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Heat transfer in ceramic nuclear fuels is complicated by the presence
of entrained porosity. The characteristic heat transfer is an important
factor in the design and operation of reactor cores. Initially, porosity
is uniformly distributed and is primarily due to fabrication effects.
Later, fission gases coalesce and pellets crack to introduce additional
porosity. A porosity correction factor is typically defined which modi-
fies the thermal conductivity of either the 100% dense solid, or some
other reference density to account for the presence of the porosity in
heat transfer calculations.

Early analytical approaches were primarily one-dimensional and
would not allow heat flow around a pore. The first to allow for multi-
dimensional heat flow was Cunningham, who solved the heat conduction
equation in three dimensions, finding the temperature field throughout
a unit cell which consisted of a single sphere in a cube. The ratio
of effective conductivity to the conductivity of 100% dense material
is given by
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The purpose of this work was to assess the method of Cunningham by
performing a two-dimensional analytical study which was then compared
to idealized measurements using an electrical analog for heat flow.



These measurements were made using resistance paper, and a "temperature"
field was found throughout the unit cell. By summing the resistance to
heat flow, and averaging over the cross-sectional area of the unit cell,
porosity correction formulas were determined. For further confirmation,
the unit cell was modeled using a finite element code (TAP-A) developed
for heat transfer calculations for the Fast Flux Test Facility, located
at Hanford, Washington.

A1l three two-dimensional methods gave results which support the
Cunningham methodology. The two-dimensional analysis and that of
Cunningham consistently 1lie within a few percent. By contrast, the
previous one-dimensional approaches yielded inadequate results when
compared to the electrical analog. Cases were examined using the elec-
trical analog where pores were distributed throughout the unit cell in
a normal random fashion centered at the middle of the unit cell. As
before, the two-dimensional analysis and that of Cunningham closely
predicted the experimentally determined effective conductivity.
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A TWO-DIMENSIONAL ANALYSIS OF POROSITY EFFECTS
ON THE THERMAL CONDUCTIVITY OF CERAMIC NUCLEAR FUELS

~I. INTRODUCTION

Heat transfer in ceramic nuclear fuels is complicated by the pres-
ence of entrained porosity. In fresh fuel, the porosity is uniformly
distributed with a range of pore sizes, and is due primarily to fabri-
cation effects. Typically, this fabrication porosity is on the order
of four to five percent by volume. During irradiation, fission gases,
primarily xenon and krypton, are formed which coalesce into bubbles,
adding to the fuel porosity. Pellet cracking and relocation followed
by sintering can also introduce additional porosity.

To account for the presence of the porosity in heat transfer calcu-
lations, a porosity correction factor istypically defined which modifies
the thermal conductivity of either the 100% dense solid, or some other
reference density. This correction factor has the form

Kp = Kpep x F(P)
where Kp = conductivity of the porous material
Kref = conductivity of the reference density material
(usually 100%)
f(p) = porosity correction factor for fractional porosity, p.

Several approaches have been taken to determine this factor. These
include empirical methods resulting from experimentation, and analytical
methods. Among the first suggestions for a porosity correction formula
was that of Loeb in which the conductivity is modified by the ratio of
the actual density to the maximum theoretical density (1). This is

expressed as

f(p) =1-p
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This expression proved unsatisfactory when compared to experimental data,
and led to the modified Loeb formula (1). This expression is as follows:

f(p) =1 - op

where o varies between 1.7 and 2.5. Another empirical expression is
given by Maxwell-Eucken (2) as

= —Ll -
flp) = 1= Bp
1.0 for carbide fuels
0.5 for oxide fuels greater than 90% theoretical density
0.7 for oxide fuels less than 90% theoretical density.

where B

Kampf and Karsten developed an analytical correction in which a
cubical pore is located in the center of a cube of material (3). Heat
flow is in one direction only with no heat flow around the pore. By
summing the resistance to heat flow, and averaging over the cross sec-
tional area of the unit cell, the porosity correction formula obtained

is
f(p) = 1 - p2/3.

This approach was used for a spherical pore in the center of a cubical
cell by Peddicord (4) to give the analytical porosity correction formula

fo) = 1 - [ 3“2/2 ]2/3 N

The next step in analytical solutions was to allow for multidimen-
sional heat flow. Cunningham (5) solved the heat conduction equation in
three dimensions finding the temperature field throughout the unit cell.
The unit cell consisted of a single sphere in a cube. The heat flux
entering and leaving the unit cell was determined, and an effective



conductivity found. This effective conductivity was then compared to
the conductivity of 100% dense material generating a ratio dependent on
porosity, and used as a correction formula. The resulting expression'is

-+

—
=]

S
!

= e72- 14 for 0=p=9.3

and f(p) = 0.92 - 1.34p for 0.3=5=0.5.

The empirical methods derived from experimental data have proven to
be valid to only about 12% porosity. In actual fuel pellets, porosities
of 35 to 50% are achieved. The analytical method developed by Cunningham
was the first to allow for multidimensional heat flow. Previous ana-
lytical methods were one dimensional, and allowed for no heat flow around
the pore. By ignoring multidimensional heat flow, the effects of porosi-
ty are usually overestimated.

The purpose of this work is to assess the method of Cunningham by
undertaking a two-dimensional analytical study which could then be com-
pared to idealized measurements using an electrical analog for heat flow.
" An effective conductivity determined as a ratio will produce a conduc-
tivity correction formula as a function of porosity. For direct compari-
son, one can make measurements using resistance paper, determining the
value of the temperature at any point in the system. If the two-
dimensional analytical expression is supported, one gains greater confi-
dence in that generated for the three-dimensional case.

The scope of this work will be to develop an analytical temperature
profile for the entire unit cell, and develop a porosity correction for-
mula based on this analytical solution. After completion of this portion
of the work, an electrical analog using resistance paper will be used to
access the solutions obtained in the analytical approach.

As further confirmation, the analytical approach will be simulated
using a finite element code developed by Westinghouse called TAP-A (6).
TAP-A was the code used to do much of the initial heat transfer calcula-
tions for the Fast Flux Test Facility at Hanford, Washington.



II. THE UNIT CELL AND BOUNDARY CONDITIONS

The problem under consideration is an array of rectangular para]Te]-
epipeds with cylinderical pores as shown in Figure 1. The pores are
considered to be of uniform diameter, and consist of a homogenous materi-
al with constant properties. The second material is also assumed to
have constant properties.

The approach to be used in this paper is to slice a two-dimensional
cross section through the parallelepiped, and preserve the boundary
conditions of the solid in the cross section. The cross section is
shown in Figure 2. On the upper and lower edges, it is assumed that
the temperature at all points is known. Due to the symmetry of the
cross section, it may be assumed there is no heat transfer between
adjacent cells (adiabatic sides), and all heat transfer occurs perpen-
dicular to the top and bottom edges.

