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He defined

A STUDY OF N-LEVEL QUANTIZATICU: HIGHER ORDER INFORMATION

AND CONDITIONS FOR MINIMAL ERROR

I. QUANTIZATION AND ITS HISTORY

The quantization process is very widely used today in the field

od communication systems. However, its origin dates back to Sheppard

(1898), who derived what is known today as Sheppard's correction form-

ula. He used the idea of breaking up the domain of the frequency

function p(x)--which is assumed to be single-valued and continuous--

into equal intervals of length w: that is,

+ +w = x1. - x' i = 0, -1, -2,
1+ i

A.=fgx)dx=fgx.+30 dy1 (1.2)
_ w

xi-
2

and bY means of the Euler-MripLaurin identity arrived at his formula.

Statistical data, divided into uniform intervals of the domain, thus

may show its effect on variance. In the communication field, quanti-

zation is described as a nonlinear operation, converting a continuous

incoming signal into an outgoing signal that can take on a finite num-

ber of levels. This operation, which is essentially an analog to

digital conversion, intoduces an error. Our basic aim is to faith-

fully reproduce the quantizer input signal at the system output
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terminal. To achieve this one has to minimize the error between the

quantizer input and output. Figure I illustrates the input-output

characteristic of a quantizer where xi, x2, , xN are the points

which subdivide the input signal amplitude range into N nonoverlap-

ping intervals and yl, y2,
YN indicate the outputs correspond-

ing to the respective input subintervals.

Output, y=Q[x]
YN

Input

This results in N levels and thus the name N-level quantizer. If

:= CD, a constant for all i, then we have a uniform quantizer,

otherwise we have a nonuniform quantizer. Goodall and Reeves (1947)

were the first to implement this idea. They guided the construction

of an 8-channel transmission system. In a subsequent paper published

by Black and Edson (1947) quantization, along with the number and size

of levels or steps, was investigated.

Widrow (1956) showed in analog to digital conversion that if the
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probability density of the quantizer input signal is zero outside some

bandwidth, then the amplitude density of the error signal, the differ-

ence between the input and output signal, is given by

0, elsewhere ,

( 1. 3)

where w is the stepsize.

Studies were conducted concerning application of this pulse code

modulation scheme involving sampling and quantization in transmission

of telephone signals. Foremost in this field was Bennett (19).i.8). His

method called for quantization of the magnitude of speech signals.

The selection was made, not from a continuous range of amplitudes but

only from discrete ranges. The speech signal is replaced by a wave

constructed of quantized values, the selection made on the basis of

minimum distortion. The quantized signal is then transmitted and re-

covered at the receiver end, then restored to give the original mes-

sage, provided the interference does not exceed half the difference

between adjacent steps. He considered quantization of magnitude and

time, whereby it was made possible to encode speech signals and to

transmit a discrete set of magnitudes for each distinct time interval.

Consider voltage quantization in time, depicted by Figure (1.2):



and the mean square error is

Figure 1.2

Figure 1.3

If V is the voltage corresponding to any one step and m the slope,

then the error can be expressed as

e(t) = mt, -V<t< =Pm.
2m 2m

The distortion resulting from the quantization process--that is, the

difference between input and outout--is shown in Figure (1.3), a saw -

toothtooth function.

/1-

V/2m

" V2
E =-;2 = -11-1 e2 (t) dt =

, 12
V/2m

put

4

(1.5)

the well-known Sheppard's correction.

As mentioned by Bennett (1948), not all distortions of the origi-

nal signal fall within the signal band. Higher order modulations may

have frequencies quite different from those in the original signal,
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which can be eliminated by a sharply defined filter. It thus becomes

important to calculate the spectrum of the error wave, which is pos-

sible by using the theory of correlation. This is based on the fact

that the power spectrum of the wave is the Fourier cosine transform

of the correlation function. At this stage we shall introduce a nota-

tion that will help us review the work of several authors since the

earliest of tines. As described above, quantization is the nonlinear

operation of converting a continuous signal into a discrete signal that

assumes a finite number N levels. A typical input-output relation-

ship is exhibited in Figure (1.1). The output is denoted by yk when

the input signal x lies in the range xk...1 < x < xk. In most com-

munication systems the main problem is to reproduce the original input

signal at the receiver output. The quantization process introduces a

certain amount of error which is denoted by

e(t) = x(t) CAx(t)] (1.6)

where x(t) is the input signal and Q[x(t)] is the characteristic

of the quantizer. The continuous signal of Equation (1.6) is written

as

e = x Q[x] (1.7)

for notational convenience. The mean value of e in Equation (1.6)

measures the efficiency of the quantizer, defined as
OD

E = ccf f(x - CILx]) p(x) dx , (1.8)
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where p(x) is the amplitude probability density of the input signal

x(t), and f(e) = f(x- Q[x]) is the error function. The f(e) is

assumed to be a nonnegative function of its argument since it is not

desired to have positive and negative instantaneous values to cancel

each other. Considering an N-level quantizer, the domain of definition

is broken up into N nonoverlapping subintervals. Equation (1.8) can

be written in the form

N-1 xk4.1

E = f(x- Q[x]) p(x) dx , (1.9)

k=o
xk

where xo = -oo and = co. If an explicit characteristic of the

quantizer is defined such that

With the measure of error as indicated by Equation (1.11) Bennett

(1948), Painter and Dite (1951), and Smith (1957) investigated the mean

square error criterion with their error relationshio given by

-1

I

xk+1
2

=
E2 = (x - yk+1) p(x) dx . (1.12)

ko
xk

(1.10)

It is noted that Equation (1.12) is a special case of Equation (1.11),

Q[x] = Yk xk_i 5_ x < xk, k = 1, 2, iN.

then Equation (1.9) can be written as

xkia

ff(x Yk+)) P(x) dx.



Input
,Transducer

rjv Cutput
Transducer

Figure -1.4

Smith (1957) calls the same process companding. Others who have

studied this area of optimum and nonoptimum transducers include

Lozovoy (1961), Davis (1962), Wiggins and Branham (1963), Mann,

Straube and Villars (1962). Max (1960) works the expression for dis-

tortion as given by Equation (1.11) and has derived conditions for the

minimum of E in Equation (1.11) for fixed N. He shows that for

7

where E is replaced by E2
for notational convenience and the error

function f(x) = x2. For best results it is necessary to minimize E2

which depends on 2N-1 quantizer parameters,

E2 = E
2 -1x'2' 'xN-l'Yl Y2' ' Y11)*

(1.13)

The work of the three authors mentioned above dealt with the minimi-

zation of
E2

for large values of N. Bennett (1948) further dis-

cusses the fact that in the case of speech it is advantageous to taper

the steps of the quantizer in such a way that finer steps would be

available for weak signals. Tapered quantization is equivalent to in-

serting complementary nonlinear, zero-memory transducers in the signal

path before and after the analog-to-digital converter, as shown in

Figure (1.4).



and

His special application of Equation (1.14) to the mean-square error,

as expressed by Equation (1.13), yields

Y. +1 .

. = 3+1 j = 1, 2, ... ,N-1xj

2

xi

Ix p(x) dx

j-1
Y. x.

p(x) dx

xj-1

(1.15a)

j = 1, 2, N. (1.15b)

He further considers the case of input signal of normal amplitude dis-

tribution and derives expressions for the meab-square error. He also

looks into equally spaced input-output relationshio which referred to as

uniform quantization. Other authors who have studied the mean-square

error in the quantization process include Panter and Dite (1951),

Algazi (1966), Bluestein (1964) and Wood (1969). It should be noted

here that the results derived by Max (1960) were first derived by Panter

and Dite (1951), using a slightly different approach.

