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Heat transfer in ceramic nuclear fuels is complicated by the presence

of entrained porosity. The characteristic heat transfer is an important

factor in the design and operation of reactor cores. Initially, porosity

is uniformly distributed and is primarily due to fabrication effects.

Later, fission gases coalesce and pellets crack to introduce additional

porosity. A porosity correction factor is typically defined which modi-

fies the thermal conductivity of either the 100% dense solid, or some

other reference density to account for the presence of the porosity in

heat transfer calculations.

Early analytical approaches were primarily one-dimensional and

would not allow heat flow around a pore. The first to allow for multi-

dimensional heat flow was Cunningham, who solved the heat conduction

equation in three dimensions, finding the temperature field throughout

a unit cell which consisted of a single sphere in a cube. The ratio

of effective conductivity to the conductivity of 100% dense material

is given by

e-2.14n
r for 0 p 0.3

f(p) = 0.92 1.34p for 0.3 f p f 0.5.

The purpose of this work was to assess the method of Cunningham by

performing a two-dimensional analytical study which was then compared

to idealized measurements using an electrical analog for heat flow.



These measurements were made using resistance paper, and a "temperature"

field was found throughout the unit cell. By summing the resistance to

heat flow, and averaging over the cross-sectional area of the unit cell,

porosity correction formulas were determined. For further confirmation,

the unit cell was modeled using a finite element code (TAP-A) developed

for heat transfer calculations for the Fast Flux Test Facility, located

at Hanford, Washington.

All three two-dimensional methods gave results which support the

Cunningham methodology. The two-dimensional analysis and that of

Cunningham consistently lie within a few percent. By contrast, the

previous one-dimensional approaches yielded inadequate results when

compared to the electrical analog. Cases were examined using the elec-

trical analog where pores were distributed throughout the unit cell in

a normal random fashion centered at the middle of the unit cell. As

before, the two-dimensional analysis and that of Cunningham closely

predicted the experimentally determined effective conductivity.
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A TWO-DIMENSIONAL ANALYSIS OF POROSITY EFFECTS
ON THE THERMAL CONDUCTIVITY OF CERAMIC NUCLEAR FUELS

I. INTRODUCTION

Heat transfer in ceramic nuclear fuels is complicated by the pres-

ence of entrained porosity. In fresh fuel, the porosity is uniformly

distributed with a range of pore sizes, and is due primarily to fabri-

cation effects. Typically, this fabrication porosity is on the order

of four to five percent by volume. During irradiation, fission gases,

primarily xenon and krypton, are formed which coalesce into bubbles,

adding to the fuel porosity. Pellet cracking and relocation followed

by sintering can also introduce additional porosity.

To account for the presence of the porosity in heat transfer calcu-

lations, a porosity correction factor is typically defined which modifies

the thermal conductivity of either the 100% dense solid, or some other

reference density. This correction factor has the form

K
P

= K
ref

x f(p)

where K = conductivity of the porous material

K
ref

= conductivity of the reference density material

(usually 100%)

f(p) = porosity correction factor for fractional porosity, p.

Several approaches have been taken to determine this factor. These

include empirical methods resulting from experimentation, and analytical

methods. Among the first suggestions for a porosity correction formula

was that of Loeb in which the conductivity is modified by the ratio of

the actual density to the maximum theoretical density (1). This is

expressed as

f(p) = 1 - p
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This expression proved unsatisfactory when compared to experimental data,

and led to the modified Loeb formula (1). This expression is as follows:

f(p) = 1 - up

where a varies between 1.7 and 2.5. Another empirical expression is

given by Maxwell-Eucken (2) as

f(p) Pap

where fi = 1.0 for carbide fuels

= 0.5 for oxide fuels greater than 90% theoretical density

= 0.7 for oxide fuels less than 90% theoretical density.

Kampf and Karsten developed an analytical correction in which a

cubical pore is located in the center of a cube of material (3). Heat

flow is in one direction only with no heat flow around the pore. By

summing the resistance to heat flow, and averaging over the cross sec-

tional area of the unit cell, the porosity correction formula obtained

is

f(p) = 1 - p2/3.

This approach was used for a spherical pore in the center of a cubical

cell by Peddicord (4) to give the analytical porosity correction formula

2/3

f(p) = 1 - [3,x 2 P.

The next step in analytical solutions was to allow for multidimen-

sional heat flow. Cunningham (5) solved the heat conduction equation in

three dimensions finding the temperature field throughout the unit cell.

The unit cell consisted of a single sphere in a cube. The heat flux

entering and leaving the unit cell was determined, and an effective



3

conductivity found. This effective conductivity was then compared to

the conductivity of 100% dense material generating a ratio dependent on

porosity, and used as a correction formula. The resulting expression is

f(p) = e-z.npfor 0..cp,f9.3

and f(p) = 0.92 1.34p for 0.3--5.p...1.5.0.5.

The empirical methods derived from experimental data have proven to

be valid to only about 12% porosity. In actual fuel pellets, porosities

of 35 to 50% are achieved. The analytical method developed by Cunningham

was the first to allow for multidimensional heat flow. Previous ana-

lytical methods were one dimensional, and allowed for no heat flow around

the pore. By ignoring multidimensional heat flow, the effects of porosi-

ty are usually overestimated.

The purpose of this work is to assess the method of Cunningham by

undertaking a two-dimensional analytical study which could then be com-

pared to idealized measurements using an electrical analog for heat flow.

-An effective conductivity determined as a ratio will produce a conduc-

tivity correction formula as a function of porosity. For direct compari-

son, one can make measurements using resistance paper, determining the

value of the temperature at any point in the system. If the two-

dimensional analytical expression is supported, one gains greater confi-

dence in that generated for the three-dimensional case.

The scope of this work will be to develop an analytical temperature

profile for the entire unit cell, and develop a porosity correction for-

mula based on this analytical solution. After completion of this portion

of the work, an electrical analog using resistance paper will be used to

access the solutions obtained in the analytical approach.

As further confirmation, the analytical approach will be simulated

using a finite element code developed by Westinghouse called TAP-A (6).

TAP-A was the code used to do much of the initial heat transfer calcula-

tions for the Fast Flux Test Facility at Hanford, Washington.
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II. THE UNIT CELL AND BOUNDARY CONDITIONS

The problem under consideration is an array of rectangular parallel-

epipeds with cylinderical pores as shown in Figure I. The pores are

considered to be of uniform diameter, and consist of a homogenous materi-

al with constant properties. The second material is also assumed to

have constant properties.

The approach to be used in this paper is to slice a two-dimensional

cross section through the parallelepiped, and preserve the boundary

conditions of the solid in the cross section. The cross section is

shown in Figure 2. On the upper and lower edges, it is assumed that

the temperature at all points is known. Due to the symmetry of the

cross section, it may be assumed there is no heat transfer between

adjacent cells (adiabatic sides), and all heat transfer occurs perpen-

dicular to the top and bottom edges.

One further division gives the unit cell to be considered. Since

the temperature profile in the full cell of Figure 2 is known along the

top and bottom edge, and are different, the full height of the cell is

preserved. A line of symmetry exists down the center of the cell as

shown in Figure 3. All heat flow will be between the top and bottom

edges, and none between adjacent cells. This, by definition, makes

both edges adiabatic.

