
AN ABSTRACT OF THE THESIS OF

Sudheendra S. Gulur for the degree of Master of Science in Mechanical Engineering

presented on October 7, 1994. Title: Sketch Pad for Windows: An Intelligent and

Interactive Sketching Software.

Abstract approved:

David. G. Ullman

The sketching software developed in this thesis, is aimed to serve as an

intelligent design tool for the conceptual design stage of the mechanical design

process.

This sketching software, Sketch Pad for Windows, closely mimics the

traditional paper-and-pencil sketching environment by allowing the user to sketch

freely on the computer screen using a mouse. The recognition algorithm built into

the application replaces the sketch stroke with the exact CAD entity. Currently, the

recognition of two-dimensional design primitives such as lines, circles and arcs has

been addressed.

Since manufacturing requires that the design concepts be detailed, sketches

need to be refined as detailed drawings. This process of carrying design data from

the conceptual design stage into the detail designing stage is achieved with the help of

a convertor that converts the sketch data into DesignView (a variational CAD

software). Currently, only geometrical information is transferred from the sketching

software into DesignView.

The transparent graphical user interface built into this sketching system

challenges the hierarchial and regimental user interface built into current CAD

software.

Redacted for Privacy

Sketch Pad for Windows

An Intelligent and Interactive Sketching Software

by

Sudheendra S. Gulur

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed October 7, 1994

Commencement June, 1995

Master of Science thesis of Sudheendra S. Gulur presented on October 7. 1994

APPROVED:

Major Professoresenting Mechanical Engineering

Chair of Department of Mechanical Engineering

Dean of Graduate S

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Sudheendra S. Gulur

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

I

ACKNOWLEDGEMENTS

This thesis could not have been completed without the help of a number of

people. I would like to thank , most of all, my parents for their love and support.

would also like to thank my relatives (Sathya Rao and family, Hiranyappa and

family, Jayyi, Harisarvotham and family, Vasant Lambu and family, Nagesh Rao and

family, Shakuntala Bai, Krishna Rao and family, Rama Rao and family, Venkatesh

and family) for their encouragement. I will be failing in my duties if I do not thank

the Bhaskars for their hospitality and encouragement.

I am grateful to Dr. David G. Ullman for guiding me and for having provided

the necessary infrastructure for the successful completion of this thesis.

Special thanks go to Ashutosh Kale and Nageswara Rao Cheekala for their

constant support, encouragement, and assistance in debugging the software and to

Arun and Chitra for their guidance on data structures and object-oriented

programming.

Last but not the least, I would like to thank all those who made my stay in

Corvallis enjoyable.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Current computer solutions for the mechanical design process 1

1.2 Sketch Pad for Windows The concept 2

1.3 Sketch Pad for Windows The implementation 5

1.4 Sketch Pad for Windows An illustration 5

1.5 Organization 6

82. IMPORTANCE OF SKETCHING

82.1 Introduction

2.2 Design sketches 9

2.3 Refilling design sketches 10

2.4 CAD for conceptual design? 11

2.5 Research in the area of sketching 12

2.6 Research on sketching software in this thesis 14

153. PROGRAMMING SKETCHPAD FOR WINDOWS

3.1 Object-oriented programming 15

3.2 Windows programming concept 26

3.3 Object Windows Library (OWL 2.0) 33

3.4 Resources and graphical user interface development 48

564. SKETCHPAD FOR WINDOWS

564.1 Introduction

4.2 Motivation for implementing Sketch Pad for Windows 57

4.3 Sketchpad for Windows 60

4.4 Feature implementation 76

935. CONCLUSIONS

5.1 Summary 93

5.2 Limitations of Sketch Pad for Windows 98

5.3 Recommendations for future research 99

6. BIBLIOGRAPHY 100

LIST OF FIGURES

Figure	 Page

1.1 Sketching interface	 3

1.2 Role of a sketching system in the mechanical design process	 5

1.3 Linear trail	 6

1.2 Line recognition	 6

2.1 Different forms of pictorial representation	 9

2.2 Different sketching stages	 11

3.1 Class hierarchy	 16

3.2 Real world definition of a four wheeled automobile	 18

3.3 Multiple inheritance	 24

3.4 Input messages	 30

3.5 Windows operation	 31

3.6 Basic OWL window	 35

3.7 Improved OWL window	 37

3.8 Menu implementation	 40

3.9 Open/Save Dialog Box	 44

3.10 Speedbars in applications	 47

49
3.11 Windows resources

3.12 Visual representation of resources	 50

3.13 Resource binding	 51

3.14 Menu editor	 51

3.15 Dialog Box editor	 52

3.16 Bitmap editor	 53

3.17 Stringtable editor	 55

4.1 Design Capture System	 57

4.2 Inking process	 58

4.3 Drawing information	 59

4.4 Sketch Pad for Windows icon	 61

4.5 Sketch Pad for Windows	 61

4.6 Design information in the mind	 62

4.7 User messages	 63

4.8 Linear sketch trail	 64

4.9 Line recognition	 65

4.10 Base plate - Stagel	 65

4.11 Bolt hole sketching	 66

4.12 Circle recognition	 67

4.13 Entity selection	 67

4.14 Entity modified	 68

69
4.15 Arc trail

4.16 New design	 70

4.17 Importing the sketch into Design View	 72

4.18 Dimensioning the drawing	 73

4.19 Dimension driven geometry	 73

4.20 Capturing sketch information	 74

4.21 Design Capture in Solution Library	 75

4.22 Window objects in Sketch Pad for Windows	 77

77
4.23 Window classes in Sketch Pad for Windows

844.24 Link list

4.25 Class hierarchy	 87

4.26 Sketch recognition algorithm	 91

5.1 Transparent graphical user interface	 93

94
5.2 Linear trail

945.3 Line recognition

5.4 Design Capture System	 96

LIST OF TABLES

Table Page

3.1 Window messages 32

3.2 Response functions and Window messages 38

3.3 Command messages 43

3.4 Cursors and their use 54

4.1 Recognition parameters 90

Sketch Pad for Windows

AN INTELLIGENT AND INTERACTIVE SKETCHING SOFTWARE

1. Introduction

This master's thesis studies the development of computer tools as design aids for the

conceptual design stage of the mechanical design process. It presents to the user an

intelligent and interactive sketching tool called Sketch Pad for Windows that closely

mimics the pencil and paper sketching environment. Section 1.2 justifies the inability

of CAD software to support sketching tools for the conceptual design stage of the

mechanical design process (see section 1.1) while introducing the concept of offering

a transparent user-interface for sketching in SketchPad for Windows. An overview of

the development environment is then explained in section 1.3.

1.1 Current computer solutions for the mechanical design process

Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) plays a

major role in the area of product design and manufacturing. Today, there are

CAD/CAM software that allow the user to design and visualize products, perform

analysis (stress, kinematic, dynamic etc.), and prototype rapidly. Research in the

area of CAD/CAM has resulted in excellent software for the detail designing and

manufacturing process.

There is a marked difference in the way the designers design in the pen and pencil

environment than when they design on a CAD software [Gulur 92]. This is because,

the additional cognitive load to implement current CAD systems is detrimental to the

design process, i.e., the icon and menu selection add an unnecessary step in the

creative thinking process [Ullman 90].

Learning to use CAD software is a slow process requiring the designer to condition

his/her mind to design in the regimental CAD environment rather than the normal

2

design process using paper and pencil. This slow learning process is mainly due to

the fact the current CAD systems drive the designer's thought rather than the

designer driving the CAD software [Waldron et.al. 88]. In other words, the designs

that are accepted on CAD systems require that they be in detailed form with

dimensions. True conceptual design (see chapter 2 on sketching), does not start

with ideas containing detail dimensioning. Instead, sketches are used to support idea

development during the conceptual design stage [Fang 88, Ullman 90, Hwang 91,

Luzzader 75]. Therefore, most design engineers using CAD systems for conceptual

design regress to sketching on a piece of paper before feeding data to CAD systems.

Moreover, the entity (line, circle, arc etc.,) icons and menus used in CAD systems

require that the designer think in terms of these entities rather than in terms of

sketches.

Since most designs start as sketches, it is necessary for CAD software to allow the

designer to express his/her design thoughts as free-form sketches. In other words,

CAD software do not address the conceptual design stage. What is then required is a

computer aided sketching tool that closely mimics the normal sketching process and

allows the designer to express his/her thoughts in the form of sketches.

1.2 SketchPad for Windows-The concept

SketchPad for Windows has been developed to aid the conceptual design stage of the

mechanical design process.

One of the distinguishing features of SketchPad for Windows, is it's user interface

that allows the designer to express his/her thoughts in the traditional manner. Since

the traditional paper-and-pencil sketching environment utilizes a minimum of drawing

tools, simulation of a paper-and-pencil environment in a sketching software requires

a graphical user interface with transparent sketching tools. The term transparent is

3

used as an adjective to describe a non-regimental, non-hierarchial user interface.

The objective of implementing such a graphical user interface is to eliminate the

standard drawing entity icons (line, circle, and arc) and instead, implement one

interface that can handle drawing of all basic sketching primitives. As can be seen in

the Figure [1.1], Sketch Pad for Windows supports only one interface for sketching.

SketchPad for Windows

Figure 1.1: Sketching interface

The designer strokes with the mouse on the screen, as he does in the a pencil-and­

paper sketching environment, and SketchPad for Windows recognizes the stroke and

replaces it as a CAD entity. For example, sketching in a linear fashion causes

SketchPad for Windows to recognize the stroke as a line.

SketchPad for Windows also allows the designer to capture bitmapped images of the

sketches made on the screen. These bitmapped images can be used to:

4

1) Define or capture the design functionality using the Solution Library [Wood 95].

The function-driven Solution Library accepts bitmapped images and associates them

with functions so that the function can be used as a search word to retrieve design

solutions.

2) Compare alternative sketches using the Decision Support System [Her ling et al.

94]. Decision Support System, a decision analysis database tool, is based on the IBIS

(Issue Based Information System) [Rittel 73] and OREO (Object Relation Object)

[Ullman 93] theory. It allows the design engineer to solve complex design issues.

The issue is an identified problem to be resolved by arguing the pros and cons of

proposed alternatives. Sketches by different designers can be stored as different

issues to aid comparison of designs.

No design has commercial value unless the object designed can be manufactued.

Manufacturing requires a detailed design. As mentioned earlier, CAD software are

ideally suited for representing detail drawings. Consequently, sketches need to be

refined into detail drawings. Sketch Pad for Windows allows the designer to convert

the sketches into CAD data. Currently the conversion utility allows the designer to

convert the sketch data into DesignView CAD data so that he/she can perform

parametric design calculations within DesignView.

SketchPad for Windows, Solution Library, and Decision Support System assist in the

conceptual design stage of the mechanical design process, while DesignView assists

in the detail designing stage. The integration of SketchPad for Windows, Solution

Library, Decision Support System and DesignView is as shown in the Figure [1.2].

5

Figure 1.2: Role of a sketching system in the mechanical design process

1.3 Sketch Pad for Windows-The implementation

The Solution Library, Decision Support system, and Design 'View CAD software

operate on a PC (Personal Computer) and run under the Microsoft Windows

environment. Therefore, SketchPad is also developed for the Microsoft Windows

environment.

Microsoft Windows applications can be developed with the commercially available

development kits from Borland International and Microsoft Corporation. Borland's

Object Windows Library (OWL 2.0) was used to develop the application.

Implemented in C+ +, OWL employs the principles of object-oriented programming.

1.4 SketchPad for Windows-An illustration

The user sketches as he would sketch on a piece of paper, and the sketch recognition

algorithm recognizes what the user intended. The impressive feature of the

6

recognition algorithm is the fact that the freehand sketches are corrected as they are

drawn. For example, if the user stroked in a linear fashion (Figure 1.3) keeping the

left mouse button down, and released the left mouse button upon completion of the

stroke, SketchPad for Windows recognizes the trail and replaces the sketch with a

line (Figure 1.4).

v
File Tools

SketchPad for Windows

..11.

0
File Tools

Sketch Pad for Windows

r3ril

.

Sketch On The Canvas Area

UN. RNs

V
lisrv, g.

Stood
'YO
AD

Sketch On The Canvas Area

DEW
Ka
off

Figure 1.3: Linear trail Figure 1.4: Line recognition

Similarly, arcs and circles are recognized from freehand sketches that the user

makes. As can be seen from the example shown above, SketchPad for Windows

allows the user to represent design ideas without having to think in terms of the

respective entity icons.

1.5 Organization

Since this thesis aims to present to the user a powerful, and intelligent sketching

7

software, chapter 2 describes the importance of sketching in the design process. This

chapter also describes briefly the current sketching software developed at research

institutions.

The concepts of object-oriented programming necessary to understand and implement

Sketch Pad for Windows using Borland's object-oriented Microsoft Windows

application development kit OWL are discussed in section 3.1. As will be explained

in chapter 3, this new programming methodology allows the user to think and

program in terms of objects that he sees around him in this world. Microsoft

Windows application development is based on the event based programming

methodology and is explained in the section 3.2. Microsoft Windows application

development with OWL is described in section 3.3. Microsoft Windows environment

offers a standard graphical user interface (GUI) to all applications and hence GUI

development will be explained in the section 3.4 on Resources and Graphical User

Interface development.

A demonstration of the use of SketchPad for Windows in the conceptual design stage

to capture design sketches is explained in the section 4.3 while section 4.4 details the

application and algorithm implementation.

The modular nature of the code for SketchPad for Windows makes room for changing

the inner details of the sketch recognition modules when new algorithms and

approaches are discovered. The chapter on suggestions and recommendations at the

end of the thesis discusses this in detail.

8

2. Importance of sketching

Since this thesis provides the user with an intelligent and powerful sketching software,

this chapter describes the importance of sketching in the design process. Starting

from a discussion on the different forms of pictorial representation, this chapter

blends into a discussion on the importance, and different stages in sketching designs.

