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ABSTRACT

Dimensionless structure functions such as kurtosis of the velocity gradients are computed from aircraft data
for a variety of atmospheric situations in order to characterize the intermittency of the turbulence. It is necessary
to distinguish between small scale intermittency of the velocity gradients organized by the individual main
eddies and global intermittency associated with patchiness of turbulence on scales larger than the main eddies.
Failure to make such a distinction can lead to ambiguity and inability to recognize contamination of statistics
by sampling problems.

The sharp edges of the main eddies contribute to the small scale intermittency as measured by the kurtosis
of the velocity gradients and other intermittency statistics. However, for some of the strongly stratified cases,
global intermittency increases the kurtosis by a factor of 2 or 3 in which case the statistics reflect the global
spatial variability of the turbulence (patchiness) more than the local characteristics of the turbulence itself. As
a result, the kurtosis increases with record length as more of the larger scale spatial variability is incorporated.
In such cases, record partitioning is employed to construct more useful estimates of the small scale intermittency.

The variation of the structure kurtosis with separation distance is normally found to obey the Kolmogorov
similarity theory which has been modified to include the influence of small scale intermittency. However, the
modified theory does not describe decaying turbulence nor turbulence with strong global intermittency.

The dimensionless structure function for artificial turbulence and mixtures of distributions are studied ana-
lytically. The usual dimensional structure function responds to the scale of the main building blocks (simulated
eddies) while the structure kurtosis and other dimensionless moments respond to the spatial scale of the edges
of the building blocks where gradients are particularly large and contribute to the tails of the frequency distribution.
The dimensionless structure function of the artificial turbulence is also augmented by global intermittency posed
in terms of mixtures of frequency distributions. This analytical analysis appears to explain the observed en-
hancement of the dimensionless structure kurtosis by the sharp edges of the main eddies and by the global
intermittency of those records with strong thermal stratification.

1. Introduction mittency. Global intermittency can lead to sampling

Intermittency of turbulence includes organization
of small scale gradients by individual coherent eddies.
With such small scale or microscale intermittency, dis-
sipation of turbulence kinetic energy is confined pri-
marily to small subregions of individual eddies. In ad-
dition, the turbulence may be patchy or global inter-
mittent due to organization on scales larger than the
main coherent eddies. The ambiguous term ““inter-
mittency” may refer to either small scale intermittency
of dissipation or larger scale global intermittency of the
main eddies.

With global intermittency, the turbulence develops
as patches of eddies with large intervening areas of little
turbulence activity, Episodic development of turbu-
lence in the strongly stratified boundary layer (bursting)
and associated events of downward heat flux and ver-
tical mixing of pollutants are examples of global inter-
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problems for computation of fluxes and other turbu-
lence quantities (Shaw and Businger 1985; Baker and
Gibson 1987).

Small scale intermittency may result from overall
modulation of the turbulence by the main eddies or
may occur in connection with sharp edges of the main
eddies. With overall modulation, the small scale tur-
bulence inside the eddies is sometimes larger than in
the fluid outside the eddies, as often occurs with ther-
mals (Khalsa and Businger 1977 and others). In some
cases, the strongest small scale turbulence is concen-
trated at sharp edges of the main eddies as may occur
with thermals as well as shear-driven overturning. In
other observations of turbulence fields, the small scale
intermittency occurs as numerous narrow zones of
shear with uncertain relationship to the main coherent
structures.

a. Microfionts

The contribution of the sharp edges of the main ed-
dies to the intermittency of small scale turbulence can
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occur due to generation of smaller scale turbulence by
the eddy-scale shear. In Fourier space, the sharp edges
of the eddies may contribute directly to higher wave-
numbers and thus contribute to the variance in the
inertial subrange even without generation of smaller
scale eddies.

The narrow zones of concentrated shear at the edges
of the main eddies are sometimes referred to as micro-
fronts as in Kaimal and Businger (1970). Within the
vagueness of the terminology, microfronts are also re-
ferred to as gust fronts, pulses, upstream edges of ther-
mals, or in some laboratory studies simply fronts, or
even “backs”. In any event, the concept of the micro-
front provides a useful framework for organization of
the study of turbulent records.

Microfronts or narrow zones of concentrated shears
are often considered to be the edges of larger coherent
eddies. Corrsin (1962 ) modeled these zones as vortex
sheets. In a subsequent note, Tennekes (1968 ) appealed
to vortex stretching to concentrate the shear across a
zone as thin as the Kolmogorov microscale. In high
Reynolds number turbulence, diffusion by smaller scale
eddies may contribute to a broadening of the shear
zone. These concentrated shear zones play an impor-
tant role in the overall effect of turbulence since they
are thought to be instrumental in the cascade of energy
to smaller scales and appear to account for much of
the total dissipation even though they occupy only a
small fraction of the total volume of the turbulent fluid
(Batchelor and Townsend 1949). In addition, the eddy
fronts may dominate the total transport as noted by
Schols (1984), Chen and Blackwelder (1978) and Ki-
kuchi and Chiba (1985). From a practical point of
view, the associated sudden changes in wind velocity
can lead to cumulative structural fatigue in man-made
structures such as buildings, aircraft and wind machines
depending on their response functions.

Eddy microfronts in existing atmospheric data are

~ most evident in the heated boundary layer where zones

of sharp horizontal shear and convergence occur at the
edge of thermals. Kaimal and Businger (1970) sug-
gested that the sharp edges are maintained by vortex
stretching induced by the vertical acceleration of the
thermals. In time series of turbulence records in both
stable and unstable conditions , sharp horizontal gra-
dients or eddy microfronts appear as ramp patterns
(Antonia et al. 1979; Antonia and Atkinson 1976,
Schols 1984; and others ) or asymmetric top hats( Mahrt
1979; Mahrt 1985; Kikuchi and Chiba 1985). Two-
dimensional plan views of the velocity field in the
heated boundary layer observed with doppler radar in
Kropfli and Kohn (1978) and Eymard (1984 ) indicate
considerable horizontal coherence of the shear zones
suggesting that the microfronts may be vertically ori-
ented vortex sheets.

In the study of Schols and Wartena (1986), the mi-
crofronts are associated with sharp pressure pulses.
These pressure pulses may be driven by gusts of higher
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momentum from above: The pressure perturbation
leads to vertical acceleration of warm air in significant
excess of the vertical acceleration that would be ex-
pected from buoyancy alone. This rising warm air
moves with weak horizontal momentum which in turn
leads to horizontal convergence and sharp horizontal
gradients ( microfront) at the upstream edge where the
stronger ambient fluid flows around the updrafts. With
this point of view, surface layer thermal elements are
driven more by shear than the buoyancy field. Such a
viewpoint is probably most valid over a surface layer
of thickness smaller than the Monin-Obukhov depth.

In a number of previous laboratory studies, similar
zones of strong shear or temperature gradients have

. been related to the outer edges of the large eddies as-

sociated with uplifting of near-surface fluid of weak
momentum, often referred to as bursting (Gibson et
al. 1968; Kim et al. 1971; Laufer 1975; Willmarth 1975;
Brown and Thomas 1977; Chen and Blackwelder 1978;
Subramanian et al. 1982). Often the bursting is driven
by transverse vortices although longitudinal modes may
develop behind the microfront. Of importance is that
the bursting and associated shear zones is one of the
causes of the intermittent nature of mixing (Kline et
al. 1967; Kim et al. 1971; Corino and Broadkey 1969;
Lu and Willmarth 1973).

