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Angular Correlation Measurements from the /3 Decay of lo6mHo and '66Tm and the

Properties of the Gamma Vibrational Band in 166Er

1. Introduction

1.1. Motivation

The nucleus, shrouded by a cloud of electrons, remains in many ways somewhat

mysterious to scientists. After years of study, with great successes along the way, many

of the theories about the behavior of the nucleus remain highly phenomenological in

nature. As radioactive elements become a common part of modem medicine,

cosmological questions probe the first moments of the universe and humanity's scientific

curiosity leads us to explore other worlds, a complete understanding of the interaction

between many protons and neutrons in a nucleus still eludes us. Thus, despite the highly

abstracted and seemingly detached natu:re of nuclear structure studies, understanding

these basic building blocks of nature remains a key to our scientific development.

A particular group of nuclei that holds special interest for nuclear physicists is

that in which the nucleus is non-spherical. In this region the excitations of the nucleus

take on a different character, exhibiting collective excitations in which the nucleus as a

whole expresses its energy in rotations and vibrations. The study of these nuclei informs

our basic understanding of the structure of the nucleus and the interactions present there.



2

In this study we examined the radioactive fi decays of both loGmHo (FT = 7_,

= 1200 y' Q = 1854 keV) and '66Tm (FT = 2, t, = 7.7 h, Q = 3040 keV) to the

stable nucleus '66Er. The '66Er nucleus sits at the center of the so-called deformed region

and is the best of a few examples of nuclei with even numbers of both protons and

neutrons in which the collective excitations of the nucleus dominate its behavior in a

clear manner. The two decays explored here feed the states of 166Er in very different

ways, populating many of the excited states of the ground and gamma-vibrational bands.

The gamma rays emitted by the de-excitation of these levels offer numerous opportunities

to study the interactions between the two rotational bands. For these reasons 166Er has

long stood as a favorite test for theories hoping to explain these interactions.

This work was motivated by the need for a study that uses both decays to

investigate the properties of 166Er in a comprehensive and coherent manner. Such a study,

using both decays in the same work, has not been undertaken since the late 1960s, in

which time great strides have been made in detector technology. The recent availability

of large detector arrays, such as the Sir array used in this study, offers an opportunity to

perform gamma-ray spectroscopy experiments with unprecedented accuracy. The

electronics of such an array allow us to do specific coincidence gating with software after

the data has been collected, allowing for much more flexibility than the older method of

using hardware coincidence gates.

The primary focus of this work is the measurement of the 8(E2/M1) mixing

ratios for the gamma-to-ground transitions in '66Er. These quantities represent sensitive
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tests for the various theories that apply to this nucleus. With only a couple of exceptions

previous measurements of these mixing ratios in 166Er were based on only a few gamma

rays and used methods that leave doubts about the best values for these quantities.

1.2. Summary

In this work we present the basic theories behind angular correlation

measurements of deformed nuclei. As this work is primarily experimental in nature, a

comprehensive treatment is not presented. We start with a description of the multipole

theory of electromagnetic radiation and its connection to selection rules and angular

correlation theory in nuclear decay. This is followed by a discussion of collective motion

in deformed nuclei, including predictions of mixing ratios that can be done using the

basic rotational model. We then describe band-mixing theory and its effects on the

mixing ratio predictions. Finally a brief description of the interacting boson

approximation (IBA), which is the leading microscopic model for deformed nuclei, is

given. No [BA model calculations are presented in this work, but it bears mentioning as

the leading competing theory for description of these nuclei.

After this theoretical groundwork has been laid we turn to a discussion of the

previous work that has been done regarding these decays and their daughter, '66Er. This

discussion is broken down into several sections based on the type of experiment and the

goals of the measurements.

Next we offer a detailed explanation of the experimental equipment, radioactive

sources, and data processing and analysis methods used in this experiment. In particular



we offer a discussion of the ways in which 8(E2 / Ml) mixing ratios were extracted in

this work. It is our opinion that this discussion could promote a more effective method for

extracting these values in future experiments.

Experimental results for ten mixed-multipolarity gamma-to-ground transitions are

presented, as well as three intra-gamma-band mixing ratios, two of which have not been

previously measured. We also present the results of band-mixing analyses being carried

out by other members of this group, as they have some bearing on our discussion.

Finally, these results are compared with previous experiments as well as with both

simple and complex theoretical calculations. The systematics of our measurements are

explored within the structure of the basic models.



2. Gamma-Ray Spectroscopy in Nuclear Physics

In the study of the nucleus perhaps the most common method is the study of the

gamma rays emitted when a nucleus transitions from one state to another state of lower

energy. When this energy is released in the form of a gamma-ray photon we are given a

direct glimpse into the structure of the nucleus.

Each nuclear state can be described by the good quantum numbers J and r. Here

we use J to represent the total of the intrinsic and orbital angular momentum of all the

nucleons. We will refer to J as the "spin" of the nuclear state. As with any quantum

mechanical angular momentum, the total spin J has a projection quantum number M,

representing the projection of J on some arbitrary lab axis. The parity of the state, r, is

also a good quantum number, and can be either positive or negative. In a nuclear

transition both the initial state J,' and the final state J have definite angular momentum

and parity, therefore it is useful to represent the gamma ray that connects in a manner that

also has definite angular momentum and parity.

2.1. Multipole expansion of electromagnetic radiation

In general a photon, and the electromagnetic field that it represents, does not have

a definite angular momentum. In order to describe photons for which angular momentum

is a good quantum number we must use the multipole expansion of electromagnetic

radiation.



Following the method of Jackson [1] we assume the electric and magnetic fields

have a sinusoidal time dependence and start with Maxwell's equations in a source-free

region

VxE=ikB VXB=ikE 21
\7.E=O v.i=o

By eliminating B from these equations we can see that the scalar quantity i.E must

satisfy the Helmholtz wave equation

(V72 + k2)(F.E) = 0

The general solutions to this equation are given by

(2-2)

= {Ah' (kr) +A2h2 ( kr)]Y (0,0) (2-3)Lm L
L,m

where the coefficients A and A are given by boundary conditions, the h(kr) are the

Hankel functions and the
Lm (0,0) are the spherical harmonics. Using this solution for

r.E in Equation (2-2) we then follow a similar path for B. The general solution to

Maxwell's equations in term of a multipole expansion is then given by

= [a(L, m)fL(kr)XLm kaM (L,m)Vx gL(kr)XLm]
L,rn

(2-4)
= [faE(L,m)Vx fL(kñXLm + a (L,m)gL(kr)XLflJ

L,m

where aE (L, m) and aM (L, m) give the contributions of electric-type and magnetic-type

multipole radiation (also known as transverse magnetic and transverse electric fields

respectively). The radial functions fL (kr) and g (kr) are linear combinations of the

Hankel functions and the X are the normalized vector spherical harmonics
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1 -X(O,Ø) = LY(O,Ø) (2-5)
jL(L+l)

The importance of this expansion is that it offers a way to describe

electromagnetic fields that have definite angular momentum. Separating the electric-type

and magnetic-type fields offers the further refinement of an electromagnetic field with

good angular momentum jj good parity. It can be shown that the two types of radiation

have opposite parities for the same multipole order L, with the parity calculated as

for electric type radiation and as (.1)L+1 for magnetic type. Since L = 1 radiation comes

from a fluctuating dipole moment we refer to L = 1 as "dipole radiation". Similarly L = 2

is called quadrupole radiation, etc. As a short hand notation we refer to the type of the

radiation and the angular momentum; e.g. E2 is electric quadrupole radiation, ML refers

to magnetic radiation of angular momentum L, etc.