Questioning the use of CAD in the conceptual design stage (section 2.4) of the

mechanical design process, research engineers have strived to develop software tools

that aim to mimic the normal sketching process (section 2.5). Deriving inspiration

from some of the earlier works on sketching software, section 2.6 discusses the

specifications for implementing Sketch Pad for Windows.

2.1 Introduction

Pictorial representations have, from early times, been the means of conveying the

ideas of one person to another or from one group to another. Primitive man made

sketches on cave walls which today convey information about their lives. Nothing

can replace a picture when people communicate from different bases of knowledge

and experience [DeJong 83]. Luzzader [Luzzader 75] describes the graphic powers of

the various forms of pictorial representation [Figure 2.1] and writes....

"The use of sign language representation, shown in (a), is rather easy to learn
and may be quickly executed but interpretation is restricted to persons who
understand the particular language in which it is presented. The multi-view
representation, shown in (b), may be understood universally by persons who
have been trained in its use. However the given views will prove to be almost
meaningless to many who have not had the advantage of needed training.
What then is the one form of representation that can be understood and used
by all? It is the pictorial form shown in (c)."

Being able to graphically represent (pictorially or multi-view) one's thought helps in

organizing one's creativity. Sketching helps to stimulate one's imagination as well as

9

convey information. Many a times the designer/engineer finds himself/herself in a

position where-in he/she finds it easier to express thoughts through sketches rather

than through words or mathematically.

Figure 2.1: Different forms of pictorial representation [Luzzader 75]

2.2 Design sketches

Sketching acts as an extension of the designer's short term memory, helping to extend

ideas that might be otherwise forgotten [Ullman 90]. Dejong [Dejong 77] aptly

explains this graphical form of expressing creativity... "In most engineering offices,

when a new idea or fine point has to be discussed, someone will laughingly request

some talking paper to sketch a graph or section view, or just to elaborate on an

equation."

Sketches serve as an external record of the visual image in the mind of the designer

and are a principal medium of external thinking [Herbert 87]. Bally [Bally 87]

emphasized the importance of sketches in the design process by stating:

10

"If a designer has several ideas in mind, he typically can't evaluate the
relationship among them until they are made visible. A drawn external
representation is a very important aid to the designer in making spatial
interference. In design, the designer's current sketches are used as a source
of ideas and interference which shape later design decisions. Because the
partially completed product is continually changing, the task environment is
continually changing. These changes in environment stimulate new ideas and
inferences... We have observed that designers do not know many details about
what they are going to sketch until part of the sketch is made."

Sketches, often serve to clarify an original idea and at the same time suggest

additional versions, adaptations, and improvements. As ideas are generated, the

designer starts sketching to organize his thoughts and clearly visualize the problems

that arise. The preliminary ideas (stored in pictorial form) along with the

orthographic sketches are recorded at every stage. Very often pictorial sketches of

some detail of construction will prove to be more intelligible and will convey the idea

much better than an orthographic sketch [Luzadder 75].

2.3 Refining design sketches

Most designs start with the conceptualization stage and is represented by a sketch.

As the sketch gets more and more refined [Figures 2.2a,b and c], the designer checks

the functionality of the design through layout drawings. For example, a kinematic

design layout allows the user to verify the functionality of the designed mechanism.

While most layout designs endup as detail designs, some need further clarification

(manufacturing dimensions) before they can be called detail drawings. These

detailed drawings could then be used for manufacturing the product.

Since the sketches go through the refinement stages referred to in the previous

paragraph, it is worth analyzing the use of CAD in the sketch capture and refinement

stages of the conceptual design stage of the mechanical design process.

11

Figure 2.2: Different sketching stages

2.4 CAD for conceptual design?

Design sketches differ from ordinary sketches in that they are not meant to be artistic

in nature. In other words, design sketches are meant to be simple sketches of a

design idea and hence lack artistic refinement. The process of sketching, according

to Ryan [Ryan 90], is to be quickly done without the use of instruments or guides as

it is a symbolic representation of the real world object and is not intended to be

perfect and is supposed to look freehand. Luzadder [Luzadder 75] emphasizes that

while sketching, the mind should be centered on the idea and not on the technique of

sketching. Although the sketch is freehand and lacks refinement by mechanical

instruments, it is based on the same principles of projection and conventional

practices that apply to multi-view, pictorial, and the other divisions of mechanical

drawing.

12

A study of the importance of drawing in the design processes [Ullman 90] showed

that:

* 72% of the marks made on the paper constituted sketching and drafting, while

dimensioning comprised 14%, textual information 9% and 5% calculations.

* During the conceptualization stage most of the graphics is 2D (59%), in the layout

stage it is a mixture of 2D and orthographic, while in the detail phase it is

comprised mostly (78%) of orthographic drawings.

As can be seen from the results of the above mentioned study, graphics in the

conceptual design stage is predominantly 2D. Moreover, 67% of the drawings

constituted sketches [Ullman 90]. One of the striking features of conceptual design is

the fact that it requires no detail dimensions. However, present day CAD software

and feature based modelers offering excellent graphics routines claim that they are

useful for conceptual design. These systems require that the design be detailed with

dimensions. Because of the mismatch in the input parameters that these CAD

software and feature based modelers take and the data that the designer has in his

mind as free-hand sketches with no dimensions, these systems are not ideal for the

design conceptualization stage.

2.5 Research in the area of sketching

Convinced about the utility of sketching in the conceptual design stage, researchers

are trying to develop sketching environments on computers, that allow capturing of

designer's thoughts.

Some researchers suggest capturing of design sketches by:

1) digitizing the sketch on the paper and converting it into a CAD model [Suffel and

Blount 89]. However, digitizing requires re-entering of data into the computer

and is hence not an ideal solution.

2) Hough transforming the sketch on the paper through image processing [Kasturi

13

et. al. 90]. Hough Transformation, an image processing routine, is performed on

detailed sketches to recognize sketches. This application does not recognize free­

hand sketches for image processing and is therefore not an ideal solution too.

3) Extracting featured points, lines and curves from a hand-written drawing through

image processing [Iwata et.al. 87]. However, this application requires that the

user scan the hand-written drawing with a "drum scan densitometer" before being

able to extract the feature points, lines, and curves from the drawing and is

therefore not ideal.

One of the recent applications, Easel [Jenkins et.al., 92], attempts to mimic the

traditional sketching environment. Written in C programming language, Easel runs

on X-Window. It accepts the mouse trajectory as input and tidies the sketch by

replacing it with an appropriate geometric entity. The 2D sketch recognition by

Fang [Fang 88] also attempts to mimic the sketching process.

Easel allowed the user to sketch on the screen with the mouse and the system would

replace the sketch-stroke with an appropriate CAD entity. One of the striking

features of Easel was it's ability to copy portions of the sketch to the clipboard.

Although Easel supported geometrical reasoning features, it did not support entity

modification features that were needed for sketch refinement.

Fang's [Fang 88] sketch recognition system was developed for the UNIX based HP

workstation. This sketch recognition system allowed the user to sketch with a

locating pen on the tablet. The strokes were then represented as CAD entities.

Although Fang's work was later incorporated into Hwang's [Hwang 91] research,

these sketching systems could not open or save the sketches, nor did it allow entity

modification other than deletion. Moreover, since these sketching systems worked as

stand-alone applications and required specific device drivers for operation, their use

as a general purpose sketching tool was limited.

14

2.6 Research on sketching software in this thesis

The primary objective of the implementing Sketch Pad for Windows was to develop a

sketching system similar to Easel, based on recommendations in Fang's work, which

allowed the user to modify entities, perform file operations and was not device-driver

dependent. Microsoft Windows and X-Windows are graphical user interface

environments that support a host of device-drivers.

Since computer tools for design are now offered more as desktop PC-based Microsoft

Windows solutions rather than X-Window based solutions, it was decided to develop

SketchPad for Windows for the Microsoft Windows environment. Using Object

Windows Library (OWL), the application development kit from Borland, SketchPad

for Windows was developed in C+ +, the superset of the C programming language.

15

3. Programming Sketch Pad for Windows

As mentioned in section 2.5, Sketch Pad for Windows has been written in Borland

C ++ using the Microsoft Windows application development kit, Object Windows

Library (OWL 2.0). OWL is also written in Borland C ++ and is based on the

object-oriented programming methdology. The event-based Microsoft Windows

programming methodology is discussed in section 3.2. Section 3.3 on Object

Windows Library discusses the implementation details of the "Window objects" in

this application development kit. Finally, since Microsoft Windows offers a standard

user interface to all its applications, section 3.4 discusses the standard resources and

graphical user interface development for Microsoft Windows applications.

3.1 Object-oriented programming

An object is defined in the Webster's dictionary as an inanimate thing that has a

fixed shape or form and which can be touched and seen. Any object in this real

world can be classified to be belonging to a particular group. For example, the Ford

Taurus and Ford Escort belong to the category of new generation Ford cars while the

Toyota Camry and Corolla belong to the category of new generation Toyota cars.

While the above mentioned objects belong to the category of mechanical objects, an

object in the computer environment may consist of:

* Windows

* Menus

* Dialog Boxes

* Graphic objects (lines, circles, rectangles, arcs etc)

* The mouse and keyboard

All objects in this real world have properties and behaviors. For example, a car is

made of steel (property) and can be used to move from one place to another

16

(behavior). In a similar manner the dialog box in a computer environment has a

defined size, color (property) and can be moved, and closed (behavior). Thus object-

oriented programming requires the developer to think in terms of how a program will

be divided into objects, properties, and behaviors. Goldstein and Alger [Goldstein

and Alger 92] describe in simple words the concept of object-oriented design

as... "Object Oriented Design (00D) expresses software designs in terms of objects

and their properties, with the hope that non programmers can understand and

comment on the design ."

The basic idea behind the object oriented programming approach is the way the data

and functions operating on the data are combined into one unit called an Object. An

object's functions, called member functions in C+ + , typically provide the only way

to access it's data, thus hiding the data from misuse. Objects are grouped into

classes based on their shared properties. For example, cars and trucks can be

grouped into a class of four wheeled automobiles [Figure 3.1].

Automobiles

Two wheelers Four wheelers

Cars Trucks

Figure 3.1: Class hierarchy

As can be seen from Figure [3.1], the two categories of automobiles (two wheelers

and four wheelers) can be grouped into a superclass (automobiles) based on shared

properties.

17

Objects communicate with one another. An automobile intending to make a turn

indicates or communicates to other automobiles by flashing the appropriate indicator

light. The other automobile then takes the necessary action such as slowing down or

yielding. In a similar manner, in the computer environment, clicking on a menu

button to display an object sends a message to the graphic object required to be

displayed. Calling an object's member function is referred to as sending a message

to the object. The method, or member function, invoked by the receiver object in

response to an incoming message is decided by the class to which the object belongs.

Budd [Budd 91] explains the process of transmission of messages as:

Action is initiated in object-oriented programming by the transmission of
a message to an agent (an object) responsible for the action. The message
encodes the request for an action, and is accompanied by any additional
(arguments) needed to carry out the request. The receiver is the agent to
whom the message is sent. If the receiver accepts the message, it accepts the
responsibility to carry out the indicated action. In response to a message, the
receiver will perform some method to satisfy the request.

Classes can be organized into a hierarchy inheritance structure with each derived

class inheriting attributes or properties of parent or base class. The derived class

besides inheriting properties from the base class, can also have additional properties

specified. The generic class of cars can be defined as an automobile that has an

engine, 4 wheels, chassis and body. Specialized class of cars such as the Ford

Taurus also have engine, 4 wheels, a chassis and a body. However the type of

engine (in-line or V type), the type of tires (radial or normal), lighter chassis and

body and airbags define the additional properties of this car. We can therefore say

that the Ford Taurus has inherited the base class properties and also has additional

new properties specified. Let us suppose that a customer requires a Ford Taurus

with special seating arrangements. Ford will not start designing the Taurus from the

beginning to implement the requirement. Instead, the feature that requires change is

redesigned to suit the needs. This example shows that the custom seating

18

arrangement Taurus is an extension of the standard Taurus model. Thus, Ford

designers are able to re-use earlier designs for implementing portions of the current

design. Inheritance allows one to continuously build and extend classes from classes

developed earlier.

Thinking in terms of objects of the real world allows us to re-use, and extend the

object for future use. Object-oriented software programming therefore aims at re­

using, and extending the modules of the program since changes are not expected in

the old object, classes and methods, and most consist of extending the object's

classes and methods.

In the real world the class of four wheeled automobiles can be defined as shown in

Automobiles Four wheeler class definition

i Properties:
I Type of engine

Two wheeler Four wheeler Number of wheels=1

Transmission drive rotation
direction

Wheel rotation direction
Body position
Chasis position

Behavior:

Move Forward
Move Backward
Stop

Figure 3.2: Real world definition of a four wheeled automobile

19

Figure [3.2]. In the definition of the class of four wheeled automobiles, the

"moveforward" behavioral message causes the transmission drive and the wheels to

rotate in a direction that causes the body and the chassis to move in the forward

direction. Movebackward works in a similar manner. Stop causes the transmission

drive to disconnect power transmission to the wheels causing the body and chassis to

remain stationary. We see that the behavioral messages modify or act on the

properties of the automobile. While this is definition of the real world object

"automobile" as defined by a layman with no information about object-oriented

analysis, the object oriented software programmer would define the same class of

automobiles in C+ + as:

class Automobile
protected:

char Type_of engine; //Type of engine
int Num Of Wheels = 4; //Number of wheels

BOOL Drive_Direction = 0; // Transmission drive direction
BOOL Wheel_Direction =0; // Wheel rotation direction
Point BodyPosition = 0; // Body position
Point ChasisPosition =0; // Chasis position

public:
Automobile (); // Constructor

Automobile (); I/ Destructor
virtual B001. MoveForward (); // Behavior
virtual BOOL MoveBackward () // Behavior
virtual BOOL Stop (); // Behavior
};

As can be seen from the definitions of the class of automobiles as defined by a

layman and by the object-oriented software programmer, object-oriented

programming allows the programmer to select real world objects, model their

behavior in software so that we will achieve what the system has to do, and place

them in class hierarchies according to their natural groupings.