8

minimum error,

f(xj- yj) = f(xj-y, j = 1, 2, ....,N-1 (1.14a)

and
xi

fi(x-Yi) P(x) dx = 0, j = 1, 2, (1.14b)
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Using Max's (1960) conditions in Equation (1.14) he was able to show

that for minimum Em the breakup of the input points xk for a con-

tinuously differentiable density function p(x) must satisfy approxi-

mately the relationship

It is also to be noted that the procedure used to derive condi-

tions for the minimum, as done by Max (1960), was first suggested by

Garmash (1957). He concentrated his effort in minimizing the mean-

square error as expressed by

N-1 xk+1
2

E2= (x_xk)P(x)dx.
k=o

(1.15c)

xk

In Equation (1.15c) the quantizer output Q[x] is given by

Q[x] = x x , k = 1, 2, ,N-2 . (1.15d)

Differentiating Equation (1.15c) with respect to xk he was able to

generate an expression

= 1 P(x10.1) 1
(1.15e)

k 2j p(x)

where Lic..1 = xk - xk..1

Roe (1964) deals with a special case of Equation (1.11), the mth

power distortion. In Equation (1.11) he sets f(x-yk) = Ix ykl ,

giving N-1 xkia

Em =
=0 IIx- y I p(x) dx , m = 1, 2, . (1.16)

xic
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xn 1

fb(x)]
111+1 dx =

2C1n
+ 02 ' n = 1, N, (1.17)

0

where C1
and C2

are constants which can be adjusted to give the re-

quired fit at the extreme points xo and x. Max's (1960) tabulated

results for xic can be derived from Equation (1.17). Furthermore,

Roe (1964) shows that m = 2, a normally distributed input, the xri

must satisfy the relationship

-1 2n N
./6 erf ( ) ,

N+42
(1.18)

where m = 0.8532-.- and the error function is well-tabulated in the

Annals of the Harvard Computation Laboratory, No. 23 (1952).

Using Roe's (1964) result, Wood (1969) showed that E2, the mean-

square error as expressed by Max (1960), can be approximated as a

function of N by a relationship

E2
= 2.73 N (1.19)

(N + 0.8532)3

Zador (1964) generalized the Panter and Dite (1951) and the Roe

(1964) results by considering multivariate distributions. Let

X = [x(1), x(2),..., x(k)] be a random, vector-valued variable with

probability measure F) defined on Lebesgue-measurable subsets of

k-dimensional Euclidean space Ek with absolutely continuous dis-

tribution function. Let p(*) denote the density of X. Let {19}

1 <i <N, be a set of N Lebesgue measurable disjoint subsets of_ _



Ek, with

yi p(Ri)= 1.
i=1

In this case the N-region quantizer with quantization regions Ri

may be regarded as a function mapping the portion of ic covered by

theunionetheilonto the integers 1 to N given by

Q(x) =i, xER1 . (1.21)

This maps each x into integer index i, 1 < i <N, which labels the

region Ri into which x falls. Quantization introduces an error in

representation of x , since x must be estimated by some function f

of Q(x) = 1. Zador (1964) first showed that for k = 1, absolutely

continuous and bounded p , and 0 <r < OD, the mean rth error is

defined by

1

E . = -Er p dX ]
min

C l+r

N

l+r

11

(1.20)

(1.22)

where X is the Lebesgue measure, Cr is a known constant. The

Panter and Dite (1951) result is a special case of Equation (1.22)

with r = 2. As seen there, Cr = C2
= 2/3. Zador (1964) also con-

sidered k > 1 and derives the general result



k+r

E . Ckr [ pk+r 0, 3 k

Dan -7/k
Ek

Here p is absolutely continuous and bounded and X is the Lebesgue

measure on Ek. The constants Ckr are not known for k> 1.

Elias (1970) introduces a different aporoach in measuring the

performance of a given N-level quantizer. He defines a quantizer that

divides the interval [0,1] of a random variable x into a set of N

.th
quantizing intervals, of which the i has length Qxj. He measures

his quantization for particular values of x as the length of the

quantizing interval in which x finds itself and measures the quanti-

zer performance by the rth mean value of the quantizer interval

length, averaged uith respect to the distribution function of the ran-

dom variable x. That is,

1
mr(q) Axr r

(1.24)

Work done by other authors describes the quantization error,

shown by Equaions (1.12) and (1.16), in terms of the absolute value of

the difference betneen x, the random variable being quantized, and

some representative point y(x) lying in the quantizing interval and

not as the size of the quantizing interval. The performance of the

quantizer, as described by these authors, is measured by Er,
the

12

(1.23)



mean rth power of the difference as given by Equation (1.16).

Over the interval Px = x
k+1 xk

the error is defined by

xkia

Ix-yip(x)dx

Ekr

xi(

Let p(x) be approximated by a straight line between xk and xivia,

xk+1

Ip(x) dx

P(x) P(Yk) P/(Yk)(x - Yk).

so xk.o. xk+1

P(y) f yki dx P/(Yk) (x_y)ix-y I

xk xk

Ekr
xk+1 xk+1

p(yk) f dx + pi(yk)rj (x-yk) dx

13

(1.25)

(1.26)

(1.27)

Let LSx = xk41 = w be constant so yk = xk + ; also observe

that
xivia

f(x-yk)lx-yki dx= 0
(1. 28 )

xk

for even distortion measure, and, of course, the second term in the

denominator of Equation (1.27) has value zero. So, the straight line



approximation to the density function leads finally to

cm

Ekr = (1.29)

2r (r+1)

The two measures related by Equations (1.24) and (1.29), fixed r and

F(x), the distribution function associated with x, have approximately

the same optimum quantizing intervals. Thqfbecome better for smooth

p(x) and increasing values of N. Elias (1970) works with Mr(q)

and it is possible, by imposing smoothness conditions on F and p

to extract results about Ekr from Equation (1.29). But for arbi-

trary F the generality and exactness of the results available for

Mr(q) seem unlikely to hold for Ekr. Comments about Mr(q) and

Ekr will be made later.

To discuss details of the work conducted by Elias (1970) it is

necessary to review some concepts, especially those relating to

weighted means as discussed by Hardy, Littlewood and Polya (1934), and

those defining what we call asymptotic optimum quantizers. The un-

derlying definition of asymptotic optimum quantizer will be given

first. Two of the first authors to discuss them were Panter and Dite

(1951), who showed that the minimum mean square error attainable is

14

asymptotic in N to

E
2

C2 f
N2

1/3 ,3
p dx J

El

(1.30)



Bluestein (1964) investigated asymptotically optimum quantizers with

noisy, continuously varying input signal. His aim was to find such a

quantizer that the performance would approach that of the zero memory

as the number of levels N is increased. This implies that for any

C > 0 the error due to quamtization can be made less than E by mak-

ing the number of quantizing levels appropriately large. Any quantizer

designed to fit with the above is an asymptotically optimum quantizer.

Some definitions from page 12, Hardy, Littlewood and Polya (1934)

are in order for subsequent use. Define a set of nonnegative numbers,

a = as , s = 1, 2, n, and, for convenience, let the summations and

the products with respect to s be understood to range from s = 1 to

s = n. Primary definitions are then

l/r

[ a ] , r > 0 ,
n s

M (a) (1.31)

0 if r < 0 and if at least one of the

as
is 0,

and

1/n
G(a) = Tra53 (1.32)

Clearly, A(a) = Mi(a), H(a) = M_1(a), and G(a) are the ordinary

arithmetic, harmonic and geometric means of the set a. The case

r = 0 is excluded but it can be shown that
M0(a) is interpreted as

the geometric mean. A more general system of mean values of the set a

15



is in terms of a set of weights
ws

, s = 1, 2, , n,
ws

> 0,

r)
( Ew a

s s

Mr(a,w)

Ew

0 if both r < 0 and at least one
as

is zero,

and

w 1/ w
G(a,w) = C rra

(1.30" s

Replace ws by ps with the requirement

Ps = 1
(1.35)

so that, finally,
r

Epsas) , r > 0 ,

Mr(PP) = (1.35a)

0 if both r < 0 and at least one
as

is 0,

, r > 0

16

(1.33)

A(a,p) =M1 (a,p) = psas

-1 -1
H(a,p) = 24_1(a,p) = C psas 1,

Ps
G(a,p) =

iras

Additional identities, such as

(1.35b

(1.35c)

(1.35d)



and

hr
M (a,P) = [A(a op)]

G(a,p) = xgA(a,p)log a]

etc., but the principal interest lies in Equation (1.35a).