From a more general point of view, any vertical draft
in a mean shear flow will acquire relative horizontal
momentum, modified by draft entrainment and pres-
sure effects. Horizontal convergence occurs at one edge
of the draft leading to a narrow zone of sharp horizontal
gradients. From another point of view, the ambient air
flows around the draft inducing convergence at the up-
stream edge and a wake region downstream from the
draft (Kovasznay et al. 1970; Chen and Blackwelder
1978; Mahrt 1981).  The downstream wake region is
expected to be diffuse compared to the sharp horizontal
gradients maintained at the upstream microfront.

These examples would seem to apply to the concept
of wind gusts which begin abruptly as sharp surges of
higher wind speed as observed by a stationary observer.
The composite structure of gusts constructed in Pan-
ofsky and Dutton (1984, Fig. 12.6) does indeed show
a ramp structure for the horizontal velocity corre-
sponding to a sudden increase of wind speed followed
by a slower decrease of wind speed. The microfronts
corresponding to the upstream edge of the thermals
also appear as a gust front even though they are actually
the sudden termination of low momentum air due to
the passage of the upstream edge of the thermal as ob-
served at a stationary point. The dynamic similarity
between the gust front and the thermal microfront is
not known.

b. Intermittency analysis

Eddies with sharp edges are somewhat ambiguous
in Fourier space as was noticed by Lenschow (1970)
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and shown explicitly in Schols and Wartena (1986)
and Mahrt and Gamage (1987). Structures with sharp
edges contribute considerable spectral and cospectral
energy on scales smaller than the structures themselves.
The frequency or intensity of the local shear zones does
not seem to affect the rather robust occurrence of the
%, spectral slope at small scales, at least not within the
accuracy of spectra computed from geophysical re-
cords. Or conversely, the existence of a 75 spectra slope
does not imply too much about the nature of the tur-
bulence so that velocity spectra are not particularly
useful for distinguishing between different types of tur-
bulence.

Zones of concentrated gradients and associated in-
termittency can be studied from a general point of view
using dimensionless structure functions, such as the
structure kurtosis. Although such higher moment sta-
tistics are difficult to interpret in terms of definite char-
acteristics of the frequency distributions (Ruppert
1987) and are vulnerable to sampling problems, these
statistics seem to successfully distinguish between the
different types of turbulence examined in this study.

The dimensionless structure functions are examined
in section 2 of this study as possible tools for studying
intermittency of turbulence. The dependence of these
functions on intermittent sharp gradients are studied
in section 3 in terms of artificial turbulence. In sections
4-6, such functions are evaluated in terms of fast re-
sponse measurements of atmospheric turbulence col-
lected with research aircraft under a variety of atmo-

* spheric conditions.

Although this extensive aircraft data represents a
large sample of high-resolution measurements of the
three-dimensional fluctuating velocity field, it is limited
to line measurements along the aircraft flight and three-
dimensional features of the eddies cannot be examined.
However, the higher moment structure functions ap-
pear to identify different types of turbulence which
cannot be predicted by existing similarity theory. Di-
mensionless structure functions and implied intermit-
tency are larger in newly developing turbulence or tur-
bulence where the main eddies have sharp edges. How-
ever, in some situations global intermittency and

" horizontal inhomogeneity can exert a stronger influ-
ence on the values of the dimensionless structure func-
tions.

2. Dimensionless structure functions

The structure function seems to be a direct way of
statistically studying intermittency and its dependence
on scale (see Anselmet et al. 1984 for a partial review).
It will be seen that higher order structure functions can
delineate between different types of turbulence inter-
mittency. Although the structure functions do not allow
direct comparison with existing models of turbulence
based on Reynolds averaging, they avoid the somewhat
arbitrary process of determining the local mean from
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geophysical data. The usual higher order structure
function is defined as

D"(r) = {[#(x + ) — (x)]") (1)

where ¢ is a flow variable such as temperature or one
of the three velocity components, r is the separation
distance between the observations and the square
brackets indicate an ensemble average.

The dimensionless structure function for studying
intermittency can be defined as (e.g., Frisch et al. 1978)

F"(r) = D"(r)/ {D*(r)}"". 0]

For n = 3, (2) becomes the structure skewness while
for n = 4, (2) becomes the structure kurtosis and so
forth. For the usual theories of the inertial subrange,
the dimensionless structure functions (2) are consid-
erably simpler than the usual dimensional form (1).
For example, the dimensionless structure function for
the original Kolmogorov (1941) theory becomes in-
dependent of dissipation and separation distance r. It
will been seen in later sections that intermittency in-
cluding sharp local gradients and eddy microfronts can
enhance the dimensionless structure function at the
smaller scales. Then the dimensionless structure func-
tion decreases with separation distance.

Models of the structure function for the velocity
components for the stationary inertial subrange can be
argued by assuming that the downscale energy transfer
across a given scale in the inertial subrange is of the
scaling form '

«(r) ~ E(r)/7

where ¢(r) is the dissipation rate of kinetic energy av-
eraged over the local volume of size r which is assumed
to be larger than the Kolmogorov scale but small com-
pared to the scale of the main eddies. Here E(r) is the
increment of specific kinetic energy associated with
eddy length scale r which is cascaded to smaller scales
during time scale 7. This energy transfer rate must be
equal to the dissipation rate with stationary conditions
(no net energy accumulated or lost at a given scale).
The usual estimate of the cascading time scale is r/
v(r) where

o(r) = {E(n)}'?
then
«r) ~ v(r)’/r

- or, in terms of an arbitrary power of the dissipation,

{e(r)}™3 ~ v(r)")r3.

Taking an ensemble average of this relationship and
using the velocity structure function to estimate the
ensemble average of the nth power of the velocity scale,
we obtain :

e}y ~ DH(r)/rP. €)
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Presumably the inertial subrange is sufficiently isotropic
that D"(r) is comparable for all three velocity com-
ponents. To transform this relationship into a more
useful form, it is necessary to recognize that the small
scale gradients and the dissipation are intermittent
processes so that the ensemble average of some power
of the dissipation is not equal to the power of the en-
semble average as implied by the original Kolmogorov
(1941) theory. Two modified approaches assume that
the variation of the dissipation rate is organized by the
main eddies of size L and that this variation can be
approximated by a lognormal distribution of values of
dissipation (Kolmogorov 1962: Yaglom 1966). Alter-
natively, one can approximate the dissipation as an
on-off process where, at a given time, the dissipation
is active only in a definite fraction of the fluid volume
(Frisch et al. 1978). Either approach leads to the gen-
eral form '

LMYy ~ (™31 L) ™
in which case the structure function from (3) becomes
D™(r) = Cu{ey"*r"3(r/L)~*" 4)

where C, is a nondimensional coefficient dependent
on n. :
For the lognormal model

u* = (u/18)n(n = 3)

where u is a universal coefficient with a value probably
. between about 0.2 and 0.5 (see, for example, Anselmet
et al. 1984 and papers referenced therein).

With nonzero positive u*(n), the second order
structure function D?(r) increases faster with r com-
pared to u* = 0. This steepening of the slope of the
dimensional structure function is apparently a result
of less structure-variance at small scales due to the fact
that significant small scale gradients occur only inter-
mittently. The third order moment does not change

while the higher order structure functions (n > 3) in-

crease more slowly with separation distance r. The rel-
ative augmentation of the higher moment structure
function at small scales probably indicates the presence
of a limited number of especially strong gradients at
small scales. '

With the 8-model (Frisch et al. 1978; Fujisaka and
Mori 1979; and others),

=33 -D)n-3)

where D is a fractal dimension describing the defor-
mation and breakup of eddies in the inertial subrange
into numerous smaller scale eddies. If the formation
of the new smaller eddies occupies the entire volume
of the former large eddy, then D = 3 in which case u*
= 0 and the r?/3 dependence of the second order struc-
ture function is recovered. However, if the new smaller
scale eddies occur only in a few subregions such as the
edges of the next largest eddies where shears might be
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concentrated, then D < 3 and the structure function
is modified in the same qualitative sense as with the
lognormal model. D is thought to have a typical value
of 2.5 (see Frisch et al. 1978 and references therein).
In the present study, we will compare the predictions
of the lognormal and 8-models with aircraft observa-
tions. We cannot directly test the underlying assump-
tions and will therefore consider the models as empir-
ical relationships.