20

In object-oriented programming with C+ +, the definition for any class is as shown

above with the keyword class followed by the name of the class. The body of the

class is delimited by braces and a semicolon. Faison [Faison 91] defines the

responsibility of a class as :

The job of a class is to hide as much information as possible. Thus it is

necessary to impose certain restrictions on the way a class can be

manipulated, and how the data and the code inside the class can be used.

There are three kinds of users of a class namely the class itself, generic

users, and derived classes. Each kind of user has different access

privileges. Each level of privilege is associated with a keyword and since

there are three levels, there are three keywords; private, public, and

protected.

The private keyword offers the strictest control allowing access to only the class of

which the data is the member. Even derived classes do not have access to the

private data members of their parent class. Accessing the member data(member

functions or both) requires that they be declared in the public section of the class

declaration. Data or functions declared in the public section allow access to anyone

thus sometimes questioning the very integrity of data hiding. Classes that are used as

base classes which allow the functions of the derived classes to access the data

members of the base classes' employ the protected mode of data hiding restricting

access to other classes.

In traditional programming, declaration of a variable of a built-in data type, such as

float or char causes the compiler to automatically allocate enough space for that

variable. In other words, the compiler constructs the variable by allocating the

required memory and initializing the variable with a value. In a similar manner

when a built-in data type goes out of scope, the compiler automatically returns

(destroys) the memory associated with the variable.

21

When creating new objects, data members are un-initialized. C+ + provides two

special member functions to automatically initialize an object when it is created and

destroy objects just before they go out of scope. They are:

* Constructor

* Destructor

The constructor has the same function identifier as the name of the class as shown

below for the example on class.

Automobile (/1 Constructor

A constructor is always called when an object is created, if a constructor is defined

for the class. Constructors may be used to instantiate an object with default

initialization, or specific initialization or by copying other objects. Constructors are

normally declared public allowing generic class users to create objects from that

class. An object, Example_Automobile, of the class Automobile may now be

initialized dynamically as:

Automobile *ExampleAutomobile = new Example (

The destructor function is called to carry out operations that are to be performed

when an object is no longer in use. Destructors are also normally declared public so

that they can be used by generic class users. The destructor in the above example is

called by invoking the member function:

Automobile O; //Destructor

22

Let us now consider a small program written in Borland C+ +.

class CLWnd : public TWindow
protected:

BOOL lftmousebtndown; //Member data

BOOL Draw; //Member data

BOOL Erase; f/Member data

TPen *pen; f/Member data

TClientDC *IineDC; //Member data

TPoint Begin Pt, End Pt; //Member data

public:

CLWnd(TWindow *parent, const char far *title);//Constructor

CLWnd (); //Destructor

protected:

void EvLButtonDown(UINT, TPoint &point); //Member function

void EvLButtonUp(UINT, TPoint &point);//Member function

void EvMouseMove(UINT, TPoint &point);//Member function

void EvLButtonDb1C1k(UINT, TPoint& point); //Member function

};

The code shown above is the definition of the class CLWnd and has been publicly

derived from the TWindow class defined in Object Windows Library (discussed in

section 3.3) of Borland C+ +. The constructor for the class is defined as:

CLWnd CLWnd(TWindow *parent, const char far
*title):TWindow(parent, title){

lftwousebtndown = FALSE;

Draw =FALSE;

Erase=FALSE;

pen = new TPen(RGB(0,0,0), 1, PS_SOLID);// Instantiation

lineDC = new TClientDC(HWindow);// Instantiation

}

Since the CLWnd object instantiated the object dynamically and created a block of

memory on the heap to hold an object "pen" of the type TPen with:

23

TPen = new TPen (RGB(0,0,0),PS_SOLID);

A constructor that will free the memory on the heap when the pointer to the pen goes

out of scope is then required. Therefore, the constructor for CLWnd is defined as:

-CLWnd CLWnd)

delete lineDC;

delete pen;

where the delete keyword frees the memory on the heap. In the above example, the

CLWnd class has been publicly derived from the base TWindow class. While basic

properties of the TWindow were inherited, new data members such as:

BOOL lftmousebtndown;

BOOL Draw;

BOOL Erase;

TPen *pen;

TClientDC *lineDC;

TPoint Begin Pt, End Pt;

were added. This procedure of feature inheritance in object-oriented programming is

described by Figure [3.3].

24

Basic TWindow New properties
and dataproperties/data

CLWnd

Figure 3.3: Multiple inheritance

Object-oriented programming also supports multiple inheritance where-in a class can

be derived from more than one base class allowing access to the public members of

base classes.

Inheritance allows the derived class to inherit the template of all the data members

and the ability to call all of the non-private members of the base class. C+ + also

class TObject{
private:

int ObjType;
public:

TObjectO {}
TObject(int type) { ObjType = type;}
virtual int GetObjType(){return ObjType;}
virtual void SetObjType(int type){ ObjType = type;}
virtual void BoundingRect(TPoint, TPoint) { }
virtual double Distance(TPoint Point){}
virtual BOOL Contains(TPoint Point){}
virtual void HiLite(TDC &DevCon){}
virtual void Modify(TPoint) {}
virtual void Draw(TDC &DevCon);

25

supports dynamic binding through the mechanism of virtual functions. A virtual

function is a special member function that is invoked through a public base class

pointer. When a non-virtual member function is called, the compiler decides at

compile time which particular function to call. In contrast, everytime a virtual

function is called, the executable code decides at run-time, during the call, which

version of the virtual function to call. The selection of the code to be executed when

a function is called through a pointer is delayed until run-time. The code that is

executed is determined by the class type of the actual object addressed by the pointer

or reference.

The code shown above is the base (parent) class of drawing objects (lines, circles,

arcs etc.). The line object, TLine, is derived from this base class as follows:

class Mine: public TObject{
public:

TPoint First Com, Second Com;
public:

TLine(TPoint S,TPoint E): TObject(LINE){ First Corn
Second Com = E; SetObjType(LINE);}

virtual void BoundingRect(TPoint TopLeft,TPoint BottomRight){
FirstCorn=TopLeft; Second Com = BottomRight;}

virtual double Distance(TPoint Point);
virtual BOOL Contains(TPoint Point);
virtual void Hilite(TDC &DevCon);
virtual void Modify(TPoint Set Point);
virtual void Draw('iDC &DevCon);

The virtual functions of the base class are over-riden in the derived class Mine. For

example, the virtual void Draw (TDC &DevCon) member function of Mine over­

rides the virtual void Draw (TDC &DevCon) member function of TObject as shown

below.

26

//Member function of TObject
void TObject::Draw(TDC &DevCon){

//Member function of Mine
void TLine::Draw(TDC &DevCon){

DevCon.MoveTo(FirstCom);
DevCon.LineTo(SecondCom);

Although this chapter has covered the necessary and basic concepts of object-oriented

programming, it is advised that the readers refer to the bibliography for detailed

information on object-oriented programming.

Developing applications for Windows requires that one know Microsoft Windows

programming methodology. Since Microsoft Windows is based on the concept of

event based programming, the next section discusses the event-based Windows

programming methodology.

3.2 Windows programming concept

This section discusses the advantages of implementing applications for the Microsoft

Windows environment. This section also presents the concepts and implementation

details of the event-based Microsoft Windows programming methodology.

3.21 Microsoft Windows

Microsoft Windows provides a consistent windowing and menu structure for all its

applications. This makes Microsoft Windows based software packages easy to learn

and use. Just as X-Windows is the graphical user interface environment in UNIX,

27

Microsoft Windows is a graphical user interface environment for MS-DOS.

Microsoft Windows supports the popular what you see is what you get (WYSIWYG)

feature. This visual environment speeds communication between users and

computers. Since the user interface and tools are standardized, it allows the

developer to concentrate on the functionality of the application rather than on the

graphical user interface (GUI) for the same.

Programming for Windows ensures compatibility with a large number of input and

output devices. Applications developed on Microsoft Windows need no special

drivers as Microsoft Windows supports a host of display and printer drivers.

Therefore, Microsoft Windows is said to support device independent graphics.

Device independent graphics means that the application being developed is

independent of the system configuration.

Microsoft Windows also supports virtual memory management, thus eliminating the

DOS memory limitation of 640 K Bytes. The program can now access all the

installed memory and any available virtual memory. With virtual memory

management, segments of the program are run and swapped between the central main

memory and the disk storage, thus allowing larger programs to run. Microsoft

Windows supports multi-tasking, allowing the user to run multiple windows

application.

All these advantages would encourage a non Windows programmer to shift towards

Windows Programming. But as McCord [McCord 92] puts it...." Windows

programming can be, quite honestly, a major headache to newcomers. Most

programmers who are familiar with the traditional, sequential programming

methodologies used with C are often not mentally prepared to meet the challenges of

Windows programming."

28

3.22 Event-based programming

Windows programming is based on the event-based programming methodology as

opposed to the traditional sequential programming method. It may then be

questioned as to what is the difference between Windows programming and

sequential programming. In Windows programming, an event such as a clicking of a

button or selection of a menu item generates a message. Windows programming

responds to these generated messages. Since these messages are non sequential and

are event-driven, Windows programming methodology is termed as event-based

programming.

Every Microsoft Windows application consists of a iNnMain function. The WinMain

function initializes the application, setting up the message loop. The initialization

process consists of setting up of the parent window. The message loop consists of a

system where-in all the input messages are directed to the system queue, which are

then copied by Windows to the appropriate application queue. As Lafore [Lafore 93]

puts it .." An application never does anything until Windows sends it a message".

In Microsoft Windows applications developed with Object Windows Library (OWL),

the development kit from Borland, the TApplication derived class does the job of

initializing the application and setting up the message loop as is defined in the

OwlMain loop below. The Run member function of the TApplication initializes the

first instance of the application and then the other instances of the same application.

int OwlMain (int,char *[j){

return TDCSAppO.RunO;

After initialization, InitMainMndow is called to create the main window as shown

below.

29

void TDCSApp::InitMainWindow0{

//Construct the client "Canvas" window

TWindow *client = new TCanvas(0,0);

//Construct the main window "frame

TDecoratedFrame *frame = new TMainWnd(0,"DC ,client,TRUE

//Set MainiNndow to frame

SetMainWindow(frame);

}

Lastly, the Run member function calls the Message Loop that receives and processes

Windows messages sent to the application. In the code shown above, TDCSApp is

the publicly derived class from the TApplication class of OWL.

class TDCSApp: public TApplication

public:

TDCSApp0: TApplication0

void InitMainWindow0;

The application's message loop then retrieves the message from the application queue

and sends each message to the appropriate window function.

30

rs Sketch Pad for Windows CI '
File Tools

2/4'0 Select

Emcs roomy."
...

Undo Redo

g V
So Ineio De air
Library Ir,pee

Comatet To
0 nVkYe

Sketch on the Canvas

Figure 3.4: Input messages

Windows sends input messages when an application receives input from the mouse,

keyboard, scrollbars, or system timer. Therefore, when the user presses the left

mouse button down in the drawing area as shown in Figure [3.4], the WndProc

function of Windows sorts the messages by processing information such as the

window that generated the message, the message number (that is defined in

windows.h), and additional information and sends the WM_LBUTTONDOWN

windows message to the Sketch Pad application. Since the client window, the

drawing area, was where the mouse button was pressed, the Message Loop receives

the Windows message, processes it and sends it to the client window. The process

can be described as shown in Figure [3.5].

31

venD
Windows Application

Win Main()

Define and register

window class

Create window
Windows

Message Loop

WindProc()

Receive messages from

Windows

Figure 3.5: Windows Operation [Lafore 93]

Object Windows Library (OWL 2.0), discussed in section 3.3, offers an organized

method of handling the above mentioned Windows events and messages. The event

handler macro defined in the RESPONSE TABLE for OWL classes, handles the

message and breaks the wParam (unsigned integer-Two bytes) and the 1Param (long

Four bytes) into separate parts. One might wonder as to what the WM_ characters

in the message WM_LBUTTONDOWN mean. The WM_ term means that it is a

Window Message. Some of the typical input Windows Messages and their meaning

are shown in the table below. The messages listed are just a few from over 100

Window messages that Microsoft Windows supports.

32

Constant Meaning

WM LBUITONDOWN Left mouse button was pressed

WM RBUITONDOWN Right mouse button was pressed

WM DESTROY Destroy a Window

WM PAINT Window needs to be redrawn

WM MOVE Window was moved

Table 3.1: Window messages

Message can be sent or posted. Sending a message means that Windows waits till

the message is executed. Posting a message means that Windows posts the message

to the message queue and does not wait till it is executed. For example, in the

SketchPad for Windows application, the CmSketch member function of the

TMainWnd shown below sends a message when the sketch button is clicked.

void TMainWnd::CmSketch(WPARAM Id){

ClientWnd -> SendMessage(PM_STATUS,Id,O);

}

In the code above, the number of the button clicked is sent as a number to the client

window (TCanvas) which responds accordingly. When the user selects any menu

item, Windows sends a WM COMMAND message to the application's window

procedure. Macros have been built in Borland C ++ 4.0 to handle these command

messages. For example, the EV_COMMAND_ANDID macro takes the command

33

identification number and associates the function to be called when that command

message is generated as shown below.

EV_COMMAND_AND_ED(CM_SICETCH CmSketch

where the CM SKETCH has a defined identity number and is specified in the .RC

file and CmSketch is the member function associated with it..

Since Microsoft Windows provides a consistent windowing and menu structure for all

its applications, it supports Application Program Interface functions, commonly

known as API. There are more than 600 Windows API functions available for use.

These Windows API functions allow Windows Applications to manage window

controls, memory, graphics utilities, data input and output. For example, the

message box that pops-up in Windows applications, is an API function. Similarly,

the graphics functions such as LineTo, MoveTo, Ellipse etc. are all examples of the

API function.

Borland gives the application developer an encapsulated version of the API functions,

thus making programming with Windows easier. These encapsulated functions are

provided in the application frame work called Object Windows Library (which will

be discussed in the next section).