This problem is to be treated in cylindrical geometry. Any point

in the unit cell can be described by the coordinates (r,e) where r is

the distance from the origin to the point, and e is the angle between

the y-axis and the line to the point. This is shown in Figure 4.

The governing steady state heat conduction equation for this system

is the Laplace Equation given by:

1 a a

r ar
[
r T(ro), 1 a2

ar Tp- T(r,e) = 0.
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At this point, it will be helpful to discuss the various interface and

boundary

sees the

(1)

(2)

(3)

conditions that must

following:

Continuity of temperature

T(1)(p,0) =

where p is the radius

Continuity of heat

aT(1)

be satisfied. Referring

at the region

T(2)(0,0)

of the pore.

flux at the region

K(2) aT(2)

to Figure 4, one

interface

(11-2)

interface

. (II-3)
r=p

(II-4)

-K(1)
ar

Finite temperature

Limit flN
T% =

r 0

r=
Dr

p

at the cell center

finite.

The unit cell is bounded by three distinct edges. The top edge,

from 01504-7% the temperature at any point is known and given by T(r,e)=1,
37.0 .ef

where r
2cose'

Likewise on the bottom edge, from the temper-

ature at any point is known and given by T(r,e) = 0, where r
4c0S0.

The conditions of the adiabatic edges that are somewhat more involved

for this condition require that the component of the heat flux vector

normal to the edge be zero. This is given by

e
x

q"(r,e) = 0 for
4
21-8 ,-5-==

31T

4 (II-5)
r- 2sine

where q"(r,e) = -K(2)vT(2)(r,e) = heat flux

A

e
x
= unit vector in the x-direction.
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This condition can be shown (Appendix B) to reduce to the following:

sine a
ar

T(2)(r,e) + cose
1 a T(2)(ro) = 0.
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FIGURE 1.
THREE-DIMENSIONAL PORE ARRAY
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FIGURE 2.

CROSS-SECTIONAL AREA

FIGURE 3.
UNIT CELL CONSIDERED



FIGURE 4.
UNIT CELL WITH BOUNDARY CONDITIONS DEFINED

TO
L

2

x

L

9
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III. DEVELOPMENT OF THE SOLUTIONS

A. The Analytical Solution

The analytical solution is found by solving a linear system of

partial differential equations for systems of constant properties.

The general solution will consist of the complete solution of the

homogeneous differential equation plus one particular solution of the

inhomogeneous equation. The arbitrary coefficients to the homogeneous

equation are determined by the boundary conditions.

The general solution to the governing differential equation,

Equation (II-1), can be shown (Appendix A) to have the general solution

form in each region as follows:

CO

T(r,e) = Ao + Bo In r + 2: [An rn + Bn r-n] cos(ne). (III -1)

n=1

To this equation the boundary conditions must be applied.

In region 1, the finite temperatures everywhere in the'cell condi-

tion implies all the coefficients, B, must be zero. This leaves

w

T(1)(r,e) = Ao + 1: An rn cos(ne). (III-2)

n=1

In region 2, the solution is as follows:

CO

T(2)(r,e) = Co + Do In r + >2 [Cn rn + Dn r-n] cos(ne). (III-3)

n=1

To solve for the remaining coefficients Ao, An , Co, Cn, Do, and 0
n

, two

properties of the cos(ne) are used. The orthogonality properties are:

7 7

Property 1: I cos(ne)de= sin(ne)1 = 0
0

7 7

Property 2: s cos(ne) cos(me)de ={2-- for n=m

0 9 otherwise.
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Applying the interface condition of temperature continuity,

T(1)(p,e) = 2) ( p,O) yields

Ao + 2] An p
n
cos(ne) = Co + Do in p + 2] [Cn p

n
+ Dn p

-n
] cos(ne).

n=1 n=1
(III-4)

Integrating over all e in the unit cell gives

n

I (Ao + E An pn cos(ne))de = k co + Do ln p + E [Cn pn +

n=1 n=1

Dn p-n] cos(ne))de.

Applying Property 1 eliminates all terms except

An I = Coe 1 + (Do in p)0 10 .

This reduces to

Ao = Co + Do in p. (III-6)

Multiplying both sides of equation (III-4) by cos(me) and integrating

over all ein the unit cell gives

IT co

I (Ao cos(me) + 2: An p
n
cos(ne) cos(me))de =

0
n=1

f (Co cos(me) + (0
o

p) cos(me) + [Cn p
n
+ Dn p-n]

0 n=1

cos(ne) cos(me))de. (III-7)

Applying Property 1, the leading terms on both sides are eliminated and

the only nonzero term occurs when n=m in the summation. Cancelling gives

Am p
m

= Cm p
m

+ Dm p
-m

.



Now consider the second interface condition, i.e., continuity of

heat flux at r = p. This condition is

-K(1) aT(1) -K(2) 'T(2)
r p

ar
=

ar
r =p.

12

To analyze this condition, it is necessary to evaluate, in each region,

the partial derivative. In Region 1, the temperature field is given by

Equation (III-2) which leads to

aTr (1)

ar
Ao + 1: An r

n
cos(ne)1.

n=1

This expression reduces to

3-r(i)
ar

CO

nAn r
n-1

cos(ne).

n=1

Similarly in Region 2, from Equation (III-3)

aT(2)
[Co + Do In r + [Cn r

n
+ Dn r

-n
] cos(ne)J.

ar ar
n=1

This expression reduces to

aT(2) Do
+

-n-11
nCn r

n-1
- nDn r

ar
cos(ne).

n=1

(III-10)

Setting Equations '(III -9) and-(III-10) equal, and integrating over all

e in the unit cell gives

-Kw [
" Do

nAn p
n-1

cos(ne) ] de = -Kk2) (1 [ + E ( nCn pn-1

L n=1

nDn p-n-1) cos(ne) I de. (III-11)
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Applying Property 1, the left-hand side is zero, and all but the leading

term on the right-hand side is zero. Simplifying leaves

_K(2) DO ,
P

TT

0

Since -K, p, and it are not zero, this implies that Do = 0.

As before, multiply both sides of equation (III-11) by cos(me) and

integrate over the entire interface. This gives

Tr

-K(1) fi N- nAn pn-1 cos(ne)(cos me) de = -02)
o0 p
[P2_ E

n=1 n=1

(nCn p
n-1

nDn p
-n-1)

cos(ne) cos(me)de. (III-12)

Making use of Properties 1 and 2 eliminates the
Do

term and is every-

where zero, except when n=m. This gives

K(1) mAm pm-1(2) -K(2)(mCm pm-1 - mDm p-m-1) L
2

Reducing gives

KW Am pm-1 = -K(2) (Cm pm-1 - Dm p-m-1) .

(III-13)

It is now necessary to consider the conditions along the cell

boundary in Region 2. Along the top edge, it is assumed that T(r,e)

is known everywhere and is set to a constant. This is shown as follows:

T(2) (r,e) = 1 for 0 e .

This gives, from Ouation (III-3)

1 = Co + I] ( Cn r
n
+ Dn r cos(ne).

n=1

(III-14)

(III-15)
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Along the top edge, r
2cose

When this is substituted into equation

(III-15)the result is only a function of e in the range e

1 n -n

1 = co + (Cn(
2cose

) + Dn( L
2cose

) ) cos(ne).

n=1

Similarly, along the bottom edge T(r,e) is known and assumed to be

a constant value which is less than the condition on the upper edge.