Now that we can describe a gamma ray with a definite angular momentum, we

can state that the angular momentum of the gamma ray must be able to connect the total

angular momentum of the initial and final nuclear states. In other words J1 = L + Jf must

be a valid vector equation. This can be stated as one of the basic "selection rules" for

nuclear transitions; only multipoles that are greater than or equal to the spin difference

between the states can be emitted for a certain nuclear transition, i.e. L J. J. Note

that monopole-type (L = 0) radiation is not possible in gamma rays because photons are

spin 1 particles, restricting them to dipole or greater multipole orders.



This selection rule can be combined with the parity properties of the multipole

orders to generate the basic multipole selection rules, summarized in Table 2-1.

Table 2-1: Selection rules for gamma ray transitions in the nucleus.

Allowed radiation types
Parity Change (as permitted by LJJ J4)

Lir=yes E1,M2,E3,...

A7r=no M1,E2,M3,...

2.2. Emission probabilities of multipole orders

A useful way of predicting the relative probability of emission for different

radiation types and multipole orders in nuclear transitions comes from the Weisskopf

estimates [2]. These estimates are not intended to predict experimental results directly,

but rather to give us an estimation tool for relating multipole orders in nuclear transitions.

To arrive at these general estimates we must make simplifying assumptions about the

matrix elements that describe the transition between the initial and final nuclear states.

Starting from Fermi's Golden Rule we can derive an expression for the probability of

emission of a gamma ray of type oL where o is E or M and L is the angular momentum of

the gamma ray.

2(L+1) E'2'
2(aL) =

s0lfl(2L + 1)! !]2 _J
(JfMf M (crL)I J1M) (2-6)



Here M (crL) is the operator that connects the initial and final states and creates a gamma

ray of the appropriate angular momentum and parity. In this equation the factors in front

of the matrix element stem from the density of states considerations in Fermi's Golden

Rule. Note that the probability of emission is often refened to as the "intensity" in

nuclear physics.

Since our knowledge of specific nuclear wave functions is extremely limited we

first assume that the initial and final nuclear wave functions are those of a single proton,

transitioning between shell model states (the shell model is discussed in Section 3.1). To

treat the electric-type radiation we assume that the electric moments of the nucleus come

solely from the single orbiting proton. Additional simplifying assumptions, such as

assuming the radial portion of the wave function is constant inside the nuclear radius and

zero outside, and that the angular portion of the matrix element integral is approximately

unity, lead us to the following transition probability for electric radiation of multipole

order L.

2(EL)
8,r(L + 1) e2 ('E (_____

L[(2L+1)!!]2 4e0ch
cR

c L+3
(2-7)

where E is the energy of the emitted photon in MeV, R is the mean radius of the nucleus,

and the other quantities are familiar physical constants. Similar assumptions and

approximations for the magnetic-type transition probability of multipole order L yield

8ir(L + 1)
(

1

2

e2 E
\2L+1

( cR212 (2-8)2(ML)
L[(2L+1)!!]2 L+lJ 4sohchcJ L+3)

where is the magnetic moment of the proton in units of nuclear magnetons.
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We can then use R R0AX to calculate these transition probabilities for the

lowest multipole orders of radiation in terms of the mass of the nucleus in question and

the energy of the photon emitted. The results of these calculations can be summed up

with a few general guidelines.

For a given type of radiation (E or M) increasing the multipole order by one

decreases the probability of emission by a factor of roughly i0.

. In medium and heavy nuclei electric-type radiation will be emitted more often

than magnetic-type radiation of the same multipole order by a factor of about

100.

From these basic estimates we can calculate the amount of competition between

different multipole orders in medium and heavy nuclei:

2(M2) 2(M2) A(M1) = 105102 = io for zir = yes
2(E1) 2(Ml) 2(E1)

2(E2) 2(E2) A(E1) = 10510+2 = io for A,r = no
2(M1) 2(E1) 2(M1)

From these calculations we can see that the lower multipole orders dominate easily under

most circumstances and that M2 radiation is fairly rare. Similar calculations for octupole

(L = 3) radiation shows that this multipole order competes with lower orders only under

extremely rare circumstances. Thus, in medium and heavy nuclei most observed gamma

rays will have characteristics of El, Ml or E2 radiation.

In addition to these basic estimates it is known that the emission of electric

quadrupole radiation, E2, is often enhanced by nuclear structure effects, such as
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collective motion of the nucleus. Thus, the iO3 ratio calculated for E2IM1 competition

above can be increased by many orders of magnitude. We will discuss in the following

sections the ways in which we can experimentally discriminate between different

multipole orders and measure the competition that occurs in actual nuclei.

When we are interested in comparing theoretical transition probabilities with

experiment the Weisskopf estimates are too simplified to suffice. Without making the

simplifying assumptions inherent in the Weisskopf estimates we can instead define the

reduced transition probability [3]

B(aL,
2J+ 1MM

(f1 M1 M(aL)I J1M1) (2-9)

Using the Wigner-Eckart theorem to remove the dependence on M we can also write the

B(oL, J1) in terms of the reduced matrix element.

B(L,J -* J1) 1

IIM(L)IIJ1) (2-10)
2J1+1'

The usefulness of the reduced transition probability, B(aL), as opposed the total

transition probability, Equation (2-6), is that it allows us to compare transition strengths

between two gamma rays without the influence of the E2'' or the M dependent

geometrical factors. Thus B(uL) gives us a direct glimpse at the nuclear wave functions

that are connected by the radiation in question. When comparing theoretical models to

experiment the B(crL) can be a valuable tool. The total transition probability is now

given by
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2(L+1) 1E 2L1

2(oL)=
s0hL[(2L+1)!!]2 j-J B(L) (2-11)

Note that this transition probability is now summed over the possible initial and final M

substates, unlike that given in Equation (2-6).

2.3. Internal conversion

Instead of emitting a gamma ray to get rid of its excess energy, the nucleus may

instead interact with an electron in one of the lowest electronic shells. In this interaction

(sometimes described by a virtual photon) the electron is ejected from the atom with a

kinetic energy equal to the energy difference between the nuclear levels minus the

binding energy of the electron. This interaction is the only way for electric monopole

(EO) radiation to occur and is therefore the only mechanism allowed for transitions

between f = O levels in the nucleus. Internal conversion also competes with gamma-ray

emission in all other transitions but the probability for internal conversion drops off very

quickly at higher energies [2].

The degree to which internal conversion competes with gamma-ray emission is

characterized by the internal conversion coefficient

2a = (2-12)

where 2e is called the partial decay probability and represents the probability that a

particular level will decay by internal conversion of an electron. Similarly, A7is the

partial decay probability for emission of a gamma ray (which is a sum of expressions like
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Equation (2-6)). Combining the partial decay probabilities gives the total decay

probability, 2 + 2' which is related to the half-life, t,,,, of that particular nuclear

level by

A.
0.693

2

(2-13)

The relative transition probability for internal conversion processes can be calculated

with high accuracy based on the well understood electronic wave functions. Thus, the

internal conversion coefficient for competition with a particular multipole order of

gamma emission can be calculated and compared with experiment. This is one of the

methods for experimentally determining the multipole order of a particular gamma ray,

which in turn is one of the methods for determining the spin and parity of the nuclear

energy levels.

2.4. Angular correlation of gamma-rays

For the purposes of this study the most important consequence of the multipole

representation of the electromagnetic field is the angular distribution that occurs for

different multipole orders.