For the models with format (4), the dimensionless
structure function (2) assumes the simple form

F"(r) = Cr[(n/Z)u‘(Z)—-u'(n)] (5)
where C is a function of n and L.

For the lognormal model, the dimensionless struc-
ture function (5) becomes

Fr(r) = Cr~(un/18)(n-2) ©)

while for the S-model, the dimensionless structure
function (5) (Frisch et al. 1978) becomes

Fn(r) = CI‘_(”2)(3_D)("_2). (7)

Since the dimensionless structure function is indepen-
dent of the dissipation, it is simpler to evaluate than
the dimensional form (4).

The above results apply only for separation distances
which are small compared to the scale of the main
coherent eddies and large compared to the Kolmogorov
scale and therefore are valid only for scales in the in-
ertial subrange. For this range of scales, the predicted
dimensionless structure functions (6-7) are indepen-
dent of separation distance for the original Kolmogorov
theory without modification for intermittency (u = 0,
D = 3). With modification due to small scale inter-
mittency (u > 0, D < 3), the dimensionless structure
function decreases with separation distance. The larger
values at small separation distances can probably be
associated with the tails of the frequency distribution
for the velocity gradients associated with occasional
especially large gradients. In the next section, we will
study the influence of sharp edges of idealized large
eddies on the dimensionless structure function.

3. Artiﬁciil turbulence

In this section, we will examine the influence of
building blocks of artificial turbulence on the behavior
of the structure function. Such simplified analyses are
necessary because the higher moment structure func-
tions by themselves do not provide unambiguous in-
formation about the frequency distributions of the time
series (e.g., Ruppert 1987). The goal of this section is
therefore not to be particularly realistic but rather to
understand how the structure function responds to the
geometry of simple structures.

More specifically, we are interested in the direct
contribution of the concentrated shear at the edges of
the main eddies to the small scale variance in the in-
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ertial subrange. In the usual framework of the inertial
subrange in Fourier space, the contribution of the sharp
edges of the main eddies would be misinterpreted as
distinct smaller scale turbulence. In fact, power law
theories of the dependence of the structure function
on separation distance in the inertial subrange of scales
are usually argued in terms of a cascade of energy to

. smaller and smaller scales usually attributed to se-
quential instabilities.

In contrast, Pierrechumbert and Widnall (1982) and
others have argued that the energy cascade in the in-
ertial subrange of actual turbulent flows can be limited
to few scales of motion resulting from only a few se-
quential instabilities. The continuous dependence on
scale would then presumably result from wavenumber
smearing of a given scale of motion. In fact, power law
dependencies of the structure function even occur with
simple time series consisting only of identical structures
of one scale and amplitude (Van Atta 1977).

Here we will study the structure function of artificial
time series consisting of idealized structures with sharp
edges which contribute directly to the structure func-
tion at small separation distances. Toward this goal it
will be useful to express the structure function in the
form

D) = [ flasmitaenrdr @

where

[86(N]" = [é(x + 1) — $(x)]"

and f is the relative frequency of a given value A¢g. In
the following examples of artificial records with simple
building blocks, (8) will be applied as a discrete sum-
mation.

a. Two-mode structure

The simplest possible class of artificial records con-
sists of only two different magnitudes of (A¢)2 For
simplicity, we will not explicitly consider the depen-

dence on separation distance until the next subsection..,

Consider the case where (A¢)? assumes only one of
two values; for example, the larger value (A¢,?) could
crudely simulate the effect of sharp edges of the main
eddies while a smaller value (A¢;?) simulates back-
ground turbulence. Figure 1a shows two examples of
artificial discrete records which lead to two-mode dis-
tributions with A¢, = 0 when the separation width r
is the minimum resolution and moves one point (dis-
tance r) at a time.

The corresponding éven order structure function (8)
for the two-mode case consists of only two terms

D" = f1(Ad 1 2)"? + fr(Ady>)™?

=f1(A¢*)"*(1 + f*p"/?) ®
where f| and f, are the relative fractions of the record
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a) Small Scale Intermittency

modulated intermittency
r
_.I fe—

microfront intermittency

, . f main eddies \
B W

b) Global Intermittency

/— main eddies X

[ Sy WY ¥ Y S W WD &Y

FIG. 1. Artificial examples of (a) small scale intermittency and (b)
global intermittency. With idealized modulated intermittency, p —
o corresponding to (11). With microfront intermittency, f* — small,
corresponding to (12).

occupied by magnitude A¢,? and A¢-?, respectively,
[* is the ratio of the two relative frequencies

f*=flhi

. while p is the ratio of squares of the two magnitudes

P =A¢%/A¢,%

For the two-mode artificial turbulence (9), the dimen-
sionless structure (2) becomes

F*(r) =fl-(1/2)(n—2)(1 +f*pn/2)/(l +f*p)(n/2).
(10)
Note that with only one mode (p = 1), the dimen-
sionless structure function is unity. If both modes occur
with equal frequency (f* = 1), but the second mode

is much stronger (p > 1), the dimensionless structure
function (10) becomes approximately

F" = 2U/2)(n=2) an

and thus decreases with 7.
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For the case where the stronger mode is relatively
rare (f* < 1) but f* p remains large compared to unity,
the dimensionless structure function becomes

F* =f‘z—(l/Z)(n—2) (12)

In this case, the dimensionless structure function in-
creases more rapidly with » compared to (11) since f,
< 1. Thus, both the difference of the strength between
the two modes and the difference between the relative
frequencies of the two modes enhance the nondimen-
sional structure function. This conclusion is predicted
by (10) for the entire range of values of p and f*.

Two simple examples of artificial two-mode records
are noted in Fig. 1a. In the first case, the stronger fluc-
tuations occur for 50% of the record and crudely sim-
ulate the case where the small scale turbulence is mod-
ulated by the larger scale eddies (modulated small scale
intermittency). The dimensionless structure function
is modest for this case. In the second example, the
strong fluctuations are limited to the edges of the main
artificial eddies (microfront small scale intermittency).
Since the microfront gradients are particularly large
and occupy only a small fraction of the record, the
dimensionless structure function is large.

The above example reenforces our expectation that
rare strong events augment the values of the higher
moment structure function although it does not prove
the converse that observed large values of the dimen-
sionless structure function imply the existence of rare
strong events. The above example also shows that the
infrequency and relative amplitude of the events jointly
enhance the values of the higher moment structure
function in a nonlinear way (10). In the next subsec-
tion, the analysis is expanded to include the dependence
on separation distance.

b. Regularly spaced top hat functions

We now consider dependence on horizontal scale
for an artificial record consisting of regularly spaced
“top hat” or square pulse functions of width L bordered
by transition zones of width L (Fig. 2a). This is.one
of the simplest artificial records that allows explicit
study of the dependence of the structure function on
the separation distance r. This artificial record crudely
approximates the conceptual picture of coherent struc-
tures where gradients are weak in the interior and con-
centrated at the edges. That is, the intermittency of the
record is organized by the main eddies. Top hat func-
tions have been used to approximate the structure of
thermals and plumes and appear to be useful in the
absence of significant vertical wind shear where the
main eddies are likely to be symmetric with respect to
horizontal distance.