Returning to Elias's (1970) work, the discrete set of inputs

are mapped into corresponding output symbols yi , 1 <1< N.

He defines his quantizer as q = (xi,pi) where x as a real number

finds itself in the unit interval [0,1] with distribution p = F(x).

So q = (ci,pi) is a set of (N+1) points in the unit square with

X. < X. pi_i < pi , 1 < i < N,

(1.38)
xo 7 po = 0 , XN= = 1 .

We call the distribution F compatible with q if the graph of

p = F(x) passes through the (b1.04 points of q. The Lxi =

are the quantization levels and ppi = pi - piaa correspond to the

probability that x falls into the quantizing interval Lxi and is

thus encoded into yi. Also,

Xi = , = 1 (1.39)
i=1 i=1

and Lxi. +Ppi > 0 for i = 1, ,N.

As mentioned before, the performance of the quantizer is measured



by the r-th mean of the Lxi. The p pi may be treated as the norm-

alized set of weights so the Mr(a,p) of Equation (1.36a) comes into

play,

r 1/r
M(q) CEP(Ax) 1.

r 1/r,

Mr(q) = Mr(171.4 = CELS.P =-; .

If ql represents an optimum quantizer then we see that it can be no

worse than in Equation (1.41), or

N M(q1) < 1, (1.42)

with equality for all r and N when F(x) = x, the uniform quantiz_

er case. To double the number of quantizing intervals reduces the rth

mean by half. However, it is usually possible to do better by making

theA . small when the pp. are large and vice versa. Equationxi

18

(1.40)

This may be computed from the quantizer itself with no knowledge of

of F(x) beyond the one limitation that it has compact support, i.e.,

x lies within the unit interval, a normalization of the range of x.

If x should have a nonfinite range, as in the case of a Gaussian

variable, one or two of the quantizing intervals are not finite. For

1
the case of uniform, nonoptimum quantization, Ax. = , Equation

1 N

(1.40) has the form

(1.41)
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(1.42) indicates the upper bound on Mr(q). It is possible to derive

a lower bound, which is exhibited by Elias (1970) as

P 1/q

= [ il[f(x)] dx ]

0

where p = 1
, q = , f(x) F (x), the density of the absolute-

1-Pr l+r

ly continuous part of F(x).

Before we go further we note here the definition of Mr(qi). For

given F, N and r, one asks how small the rth mean quantizing inter-

val may be made by adjusting &)(i. and Api. A quantizer ql, whose

rth mean quantizing interval is given by

(1.43)

M (n ) = min m fAx.
r '11

%La 1OLAYi II
K6,Xi tAPj)

subject to conditions stated in Equation (1.39), is defined to be the

optimum quantizer for F, N and r. With Equation (1.44) one can for

nonnegative r and optimum quantizer ql, consistent with F, write

Ir < NM(q) < 1. (1.45)

It should be noted that in the limit r = 0 (q = 0) Equation (1.45)

boundsthegeometricmes x as given by Equation

(1.35d) while in the limit r=co (q=1) Equation (1.45) bounds the

maximum value M(q1) of the Lx1 . Elias (1970a) does not stop

here but goes on to establish the existence of class Q quantizers

that are asymptotically optimum as N Co and shows that for q Q

(1.44)

Ir < NMr(q1) < NM(q) < 1. (1.46)



He also proves that for q E Q

lim N M (q) = Ir .

N-400

20

(1.47)

After the proof of the existence of this limit he discusses the rate of

convergence of the above and shows that if certain conditions of con-

vexity and concavity on F are met then bounds can be found on the

rate of convergence. This discussion on the rate of approach of NN(q)

to I for qEQ is generalized by the consideration of a class C

of distributions F where the subscript J indicates the composition

of F of no fewer than the number J of alternately convex down and

convex up pieces. He goes on to show how the convergence is governed

by the ratio n = N/J, the average number of quantizing intervals per

* *
convex domain of F. There is a resulting inequality for qEQ

n-1

).I < N M (q ) < I exp 1+1n n
(1.48)

q n-1

He lists more results which are tighter than Equation (1.48) if f sat-

isfies certain conditions.

Elias (1970a) also derives results concerning the bounds on the

optimum quantizer and the convergence of this quantizer, considering a

multi-dimensional case. Some of Elias's (1970a) results can be men-

tioned in terms of Zador's (1964) multi-dimensional results. The

measure of performance is the quantization error in the tth coordinate

of xERl' which is defined as the width A(x) of R in the t-th
1

coordinate. That is



Li( xt) = sup - inf {x., 1 < t < k . (1.49)

xE R. x E R.

As before, the measure of performance of a quantizer q with respect

to the measure f) is given by Mr(q), the rth mean of errors

averaging over k coordinates of all R. For equal weights and dif-

ferent weights over Ri, Mr(q) in the multi-dimensional cases is given

by

Mr( q) >1 p(Ri)1/r, Li (xt)] , 0 < r < OD.

i=1

A second measure of performance is given by

r/k l/r
Mr(q) = [ , f(R1) gai) , 0< r < oo.

i=1

21

(1.50)

(1.51)

Here X(R) is the Lebesgue measure of R. in the kth dimension and

he goes on to show that

Mr(q) < M (q) (1.52)

He has additional results analogous to those of the one-dimensional

case which are not mentioned here.



D = Ef(sin sout)] =

22

II. MINIMIZING CONDITIONS

A quantization system, or as we say, an N-lsvel quantizer, is de-

scribed by specifying the endpoints of the N input ranges and the

output level yk , which correspond to each input range. Given the

amplitude probability density of the input signal the probability den-

sity of the output can be determined as a function of the xk and yk.

If a symbol D indicates the total distortion in quantization it can

be expressed as
i+1

f(x-y1) p(x) dx (2.1)

i= xi

where
xo

and
n+1

are arbitrarily large left and right and the

error function f(x) is defined on page 6. Indeed in the study of

realistic communication problems one is interested in the minimization

of D. Max (1960) derives the necessary conditions for the minimum

value of D by differentiating Equation (2.1) with respect to the

x.'s and they 's and setting such derivatives equal to zero:
.3

arl...Ef(c._y.1)_foc....
0, j = 2,3,-.,N (2.2)

3-c)xi

and

= - fl(x-yi) p(x) dx = 0, j = 1, 20.--,11. (2.3)
oYi xi

These two equations reduce to

- y. -1) = f(x.- y.), j = (2.4)
3 J J

provided p(xj) 0 and



As Max (1960) indicates these conditions are also sufficient, a state-

ment proved by Bruce (1965) and Fleischer (1967). Max (1960) goes on

to show that for such f(x) = x2 Equations (2.4) and (2.5) reduce to

the form

YT Y'll
xj - g Trj. * j - 2,3, ,N, (2.6)

2

and

x.+1C 3

fl(x-) p(x) dx = 0 , j = (2.5)

If the normal distribution, 2,
-x /2

p(x) = y(°)(x) = e , -co <x < co,

2ir

then the associated functions are defined as

(-1) (0)
y (x)

f
= y (y) dy , -OD < X < OD,

0

and for values of the index > 1,

23

(2.9)

(2.10)

x.

x.

1

J (x. y) p(x) dx = 0 j = 1,2,....,N. (2.7)

Xi

Note that Max (1960) is involved with the problem of quantizing mag-

nitude alone. Consider Figure (1.1), which depicts the operations of

interest from the initial input to the final output of the quantizer.

Thus, from Equation (2.7),
x.

Yj. =
, j = 2,3,....,N. (2.8)

x p(x) dx

x.

I p(x) dx

xj-1



. -Y3
x.
J (0)

(x) dx

xj-1

(0)
x y (x) dx

Keep in mind that Equation (2.12) yields the quantization levels in

terms of amplitude quantization only. Later this result is to be com-

pared with one obtained in terms of quantization in amplitude and

time.