Electromagnetic transitions take place between specific M substates of the initial

and final spin states of the nucleus. For a given change in M the emission probability for

each multipole order of radiation has a specific angular dependence. The dipole and

quadrupole dependence is summarized in Table 2-2 [1].



14

Table 2-2: Angular dependence of emission probability for different
multipole orders of gamma radiation.

Multipole Order AM =0 AM = ±1 AM = ±2

Dipole (L=1) sin2 0 --(1+cos2 0) N.A.

Quadrupole (L=2) 6sin2 Ocos2 0 (1-3cos2 O+4cos4 0) (1cos4 0)

However, the energy splitting between different M substates is observable in

nuclei only under very special circumstances. In particular, in gamma-ray spectroscopy

we generally work with detectors that have an energy resolution on the order of keV,

while the energy splitting of the M substates is at most on the order of peV. Thus we

cannot distinguish between M substates in observing gamma rays and so we end up

observing a sum over all possible initial and final M substates. As an illustrative example

let us consider a dipole transition from an initial state of spin one to a final state of spin

zero. If we cannot distinguish between the three M substates of the initial state we will

have to sum up their angular dependence functions to describe the angular dependence of

the observed gamma ray. Given that thermal excitations are generally on the order of

meV we expect that the three initial substates will be approximately equally populated.

We can now see that summing the three contributions to the angular distribution with

equal magnitudes removes the angular dependence entirely:

W(0) oc sin2 0 + (1 + cos2 0) + (1 + cos2 0) = const.
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This is a general result that can be easily shown for other multipole orders. If the M

substates of an initial state are equally populated, radiation emitted from that state will be

isotropic.

Therefore we can see that what we require is a method of creating unequal

population in the various M substates. This can be accomplished in a very direct manner

by cooling the radioactive sample to extremely low temperature and then applying a

powerful magnetic field. This large magnetic field creates a larger degree of splitting

between the M substates and the low temperature means that the lower energy M

substates will be more populous than those of higher energy. This method is known as

low temperature nuclear orientation (LTNO) and offers an alternate way of measuring the

angular dependence of emitted gamma rays.

JI = 0 Initial state

J0 = 1 Oriented state
M0=-1 M0=0 M0=-i-1

Jf= 0 Final state

Figure 2-1: Example 0-1-0 cascade. Dotted transitions are not observed if
we orient the laboratory z axis on the direction of IA. The unequal
population of the M0 substates allows the directional distribution of lB to
be observed.
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Another method of creating unequal population in the M substates is called

angular correlation. Let us extend our previous example by imagining a state of spin zero

that feeds the spin-one state by emission of a gamma ray, y, as depicted in Figure 2-1.

For reasons that will become clear we will now call the spin-one state the oriented state.

Once again we can imagine three transitions between the M = 0 state of the initial spin-

zero state and the three M0 substates of the spin-one oriented state. Recall that tIM = 0

transitions have a sin2 0 angular distribution, meaning their probability of being emitted

along the z axis is zero. Thus, if we orient our laboratory z axis so that it lines up with the

direction of emission of this first gamma ray, we remove the possibility of observing the

M, = 0 to M0 = 0 transition. Therefore the oriented state now has no population in its M0 =

0 substate. The subsequently emitted yB will have an anisotropic angular distribution due

to the lack of the AM =0 term in the angular correlation function:

W(0)oc --(1+cos2 0)++(1+cos2 O)= 1+cos2 0

By correlating the direction of emission of the second gamma ray relative to the direction

of the first we can observe this angular dependence.

Generalizing to all multipoles and spin states leads to the angular correlation

function [4].

W(0)= BkUkAkF((cos0). (2-14)
k=even

The Bk are called the orientation parameters and depend on the properties of the first

observed gamma ray as well as the spins of the levels that it connects. The Uk are called

the deorientation coefficients and depend on properties of any unobserved radiation
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between the first and second observed gamma rays as well as the spins of the levels they

connect. Note that if the orienting gamma ray and the observed gamma ray connect

directly, with no intervening radiations, the Uk coefficient is equal to one. The Ak are

called the angular distribution coefficients and depend on the properties of the final

observed gamma ray as well as the spins of the levels that it connects. Lastly, the Pk are

simply Legendre polynomials of kth order. Bk, Uk and Ak are described in detail in the next

section.

Only even terms appear in this sum due to the fact that we are not observing the

polarization of the emitted gamma rays. Summing over the unobserved polarization states

causes the odd terms in this sum to vanish [5]. The highest order term in this sum is

determined by the spins of the nuclear levels in the cascade as well as the multipole

orders of the radiations connecting them. Whichever is smaller of 2Jm or 2L (where

Jmax is the highest spin in the cascade and Lmax is the highest multipole order involved)

determines the highest term that will appear in Equation (2-14). Generally this means

only k =0, 2 and 4 appear and we will assume this form from here on.

2.5. Mixing ratios and angular correlation coefficients

In general, gamma rays connecting levels in a nucleus do not consist of a single

pure multipolarity. Rather, except in cases where selection rules prohibit it, the radiation

field of a gamma ray may have a mixture of multipolarities. To describe this mixture the
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parameter c5 is defined as the ratio of reduced matrix elements of radiation of multipole

orders L and L', where L = L + 1.

6(J2OL IJ)
(J2IILIIJI)

(2-15)

For example, is often used to represent the mixture of E2 and Ml radiation types. Given

this definition, the actual percentage of E2 or Ml radiation present in a given gamma ray

is given by

82
%E2=

2
l00% (2-16)

1+8

%M1=
1

100% (2-17)1+82

If a transition is purely E2 this ô is considered to be infinite. If the transition is purely Ml

5 is zero. The mixing ratio 5 can be directly related to the reduced transition probabilities

B(E2) and B(M1) (see Section 3.5).

Given this notation we can now turn to the functional form of the angular

correlation coefficients that appear in Equation (2-14). Consider a cascade that goes

sequentially from J4 to J1 by emitting gamma rays YA, 7B and yc as shown in Figure 2-2.

First, the Bk orientation parameters, which describe the orientation of J3 by -y, are

given by the form

Bk

(LA,LA,J4,J3)+(1) L28F(LLJJ)+82F(LLJJ)
(2-18)

1+ 8(yA)2



J4

J3

J2

J1

Figure 2-2: Example gamma-ray cascade. Nuclear levels of spins J1 J4
are connected by gamma rays YB and Yc.

The F,. coefficients depend only on the angular momenta involved and are essentially

ratios of Clebsch-Gordan coefficients. Values for Fk coefficients have been previously

tabulated [4] for easy reference. c5(yA) is the L'/L mixing ratio of the gamma ray YA and

again LA is the lowest multipole order of radiation in YA (usually 1) and L 'A = LA + 1.

Except in the rare case when we are considering E3/E1 mixing, the phase factor (-1)''

is always simply (-1).

Next, one Uk deonentation coefficient will appear in Equation (2-14) for each

unobserved radiation that takes place between YA and Yc. Each Uk coefficient is given by

the form

Uk(J3,J2,LB)+8(yfl)2Uk(J3,J2,L'B)
(2-19)Uk(J3,J2)

1+8(yB)2

Here the notation can get confusing, but the Uk(J,J,L) are again an angular momenta

dependent factor [4] used in with 5(YB) to calculate the total Uk(J,J) coefficient.
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Lastly, the Ak angular distribution coefficients have a very similar form to the Bk

coefficients:

F
(2-20)Ak

1+8(Yc)2

Note the change of the sign of the middle term in the numerator as well as the change in

order of the spins of the nuclear levels. To conform to the notation in the literature the

nuclear spins are always listed with the intermediate spin last.