One further division gives the unit cell to be considered. Since
the temperature profile in the full cell of Figure 2 is known along the
top and bottom edge, and are different, the full height of the cell is
preserved. A line of symmetry exists down the center of the cell as
shown in Figure 3. A1l heat flow will be between the top and bottom
edges, and none between adjacent cells. This, by definition, makes
both edges adiabatic.

This problem is to be treated in cylindrical geometry. Any point
in the unit cell can be described by the coordinates (r,e) where r is
the distance from the origin to the point, and 6 is the angle between
the y-axis and the line to the point. This is shown in Figure 4.

The governing steady state heat conduction equation for this system

is the Laplace Equation given by:

1 9 ) 1 32 _
FS‘F[FS‘FT(Y‘,Q)]+F2' WT(r,e) = 0. (II-].)



At this point, it will be helpful to discuss the various interface and
boundary conditions that must be satisfied. Referring to Figure 4, one

sees the following:

(1) Continuity of temperature at the region interface
T(1) (p,8) = T(2)(0,0) (11-2)

where p is the radius of the pore.

(2) Continuity of heat flux at the region interface

e R AN PO R A CO N (11-3)

(3) Finite temperature at the cell center

Limit 1} = s 2 -
rs 0 T(1) = finite. (11-4)
The unit cell is bounded by three distinct edges. The top edge,
. from Oféeféﬁa the temperature at any point is known and given by T(r,6)=1,

where r = . Likewise on the bottom edge, from §1€£ef5n, the temper-
2¢0s6 4 L

ature at any point is known and given by T(r,8) = 0, where r = - 7c0s8"
The conditions of the adiabatic edges that are somewhat more involved
for this condition require that the component of the heat flux vector
normal to the edge be zero. This is given by

: 3

" - m
eX - q"(r,0) - L = 0 for Iéeé i} (11-5)
2sine
where q"(r,e) = -K(Z)VT(Z)(r,e) = heat flux

e, = unit vector in the x-direction.



This condition can be shown (Appendix B) to reduce to the following:

sine g_r 1(2)(r,0) + cose %% 1(2)(r,0) = 0. (I11-6)



FIGURE 1.
THREE-DIMENSIONAL PORE ARRAY




FIGURE 2.
CROSS-SECTIONAL AREA

FIGURE 3.
UNIT CELL CONSIDERED




FIGURE 4.
UNIT CELL WITH BOUNDARY. CONDITIONS DEFINED
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III. DEVELOPMENT OF THE SOLUTIONS

A. The Analytical Solution

The analytical solution is found by solving a linear system of
partial differential equations for systems of constant properties.
The general solution will consist of the complete solution of the
homogeneous differential equation plus one particular solution of the
inhomogeneous equation. The arbitrary coefficients to the homogeneous
equation are determined by the boundary conditions.

The general solution to the governing differential equation,
Equation (II-1), can be shown (Appendix A) to have the general solution

form in each region as follows:
T(r,8) = Ao + Bo Inr + 2 [An r" + Bn r" "] cos(ne). (III-1)
n=l

To this equation the boundary conditions must be applied.
In region 1, the finite temperatures everywhere in the cell condi-
tion implies all the coefficients, B, must be zero. This leaves

T(!)(r,8) = Ao + >_ An rM cos(ns). (I11-2)
n=1
In region 2, the solution is as follows:
T(?)(r,8) = Co + Do Inr + Y [Cn r™ + Dn r" "] cos(ne). (I1I-3)
n=1

To solve for the remaining coefficients Ao’ An’ CO, Cn, Do’ and Dn’ two
properties of the cos(ne) are used. The orthogonality properties are:

m m
Property 1: / cos(ne)de= sin(ne)| =0
[0} [0}
m m
Property 2: J cos(ne) cos(me)de ={§ for n=m
0 7 otherwise-
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Applying the interface condition of temperature continuity,
T(1)(p,0) = T(2)(p,0) yields

Ao+ 3 Anp" cos(ne) = Co+ Do inp + 3, [Cn o" + Dn p "] cos(ne).

n=1 n=1
(111-4)
Integrating over all e in the unit cell gives
m © n m ©
! (Ao + An o cos(ne))de = I (Co +Do Inp + 2 [Cn ol +
0 - 0
n=1 n=1
_ (I111-5)
Dn p "] cos(ne))de.
Applying Property 1 eliminates all terms except
m m m
Ao8 lo = Co8 lo + (Do Tnp)e | .
This reduces to
Ao = Co + Do in p. (I1I-6)

Multiplying both sides of equation (III-4) by cos(me) and integrating -
over all 8in the unit cell gives

©

m
é (Ao cos(mg) + An o" cos(ne) cos(me))de =
n=1
m - ©
é (Co cos(me) + (Doln o) cos(me) + 2_ [Cn oM+ Dn ™M
n=1
cos(ne) cos(me))de. (111-7)

Applying Property 1, the leading terms on both sides are eliminated and
the only nonzero term occurs when n=m in the summation. Cancelling gives

Am o™ = Cm p™ + Dm p . (I111-8)
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Now consider the second interface condition, i.e., continuity of

heat flux at r = p. This condition is

To analyze this condition, it is necessary to evaluate, in each region,
the partial derivative. In Region 1, the temperature field is given by
Equation (III-2) which leads to

a7(1) ) - n
T L }; An r" cos(ne)}.

This expression reduces to

57(1)
ar

= 3 nAn Pl cos(ne). (I11-9)
n=1

Similarly in Region 2, from Equation (III-3)

= é%—[Co +Do Inr+ Y [Cn r" + 0n r™"] cos(ne)|.
n=1

This expression reduces to

2 - -] -
a;: ) =t 2: ncn r" n-1_ nbn r " 1] cos(nse). (I11-10)

Setting Equations {I111-9) and:{III-10) equal, and integrating over all

6 in the unit cell gives

[ <]

H n-1 H - n-1
k(1) é }: nAn p cos(ne)] de (2) é [ + 3 ( nCn p -
n=1

nDn p-n-l) cos(ne)] de. (IT1-11)
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Applying Property 1, the left-hand side is zero, and all but the leading
term on the right-hand side is zero. Simplifying leaves

Since -K, p, and w are not zero, this implies that D0 = 0.
As before, multiply both sides of equation (III-11) by cos(me) and
integrate over the entire interface. This gives

™ @© ™ ©
-x(1) f[ 3 nAn pn-l cos(ne)(cos me)]de - x(2) Doy 3
°l p=1 ol P p=1

(nCn pn-l - nDn p-n-l) cos(ne)] cos(mo)de. (I111-12)

Making use of Properties 1 and 2 eliminates the Qg-term and is every-

where zero, except when n=m. This gives

m-1 —m-l)

k(1) maAm pm-l(%) = -K(Z)( mCm p - mDm p

Ul
> -
Reducing gives

_ (1) m-1_ _,(2) m-1 _ -m-1
K Am o K (Cm p Dm o ) . (111-13)

It is now necessary to consider the conditions along the cell
boundary in Region 2. Along the top edge, it is assumed that T(r,e)
is known everywhere and is set to a constant. This is shown as follows:

2 = s
T( ) (r,e) 1 for 0L < g - (III-14)

This gives, from equation (III-3)

[

1=C+ Y ( cn r" + Dn r'n) cos(ne). (I1I-15)
n=1
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Along the top edge, r = 2ctse . When this is substituted into equation

(I11-15)the result is only a function of 9in the range 0 Z © 3_%

-Nn

o n
1=2Co+ 2%-(Cn(§2%§6-) + Dn(2ctse) ) cos(ne). (111-16)
n=

Similarly, along the bottom edge T(r,6) is known and assumed to be
a constant value which is less than the condition on the upper edge.
This is necessary to cause a heat flow between the upper and lower edges.