This is necessary to cause a heat flow between the upper and lower edges.

(III-16)

T(2) (r,e) = 0 for
4

3Tre_
(III-17)

Noting the radius along this edge is given by r
2cose

and combining

into equation (III-3) gives aa expression in terms of e as follows:

L
n

0 = Co + Cn + Dn(-
\n

>2 (
( ccose/ 2cose/

)cos(ne). (III-18)
n=1

The adiabatic side condition is a bit more complicated. It was

shown that the adiabatic condition can be written as

sine Dr T
(2)

(r,O) core
e

,(2)(r,e)

It is again necessary to evalute the partial derivatives.

(I/II-19)

r
T(2)(r,e)=-LE ( nCn rn-1 cos(ne) - nDn r-n-1 cos(ne))

Noting that the outside boundary between 4 ie_. 2,'47-- is given by r =

and substituting in gives

(2)
n-1

cos(ne) nDn(210)-n-1
ar

(r,e) = L(nCn(
n=1

cos(ne)) .

(III-21)
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For the other partial derivative the same procedure is used. This gives

4-T(2)(r,e) = [Co + (Cn rn cos(ne) + Dn r-n cos(ne))]
ee

n=1

hence,

(2) ) = 2] (-nCn sin(ne)Te- T (r,e nDn r-n sin(ne)) (111-22)
n=1

Again substituting r
(2sin

) gives

co
L \

n -n(2)
-5-T (r,e) = 2] (-nCn6767 sin(ne) - nOn(., ) sin(ne)).nine/

n=1 '
(111-23)

Now substituting equations (III-21) and (111-23) into equation (III-19)

yields
co n-1 1 -n-1

sine{2] (nCn(
2sine

) cos(ne) nDn(
2sine

)

n 1
cos(ne))} +

/ 1cose
( -nOn(

2sine
)

n

sin(ne) nDn(
2sine

)

-n

sin(e))} = O.
r n=1

Combining terms and simplifying gives

1 n-1 i -n-1
/(nCn(.

esine sine
) sine cos(ne) - cose sin(ne) - nDn(---

)n=1

{sine cos(ne) + cose sin(ne)} ) = 0. (111-24)

The top, side, and bottom boundary conditions are all now in a similar

format. This is shown on the following page.



Co + 1] n (2cos0)n cos(nO) + Dn (
2cose

)

n

Icos(nO) = 1

n=1

< TT
for 0

<
- 0 -

n-11

7 (n Cn ( Isinecos(n8) cososin(nO)} -
2sin0/

n=1
, -n-1

n Dn (2sino) Isinacos(nO) + cososin(no) }) = 0

-
7 < < 37

for -
4- 4

n -n

Co + 2: (Cn(
2cosel

L cos(nO) + Dn(
2cos0)

n=1

37
for

4
- 7.

cos(nO) = 0

16

The next step in the analysis is to utilize the outer cell edge

boundary condition relationships to find the values of the coefficients.

The coefficients can be determined using techniques from the calculus

of variations. The boundary conditions are rewritten as functions of

0 as follows:

f

P(n)(0) = Co Icnon)(6) Dn g(n)(0)). (111-25)

n=1

The 0 functions are then expanded as Fourier-cosine series

f(n)(e) (n)
a(n)cos(kA)

k=1
k

g(n)(e) = Y (n) + Yk(n)cos(k0).
k=1

To find the coefficients of the 0 functions, it is necessary to inte-

grate over all e in the unit cell. For example, f(e) becomes

Tr

(n)

tr
I f"(e)de = I { a(n) + E

couio

cosko}de.

0 o k=1

(111-26)
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It was shown earlier, due to orthogonality, that the right-hand side of

Equation (111-26) becomes a
o

(n)
7. This allows Equation (111-26) to be

rewritten as

7 37

4 n 4 1 n-1
/ \iv, ) cos(n0)0 + I n ( .7 ) {sinecos(ne) cosesin(n000 +
Lcos0 2sn0

0 7

4-

7

f k2cos6)n
cos(n0)0 = a

o
7

'(n)1- L

4

(111-27)

Needing another equation to solve for the unknown a's, the property of

orthoganality is again used. Each side of Equation (III-26) was multi-

plied by cos(he). Similar to the above expressions, this gave

7 37

4 4
n

ft L
) cos(nO)cos(hO)de +In(

0\2cose, \2sine

TT

IsinOcos(nO) - cosOsin(n0)}

- L n
tocos(ho)do

r
+ - (2cosO)

cos(no)cos(ho)de = 2 4?( (111-28)

37 '

4

An identical procedure was used to set up solutions for g
(n)

(0) in terms

of y
(n)

and y
(nh)

K
. Equations (III-27) and (I11-28) are converted' into a

=

system of linear equations to solve for the a's. Equation (111-27)

becomes

= 1
IT

(x].) y(()1) 4,1))

(x(2) y(2) z(2))
0 0 0

(x(()n) Y(n) 4_ 4)n))
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where X, Y, and Z are the integrals from Equation (I11-27), respectively.

Similarly for Equation (111-28),

(a(11))
(a(2) (a

(a. (12)) (a(22))

/v(1), .,(1N
(

(I) (I) (1)

kA 1 Y 1 + 1 "h Zh

(X(10+ (10+ (10) 0(1(10+ yi(in)+ 4))

Simpson's numerical integration techniques were used to find the values

of the integrals X, Y, and Z. Successive trials were used to determine

the number of terms to be carried, (n). For n = odd, the returned value

of the sum of the integrals, X + Y + Z, was zero. The value of the sum

did not change substantially for n > 10, hence all expansions carried 10

terms. As before, an identical procedure was followed for y
(n)

.and y
(n)

.

All a's and Y's are now known and Equation (111-25) can be written

for each n as

10 10 0
P
(1)

(e) = Co + C1 a, + 2, ah 00s(he)) + D1(e+ 2: yt(1-/cos(he))(I) r, (I)

h=1 h=1

10
( , (

P
(10)

(e) = Co + C
10

(a
0

10)
+ 2, ah

1o)
00S(hO))+

h=1

/ 00) 10 tio

D10 V°
h=1

YtI 'cos(he)).

The value of P
(n) (e) changes, depending on the range of e. This gives

rise to a set of linear equations when used in combination with Equations

(III-6), (III-8) and (III-13) determines all the constants in the temper-

ature expression. With the constants all known, the temperature at any

point in the cell can be found.



19

Temperatures were calculated at locations that correspond to nodal

points in the finite element analysis, and measurement points in the

electrical analog. Major matrix manipulation was done using standard

International Mathematical and Statistical Libraries, Inc. (IMSL)

subroutines.
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B. The Finite Element Solution

A computer code was developed by Westinghouse Astronuclear Labora-

tory (TAP-A) in December, 1969, to solve problems involving transient

and steady state heat transfer in multidimensional systems having arbi-

trary geometric configurations, boundary conditions, initial conditions,

heat generation, and physical properties. The program also has the capa-

bility to consider such heat transfer modes and boundary conditions as

internal conduction and radiation, free and forced convection, radiation

at external surfaces, specified time dependent surface temperatures, and

specified time dependent surface heat fluxes. Space and time dependent

thermal conductivity and heat capacity as well as time dependent exter-

nal temperatures can be considered.

