proposi-

tion 4.1(v) to show that s — L(t)x(t, s):[0, t] » H is measurable and the above
estimate shows that

t
[ 1o, M6 16, us)lnds < oo.
0
(We have used the fact that {g(ju(s)|,):s€[0,a]} is bounded since u:I, > V is
bounded.) Finally, the map s — G(t, s)M ~'(s)f (s, u(s)) = Gl(t, s).# ~*(s) f (s, u(s))
is in L!(I,, V)  L'(I,, H) by the definition of mild solution, so we have (see
[11, p. 83])
t
| 6, oM~ 161165, uts) ds e DALO)-
4]

The result is now immediate from (4.7) and Proposition 5.1.
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Remark. The requirement that x,, belong to D(M(0)) is unnecessarily restrictive
when D(L(t)) is independent of ¢. It is only necessary to have the map t — L(t)x,
in L'(I,, H) (see the argument preceding (5.4)).

Our final result is a sufficient condition for the existence of a strong solution
of (3.2). In applications the function f will contain spatial derivatives of order as
high as those of the leading operators, whereas Theorem 6 requires that f contain
spatial derivatives of order at most half of the order of those of the leading operator.

THEOREM 7. Assume (1) and (111), with V and H as given above. Suppose there is
a separable and reflexive Banach space D, dense and continuously imbedded in H for
which D(M(t)) = D and |M(t)x|y = k(t)||x||p for xe D(M(t)) and ae. tel,. For
each x € D, the function f( -, x) is measurable from I, to H, and for each te I, we
have | f(t, x) — f(t, Vu < Qt)lx — ylp. Assume that Q(t)/k(t) is in L*(I,, R). Then
for each x, in D such that |f(t, xo)lg < boQ(t), there is a unique SAC function
x:1, — D for which the strong derivative x'(t) exists a.e., x' € L'(I,,, D), x'(t) € D(M(t))
a.e., x(0) = x, and

M(@)x'(t) = f(t, x(t)) ae.tel,.

The proof of Theorem 7 can be patterned after the techniques above. There
are certain measurability results that must be obtained, but these can also be
handled as above. If D is continuously imbedded in V, this function is a strong
solution.

6. Applications. We shall present a rather general realization of the abstract
evolution equations (4.1) and (5.1) as a mixed initial and boundary value problem
for a partial differential equation of third order. The same technique yields similar
results for higher order equations [4], [15]. Problems of this type arise in the flow
of fluid through fissured rocks.[3], thermodynamics [6], shear in second order
fluids [8], [12], consolidation of clay [23], and others [10]. Certain examples of a
linear and time-independent version of our model have been studied [1], [7], [16],
[17], [18], [24]. Time-dependent and nonlinear variations have also been studied.
In particular, [26] contains results for a linear equation like (4.1) in which the
operators are strongly-differentiable, and [13] applies to the linearized form of
equation (5.1) when the operators are realizations of regular elliptic boundary
value problems and the time-dependence is continuous in the uniform operator
topology. The nonlinear equation (3.2) is considered in [10] with the added assump-
tion that the linear operators are independent of time. The Lipschitz assumptions
in [10] imply ours, and “‘solution” in [10] means “weak solution” in our notation,
so the existence results of [10] are contained in ours.

Our abstract results imply that each of the boundary value problems in the
preceding applications is well-posed in an appropriate function space. The intent
in the following is to display the types of nonlinear problems to which the abstract
results apply, so we do not consider properties of solutions. Such properties as
regularity [13], [19], [20] and asymptotic behavior [7], [14], [17], [21] have been
discussed for linear equations. We refer to [2], [4], [15], [19] for references to
unsupported results on regular elliptic boundary value problems and additional
models like those below. Finally we remark that we assume no continuity in the
time-dependence of the operators in our models below. In fact we simply require
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that the coefficients be measurable in the space and time variables and not *‘too
degenerate” in time. The third example does not require ellipticity of the leading
operator.

Let Q be an open setin R” with boundary dQan (n — 1)-dimensional manifold
with Q on one side of dQ. T’ is a measurable subset of 0Q and I'y = 0Q\T,.
H™ will denote the space of (equivalence classes of) functions ¢ € H = L*(Q) such
that D% € L%(Q) when |« < m, where D” is a partial derivative of order |o|. Then
H™ is a Hilbert space with inner product

(@, V) = Z(JQD%de:Ial < m).