Input

XA 1ci,.

Initial
='QUant.Samp.

(0) (0)

(xj
) - (x.)

-1

(-1) (-1)
( - (xj xj_i)

j= 1,2,-...,N.

-3r 1-

Rec. --> Decod. Const.

Figure 2.1

Encod.

L.

Tran.
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(1)(n)(x) =
In_

y(o)(x) , _co <x < 00, (2.11)

dxn

then there is formed a complete 3et in the usual sense. That is,

(2.12)



Xj.

Yi

t-tj

T=cowtant sampling
period

ddelay

Figure 2.2

_ _
t

J J

d T

T
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This figure shows the stages involved in transmission of data

through the channel. It is clear that this involves the operation of

encoding, transmission, decoding, etc. These side operations before

the final output yi is obtained involve a certain delay before yi

is reproduced at the output. Denote this amount of delay by tge sym-

bol "d" (see Figure 2.2)
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In the figure ,x(t) indicates the input signal on which N-level

quantization is performed for transmission and recovery at the output

terminal as y(t). The N-level action calls for breaking up the in-

itial range of x(t) into N intervals (xi_i,xi), i =

with xo and x large left and right respectively.

For<x(t.)<x1.,i=1,2,--,N,thex(t.)is
obtained by

comparison with the endpoints of the ith interval. The quantizer

transmits a signal xi(ti), where i indicates the level and t.

indicates the instant of time at which x(t) is sampled. This means

quantization with respect to both amplitude level and time. The

transmitter signal xi(ti) is reconstructed at the terminal output

to yield yi , a mapping defined by

x.(t.), < x(t) <
x.1

, i = 1,2,...,N-1.
1 j J

The amount of distortion, or the expected value of the difference be-

tween input and output during the ith range on the time scale, is

D = E[x(t) - yi(t)], (2.14)

and the mean square distortion in the transmission of y(t) is given

OD.X
2

di = (x-yi) p[x,x(ti),7-] dx(t)dx, i = 1,2,..,N, (2.15)

-OD xi_l

wherefr=t-t.inthe argument of the probability density associ-

ated with the input signal. The t is the instant at which the prror

is analyzed. Averaging Equation (2.15) with respect to all the levels

by

(2.13)
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and the time T the total distortion--using the mean square criteria--

can be expressed as

d+T oo x.

D= >I 1 f f
2

, (2.16)(x- yi) p[x,x(ti), fir ] dx(tpdxd
' T

i=1 d -oo
xi,1

or as

where d+T

P Cx,x(b.)] = gx,x(t.),T] d .

For minimum value of D require that the partial derivatives take

zero value,
oo xi

aD
= -2 1. (x- y1) pTEx,x(t .)] dx(t .)dx = 0

àyj -ao

and a principal result of this paper is that

00 X
i T

I
x p[x,x(t.)]dx(L)xd

xi-1
Yi

CD XfiT
P [X,X(t .)] dx(t)dx

-CO

(2.19)

(2.20)

1 <i < N-1.

Note that Equation (2.17) may be written in the form
01., OD x. OD Xi

D = EI I 1x2PT[x,x(t.)]dx(t.)dx - y2 f IPT[x,x(t.)dx(t.)dx].
i=l_w xi_, J J

i J J

-CO X (2.21)
i-1

Note that there are two terms in each summation that involve x.,
2.

a) Xi
2

D= > (x-yi)pT[x,x(t.)] dx(t.)dx

1=1

(2.17)

(2.18)



i fixed.ThusD.might be written asI
1

co xOD x.

D. = 1 [ x2pTEx,x(t.)3dx(t.)dx+ I IX p..11, x,x(t)]dx(t)dx
1 J J-co-a) x.xi_i 1

2°° xi co

- yp[x,x(t.fldx(t.)dx - Y:+11 f :Tbc,x(t.)31x(t )dx.
J J J

-a) x -co x.i-1 1

Referring to Equation (2.20), the requirement that the partial deriv-

ativeaDllithrespectto.xi Yields

or

oo

2(y1-yi+1) x pTEx,x(ti)]
-a)

2 2 r T

= Yi4.1) j P [xOcitj)] dx
-co

co

al x pT[xoltj)] dx
Y. y.200

_of P Cx,x(t.)] dx
I

(2.23)

(2.2)4.)

the Jecond important recult of this paper.

Another important result is the delay "d" (see Figure 2.2), de-

fined by an extension of' Equation (2.17) as
OD x. d+T

D = 11 1 I x2p [x, x(t ) , T ] dq- dx(t )dli]
i=1 -co x d(2.25)1-1 N OD X . d+T[0/ f 1 f

i=1 - x d

So, a final form goes as

pCx,x.(t ),T dx(t )dxl.

1-1

28

(2.22)



For application let us consider the input signal having a normal-

ly distributed amplitude. In terns of the set of functions defined

by Equations (2.9), (2.10) and (2.11) above Slepian (1972) has written

down the bilinear expansion

1 a2+ 02- 20T)G0 ,x,y.. 2 JP (4.0, ) -

2u/17-11-7

exp[

2(1 - u )

°DI (17(n)( ) cp(n)(s) un(,7_).

n1n=o

-op< < oo, 1111 < 1,

where u(T) is the correlation function. Therefore
x. OD X.1

J PT[x,x(t.), ] dx(t.) . X f 1
(n)

(n)cp(n)[x(ti)]
undx(t.)

J J n=o J
x n
1-1 xi-1

oo
..xi 1+T(n) (n)

'

= /
1

1 T.
p (x)Y [x(t.)] n

a u .

n=o 2 dTed n1

dx(t)j

29

(2.30)

()D

od
=

N OD

xl_i

Xi (2.26)I2 2,
kx - Y.) Pbc,x(t.),d+Ti - gx,x(t.),d3dx(t.)dx.

J
1=1 -bp

To obtain the minimum value of D require that this partial deriva-

tive take value zero and this yields

P[xoc(t.),d+T] p[x,x(t.),d]

or

ld+T1 = Idl

and this implies

d- - .

(2.27)

(2.28)

(2.29)



or, finally,
op

fxiT[x,x(t.)3 dx(t )(n)(x)[cp(n)
(n)

p
(xi)-p (xi..1)]

n=o ni d+T (2.32)
xi-1

From Equation (2.20)

(0)(0)
Ecp(x.) y(x.

1-1

001
fPTLx,x(ti)3

dx

since co

(n)
(x) dx =

-1, n = 1,
x

0, otherwise.

By a similar argument
xi OD

J
pTLX,X(ti)3C1X(tj) = >7 !"1 riy(n)(X)p(n)EX(tin dx(ti)

n=o xxi-1 1-1 d+T (2.35)
1 I n

7
u (T) d

d
a) d+T

1 (n)\ (n-1) (n-1)= / -7 cp (x)[cp (xi) - cp (xi..1)] f
n

u (T)d

n=o n: d

OD Xi CD

_I
P bc,x(tj)idx(ti)dx =

11 r tp(n)(x)[9(n -1)(x. )

x n=
i-1

0 r1.1.-Oo
d+T

(2.36)

(n-1)

- (2Ci_i)3 un(r)dxd .

d'

-CO

T
un(T)d .

30

( 2 . 310

Since

1)]
T

d+T

I u(T) d

(2.33)



Also

-co

fa)
(n)

(x) dx ={ n =

0 othertrise,
-co

31

(2-.37)

Equation (2.36) reduces to

x.m1 T

fp [x,x(ti)] dx(t)dx = p(-1)(xi) p(-1)(xi_1) (2.38)

-oo
xi-1

(2.39)

Compare Equation (2.39) with Equation (2.8). Note that Equation

(2.39) involves quantization in amplitude and time -.1hile Equation

(2.8) implies quantization in amplitude only with no delay present.