Note that for each of these coefficients in the limit of an infinite or zero mixing

ratios they reduce to a single Fk or Uk factor. Thus, if any of the transitions in the cascade

have pure multipolarity, the form of the overall expression is much simplified. If all the

transitions are of pure multipolarity the angular correlation function W(8) is calculable

directly. This offers a very useful check during experiment and can aid in the calculation

of any correction factors that may arise.

Additionally, it is a property of the Fk(LI,L2,Ja,Jb) coefficients that if

+ L <k, the coefficient will be identically zero. For this reason, in the A4 and B4

coefficients the terms in the numerator that are constant or linear in ö nearly always

vanish, leaving only the term that is quadratic in ö.

As previously mentioned it is the 5 mixing ratios of various gamma rays that were

the main focus of this study. The equations described in this section form the critical

connection between the s and the experimental data. In an experiment where both A2 and

A4 are measured (for example) each will give two possible values for the mixing ratio ö.

Ideally two of these four values will overlap, and may be averaged to produce a value for
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(5. This is the predominant method for finding (5in most previous experiments. Other,

sometimes-preferable methods for deducing (5from experimental angular correlation data

are described in Section 5.6.

2.6. Angular correlation correction factors

There are two additional factors that must appear in Equation (2-14) when the

equation is applied to actual experiment.

First, the angle 8 represents an exact measure of the angle between the direction

of emission of the two gamma rays involved. In reality gamma-ray detectors have a finite

size and thus subtend a small range of angles. A correction factor Qkk must be introduced

into Equation (2-14) to correct for this small uncertainty in the correlation angle for each

gamma ray. This correction is generally on the order of 2% for the k=2 term and 5% for

the k=4 term (there is no correction to the k=O term). A description of how these

correction factors were calculated has been previously published [6].

Second, during the lifetime of a nuclear state the orientation of that state (caused

by the gamma ray that fed the level) may be altered due to its environment. Electric and

magnetic fields surrounding the nucleus can cause the populations of the M substates to

lose their unequal populations, thus diminishing the directional correlation effect. The

degree to which this occurs is affected primarily by the lifetime of the nuclear state and

the environment of the nucleus. The lifetime of a nuclear state is a direct consequence of

the total probability that it will decay in some way in a given amount of time. In turn

these probabilities are strongly influenced by the energy available for such decay. Thus
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with very rare exception the lower a state is in total energy, the longer its lifetime will be.

In general most nuclear states have lifetimes on the order of picoseconds which is short

enough that the surrounding environment has a negligible effect on the orientation of the

state. In the case of a longer lifetime a correction factor Gk must be measured to account

for this effect. This Gk then appears as a factor in Equation (2-14), giving us the fully

corrected form

W(0)= BkUkAkQkkGkPk(cosO) (2-21)
k=even

When using this form in experiment we will use the more explicit form

W(0) = N(1 + k2Q22G2P2 (cos 0) + AQG4P4 (cos 0)) (2-22)

where N is an arbitrary normalization factor determined by experimental conditions and

Akk = BkUkAk. Note that in the literature for this type of experiment the Gk and Qkk

factors are sometimes included in the Akk coefficient (or this combination is sometimes

referred to as A kk We will use the above definitions throughout the rest of this work,

having paid careful attention to the formats used by other authors.
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3. The Structure of Deformed Nuclei

The behavior of highly deformed nuclei can be understood with great success

using a few important models. Single-particle nuclear shell models offer a natural starting

point as well as useful approximation tools. The collective behavior of the nucleus can be

treated effectively using the quantum mechanical rigid rotor and harmonic oscillator.

In those instances where the basic collective models begin to fail, theories such as

band mixing and the interacting boson approximation can bring theory back into

agreement with experimental results.

3.1. The nuclear shell model

Early experiments in nuclear physics were soon able to show that the nucleus had

properties, such as binding energies, neutron-capture cross sections and changes in the

nuclear charge radius, that change smoothly as a few more nucleons were added but

would then abruptly change at a certain point and then begin smooth variation again [2].

This behavior had been seen before in atoms and had been explained with phenomenal

success using the electronic shell model. Thus a similar nuclear shell model was applied

to the nucleus.

The successful nuclear shell model [7] reproduces the "magic numbers" of 2, 8,

20, 28, 50, 82 and 126. These magic numbers are the total number of either protons or

neutrons (which each have their own shells) that are present in the nucleus just before a
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large jump in various properties of the nucleus. In other words, these are the numbers

which must represent closed shells.

In this model of the nucleus all excited states are understood as excitations of one

or more nucleons from one shell to another higher-lying shell. These single-particle

excitations offer a good first glimpse at the transitions of the nucleus and can be used to

create simple but powerful approximations about the properties of gamma-ray de-

excitation. The Weisskopf estimates mentioned earlier are built from a single-particle

excitation model and offer very useful descriptions of gamma-ray emission, though they

are based on a nucleus with spherical symmetry.

In addition to the energy required to move a nucleon from one shell state to

another, there is clear evidence for a pairing force in the nucleus. Nucleons tend to pair

up with other nucleons of the same type (protons with protons, for example). In a

spherical nucleus the pairing force expresses itself in a reduction in energy when the

angular momenta of two particles in the same shell-model state are coupled together. In

particular, the arrangement in which the two nucleons couple to produce a spin zero pair

is the most energetically favored state. This is the reason that a nucleus with hundreds of

nucleons will have a ground state that has at most a few units of angular momentum. In

particular, so-called "even-even" deformed nuclei, in which there is an even number of

protons and neutrons, always have a ground state with J = 0 due to the grouping of all

their nucleons into pairs of zero angular momentum.

Thus, as in the electronic shell model, the nuclear shell model predicts that near a

closed shell the behavior of the nucleus should be dominated by the properties of the few
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extra (or missing) protons or neutrons. Only when the nuclear shells are far from being

filled would we expect to see excitations of the nucleus as a whole. This region, far from

closed shells, is also the region in which we see the greatest deformation in nuclei.

Further evidence for "collective excitation" in deformed nuclei is given by their

exceptionally low-lying excited states. In medium and heavy nuclei a single-particle

excitation will generally require on the order of 2 MeV of energy. However, in highly

deformed nuclei excited states of a few hundred keV or less are common, implying that

the single-particle excitation model is not capable of explaining the low-lying energy

levels of these nuclei. In this region we must examine collective models such as rotation

and vibration of the nucleus as a whole.

3.2. Rotational excitations of the deformed nucleus

The deformation of the nucleus can be expressed by describing the shape of the

nuclear surface. This shape can, of course, be expanded as a combination of spherical

harmonics [2]. The Otlorder term in such an expansion, representing a non-deformed

spherical nucleus, would simply be the average radius of the nucleus Ravg. However,

adding higher order terms would increase the total volume of the nucleus, so an

additional Otorder term is included to conserve the nuclear volume. A 1Storder term in

this expansion would correspond to a shift of the nuclear center of mass, which cannot

occur due only to internal forces between nucleons. Thus, the lowest order of interest is

the second-order term, called a quadrupole deformation.
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R(O,Ø) = Ravg(1+aj(O,Ø)+ a2}(9,Ø)+...) (3-1)

Symmetry requirements restrict the values of the coefficients a, and positive values for

a2o correspond to a prolate (elongated) nuclear shape, while negative values correspond

to a oblate (flattened) shape. The static shape of most deformed nuclei is a prolate shape,

though rotations of this shape, described in the next section, can make the nucleus appear

oblate.