To generalize the results of this subsection, we scale
r and L by the interval distance between observations
so that » becomes the number of data intervals in the
separation window, L is the width of the flat regions
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(a)

(b)
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Structure Function Dz(r)
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Kurtosis F‘}r)
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FIG. 2. (a) Top hat structure with transition zones, (b) second-
order structure function for a time series of such top hat structures
and (c) the corresponding kurtosis.

of the top hats expressed in number of data intervals
and «L is the width of the transition zones expressed
in number of data intervals. To compute the structure
function, the separation window moves through the
discretized record one data interval at a time and gen-
erates a time series of A¢(x) = ¢(x + r) — ¢(x). This
time series is periodic in x with a wavelength of 2 L(1
+ «a) so that computation of the structure function re-
quires summing over only one wavelength.

If the separation window is less than or equal to the
width of the transitions zones, we obtain the following
distribution of values of A¢ for each transition zone
where ¢ increases with x

straddle terms
N(a/aL) =2
NQ2a/al) =2

N((r—1)/aL) =2 " (13a)
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transition-embedded term
N@rjaly=alL+1-—71

where N is the number of observations of a given value
of A¢. The frequency distribution is symmetric with
respect to A¢ = O in that the same distribution occurs
for negative values of A¢ in the complementary tran-
sition zone where ¢ decreases with x. Straddle terms
are those where the separation window* used to cal-
culate A¢ straddles one of the edges of the transition
zone while the transition-embedded term corresponds
to the samples where the separation window is entirely
within the transition zone.

To complete the distribution for one cycle, we must
include the remaining samples where the separation
window is embedded within a flat region of zero gra-
dient. In particular

N(Ap=0)=L+1—-r (13b)

for each of the two flat sections of a top hat cycle. Note
that if aL = 1, so that the width of the transition zone
is one data interval, then (A¢)? is either zero or a? as
in the two-mode example of the previous subsection.

The relative frequencies are computed by dividing
the number of observations N (13) by the total number
of data intervals in one cycle 2L(1 + «). Then, the
nth order structure function (8) becomes

D"(r) = [2L(a + 1)]“[2 ji: [(ﬁ) * (‘ ﬁ)]

ra\" ra\"

+ (aL + 1 r)[(aL) +( aL) ]} (14)
The summed terms in (14) are due to the 4(r — 1)
straddle terms where A¢ is proportional to the frac-
tional overlap j/ oL of the separation window with the
transition zone. The remaining term not involving
summation is the contribution from the cases where
the separation interval is embedded entirely within the
transition zone corresponding to the last term in (13a).

(1) Small separation distance (r < aL)

For this case, only the embedded term (unsummed
term) in (14) is important and the even ordered struc-
ture function becomes approximately

D"(r) = a(ra/al)". (15)
Thus for small r, the structure function increases as
the nth power of the separation distance. The structure
function D?(r) increases as r? which is steeper than
the unmodified Kolmogorov prediction of the inertial
subrange of r?/3, However, the artificial time series can
be generalized to include random spacing and ampli-
tude in such a manner to produce the #*/3 dependence
analogous to the analysis of Van Atta (1978).

The even order dimensionless structure function (2)
corresponding to (15) becomes
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F*(r) = [a] /202 (16)
where we have made use of the condition that the width
of the transition zone is significantly narrower than the
interior flat region of the top hat (a < 1).

The dimensionless structure function for this case
is again simpler than the dimensional one and is in-
dependent of both the separation distance and ampli-
tude. As in the two-mode example, the dimensionless
structure function increases with the order »n. In this
example (16), the dimensioniess structure function also
increases with the sharpness of the edges (smallness of
). As a decreases, the transition zones occupy a
smaller fraction of the record increasing the intermit-
tency. In other words, the dimensionless structure
function for small separation distances serves as an
index for the intensity of the microfront transitions
and related intermittency of the small scale gradients.

(ii) Separation distance approaches the width of the
transition zone )

Then the structure function is dominated by the first
bracketed term in (14) corresponding to cases where
the separation window straddles one of the edges of
the transition zone. The even order structure function
is then approximately,

r—1
D*(ry=[2/L(1 + )] 2 (ja/aL)"
j
or for narrow transition zones (small ), approximately

r—1
D"(ry=(2/L)(a/aL)" 22 ()" a7
J

Therefore as long as the transition width is large com-
pared to the data interval, the structure function (17)
for r » 1 varies as r", to the lowest order of approxi-
mation.

The corresponding dimensionless structure function
is

r-1
v 2T
2 (1/2)(n-2) . .
= (3) —— 9y
(2 /1
J

which becomes independent of r to the lowest order
of approximation.

Therefore as the separation distance approaches the
width of the transition zone, the structure function and
dimensionless structure function (Fig. 1) still depend
on the separation distance in a manner qualitatively
similar to the dependence on separation distance
for values small compared to the transition width
(15)-(16).
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(iii) Separation distance is greater than the width of

the transition zones but smaller than the width of the
top hats '
Then the structure function is of the form

al—1
D"(r) = [2L(a + 1)]—'{2 3 [(i‘z)

+ (_ i‘%)] +(r—aL+ [a"+ (—a)"]}. (19)

The first term involving the summation results from
cases where the separation window straddles the
boundary of the transition zone leading to a partial
overlap distance of j/ aL. The second term results from
the cases where the transition zone is now embedded
within the separation window in contrast to (14) whete
the smaller separation window was embedded within
the transition zone.

(iv) Separation distance is just slightly larger than
the width of the transition zones _

Then the overlap term in (19) dominates and the
dependence on the separation distance and amplitude
of the top hats is not too different from the case where
the separation distance is shghtly less than the transition
w1dth (17).

(v) Separation distance much larger than the width
of the transition zones but still smaller than the width
of the top hat

Then the embedded term [second term in Eq. (19)]
dominates and the even order structure function is ap-
proximately

D™(r) = (r/L)a" 20)

and the structure function increases only linearly with
the separation distance r which is weaker than the r”
dependence for smaller separation distances (15). The
dimensionless structure function corresponding to (20)
is simply

F™(r) = (r/L)~ /D) @

and thus decreases with increasing separation distance.
This decrease becomes rapid for the higher order func-
tions.

Of importance is that the dimensionless structure
function is approximately independent of the separa-
tion distance until the separation distance reaches val-
ues comparable to the transition width (Fig. 2¢) and
then decreases with larger values of the separation dis-
tance. ‘Therefore the separation distance at which the
dimensionless structure function begins to decrease with
increasing separation distance is a measure of the
widths of the transition zones at least for the above
class of artificial records. One might therefore expect
that in actual turbulence data, the dimensionless struc-
ture function would be an index for typical widths of
the local regions of intensified gradients.
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(vi) Separation distance exceeds one half of the
wavelength of the top hat function

When the separation distance exceeds the width of
the top hat plus the width of one transition zone, the
structure function begins to decrease (Fig. 2b) due to
interference between two adjacent transition zones si-
multaneously captured in the separation window. The
dimensionless structure function continues to decrease
with increasing separation distance. As the separation
distance approaches 2 L(1 + «), the wavelength of the
top hat pattern, the structure function approaches zero
while the dimensionless structure function approaches
a nonzero minimum. Thus the structure function
reaches a maximum at a separation distance approx-
imately equal to the width of the top hats. Note that
when the separation distance is exactly 2 L(1 + «), the
dimensionless structure function in the discrete case
becomes undefined as both the numerator and deno-
menator vanish.

Numerical evaluation of more complicated artificial
time series, where the amplitude and spacing between
the top hats include a random component of variation,

indicates that the dimensionless structure function is

still related to the width of the transitions. The main
difference is that the dimensionless structure function
begins to decrease with separation distance at scales
somewhat smaller than the width of the transitions
zones. '

In summary, for the simple artificial record above,
the maximum of the dimensional structure function
is related to the width of the main structures while the
maximum of the dimensionless structure function in-
dicates the widths of the transition zones of the main
eddies. That is the dimensionless structure functions
are more influenced by the extreme values at the tails
of the frequency distributions of the gradients.