1(2) (r,e) = 0 for %ﬁein. A (I11-17)

Noting the radius along this edge is given by r = - §E%§6-and combining

jnto equation (III-3) gives an. expression in terms of 6 as follows:

© L n -n
0=Co + nﬁzjl(cn (- 2cose) + Dn(- ﬁ) )cos(ne). (111-18)

The adiabatic side condition is a bit more complicated. It was
shown that the adiabatic condition can be written as

. 3 —(2) cose 93 -(2) -
sine = T (r.o) + ==-5T (r,0) = 0. (111-19)

It is again necessary to evalute the partial derivatives.

3 -(2) v n-1 ) -n-1
EF'T (r,e)—sﬁw ( nCn r cos(ne) - nDn r cos(ne» (I111-20)

1

Noting that the outside boundary between %:ief-%%-is given by r =

2sineg,
and substituting in gives
> n-1 -n-1
3 1(2) - L L
o T (r8) = 22& (nCn(ggTHE) cos(ne) - nDn( S1ne)
(I11-21)

cos(ne)) .



15

For the other partial derivative the same procedure is used. This gives

S%T(z)(r,e) = a_ae' [Co + Z(Cn r" cos(ne) + Dn r" cos(ne))]
n=1
hence,
Ee_T( )(r,e) > (-nCn r" sin(ne) - nbn " sin(ne)>. (I11-22)
n=1
. e L .
Again substituting r = (Zsin ) gives

2 1(2) (0 = f: (-nCn( L )n sin(n6) - nDn(5—s i
35 s VST n(Zsine) s1n(ne)>.
n=1 (I11-23)

Now substituting equations (III-21) and (III-23) into equation (III-19)

yields - n-1 -n-1
sine{n{:l (nCn(ﬁ) cos(ne) - nD"(Zsli-ne) cos(ne)>} +
Cgse{§1( -nOn(ZS%ne)n sin(ne) - nDn(Zs%ne)-n sin(e))} = 0.
Combining terms and simplifying gives
ngl(nCn(é?l-{ﬁ)n-l { sine cos(ne) - cose sin(ne) } - nDn(z?l-{ﬁ)-n-l
{sine cos(ne) + cose sin(ne)}) = 0. (111-24)

The top, side, and bottom boundary cond‘itions are all now in a similar
format. This is shown on the following page.



Co + 2:1|Cn (2cose) cos(no) + Dn (2cose) }cos(ne) =1
n=

for 0 S g <

SIS

o -1
3 <n Cn (251ne lsinecos(ne) - cosesin(ne)l -

n Dn ( L) lsinecos(ne) + cosesin(ne)l> = 0

Co+ Y. {Cn( 2cose) cos(ng) + Dn( 2cose) }cos =0
n=1

3m < g s
4

for 6 -~ m.

The next step in the analysis is to utilize the outer cell edge

16

boundary condition relationships to find the values of the coefficients.

The coefficients can be determined using techniques from the calculus
of variations. The boundary conditions are rewritten as functions of

8 as follows:

o0}

PN gy = co+ 3 ‘Cnf(n)(e) + on ot (e)). (111-25)

n=1

The 6 functions are then expanded as Fourier-cosine series

£ (g) = S ol cos (ke)
k=1
g(n)(e) = 2: cos (ko).

To find the coefficients of the 8 functions, it is necessary to inte-
grate over all & in the unit cell. For example, f(6) becomes

? f(n)( Yde = { (n + 55 cos ke)}de. (I11-26)
0 0 k=1
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It was shown earlier, due to orthogonality, that the right-hand side of
Thisallows Equation (III-26) to be

Equation (II1-26) becomes a,

rewritten as

(n)

e

it 3

4 4 L n-1

g( cose) cos(n8)de + f n (§§Tﬁ§) ’s1necos(ne) - cosBsin(ng)pde +
Z'

/ (2cose) cos(n6)de = aén)“- (111-27)

3r

i

Needing another equation to soive for the unknown a's, the property of

orthoganality is again used.

plied by cos(hs).

™

4
M2

2cosh

m
¢os(ho)de + J
3m

il

3m

) cos(nd)cos(he)de +.fn(

4

zr

(Ecose

) cos(nd)cos(ho)de

2sind

Each side of Equation (I11-26) was multi-
Similar to the above expressions, this gave

n-1
[sinecos(ne) - ¢ns6sin(nd)

7 (n) )
7 %h=k (I11-28)

An identical procedure was used to set up solutions for g(n)(e) in terms

of Y(g) and Y(EZK

system of linear equations to solve for the a's.

becomes
[
0‘52) _ 1 (X(()
0] o

AERI)
+ Yéz) + Zéz))
), ;(()n) 2y

Equations (I1I1-27) and (I11-28) are converted into a

Equation (I11-27)
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where X, Y, and Z are the integrals from Equation (I11-27), respectively.

Similarly for Equation (I11-28),

(a(ll)) (“(21))"' (a?(:)) (X(11)+ Y(11)+ 2(11')"°(Xr(11)+ ISR
(2 2 . _ 2 .
G IO I .

| ) Cin) () () (x{ vz

Simpson's numerical integration techniques were used to find the values
of the integrals X, Y, and Z. Successive trials were used to determine
the number of terms to be carried, (n). For n = odd, the returned value
of the sum of the integrals, X + Y + Z, was zero. The value of the sum
did not change substantially for n > 10, hence all expansions carried 10
terms. As before, an identical procedure was followed for yén).and yﬁn).
A1l o's and v's are now known and Equation (II1-25) can be written

for each n as

10 10
(1 - (1 (1
P )(9) = Co + C; <a0 )+hg% ap )cos(he)) +D < +h2% )cos he))

aélo)cos(he))+

s

pl10)(g) = o + Clo (a(1°)+h

(10) )
D1o <Yo + Z: Yh Jeos (he)

The value of P(n)(e) changes, depending on the range of 6. This gives
rise to a set of linear equations when used in combination with Equations
(111-6), (111-8) and (III1-13) determines all the constants in the temper-
ature expression. With the constants all known, the temperature at any
point in the cell can be found.
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Temperatures were calculated at locations that correspond to nodal

points in the finite element analysis, and measurement points in the
electrical analog. Major matrix manipulation was done using standard
International Mathematical and Statistical Libraries, Inc. (IMSL)
subroutines.
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B. The Finite Element Solution

A computer code was developed by Westinghouse Astronuclear Labora-
tory (TAP-A) in December, 1969, to solve problems involving transient
and steady state heat transfer in multidimensional systems having arbi-
trary geometric configurations, boundary conditions, initial conditions,
heat generation, and physical properties. The program also has the capa-
bility to consider such heat transfer modes and boundary conditions as
internal conduction and radiation, free and forced convection, radiation
at external surfaces, specified time dependent surface temperatures, and
specified time dependent surface heat fluxes. Space and time dependent
thermal conductivity and heat capacity as well as time dependent exter-
nal temperatures can be considered.