TAP-A uses explicit or implicit mathematical methods to solve the

difference equations. The implicit method uses an overall heat balance

on the body being investigated as well as temperature convergence

criteria

To solve for the temperature distribution of an irregular body, the

body is divided into a number of small cells. Each cell has associated

with it an interior point which is called an interior node. Surfaces of

cells which lie on the boundary of the body are associated with one of

the surface points and is called a surface node. In this manner a grid

or mesh represents the body. Input flexibility allows the grid not to

be geometrically uniform. Internal nodes are associated with volumes,

heat capacities, and heat generation rates. Surface nodes are associ-

ated with areas and film coefficients.

The code ties nodes together with connectors. A connector is a

path between two nodes along which heat can flow. Connectors are func-

tions of the material conductivity, and length and areas between nodes.

Hence, the code does not recognize any real geometry, only the lengths,

areas, and volumes of the nodes and connectors.

The physical characteristics of each node can also be specified

allowing for many types of materials. These characteristics include

initial temperatures of internal, surface, and boundary nodes, nodal
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density (lb /in3), heat capacity and thermal conductivity of each node,

and the film or radiation coefficients for surface to boundary connec-

tions. The only drawback to this code is that it uses English units,

and would require tremendous effort to convert to a more usable form.

Table I summarizes these conditions for the unit cell.

The unit cell can be modeled as shown in Figure 5. By using TAP-A

on the unit cell, an effective conductivity can be found that can be

used to further assess the two-dimensional effective conductivity found

from the analytical solution.

To increase or decrease the porosity of the cell, it is only neces-

sary to add or subtract rows of nodes from the outside edge of the

standard case shown in Figure 5. In this manner, the internal nodal

structure along the material interface, which has a complex geometry,

need only be calculated once.

The 19.6% porosity case was chosen to be the base case, and the

unit cell normalized to a length of 1.0. Removing one row along each

outside edge produced a length of 0.875 and a porosity of 25.65%. In

a similar manner, other porosities are created. Table II summarizes the

porosities, and sizes of the various cells.

The resulting nodal patterns for 8.4%, 12.6%, 19.6%, 25.6%, 34.9%,

and 50.3% porosity are shown in Appendix D with the accompanying temper-

ature distribution through the cell. It is immediately apparent that

each cell is symmetric about the horizontal axis which is an expected

result since there are no sources or sinks in the unit cell.



TABLE I. INITIAL PHYSICAL CHARACTERISTICS OF THE UNIT CELL.

Characteristic

Top Boundary
Temperature

Bottom Boundary
Temperature

Initial Internal
Nodal Temperatures

Ceramic Material
Density

Pore Material
Density

Ceramic Material
Heat Capacity

Pore Material
Heat Capacity

Ceramic Material
Thermal Conductivity

Pore Material
Thermal Conductivity

Top Surface
Film Coefficient

Bottom Surface
Film Coefficient

Metric Units English Units
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1°C 493.8°R

0°C 492.0°R

0.4°C 492.7°R

10.79 g/cm3 0.39 lb/in3

0.0182 g/cm3 6.53x10-4 lb/in3

251.98 cal/g-°C 1.0 BTU/lb-°R

251.98 cal/g-°C 1.0 BTU/lb-°R

0.023 w/cm-°C 3.08x10-5 BTU/sec in °R

0.00018 w/cm-°C 2.46x10-7 BTU/sec in °R

2.943x106 w/cm2-°C 10000. BTU/sec-in2-°R

2.943x106 w/cm2-°C 10000. BTU/sec-in2-°R

TABLE II.

Case Number

UNIT CELL SIZE AND POROSITY SUMMARY.

Porosity Cell Length Cell Width

1 8.4% 1.500 0.7500

2 12.6% 1.250 0.6250

3 19.6% 1.000 0.5000

4 25.6% 0.875 0.4375

5 34.9% 0.750 0.3750

6 50.3% 0.625 0.3125



FIGURE 5.
NODAL ARRANGEMENT FOR TAP-A UNIT CELL ANALYSIS
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C. The Electrical Analog Solution

The direct mathematical similarity between heat and electrical con-

duction is well known and used frequently in the study of complex heat

conduction problems. The analogy can be immediately recognized when

comparing the governing partial differential equations for electrical

potential, e, with the partial differential equation for temperature, T:

and

ate
a2e ae

L
ax2 ay2

L at

a2T a2T 1 aT

a at
ax2 ay2

These equations are valid for two-dimensional regions with uniform elec-

trical resistance per unit length, RL, uniform electrical capacity per

unit length, CL, and uniform thermal diffusivity, a. The transient

analogy is complete if on the same time scale, dt, the electrical dif-

fusivity,
RLCL

, and the thermal diffusivity, a, are equal. Two laws

are then true for the system; the conservation of charge in the electri-

cal system corresponds to the conservation of heat in the thermal system,

and current flow obeying Ohm's Law corresponds to heat flow obeying

Fourier's Law.

The steady state analogy used in this paper is completed by the

ae aT
conditions -5-.E = 0, and a--= 0, and noticing that both equations now

satisfy the simple Laplace equation for steady state conditions with no

internal sinks or sources. Therefore, a steady electric potential field

e(x,y) can be regarded as the analog of a steady temperature field T(x,y).

Equipotential lines in the voltage field correspond to isotherms in the

temperature field. Table III sums up the analogy.
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TABLE III. SUMMARY OF ELECTRICAL AND THERMAL ANALOGY.

Electrical Thermal

Charge = Qe (coulomb) Heat = Q (BTU)

Voltage = e (volts) Temperature = T (°F)
°

Resistance = R (ohms) Resistance = R
hr

BTU
F

BTU AT
Current = i (amps) = Flow = q hr R

There are several types of electrical modes used to simulate the

temperature field. One method is the electrolytic bath where an electro-

lyte of constant resistivity is contained in a shallow basin similar in

shape to the actual problem. The boundaries of the basin are constructed

of electrical conducting material or insulator to simulate boundary con-

ditions. This method requires rather elaborate and laborious setup

methods and recording techniques, although it produces satisfactory

accuracy.

An easier method is the use of teledeltoes electrical conduction

paper. This paper has uniform resistance characteristics and is used

in place of the electrolytic bath. Teledeltoes paper has the advantage

of being a permanent medium on which to work, and the plots are easy to

prepare and record. The paper is cut to the desired shape, placed on a

flat, nonconducting surface, and a voltage difference is introduced by

attaching low resistance, metallic electrodes to the surface. Boundary

conditions are simulated by cutout "blank" areas in the paper, or by

applying resistance wire elements, bare copper wires, or conducting

areas of silver paint to the surface of the paper as each problem

dictates. A voltage divider is used to select a desired percentage

of the applied potential which is compared to the potential at any given

point on the paper through a microammeter. For direct comparison to the

finite element method, the nodal points were chosen. A null indication

shows that the potentials are equal.
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The sample setup is shown in Figure 6. The top and bottom edges

of the unit cell are silver painted to provide uniform voltage along

these edges which correspond to fixed temperatures. At the top, the

temperature equals one, and along the bottom edge, the temperature

equals zero. For ideal results, the sheet would be infinite in size.

This is impractical, and the sheets used were approximately 30 centi-

meters by 15 centimeters. The pore area was cut out of the sheet to

simulate a no heat transfer condition across the pores. Readings were

taken at locations which correspond to the nodel points of the finite

element solution. The field plotter readings showed little or no sensi-

tivity to pressure, but other sources of error are possible. These

include nonuniformity of the conducting paper, circuit nonlinearity,

and the ability to locate exactly the nodal point.