3.3 Object Windows Library (OWL 2.0)

This section covers the implementation of Window elements (all major elements,

including windows, dialog boxes and interface objects) as objects with defined

behaviors, attributes and data. A thorough understanding of this section is necessary

to write working applications for Microsoft Windows.

34

Object Windows Library is an application framework developed by Borland that

incorporates the advantage of object-oriented programming for writing Windows

applications. OWL runs in graphics mode under Windows and hides the low-level

details from the application code. Walnum [Walnum 94] describes programming

with OWL as... "Using OWL, one can create a fully operational window in eight or

fewer lines of code while the same when written in C (without OWL) requires more

than 80 lines to produce the same window".

The OWL library encapsulates window information, abstracts Windows functions and

takes care of automatic message response. In other words, Object Windows defines

the behavior, attributes and data while Windows implements the physical

representation of the objects. Object Windows makes use of member functions that

abstract Windows functions through built-in interfaces. In Object Windows, a

member function can be defined for each message that must be handled so that when

the object receives the message, the appropriate member function is called

automatically.

Object Windows includes many classes with which one could write a Windows

Application quickly and easily. Window objects such as the basic window, dialog

boxes, buttons, menu bars, status bars etc., are instantiated from the classes defined

in Object Windows Library.

Some of the important classes that are included in the Borland 4.0 version are:

* Application * Windows

* Menus * Dialog Boxes

* Child Controls * Message Bar, Speed Bar

Applications, such as Sketch Pad for Windows, written with OWL need to support at

least two kinds of objects: An application object and a window object. The

application is the framework that manages all the objects in the programs, sets the

35

application's message loop running so that the application can interact with the user

and Windows.

Object Windows is so powerful that a fully functional window (that which allows

minimization, maximizing, resizing and moving) can be generated in 5 lines.

The code shown below generates a fully functional window as shown in Figure [3.6].

#include<owl\application.h> IlLinel
hit Owilvlain(int, char *[]){
TApplication Example("TApplication Example"); IlLine3
return Example.Run(); 1lLine4

1lLine5

Figure 3.6: Basic OWL Window

36

For every OWL object used we need to include the relevant header file. Line 2 is

where the OWL application starts execution. In line 3 we make an instance of the

TApplication class by using the single argument constructor of TApplication. Line 4

sets the application object Example running, thus initializing the application and

establishing a message loop.

The Window that is created by this example is not very impressive and needs to be

customized for one's application by using the window classes. A closer look into the

TApplication InitMainWindow function reveals that the application starts up a bare

TWindow window object. Instead of the bare window object we can choose to use

Frame Windows, Decorated Frame Windows, and Multiple Document Interface

(MIDI) Windows.

Let us suppose that we wished to implement a Frame Window, instead of the default

TWindow, that responded with a message when the user clicked anywhere in the

window. It can be done as shown in the code below. The application is as shown in

Figure [3.7].

#include <owl\application.h>
#include <owlframewin.h>
class Example : public TApplication {
public:

Example ():TApplication ();
void InitMainWindow ();

class ExampleWindow : public TFrameWindow {
public:

ExampleWindow(TWindow *parent, const char far *title) :
TFrameWindow(parent,title);

protected:
void EvLButtonDown(UINT, TPoint &point);
DECLARE RESPONSE_TABLE(ExampleWindow);

};

37

DEFINE_ RESPONSE TABLE1(ExampleWindow ,TFrameWindow
EVWM Ll3UTTON130

RESPONSE TABLE;
//Member function of the TExample class
void Example:: InitMainWindow (){
ExampleWindow *window = new ExampleWindow (0,"New Window");

//Member function of the. TExampleWindow class

void EvLButtonDown (UINT, TPoint &point){

MessageBox("Left Mouse Button was Clicked", "Example",MB_ K),

}
//Main
int OwlMain(int, char* [j){
return Example.Run ();

}

Figure 3.7: Improved OWL Window

When the user clicks the left mouse button anywhere in the window, a message box

38

appears, informing the user that the left mouse button was clicked. The function

MessageBox displays a window containing a specified caption and text on the screen.

Since a Windows Application is event driven, everything that the user does generates

an event which the application receives in the form of a Windows Message. In this

example the application responds to the Windows message WM_LBUTTONDOWN.

OWL uses message-response functions for handling the Windows messages. The

response table shown in the code above matches the message-response functions

(EvLButtonDown) with the messages (WM_LBUTTONDOWN) that they are

supposed to handle. Some of the message-response functions of OWL 2.0 and the

Windows messages that they handle are shown below.

Message-Response Function Windows Message

EvLButtonDown WM_LBUTTONDOWN

EvLButtonUp WM LBUTTONUP

EvMouseMove WMMOUSEMOVE

EvPaint WM_PAINT

Table 3.2: Response functions and Window messages

The Windows message WM_LBUTTONDOWN comprises of wParam and 1Param

parameters. While the former parameter indicates whether the virtual keys are

down, the latter parameter contains the coordinates of the cursor expressed relative to

the upper-left corner of the window. The Borland message-response function

39

EvLButtonDown automatically extracts the virtual key flag as an unsigned integer

(UINT) and the coordinates as a TPoint object thus making Windows programming

easier. If instead of the Message Box popping up, the text "Left mouse button was

clicked here" be displayed , then only that portion of the code contained in the

EvLButtonDown function needs to be changed as shown below. While employing

the OWL version of the Windows Text Out function, the header file dc. h should be

included in the source code.

void Example Window :: EvLButtonDown (UINT, TPoint &po t){
TClientDC* DContext = new TClientDC (HWindow);

DContext-> TextOut(po. "Left mouse button was clicked h
delete DContext;

Now that we have implemented the Window classes we shall move on to the

implementation of menus. When a user loads a new Windows application, he or she

may not be able to make full use of the application but will at least know where to

locate the File operations such as opening a new file, opening an existing file, saving

a file. This consistency in all Windows applications is largely due to the

specifications or guidelines laid down for Windows application development. We

shall see how the File menu can be implemented.

The Resource Workshop (explained in section 3.4) from Borland enables the user to

create and test menus. The menu editor consists of the outline pane, the test menu

pane, and the dialog box pane. Editing the default menu from the outline pane with

the help of the dialog box pane and by selecting the " New File popup item" from

the Menu menu, the basic File menu can be implemented without any effort. The

Resource Workshop 4.0 allows the user to specify and verify the message that the

40

individual items in the menu generate. This menu is stored in the .RC file that is

going to be used in the application. An example of a menu [Figure 3.8] and its .RC

file is shown below.

. ..

File

New

Open...

lave

Save as...

Exit

. .

Figure 3.8: Menu implementation

Selection of any of the menu commands like New or Open will cause a new window

to come up or open up an existing window respectively. For example, selection of

the New option from the menu causes the application to create a new window or

document depending on the application it is designed for. Since Windows

programming revolves around objects and the messages that they send to

communicate with each other, a closer look at the code shown below reveals that the

selection of the New option causes the command message (abbreviated CM_message)

CM FILENEW to be sent. Now the window class should include message-response

functions for each menu item that has to be handled.

41

#ifndef WORKSHOP INVOKED
#include "windows.h"
#endif

#clefine DCSMENU 1

#define CM FILENEW 24331
#define CM FILEOPEN 24332
#defme CM FILESAVE 24333
#define CM_FILESAVEAS 24334
#define CM FILEEXET 24338

rifdef RC_INVOICED
EXAMPLEMENU MENU
{
POPUP "&File"
{
MENUITENI "&New", CM FELENEW
MENUTTEM "&Open",CMFILEOPEN
MENUITEM "&Save, CM:FILESAVE
MENUTTEM "&Save &As...", CM_FILESAVEAS
MENUITEM SEPARATOR
MENUTIEM "&Exit", CM FILE EXIT
}

}

endif

This is achieved by including the message-response functions in the window class and

defining the response table for the window as shown below.

42

class Example Window public TFrameWindow

public:
ExampleWindow(TWindow *parent, coast char far *title);

protected:
void CmFileNew ();
void CmFileOpen();
void CmFileSave();
void CmFileSaveAs();
void CmFileExit();

DECLARE RESPONSE TABLE ExampleWindow);

DEFINE RFSPONSE TABLE1(ExampleWindow,TFrameWindow)
EV CORMAND(CIVi FILENEW,CmFileNew),
EV COMMAND(CMFILEOPEN,CmFileOpen),
EV_COMMAND(CMFILESAVE,CmFileSave),
EV_COMMAND(CMFILESAVEAS,CmFileSaveAs),
EV COMMAND(CMFILEEXET,CmFileExit),
EN15 RESPONSE TABLE;

The EV COMMAND macro includes in its parenthesis the command message's ID

and the name of the function that is to respond to that command. The command

message's ID and the respective functions that are called are shown in the table

below.

43

COMMAND MESSAGE'S ID FUNCTION INVOKED

CM FTLENEW CmFileNew ()

CM FILEOPEN CmFileOpen ()

CM_FILFS AVE CmFileSave ()

CM FILES AVEAS CmFileSaveAs ()

CM_FILEEXIT CmFileExit ()

Table 3.3 : Command messages

In a similar manner all the menus required for developing the SketchPad for Windows

application can be implemented. Once a Windows application developer gains some

experience in writing Windows applications, he or she can develop the menu

structures without the help of the Resource Workshop.

Anyone who has used a Windows application would have seen dialog boxes used

extensively in the application. One of the most commonly seen dialog box is the one

that popup when the user selects Open from the File menu [Figure 3.9]. Dialog

boxes are used to open and save files, accept input and change colors etc. Dialog

boxes contain child controls such as pushbuttons, radiobuttons, checkbox,

combination boxes, static text etc. As in the case of development of the menu's for

Windows application we employ the DialogBox resource editor of the Resource

Workshop (see section on ResourceWorkshop) to develop the required dialog box .

Dialog boxes may be modal (these do not allow the user to utilize the dialog box's

parent window when the box is active), modeless (these allow the user to utilize the

dialog box's parent window even when the box is active) or system-modal (these are

used to disable access to other windows until the user responds to the dialog box).

44

The STYLE parameter of the dialog box defines the type of dialog box. The

CONTROL parameter of the dialog box defines the type of child control used.

Open

L__...- Static Text, brectolies: OK
Edit Box gAappArrinrop52

Cancel

Info_
List Box

List Box I

Button

List Fifes of Doe: Drives:

Combination Box ± II Combination Box a

Figure 3.9: Open/Save Dialog Box

Buttons (pushbuttons, radio buttons, bitmapped buttons), editing controls, static text

controls, scroll bars, list boxes, and combo boxes constitute the child controls Object

Windows Library. The editing control (TEdit class) allows the user to edit the data.

Examples of editing control implementation can be found in the Find or Search

dialog boxes implemented on commercial applications. Scroll bars (TScrollBar class)

are extensively used where data exceeds the display and needs a positioning device to

view the entire data. List boxes (TListBox class) provide a list of options from

which the user can choose an item. If too many items in the list are to be displayed

at once, a scroll bar is displayed automatically.

45

#ifndef WORKSHOP_INVOKED

#include "windows.h"

#endif

#define DIALOGBOX_EXAMPLE 1

#ifdef RC INVOKED

DIALOGBOX_EXAMPLE DIALOG 11,23, 174,124
S
DS MODALFRAME WS_POPUP j WS VISIBLE WS CAPTION WS_S

YSMENU

CLASS "bordlg"

CAPTION "Example Dialog Box"

FONT 6, "Times New Roman"

{
CONTROL "",

ID OK, "BorBtn" ,BS PUSHBUTTONIWS_CHILDIWS_VISIBLE WS_T

Ali-STOP, 66,91,37,25

#endif

An example of the list box and the scroll bar is the file selection option in the File

Save or Open dialog box . Combination boxes (TCombination class) are commonly

seen in the font selection dialog box where-in the default size is displayed beneath

which a list box containing different font sizes is displayed. Buttons are the most

commonly used form of child controls. Buttons are widely used to create speedbar

buttons, and to accept user's decisions such as acceptance, cancellation etc.,.

Implementing the window controls on dialog box is a lot more easier, thanks to the

powerful resource workshop. Child controls are inserted on dialog boxes with the

CONTROL parameter as shown earlier in the dialog box example. Implementing

window controls on windows is however done in a different manner. Here the

control's parent-window pointer and its ID and also its exact position in the window

46

should be supplied. For example, a TListbox object and a TRadiobutton object, can

be implemented as shown in the code below.

class Example Window : public TFrameWindow
protected:
TRadioButton *Buttonl;
TListBox * ListBox;

public:
Example Window (TWindow *parent, const char far *title);

};

ExampleWindow::ExampleWindow (TWindow *parent, const char far*title){
Button! = newTRadioButton (this, ID_RADIORUTTON, "RB", 20,20,50,20);
ListBox = new TListBox (this, ID LISTI30X, 120, 20, 100,50);

Borland has incorporated lots of useful and time saving features in version 4.0. For

example working with button bars or status bars or message bars was a tricky affair

in the earlier versions. But in version 4.0, Borland has implemented classes for

control bars, tool bars, message bars, and status bars. Most of the Windows

applications have speed bars to speed up the basic file, editing and printing

operations. An example of a speed bar is as shown in Figure [3.10]. Speedbars are

called control bars in Borland C+ + 4.0. A control bar can be implemented in a

Decorated Frame Window by calling the TControlBar constructor. The TControlBar

constructor takes a pointer to the parent window, a tile direction (the direction in

which the control bar buttons should be placed), a pointer to a

TGadgetWindowFont, and a pointer to TModule.