TAP-A uses explicit or implicit mathematical methods to solve the
difference equations. The implicit method uses an overall heat balance
on the body being investigated as well as temperature convergence
criteria.

To solve for the temperature distribution of an irregular body, the
body is divided into a number of small cells. Each cell has associated
with it an interior point which is called an interior node. Surfaces of
cells which 1ie on the boundary of the body are associated with one of
the surface points and is called a surface node. In this manner a grid
or mesh represents the body. Input flexibility allows the grid not to
be geometrically uniform. Internal nodes are associated with volumes,
heat capacities, and heat generation rates. Surface nodes are associ-
ated with areas and film coefficients.

The code ties nodes together with connectors. A connector is a
path between two nodes along which heat can flow. Connectors are func-
tions of the material conductivity, and length and areas between nodes.
Hence, the code does not recognize any real geometry, only the lengths,
areas, and volumes of the nodes and connectors. '

The physical characteristics of each node can also be specified
allowing for many types of materials. These characteristics include
initial temperatures of internal, surface, and boundary nodes, nodal
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density (1b/in3), heat capacity and thermal conductivity of each node,
and the film or radiation coefficients for surface to boundary connec-
tions. The only drawback to this code is that it uses English units,
and would require tremendous effort to convert to a more usable form.
Table I summarizes these conditions for the unit cell.

The unit cell can be modeled as shown in Figure 5. By using TAP-A
on the unit cell, an effective conductivity can be found that can be
used to further assess the two-dimensional effective conductivity found
from the analytical solution.

To increase or decrease the porosity of the cell, it is only neces-
sary to add or subtract rows of nodes from the outside edge of the
standard case shown in Figure 5. In this manner, the internal nodal
structure along the material interface, which has a complex geometry,
need only be calculated once.

The 19.6% porosity case was chosen to be the base case, and the
unit cell normalized to a length of 1.0. Removing one row along each
outside edge produced a length of 0.875 and a porosity of 25.65%. 1In
a similar manner, other porosities are created. Table II summarizes the
porosities, and sizes of the various cells.

The resulting nodal patterns for 8.4%, 12.6%, 19.6%, 25.6%, 34.9%,
and 50.3% porosity are shown in Appendix D with the accompanying temper-
ature distribution through the cell. It is immediately apparent that
each cell is symmetric about the horizontal axis which is an expected
result since there are no sources or sinks in the unit cell.



TABLE I.

Characteristic

Metric Units

INITIAL PHYSICAL CHARACTERISTICS OF THE UNIT CELL. -

English Units
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Top Boundary
Temperature

Bottom Boundary
Temperature

Initial Internal
Nodal Temperatures

Ceramic Material
Density

Pore Material
Density

Ceramic Material
Heat Capacity

Pore Material
Heat Capacity

Ceramic Material

Thermal Conductivity

Pore Material

Thermal Conductivity

Top Surface
Film Coefficient

Bottom Surface
Film Coefficient

TABLE IT.

Case Number
1

Y O BW N

1°C

0°C

0.4°C

10.79.g/cm3

0.0182 g/cm3
251.98 cal/g-°C
251.98 cal/g-°C
0.023 w/cm-°C
0.00018 w/cm-°C
2.943x10% w/cm?-°C

2.943x10° w/cm?-°C

493.8°R

492.0°R

492.7°R

0.39 1b/in3
6.53x107% 1b/in3
1.0 BTU/1b-°R

1.0 BTU/1b-°R

3.08x107> BTU/sec in °R

2.46x10°7 BTU/sec in °R

10000. BTU/sec-in2-°R

10000. BTU/sec-in2-°R

UNIT CELL SIZE AND POROSITY SUMMARY.
Porosity Cell Length Cell Width
8.4% 1.500 0.7500
12.6% 1.250 1 0.6250
19.6% 1.000 0.5000
25.6% 0.875 0.4375
34.9% 0.750 0.3750
50.3% 0.625 0.3125



FIGURE 5.
NODAL ARRANGEMENT FOR TAP-A UNIT CELL ANALYSIS
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C. The Electrical Analog Solution

The direct mathematical similarity between heat and electrical con-
duction is well known and used frequently in the study of complex heat
conduction problems. The analogy can be immediately recognized when
comparing the governing partial differential equations for electrical
potential, e, with the partial differential equation for temperature, T:

2 2
a'e 9e _ R C ae

4+ 2 * = Z=
3*2 ayz L”L st
and
2T, 2T _ 1T
BXZ 3)’2 a ot °

These equations are valid for two-dimensional regions with uniform elec-
trical resistance per unit length, RL’ uniform electrical capacity per
unit length, CL, and uniform thermal diffusivity, a. The transient
analogy is complete if on the same time scale, dt, the electrical dif-
fusivity, ﬁ—%—-, and the thermal diffusivity, a, are equal. Two laws

are then true for the system; the conservation of charge in the electri-
cal system corresponds to the conservation of heat in the thermal system,
and current flow obeying Ohm's Law corresponds to heat flow obeying
Fourier's Law.

The steady state analogy used in this paper is completed by the
conditions %%—= 0, and %%—= 0, and noticing that both equations now
satisfy the simple Laplace equation for steady state conditions with no
internal sinks or sources. Therefore, a steady electric potential field
e(x,y) can be regarded as the analog of a steady temperature field T(x,y).
Equipotential lines in the voltage field correspond to isotherms in the

temperature field. Table III sums up the analogy.
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TABLE III. SUMMARY OF ELECTRICAL AND THERMAL ANALOGY.

Electrical Thermal
Charge = Qe (coulomb) Heat = Q (BTU)
Voltage =e (volts) Temperature = T (°F)
[+
Resistance = R (ohms) Resistance = R DEE%U—E
Current =i (amps) = %?— Flow = q %%¥.= %}

There are several types of electrical modes used to simulate the
temperature field. One method is the electrolytic bath where an electro-
lyte of constant resistivity is contained in a shallow basin similar in
shape to the actual problem. The boundaries of the basin are constructed
of electrical conducting material or insulator to simulate boundary con-
ditions. This method requires rather elaborate and laborious setup
methods and recording techniques, although it produces satisfactory
accuracy.