¢. Ramp functions

The simplest artificial record which contains asym-
metry of the main structures is one of regularly spaced
ramp functions (Van Atta 1977). Ramp functions,
consisting of a linear increase with x followed by a
discontinuous drop to the original value, appear to
roughly approximate the main eddies in many tur-
bulent flows with shear-induced asymmetry (Antonia
et al. 1979, 1982).

For ramp functions where the width of the linear
increase is /, separated by distance s of zero gradient,
the dimensionless structure function for separation
distances which are small compared to / + s but large
compared to the Kolmogorov scale, is of the form

Fr(r) = [r/(l + )] /D=2,

This relatlonshlp follows from (2.12) in Van Atta
(1977) or (2) in Antonia et al. (1982). Here the di-
mensionless structure function decreases with increas-
ing separation distance for all values of the separation
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distance. This is because the transition zones of the
ramp functions have zero thickness and therefore can-
not be resolved. However, the increase of the structure
function with the order # is of the same form as in
previous examples.

d. Global intermittency

The previous subsections indicate that the dimen-
sionless structure function can identify the scale of the
strongest gradients for simple records. However, geo-
physical records are also complicated by global inter-
mittency of the main eddies and inhomogeneity on
larger scales. To study the potential influence of global
intermittency on higher moment statistics of geophys-
ical turbulence, consider an idealized record consisting
of two modes, each with its own frequency distribution
of gradients. Johnson and Kotz (1970) have shown
that two mixtures of normal distributions with equal
means but different variances lead to a mixture kurtosis
greater than those of the two individual distributions.
We will consider the case where distributions are non-
Gaussian as occurs with distributions of velocity gra-
dients in actual turbulence. One mode will represent
patches of strong turbulence which occupies a small
fraction of the record f, < 1 and is characterized by
large velocity differences 6u(r) with estimated variance
E[(6u)?] and a mode of weaker background turbulence
which occupies a large fraction of the record (f; = 1
— f2) and is characterized by small velocity differences
dv(r) with variance E[(8v)?] < E[(du)?].

Both distributions of gradients are assumed to have
zero mean. The structure moment (8) is then just the
weighted average of the expected values of the structure
moments for the two individual distributions. The nth
order structure moment for the sum of the two distri-
butions leads to the following estimate of the dimen-
sionless structure function (2) for the mixture of the
two distributions

F'(r) = [2E(8u™) + fLE(8v")]/
[2E(8u®) + fLE(80")]"2. (22)

The kurtosis of the entire record can be expressed in
terms of the kurtosis of each of the two distributions
by dividing (22) into two terms and factoring out the
appropriate variance from the denominator for each
term. Then we obtain

F*(r) = f2F"(r, 8u)/ [ f2 + s/i}"?
+ fiF(r, 80)/1f1 + (f2/9)]1"? (23)
where:
F"(r, u) = E(6u")/E(8u*)"/?
F*(r, v) = E(6v")/E(8v?)"?
s = E(6v))/[E(du)] < 1.
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Of interest is that the dimensionless structure function
of the entire “record” of the mixture of distributions

F"(r) can be greater than that for both of the two types

of distributions comprising the record. For example,
consider the case where both distributions are char-
acterized by the same dimensionless structure function

F*(r, éu) = F"(r, 6v),
then

[F(r)/F(r, u)] = [f2 + s"* 1)/ 12 + s 112
249

The dimensionless structure function of the entire re-
cord is greater than that of both of the individual dis-
tributions if the numerator on the right-hand side is
greater than the denominator. For the kurtosis (n = 4),
this condition is satisfied if

s(2—-1s5)< 1. (25)

This condition is satisfied for all s < 1 so that the kur-
tosis of the mixture is always greater than the kurtosis
values for the individual distributions. Relatively
speaking, the variance is more influenced by the prev-
alent weaker gradients v while the higher moments
[numerator of (22)] are more influenced by the less
common stronger gradients éu. .

In other terms, the inhomogeneity of this simple re-
cord enhances the kurtosis beyond the values for the
subrecords. Conversely the kurtosis of the entire record
reflects the inhomogeneity of the record in addition to
the characteristics of the turbulence within the different
parts of the record. Since the turbulence in most geo-
physical records is characterized by at least some in-
homogeneity, care must be exercised when interpreting
the higher moment statistics. An analysis of the mean-
ing of the kurtosis of velocity gradients in records of
atmospheric turbulence will be conducted in sections
5 and 6.

4. Atmospheric cases

This section and subsequent sections indicate that
dimensionless structure functions are useful tools for
distinguishing between different types of atmospheric
turbulence. In particular, turbulence which is just de-
veloping or is maintained only intermittently is char-
acterized by large values of the dimensionless structure
function while more continuous turbulence is char-
acterized by smaller values.

Here we will analyze a variety of different types of
turbulence as observed by research aircraft with fast
response instrumentation. Aircraft data will be ana-
lyzed in the bora over the northern coastal range of
Yugoslavia (Smith 1987) collected during the Alpine
Experiment (ALPEX). We have organized the ALPEX
records into four classes: 1) very weak globally inter- -
mittent turbulence far upstream from the mountain
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TABLE 1. Characteristics for individual flight legs include the buoyancy length for r = 10 m [Eq. (26)], the structure function for vertical
velocity D? (10 m), kurtosis for vertical velocity F4 (10 m) and slope of the structure function [Eq. (27)] between 10 and 50 m. For ALPEX
legs, the height above ground is omitted since surface terrain is mountainous. The turbulence in HAPEX and in the lower boundary layer
in PHOENIX are characterized by upward heat flux; the other legs are characterized by weak or downward heat flux. Class “average”
values are simple unweighted averages of values for all of the legs in the class while “composited™ values are computed by combining the
legs of a given class into one time series.

v Height Length Buoyancy length Structure function Kurtosis Slope
Program-class Leg (m, AGL) (km) (r ~ 10 m) (r~ 10 m) (r ~ 10 m) (10-50 m)
SESAME
5 May
strongly stratified 1 70 27 1 0.003 5.1 -0.15
2 90 13 2 0.009 6.7 —0.11
3 70 17 2 0.013 12.5 —0.18
4 55 16 2 0.008 7.1 —0.18
5 20 19 <1 0.002 13.7 —-0.35
Average . 9.0 -0.20
Composited : ’ 14.7 ~0.28
6 May—windy 1 20 15 16 0.10 4.0 —-0.02
2 14 12 St . 020 4.3 -0.12
3 35 12 56 0.26 4.6 -0.17
4 165 13 38 0.27 5.0 -0.22
5 35 15 39 0.25 4.3 -0.14
Average 4.4 —-0.14
Composited 5.4 —0.11
ALPEX
6 March . :
Far upstream, Weak v - 69 10 0.011 " 16.2 —0.11
w0 83 5 0.004 11.0 0.19
y4 130 4 0.005 12.8 0.38
23 133 2 0.002 13.3 -0.12
Average : 13.3 0.08
Composited 18.9 0.09
Near ridge vl 37 18 0.03 16.3 0.06
wl 31 40 0.15 22.8 -0.20
x2 25 42 0.07 27.6 -0.31
Average ' 223 —0.15
Composited o 322 -0.14
Downstream, strong v2 43 208 0.95 6.2 —0.06
v3 23 48 0.12 70 ~0.21
w2 28 . 169 0.75 8.8 —0.18
w3 .35 78 0.25 9.6 —0.40
x3 26 65 0.18 11.6 -0.22
x4 21 25 0.05 11.8 -0.10
y2 67 50 0.10 5.7 -0.17
22 11 53 0.07 8.0 -0.09
Average : 8.6 -0.18
Composited . 14.1 —-0.06
Far downstream, weak zl 94 14 0.01 8.9 0.03
: x5 22 6 0.01 9.1 0.42
) w4 89 13 0.02 8.0 0.03
Average : 8.7 0.16
Composited 9.4 0.06
PHOENIX