Equation (2.24) implies that for the usual expression of the

density function,
0000

olo

Lx gx,x(tI),7-] dx =061 x(n)(x)(n)[x(t.)] n

n=o
1 u (T) dx

ni
(2.40)

d+T

=- cp Ex(t.)] TI u(r) dq-.
(1) 1

OD

J.
T

(0)
P[xex(t.)] dX = Ex(t )] (2.41)

(2.42)

and, finally,

yi =

(0),
y (xi)(x.1)(0)1

9 1

d+T

f OT) d .

(..1)
(xi)

d

and

(1)

1141
d+T

Yi+ Yi+1 cp. (xi) 1 11

T
d

u(T) d = xJ u(T) dT ,

0), 1



or, finally,

yi Yi+1
dAT

u(fT)d

Td'

Yi+1 (2.43)

2u (T)
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exp[2xt- t2]
H(x) tn Itl < 1 . (3.1)

n=1"; n1

Slepian (1972), in a very recent paper, rewrites this in a form of

considerable interest to probabilists and statistians,
OD22 (n)(4),(n)(0 n

1 a +0 -awe
P (40)x,y exP >=

U

27/1-u2 2(1-u ) no n! (3.2)

1111 <1,

where the set of derivatives of the well-known normal density function

aave been defined in Equations (2.9), (2.10) and (2.11). They have

been well-tabulated by the Harvard Computation Laboratory (1952).

Garlitz (1970) and Srivastava and Singhal (1972) extended the theory

-a) the trivariate case. The formula due to the latter authors goes

as
m n p

Hyi+p(X)Hp+(Y)H(z) w

m, = 0 pl
(3.3)

-a 2 1 2 v., 2 2
= D exp[ EI(Ex - 42_,11 x - 4EwXY + 8Euvx3r)]

where

D = 1 - 4u2 -1v2 -11w2 + 16uvw (3.4)

and E x2, T, u2X2 , ,wxy, and Tuvxy are symmetric functions in

the indicated variables.
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III. EXTENSION OF MEHLER AND CARL1TZ FORMULAS

Mach recent progress has been made with the Mohler formula in

terms of the bilinear generating functions for the Hermite polynomial

set, usually written as



The principal purpose of this chapter is to point out that these

recent and interesting extensions of the Mehler formula for the Hermite

polynomials lack applicability to interesting and real world problems,

particularly in the sense of the well-known state of the art paper by

Tukey (196 ). So, consider the transform mate approach as emphasized

by Cramer (1946). The moment generating or characteristic function

Mx(s) and the probability density function
px(4)

are Fourier trans-

form mates in vector terms. That is, if n Gaussian variates (0,1)

are under discussion

1 m iSt4 1 StA-
x(a) = I e 2

ds1 dsn ,

(2u)n -OD

where 1 tA- .±s s

Mx(s) =e 2

and the variance-covariance or moment matrix

[E(xrxs)] -- rs ] , r,s =

and the determinent of the moment matrix is D. These transform mates

start out simply but there is an explosive build-up. Thus
OD

.istIs

n = 1, Mx(s) = e
1 isa - 1; s2-

2 dsX(4, =

-00
a-

e

2n

-CO < < 00,

34

(3.5)

(3.6)

(3.7)

( 3.8 )

provided a simple shift of the line of integration is carried out.

a2+02- 21110,r1 1
P (4) '

n 2' A = Lu 2nil-u2e4P4- 2(1-u2) (3.9)

2
D =1-u
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2 1
(27)2 D2

j112u23-u13

The case n = 4 is too complicated to write completely in this form but

at least

22 22 22+uu+uu +uu
123L1. 13 24 1L23

+2[1112u13u23 + u12u14u24 + ul3u14u34 + u23u24u34]

-2Cu12u13u24u34 + u12u14u23u34 + u131114u23u24] .

Note that if all u's with 4 in the subscript were set equal to

zero this would reduce to the D for the case n = 3. A piecemeal

(3.13)

the

quite

same form as in

complex; because

4=0

Equation (3.2). The case for n = 3 is already

of the symmetry moment matrix and determinant

1 u12 u13 222
u12 1 u23

u13 u 1

and D = 1 - u12-u13-u23 + 2u12u13u23 (3.10)

and let the third order density be uritten in the form

2

- u23 u12u13-u23 u12U23-u15

1--
2D

2
-1,2-13-23 1-1113 u23u13-u12 a (3.11)

and

/1 =

2 2

D = 1 -u12 -u13 -u14

lu u
12 13

u12
1 u23

U13 u23 1

-u14 u24 u

2 2 2

-u23 -u24

u-14

u24

2

-u34

(3.12)

u23u13-u12 - U12 -1 2
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construction of the density function has been made but is relegated to

the appendix.

The alternative approach is to arrange that each probability den-

sity of increasing order be representable by a sum of products of nth

order derivatives of the Gaussian density, each factor being a function

of one variate only. Since the moment generating function is con-

Aructed directly from the variance-covariance matrix:Equation (3.5)

is pertinent but the decomposition feature just mentioned requires

that if

then

-X2/2 OD . s2

9(0)(x) =e =iflsx - 7
ds

2u 2u I
n

(n) OD
n isx - e

d (0)
-Jch y (x) = y (x) = 1 I (is) e

z
ds.

2u-co

The Mehler type expansion of the bivariate density function in Equa-

tion (3.2) is determined from
2

s2+t +2ust
m1 . tO) -

P (a.0) -x,y

1 1 .(..,

(2Tr)2_co

OD 22
S +ti(s4+ to _

= 1 21 fe
2

(27) j-OD

0"1) (n) . (n),_)
\>1 T (4)T (P8

= / 1

u
. lui < 1 .

n=o n1
.

2 dsdt

2 n
i ust)

dsdt

(3.16)

As established in the next chapter this form is useful in resolving

some interesting questions, particularly in the matter of quantization

over a finite range.



The Mehler expansion for order 3 goes as

x,y,z

op r2.1.524.t2
(3.17)

1 .1 I i(rapi- s0+ty)-
= 2 1/4111244+u2313Y+u134Vdrdsdt(203

-CDCo-r2+s2+t2
\Di 2n

1 r i(r2+ 513+ ty)
= (u rs + u st + u rt )n

(2)3 j _co j

e 2 2
12 23 13

n=o
drdsdt

One may further simplify the notation if the order of factors in

each term is preserved such that

i j k (i) (k)
T T = T (4), (0), (Y)

A few terms written out go as

, 000 1 1 o o 1 1 1 o 1
(4.09Y) =TYT+ u12TT9+ u23TTT+ u13YTTx,y,z

2 220 2 022 2 2 o 2
1 r .

-21411129 9 9 4' u239 9 9 u139 9 9
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(3.18)

(3.19)

121 112 211
4* 12u239 9 9 + 2u23u319 9 9 + 21u139 9 9 3

1r3 33° 303 3 3 303 2, 231 321
4.
_Iix13,

y y +
u23y

y y +
u13y

y y + 3u1iu23y y y +u3ly y y )

2 123 132 2 312 213
+ 3u23(u13y y y + u12y y y ) + 3u13(u12y y y + u23, y y )

2 2 2 222
+ 6u12u23u31y y y ]

1 c
] +

ril

Note that if
u13

and
u23

= 0 and
u12

= u (equivalent to reducing

z clear out of consideration) then Equation (3.19) reduces to



(itj,1011911 ilj lkillmini

remark similar to the one above is true for the case of removing

z from consideration.