An easier method is the use of teledeltoes electrical conduction
paper. This paper has uniform resistance characteristics and is used
in place of the electrolytic bath. Teledeltoes paper has the advantage
of being a permanent medium on which to work, and the plots are easy to
prepare and record. The paper is cut to the desired shape, placed on a
flat, nonconducting surface, and a voltage difference is introduced by
attaching low resistance, metallic electrodes to the surface. Boundary
conditions are simulated by cutout "blank" areas in the paper, or by
applying resistance wire elements, bare copper wires, or conducting
areas of silver paint to the surface of the paper as each problem
dictates. A voltage divider is used to select a desired percentage
of the applied potential which is compared to the potential at any given
point on the paper through a microammeter. For direct comparison to the
finite element method, the nodal points were chosen. A null indication
shows that the potentials are equal.
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The sample setup is shown in Figure 6. The top and bottom edges
of the unit cell are silver painted to provide uniform voltage along
these edges which correspond to fixed temperatures. At the top, the
temperature equals one, and along the bottom edge, the temperature
equals zero. For ideal results, the sheet would be infinite in size.
This is impractical, and the sheets used were approximately 30 centi-
meters by 15 centimeters. The pore area was cut out of the sheet to
simulate a no heat transfer condition across the pores. Readings were
taken at locations which correspond to the nodel points of the finite
element solution. The field plotter readings showed little or no sensi-
tivity to pressure, but other sources of error are possible. These
include nonuniformity of the conducting paper, circuit nonlinearity,
and the ability to locate exactly the nodal point.
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FIGURE 6.
ANALOG FIELD PLOTTER SAMPLE SET UP
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IV. EFFECTIVE CONDUCTIVITY CALCULATION

Once the temperature field throughout the unit cell is found, cal-
culation of the effective conductivity can be performed. Recalling the
definition of heat flux as

dT
& IV-1
q=-K . (1v-1)

it is possible to determine the effective conductivity. Integration of
both sides of the above expression with respect to the surface area
through which the heat flows yields

dA. (IV-2)

ala
><i—

S qdA = J -
A A

Breaking the resulting expression into a summation over all nodal points,
j, along the boundary gives

dT
A, =) - Ko | AL . Iv-3
JZqJAJ ? Kax 15 A (1v-3)
Using the approximations
Z:q.A.
q = 4=
2 A,
J
and
ﬂ =Tt0 "Tlo
dX 'j AX

gives final expression for the heat flux

“KZ%_LL

A (1v-4)
ZAJ.
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The conductivity, K, in this expression is a known quantity, and
corresponds to the 100% dense material, or other reference density.
Since the unit cell contains no sources or sinks, the heat flow in
through the top must equal the heat flow out through the bottom. Having
determined q and knowing the temperatures at the top and bottom of the
cell, the following expression is developed

T. -7
_ top
o
q p

bottom)
L

where Kp = the effective conductivity of the porous cell
L = the length of the unit cell
q = the heat flux through the unit cell.

A11 quantities in this expression are known except Kp.

A sample calculation will be helpful. For the 8.38% porosity case,
the situation in Figure 7 was observed for the first row of nodes from
TAP-A. Solution for the entire surface is shown in Appendix D. For
each porosity case, an assumed conductivity value of the 100% dense
material was 0.023 w/cm-°C. This value is not particularly important
since a ratio of the true value to the effective value is the goal of
the paper. The solution for the heat flux, g, becomes

3(1 - 0.97) 0.125 , 3(1 - 0.96) 0.125
) 0.023 0.0625 * 0.0625 } = 0.0129.

9 0.75

Referring to Figure 7, each node for this case is 0.125 units wide
representing the nodal surface area through which heat flows, and the
distance from the top edge where T=1, to the nodal point is 0.0625.



Substituting into the expression for Kp yields

- 1 - 0y
0.0129 = -k {172

or K

= 0.01932 (w/cm-°C).

found from TAP-A is shown in Table IV.

Porosity (%)

8.38
12.57
19.63
25.65
34.91
50.27

TABLE IV.

g

0.01288
.0.01398

0.01472
0.01472
0.01349
0.01104

(w/cm-°C)

0.01932
0.01748
0.01472
0.01288
0.01012
0.00690

SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (TAP-A).

A summary of the effective conductivities

K_/K
A

0.84
0.76
0.64
0.56
0.44
0.30

For comparison, the same information from the electrical analog
solution is shown in Table V. This information was taken from an
interior node to minimize boundary effects due to the silver paint.

] 0.0625
2

Row from TAP-A, 8.37% Porosity Case.

0.125
T=1 prm——
[ J ® [ ] ®
T=.97 T=.97 T=.97 T=.96 T=.96 T=.96
Figure 7. Temperature Distribution for the First Nodal



TABLE V. SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (ELECTRICAL ANALOG)

Porosity (%) q KP (w/cm-°C) EE&E
8.38 0.01263 0.01895 0.824
12.57 0.01384 0.01730 0.752
19.63 0.01444 0.01444 0.628
25.65 0.01430 0.01251 0.544
34.91 0.01312 0.00984 0.427
50.27 0.01067 0.00667 0.290

Table 6 shows the information for the two-dimensional analytical solu-
tion described in Section III.

TABLE VI. SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (2-D ANALYTICAL SOLUTION)

Porosity (%) q Kp (w/cm-°C) EE[E
8.38 0.01283 0.01925 0.837
12.57 0.01393 0.01741 0.757
19.63 0.01461 0.01461 0.635
25.65 0.01451 0.01270 0.552
34.91 0.01331 0.00998 0.434

50.27 0.01086 0.00679 0.295
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V. POROSITY CORRECTION RELATIONSHIPS

To make the data in Tables IV through V more useful in predicting
thermal conductivities of ceramic nuclear fuels of known porosity, a
series of curves were fit. First to be fit were quadratic equations of
the form

K
& = A+ Bp+ Cp?. (V-1)

This was done using standard least-squares fitting as shown in Figure 8.

Figure 8. Quadratic Fit to the Data Using Least Squares Technique.

- H L —d
2 K
N > Pi 3P Z(l)
i i i\ K/
2 3 K
3P M 5 P3 zm(_Ke)
i i i i i
2 -3 4 p2 K
2P 2 Pi 2P 2P\
i i i i i
o e - e -
where N = number of data points
A,B,C = coefficients of the quadratic equation
and

K
P
K

= A+ Bp + Cp?
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Using a 3 x 3 matrix solver in the Hewlett-Packard 67 to solve the
system, an expression for (Kp/K) in terms of porosity, p, was found
for the finite element data to be

K
—KE = 1.0048 - 2.1134 p + 1.4166 p?; (V-2)

for the electrical analog data -

K
& =0.9939 - 2.1335 p + 1.4589 p’; (V-3)

and for the analytical solution

K
—KE = 1.0164 - 2.2599.p + 1.65972 p2. (v-4)

To illustrate their use, the 8.38% porosity case would be solved for
the electrical analog as follows:

K
T?— = 0.9939 - 2.1335 (.0838) + 1.4589 (.0838)2 = 0.8254.