17 June 1984
Lower boundary layer 9 165 21 118 0.32 7.1 -0.25
10 158 23 118. 0.22 5.8 —0.15

19 159 24 119 0.27 54 —0.12



1 JANUARY 1989 L. MAHRT 89
TABLE 1. (Continued)
Height Length Buoyancy length Structure function Kurtosis Slope
Program-class Leg (m, AGL) (km) (r ~ 10 m) (r~10m) (r~10m) (10-50 m)
20 162 23 112 0.26 4.7 -0.03
29 165 24 103 0.24 59 -0.26
30 163 20 91 0.22 5.1 -0.10
Average 5.7 —0.15
Composited 5.9 -0.16
Upper boundary layer 3 1738 26 50 0.03 8.3 -0.27
4 1746 26 40 0.03 7.9 -0.11
13 2059 22 79 0.10 6.6 -0.17
14 2070 24 90 0.14 8.2 —0.15
23 2221 24 79 0.08 8.9 -0.25
24 2243 24 84 0.07 16.3 —0.22
Average 94 -0.20
Composited 114 -0.18
22 June 1984
Lower boundary layer 9 163 25 115 0.30 5.5 -0.17
10 151 22 108 0.27 6.3 -0.17
19 165 24 164 0.27 5.8 -0.16
20 162 22 154 0.29 49 —0.14
Average 5.6 —-0.16
Composited 5.6 —-0.16
Upper boundary layer 3 3060 22 168 0.16 114 -0.09
4 3068 24 128 0.1t 7.6 -0.11
13 3564 19 190 0.23 8.9 —0.18
14 3579 23 193 0.23 5.9 -0.14
Average 8.6 -0.13
Composited 8.8 -0.12
HAPEX
19 May 86 1 150 120 90 0.34 6.0 -0.12
2 150 120 97 0.40 5.7 —0.18
3 150 120 93 041 5.3 -0.10
4 150 120 90 0.39 55 -0.22
5 150 120 105 0.49 53 —0.18
6 150 80 119 0.50 5.3 -0.20
Average 5.5 =0.17
Composited 5.6 -0.17
25 May 86 1 150 120 95 0.31 5.9 —0.18
2 150 120 102 0.38 5.7 -0.15
3 150 120 125 0.36 5.7 -0.16
4 150 120 120 0.37 5.8 -0.15
5 150 120 125 0.37 6.0 -0.17
6 150 : 129 0.38 5.7 —-0.12
Average 5.8 -0.15
Composited 5.8 -0.16

range, 2) developing globally intermittent turbulence
above the mountain range, 3) strong turbulence im-
mediately downstream from the mountain range and
4) weaker turbulence farther downstream which is also
globally intermittent ( Table 1).

Aircraft data from the heated convective boundary
layer will be analyzed from the Hydrological and At-
mospheric Pilot Experiment (HAPEX) described by

André (1988). Six legs, 120 km long and approximately
100 m above the surface, are analyzed for each of two
fair weather days. These legs were flown over a large
pine forest in Southwest France and represent some of
the longest records of boundary-layer turbulence. Sta-
tistics between the six legs are remarkably similar ( Ta-
ble 1) due to the large sample size and due to approx-
imate stationarity and relative homogeneity. Aircraft
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data will also be analyzed in a weakly heated boundary
layer observed during the PHOENIX experiment. Here
the influence of heating is constrained by the influence
of warm air advection aloft and the mean shear assumes
some importance. Aircraft legs were repeatedly flown
at five different levels in the boundary layer on each
of two days, a total of thirty legs on the first day and
twenty legs on the second day. For each day, the legs
are collected into two classes, one near the surface and
one near the top. , '

Finally aircraft data will be analyzed from the noc-
turnal stable periods during the Severe Environmental
and Mesoscale Experiment (SESAME). This data in-
cludes both windy conditions with weak stratification
and nearly calm conditions with strong stratification
(Mahrt and Gamage 1987). On the first day, five legs
are analyzed at the top of a strongly stratified surface
inversion layer, about 50 m deep.' Intermittent tur-
bulence is driven by modest shear at the top of the
. inversion layer while the strong stratification inhibits
any significant turbulence within the inversion layer
itself. On the second day, winds nearly 20 m s™! main-
tain a boundary layer of 300 m depth in spite of strong
surface radiative heat loss.

5. Structure kurtosis

In the present analysis, we will examine the structure
function for the horizontal gradients of vertical motion.
The horizontal velocity components are more con-
taminated by larger scale motions while in strongly
stratified flow, small scale temperature gradients may

survive at locations where the turbulence is no longer -

active. In general, the nondimensional structure func-
tion for temperature was greater than that for vertical
momentum as might be expected from the simulations
of Kerr (1985). We will analyze even order moments.
Odd order moments are generated primarily by mean
vertical wind shear but will not be explicitly considered
in this study.

Increasing the order of the moment primarily am-
plifies features in the dependence of the structure func-
tion on horizontal scale apparently due to increased
emphasis on the most sharply defined structures. This
' enhances the differences between different records but
also aggrevates sampling problems which appear to be
important in some of the atmospheric records. How-
ever, the qualitative interpretation offered below does
not depend crucially on the order of the moment. In
this section, we will study the fourth-order moments

! A sixth leg was omitted since it contained an anomalously strong
updraft coincident with very warm surface radiation temperatures.
This feature was apparently associated with a man-made structure.
In this case, the unusually large kurtosis for this leg served as an
indicator of an anomalously large event. An unusually large value
of the dimensionless structure function for one of the legs in the
PHOENIX data also flagged a 100 m section with bogus vertical
motion data.
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(kurtosis) at a small separation distance of 10 m in
order to emphasize small scale gradients. The separa-
tion distance of 10 m appears to be the smallest scale "
free of the influence of the instrument response time
scale and process filtering. The analysis was also carried
out with 50 m separation distance; although the kur-
tosis values were generally smaller, the variations be-
tween types of turbulence were qualitatively similar to
the results with 10 m separation distance and will not
be reported here. Presumably even larger values of the
kurtosis could be found if the processed data resolution
had been finer than 10 m. The dependence of the
structure function on horizontal scale will be explicitly .

-studied in section 5.

We now briefly examine the influence of the large
variation of stability between records on the structure
kurtosis. Structure functions in the surface layer exhibit
a systematic dependence on stability (Wyngaard et al.
1971; Fairall and Larsen 1986). Here we will use the
structure buoyancy length (Mahrt and Gamage 1987)
as a local stability parameter since it was less affected
by sampling problems and the computational proce-
dure is more straightforward compared to computation
of a flux-based local stability length. The structure
buoyancy length is defined as

d(r) = D,A(r)/ {(g/®)[D2()]'/?}  (26)

where the subscripts w and @ indicate the structure
functions for vertical velocity and potential tempera-
ture, respectively, g is the acceleration of gravity and
O is a basic state potential temperature. The structure
buoyancy length possesses the additional advantage
that it systematically increases with separation distance
up to typically 100 m where it becomes nearly inde-
pendent of horizontal scale. However the structure
buoyancy length is always positive and one must
sometimes consult the correlation between potential
temperature and vertical motion in order to distinguish
between stable and unstable cases. Table 1 lists the
structure buoyancy length for approximately 10 m
separation distance which are typically a factor of three
smaller than the asymptotic values approached for
separation distances greater than 100 m.