To paraphrase David Hilbert, the important step seems to be from

order 2 to order 3, hence it is tempting to write down the 4th order

case after making a remark or two For third order case there are

4
(3) correlation functions, for the fourth order case there are (2)

correlation functions. Hence the conjecture goes as
OD P

11 , ijklmn
P (4200(96) = > u12u13u14u23u24u34
xiYvz,w 1 P.

p=o i,j,k,l,m,n= 0
(3.22)

P(i+j+k)

(i+1+m) (j+1+n)
(k+m+n)(6)(4)9 (0)9 (Y),

where

p-
, i+j+k+1+m+n= p. (3.23)

Equation (3.16) A more compact form for the third order density

is

38

x,y,z
oo

(egO,Y)

1
n

i j k (k+i) (i+j) (j+k)

u12u2P139 (4)1)
()q:

(3.20)

1

n=o n. i,j,k=o

where the multinomial is defined as

n n: , i+ j+ k = n .

iT717

(3.21)



Consider the mean square error criterion as defined by Max

(1960). Distortion is expressed by

cr2 =

jxk
2

(x yk_i) p(x) dx,

xk..1

where
E2

has been replaced by(72 for notational convenience.

where
OD

2
0-

2
= x p(x) dx

-co

Yk-1 =

IV. AUTOCORRELATION

1

Pk-1

x p(x) dx

-1

(see Equation (2.24)). Then Equation (4.1) may be written as

xk
' 2

CF2 =CF2 - 2 Y x p(x) dx +
-' k-1 Yk 1Pk'

k=1 k=1

xk-1

2 2
CF = °x Yk-1Pk-1'

is the variance of the original signal. From the second of Max's

(1960) conditions Equation (4.5) can be written

2
(4.7)

39

(4.1)

(4.3)

(4.5)

(4 . 6 )

Let
xk

Pk-1 =
p(x) dx , (4.2)

Xkl

then

xk =
Yk + Yk-1 (4 . 4 )

2
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Note that Dk-1
can be written in an expanded form by assuming a lin-

ear relation between the points xk_i and xk so Equation (4.7) be-

comes

2 2
2

)/6/ )1
Cr -CT = Yk-1[13(Yk-1) (x-Yk-1-10 ''k-l'-

x k=1

If the derivative of the probability function at v-k-1
may be con-

sidered to be negligible

2
where, as observed above, cr is the variance of the quantized signal.

Wood (1969) expressed this result as

2 2 1
a- _ ;5-1 A2

12 k=i k (4.10)-1P(xk-1)'

where

2 2 y2
Cr _Cr =

Yk 1P(Yk-1)'
k=1

= k -
k-1

x K-1

Note that Equations (4.9) and (4.10) express the difference in the

variances in terms of nonuniform quantization, different from the

uniform case in which we can assume

k-1
=

w'
a constant, k =

and the result corresponding to Equation (4.10) is

2 2 2

Crx
-a- = w

12

which is the "Sheppard's Correction", repeatedly proved by many

authors using different approaches. One such approach is that of

(4.8)

(4.9)

(4.11)

(4.12)

(4.13)
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Banta (1965) who considers a general theory of the autocorrelation of

quantizer output of a certain signal. He shows how the autocorrelaticn

error can be isolated and reduced to

2

RE(0) =
12

(4.14)

where
RE(0)

in turn is derived from the definition of the autocor-

relation function

Rf(T) = E[f(t)f(t+T)] (4.15)

where f(t) is random. Naturally

2

Rf(0) = E[f (0], (4.16)

the variance of f(t) in the usual statistical terms. A flow diagram

of Banta's (1965) analysis is depicted in Figure (4.9).

Input = x-f(x)
Quantizer

Output y

Figure 4.1

Herewith the Fourier Series representation of the input quantized sig-

nal, uniform quantization,
oo

f(x) = ,

k=1

(-1)kw sin 2nkx

The input signal is contaminated by noise,

x(t) = m(t) + n(t)t (4.18)

and signal and noise are assumed to be statistically independent.

The input-output quantizer and the noise characteristics are plotted

in Figures (4.2) and (4.3) respectively.

(4.17)
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Considering a determinant signal and Gaussian noise input Banta (1965)

derived a generalized expression for the autocorrelation function of

the quantized output

R(q) = R (T) + Ran(T) + R (T) (4.19)
o mm E '

the terms on the right represent the separate autocorrelation func-

tions of the signal, the noise and the quantizer effect respectively.

Certain assumptions on the magnitude of the signal voltage with re-

spect to RMS noise voltage were made to derive Equation (4.19). He

established Equation (4.14) again, and RE(0) = w2/12 can be de-

scribed as the "quantizing power". Some people who have worked in

this field are Rice (1945), Robin (1952), Bennett (1956), Widrow (1956)

Baum (1957), Trofimov (1958), Kosygin (1961), Velechkin (1962) and

Hurd (1967), to name a few.

Figure 4.2 Figure 4.3
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In order to clarify what we intend to discuss in this chapter we

make some remarks on what each author has done. Bennett (1956) was the

first to derive the expression for the autocorrelation function for tha

quantizer power and this was also obtained by Kogygin (1961), using a

method of characteristic functions. Widrow (1956) introduced the

characteristic function theory in analyzing the quantization process,

later developed by Kosygin (1961). Hurd (1967) worked with the auto-

correlation of the output where the input to the quantizer is the gam

of a sine wave and zero mean, stationary Gaussian noise. Price (1958)

laid down his theory for the autocorrelation function of the output

for strictly stationary Gaussian inputs and derived a relationship ex-

pressing the partial derivatives of the output aatocorrelation in

terms of the input correlation coefficients. Several authors later

improved on his basic theorem and he himself checked out earlier re-

sults with his method, even though it involved differential equations

with almost impossible boundary conditions. Extension of Equation

(4.15) to n random variables,

R(T) = E 11- fi(xi),
i=1

f(x) the n zero-memory nonlinear devices specifying the input-output

relationships, allowed Price (1958) to consider the clipper, the hard

limiter and the smooth limiter. A unified approach to problems of

this type is to resort to the bilinear expansion of the joint Gaussian

density function in terms of the derivatives of the error function, as

given by Equation (3.2). The immediate question is about the u(T)

(4.20)
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function. Consider a linear filter K(f) to be opened over the fre-

quency as so that the normalized autocorrelation u( ), associated

with sampled values of signal and noise input, is sufficient to de-

terrine the joint density function. The process is described in Fig-

ures (4.4) and (4.5):

Input =
signal + noise

1Ps
A- 1 = ,

1Po

u(T,45) -

Magnitude
of signal
spectrum

Input
noise
spectrum

(4.21)

the ratio of input noise power level to input signal power level, then

2 2 2 -Ws
(t) -A )e + b(A -1)e

'

2
(6- 1)(6+ A )

(4.22)

Figure 4.4 Figure 4.5

If wi is the half purer bandwidth of the input noise power spectrum,

ws
is the half power bandwidth of the signal spectrum, and A is de-

fined by

K(f)
Output>



Figure 4.6
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where 6 = wi/w > 1. If there is no distributed signal power present

then for A = 1 the u(T05) quickly reduces to

-wl

u(T) = e . (4.23)

Let x and y be two normally distributed (0,1) variates; the joint

density is that of Equation (3.2) with either of the two designated

values of u(T).

An important special case is to set u(q) = 1. That is,

lim p x,y(m.0) = 6(a-0) y(0)(a), (4.24)

where y(0)(a) is defined by Equation (2.9). An interesting effect

of the Dirac delta function is developed by Papoulis (1962).

OD C° (2n)

lim I(0)

.2 (2n)
Y (3) (4)da = I 6(e) y (4) d4

C>0 C 0 0 (4.25)(2n)n I

(-1) (2n).= 1 y (0) -
2n+1,11

Consider a finite form of the input-output relationship of Banta

(1965):
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Quantization takes place into 2N-1 different levels, equally spaced,

if input voltage lies in the range -a(1-2-) < v.(t) < a(1-1); if
2N 1 2N

if input lies outside this range the output is taken to be either ma

or -ma, as the case may be. Let the interval be defined as

a. (4.26)

then the input-output relationship may be defined in terms of the

greatest integer notation as
b, (N- f)w < a ,

4f(s) [(7) -(N- 4)w < 4 < (N- 1--)w, (4.27)

-b , a <
b_ a

m = -a- w-N.