FIGURE 6.
ANALOG FIELD PLOTTER SAMPLE SET UP
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IV. EFFECTIVE CONDUCTIVITY CALCULATION

Once the temperature field throughout the unit cell is found, cal-

culation of the effective conductivity can be performed. Recalling the

definition of heat flux as

dT
q = -KdX (IV-1)

it is possible to determine the effective conductivity. Integration of

both sides of the above expression with respect to the surface area

through which the heat flows yields

dT
I qdA = I - K dA.

A A
(IV-2)

Breaking the resulting expression into a summation over all nodal points,

j, along the boundary gives

V.. dT
a

A

-13 J dX jl rj

Using the approximations

A

j

q

.A.ri

J J

and

dT _
T
top

- T
1,jI

dX j AXJ .

gives final expression for the heat flux
-KETtox-jT1,i

_q j
A.

Ai
.

(IV-3)

(IV-4)
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The conductivity, K, in this expression is a known quantity, and

corresponds to the 100% dense material, or other reference density.

Since the unit cell contains no sources or sinks, the heat flow in

through the top must equal the heat flow out through the bottom. Having

determined q and knowing the temperatures at the top and bottom of the

cell, the following expression is developed

_v ( Ttop
- T bottom)

'p L

where K = the effective conductivity of the porous cell

L = the length of the unit cell

q = the heat flux through the unit cell.

All quantities in this expression are known except K .

A sample calculation will be helpful. For the 8.38% porosity case,

the situation in Figure 7 was observed for the first row of nodes from

TAP-A. Solution for the entire surface is shown in Appendix D. For

each porosity case, an assumed conductivity value of the 100% dense

material was 0.023 w/cm-°C. This value is not particularly important

since a ratio of the true value to the effective value is the goal of

the paper. The solution for the heat flux, q, becomes

0.
0.97) 0.125 3(1 - 0.96) 0.125k

0.0625 f = 0.0129._ 0.0625
023 3(1

0.75

Referring to Figure 7, each node for this case is 0.125 units wide

representing the nodal surface area through which heat flows, and the

distance from the top edge where T=1, to the nodal point is 0.0625.



Substituting into the expression for K yields

0.0129 = -Kp 1

1

1.5

or K = 0.01932 (w/cm-°C). A summary of the effective conductivities

found from TAP-A is shown in Table IV.

TABLE IV. SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (TAP-A).

Porosity (%) q K
P

(w/cm-°C) K
a__
/K

8.38 0.01288 0.01932 0.84

12.57 .0.01398 0.01748 0.76

19.63 0.01472 0.01472 0.64

25.65 0.01472 0.01288 0.56

34.91 0.01349 0.01012 0.44

50.27 0.01104 0.00690 0.30

For comparison, the same information from the electrical analog

solution is shown in Table V. This information was taken from an

interior node to minimize boundary effects due to the silver paint.

0.125
T = 1

T=.97 T=.97 T=.97 T=.96 T=.96

4

T=.96

Figure 7. Temperature Distribution for the First Nodal
Row from TAP-A, 8.37% Porosity Case.

0.0625

30



TABLE V. SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (ELECTRICAL ANALOG)

Porosity (%) q K
P

(w/cm-°C) K2_/K

8.38 0.01263 0.01895 0.824

12.57 0.01384 0.01730 0.752

19.63 0.01444 0.01444 0.628

25.65 0.01430 0.01251 0.544

34.91 0.01312 0.00984 0.427

50.27 0.01067 0.00667 0.290

Table 6 shows the information for the two-dimensional analytical solu-

tion described in Section III.

TABLE VI. SUMMARY OF EFFECTIVE CONDUCTIVITY WITH
CHANGING POROSITY (2-D ANALYTICAL SOLUTION)

Porosity (%) q K
P

(w/cm-°C) K
E___
/K

8.38 0.01283 0.01925 0.837

12.57 0.01393 0.01741 0.757

19.63 0.01461 0.01461 0.635

25.65 0.01451 0.01270 0.552

34.91 0.01331 0.00998 0.434

50.27 0.01086 0.00679 0.295

31
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V. POROSITY CORRECTION RELATIONSHIPS

To make the data in Tables IV through V more useful in predicting

thermal conductivities of ceramic nuclear fuels of known porosity, a

series of curves were fit. First to be fit were quadratic equations of

the form

--a = A + Bp Cp2. (V-1)

This was done using standard least-squares fitting as shown in Figure 8.

Figure 8. Quadratic Fit to the Data Using Least Squares Technique.

N E pi
2

E Pi

2 3

EPi EPi EPi

2 3

EPi E Pi

A

B

C

.1111, wok

where N = number of data points

A,B,C = coefficients of the quadratic equation

and

K

2- = A + Bp + Cp2

E(-2-

K /i



33

Using a 3 x 3 matrix solver in the Hewlett-Packard 67 to solve the

system, an expression for (K /K) in terms of porosity, p, was found

for the finite element data to be

K
P. = 1.0048 - 2.1134 p + 1.4166 p2;

for the electrical analog data

-a = 0.9939 - 2.1335 p + 1.4589 p
2

;

and for the analytical solution

K,

= 1.0164 - 2.2599,p + 1.65972 p2.

(V-2)

(V-3)

(V-4)

To illustrate their use, the 8.38% porosity case would be solved for

the electrical analog as follows:

K,

--E = 0.9939 - 2.1335 (.0838) + 1.4589 (.0838)2 = 0.8254.

Table VII summarizes the comparison of these expressions for the remain-

ing porosities. As can be seen, there is little difference between them

as expected.
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TABLE VII. COMPARISON OF CASE DATA TO QUADRATIC FITS

Porosity TAP-A
TAP-A

Quadratic

Electrical
Analog

Electrical
Quadratic Analytical

Analytical
Quadratic

0.0838 0.840 0.838 0.824 0.825 0.837 .839

0.1257 0.760 0.762 0.752 0.749 0.757 .759

0.1963 0.640 0.645 0.628 0.631 0.635 .637

0.2565 0.560 0.556 0,544 0.543 0.552 .546

0.3491 0.440 0.440 0.427 0.427 0.434 .430

0.5027 0.300 0.300 0.290 0.290 0.295 .300

The data was also compared to empirical formulas used in previous

studies, and expressions of similar form were found. In particular, it

is compared to the formula found by Cunningham(6)

e

-2.14p
K

and to an expression found by one-dimensional heat flow analysis (no

heat flow is allowed around the pore) as shown in Appendix C:

K
2 n1/2

K 1/2 r
Tr

To fit expressions of similar form to the actual data the least

squares technique was applied to a transformation of the equations. To

fit a Cunningham-type expression of

-2- = eaP

it was necessary to transform the equation to

Kp

=ap.
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The least squares parameter, y, is defined as

/K 2

y .E(In k-E) - aPi

Minimizing y is the principle of least squares fitting and is accomplished

by taking the partial derivative of y with respect to a, and setting the

resulting expression to zero. This gave

a
K 2

as .

=E (-2P. In
K

- 2aP i ) = 0.

1

Simplifying this expression leaves

a

Using the finite element data yielded a value of

or

a = -2.31

K
n

e
-2.31P

where P is porosity as a fractional amount, i.e., .0838 for 8.38%.