Table VII summarizes the comparison of these expressions for the remain-
ing porosities. As can be seen, there is little difference between them

as expected.
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TABLE VII. COMPARISON OF CASE DATA TO QUADRATIC FITS

TAP-A Electrical Electrical Analytical
Porosity TAP-A Quadratic Analog Quadratic  Analytical Quadratic
0.0838 0.840 0.838 0.824 0.825 0.837 .839
0.1257 0.760 0.762 0.752 0.749 0.757 .759
0.1963 0.640 0.645 0.628 0.631 0.635 .637
0.2565 0.560 0.556 0.544 0.543 0.552 .546
0.3491 0.440 0.440 0.427 0.427 0.434 .430
0.5027 0.300 0.300 0.290 0.290 0.295 .300

The data was also compared to empirical formulas used in previous
studies, and expressions of similar form were found. In particular, it

(6)

is compared to the formula found by Cunningham

Eg_z -2.14p
- e

and to an expression found by one-dimensional heat flow analysis (no
heat flow is allowed around the pore) as shown in Appendix C:

To fit expressions of similar form to the actual data the least
squares technique was applied to a transformation of the equations. To
fit a Cunningham-type expression of

K
_P = 8P
i

it was necessary to transform the equation to

K

In 1?— = ap.
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The least squares parameter, y, is defined as
K 2
Y =§:Qn (‘B) - aPi)
3 K7

Minimizing v is the principle of least squares fitting and is accomplished
by taking the partial derivative of y with respect to a, and setting the
resulting expression to zero. This gave

K "
_a_lz - _R - i =
o {j(zr’i]n(K)i 2aP1) = 0.
Simplifying this expression leaves
- K
Zm(R).
j j
2 Pi
j

a:

Using the finite element data yielded a value of
a=-2.31
or

_ =2,31P
= e

ol e

where P is porosity as a fractional amount, i.e., .0838 for 8.38%.
Using the same technique, an expression was found for the one-
dimensional heat flow case of the form for the finite element data .

K
P14 ppt/2,
K
The value of b was found to be
b = -0.850

hence
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K
2-1- 0.85p/2

where P is also a fractional amount. Table VIII compares these expres-
sions with those of Cunningham and the one-dimensional heat flow case
for each porosity value. Tables IX and X do likewise for the electrical

analog and analytical solutions.’

Close examination of Tables VIII, IX, and X is warranted. It is
readily apparent that the one-dimensional heat flow solutions are inade-
quate predictors of the effective conductivity ratio and should not be
considered as an accurate porosity correction formula. The data fitted
curves yield reasonable results for both quadratics (Table VII) and
exponential forms. The important column is the solution of Cunningham
and how well it agrees with the finite element solution of TAP-A, the
electrical analog solution, and the two-dimensional analytical solution.

The Cunningham solution predicts values of effective conductivity, EE R

which are consistently within a few percent of the experimental datag
This close agreement tends to lend support to the three-dimensional

solution method of Cunningham. Table XI summarizes this result.
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TABLE VIII. COMPARISON OF VARIOUS CURVE FITS TO FINITE
ELEMENT DATA FOR <K > .
_P
K
, ' 2
Cunningham -2.31P /7 1/2 1/2
Porosity TAP-A Solution* e** 1 - P *** 1 - (0,85 P  *¥**
0.0838 0.840 0.836 0.824 0.673 0.754
0.1257 0.760 0.764 0.748 0.600 0.699
0.1963 0.640 0.657 0.635 0.500 0.623
0.2565 0.560 0.577 0.553 0.429 0.569
0.3491 0.440 0.459 0.446 0.333 0.498
0.5027 0.300 0.250 0.313 0.200 0.397
* Cunningham solution (see Page 3 for porosity ranges)
** TAP-A data solution
*** Theoretical one-dimensional solution
**%* TAP-A data solution in one-dimensional form
TABLE IX. COMPARISON OF VARIOUS CURVE FITS TO ELECTRICAL
ANALOG DATA FOR (K ) .
_P
K

Electrical Cunningham -2.405P
Porosity Analog Solution* ex*
0.0838 0.824 0.836 0.817
0.1257 0.752 0.764 0.739
0.1963 0.628 0.657 0.624
0.2565 0.544 0.577 0.540
0.3461 0.427 0.459 0.432
0.5027 0.290 0.250 0.298

* Cunningham solution (see Page 3 for porosity ranges)
** Electrical analog data solution



TABLE X.

Porosity
0.0838

0.1257
0.1963
0.2565
0.3491
0.5027

* Cunningham solution (see Page 3 for porosity ranges)

Analytical

Solution

0.837
0.757
0.635
0.552
0.434
0.295

** Analytical data solution

0.836
0.764
0.657
0.577
0.459
0.250

Cunningham
Soluti

on*

COMPARISON OF VARIOUS CURVE FITS TO ANALYTICAL
SOLUTION DATA FOR (.E.
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2.35P

e**

0.821
0.744
0.630
0.547
0.440
0.307

TABLE XI. COMPARISON OF CUNNINGHAM SOLUTION TO EXPERIMENTAL
METHODS FOR EFFECTIVE CONDUCTIVITY (EE)
K
Cunningham Two-Dimensional Finite Element Electrical
Porosity Solution* Analytical Solution TAP-A Solution Analog Solution
0.0838 0.836 0.837 0.840 0.824
0.1257 0.764 0.757 0.760 0.752
0.1963 0.657 0.635 0.640 0.628
0.2565 0.577 0.552 0.560 0.544
0.3491 0.459 0.434 0.440 0.427
0.5027 0.250 0.295 0.300 0.290

* Cunningham solution (see Page 3 for porosity ranges)
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VI. RANDOM PORE ARRANGEMENT

Pores in ceramic nuclear fuels tend to assume disklike shapes
which resemble the lentil plant, and are hence called lenticular pores.( 7)
These pores migrate toward the hot center of the fuel pellet. As more
and more of these pores cluster about the center of a fuel pellet, a
central void is formed.

This situation was approximated by distributing pores throughout
the unit cell with normal random distributions of (0,1) and (0,2).
Figures 9 and 10 show samples of pore locations. The (x,y) coordinates
of the pore were determined by the random number generator. Only two
pores were allowed in each square of the grid. As can be seen, a tenden-
cy to form a central void is simulated.

To find the effective conductivity of these unit cells, the elec-
trical analog technique was used. The conducting paper was cut to
approximate the pore locations. This is shown in Figure 11. As was
done previously, boundary conditions were set up to induce heat flow
from the top to bottom of the cell, i.e., T = 1.0 on the top, and T = 0.0
at the bottom. The temperature profile was then found along a row of
nodal points. From this data, the heat flux and effective conductivity
were found. Table XII summarizes the results of both cases.

A series of porosities based on a (0,2) distribution was not
pursued after the case shown in Figure 10 yielded nearly identical
results for the effective conductivity as did the (0,1) distribution
shown in Figure 9 and Table XII.