The most common mode of collective excitation for a deformed nucleus is a

simple rotation. There is strong evidence that at low spins this rotation does not alter the

shape of the nucleus by more than a few percent [3]. Thus, treating the nucleus as a

quantum mechanical rigid rotor gives an excellent first approximation. The classical

kinetic energy of such a rotation is given by E = J2/23 where J is the angular

momentum of the rotation and 3 is the moment of inertia. If we assume a deformed shape

with cylindrical symmetry we have three moments of inertia 3 = 3 3 where the

subscripts refer to the intrinsic coordinate system of the nucleus and the 3 axis is the

nuclear symmetry axis (see Figure 3-1).

We can now rewrite the total angular momentum as a vector sum of its three

components J1, J3 and J3, which allows us to write the rotational energy of the nucleus

as

J2E=_+(____.JJ32 (3-2)
23
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Figure 3-1: Diagram of angular momentum components for an axially
symmetric deformed nucleus. The total angular momentum, J, is the sum
of the intrinsic angular momentum S and the rotational angular
momentum R (which must be perpendicular to the nuclear symmetry axis
in an axially symmetric nucleus). The projection of J on the nuclear
symmetry axis is K and the projection of J on the laboratory z axis is
given by M.

where 3 = 3 = 3. In making the transition to quantum mechanics we replace the

angular momentum operator with its eigenvalue h2J(J +1) and the angular

momentum projection operator J with the projection quantum number /z2K2

(33)
23 233 23,)

,J

Note that K represents the projection of the total angular momentum J onto the symmetry

axis of the nucleus.



The importance of this expression for the energy of a rotating deformed nucleus is

that it predicts the energy spacing we should expect to see in rotational excitations of the

nucleus. As mentioned before, the ground state of an even-even nucleus has a spin

J'T = O and therefore a projection K =0 as well. Due to the reflection symmetry of the

nucleus this K = 0 state can have only even spin states built on it [3]. Therefore as we

add rotational excitations to this ground state we expect to see energy levels that follow

the J(J + 1) spacing of a pure quantum mechanical rotor (see Figure 3-2).

Energy tr

72A 8

42A 6

20A 4+

6A 2
0 0

Figure 3-2: Diagram showing J(J + 1) spacing of rotational excitations of
a deformed nucleus. The energy scaling factor A is arbitrary but is used
here to show the energy spacing.

'66Er is one of the best examples of this ground state rotational "band"; the ratio

of the energy of the 4 state to the energy of the Z state is 3.29 which compares well with

the J(J +1) value of 3.33. This was one of the earliest pieces of evidence for the idea

that '66Er and nearby nuclei were strongly deformed.
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3.3. Vibrational excitations of the deformed nucleus

The other primary collective excitation is the vibration of the nuclear shape. This

process can be described as adding a sinusoidal time dependence to the aAP coefficients

in Equation (3-1). Adding time dependence to the a coefficient would cause an

expansion and contraction of the nucleus, requiring enough energy to stretch the strong

force holding the nucleus together. Thus we expect to see this kind of vibration only at

extremely high excitation energies and we won't concern ourselves with it further. We

are thus concerned with quadrupole = 2) or higher vibrations of the nucleus.

A quadrupole vibration adds an angular dependence corresponding to a 211dorder

spherical harmonic to the nuclear shape, and thus we expect it to add 2 units of angular

momentum in the process. Therefore the energy of a quadrupole vibration is given by

E=hw(N+f) (3-4)

where N is the number of vibrational quanta, called phonons, and we have a zero point

energy of --hw because the spin-2 quadrupole vibration has five possible M substates (M

= -2, -1 ... 2), and thus five degrees of freedom. We can see from this description that

adding successive vibrational quanta will increase the energy by the same amount each

time.

The spins of the vibrational levels are less obvious than those of the rotational

levels. For a spherical nucleus we start with the J' = O ground state of an even-even

nucleus. Adding a single quadrupole phonon yields a 2 state. Adding an additional
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quadrupole phonon means coupling together the J = 2 of the first phonon with another

J = 2 for the second phonon, with no restrictions about the direction of either. Starting

with the five M substates of the first phonon we can add or subtract the M substates of the

second phonon to construct a set of possible M substates for the combined states. This

method, called an "M-scheme", yields the result that only three states can be created by

this coupling; one with spin 0, one with spin 2, and one with spin 4. Thus, when adding a

second quadrupole phonon we expect to create a triplet of states, all with twice the energy

of the first quadrupole vibration state (barring any perturbations for the moment).

Following a similar method we can deduce the result of adding additional quadrupole

phonons.

Energy jlr

4+ +
2hco 2

0

ho) 2

0 0

Figure 3-3: Diagram showing the energy levels of the states created by the
first two quadrupole vibration phonons. Compare the spacing here with
that found in Figure 3-2.
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Finally, experiments show that the energy of a quadrupole phonon is on the order

of 1 MeV, generally quite a bit larger than the energy spacing between the rotational

levels. Figure 3-3 shows a schematic of the energy levels of vibrational excitations.

When we turn our attention to a deformed nucleus we must adjust our discussion

a bit. The lack of spherical symmetry in the nucleus gives an intrinsic axis of reference

for the angular momenta involved in vibrations. In this case we can categorize

quadrupole vibrations by the projection of the total angular momentum on the symmetry

axis of the nucleus. As described earlier, this is projection is called the K quantum

number and is shown in Figure 3-1.

Specifically we break up our quadrupole vibrations into gamma vibrations and

beta vibrations. A beta vibration corresponds to a fluctuation in the degree of deformation

of the nucleus, which is equivalent to adding a sinusoidal time dependence to the

coefficient of the Y term in Equation (3-1). For a prolate (elongated) nucleus, this can

be imagined as a pushing and pulling on the ends of the elongated shape. Since the

nucleus retains its axial symmetry (and because of the 0 projection quantum number of

the spherical harmonic) we can see that the angular momentum of this vibration will have

no projection on the nuclear symmetry axis and will form a J' = 0 state with K =0.

Gamma vibrations can be imagined as pushing and pulling on the sides (rather

than the ends) of the elongated deformed nucleus. This vibration is equivalent to adding a

sinusoidal time dependence to the Y2 and Y, terms in Equation (3-1). This type of

vibration obviously breaks axial symmetry and from its connection to the spherical
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harmonics we can tell that it will carry two units of angular momentum along the

symmetry axis of the nucleus. Thus it will create a = 2 state with K = 2.

3.4. Combining collective excitations: B and structure

In a real deformed nucleus vibrational and rotational excitations occur together to

create excited states. Generally speaking, a series of rotational states, called a "band", can

be built on any vibrationally excited state, or even on a pair-breaking single-particle

excited state. Building a rotational band on a beta vibration results in a "band head" with

= O and successive rotational states of even spin above that, much like the ground

state band.

A gamma vibrational band starts with a J2r
= 2 band head with K = 2 upon

which we build rotational states of J2r = Figure 3-4 shows how the ten

lowest excited state of 166Er display this band structure very well. We can clearly see the

ground state and gamma bands, with increased energy spacing as the rotational

excitations are added.