Using the same technique, an expression was found for the one-

dimensional heat flow case of the form for the finite element data

=

The value of b was found to be

b = -0.850

hence
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K

--a = 1 - 0.85P1/2

where P is also a fractional amount. Table VIII compares these expres-

sions with those of Cunningham and the one-dimensional heat flow case

for each porosity value. Tables IX and X do likewise for the electrical

analog and analytical solutions.

Close examination of Tables VIII, IX, and X is warranted. It is

readily apparent that the one-dimensional heat flow solutions are inade-

quate predictors of the effective conductivity ratio and should not be

considered as an accurate porosity correction formula. The data fitted

curves yield reasonable results for both quadratics (Table VII) and

exponential forms. The important column is the solution of Cunningham

and how well it agrees with the finite element solution of TAP-A, the

electrical analog solution, and the two-dimensional analytical solution.

The Cunningham solution predicts values of effective conductivity, Kp ,

which are consistently within a few percent of the experimental data

This close agreement tends to lend support to the three-dimensional

solution method of Cunningham. Table XI summarizes this result.
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TABLE VIII. COMPARISON OF VARIOUS CURVE FITS TO FINITE
ELEMENT DATA FOR

_e_
) .

Porosity TAP-A
Cunningham
Solution*

-2.31P
e** 1

2

1/2
1 - 0.85 P ****

--172 1/2
- 7 P ***

0.0838 0.840 0.836 0.824 0.673 0.754

0.1257 0.760 0.764 0.748 0.600 0.699

0.1963 0.640 0.657 0.635 0.500 0.623

0.2565 0.560 0.577 0.553 0.429 0.569

0.3491 0.440 0.459 0.446 0.333 0.498

0.5027 0.300 0.250 0.313 0.200 0.397

* Cunningham solution (see Page 3 for porosity ranges)

** TAP-A data solution

*** Theoretical one-dimensional solution

**** TAP-A data solution in one-dimensional form

TABLE IX. COMPARISON OF VARIOUS CURVE FITS TO ELECTRICAL
ANALOG DATA FOR ) .

Porosity
Electrical
Analog

Cunningham
Solution*

-2.405P
e**

0.0838 0.824 0.836 0.817

0.1257 0.752 0.764 0.739

0.1963 0.628 0.657 0.624

0.2565 0.544 0.577 0.540

0.3461 0.427 0.459 0.432

0.5027 0.290 0.250 0.298

* Cunningham solution (see Page 3 for porosity ranges)

** Electrical analog data solution
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TABLE X. COMPARISON OF VARIOUS CURVE FITS TO ANALYTICAL
SOLUTION DATA FOR

P_

) .

K

Porosity

Analytical
Solution

Cunningham
Solution*

-2.35P
e**

0.0838 0.837 0.836 0.821

0.1257 0.757 0.764 0.744

0.1963 0.635 0.657 0.630

0.2565 0.552 0.577 0.547

0.3491 0.434 0.459 0.440

0.5027 0.295 0.250 0.307

* Cunningham solution (see Page 3 for porosity ranges)

** Analytical data solution

TABLE XI. COMPARISON OF CUNNINGHAM SOLUTION TO EXPERIMENTAL
METHODS FOR EFFECTIVE CONDUCTIVITY .

_P.
K

Porosity
Cunningham
Solution*

Two-Dimensional
Analytical Solution

Finite Element
TAP-A Solution

Electrical
Analog Solution

0.0838 0.836 0.837 0.840 0.824

0.1257 0.764 0.757 0.760 0.752

0.1963 0.657 0.635 0.640 0.628

0.2565 0.577 0.552 0.560 0.544

0.3491 0.459 0.434 0.440 0.427

0.5027 0.250 0.295 0.300 0.290

* Cunningham solution (see Page 3 for porosity ranges)
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VI. RANDOM PORE ARRANGEMENT

Pores in ceramic nuclear fuels tend to assume disklike shapes

which resemble the lentil plant, and are hence called lenticular pores.( 7)

These pores migrate toward the hot center of the fuel pellet. As more

and more of these pores cluster about the center of a fuel pellet, a

central void is formed.

This situation was approximated by distributing pores throughout

the unit cell with normal random distributions of (0,1) and (0,2).

Figures 9 and 10 show samples of pore locations. The (x,y) coordinates

of the pore were determined by the random number generator. Only two

pores were allowed in each square of the grid. As can be seen, a tenden-

cy to form a central void is simulated.

To find the effective conductivity of these unit cells, the elec-

trical analog technique was used. The conducting paper was cut to

approximate the pore locations. This is shown in Figure 11. As was

done previously, boundary conditions were set up to induce heat flow

from the top to bottom of the cell, i.e., T = 1.0 on the top, and T = 0.0

at the bottom. The temperature profile was then found along a row of

nodal points. From this data, the heat flux and effective conductivity

were found. Table XII summarizes the results of both cases.

A series of porosities based on a (0,2) distribution was not

pursued after the case shown in Figure 10 yielded nearly identical

results for the effective conductivity as did the (0,1) distribution

shown in Figure 9 and Table XII.

Both the Cunningham and two-dimensional solutions give a good

approximation to the results found by the electrical analog experimental

procedure. The Cunningham solution gave results that were within just

a few percent of the electrical analog for all cases except when porosity

was 50%. The two-dimensional solution was consistently within a few

percent. These results again lend support to the Cunningham solution

as a porosity correction formula.
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TABLE XII. COMPARISON OF EFFECTIVE CONDUCTIVITY FOR
RANDOM PORE ARRANGEMENT WITH (0,1) DISTRIBUTION
TO OTHER CORRECTION FORMULAS

Porosity
Electrical

Random Pore
Cunningham
Solution*

-2.35P
e**

Electrical
Analog Quadratic***

.094 0.820 0.818 0.802 .806

.125 0.767 0.765 0.745 .750

.199 0.639 0.653 0.626 .627

.223 0.608 0.621 0.592 .591

.344 0.459 0.459 0.446 .433

.500 0.317 0.250 0.309 .292

* Cunningham solution (see Page 3 for porosity ranges)

** Two-dimensional analytical solution

*** K

= 0.9939 2.1335P + 1.4589 P2
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FIGURE 9.

RANDOM PORE ARRANGEMENT FOR (0,1) GENERATOR -
22.3% POROSITY
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FIGURE 10.
RANDOM PORE ARRANGEMENT FOR (0,2) GENERATOR -

19.9% POROSITY
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VII. SUMMARY AND CONCLUSIONS

The characteristic heat transfer in ceramic nuclear fuels is an

important factor in the design and operation of reactor cores. The

heat transfer characteristics are complicated by the presence of en-

trained porosity. Porosity comes about due to fabrication effects,

fission gas formation, and pellet cracking. A porosity correction

factor is typically defined which modifies the thermal conductivity

of either the 100% dense solid, or some other reference density to

account for the presence of the porosity in heat transfer calculations.

Several approaches have been taken to determine this factor.

These include empirical methods resulting from experimentation, and

analytical methods. The initial analytical methods allowed for heat

flow in one direction only with no heat flow around the pore. The

next step in analytical solutions was to allow for multidimensional

heat flow, and Cunningham produced a three-dimensional solution by

solving the heat conduction equations. The heat flux entering and

leaving the unit cell was determined, and an effective conductivity

found. This effective conductivity was then compared to the conductivity

of 100% dense material generating a ratio dependent on porosity, and

used as a correction formula.