Both the Cunningham and two-dimensional solutions give a good
approximation to the results found by the electrical analog experimental
procedure. The Cunningham solution gave results that were within just
a few percent of the electrical analog for all cases except when porosity
was 50%. The two-dimensional solution was consistently within a few
percent. These results again lend support to the Cunningham solution

as a porosity correction formula.
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TABLE XII. COMPARISON OF EFFECTIVE CONDUCTIVITY FOR
RANDOM PORE ARRANGEMENT WITH (0,1) DISTRIBUTION
TO OTHER CORRECTION FORMULAS

Electrical Cunningham | -2.35P Electrical
Porosity Random Pore Solution* ex* Analog Quadratic***
.094 0.820 0.818 0.802 .806
.125 0.767 0.765 0.745 .750
.199 0.639 0.653 0.626 .627
.223 0.608 0.621 0.592 .591
.344 0.459 0.459 0.446 .433
.500 0.317 0.250 0.309 .292

* Cunningham solution (see Page 3 for porosity ranges)
**  Two-dimensional analytical solution
K

e & = 0.9939 - 2.1335P + 1.4589 P2



FIGURE 9.
RANDOM PORE ARRANGEMENT FOR (0,1) GENERATOR -
22.3% POROSITY
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RANDOM PORE ARRANGEMENT FOR (0,2) GENERATOR -

FIGURE 10.
19.9% POROSITY
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FIGURE 11.
ELECTRICAL ANALOG APPROXIMATION OF (0,1)
RANDOM PORE ARRANGEMENT - 22.3% POROSITY
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VII. SUMMARY AND CONCLUSIONS

The characteristic heat transfer in ceramic nuciear fuels is an
important factor in the design and operation of reactor cores. The
heat transfer characteristics are complicated by the presence of en-
trained porosity. Porosity comes about due to fabrication effects,
fission gas formation, and peliet cracking. A porosity correction
factor is typically defined which modifies the thermal conductivity
of either the 100% dense solid, or some other reference density to
account for the presence of the porosity in heat transfer calculations.

Several approaches have been taken to determine this factor.

These include empirical methods resulting from experimentation, and
analytical methods. The initial analytical methods allowed for heat

flow in one direction only with no heat flow around the pore. The

next step in analytical solutions was to allow for multidimensional

heat flow, and Cunningham produced a three-dimensional solution by
solving the heat conduction equations. The heat flux entering and
Teaving the unit cell was determined, and an effective conductivity
found. This effective conductivity was then compared to the conductivity
of 100% dense material generating a ratio dependent on porosity, and

used as a correction formula.

The purpose of this work was to assess the method of Cunningham by
performing a two-dimensional analytical study which was then compared
to idealized measurements using an electrical analog for heat flow. An
effective conductivity determined as a ratio produced a conductivity
correction formula as a function of porosity. For direct comparison,
measurements were made using resistance paper, determining the value
of the temperature at any point in the system. A finite element code
modeling the unit cell was also used to provide the value of the tempera-
ture at certain nodal points throughout the system. The electrical
analog and the finite element code were used to assess the solutions
found by the analytical approach.

A1l three two-dimensional methods gave results which support the
Cunningham methodology. Figure 12 shows a comparison of the analytical
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solutions to the results obtained from the electrical analog. The two-
dimensional analysis and that of Cunningham consistently lie within a
few percent of the electrical analog. Further confidence was gained
when predictions from other methodologies were compared to the electrical
analog. An illustration of this is shown in Figure 13 where a comparison
is shown between Cunningham, the electrical analog, and a solution which
allowed only one-directional heat flow. As was shown earlier, the
Cunningham and electrical analog solutions have good agreement, while
the one-dimensional solution yields completely inadequate results.

As a point of interest, a less-than-ideal unit cell was modeled
with the electrical analog and compared to analytical predictions. This
was done by distributing large pores in a normal random fashion centered
at the middle of the unit cell. A temperature profile was determined
and an effective conductivity found. Figure 14 shows these results
compared to Cunningham and the two-dimensional analysis. As was the
case in Figure 12, there is little to choose from when comparing the
methods. A1l the methods show fine agreement up to porosities of 40%.
There is some divergence from experimental results at that point. The
methodology of Cunningham is a valid approach to the problem of predicting
effective conductivities.



EFFECTIVE CONDUCTIVITY

FIGURE 12

COMPARISON OF ANALYTICAL SOLUTIONS TO ELECTRICAL ANALOG
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FIGURE 13
COMPARISON OF ONE-DIMENSIONAL SOLUTION TO ELECTRICAL ANALOG
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FIGURE 14

COMPARISON OF ANALYTICAL SOLUTIONS TO RANDOM PORE ANALOG
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APPENDIX A
SOLUTION TO THE GOVERNING DIFFERENTIAL EQUATION
The steady state temperature distribution is determined by the well
known Laplace Equation
v2 T (r,e) = 0. (A-1)

This can be written in polar coordinates as

13 ) 1 32 _
Fa—r<r 2 (r,e)>+ L 2T (re) = 0. (A-2)

In order to solve Equation (A-2), it is possible to use the separation

of variables technique; that is, assume
T (r,0) =R (r) ¢ (o).

Substituting this expression into Equation (A-2), and multiplying through
by r2 leaves

1 d d 1 d?
ROT ra?(rd—rR(r)>=-7—”e S5 6 (0). (A-3)
Since both sides are in terms of one variable, and set equal to each other,
they must be equal to a constant, A2. It is now possible to treat each

side of the equation individually.
First, the right hand side

can be written as

d2
357'¢(6) + 22 ¢(8) = 0. (A-4)
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Equations of this type are well known and have as the solution
¢ (6) = Bn sin (a8) + An cos(xe) (A-5)
where An and Bn are arbitrary constants dependent on the boundary

conditions.
The left hand side also reduces to a well documented solution.

Expanding
d d _ 42 =
r —dl” (Y’ _—dl” R (Y’)) A R(Y‘) 0

yields a standard Euler Equation

r2 d2 R (r) +r é%—R (r) -22R (r) =0 (A-6)
which has solutions

R (r) = kg rt 4 ko r? (A-7)

where k; and k, are arbitrary constants which are determined by the

boundary conditions.
So far, the solutions have depended on A2 being greater than zero.
Setting A2 = 0 in Equation (A-6) gives

2 d
r2 %FY'R (r) + r ar R (r) = 0.

Dividing by r2, and integrating twice gives

R (r) = Ao + Bo 1n r. (A-8)
Setting A2 = 0 in Equation (A-4) gives
d2
gz #(6) = 0
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which has solutions
¢(6) =C; +Cyr 0.

The constant, C,, must be zero to satisfy the boundary condition that

¢(e) be periodic in 6. This condition ensures that T(r,e) will be single
valued at each point. This leaves C;, which can be absorbed into Ao' The
general solution is the sum of the A2 = 0 and A2 X 0 solutions given as

T (r,68) = Ao +Bo Tnr + 2, ( ky rn 4 ko r~An )(Bn sin (Ane) +
n=1

An cos(Ane) ). (A-9)

The adiabatic heat flow condition in the cell requires the derivative,

é%-T (r,0) to be zero for 8 = 0, and 6 = w, hence the sine terms must
vanish, and Bn = 0. For o = w, the only way to satisfy the boundary
condition is for A to be an integer, and equal to n. This yields the

general solution
T (r,8) = Ao+ Bo In r + > (An r" + Bn r_n)cos(ne). (A-10)
n=1

To see that this is indeed the general solution, it is only necessary
to substitute Equation (A-10) into the governing differential Equation
(A-2). When this is done, the first term becomes

) ( An r""% + Bn r'n'%)nz cos(ne)
n=1
and the second term becomes

-2 ( An r"? + Bn r'n'z)n2 cos(ne).

n=1

Hence, the equation is satisfied.