The presence of a well-defined gamma band has been established in many

deformed nuclei [8]. However, the same cannot be said for beta bands. Frequently several

states with J" =0 are found at roughly the same energy with each level showing some

of the signs of a beta vibration. Decades after its theoretical introduction, the beta

vibration and the J't =0 level that it predicts continue to be a roundly debated subject

[8].
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Figure 3-4: Band structure of the low lying levels in 166Er.

3.5. Intra-band transition probabilities
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In this work we will be particularly interested in B(E2) and B(M1) values for

transitions that take place between bands and inside bands. Given a few reasonable

assumptions, these quantities can be calculated from theory.

The electric quadrupole operator is defined as [9]

= JPe(F)12(305(0)_1)th1 (3-5)

The diagonal matrix elements of this operator give the intrinsic electric quadrupole

moment, Q, of the nucleus in the state IJ,K,M).

Qo =(J,K,MIQOPJ,K,M) (3-6)
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Qo is a measure of how much the nuclear charge distribution deviates from spherical

symmetry and can be directly related to the deformation of the nucleus. Note that this is

not the same as the observed electric quadrupole moment, but rather represents the

electric quadrupole moment of the nucleus in its own rest frame.

The non-diagonal matrix elements of the electric quadrupole operator

(1, Kf ,M K,M) represent transitions between different states by E2

radiation. As mentioned in Section 3.2, there is good evidence that the shape of the

nucleus, and therefore its intrinsic quadrupole moment, does not change appreciably as

rotational excitations are added to a band-head state. Thus, if we assume that the initial

and final states are part of the same rotational band, and employ the Wigner-Eckart

theorem, we can calculate the reduced transition matrix element [10]

1
(Jf,KJIM(E2)IIJ,K)=

2J1 +1
(J1,K,2,OIJ KIe (3-7)

where M(E2) is the electric quadrupole tensor, (J1,K,2,0pJK) is a Clebsch-Gordan

coefficient and Jf .JJ 2. Using Equation (2-10) we can now calculate the reduced

transition probability B(E2) for transitions within a band

B(E2;JK -f J K) _LJJ.,K,2,0JJfK)2 e2Q, (3-8)
16,r

A similar analysis may be performed for the Ml reduced transition probabilities

within a rotational band. However we can ignore the case of K = 0 bands because all
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states have even spin, and thus Ml transitions are not allowed. For bands with K > and

J Jji we have [10]

32B(M1;J,K Jf K) = jUN (g g) K2 (.i, K,l,OIJK)2 (3-9)
4,z-

where g and gi are the intrinsic and rotational gyromagnetic ratios and uN is the nuclear

magneton. An important consequence of Equation (3-9) is to note that this theory forbids

Ml transitions between states of a band of K = 0.

With these expressions in hand, we can now use Equation (2-11) to take the ratio

of the transition probabilities for E2 and Ml for a single gamma ray.

2(E2) 3 (E 2
B(E2)

2(M1) l001hcJ B(Ml)
(3-10)

This expression is actually simply the square of the mixing ratio 8(E2 / Ml) for the

gamma ray in question. Substituting for the Bs and taking a square root using the

convention of Krane and Steffen [11] we can calculate a theoretical value for ö(E2/M1)

- jE (JI,KIIM(E2)IIJ,K)
10 hc (Jf ,KllM(M1)IIJ,K)

where the E2 matrix element is in units of electron barns, the Ml matrix element is in

units of nuclear magnetons, and E is in MeV. It should be noted that in most theories it is

the ratio of reduced matrix elements that is calculated. This ratio, which is not unitless,

must then be used in Equation (3-11), producing the unitless 8(E2/M1) mixing ratio

which is the quantity actually measured in the laboratory.
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From Equation (3-11) we use Equations (3-8) and (3-9) to express S(E2/M1) in

terms of Qo and (g g) for transitions within a band.

e
E

1

(3-12)5 4hc j(J.+1)(J_1) (g-g)

This expression allows us to predict values for the mixing ratio ö(E2 / Ml) based solely

upon the spin of the level in question and intrinsic properties of the nucleus for that band.

It can also be reversed, allowing us to examine the electric and magnetic properties of a

band by measuring the mixing ratio of transitions between states in the band.

3.6. Interband E2 transition probabilities

The formalism developed in the previous section can also be used to predict some

aspects of transitions between bands. Specifically, if we make the assumption that the

intrinsic quadrupole moment is the same for the gamma and ground bands, we can

calculate the ratio of the E2 transition probabilities for selected gamma rays. As an

example we will consider the 2 to 2 gamma-to-ground transition and the 2 to O

gamma-to-ground transition as shown in Figure 3-5.

Both transitions are assumed to be pure-E2 multipolarity due to the AK = 2

nature of the transitions (not to mention the AJ 2 of 72). Using Equation (2-11) we can

write the ratio of the transition probabilities for these two gamma rays.

E('y1)5 B(E2,y1)
(3-13)

2(72) E('y2)5 B(E2,72)
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j7r =2

K =2, gamma band

K =0, ground band

Figure 3-5: Gamma rays whose intensity ratio can be predicted from basic
theory. Due to the EK =2 nature of yi it is assumed to be a pure-E2
gamma ray.

where all the other constants have cancelled out in this ratio. We can now employ

Equation (2-10) to give

2

E(11)5 (J1I,K1 IIM(E2)IIJ,K)
(3-14)2A('y2) E(y2 )5

(f K1 IPM (E2)II J1, K.

where K. = 2 and K1 =0. Finally, in much the same way that the Wigner-Eckart

theorem removes the M dependence of a matrix element to produce a reduced matrix

element we can use a similar relation to remove the J dependence of the reduced matrix

element [10]

(JJ,KJ OIIM(crL)IIJ,, K,) = .J2J1 +1(-1)'" (J,K,,L,AKJJI,O)(KJ IM(E2)IK,)X (3-15)

where X = ñ for K1 0 and X =1 for K1 =0. The J dependence is now expressed in

the Clebsch-Gordan coefficient and the remaining "intrinsic" matrix element depends

only on K. Using Equation (3-15) we can now write Equation (3-14) as
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E(y1)5 (J,K,2,2JJlf,Kf) (Kf IM(E2)IK)
(3-16)

2(12) E(12)5
(J1, K,, 2,2) J2f ,K (Kf )lw(E2)) K1)

in which the intrinsic matrix elements in the numerator and denominator are equal and

will therefore cancel out. Thus, the ratio of transition probabilities reduces to the fifth

power of the energy ratio times the square of the ratio of Clebsch-Gordan coefficients.

Using the example of 166Er the energies for these transitions are E(11) = 705 keV and

E(i1) = 785 keV. With the readily looked up Clebsch-Gordan coefficients we can

calculate this ratio as

= 0.835 (3-17)

Similar calculations can be made for gamma rays emitted from all other gamma

band states. These calculated ratios can then be compared with experimental values to

evaluate the applicability of this nuclear model (see Section 3.8).

3.7. Intra-band cascade to crossover ratios

Another calculation that can be done easily for this model is known as a cascade-

to-crossover ratio. One of the characteristics of band structure in deformed nuclei is the

high relative probability that a state will decay "within band." In the gamma band these

strengths can be compared by looking at two transitions from the same level, one of

which is a transition to the next lower state in the band (called the cascade transition) and
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the other of which skips over that level to land two levels lower (called the crossover

transition). This situation is diagramed in Figure 3-6.

J3

J2

Figure 3-6: Diagram showing the "cascade" and "crossover" transitions,
and 'Ycc.