Since all these parameters have default values, which can be checked by looking at

<owl\controlb.h> header file, only the pointer to the control bar's parent window

needs to be given. The tile direction, vertical or horizontal can be specified as the

second parameter. The control bar is therefore implemented as:

47

TControlbar *cntrlbar = new TControlBar(frame);

Ouattro Pro for Windows NOTEBK1.WB1

A-.A1

Bitmapped Button
2

Scroll Bar
3

4 Speed Bar
5

Message Bar

C.AZ.A...a.a.1411F171,4. Mop.
Auto Generate New NUM READY

Figure 3.10: SpeedBars in applications

Buttons, or Button Gadgets in the Borland language, for the control bar can then be

implemented by calling the TButtonGadget constructor which takes the resource ID

of the bitmap representing the button's face, the menu command (or any command)

that the button represents, the button type, a Boolean value indicating whether the

button is enabled, the button's state, and a Boolean repeat value. Since we want the

button to be a default push button and not an exclusive button, only the first two

parameters need to be given as shown below.

48

cntrlbar- >Insert new ButtonGadget(BMP_OPEN,CM_FILEOPEN)

The Insert function takes care of adding the button to the control bar. Incidentally the

Insert function takes a pointer to the new gadget. Control bars have gaps or

separation in between some of the buttons. As the name suggests, separator gadgets

(TSeparatorGadget class) are used to provide gaps or spaces in between button

gadgets. A TSeparatorGadget is inserted in the manner the TButtonGadget is

inserted in the control bar. The toolbox, message bar and status bar are all

incorporated in a similar manner.

The program elements (buttons, dialog boxes etc) implemented in the source code,

are represented visually by resources. The commonly used resources such as menus,

dialog boxes, bitmaps, icons, cursors and string tables, their creation and visual

representations are as explained in the next section on resources.

3.4 Resources and graphical user interface development

This section discusses the implementation of resources in order to impart the standard

Microsoft Windows "look and feel" to the application being developed.

The most striking feature of Windows is the graphical user interface. This common

graphical user interface is brought about through the use of standard Windows

resources such as Windows, Menus, Dialog Boxes, Bitmaps, Icons, Cursors, and

String Tables [Figure 3.11].

49

o DCS for Windows Da
File Tools

New
Open... Cursor> Irs.

Slice sesta

IMI
Save
Save as...

Bitmap

M en ENH WINEICS

Erase

1Q...

roo.difyl

1---A
Uodo Reda

Soled
Libeasy

Icon, OKI

Dialog Box

Open A New File

MessageBar strings

Figure 3.11: Windows Resources

The resource workshop allows the user to edit and create both binary and text files.

The most commonly used format is the .RC format which stands for Resource Script

format that contains one or more resource definitions. Other formats for storing

bitmaps, fonts, cursor, etc are used but since all these formats can be used in one

format, the .RC format is preferred for most projects. The Resource Workshop 4.0

allows the user to list and visualize the resources stored in the file [Figure 3.12].

Resources are merely the visual representation of the program elements implemented

in the source code. Since the same resources can be used in many applications, it can

be separated from the source code and bound with the application executable.

Resources are created by the various editor and combined into a single file called

resources. This resource file is then combined with the program's .EXE file to create

a new improved .EXE file [Figure 3.13]. Resources take a lot of memory. To

conserve memory, Windows waits until a resource is actually needed in the course of

50

the program execution before loading it.

Resource Workshop untiiled.re II
... File Edit Resource View Window Help
BITMAP

1 1

PI BITMAP 1 0) 5
DIALOG

Resources-/If
DILLOL-i_l tI I

Help
Selected Resource

4[/..lti
4

1_1
Ready

1

Visual representation of the selected resource

Figure 3.12: Visual representation of resources

Just as the menu at the restaurant helps one in deciding the cuisine to be ordered,

software menus guide the user to look for a particular command option by wading

through the hierarchy of menu. Gone are days when the user had to type all the

commands. The menu editor of the Resource Workshop allows the user to create

menus and dynamically check them too. The menu editor is as shown in

Figure[3.14]. The menu editor is divided into three windows. One of the windows is

the testing window (located in the upper right hand corner), the other is the display or

outline window that contains the code for the menu and lastly the window for editing

the menu features (such as graying, popup). The editing environment is dynamic in

the sense that any changes made in the editing window are immediately reflected in

the test window.

http:Figure[3.14
http:untiiled.re

51

Figure 3.13: Resource binding[Lafore 93]

Test window

Resource Workshop untitled.rc
ca File Edit Resource Menu View Window fielp

Item type: ,=* TEST MENU:
Item text:

file Edit Hel
&New I > Po Plan

Menu item
Item help:

I) Separator

PO PUP "Vie"
Rein Ed: MEMBIEI4331CM_RLENEW MENUITEM II

MENUITEM "V.Initial date: Break before:
MENUITEM ''s

4 Enabled No break
MENUITEM SE

> Ditabled I Checked > Menu bar break
MENUITEM ''&F

> Grayed > Menu break MENUITEM "Pk

> Help break II
Ready

Editor window Outline window

Figure 3.14: Menu Editor

http:untitled.rc

52

Dialog Boxes, as the name suggests, promotes the exchange of ideas between the user

and the program. The exchange of ideas takes place through a set of tools, called

controls. Dialog Boxes are usually pop-up windows. While custom dialog boxes

(Open File, Save File, Find and Search) are pre-designed and ready for use, custom

dialog boxes (which look and work the way we want) can be prepared with the help

of the dialog box resource editor [Figure 3.15].

Resource Workshop - untitled.rc CI
File Edit Resource Control Align options Window

Help

2 1 II 1

DIALOG_i 4==i

Alignment

0
I 1

®
Sample Dialog Box

OK No
.. _

Help
.

II E A

CQ 0 AI
1,2

Test

gi
I

ti
Pr

1.1

4

Buttons u

M: 1.1ff

Re dv locv

Figure 3.15: Dialog Box editor

The Borland Resource Workshop developer's have been adding features to this

powerful tool -kit in order to provide more nearly realistic dialog resource features.

The term "realistic"refers to the light gray, chiselled look features possessed by Motif

dialog boxes for the X-Window environment. Depending on the dialog box selected, a

default dialog box appears. A tool palette and an alignment palette also open up.

While the Borland chiselled-look dialog boxes possess the default OK, CANCEL and

HELP buttons, default standard dialog boxes appear with no child controls on them.

http:untitled.rc

53

Child window controls, such as the information icons, bitmaps, buttons (pushbutton,

radiobutton, bitmapped buttons), listboxes, groupboxes, checkboxes, static text,

editing window, combination boxes, raised or dipped shades can be used alone or in

combination in the design of custom dialog boxes.

Most Microsoft Windows users have used the PaintBrush application at least once.

The PaintBrush application is basically a bitmap editor. Bitmaps are graphical images

that one can use in the program. Bitmaps are images formed by a pattern of bits.

Present day applications extensively use bitmapped buttons on the speed bar (menu

bar). These buttons are generated by generating bitmaps. The bitmaps, although can

be developed on PaintBrush, are developed on the bitmap editor from Borland [Figure

3.16].

Resource Workshop BITMAP : BITMAP 1 111

o File Edit Resource View Text Options Bitmap

Window	 Help 111.

Colors

32 X 32 Colors: 16	 r--1 , /

CiiiiiFNlette->	 BG --6.1 ' '
1:1 IC

\-0LSmpleBitmap being rIzt,
worked orr

> Bitmap	 0 7
0 S oeTool Palette->

Figure 3.16: Bitmap editor

On being invoked, the bitmap editor, opens up a child window for painting. With the

54

help of the tool-palette and color-palette, one can generate the desired graphics and

store them as bitmaps.

Upon starting MS Windows, the user is presented with the program manager window

consisting of many images in the window. These images are nothing but bitmaps

representing the particular application's minimized status. These bitmapped images of

minimized windows are called icons. Icons are usually either 32-by-32 or 16-by-32

pixels. Since the icons are basically bitmaps, the icon editor works similar to the

bitmap editor.

With the advent of graphical user interface (GUI), pointing resources such as cursors

have been employed to locate the position of the mouse on the screen. Cursors are

32-by-32 pixel bitmaps and are commonly used to locate positions on the screen,

select buttons, draw object and perform editing functions. Some of the commonly

used cursors and their functionality are mentioned below.

Cursor Shape Action or Use

Arrow General

Cross Hairs Selection, Drawing

Hour Glass Wait Status

Table 3.4: Cursors and their use

As one wades through the menus, the message bar located at the bottom displays the

information about each menu item. These messages are sections of text called strings.

55

Since they are stored outside the program, changing strings to accommodate for a

foreign language string becomes easy. Strings are defined in the string table resource

editor. The editor allows one to create and edit string tables and consists of three

columns (ID source column, ID value column and the string column) [Figure 3.17].

Whenever an ID source value is called or referred to, the respective string is

displayed in the message bar area.

Resource Workshop untitled.rc IC
file Edit Resource atringtable Window help

ci STRING-I-ABLE : CM_TEST 1:113
ID Source ID Value String

DA_TEST 1 TEST STRINGTABLE .APPLEATION.

CM CHECK _ 2 I CHECK APPLICAT ION

CIA EXIT ' 3 EXIT APPLICATION'
.........._... __......._ _

1

Rea*

Message displayed in message area

Figure 3.17: Stringtable editor

For further information on object-oriented programming, windows programming, and

Object Windows Library programming, it is suggested that the reader refer to the

bibliography at the end of this thesis.

Section 3.1 dealt with the basics for utilizing the OWL framework to develop the

Microsoft Windows applications. Since this framework is object-oriented, section 3.1

dealt with the basics of object-oriented programming. Since programming

methodology for Microsoft Windows is event-based, section 3.2 discussed this topic.

http:untitled.rc

56

4.0 Sketch Pad for Windows

This chapter discusses the implementation of the sketching features in Sketch Pad for

Windows. While section 4.2 explains the reasoning behind the implementation of

features of inking and CAD systems into this sketch capture system, section 4.3

explains the working and implementation of the features of SketchPad for Windows

with an example. The features demonstrated in section 4.3 are implemented in

C ++ with Borland's Object Windows Library (OWL 2.0) and the implementation

details are explained in section 4.4.

4.1 Introduction

SketchPad for Windows is the beta version of the sketch capturing software developed

at the department of mechanical engineering, Oregon State University. It was

developed as a tool primarily to help the design engineer in the design process.

SketchPad for Windows operates in the Microsoft Windows environment. SketchPad

for Windows has been developed to support the sketching ideology explained in

chapter 2. Based on the philosophy that the sketching process requires minimal use

of instruments, SketchPad for Windows allows the design engineer to sketch on the

computer screen just as he sketches on a piece of paper. The design engineer no

longer has to express his/her thoughts in the CAD form, as SketchPad for Windows

automatically stores the sketch in CAD format.

As mentioned earlier (see Chapter 1), SketchPad for Windows is more than a mere

sketching application. It is a sketching tool linked with a design solution library,

issue based information system and a parametric CAD software. It is aimed at

working in unison with the Solution Library [Wood 95] and Decision Support

[Herling et al. 94] system. The sketching application also supports an interface to

DesignView, a parametric drafting software to generate detail drawings. The

57

integration of Sketch Pad for Windows, Decision Support system, Solution Library

and the parametric CAD can be said to mimic the design process as the system

allows the designer engineer to sketch designs, store and retrieve designs using

functional behavior, compare other designs and finally generate detailed drawings.

This integration can be represented as in Figure [4.1].

Design! Capture System

Parametric CAD Tool

CAD data

Send SketchPad Send

anmap 1c r Wind ours Bitm op

Solution Library Design Issue Decision Tool

Figure 4.1: Design Capture System

As can be seen from Figure [4.1] and also from Figure [1.1], SketchPad for

Windows communicates with the Solution Library and Decision Support system in the

form of bitmaps while the sketches are converted into CAD data. Currently,

SketchPad for Windows supports transfer of data into DesignView, a variational

geometry CAD software.

4.2 Motivation for implementing SketchPad for Windows

In order to capture the traditional paper-and-pencil sketching environment on a

computer it was necessary to study the traditional sketching procedure. In the

58

traditional sketching procedure the user is uncertain about the stroke that he makes.

Lines are created by stroking from a point to another while constantly keeping one's

focus on the other end point. Similarly, circles and ellipses are sketched by stroking

sectors of the arcs constituting their profiles. Small circles and ellipses are however

sketched in one stroke.

Current CAD software do not allow the user to draw or sketch drawing entities in

the manner described in the previous paragraph. For example, drawing a line on a

CAD software requires that the user select an icon for drawing lines, a start point, an

end point and the software then draws a line between the two points. Thus, there is

a difference in the way a designer sketches on paper than on a CAD system.

The computer graphics technology that closely matches the traditional sketching

procedure is the inking process. A very common example of an inking application is

the PaintBrush application for Microsoft Windows. PaintBrush for Microsoft

Windows possess an inking feature that follows the position of the mouse as it moves

across the screen [Figure 4.2].

file Edit View Text Qptions Help

MO +
Thira
126.3
MA,
MI Pa
0E3

......../44

a ea
O0
016.4 *

Figure 4.2 Inking process

59

Inking makes the cursor automatically leave a trail of line segments the way a pen

leaves a trail of ink. It does not require that the user push the mouse button for

every line segment, but instead draws a new segment whenever the cursor moves a

sufficient distance.

A striking feature of the inking process is the fact that it does not require the user to

think in terms of any menu or icon for thought representation, and allows the user to

sketch freely on the canvas area of the application.

Consider that a design engineer makes a sketch using the above mentioned software.

If the designer desires to modify the design or sketch, he/she must work on a bitmap

and may have to resort to erasing the bitmap or redrawing the sketch. Sketch

refinement is therefore hampered as the user must constantly re-sketch the original

design. Bitmaps can however be cut, pasted, moved, and/or deleted.

Figure 4.3: Drawing Information

Bitmaps require large amounts of memory as they contain bit-by-bit information of

the entire drawing area Figure [4.3]. As shown in the bitmapped figure above, large

60

portions of the drawing area contain no information about the sketch. Storing

information about these areas is of no use as they contain no drawing information.

Moreover, in an inking application, information about every pixel rather than that of

the entity topology is stored. CAD software however store topology information

rather than bit-by-bit information. Therefore, if the inking process could be set up

with recognition and storage as CAD entities, it would serve as an excellent

sketching tool.