Let V be the closed subspace of H'(Q) consisting of those ¢ € H'(Q) for which
(the trace of) ¢ vanishes on I'y. Then V is a reflexive and separable Banach space

with the norm |¢|,, = /(¢, §);. We shall assume that 0Q is sufficiently smooth
for the divergence theorem to apply: there is a unit outward normal
n(s) = (n,(s), - - - , n,(s)) at each s € 0Q for which

[ pax=[ nopwas, j= 1,2, m,
Q oQ
for all smooth functions ¢, where D; = 9/0x;.

Let I = [0, 1] and functions mge L*(Q x I), ae L*(I'y x I) be given, for

which Re a(s, t) = 0 and Re m(x, t) = k for some number ke (0,1]. Let #:1 — I
be measurable and assume [} (n(t)) "' dt < co. Then for ¢, y in V we define

m(t; ¢, ) = n(t) L il Djd)D_j—l[ dx + L mo(x, Y dx + L ofs, )Py ds.

The assumptions (I) and (III) are satisfied with k(t) = k- n(t). The restriction of
M(t)p e V' to CF(Q) is the distribution given by

(6.1) A = =100 3 DD+ ml-, 06,

By the regularity theory of elliptic operators, the domain of the restriction to
H = [*(Q)is given by

DM(®) = {¢eV N H*:m(t; ¢,¥) = M(D)p, V) L), ¥ €V}

The condition that ¢ € V means ¢ vanishes on I'y, while from the second condition
we see that

i=1

1) (iDJ‘ﬁ‘W"' i Dij¢~lI)dx +f adyds =0
Q j=1 Ty

for all  in V. But elements of V are (essentially) arbitrary on I'y, so the divergence
theorem asserts that this is a variational boundary condition

6.2) n(t)D,p(s) + afs, t)p(s) = 0, sely.
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Here D, = Z;; , "{(s)D; denotes the normal (directional) derivative on dQ. Thus
we have

(6.3) DM(t)) = {¢pe H*:¢p = 0on Ty, n(t)D,p + a¢p = 0on T},

where the equations on 0Q are interpreted as above.
Assume we are given functions [;;, I;, loe L*(Q x I), i,j = 1,2,---, n, and
Be L*(I'; x I). For ¢, y € V define

0.9 = | { > 1x. 0D D + 3. . 0D 7 + to(x,t)¢~w}dx

Q (i,j=1

+ ) A, £)p(s)Y(s) ds.

As above we have
64 2Op =~ ¥ Dly,0D$) + T 10D + 1ol 06

and the domain of the restriction to H is given by

D(L(t)) = {(b ev: i Dli(-, D) LXQ), Ut; ¢, ¥) = (LD, ¥) L2y

ij=1
forall y e V}.
The second condition is the variational boundary condition

Y. nS)ls, )D;é(s) + Bls, )p(s) = 0, sely.
i,j=1
The assumption (V) is satisfied with K(t) = K depending on the L*(Q x I) norms
of the coeflicients in (6.4) and the norm of fin L*(I"; x I).
A sufficient condition that the condition (VI) hold is that

(6.5) n) =1, lLjfx,t) =249, a= Pisindependent oft.

In this case we see that D(M(t)) = D(L(t)) is independent of ¢t though the operators
may vary with t through the lower order terms. A second sufficient condition for
(VD) is that

(6.6) li{x,t) =0 and B =0.

Then D(L(t)) = V for t € I. The estimate in (VI) is easily obtained and K, depends
on k, n and the coefficients in Z(t). Other variations are possible; we may require

(6.5) to hold for t € [0, 1/2] and (6.6) for t € [1/2, 1], but we cannot interchange the
order of these requirements.

Example 1. We consider the semilinear equation
(6.7a)  M()Du(x,t) + L(u(x,t) = F(x, t,u(x,t), Du(x, 1)), (x,)eQ x I,
with the linear conditions

675 &0 =0 el n(O)D,D,u(s, 1) + (s, ODau(s, ) + B(s, (s, 2)

+ Y, n)fs,)Dju(s,t) =0, sely; tel,

ij=1
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and the initial condition
(6.7¢) u(x, 0) = uy(x), xeQ.

The measurable function F:Q x I x C"*' — C is assumed to satisfy the Lip-
schitz condition

(6.8) |F(x,t,¢) — Flx,t,n)] = Q1) 'ZO & — nd, EmeCmtl,

where Q(¢) = 1is measurable and Q(-)/n(-) € L(I, R). From the Cauchy-Schwarz
inequality we then obtain the estimate

IFC-,t, ¢, D;9) — F(-, 8,9, D)l 2@ = Q)/1 + 1 — Yy
for ¢, Y in V. Similarly, if F satisfies

(6.9) |F(x,t, 8l = Q(t)(Q(x) + ‘_iolﬁjl)a xeQ, feC™!,

where g(x) = 0and g e L*(Q), then we obtain the estimate

IFC-.t, ¢, Did)ll 2 = Q0)E(Bly),

where g(x) = [(n + 2)(Iql 2 + x*)]'%, x 2 0.