The records with the largest values of the kurtosis
occur with strong stability (small buoyancy length);
however, the scatter is large and the link between strat-
ification and dimensionless structure functions will be
found to be rather indirect. Other factors are, at least
collectively, more important. The kurtosis is smallest
in turbulence which is more or less continuous (not
globally intermittent) and relatively homogeneous. For
example, the kurtosis at 10 m separation distance av-
erages only 4.4 for the windy SESAME class (Table
1). The kurtosis increases modestly to about 5.5 for
the low level legs in the heated boundary layers during
HAPEX and PHOENIX where the sharp edges of
thermals are often characterized by large concentrated
gradients of vertical velocity. The larger kurtosis and
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intermittency is also due to greater intensity of fluc-
tuating gradients inside the thermals compared to the
regions between thermals.

Most of the remaining records are characterized by
global intermittency associated with strong stratifica-
tion or characterized by other larger scale inhomoge-
neity of the turbulence. Both effects greatly enhance
the kurtosis values. Recall that records containing
mixtures of different turbulence strengths correspond-
ing to different distributions of velocity gradients may
have kurtosis values larger than those values for the
different distributions contributing to the record (sec-
tion 3). Due to such effects, kurtosis values are typically
on the order of ten in the globally intermittent tur-
bulence in the strongly stratified SESAME flow, the
inhomogeneous turbulence in the upper part of the
PHOENIX boundary layer and the globally intermit-
tent turbulence in the bora flow (ALPEX) far down-
stream from the mountain range and also upstream
from the mountain range.

Kurtosis values are extremely large, exceeding
twenty, in the developing globally intermittent tur-
bulence above the mountain range. Here the devel-
oping patches of turbulence are intense leading to larger
contrast with the intervening regions of little turbu-
lence. This large contrast augments the kurtosis values.
The sharp edges of the drafts in the turbulence patches
lead to a smaller enhancement of the kurtosis.

We tentatively conclude that global intermittency
significantly increases the kurtosis and other higher
moments to the extent that values of the dimensionless
structure function represents the variation of the tur-
bulence more than the nature of the turbulence itself.
Analogous complications have been noted in the study
of variance/mean ratios describing spatial variations
of vegetation (Pielou 1969).

We attempt to isolate the enhancement of kurtosis
due to global intermittency by dividing the records into
subrecords corresponding to patches of turbulence and
intervening regions of weaker or nonexistent turbu-
lence. For the developing turbulence above the moun-
tain range, the kurtosis within the patches of significant
turbulence and within the intervening regions of weak
or no turbulence is a factor of two or more smaller
than the kurtosis value for the entire record.

The reduction of kurtosis is not as large when the
records are partitioned into equal subrecords since such
arbitrary partitions may sometimes include both tur-
bulent and nonturbulent flow within a given subrecord.
From a more general point of view, the kurtosis and
other higher moments show a general increase with
record length (Fig. 3) for a variety of reasons. In the
trivial limit of the shortest possible record with only
one computed velocity gradient, the kurtosis is unity.
As the record length increases, the kurtosis increases
due to turbulent fluctuations including the influence
of small scale intermittency organized by the main ed-
dies. As the record length becomes long enough to in-
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FIG. 3. Averaged values of the kurtosis as a function of the subrecord
length; subrecords are created by equal partitioning of the entire re-
cord. To facilitate comparison between cases, records were partitioned
into 1 km, 5 km, 10 km and when possible 20 km segments. The
HAPEX and low level PHOENIX lines coincide. The significant dif-
ference between the SESAME 6 values compared to the PHOENIX
low-level and HAPEX values is somewhat dwarfed in this particular
figure by the large influence of global intermittency on the other
cases.

clude a sample of the main eddies, the kurtosis value
may become nearly independent of the record length.
This occurs in the thermally driven HAPEX and low
level PHOENIX turbulence and in the continuous tur-
bulence of the windy SESAME case (Fig. 3). The kur-
tosis shows little increase as the record length increases
beyond 5 km suggesting that the influence of inho-
mogeneity is minimal. In fact the kurtosis values for
different record lengths in the HAPEX and low level
PHOENIX cases reach the same value of approxi-
mately 5.6.

In the turbulence with global intermittency or other
significant inhomogeneity, the kurtosis continues to
increase as the record length increases beyond 5 km
and more of the inhomogeneity is captured (Fig. 3).
This sensitivity to record length implies that the sta-
tistical characteristics of the turbulence itself can not
be quantitatively established in these cases without
further analysis such as record partitioning. Note that
the kurtosis values for both the homogeneous cases
and the globally intermittent and inhomogeneous cases
show much less variation when the subrecord lengths
are too short to include the influence of global inter-
mittency and inhomogeneity.

To form even larger records, values of Aw from in-
dividual records of a given class were combined to form
one large sample. The kurtosis of the entire sample is
then computed by simply summing the structure vari-
ance and fourth order moments using all of the data
from all of the individual records and then substituting
directly into (2). The final kurtosis value is not influ-
enced by the boundaries of individual records since the
separation window (of width r) is never allowed to
straddle the boundaries of individual records. The re-
sulting kurtosis for the inhomogeneous classes (com-
posited kurtosis, Table 1) are typically 50% larger than
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the values for the individual records within the class
probably due to variations of turbulence strength be-
tween records. Such differences are small in the more
homogeneous cases of HAPEX and low-level PHOE-
NIX turbulence.

The above subdivision of records and combining of
records reveals that the dimensionless structure func-
tions will increase with record length due to small scale
intermittency, global intermittency and general inho-
mogeneity of the turbulence. This result was predicted
by the theoretical analysis of mixtures of distributions
in section 3. The augmentation of the dimensionless
structure functions by the patchiness of the turbulence
underscores the need to distinguish between different
types of intermittency when studying geophysical tur-
bulence records. Furthermore the kurtosis and other
higher moments of a given turbulence field cannot be
represented by a single value. In the more homoge-
neous records with continuous turbulence, the kurtosis
becomes almost independent of record length once the
record length becomes a factor of ten larger than the
scale of the main eddies. For globally intermittent tur-
bulence, the value of the kurtosis is more representative
of the spatial variation of the turbulence than the tur-
bulence itself, at least without partitioning the record.

From another point of view, increasing the record
size to bolster the sample size of the main eddies in-
creases the impact of the inhomogeneity of the tur-
bulence. In cases of obvious global intermittency, the
degree of small scale intermittency intrinsic to the tur-
bulence itself can be estimated by computing statistics
for many short records. Then values of the dimension-
less structure function can be averaged subject to the
usual problems of averaging ratios.

6. Dependence on scale

The structure functions for the atmospheric aircraft
data usually increase with horizontal scale (separation
distance) according to a power law dependence (see
section 2) at least for scales which are small compared
to the size of the main eddies. The higher order di-
mensionless structure function usually decreases with
separation distance as predicted (section 2). In this
section we wish to explore the usefulness of the mod-
ified Kolmogorov theories for describing this scale de-
pendence. We will also attempt to determine the causes
of the occasional breakdown of the power law depen-
dence. We can anticipate that global intermittency and
the sensitivity of the slope of the structure functions
to sampling problems are important in some of the
records.

Here we esnmate the exponents of the power law
dependence on separation distance (5) as

f(n)=90InF"(r)/d1n(r)

= [InF"(rz) — ImF"(r))/[In(r2) — In(r))].  (27)
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With the lognormal model (6) and B-model (7),
F"(r) can be written in the form

Fr(r) = C(L, n)rf™.
Then
Sfln) = §(n)
where {(n) = —(un/18)(n — 2) for the lognormal

model and {(n) = —4(3 — D)(n — 2) for the §-model.