4.3 Sketch Pad for Windows

It is clear from the discussion in the previous section that a sketcher in the form of

an inking application that could represent and store design sketches as CAD entities

would serve as an ideal sketching environment. With this design specification in

view, Sketch Pad for Windows application was developed so that the designer could

express the design strokes as sketches and the recognition algorithm would take care

of recognizing the CAD entity in the sketch topology.

An example describing the working of the SketchPad for Windows application in a

typical design environment is as described below.

Upon double-clicking the SketchPad for Windows icon [Figure 4.4], the application

starts up and presents the application's sketch capture environment [Figure 4.5] to the

user.

61

Program Manager
File Options Window Help

Sketch Pad

Figure 4.4: Sketch Pad for Windows Icon

Figure 4.5: Sketch Pad for Windows

As can be seen from Figure [4.5], Sketch Pad for Windows supports a minimum of

tool buttons for sketching and editing. The primary focus of the graphical user

62

interface is to offer sketching tools transparently, and not as hierarchial menus.

Now let us suppose that a designer intends to design a base plate. All that the

designer has as information is the fact that it needs to be mounted with four bolts

[Figure 4.6]. A mental image of the base plate is first developed in the designer's

mind consisting of a rectangle defining the plate and the circles defining the holes.

Figure 4.6: Design information in the mind

As the designer moves the cursor over the Sketch button, a message requesting the

designer to sketch on the canvas is then displayed in the message area [Figure 4.7].

63

Figure 4.7: User messages

The designer then clicks on the Sketch button with the left mouse button. Having

clicked the sketch button, the designer starts to stroke on the screen to represent his

thoughts. To do so the user presses the left mouse button down and starts moving

the mouse to express his sketch. As the user moves the mouse, a trail of the path

chosen by user is represented by highlighting the pixels along the path. Since the

base plate has four sides, the designer strokes in a linear fashion to represent one

edge of the base plate [Figure 4.8].

64

Figure 4.8: Linear sketch trail

Having expressed the thought as a stroke on the canvas, the user lets go the left

mouse button. The recognition routine (discussed in section 4.4b) goes through the

array of points stored and replaces the pixel trail with the recognized CAD entity.

Since the user sketched linearly, recognition routine replaced the sketch stroke with a

line entity [Figure 4.91

It can be seen that the designer's intention was to draw a straight line and all that

he/she did was to stroke in the drawing area in a linear fashion and then allowed the

system to recognize the design intent. There are no drawing entity (line,circle, arc)

icons or bitmaps forcing the designer to think in terms of those entities while

representing the drawing. Having sketched one side of the base plate, the other three

sides of the base plate are also sketched similarly to generate the sketch shown in

Figure [4.10].

65

S ketch Pa d for Windows
File Tools

Sketch On The Canvas Area

Figure 4.9: Line recognition

Figure 4.10: Base plate-Stagel

The user then strokes in a circular fashion [Figure 4.11] to sketch the bolt holes.

66

The entity recognition algorithm built into the application recognizes the stroke of the

SketchPad for Windows

Figure 4.11: Bolt hole sketching

designer and replaces the stroke with a circle [Figure 4.12]. Since most engineering

holes are circular in nature, the algorithm considers all holes as circular.

Since the entity-recognition algorithm uses approximation techniques, the sketches

need to be refined. For example, the lines representing the boundary of the base

plate need to be refined to represent the perpendicularity of the lines. In other

words, the individual line entities need to be modified to represent the design intent.

The designer then clicks on the select button and clicks on the entity to be modified.

The selected entity is automatically highlighted [Figure 4.13].

67

Figure 4.12: Circle recognition

Sketch Pad for Windows
File Tools

Select Entity

Figure 4.13: Entity selection

Since the selected entity needs to be modified, the designer clicks on the modify

68

button. The designer then clicks at that end-point of the entity that requires

modification and moves the mouse (keeping the left mouse button pressed) to rotate

(and resize) the entity about the other end point [Figure 4.14]. It is worth

mentioning here that only the entity selected undergoes modification. The other line

entities are also edited in a similar manner to obtain a refined sketch.

Sketch Pad for Windows

Figure 4.14: Entity modified

Since the designs in the conceptualization stage are not definite in terms of entity

shape, size and orientation, the modification routine is very helpful as it allows the

designer to modify the entity size and orientation.

The other three bolt holes represented as circles are also sketched to get the fmal

sketch. Since this sketch was developed as a solution to a particular design problem,

the designer wishes to store the design. He selects the save menu under the File

menu and saves the file. Since the part was designed to perform a function, a record

69

of the functionality of the design would be desirable as a reference for other

designers facing similar design problems.

Design specifications change often. For example, upon discussing with other design

engineers, the designer realizes that the straight edge on the right hand side of the

base plate is not ideal and that a curved surface needs to be used. The designer then

selects the entity (as mentioned earlier) and clicks on the erase button and confirms

the deletion with the click of the left mouse button. Having erased the entity, the

designer proceeds to sketch the new surface. Clicking on the sketch button, once

again, the designer strokes in a curvilinear fashion [Figure 4.15]. Upon releasing the

left mouse button, the stroke is replaced with a circular arc [Figure 4.16].

Sketch Pad for Windows MCI
File Tools

0

0
1

Sketch On The Canvas Area

Figure 4.15: Arc trail

70

figure 4.16: New design

In Sketch Pad for Windows an operation can be "undone" with an undo button at any

stage in the sketching process . The redo button allows the designer to "undo" an

"undo operation".

As mentioned earlier (see chapter 1), no design has commercial value unless the

object designed can be made in a manufacturing shop. Manufacturing requires a

detailed design. Although the sketch in SketchPad for Windows is very well defined

at this stage, it lacks detailed dimensioning. Since CAD software are ideal for the

detailed dimensioning, a tool that can convert the stored design sketches into CAD

data is desirable. Although an interface to any CAD software could be generated,

communicating with parametric CAD software such as DesignView allows

refinement of the sketch. DesignView is ideally suited to address a wide range of

design problems that engineers and designers encounter during preliminary design at

the product, assembly, and component level, including:

71

* Parametric Drawing * Tolerance Analysis and Fit-up

* Piece Part Design * Mass Properties

* Geometric Studies * Assembly Modeling

* Kinematics

Design View is based on the implementation of the dimension-driven variational

geometry technology [DesignView for Windows- User's Manual] wherein a change in

the dimension reshapes the geometry without having to recalculate and redraw

everything affected by the changes. In DesignView geometry can also be constrained

with equations. Convinced of the utility in converting data into DesignView format,

a software routine that could convert sketch data into DesignView CAD data was

developed.

In order to convert the sketch data the designer clicks on the Sketch-> CAD button

which converts the sketch data into DesignView CAD data. The convertor writes an

output file "dv.dvx". The designer then clicks on the DesignView button to start

DesignView.

After the Design View application opens, the designer loads the converted drawing

(dv.dvx) with the help of the .DVX macro in the import option under the File menu

[Figure 4.17].

Although the sketch data is converted into a Design View drawing, the latter may

need modification. The designer therefore corrects the drawing using the editing

features of Design View. Having edited the drawing, the designer proceeds to

dimension the drawing.

72

Design View- Untitled a
File Edit Constrain Block View Style Set Help

/ it

a EI MI 6. '4 17 V. :":1111 Lt.-.

0...v.
_Jr. 2:.;:

T 'X,

t1,
.7,
'-.' A
X 1-0.315 Y 120.9301_44 LI
Layer i

Figure 4.17: Importing the sketch into DesignView

Upon dimensioning the drawing, DesignView draws the dimension graphics and

displays the current value of the dimension [Figure 4.18]. The designer then

specifies the exact dimensions which causes DesignView to redraw the drawing while

still maintaining all geometric constraints.

In order to represent the design relationships the designer can develop equations

which are based on DesignView's dimension-driven variational geometry technology.

Thus, any change in the equation causes DesignView to solve the equations,

dimensions, and geometry constraints and redraw the geometry [Figure 4.19].

73

Des in nView Untitled ** '
f Ile Edit constrain flock Yiew Zty1e S el lielp

E OD 611a ITI-IF is at
/ 14i-1.704-1
0.-*-­
(1.-...

T X
., ,....' 1.088

:,-' 0 /0

1 1.780 I" ,A
.----t"

X 1-0.315 Y 120.9301±1 LI 110
Layer 1 DIMENSION: Enter to end Format is 'Pabst] value lsuFfeej.

Figure 4.18: Dimensioning the drawing

o	 Design View- Untitled Oa
File Edit Constrain Block View Style
Set Help

/ A 1.500 ail
itil

0 IA =1.5
O. *" I- ,,
C.1. -....	 B=0.13%

B 1 200

T% 0
..,	 °,---)
:,-' 1.5011-9­

X 11.945 y -171;'-iii---4 U
Layer 1 Click to select. Drag to blockselect. Shift-click to addlso

Figure 4.19: Dimension driven geometry

74

Although this example refers to utilizing the dimension-driven variational geometry

technology of Design View, the designer can also solve for parameters. It is thus

clear from the above demonstration that Sketch Pad for Windows is an ideal tool for

capturing sketches from the conceptual design stage into the detail dimensioning

stage.

The Solution Library [Wood 95] allows the designer to search for design solutions

with the help of function searches. In order to capture the design sketch the designer

presses the right mouse button down in the drawing area and moves the mouse

(keeping the right mouse button pressed) so as to enclose the sketch with a selection-

rectangle [Figure 4.20]. After having enclosed the desired area with the selection-

rectangle, the designer releases the right mouse button. The sketch area enclosed by

the selection-rectangle is now captured as bitmap and is temporarily stored in the

Microsoft Windows ClipboardViewer.

.........

Sketch Pad for Windows
File Tools

iSelect

0
-

Emu F,46,1 its,

Q EE
Undo Redo

V0
Solvti Demo
Library Suppo

IS.
2 ark

Sketch4.4
I:g CAD

Sketch On The Canvas Area

Figure 4.20: Capturing sketch information

75

The designer then clicks on the Solution Library button causing the Solution Library

application to open. Opening the feature definition form, the designer pastes the

captured bitmap in the image area. The designer then defines the function verbs for

the design [Figure 4.21] and saves the information as a new entry in the Solution

Library. The design and its functionality is now recorded in the Solution Library for

use in other designs.

reiature-oluirdp

Feature ID:Feature Name : base plate

Goal-Function Primary : hold 1
Feature Shape :

)0

IG

Figure 4.21: Design capture in Solution Library

This example assumes that the designer is independently working on the design.

However, if a team of design engineers are designing the same, a tool that analyzes

the design decisions made by the designers would be beneficial for design

justification. The Decision Support system [Herling et. al. 95] , based on OREO

[Ullman 93] theory, is a tool aimed at comparing and analyzing alternative designs.

76

The Design Support system accepts bitmaps also as design information. Therefore,

the captured bitmap from Sketch Pad for Windows can be pasted into this application

just as it was done for the Solution Library.

4.4 Feature implementation

All the features of SketchPad for Windows, referred to in the demonstration above,

have been implemented with Object Windows Library (OWL 2.0), the object-

oriented Microsoft Windows application development tool-kit from Borland.

4.41 Implementing SketchPad for Microsoft Windows

The graphical user interface of SketchPad for Windows has been implemented using

the window objects of OWL. Window objects comprise of the windows, menus,

toolboxes, message bars etc., and are as shown in Figure [4.22].

The main window (TMainWnd) has been derived from the TDecoratedFrame class,

while the client window (TCanvas) has been derived from the TWindow class. The

menu, toolbox and message bar for the application is assigned to the main window

while the client window handles all the drawing utilities.

77

,Main 'Window

File Dols
New . ,

Button

Spacer Button
Menu

UW4

Client Window 1E1lia

W.I.,
Lbw,

TToolBox

MessageBar

Figure 4.22: Window objects in SketchPad for Windows

The implementation of these window objects as classes in SketchPad for Windows is

as shown in Figure [4.23].

o TMainWnd Oa
File Tools

swa Shea

TButtonGadget
TSeparatorGadget

E.. Feb*

TCanvas thAo Rccb

X */
VA*
Laay.,/

TToolBox

TMessageBar

Figure 4.23: Window classes in SketchPad for Windows

78

Upon double-clicking the Sketch Pad for Windows application icon, OwlMain starts

the sketching application. OwlMain is the Object Windows Library (OWL)

implementation of the standard main function of C and C+ + programming language

and is implemented in SketchPad for Windows as shown below.

int OwlMain (hit, char *[]){

return TDCSApp().Run();

}

Application programs written with OWL need to support at least two kinds of

objects, an application object and a window object. TDCSApp, as shown below, is

the application object that manages all the OWL objects in the program and sets the

application's message loop running in OwlMain.

class TDCSApp : public TApplication
public:

TDCSAppO:TApplication0{}

void InitMainWindow();

};

void TDCSApp InitMainWindow () {
//Construct the client "Canvas" window

TWindow *client = new TCanvas(0,0);

//Construct the main window "frame"

TDecoratedFrame *frame = new TMainWnd(0,"DCS for

Windows" ,client,TRUE);

//Set MainWindow to frame

SetMainWindow(frame);}

As can be seen from the code above, the InitMainWindow member function of

TDCSApp instantiates the window objects TMainWnd and TCanvas.

79

The TMainWnd class, which is the main window class for Sketch Padfor Windows,

has been publicly derived from the TDecoratedFrame class of Object Windows

Library as shown below.

class TMainWnd : public TDecoratedFrame{

protected:

TToolBox *toolbox;

public:

TMainWnd(TWindow *parent, const char far *title,

TWindow *client, BOOL trackMenuSelection);

protected:

//Member Functions are dermed below

//"File" menu functions

void CmFileNewO; //Open a new file

void CmFileOpenO; // Open an existing file

void CmFileSaveO; 1/ Save the current file

void CmFileSaveAs(); I/ Save the file as...

void CmExitO; / /Exit the application

/1 Toolbox button functions

void CmSketch(WPARAM Id); //Sketch on the screen

void CmSelect(WPARAM Id); //Select entity on screen

void CmErase(WPARAM Id); //Erase the entity selected

void CmUndo(WPARAM Id); //Undo the current operation

void CmRedo(WPARAM Id); //Redo the current operation

void CmModify(WPARAM Id); //Modify the entity size

DECLARE RESPONSE TABLE(TMainWnd);

Borland C+ + 4.0 version supports the RESPONSE_TABLE feature so that each

member function can be associated with an activation command message or command

identity (commonly called id). The RESPONSE_TABLE declared for the

TMainWnd class defines the functionality of the TMainWnd file and tool member

functions as shown below.