53

APPENDIX B

SOLUTION TO THE ADIABATIC BOUNDARY CONDITION

The cylindrical coordinate system has as its unit vectors ér and
and ée’ while the adiabatic condition on the right hand side of the unit
cell, Figure 15 is given as

éx - q" (r,0) =0 (B-1)
where éx = unit vector in the x-direction, q" (r,8) = heat flux. It is,
therefore, necessary to find a relation between e, e, and ér, €o.
Figure 15 illustrates the relationships of the quantities. It is seen
that the following is true:

>
n

e + Si o -
cos ¥ e + sin ¥ ey (B-2)

>
n

cos 6 e - sin ) ey (B-3)

where ¥ =(%— >

Using the relations
o = .
cos(E-— e) sin ©
. ki3 =
s1n<§— 6) cos ©

gives the following expressions:

>
n

- . + -~ _
p = €, sin® e, cos 6 (B-4)

~

e, cos 6 - ey sin o, (B-5)

>
n
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The adiabatic condition is valid only in the range where %—f o = é% .
In this range, r = §§%ﬁg-and
&« g" (re) =0 | r=n,k (B-6)
X > 2sine
where

q" (r,e)= «(2) gr(2) (r,0).

Using the definition of the gradient operator in cylindrical coordinates,
this expression expands to the following

7(2) (r,e)).

a (r0) = kB (& 21 (r0) + 8 L2

r Jor

Substituting in the expressions for ér and ée yields
n - _(2) ( 2 ed " 3 .(2)
q" (r,8) = -K (eX sing + e, c0s0) Tl (r,0) +

(8, coss - &, sine) %:—GT(Z) (r,6)>. , (B-7)

FIGURE 15.
VECTOR RELATIONSHIPS OF THE UNIT CELL

é .
y y a
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Computing the dot product with éx to give the adiabatic condition gives

0= éX<-K(2)< (éx sino + éy COSB)"%T(Z) (Y‘,e) +

- " . 1
(eX coso - ey sing) F'S%'T(Z) (r,e))). (B-8)

’

Using the relations

~

e, * e, = 1

and
e, ey =0
reduces the equation to
2 . ) 2 1 3 2
-« )< sine EF'T( ) (r,8) + cose = =& 1(2) (r,e)) = 0.

Finally, the adiabatic edge condition becomes

o9 (2) 1 2 -(2) -
sine —= T (r,0) + - €os6 == T (r,0) = 0. (B-9)
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APPENDIX C

ONE-DIMENSION HEAT FLOW ANALYSIS

One-dimensional heat flow allows no heat flow around the pore.
Effectively, the pore blocks the heat flow through a projection of its
area on the bottom face of the cell. Figure 16 illustrates this. For
the case when the thermal conductivity of the pore is very much less than
the thermal conductivity of the solid (as in gas pores in ceramic nuclear
fuels), the following relationship is observed

f(p) =1 - Pc (C-1)

where Pc is the fractional area of the pore projected on the bottom face
of the cell and is given by

A
be = APore _2RL _ 2R (c-2)
Cell

Tz T

The fractional porosity of the cell is equal to the fractional volume
occupied by the pore and is given by

v

Pore _ wRZL R\2
P = = 3 = ql— . (C_3)
VCe]] L (L)
Rearranging gives
P_(R\2
F'(f)
or
1/2
R_¢(P
c=(7) - (C-4)



FIGURE 16.
CELL ORIENTATION FOR ONE-DIMENSIONAL
HEAT FLOW ANALYSIS

Heat Flow
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Substituting this expression into Equation (C-2) gives

re-2(2)"" . | : (c-5)

T

Substituting this expression into Equation (C-1) yields the final result

_ 2t/



APPENDIX D

TEMPERATURE DISTRIBUTIONS
FOR VARIOUS POROSITIES FOR THE UNIT CELL

The following figures contain the nodal patterns and results for
each of the porosities studied in this work. The porosity values are
8.38%, 12.57%, 19.63%, 25.65%, 34.91%, and 50.27%. Figures 17 to 22
are the results for the TAP-A data. Figures 23 to 28 are the results
for the electrical analog paper. Figures 29 and 34 are the analytical
solution results,
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FIGURE 17.

TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 8.4% POROSITY
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FIGURE 18.
TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT ANALYSIS
(TAP-A) - 12.6% Porosity
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FOUND BY FINITE ELEMENT

FIGURE 19
TEMPERATURE DISTRIBUTION SOLUTION

ANALYSIS (TAP-A)
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FIGURE 20.

TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 25.6% POROSITY
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FIGURE 21.
TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT
ANALYSIS (TAP-A) - 34.9% POROSITY
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FIGURE 22.
TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 50.3% POROSITY
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FIGURE 23.

TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY ELECTRICAL ANALOG -
8.4% POROSITY
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FIGURE 24.
TEMPERATURE DISTRIBUTION SOLUTION
FOUND BY ELECTRICAL ANALOG

12.6% POROSITY
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FIGURE 25.
TEMPERATURE DISTRIBUTION SOLUTION
FOUND BY ELECTRICAL ANALOG -
19.6% POROSITY
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FIGURE 26.
TEMPERATURE DISTRIBUTION SOLUTION
FOUND BY ELECTRICAL ANALOG -

25.6% POROSITY
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FIGURE 27.

TEMPERATURE DISTRIBUTION

FOUND BY ELECTRICAL ANALOG -
34.9% POROSITY
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FIGURE 28.
TEMPERATURE DISTRIBUTION
FOUND BY ELECTRICAL ANALOG -

50.3% POROSITY
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FIGURE 29.
TEMPERATURE DISTRIBUTION

FOUND BY ANALYTICAL SOLUTION -
8.4% POROSITY
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FIGURE 30.

TEMPERATURE DISTRIBUTION
FOUND BY ANALYTICAL SOLUTION -
12.6% POROSITY
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FIGURE 31.
TEMPERATURE DISTRIBUTION FOUND BY
ANALYTICAL SOLUTION - 19.6% POROSITY
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FIGURE 32.

TEMPERATURE DISTRIBUTION

FOUND BY ANALYTICAL SOLUTION -

25.6% POROSITY
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FIGURE 33.
TEMPERATURE DISTRIBUTION FOUND BY
ANALYTICAL SOLUTION - 34.9% POROSITY
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FIGURE 34.
TEMPERATURE DISTRIBUTION
FOUND BY ANALYTICAL SOLUTION -
50.3% POROSITY
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