The purpose of this work was to assess the method of Cunningham by

performing a two-dimensional analytical study which was then compared

to idealized measurements using an electrical analog for heat flow. An

effective conductivity determined as a ratio produced a conductivity

correction formula as a function of porosity. For direct comparison,

measurements were made using resistance paper, determining the value

of the temperature at any point in the system. A finite element code

modeling the unit cell was also used to provide the value of the tempera-

ture at certain nodal points throughout the system. The electrical

analog and the finite element code were used to assess the solutions

found by the analytical approach.

All three two-dimensional methods gave results which support the

Cunningham methodology. Figure 12 shows a comparison of the analytical
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solutions to the results obtained from the electrical analog. The two-

dimensional analysis and that of Cunningham consistently lie within a

few percent of the electrical analog. Further confidence was gained

when predictions from other methodologies were compared to the electrical

analog. An illustration of this is shown in Figure 13 where a comparison

is shown between Cunningham, the electrical analog, and a solution which

allowed only one-directional heat flow. As was shown earlier, the

Cunningham and electrical analog solutions have good agreement, while

the one-dimensional solution yields completely inadequate results.

As a point of interest, a less-than-ideal unit cell was modeled

with the electrical analog and compared to analytical predictions. This

was done by distributing large pores in a normal random fashion centered

at the middle of the unit cell. A temperature profile was determined

and an effective conductivity found. Figure 14 shows these results

compared to Cunningham and the two-dimensional analysis. As was the

case in Figure 12, there is little to choose from when comparing the

methods. All the methods show fine agreement up to porosities of 40%.

There is some divergence from experimental results at that point. The

methodology of Cunningham is a valid approach to the problem of predicting

effective conductivities.
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FIGURE 14
COMPARISON OF ANALYTICAL SOLUTIONS TO RANDOM PORE ANALOG

5. 10. 15. 20. 25. 90.

POROMY (%)
35. 40. 45.

- _

LEGEND

2-D

RANDOM PORE

CUNNI NGHAM

50.



49

BIBLIOGRAPHY

1. Russell, L. E., "The Structure and Properties of U-C and (U-Pu)C
Alloys," New Nuclear Materials Including Non-Metalic Fuels, vol. 1,

p. 424, 1963.

2. Chang, S. C., and Vachon, R. I., "The Prediction of the Thermal
Conductivity of Two and Three Phase Solid Heterogeneous Mixtures,"
International Journal of Heat and Mass Transfer, vol. 12, p. 249,

1969.

3. Kampf, H., and Karsten, G., "Effects of Different Types of Void
Volumes on the Radial Temperature Distribution of Fuel Pins,"
Nuclear Applied Technology, vol. 9, p. 288, 1970.

4. Peddicord, K. L., "An Analytical Porosity Correction of Conductivity
Based on Spherical Pore Geometry," Transactions of American Nuclear
Society, vol. 24, p. 376, 1976.

5. Cunningham, M. E., "Temperature Profiles of Spheres Packed in Regu-
lar Arrays," Thesis submitted for Master of Science Degree, Dept.
of Nuclear Engineering, Oregon State University, Corvallis, Oregon,

1977.

6. Pierce, B. L., "TAP-A, A Program for Computing Transient or Steady
State Temperature Distributions," Westinghouse Astronuclear Labora-
tory, WANL-TME-1872, December, 1969.

7. Olander, D. R., Fundamental Aspects of Nuclear Reactor Fuel Elements,
Technical Information Center, U. S. Department of Energy, TID-26711-

P1, pp. 265-267, 1976.



APPENDICES



50

APPENDIX A

SOLUTION TO THE GOVERNING DIFFERENTIAL EQUATION

The steady state temperature distribution is determined by the well

known Laplace Equation

v2 T (r,o) = 0.

This can be written in polar coordinates as

1 a

r ar

( a 1 e2
r

ar T (r,e)) + 75-7- T (r,e) = O.

(A-1)

(A-2)

In order to solve Equation (A-2), it is possible to use the separation

of variables technique; that is, assume

T (r,e) = R (r) (1) (0).

Substituting this expression into Equation (A-2), and multiplying through

by r2 leaves

1 d / d 1 d2

R(r) r dr Y' d R (6) ge) do2 (8)'
(A-3)

Since both sides are in terms of one variable, and set equal to each other,

they must be equal to a constant, x2. It is now possible to treat each

side of the equation individually.

First, the right hand side

1 d2

ge) de2
4(e) = A2

can be written as

d 2

-6-32-e)
x2 (e) = 0. (A-4)
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Equations of this type are well known and have as the solution

(1) (e) = Bn sin (xe) + An cos(Ae) (A-5)

where An and Bn are arbitrary constants dependent on the boundary

conditions.

The left hand side also reduces to a well documented solution.

Expanding

r ii17,-(r cf11-,-, R (6) - X2 R(r) = 0

yields a standard Euler Equation

r2 (I-F-2- R (r) + r ccii-,, R (r) X2 R (r) = 0

which has solutions

R Cr) = k1 rx + k2 r
-A

(A-6)

(A-7)

where k1 and k2 are arbitrary constants which are determined by the

boundary conditions.

So far, the solutions have depended on X2 being greater than zero.

Setting X2 = 0 in Equation (A-6) gives

d
r2 Cci--2 R (6 + r c-ii,,- R (6 = 0.

Dividing by r2, and integrating twice gives

R (r) = Ao + Bo ln r.

Setting A2 = 0 in Equation (A-4) gives

2

del 41(e)
0

(A-8)
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which has solutions

ge) = Cl C2 e.

The constant, C2, must be zero to satisfy the boundary condition that

(1)(0) be periodic in e. This condition ensures that T(r,e) will be single

valued at each point. This leaves Cl, which can be absorbed into Ao. The

general solution is the sum of the A2 = 0 and x2 X 0 solutions given as

CO

T (r,e) = Ao + Bo In r + 2= ( k1 ran + k2 r -an )(Bn sin (A
n
0) +

n=1

An cos(Ane) ) . (A-9)

The adiabatic heat flow condition in the cell requires the derivative,

aT)
T (r,e) to be zero for 0 = 0, and e = n, hence the sine terms must

vanish, and B
n

= 0. For e = 7, the only way to satisfy the boundary

condition is for A to be an integer, and equal to n. This yields the

general solution

T (r,e) = Ao + Bo In r E ( An rn + Bn r-n cos(ne). (A-10)

n=1

To see that this is indeed the general solution, it is only necessary

to substitute Equation (A-10) into the governing differential Equation

(A-2). When this is done, the first term becomes

E ( An rn-2 + Bn r
-n-2)n,

4 cos(ne)
n=1

and the second term becomes

CO

n=1

-2 n-2
( An rn

-2
+ Bn )n2 cos(ne).

Hence, the equation is satisfied.
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APPENDIX B

SOLUTION TO THE ADIABATIC BOUNDARY CONDITION

The cylindrical coordinate system has as its unit vectors er and

and while the adiabatic condition on the right hand side of the unit

cell, Figure 15 is given as

e
x

q" (r,e) = 0 (B-1)

where e
x
= unit vector in the x-direction, q" (r,o) = heat flux. It is,

therefore, necessary to find a relation between ex, e
y,

, and e
r

, ee.