80

DEFINE RESPONSE TABLE1(TMainWnd,TDecorateffiame)
EV_COMMAND(C/v1 FILENEW,CmFileNew),
EV_COMMAND(CM FILEOPEN,CmFileOpen),
EV_COMMAND(CM FILFSAVE,CmFileSave),
EV_COMMAND(CM_FILESAVEAS,CmFileSaveAs),
EV_COMMAND(CM EXIT, CmExit),
ET_COMMAND AND_ID(CM_SKETCH,CmSketch),
EV_COMMAND AND ID(CM SPJ.ECT,CmSelect),
EV_COMMAND_AND ID(CM ERASE,CmErase),
EV_COMMAND AND ID(CM_UNDO,CmUndo),
EV_CONIMAND AND ID(CM_REDO,CmRedo),
EV_COMMAND AND ID(CM MODEFT,CmModify),

END RESPONSE

For example, clicking on the "New" menu-item in the File menu causes the

Microsoft Windows CM_FILENEW command-message to be generated. The

RESPONSE TABLE defines the member function to be associated with this

command message by the EV_COMMAND (CM_FILENEW, CmFileNew)

statement. Similarly the EV_COMMAND AND ID statement defines the member

function to be associated in response to a generated command id. For example,

when the user clicks on any of the bitmapped buttons, a specific command id is

generated. The command id to be generated when the bitmapped button is selected is

defined in the TMainWnd constructor.

The menu for the application is assigned in the TMainWnd constructor. The

TMainWnd class constructor, as shown in the code below, also handles the

instantiation of the TToolBox, TButtonGadget, TSeparatorGadget, and TMessageBar

classes.

81

TMainWnd ::TMainWnd mdow *parent, const char far *title,
Window *client, BOOL trackMenuSelection):
TDecoratedFrame(parent,title,client,trackMenuSelection){

//Create a pointer to the TButtonGadget object
TButtonGadget *bgadget;

I/Create a pointer to the TSe torGadget object

TSeparatorGadget *sgadget;

/ /Assign the menu to TMainWnd

AssignMenu(WINDCS);
I anstandate the TroolBox class
toolbox = new TToolBox(this);
//Set the hint mode for the bitmapped buttons
toolbox- > SetHintMod adgetWindow::Enterflints);
1/Instantiate the TButtonGadget object and associate command id
bgadget = new TButtonGadget(BMPSKETCH,CMSKETCH);
//Insert the instantiated button gadget in the toolbox object
toolbox- > Insert(*bgadget);
bgadget = new TButtonGadget(BMP_SELECT,CM_SRT CT);
toolbox- > Insert(*bgadget);
//Instantiate the TSeparatorGadget
sgadget = new TSeparatorGadget(iO);
//Insert the instantiated separator gadget in the toolbox object
toolbox- > Insert(*sgadget);
sgadget = new TSeparatorGadget(1O);
toolbox- > Insert(*sgadget);
bgadget = new TButtonGadget(BM:P_ERASE,CM_ERASE);
toolbox- > Insert(*bgadget);
bgadget = new TButtonGadget(BMP MODIFY,CM_MODIFY);
toolbox- > Insert(*bgadget);
bgadget = new TButtonGadget(BMP_UNDO, CM UNDO);
toolbox- > Insert(*bgadget);
bgadget = new TButtonGadget(BMP REDO,CM_RED0);
toolbox- >Insert(*bgadget);
Insert(*toolbox,TDecorateciFrame::Right);
//Instantiate the TMessageBar class
TMessageBar *mesgbar = new TMessageBar(this);
mesgbar-> SetText("Select An Option");
1/Insert the messagebar at the bottom in the TMainWnd frame
Insert(*mesgbar,TDecoratedFrame::Bottom);

}

82

The menu, WINDCS, in order to be displayed should be included in the .RC file

that is linked and bound with the executable of the .CPP file (.RC files define the

resources, .CPP files deal with Object Windows Library code and the .DEF file

defines the Windows definition file). The implemented menu supports tracking so

that when the user moves the mouse over the different menu items, it generates the

respective user messages in the message area.

The TButtonGadget is instantiated with the appropriate bitmap file and associated

with the respective command id. The instantiated TButtonGadgets and

TSeparatorGadgets are inserted into the TToolBox object, which is instantiated in the

TMainWnd object. TMessageBar, the object that prompts user messages, is

instantiated and inserted at the bottom of the TMainWnd object.

TCanvas, the drawing area or canvas (as it is called in the graphics industry) is

publicly derived from the OWL TWindow class as shown below. TWindow

provides window-specific behavior and encapsulates many Windows API functions.

class TCanvas : public TWindow {
protected:
//Boolean parameters to check state of mouse button, //drawing and
modification button selected.

BOOL lbuttondown,rbuttondown;
BOOL Sketch,Select,Erase,Undo,Redo,Modify;

1/Pointer to a TPen object
TPen *pen;

liSketchDC is the Device Context for Sketching
1/CaptureDC is the Device Context Bi Capturing
TClientDC *SketchDC, *CaptureDC;

1/CopyRect is the rectangular area copied as a bitmap
TRect CopyRect;

//Pointers to TObjectList, TObject, TListNode objects
TObjectList *List;
TObject *RedoObject;

83

//Point, number definitions for sketch recognition

TPoint Begin, End, AppxBgn, AppEnd;

int Num_Of Points;

//Statistical v les

long double sigx,sigy,sigxy,sigx2,sigy2,Xpt[1000],Ypt[1000);

long double meany,totalvar,unexpvar,minx,miny, maxx,maxy;

double det,radius,value; //Determinant and radius variables

//Slope,intercept and coeff of correlation for line

float a,b,coeff of corr;

PILE *fp;

public:

TCanvas (TWindow *parent, const char far *title);
TCanvas(){ delete pen; delete SketchDC; delete CaptureDC; delete List;

delete RedoObject; delete HiliteNode;}
protected:

void EvLl3uttonDown(UINT, TPoint &point);

void EvLButtonUp(UINT, TPoint &point);

void EvLButtonDb1C1k(UINT, TPoint &point);

void EvMouseMove(UINT, TPoint &point);

void EvRButtonDown(UINT, TPoint &point);

void EvRButtonUp(UINT, TPoint &point);

void Paint(TDC &PaintDC, BOOL, TRect&);

LRESULT PmStatus(WPARAM number, LPARAM);

DECLARE_RESPONSE_TABLE(TCanvas);

As can be seen from the definition of the TCanvas class, the class supports data and

member functions that aid drawing and editing functions. The member functions,

performing drawing and editing tasks, have been declared using the

RESPONSE TABLE. Since each mouse button performs various operations in the

application, boolean parameters are used to distinguish the operations. The data

members of TCanvas class consists of statistical variables which are used for entity

recognition and pointers to the link list objects (TObjectList, TObject and

TListNode).

Sketches on the window need to be stored. Commonly used storage data types are

arrays and link lists. Since arrays require allocation of memory before running a

84

program, a link list that allocates memory as and when needed, has been used to

store the drawing data. Unlike arrays, link lists do not allocate memory contiguously

and can be scattered everywhere. Therefore in order to maintain connectivity of data

a pointer to the next data is specified [Figure 4.24].

TObjectlJst

Head lc Data

Pointer to links (TlistNodej
next link

Figure 4.24: Link list

TListNode, the object representing the individual links in the link-list, stores the

drawing object data and a pointer to the next object data as shown in the code below.

85

class TListNode{

friend class TObjectList;

friend class TObjectListlterator;

public:

TListNode *Next; //Pointer to next object

TObject *ListObject;//Current object

public: //Constructor

TListNode(TObject *Obj,TListNode *N=0){

ListObject=Obj;

Next =N;

}

void Draw(TDC &DevCon){ //Member functions

ListObject-> Draw(DevCon);//to draw when Wind

}

void HiLite(TDC &DevCon) {

ListObject -> HiLite(DevCon);

}

1;

TObjectList, the link list of objects, performs the operations of adding, inserting,

traversing and deleting the list nodes and is shown in the code below.

86

class TObjectList

friend class TObjectListIterator,

protected:

TListNode *Head;

virtual TListNode* Dolnsert(TObject* Obj, TListNode* N)

{ return new TListNode(Obj, N);
virtual TListNode* DoAppend(TObject* Obj, TListNode* N);
virtual TListNode* DoDelete(TObject* Obj, TListNode* N);

public:

TObjectListO{ Head =O;}

TObjectList();
void Insert(TObject *Obj) { Head = Dolnsert(Obj, Head);
void Append(TObject *Obj) { Head = DoAppend(Obj, Head); }
void Del(TObject *Obj) { Head = DoDelete(Obj, Head); }
void Traverse(TDC SeDevCon);

void BoundingRect(TPoint TopLeft, TPoint BottomRight);

TListNode* SelectedObject(TPoint P);

TListNode* UndoNodeO;

int GetObj 0;

};

Once the list is created, it's easy to step through all the members, displaying them

(or performing other operations). The iterator class, TObjectListlterator, performs

this function and is defined as shown below.

87

class TObjectListIterator{

TListNode* Objptr;

public:

TObjectListiterator(TObjectList& List) {

Objptr = List. Head;

}
TObject* operator()0 {

TObject* Obj = Objptr ? (Objptr- > ListObject) : 0;

Objptr = Objptr ?

Objptr- >Next : 0;

return Obj; }

1;

TObjectList stores the sketch information on the screen in the form of drawing

objects. Drawing objects in the application consist of lines, circles and arcs. These

drawing objects are implemented as TLine, TCircle and TArc classes respectively.

These classes have been derived publicly from the parent TObject class as shown in

Figure [4.25].

4111. 1111111:10 41711.

Figure 4.25: Class hierarchy

88

TObject, the parent drawing object class shown below, stores the object type and its

bounding rectangle, calculates the object's distance from a point, checks whether a

point is within an object's boundary, highlights a selected object and draws the object

whenever Microsoft Windows sends a WM_PAINT message.

class TObject {
private:

//To store the object type (LINE,ARC,CIRCLE,N LIM etc)

int Obj ,

public:

TObject(}{} I/ No argument constructor

TObject(int Type){ ObjType=Type;} //Single argument constructor

//M r Functions

virtual int GetObjTypeO { return Obj ;}

virtual void SetObj (int Type){ ObjType=Type;}

//Stores the bounding rectangle

virtual void BoundingRect(TPoint, TPoint){}

//Check distance from point clicked to the center of the entity

virtual double Distance(TPoint){}

I/Checks whether the clicked point lies in bounding rectangle

virtual BOOL Contains(TPoint){}

Illiiiites when an entity is selected

virtual void HiLite(TDC &DevCon) {}

//Modify the size and shape of entity

virtual void M ('Point) {}

I/Draws the entity

virtual void Draw(TDC &DevCon){}

1;

The member functions of the derived (TLine, TCircle and TArc) classes over-ride

the virtual functions of the base TObject class. As an example, the virtual void

Draw(TDC &DevCon) member function of the TLine class is used to repaint the

window with a line object whenever Microsoft Windows sends a WM_PAINT

message to the TCanvas object and is shown in the code below.

89

void TLine::Draw(IDC &DevCon){

DevCon.MoveTo(FirstCom);

DevCon.LineTo(SecondCorn);

}

However, when the window needs to be repainted with a circle object, the virtual

void Draw(TDC &DevCon) member function of TCircle class is called as shown in

the code below.

void TCircle Draw(TDC &DevCon)

DevCon.FIlipse (First Corn, Second Corn);

}

It is worth mentioning here that since the Windows API function does not support a

Circle function, the Ellipse function defined by a bounding square is used. It can be

seen from the above example that by deriving the Mine, TCircle and TArc class

from the parent TObject class we are able to extend the functionality of the member

functions derived for each of the derived classes.

4.42 Recognition Algorithm

SketchPad for Windows recognizes the design intent of the designer and replaces the

mouse trail with the respective CAD entity. The recognition algorithm in SketchPad

is largely based on the simple and popular least-squares curve fitting algorithm.

The sampled (x,y) points from the mouse are fed into the least-squares model. The

relation between the y coordinates and x coordinates is then determined and

expressed as coefficient of determination (Very often in regression analysis the

dependent variable is not completely explained by the independent variable and there

is explained and unexplained variation. The explained variation is called as

90

coefficient of determination). A coefficient of determination of 1 indicates that all of

the variation in the independent variable is explained by the dependent variable.

However, a coefficient of 0 indicates none of the variation in the independent

variable is explained by the dependent variable.

The use of the coefficient of determination in recognizing the CAD entity can be

represented as shown in the table below.

Coefficient of Meaning Algorithm to use

determination (r2)

0.995 < (12) < 1 Line	 Linear regression

(r2) < 0.995 Circle/Arc	 Calculate included

angle and center

Table 4.1: Recognition parameters

The sketch recognition process can be summarized as shown in the Figure [4.26].

The recognition value of 0.995 has been used to compensate for the slow sampling

rate of the system.

91

Sk tch <

)isplay ArcIDisplay circle Calculate

Calculate coefficient of

I centre & determination
 'Display Linel
Perform least radius it 21squares on data Puo -----4.	 I

Perform linearI Yes	 Are endpoints _No 1 Yes

very close? '''' I Er q>0.995 I regression

Figure 4.26: Sketch recognition algorithm

4.43 Communicating with other applications

As mentioned earlier in the chapter in the example, SketchPad for Windows

communicates with other Microsoft Windows applications such as Solution Library,

Decision Support system and DesignView.