For the atmospheric cases, a power law dependence
for the dimensional structure function (constant slope
in logarithmic coordinates) was generally satisfied at
least for separation distances between 10 and 50 m
which will be the assigned values for r, and r,, respec-
tively. In cases of relatively strong turbulence, the power
law dependence on separation distance extended to
scales larger than 100 m. Table 1 lists the values of the
slope f(n) for the various records.

The observed slope of the dimensionless structure
function is typically negative due to the enhancement
of the dimensionless structure function at small sepa-
ration distances by small scale intermittency. This small
scale enhancement is predicted by the modified theories
of the dimensionless structure function for the inertial
subrange presented in section 2 and the analysis of
artificial turbulence in section 3.

Values of the slope of the kurtosis of vertical velocity
gradients for the more homogeneous data sets are gen-
erally near —0.16 (Table 1). The scatter of the slope
values is large in globally intermittent turbulence. The
estimation of the slope is more vulnerable to sampling
problems than the dimensionless structure function it-
self. For weak turbulence, the slope is actually positive
(Table 1) indicating a lack of intense small scale gra-
dients. Much of this turbulence may be in a state of
decay where any sharp small scale gradients have been
smoothed by small scale diffusion.

For kurtosis, the “lognormal model” (see section 2)

. predicts slopes between —0.09 (¢ = 0.2) and —0.22 (u

= 0.5). For the observed values of the slopes, u = 0.3
or 0.4 would be a reasonable approximation for the
lognormal model. For the $-model, the recommended
fractal dimension of 2.5 (section 2) produces slopes
which are too steep for the present data; a fractal di-
mension of 2.85 fits the data better. This statistical fit-
ting does not necessarily imply that the physical as-
sumptions underlying these models are valid.

In some cases, the dimensionless structure function
does not begin to decrease with increasing separation
distance until the separation distance exceeds a few
tens of meters leading to near-zero values or even pos-
itive values of the slopes at small separation distances.
The idealized analysis of section 3 indicates that the
dimensionless structure function does not begin to de-
crease until the separation distance is comparable to
the width of the transition zones at the edges of the
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main coherent structures. Closer investigation of the
special observed cases indicate that a few vigorous
structures with sharp edges are sometimes responsible
this behavior. It is not known if such examples repre-
sent sampling problems and that negative slopes would
be established at small scales with longer records.

Most of the positive values of the slope f(n) occur
for records with weak turbulence much of which ap-
pears to be decaying. The positive slope values are
probably due to weak small scale gradients due to dif-
fusive smoothing which dominates in decaying tur-
bulence and selective viscous dissipation of the smallest
scales. -

7. Conclusions

The study of intermittency requires the conceptual
distinction between larger scale global intermittency
where the turbulence eddies occur in patches and the
always present small scale intermittency where the spa-
tial variation of the fine scale velocity gradients and
dissipation are organized by individual main turbulent
eddies. In other terms, global intermittency occurs on
scales larger than the scale of the main turbulent eddies
while small scale intermittency of dissipation occurs
on scales comparable to, or smaller than, the main
turbulent eddies. The strongest small scale velocity
gradients are often concentrated at the edges of the
main eddies or microfronts corresponding to significant
small scale intermittency. The above partitioning be-
tween global and small scale intermittency fails to ac-
count for the simultaneous variation on a variety of
scales but serves to relieve some of the existing con-
ceptual ambiguity of “intermittency” and its measure-
ment. ‘

The dimensionless structure function is particularly
useful for distinguishing between intermittency behav-
ior in different types of atmospheric flows. Such dif-
ferences are difficult to isolate using spectra or the usual
dimensional structure function. In the present study,
the analysis has concentrated on the kurtosis of hori-.
zontal gradients of vertical velocity although the fol-
lowing conclusions also qualitatively apply to other
variables and other even-ordered moments. The kur-
tosis was evaluated from fast response aircraft data col-
lected under a variety of atmospheric conditions during
four different field programs.

The kurtosis and small scale intermittency of the
small scale velocity gradients is about 25% larger in
turbulence in heated boundary layers as compared to
turbulence in windy near neutral boundary layers. Ap-
parently the small-scale intermittency is modestly aug-
mented by the rather sharp edges of the thermals. The
stronger velocity gradients at the edges of the main
eddies contribute to the tails of the frequency distri-
butions of the velocity gradients and thus increases the
values of higher moment functions.
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However, the largest kurtosis occurs in globally in-
termittent turbulence where the turbulence occurs only
in patches due to the constraint of the stable stratifi-
cation. In this case, large values of the kurtosis and
other dimensionless higher moment functions are more

_indicative of the spatial variation of the turbulence than

the nature of the turbulence itself within the individual
patches. In these cases, the interpretation of any higher
moment statistics is ambiguous without further analysis
such as partitioning the record. For example, the kur-
tosis of individual patches of turbulence were much
smaller than values for the entire record and more
comparable to values for continuous turbulence with-
out global intermittency. Therefore, the influence of
small scale intermittency can be partially isolated by
breaking the record into subrecords and averaging the
statistics computed for the individual subrecords.
Because of this influence of global intermittency or
other larger scale inhomogeneity, the kurtosis increases
with increasing record length until the main impact of
the spatial variation is captured. In contrast, for records
with continuous turbulence and only weak spatial in-
homogeneity, the kurtosis becomes independent of the
record length when the record length becomes an order

‘of magnitude larger than the main turbulent eddies.

The enhancement of dimensionless structure func-
tions by both the sharp edges of the main structures
and by global intermittency is predicted by the ana-
lytical analysis of artificial turbulence and analysis of
mixtures of distributions carried out in section 3. The
analysis of the mixture of two distributions indicates
that the kurtosis and other higher moments for the
entire mixture are greater than the higher moments for
either of the individual distributions, thus reflecting
important enhancement of kurtosis by the inhomo-
geneity of the sample.

The analysis of artificial turbulence also indicates
that the dimensional structure function responds to
the scale of the main eddies while dimensionless struc-
ture functions such as kurtosis respond to the widths
of the transition zones at the edges of the eddies; that
is, the dimensionless structure functions responds more
to the largest velocity gradients at the tails of the fre-
quency distribution. The magnitude of the dimension-
less structure function for the artificial turbulence is
approximately independent of separation distance at
scales smaller than the transitions and then decrease
with increasing separation distance at larger scales. This
behavior did occur for some of the aircraft records.
However for most of the atmospheric records, the
structure kurtosis decreases with separation distance
beginning at the smallest resolvable scales, probably
due to a variety of transition widths and variety of
other activity in complex turbulence flows.

The slope of the general decrease of the dimension-
less structure function with separation distance occur-
ring for most of the records is roughly approximated
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by the lognormal modification of the Kolmogorov
similarity theory with the usual values for x and could
be statistically approximated by the 8-model with a
fractal dimension of about 2.85. For records with weak
decaying turbulence, the dimensionless structure func-
tion actually increases with separation distance due to
lack of intense small scale gradients and thus behaves
quite differently from the similarity prediction.

Global intermittency also complicates the estimation
of fluxes in that a small fraction of the record of in-
adequate sample size may dominate the total flux.
Fluxes and other turbulence quantities can assume
meaning only after completing an analysis of depen-
dence on scale, record length (Wyngaard 1971; Len-
schow and Stankov 1986) and sampling problems
analogous to the calculations carried out in section 5.
However, the analogy to the intermittency of the di-
mensionless structure function is not complete since
the influence of global intermittency is partly a problem
of computing ratios while the calculation of fluxes and
other quantities based on deviations from a local mean
and must contend with any sensitivity to the definition
of the local mean.
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