For a gamma band cascade-to-crossover analysis we know that all the parities of

the nuclear states will be positive and that the spins of the levels will grow by one as we

go up the band. This means that the cascade transition can have both E2 and Ml

character. Thus, we can write the ratio of intensities for the two transitions as

2(y;E2)+2(y;M1)
(3-18)2(y) 2(y0;E2)

where we have split the intensity of the cascade transition into its multipole components.

Using equations (2-16) and (2-17) we can rewrite the numerator so that

2(y) 2(y;E2)(1+2j 2(y;E2)
2(y) 2(y0;E2) 2(yco;E2)[1+ 8(7)2] (3-19)



Now, as we have done before, we can rewrite the ratio of intensities in terms of a ratio of

B(E2) values (Equation (2-1 1)), which can then be expressed as reduced matrix

elements (Equation (2-10)) to produce

2

2(y) E5(J2,KIIM(E2)IIJ3,K> ( 1

2 11+ (3-20)2(y) E0
(J1,KIIM(E2)IJ3,K) 8(y) J

We now employ a version of Equation (3-15) to remove the J dependence of the reduced

matrix elements, leaving only the intrinsic matrix elements

2(y) E5(J3,K,2,0IJ2,K)KKIM(E2)IK) 1
(3-21)2(y) E50 (J3,K,2,0IJ1,K)2(KIM(E2)IK)

The intrinsic matrix elements will cancel out leaving a ratio of Clebsch-Gordan

coefficients

2(y) E(J3,K,2,oIJ2,K)2 1

2(y) E0 (J3,K,2,01J1,K)2 8(Yc)J
(3-22)

Thus, the 6(E2/M1) mixing ratio can be calculated from the relative intensities and

energies of the intra-band transitions, offering a simple test of this theoretical model.

3.8. Band mixing and E2 intensities

From nearly the first comprehensive study of nuclei with clearly defined gamma

bands it was discovered that the theoretical calculation of the transition probability ratios

between bands based on this model (see Section 3.6) did not match the experimental data

well at all. For example, the current accepted intensities [12] would give a value of 1.1
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(with a relative uncertainty of less than 5%) for the quantity in Equation (3-17) which we

calculated as 0.835. Other transitions in many nuclei give similarly poor agreement with

the predictions of Section 3.6.

One method of bringing this theory back into agreement with the experimental

transition intensities is to assume that there is some mechanism for mixing states with

AK = 2. The mechanism for such mixing is not stated as part of this theory, but the effect

is assumed to be small and can therefore be treated using first-order perturbation theory.

We assume that the wave functions for each state in the bands is actually a linear

combination of the state from that band, plus a small admixture of the state from the other

band with the same spin [10]

Jg)=J,K =0)c(J)JJ,K = 2)

(3-23)
= 2)+--c(J)(l+(-1))IJ,K =0)

The mixing obviously vanishes for odd J since there are no odd J states in the ground

band. The admixture amplitude c(J) is given by

c(J) = e2 (2(J 1)J(J + 1)(J + 2)) (3-24)

where e2 is a spin independent strength parameter.

The effect of this mixing is that the E2 operator can now connect the gamma and

ground band states both through the original (J, K = OIM(E2)I J, K =2) matrix element

as well as through the diagonal matrix elements (, K = OIM(E2)I J, K = 0) and

(J,K = 2jM(E2)J,K = 2). These last two matrix elements will be modified by the
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admixture amplitude c(J), but will still contribute to the overall E2 strength. The term

that is quadratic in c(J) is neglected under the assumption that c(J) is small. These

diagonal matrix elements can be reduced with the Wigner-Eckart theorem and then

related to the intrinsic electric quadrupole moments of the gamma and ground band as

given in Equation (3-7). Therefore if we make the common assumption that the intrinsic

electric quadrupole moments of the two bands are the same, we can use these mixed

states to come up with a reduced transition probability

B(E2;J,K _-2>Jf,K=O)=2(J,2,2,-2JJ,O)2 M1 +M2(Xf _x)2 (3-25)

where the parameters M1 and M2 are spin-independent parameters and X = J (J + 1). The

implication is that the square-root of the reduced transition probabilities can be expressed

as a linear function of the parameter (Xf x) with a slope and intercept determined by

M1 and M2. A parameter often measured in experiment is z2 where

2M
(3-26)

M1-4M2

and M2 is related to our original admixture strength parameter e, by

I

M2 = e2

52
eQ0 (3-27)

8,r)

This formalism, first developed by Mikhailov, can be used to produce a

"Mikhailov" plot (see Section 6.4) which plots the square-root of the experimental

B(E2) values vs. (x x,), as in Equation (3-25), to determine the efficacy of the
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band-mixing model. Experimental results for '66Er have agreed very well with the band-

mixing model ever since it was first applied.

Additional evidence for the band-mixing model is given by the deflections in

energy of the even members of the gamma band. As we would expect from basic

perturbation theory, a mixing of states from the gamma and ground bands will cause a

repulsive effect in the two energies, i.e. we expect the ground-state energies to be pushed

down and the even-spin states of the gamma band to be pushed up (the odd-spin states

have no counterparts to mix with). Recall that we expect the energy spacing of the

gamma band to follow the J(J +1) rotational model. Experiments have shown that there

is an odd-even staggering of the energies, relative to the expected J(J + 1) spacing [13].

This offers further evidence for some form of mixing between the two bands.

The calculations performed in Section 3.7 are relatively insensitive to the addition

of first-order band mixing. This insensitivity comes from the inherently small value of the

cross-band off-diagonal matrix elements and from the small value of the mixing

parameter that describes 166Er. Thus, even with evidence of band mixing between the

gamma and ground bands, the cascade-to-crossover ratios from Section 3.7 should

remain a valid prediction.

3.9. Ml strengths in the band-mixing model

The band-mixing model allows diagonal matrix elements to appear in transition

probabilities for gamma rays connecting the gamma and ground bands. This not only



affects the E2 strengths, as shown, but also allows Ml transitions to appear for the first

time. Up to now, Ml transitions had been forbidden by the K selection rule, but of course

that rule holds only to the extent that K is a good quantum number.

These Ml admixtures can also be analyzed from the basic first order band-mixing

theory. Doing so allows us to calculate the mixing ratio 8(E2 / Ml)

S E AQ0
(3-28)

zl(g gR)

This expression bears an obvious relationship to Equation (3-12), and the constant A

contains a ratio of Clebsch-Gordan coefficients, some other spin-dependent factors and

some physical constants. This expression is arrived at by several approximations: we

have neglected terms that are quadratic or higher in the band-mixing strength parameter

e,, we have assumed the contributions to the E2 strength from the cross terms in the

matrix elements are negligible compared to the un-mixed terms, and we have neglected a

term of the order 4z2, which is on the order of 16% for '66Er. Further discussion and

calculations using this expression are carried out in Section 7.2.

3.10. The interacting boson approximation

The issues addressed by the rotational model and band-mixing theory can also be

addressed by other theoretical constructions. In particular two versions of the interaction

boson approximation (IBA) have been developed as alternate ways to treat the structure

of deformed nuclei. We do not develop this model in any detail in this work, but rather

mention it as an alternative to the theories we have developed so far.