Figure15 illustrates the relationships of the quantities. It is seen

that the following is true:

e
r

= cos T e
x
+ sin P e

y

ee= coseex- sineey

where T = -

Using the relations

cos (2 - = sin e

sin (3- - = cos

gives the following expressions:

e
r

= e
x

sin e + e cos e

e
e

= e
x

cos 6 - ey sin e.

(B-4)

(B-5)
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The adiabatic condition is valid only in the range where Ifef L-r
4 4

In this range, r =
2sine

and

where

e
x

q" (r,e) = 0 1 r
L

2sine

q" (r,e). -K(2) vT(2) (r,e)'.

(B-6)

Using the definition of the gradient operator in cylindrical coordinates,

this expression expands to the following

q" (r,e) = -K(2) (6r 4.- T(2) (r,e) + 60 T(2) (r,e)).

Substituting in the expressions for 6r and 60 yields

q" (r,e) = -K(2)( (6x sine + ey cose) Z7 T(2) (r,e) +

(6x cose - ey sine) )r ,--a2e7 T(2) (r,e)).

FIGURE 15.

VECTOR RELATIONSHIPS OF THE UNIT CELL

Y
A

e

(B-7)
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Computing the dot product with ex to give the adiabatic condition gives

0 = e
x
(-02) (e sine + e

y
cose).

ar
T(2) (r,e) +

(.x cose - ey sine) ir ae T(2) (r,e))). (B-8)

Using the relations

and

ex ex = 1

e
x °

reduces the equation to

-K(2)( sine ar T(2) (r,e) + cose T(2) (r,e)) = 0.

Finally, the adiabatic edge condition becomes

1
sine

ar
a T(2) (r,e) + r cose T(2) (r,e) = 0.

30
(B-9)
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APPENDIX C

ONE-DIMENSION HEAT FLOW ANALYSIS

One-dimensional heat flow allows no heat flow around the pore.

Effectively, the pore blocks the heat flow through a projection of its

area on the bottom face of the cell. Figure 16 illustrates this. For

the case when the thermal conductivity of the pore is very much less than

the thermal conductivity of the solid (as in gas pores in ceramic nuclear

fuels), the following relationship is observed

f(p) ; 1 - Pc (C-1)

where Pc is the fractional area of the pore projected on the bottom face

of the cell and is given by

A
Pore

-2RL72-

2R
Pc (C-2)

1 LA
Cell

The fractional porosity of the cell is equal to the fractional volume

occupied by the pore and is given by

P
VPore ¶R2L /12\2

V
Cell

L3 7.kij

Rearranging gives

P _(L1R 2

or

(C-3)

(C-4)
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FIGURE 16.

CELL ORIENTATION FOR ONE-DIMENSIONAL
HEAT FLOW ANALYSIS



Substituting this expression into Equation (C-2) gives

1/2

Pc = 2 (.1-IT)-)

58

(C-5)

Substituting this expression into Equation (C-1) yields the final result

2P1/2
f(p) = 1

nit
(C-6)
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APPENDIX D

TEMPERATURE DISTRIBUTIONS
FOR VARIOUS POROSITIES FOR THE UNIT CELL

The following figures contain the nodal patterns and results for

each of the porosities studied in this work. The porosity values are

8.38%, 12.57%, 19.63%, 25.65%, 34.91%, and 50.27%. Figures 17 to 22

are the results for the TAP-A data. Figures 23 to 28 are the results

for the electrical analog paper. Figures 29 and 34 are the analytical

solution results.
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FIGURE 17.

TEMPERATURE DISTRIBUTION SOLUTION
FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 8.4% POROSITY
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FIGURE 18.

TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT ANALYSIS

(TAP-A) - 12.6% Porosity
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FIGURE 19.
TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY FINITE ELEMENT
ANALYSIS (TAP -A) - 19.6% POROSITY
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FIGURE 20.
TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY FINITE ELEMENT
ANALYSIS (TAP-A) - 25.6% POROSITY
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FIGURE 21.
TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 34.9% POROSITY
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FIGURE 22.

TEMPERATURE DISTRIBUTION
FOUND BY FINITE ELEMENT

ANALYSIS (TAP-A) - 50.3% POROSITY
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FIGURE 23.
TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY ELECTRICAL ANALOG -
8.4% POROSITY
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FIGURE 24.

TEMPERATURE DISTRIBUTION SOLUTION
FOUND BY ELECTRICAL ANALOG

12.6% POROSITY
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FIGURE 25.
TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY ELECTRICAL ANALOG
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FIGURE 26.
TEMPERATURE DISTRIBUTION SOLUTION

FOUND BY ELECTRICAL ANALOG -
25.6% POROSITY
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FIGURE 27.
TEMPERATURE DISTRIBUTION
FOUND BY ELECTRICAL ANALOG -

34.9% POROSITY
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FIGURE 28.
TEMPERATURE DISTRIBUTION
FOUND BY ELECTRICAL ANALOG -

50.3% POROSITY
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FIGURE 29.

TEMPERATURE DISTRIBUTION
FOUND BY ANALYTICAL SOLUTION -

8.4% POROSITY
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FIGURE 30.

TEMPERATURE DISTRIBUTION
FOUND BY ANALYTICAL SOLUTION

12.6% POROSITY

. 9 8 .96 . 9 6 . 9 6 . 9 6

.9 3 .91 .91 .90 .90 .89 .89 .88
. 8 7

90 88 88 87 86 86 85 .84

.88

worm
*85

15 .1.;;11117

1111:51111

B6

'gill"'
76

.24

.84

.8414611

-.... A

.210M113

.81+ .81 .81 BO .79
76

777 7 .76 75

71 70 6 9
,66

.66 .65 .64

. 0 6 0 59 58
. 5 5

.56 .55 .54 53 5 3

.47 1+ 7

.1+ 5

:436 401 .1+1 . 42

ahhh, '314 '35 3 6
31+

29 30 31

24 25

,29
12 14 1 6 .16 1 20 21

10 .12 . 12 13, 11+ .14 15 16

13
0 7 0 ; 0 9 1 0 1 .11 12

. 02 A4 04 .04 .05



74

FIGURE 31.
TEMPERATURE DISTRIBUTION FOUND BY
ANALYTICAL SOLUTION - 19.6% POROSITY
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FIGURE 32.
TEMPERATURE DISTRIBUTION

FOUND BY ANALYTICAL SOLUTION -
25.6% POROSITY
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FIGURE 33.
TEMPERATURE DISTRIBUTION FOUND BY
ANALYTICAL SOLUTION - 34.9% POROSITY

.99 .99 .99 .98 .98 .97

.97 .9

.93

.93

.91
.90

.98 'r"4.' .9 .87

88 83

.87 Tr 7.
.80 74.

.75

.73 .68
.65

.66

.60-' .58
.55

. 54

.46
.45

.40 .42

.34
.35

.27 .32
,20 .25

.26

.13 ,16 .22

.12 .17

.02 18.

.03 .07 .10 .13

.07 .09
.10

.01 .01 .03 .05 .07

.01 .01 .01 .02 .02 .03



77

FIGURE 34.
TEMPERATURE DISTRIBUTION

FOUND BY ANALYTICAL SOLUTION -
50.3% POROSITY
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