This staircase function of finite scope meets the conditions outlined

by Price (1958), so autocorrelation of output has the form

(n) (n)co

R(u,a,w) = fx(a) fy(0) y (4) y (s) un(T)dadS (4.28)
"-OD

n=o ni

Only the odd order terms of the resulting series are not zero, a point

which is established by the identities
2cp(n)(a), n odd,

+2N

(n) (n)
9 (4) - (-4) =

0, n even .
oo

So 2n+1
N-1 N-1 (j+i)w (k+i)w

U

a, w) = m2 w2i ,ik 19(2n+1)(2)641)(2n+1)(0)do
(2n+1)1n= k=1 j=1 04)w

(4.29)

CI-19w (4.30)
N-1 ( j+-29w

w =

00

iify(2n+1)(4)d4fT(2n+1)(0)do+NITI(2r11)(4)ctarcp(2n11)(0)do}

j=1(j -1)w (N 4)w (N -2)w (N=7)w



OD N-1
2n+1

= 4m2w2,/
n.(2n+i)! j=1

00

= 4m2w2
n=0 (2n+

(2n)
[(j+i)w] -(2n)[(j-i)w]]

2-N C(N-.0w]
(2n) i

2
u2n+1 {!;', 2n

1)! j=i
cp( )[(j-Dw3 , lu I 5. 1 .

The extreme value u(T) = 1 is of value as R(1,a,w) is an elementary

function. From Equation (4.24)

oo

lim R(u,a,w) = f y(0)x(a) (z) dm
I2

u--*1 -00 (4.31)

N-3,- 0+1)W OD

=2m j2 I y(o)(a) de + N2 y(0)(a) dm

(j-*)w ( -I)w

2 2 1\171-

= 2m w 2 1

2(
W-104-1)w7 T(-1)[0-1-)]] + N2[1. cp(-1)[(N-00]] .

j=1
2

m22_ ,w2 7
"

cp(-1)c04)(03].
2)

A smooth quantizer in the sense of Baum (1957) would be specified

by an input-output relationship

fx(42) = 2b Y(-1)(DA4' Ig) 9 (4.32)

where the argument implies an integer multiple of 22, w the length

of all the subintervals on the entire axis, c an arbitrary parameter

controlling the curvature.
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R(U,W,O)
OD

2 \\I
u2n+1=(Lb) //

n=o (2n+1)!

°D
u2n+1

n=8 (2n+1)I

oo

22 \ u2n+1

= (4b) w //
n=c: ("2;;51.

=(4bf

= 8b2w
j=1

= 8b w

-b

Figure 4.7

In this case Equation (4.28) takes the form

cP

b=ma
-7"

.111.2 (2n) (2n)
c )E, [(j+i)iil-Y [(j-f)w]]

j=1

{_ OD

j=1

/7 (-1) iw k"q
,

op ,wN2k

k=o (21-7a)2!cP(2"1+2k)(jw)

2

(f)2kooLc:
j=].cp(-l)(

,100)cp(2n+1+2k)
2

Ow)

There is a simple application of the Taylor series formula here. From

Equation (4.21)
co

lim R(u,w,c) = 2(2b)2 2_, Cy y
413

( )] C [(j+i)w]-
7-, (-1) 2 (-1)

u-41 j=1

(22)2k (2k)
CY (g=)] (jw)

k=o (2k+1)!

2k
OD

2 (7) (-1) . 2 (2k)

CY (i2)] ce (jW)
(2k-fa)!

These formulations appear to be of questionable value but simplifica-

tions are possible by means of the two Etler-MacLaurin summation

formulas. That is, the summation with respect to the index j may

48

2

(4.33)

(-1)

Y [04)103]

(4.34)



be evaluated in terms of elementary functions. Hildebrand (1956) and

Gould and Squire (1963) have discussed the two slightly different forms

of the Euler-NacLaurin 5UM formula, both involving the Bernoulli num-

bers defined by the identity
op

2
(2k)I

B 2k-1

= 2k z

1 - e

1 1Bo = 1, B2, 1 p 1
= -6- =-(5 '6 = 7 ' '8 -

B
ID ' 10 = 66

The second form may be written out as (see Equation (5.8.18),Hilde-

brand (1956))
N a OD

f[k4)W] = 2.4 f(a)da = B
w .41.1.(1 1 )w2k-1

k=1 k=1 (2k)I 22k-10
(4.36)

(2k-1) (2k-1)
(a) - f (0)]

a

=I f(a) cl4 --[f '(a ) fl(0)J+ 22.334f1/16) - 1'111(0)]

0 5760

5 V V11
--w Ef (a) - f (0)] +

967,680

This may be applied at once to the finite sums occurring in the study

of the quantizer of finite scope. Equation (4.30) becomes

1 e
, Izi < 2rr , (4.35)

R(u,a,w) = 4m2

oo

u2n+1

(2n+1)!

a
p(2n)(4) w2

(2114.1)(a)
0J 24

149

(4.37)

7w (2n1
a) _ .....

5760



14. (2n+1) 2 4
7w(a)] p(2n-1)(a) p(2n+3)(a)

w [Y

576 2880

The first term of this series would represent the autocorrelation of

output of a finite clipper, discussed by Price (1958) and tabulated by

Laning and Battin (1956). Tabulation by this means would seem to be

easier and more precise than by the numerical solution of the second

order differential equation with singularities. Note that if a is

taken to be zero then w is also, and the hard limiter result is

lim R(u,a,w) = lim (2b

a,w -40
a-40 a

= 2b

2
= (2m

n=o

(2n+1)1

u2n+1 (2n-1) 2 2 (2n-1) (2n-)
/ LY (a)] - y (a)y (a)

(2n+1)' 1 12

2n+1
u (2n -l) 2

n=0 (2n+1)1
4)

(a)]

u2n+1
2[2n)(0)]

(0)] =

2 -1
2b

sin [u(T)3

1

21T n=o

7

as given by Price (1958). If N, the number of steps on each side of

zero, is allowed to become arbitrarily large, then the parameter a is

allowed to do likewise, the input-output relationship becomes trivial

2
and the autocorrelation of output would be simply m u.

In similar fashion Equation (4.31) becomes

(2b)

J.

2n+1
u 2n)l]2

(2n+1)I
22n(n!)2

(4.38)
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2 [ 2 (-1) (-3) (0)
R(1,a,w) = m a [1-2cp (a)] + 2y (a) - 2a 9 (a)

(4.39)
2 (-1) (0)7 4 (1) (2)

+ 2. [cP (a) + a cP (a)] - --LIL L3cP (a) + acP (a)1+.71.
6 1440

R(1,a,0) was discussed and tabulated by Laning and Battin (1956) with

m taken to be unity. It is clear that

lim R(1,a,0) = m2 . (4.40)

For further study of the smooth limiter the first Euler-MacLaurin

sum formula (see Equation (5.8.12), Hildebrand (1956)) leads to a

series expansion for R(u,w,c) in our Equation (4.33) and

2b2
-1

lim R(u,w,c) = sin
u(T)

(4.41)

w>0 11 l+c2

the inverse sine function obtained by Baum (1957).

For the different forms of the autocorrelation functions of the

output of the several quantizers discussed above we were concerned with

uniform quantizers. Initially the domain of definition was broken up

into intervals, each of size w. For the non-uniform case one might

set up a method of analysis to encompass non-uniformity, which results

from use of the least mean square criterion. This brings in Max's

(1960) minimizing conditions.

Consider the second order case and the corresponding autocorrela-

tion function of the output, as expressed by Equations (4.31) and

(4.32). The function
fx(m)

does not follow the step-wise character-

istic as shown in Figure (4.6). The step characteristic will be



entirely dependent upon the minimizing conditions as given by Equations

(4.3) and (4.4). Consider a generalized step-wise behavior given by

y = g(x), where x takes on discrete values dictated by the condi-

tions of Equations (4.3) and (4.4). Taking input as Gaussian (0,1)

the autocorrelation function of output can be written as

or

R(u,a,g) =

ship

y = g(x) = yo +

CO

R(u,a,g) =

co
I (n) (n)

g(a)g(13) P (1)IP ()un(T) dad0
n=o

n I

111(7)4 < 1,

oo
(n) (n)

7 I g( ) kcil) de I g(0) p (0) dp.

n. -oo -oo

Integration by parts leads to

N-1

, f Ak a(s- xk) ds
k=1

-oo

y=g(x)

I

I

Figure 4.8

In Figure (4.8) the quantizer levels may be described by a relation-

a

where Ak =
yk - yk-1

and the Dirac function serves to pinpoint the
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(4.45)

oo oo

R(u,a,g) = /

(n-1)
g(a) y (4)da

un
fo

_

/ (n-1)
g (0) y (0) d0.