SketchPad for Window communicates with Solution Library and Decision Support

system by allowing the user to copy some portions or all of the sketch data as a

bitmap with the OWL Clipboard object. Implementing the clipboard function allows

the user to copy bitmaps into any Microsoft Windows application supporting

clipboard cut and paste functions.

The current version of SketchPad for Windows communicates with DesignView for

Windows by converting the sketch data into the .DVX format of DesignView. The

.DVX file format is determined by saving a DesignView file in that format and then

92

viewing its contents. The .DVX file consists of a set of setup commands, points

information, information of the entity defined by those points, and a set of

termination commands. Having analyzed the .DVX file format, a convertor was

developed that scanned the sketch file data and wrote a .DVX

93

5. Conclusions

5.1 Summary

The Sketch Pad for Windows application is an ideal sketching tool to assist the design

engineer in the design process by capturing back-of-the-envelope sketches.

Developed for the Microsoft Windows environment, SketchPad for Windows offers

the following to the designer/engineer:

1) A transparent graphical user interface for sketching and editing

Figure 5.1: Transparent graphical user interface

With this graphical user interface [Figure 5.1], the design engineer no longer needs

to wade through a hierarchy of menus as in the case of CAD software.

94

2) A sketching environment similar to the pencil and paper environment.

The user sketches as he would sketch on a piece of paper and the sketch recognition

algorithm (described in section 4.42) recognizes what the user intended. The

impressive feature of the recognition algorithm is the fact that sketches are corrected

as they are drawn.

o SVelchl=21:1 1(r M. 11 I).,s !Ilttrhrad fmrWinda,a, OEBic Dads
File	 Dols

.

Kit
W.	 M.

tit ETE1
Ulm. *grow

el*	
RP

Sketch On The Cancan AreaSketh On The Canvas Ives

Figure 5.2: Linear trail	 Figure 5.3: Line recognition

As can be see from the figures above, the user strokes [Figure 5.2] in a linear

fashion keeping the left mouse button down and upon releasing the left mouse button,

a line entity is displayed [Figure 5.3]. The recognition algorithm recognizes the

design primitives (line, circles, arcs) topology from the trail of pixels. Therefore, the

user no longer has to think in terms of representing the design topology as lines,

circles, or arcs. The strokes that the user makes represent design decisions and the

software stores them as lines, circles, and arcs.

3) A sketching tool that assists the designer in the design process

SketchPad for Windows is integrated with the Solution Library [Wood 95], Decision

95

Support system [Healing et. al. 94] and Design View parametric CAD software. The

user can sketch design solutions in the sketching application, look for other possible

designs with the help of function searches in the Solution Library, store the design

sketch as a design issue in the Decision Support system for further evaluation and

perform detail and parametric designing with DesignView.

As an example, the user can sketch some designs on Sketch Pad for Windows. The

user then decides to look for existing designs for the part functionality that he/she is

looking for. In order to do so, the user uses the function based search of the

Solution Library. Upon locating the required design, the user then modifies the

current sketch based on the ideas from the retrieved design. After defining the

sketch completely, the user copies the new sketch information with the clipboard

feature and pastes it into the Solution Library as a new entry and adds the search

functions to it. On the other hand if the user wanted to compare the design sketches

made by a team of design engineers, he/she could use the Decision Support system

for evaluation. If the user wished that his/her design idea be also recorded as an

issue, the bitmap image of the sketch could be pasted into the Decision Support

system. As can be seen from the explanation and from Figure [5.4], the integration

of SketchPad for Windows, Solution Library and Decision Support system would

comprise a design capture system; a tool ideal for the conceptualization stage.

Manufacturing requires that the design sketches be detailed. Therefore, the user can

also transfer the sketch from SketchPad for Windows into DesignView CAD format

using the convertor built into the application. Currently the convertor offers

interface to DesignView in the form of DesignView Exchange Macro (.DVX

format).

96

Sketch Pad for Windows

Sketch Designs

onvert
sketche

Sketch

Decision Support

Dedsion Analysis
on design decision

Conceptual
Design- Stage

CompareSearch

Figure 5.4: Design Capture System

5) Ability to save and recall sketches

The sketching applications by Fang [Fang 88] and Hwang [Hwang 91] did not allow

the user to perform file operations on the sketch. An error occurring in the code

meant that the code would crash and the sketch data would be lost. Valuable design

sketches would thus be lost. Moreover the ability to perform file operations on the

design sketches meant that the user could retrieve previous sketches and work on

them.

Therefore, file opening and saving operations were implemented in Sketch Pad for

Windows. Currently, the application can perform file operations on files stored in

the SketchPad for Windows format.

4) A powerful sketching tool for the Microsoft Windows environment

97

The most popular hardware in the real world is the PC (personal computer).

Currently most PC's support Microsoft Windows 3.1. Therefore, application

vendors are developing more and more applications on the Windows platform. Even

UNIX based applications are being re-written for the Microsoft Windows

environment. Although the current version of Sketch Padfor Windows does not

support DDE (Dynamic Data Exchange), the code can be enhanced to support DDE.

SketchPad for Windows, as mentioned earlier, has been written in C+ + in the form

of modules. SketchPad for Windows offers the following to the application

developers intending on extending the features implemented in this code:

1) A modular program

The code for SketchPad for Windows, has been written in Borland C+ + using the

principles of object-oriented programming. The utility (see chapter 3.1) of object-

oriented programming lies in the fact that the program is organized allowing non-

programmers to understand and comment on the code. The modular programming

approach incorporated makes room for re-use of the application code in future work

with principles of inheritance. The modular nature of the code allows modification

of the portions of the code without affecting the rest of the code.

This sketching application has been targeted for the 2D sketching environment. The

object-oriented nature of the code allows the program to be extended to a 3D

environment also.

2) A sketching application that is not restricted to a particular system configuration.

SketchPad for Windows runs on any hardware that supports Microsoft Windows 3.1

The application developer no longer hasand higher versions of Microsoft Windows.

98

to worry about the device drivers as Microsoft Windows supports a host of device

drivers.

5.2 Limitations of Sketch Pad for Windows.

SketchPad for Windows is an application that mimics the pencil and paper

environment. The user sketches as he would sketch on a piece of paper and the

recognition algorithm within the application recognizes the entity topology and

replaces the pixel trail with an appropriate CAD entity. The recognition algorithm,

as explained earlier, is based on the simple linear regression analysis model. The arc

algorithm is dependent on the sampling of point for the stroke. If the points are not

sampled properly, the recognition algorithm fails.

The current version of SketchPad for Windows works on IBM systems supporting

Microsoft Windows 3.1 with the mouse as the locator device. This is not an ideal

operating environment as it does not really mimic the pencil and paper environment.

With the mouse and the screen, strokes are not controlled and the user does not get

the feel of the drawing paper as he/she would do when drawing on a piece of paper.

The ideal operating environment is the pen based hand-held computer from NCR

(refer to the section on recommendations for future research).

The current version of SketchPad for Windows does not support:

* Printing of sketches.

* Capture of geometric (tangency, perpendicularity etc.) and spatial (whether one

entity is within another etc.) intent.

* Zoom and pan features.	 Since sketches need to be refined before being converted

into CAD systems, it is desirable to have zoom and pan features for entity

modification.

* Entering textual information.

99

5.3 Recommendations for future research

The primary aim of this thesis was to develop an intelligent and interactive sketching

application for the Microsoft Windows application with a transparent user interface.

The user interface designed for the Sketch Pad for Windows application is consistent

with other Microsoft Windows applications. Since the user interface has now been

defined, future work on SketchPad for Windows should be directed at improving the

algorithm for entity recognition rather than on the user interface.

Efforts should also be made to implement the application on Pen Windows, the

Microsoft Windows for pen based computers. Since the graphical user-interface for

Pen Windows is consistent with that of Microsoft Windows 3.1, research in the area

of implementing SketchPad for Windows on Pen Windows should be pursued. In

order that SketchPad for Windows be easily extended to the pen based system, most

of the sketching and editing features in the current version of Sketchpad for Windows

have been implemented with the left mouse button. This greatly reduces the work

for the future development team.

The future versions of SketchPad for Windows should support:

* Recognition of spline entities and continuous strokes comprising lines and arcs.

* Geometrical and spatial constraint intent capture.

* A better interface for erasing entities.

* Sketching on an isometric plane so as to support 3D object recognition.	 The

sketched 3D objects should be recognized as standard part features. Commercially

available CAD/CAM software development tool kits could be used to incorporate

the features mentioned above.

* Conversion of sketches into any CAD software either through IGES (Initial

Graphics Exchange Specification) or DXF (Data Exchange Format).

100

Bibliography

[Bally 87] J. M. Bally, "An Experimental View of the Design Process", System
Design: Behavioral Perspective on Designers, Tools, and Organizations, Rouse, W.
B. and Boff, K. R., editors, North-Holland, New York, 1987, pp. 65-82.

[Budd] T. Budd, "Thinking Object-Oriented ", An Introduction to Object-Oriented
Programming, Addison-Wesley Publishing Company, 1991, pp. 4.

[De Jong 83] P. S. De Jong, J. S. Rising, and M. W. Alinfeldt, "Freehand drawing",
Engineering Graphics- Communication, Analysis, Creative Design, Kendall/Hunt
Publishing Company, Dubuque, Iowa, 1983, pp. 13.

[Faison 91] T. Faison, "Objects and Classes", Borland C ++ 3 Object-Oriented
Programming, SAMS, Carmel, Indiana, 1991, pp. 62-66.

[Fang 88] R. C. Fang and D. G. Ullman, Free-hand: A sketching recognition system
for conceptual mechanical design, Report, Design Process Research Group, Oregon
State University, Corvallis, OR 97331, 1988

[Goldstein and Alger 92] N. Goldstein and J. Alger, "The Folklore of Object-
Oriented Software Development ", Developing Object Oriented Software for
Macintosh, Addison-Wesley Publishing Company, Inc., 1992, pp. 52.

[Gulur 92] S. Gulur, Personal observations, CAD/CAM Division, Godrej and Boyce

Mfg. Co. Ltd., India.

[Herbert 87] D. Herbert, "Study Drawings in Architectural Design: Applications for
CAD Systems", Proceedings of the 1987 Workshop of the Association for Computer-
Aided Design in Architecture (ACADIA), 1987.

[Herling et al. , 94] D. Herling, D. G. Ullman, and B. D'Ambrosio, Private
communications, Mechanical Engineering Department, Oregon State University,
Corvallis, OR 97331, 1994.

[Hwang 91] T-S. Hwang, The Design Capture System: Capturing Back-of-The-
Envelope Sketches, PhD thesis, Department of Mechanical Engineering, Oregon State
University, Corvallis, OR 97331, 1991.

[Iwata et.al. 87] K. Iwata, N. Sugimura, and W. Lee, "Knowledge-based recognition
of hand-written drawings for product modeling in machine design", Expert Systems in
Computer-Aided Design, Gero, J. S., editor, North-Holland, The Netherlands, 1987,

pp. 375-401.

101

[Jenkins et.al., 92] D. L. Jenkins and R. R. Martin, "Applying constraints to enforce
user's intention's in free-hand 2D sketches", Intelligent Systems Engineering, Autumn

1992, pp. 31-49.

[Kasturi 90] R. Kasturi, S. T. Bow, W. El-Masri, J. Shah, J. R. Gattiker, and U. B.
Mokate, "A system for interpretation of line drawings", IEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 12, No. 10, 1990, pp. 978-992.

[Knowlton 77] K. W. Knowlton, R. A. Beauchemin, and P. J. Quinn, Technical
Freehand Drawing and Sketching, McGraw-Hill Book Company, 1977, pp. 5-7.

[Lafore 93], R. Lafore, "Event-Driven Programming ", Windows Programming
Made Easy, The Waite Group, Corte Madera, CA, 1993, pp. 65.

[Luzzader 75] W. J. Luzzader, "Fundamentals and techniques of communication
graphics", Innovative design with an introduction to design graphics", Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1975, pp. 91-93.

[McCord 92] J. W. McCord, "Windows Programming Basics ", Developing
Windows Applications with Borland C ++ 3.0, SAMS, Cannel, IN, 1992, pp. 13.

[Rittel 73] H. W. Rittel and M. M. Weber, "Dilemmas in a general theory of
planning", Police Science, Vol. 4, 1973, pp. 155-169.

[Ryan 90] D. L. Ryan, "Symbolic Sketching", Technical Sketching and Computer

Illustration, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990, pp. 14-28.

[Suffel 89] C. Suffel and G. N. Blount, "Sketch form data input for engineering
component definition, Geometric Reasoning, Woodwark, J., editor, Oxford
University Press, 1989

[Sutherland 63] I. E. Sutherland, Sketchpad: A Man Machine Graphical
Communication System. PhD thesis, Massachusetts Institute of Technology, 1963.

[Ullman 90] D.G. Ullman, S. L. Wood, D. Craig, "The Importance of Drawing in
the Mechanical Design Process", Computer and Graphics, Vol 14, No. 2, 1990 pp.

263-274.

[Ullman 92] D. G. Ullman, "The Conceptual Design Phase: Concept Generation",
The Mechanical Design Process, McGraw-Hill, Inc., 1992, pp. 158-159.

[Ullman 93] D.G. Ullman, "The OREO model of the Mechanical Design Process and
Product", unpublished draft, Oregon State University, Corvallis, OR 97331, 1993

102

[Waldron et.al., 88] M. B. Waldron and K. J. Waldron, "Conceptual CAD tools for
mechanical designers", Proceedings of Computers in Engineering conference,

Patton, E. M., editor, Computers and Graphics, volume 2, 1988, pp. 203-209

[Walnum 94] C. Walnum, "The Object Windows Classes ", Object-Oriented
Programming with Borland C+ + 4.0, Que Corporation, Indianapolis, IN, 1994, pp.

13.

[Wood 95] S. L. Wood, An Architecture for a Function Driven Mechanical Design
Solution Library, PhD thesis, Department of Mechanical Engineering, Oregon State

University, Corvallis, OR 97330, 1995.