From Theorem 5 we obtain the following. Let the spaces V and H and ses-
quilinear forms m(t;-,-) and I(t; -, - ) be given as above. Let the measurable func-
tion F be given and satisfy (6.8). Thus f(t, §)(x) = F(x, t, ¢(x), D;p(x)) defines a
function f:I x V — H; since H is continuously embedded in V', f satisfies (II)
and (IV). Assume that a u, is given in V for which || f(¢, u)ll 2 < Q(t)by on I
for some b, > 0. (This estimate is automatically true if (6.9) holds.) Then there
exists exactly one mild solution u(t) of (4.1) on I. This mild solution satisfies the
partial differential equation (6.7a) a.e. on I in the sense of distributions, the initial
condition (6.7¢) is satisfied a.e. on Q, and the first boundary condition in (6.7b)
is satisfied in the sense of traces on I'y. Finally, we have the identity

m(t; w'(t), @) + I(t; u(t), §) = (AW (1) + L([Ou(t), P)u

for all ¢ in V, and this is a variational boundary condition on I'; which by the
divergence theorem implies the second condition in (6.7b). If we furthermore
assume (6.5) and (6.9) and that u, is given in D(M(0)), then Theorem 6 asserts
that u(t) is a strong solution, so the boundary conditions (6.7b) are strengthened
to require that u(t) € D(L(t)) = D(M(t)) for every t € I. This also implies a regularity
result, i.e., that u(t) e H*(Q) for t € I (see (6.3)).

Example 2. The techniques above are applicable to solutions of the quasi-
linear equation

(6103.) '/ﬂ(t)Dtu(x’ t) + 2": Di(Fi(xa t, u(xa t)’ Dju(x’ t))) = FO(X’ t9 u(x, t)a Dju(x’ t))
i=1

with the nonlinear boundary conditions
M(S, t) = 0’ S€E FOa n(t)DnDt“(S’ t) + (X(S, t)Dtu(s’ t)
(6.10b) n
- Z ni(s)Fi(s: t, u(S’ t)) Dju(s’ t)) = G(Sa ta u(s, t))’ S€ l“1 )
i=1
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and an initial condition (6.7c). Here we assume F;:Q x I x C"*' - C,i=0,1,2,
-+, n, are given which are measurable and satisfy (6.8). G:T'; x I x C —> C is
measurable and satisfies

lG(S>ta£)_ G(S’t7n)| é Q(t)lé_r”, f,ﬂec-
Then we define f:I x V - V' by
S, d), 9> = f Y, Fx,t,¢(x), D,p()Dap(x)dx + |  Gls, t, g (s) ds,
Qi=0 Iy
where D, = 1. Weak (= mild) solutions are obtained from Theorem 3 (Theorem 5)
for u, appropriately chosen. Strong solutions are obtained from Theorem 7 if
uoe D =V N H? (6.5) holds,and G = 0.

Example 3. Let I = {0,1} and Q = I x I. V is the closure of CZ(Q) in the
norm | -|,,, where |§|} = [, (IDi¢|* + |D,$|?) dx. For any ¢ in Cg we have

Jl) {|¢(x1,x2)|2 + x1D1|¢(x1,x2)|2} dx, = x1|¢(x1,x2)|2|(1) =0,
1 1
fo (lxr, xp)? dxy <2 f xildxr, %) 1D1(x1, )] dxy

1 1 1
< Ef by, X2 dxy + 2f ID1(x, %) dxy,
0 0

and hence,

J: lp(xy, x,)1*dx, < 4 J: D p(xy, x,)|% dx; .
Integrating this with respect to x, on I we obtain
(6.11) 9l = 21Dl L2
for all ¢ in CJ(Q). Thus V = {¢ € LX(Q):D,¢, D3¢, D,¢p € L*(Q) and ¢ = 0 on 9Q,

D ¢ = Owhen x, = Qor 1}. Define m(t; ¢, y) = [, (DI¢D3y + D,¢pD,p)dxon V
and

2 1
It 0,9) = 3 Y Lulx, )DidpDsY dx,
j=0k=0
where 1 € L*(Q x I). Then (I), (IIT) and (V) are satisfied ; we use (6.11) to verify
the boundedness of I(¢; ¢, ). Thus we have

2 1
Mt)$ = Dip — D3¢ and ZL(t)¢ = Zo Y (= 1FDH(lu( -, )DI¢).
j=0k=0
Nonlinear terms and coefficients in Z(t) could be added as above. Theorem 2
asserts the existence of a weak solution u(t) of (4.2) which satisfies the partial
differential equation (4.2) in the sense of distributions on Q, the boundary condi-
tions built into the space V at each t € I, and the initial condition u(x, 0) = uy(x)
a.e. on Q, where u, is given in V. (We note that .#(t) is not elliptic.)