(4.44)

(4.42)

(4.43)
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jump steps in the quantization procedure. The
yo

in Equation (4.45)

is the initial quantizer level fixed by choosing xo. Differentiation

of Equation (4.45) yields

g/(x) = 6'k gx-Xk) (4.46)

Putting Equation (4.46) into Equation (4.44) leads to

-1 OD

un
.

(n-1)
R(u,a,g) = 6(a- xk) y Oa) da

n k
-bo

N-1 °ID (n-1)
.16(0- xj) Y (0) d0 .
J

un

-n1

R(1,a,g) =

00
1

ni

(n-1)

k T.

12

CompareCompare Equation (4.47) with Equation (4.30) and note the effect of a

non-uniform quantizer on the structure of the resulting equations. If

in Equation (4.47) the u( ) takes value unity for = 0 then

(4.47)
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APPENDIX

An explanation of the many forms of u(T)--the 17 represents the

time interval between sample instants-- for the several forms of higher

order density functions goes as follows. Consider that a filter is

opened in the presence of the noise of the universe, the so-called

white noise, in such a manner as to capture the signal energy, also

assumed to be distributed in frequency and amplitude. This situation

is crudely depicted in Figure (4.5). A pseudo-filter concept, origi-

nally due to K. J. Hammerle (1959) of the Boeing Company, seems to

handle the situation. Define a pseudo-filter characteristic as

F (w) = G(w"b)F(w-wo) + G(*wo)F(w+wo) (A.1)
ws wl

w wl

where
ws

is the half power bandwidth associated with the signal ener-

gy distributed about ±
wo.

Think of signal energy being admitted by

opening a filter defined by G(w) in the presence of white noise of

power level q). Then signal power admitted by the physical filter,

er is defined by oo
2

N0 = f(s) da
0

(A.3)

59

-60

where f(t) is the Fourier transform of F(w). It seems proper to

choose the most simple form of G(w) to avoid undue complexity. That

is, let G(w) be the characteristic of a first order filter,

defined by F(w), is
OD

2

Ns - qi
s

g (a) da ,
i

(A.2)

- CO.

where g(t) is the Fourier transform of G(w). Similarly, noise pow-



Because of the well-known integrals,
00 .00

cos ax x sin a.x -a
dx = dx = e

-oli 1+x2 -06 1 + x2

a > 0,

the final form of this Fourier transform is

-w t
g(t) =se s cos wot U(t),

OD

I ixwst 1-ix
dx.

oc
ixwst

= wsc°5
wt

cbcot
w5cos wot=

1+ ix TT co 1 + X2

60

where the unit step function has the usual definition. The one-sided

nature of this transform has the physical implicatior "realizable".

Thus signal power present is
OD

2, [
-2wsa

2
1 w2

Ns = 4w (If e cos w a da = w _a_
S 9 S S 2 2'
0 ws wo

+
ws

7 2

= w 4wo
+ 2ws

, , w 4 w0 > >
Ws5S 2 2

,... )
'S S

Wo
4-W

s

The effect of opening a fictitious (or pseudo-) filter in the

presence of pure noise at level 4)0 is equivalent to opening a physi-

cal filter, defined by F(w), in the presence of pure noise and normal-

ly distributed signal energy with given parameters and , such

that all the signal energy is admitted. The pseudo-filter has a

(A.8)

G(w) = 1
(A.4)

1+ iw

SO CO iat
g(t) = I

2u
-00

e
1

[ t
1 ] dw

w-w
14i 0 14,1w-w0

ws ws (A.5)



characteristic of the form

Ps/Jo 1Ps/4
F (w)= [ + 1] F(2):20) + I + 1] F(±2°) .

(1)- 0)
o wl 1+ i a*wo

015

It is convenient to define signal to noise ratio as

OD

Ig2(a) da

S =Z =
No

co
2

f ( ) da

and the bandwidth ratio

o= wi > 1 , (A.11)

ws

so that one might say that essentially all signal energy is admitted

by the physical filter. To begin with, let the physical filter also

be of first order; the Fouier transform is at once the same as in

Equation (A.7),

f(t) = 2wie cos wot U(t), (A.12)

and the signal to noise ratio is

so

2222
ws(k w04.2.5wstils

coo> > > ws.22 7---2
kijowo+ ws "wo+21 wl

It is convenient to set

kijsfr- + 1 = A
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(A.9)

( A.10)

(A.13)

(A.14 )



is

ly

CO
iwt

f (t) = e F (w) dw
2n

-06

03

1 r iwt A +i A +i wfwo

e [ Los
1 ws 1 dw

This integrand should be arranged into even and odd terms:

f (t)

, 6-A 62(A-1)
+x sin xw tL dx.

1+x2 1+ 62x2

A slight rearrangement of the definite integrals of Equation (A.6)

c°Icos ax bx sin ax -a/b
ax ax = - e

-oo 1+ b2x2 -al 1+ b2x2

a,b > 0

and it is clear that f (t) is zero for negative values of t. Final-

-wit -wst
(6-A)e + (A-1)e

f (t) = 2wicos wt U(t) .

6-1

(A.17)

(A.18)

Note that for A = 1, no signal energy present, this reduces to f(t)

for the first order physical filter.

With this model of Gaussian noise plus Gaussian signal in a
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-O D 1+ i

WICOS Wot

W- W
° 1

1+i u*wo 1+1 wfwo

(A.15)

1XW t
1

ws

-co

OD

ws

A + i6x

wl

1
dx

1 + ibx 1+ ix

Acos wt

_00

OD

5-A
[cos

4.6(A-1)
u(6-1)

xwit[

1+x2 1+62x2
J (A.16)



= w cos wOI
1

2 2 -wir 2
(6 -A ) e + 6(A -1) e

2
6 - 1

The normalized autocorrelation function of interest in implementing the

developments above is, therefore,

da
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sufficiently wide first order filter the normalized autocorrelation

function becomes a simple sum of exponentials multiplied by the sinu-

soidal factor. To avoid undue complexity the Riemann theorem

lim f(x) cos
wox

dx = 0, f(x)E C (A.19)

CO
a

may be employed. This applies under the restriction wo » wi > we.

thus the exact expression for the pertinent integral is

oo oo

ffp(%) f(+7) d4 2w2 I'DOS W4[(5-A)e1- (A-1)e s ]

0 6-1 0

-wi(a+7) -ws(a+T)

[(6-A)e + (A-1)e ]cos wo(a+T)

and if the Riemann theorem is applied,

f (4) f (arfr) da
P P

OD
0 2 -(0.1T -2wia _(wi+ws)a

e cos w'r j'20-AMC. -A)e + (A-1)e
- 6-1

o 2
0

Co
2 -w 7' -(wi+wda -2w

W sa
+ e.-±)

s
e - cos wo7" 1).; (A-1)[(6-A)e + (A-1)e ] da

6-1
- 0

2 -wl"
_ --.1.
2w6cos wj e"17-(ô.4)[6-A +.1.....1_] + s (41-1)[2,-A. + A-1]

2(6-1)wl+ws 2ws2wi wi+ws
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2 -wir 2 -wsT
(15 -A) e + e)(A -1

u(T,o) = cos wo-r (A.22)

(6-1)(5+A2)

Note that for A = 1, no signal energy at all, this reduces to

-w T
1Or) = e cos woT,

the first order physical filter case. Similar calculations can be

made for filters of other than first order but there is considerable

effort involved.