SEMILINEAR SOBOLEV EQUATION 543

REFERENCES

[1] D. E. AM0s, On half-space solutions of a modified heat equation, Quart. Appl. Math., 27 (1969),
pp- 359-369.
[2] S. AGMON, Remarks on self-adjoint and semi-bounded elliptic boundary value problems, Proc.
Internat. Sympos. on Linear Spaces, 1-13, Hebrew University, Jerusalem, July 5-12, 1960.
[3] G.BARENBLAT, I. ZHELTOV AND 1. KOCHIVA, Basic concepts in the theory of seepage of homogeneous
liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), pp. 1286-1303.
[4] R.CARROLL, Abstract Methods in Partial Differential Equations, Harper and Row, New York, 1969.
[5] , On the propagator equation, 1llinois J. Math., 11 (1967), pp. 506-527. ‘
[6] P. J. CHEN AND M. E. GURTIN, On a theory of heat conduction involving two temperatures, Z.
Angew. Math. Phys., 19 (1968), pp. 614-627.
[7] B. D. CoLEMAN, R. J. DUFFIN AND V. J. MIZEL, Instability, uniqueness and nonexistence theorems
for the equationu, = u,, — u,, onastrip, Arch. Rational Mech. Anal., 19(1965), pp. 100-116.
[8] B. D. CoLEMAN AND W. NOLL, An approximation theorem for functionals, with applications to
continuum mechanics, 1bid., 6 (1960), pp. 355-370.
[9] C.Foias, G. Gussi AND V. POENARU, Sur les solutions generalisées de certaines équations linéares et
quasi-linéares dans I'espace de Banach, Rev. Roumaine Math. Pures Appl., 3 (1958), pp. 283—
304.
(10] H. GAJEWSKI AND K. ZACHARIAS, Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse
pseudoparabolischer partialler Differentialgleichungen, Math. Nachr., 47 (1970), pp. 365-376.
[11] E.HILLE AND R. PHILLIPS, Functional Analysis and Semi-Groups, Colloquium Publications, vol. 31,
American Mathematical Society, New York, 1957.
[12] R. HUILGOL, 4 second order fluid of the differential type, Internat. J. Non-linear Mech., 3 (1968),
pp. 471-482.
[13] J. LAGNESE, General boundary value problems for differential equations of Sobolov type, this Journal,
3 (1972), pp. 105-119.
, Exponential stability of solutions of differential equations of Sobolev type, this Journal,
to appear.
[15] J.L.Lions, Equations Differentielles Operationnelles et Problemes aux Limites, Grundlehren B. 111,
Springer, Berlin, 1961.
[16] L. PROKOPENKO, Cauchy problem for Sobolev’s type of equation, Dokl. Akad. Nauk SSSR, 122
(1968), pp. 990-993.
[17] R. E. SHOWALTER, Well-posed problems for a partial differential equation of order 2m + 1, this
Journal, 1 (1970), pp. 214-231.
[18] , The Sobolev equation, I, J. Applicable Anal., to appear.
[19] , The Sobolev equation, II, Ibid., to appear.
[20] R. E. SHOWALTER AND T. W. TING, Pseudo-parabolic partial differential equations, this Journal, 1
(1970), pp. 1-26.
, Asymptotic behavior of solutions of pseudo-parabolic differential equations, Ann. Mat. Pura
Appl. (IV), 90 (1971), pp. 241-258.
[22] S. SOBOLEV, Some new problems in mathematical physics, 1zv. Akad. Nauk SSSR Ser. Mat., 18
(1954), pp. 3-50.
[23] D. TAYLOR, Research on Consolidation of Clays, Massachusetts Institute of Technology Press,
Cambridge, Mass., 1952.
[24] T. W.TING, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963),
pp. 1-26.
, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21
(1969), pp. 440-453.
[26] M. 1. VISIK, The Cauchy problem for equations with operator coefficients,; mixed boundary value
problem for systems of differential equations and approximation methods for their solution, Mat.
Sb., 39 (81) (1956), pp. 51-148, English transl.; Amer. Math. Soc. Transl. (2), 24 (1963),
pp. 173-278.

(14]

(21

[25]