It can be argued that in many ways the rotational model is too oversimplified. In

particular, the effects of valence nucleons are completely ignored in this model, treating

the nucleus as a collective entity regardless of partially filled shells. In contrast, the IBA

model ignores only fully closed shells. For the remaining nucleons it applies two known

effects: the pairing force, which pushes the nucleus towards spherical symmetry, and the

so called "quadrupole force", which causes the quadrupole deformations in nuclei that are

far from closed shells. However, as its name implies, the IBA model does not treat each

nucleon separately. Instead, each pair of nucleons is coupled together to create a boson. If

the total angular momentum of the individual nucleons is coupled to a total of zero, this is

called an "s boson." Likewise a total coupled angular momentum of two is called a "d

boson." It is the behavior of these s and d bosons that are treated by a quantum-

mechanical Hamiltonian. From these basic assumptions a complex algebra is developed,

describing the usual quantum mechanical players such as creation and annihilation

operators.

In the basic IBA model, known as IBA-1, protons and neutrons are treated as

indistinguishable components of the nucleus. An important consequence of this is the

total lack of Ml transitions. In analogy with the basic rotational model, IBA-1 has no

mechanism to explain the presence of Ml transitions in deformed nuclei.

However, any mechanism, regardless of the specific model, that allows mixing

between bands that differ by AK =1 offers a path for Ml transitions to occur between

states in a rotational band. Much like the AK = 2 band mixing described previously,

AK =1 mixing would mean that each ground and gamma-band state could actually be a



linear combination of states from the original band and states from some K =1 band.

Thus, Ml transitions could occur between the portions of the gamma and ground states

that differed by AK =1.

IBA-2, which no longer treats protons and neutrons identically, opens up the

possibility that the two groups of nucleons could be undergoing different motions. This

model has had success in proposing a specific form for the K =1 band which could mix

with the gamma and ground bands. The specific K = 1 example is called a "scissors

mode" because it involves the protons and neutrons oscillating out of phase with each

other. This mode of excitation is the subject of much study and calculation and is

predicted to occur between 2 and 3 MeV above the ground state.

Several papers have compared the IBA-2 model with band-mixing models in

terms of their success in explaining experimentally measured Ml strengths [24,33].
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4. Previous Work

4.1. Understanding ,8 decay experiments

The nuclear energy levels discussed in Chapter 3 can be excited in a number of

ways, offering many methods for their experimental investigation. In particular, the

radioactive decay of a "parent" nucleus often leaves the newly formed "daughter"

nucleus in an excited state. The daughter then sheds this excess energy through processes

including gamma ray emission and internal conversion, as mentioned previously. Beta

decay, perhaps the most common form of radioactive decay, is a process in that converts

a neutron to a proton, or vice-versa. This process changes the elemental character of the

nucleus but does not change the nuclear mass number A. The process of turning a neutron

into a proton is called fl decay because a negatively charged electron is also emitted as

described by

n p + fl +

Here /9 represents the electron and j7, is an anti-neutrino which must be present to

conserve momentum and lepton number, but does not interest us in these experiments.

The process of turning a proton into a neutron is called /J decay and can be similarly

described by

p n + ,8 + Ve

where flf is an anti-electron (positron). A process known as electron-capture competes

with j9 decay but instead of ejecting a positron an inner atomic electron is absorbed.
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which a certain excited state of the daughter will be populated in the /3 decay process. A

general overview of these selection rules is as follows [2].

. "Allowed" decays are those in which the difference in total angular momentum

between decaying state in the parent and the populated state in the daughter is

zero or one (AJ = 0 or 1), and in which there is no parity change (Air no).

. "First forbidden" decays are those for which &1 =0,1,2 and A.ir = yes. Due to

the nature of /3 decay, these processes are less likely to occur than allowed decays,

but not actually forbidden as the name implies.

. "Second forbidden" decays are those in which AJ = 1,2 or 3 and Ar = no.

However, since the .J =1, Ar = no case is covered by the allowed decays,

second forbidden decays are seen only for LJ = 2 or 3.

Higher forbidden decays can be described, but these selection rules are enough to

serve this discussion. The key is that each step up in forbiddenness causes sharp decrease

in the probability of decay, usually on the order of i0 [2]. Thus, if a given state may/I

decay to several different states in the daughter nucleus, those for which the transition is

allowed will be populated strongly, first forbidden transitions will happen less often and

second forbidden or higher decays will be observed only in rare circumstances.

The nucleus '66Er can be created through the /3 decays of two different parent

nuclei. Two different states of boomHo decay to 166Er through 1T decay while 166Tm decays
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Figure 4-1: Schematic of /3 decays leading to excited states of 166Er.

to the same daughter through fl decay and electron capture. The higher of the two 166Ho

states is a long lived excited state (called a meta-stable state or an isomer and denoted by

I66mHO) that cannot decay to the ground state due to the large difference in spin. A

schematic of these three decays is shown in Figure 4-1. Note that the three parents start

from very different spin and parity states. l6ómHo decays from a spin 7 state and thus,

according to the /3 decay selection rules, will populate similarly high-spin states in the

daughter nucleus. The energy difference between the l66mHo parent and the ground state

of the 166Er daughter is 1860 keV, and thus this energy must be released in the process of

going from one to the other. This is known as the Q-value of the decay and represents the

total energy available to the /3 decay and potential subsequent gamma-ray decays. This

decay has a half-life of approximately 1200 years and can thus be studied at great leisure.
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Due to the very long half-life of l66mHo and the wide range of gamma-ray energies

emitted in this decay, bo6mHo has been extensively studied and has become a widely used

calibration source.

The lower-spin ground state of 166Ho has a spin of 0 and decays with a half life of

27 hours with a Q-value of 1854 keV. This activity has not been studied as extensively

and was not examined in this study at all.

The 166Tm parent decays from a = 2 ground state with a Q-value of 3040 keV

and thus populates low- and middle-spin states in the '66Er daughter, giving a very

different glimpse of its nuclear structure.

These radioactive decays can be studied by simply placing a sample in front of

one or more gamma-ray detectors. Experiments like this may use multiple detectors to

collect coincidence and angular correlation data. Alternatively, low temperature nuclear

orientation (LTNO) experiments can be used to collect angular distribution information

with only a single detector, though usually several are used.

4.2. Other experiment types

Beta decay of an unstable parent is not the only way to investigate the properties

of a nucleus of interest. Many different types of projectiles, from neutrons to medium-

weight atoms, can be used in scattering experiments that leave the target nucleus in an

excited state.

Transfer reactions, also called "in-beam" experiments, create the nucleus of

interest by impacting a target with a projectile in a carefully crafted manner to produce
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the appropriate nucleus. An example of such an experiment would be firing a particles at

a sample containing 164Dy with a carefully chosen energy so that the a particle will be

absorbed and two neutrons will be ejected, leaving behind a 166Er nucleus in an excited

state. This reaction is described in short-hand by '64Dy(a,2n)'66Er.

Coulomb-excitation experiments are those in which the target and projectile do

not "toucht', meaning there is no exchange of nucleons. These experiments rely on the

Coulomb interaction of the projectile and target to excite the target. Coulomb-excitation

experiments tend to excite the nucleus as a whole, and are thus a very useful tool for

examining collective excitations.

The previous work described in the following sections is broken down into

categories for easy comparison. However, some experiments and publications are

applicable to more than one category and may therefore appear in more than one section.

4.3. Previous examinations of the decay of 166Ho

Studies of the decay of the 166m110 isomer have been done in several ways. Early

studies used sodium-iodide (Nal) detectors, which are more efficient, but have much

poorer resolution than the germanium (Ge) detectors developed around the middle of the

20th1 century.

4.3.1. Spectroscopic studies

As mentioned, l6omHo has become a calibration standard used to test gamma-ray

detection equipment before use in other experiments. lo6mHo is good for these purposes
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because of the consistent and precise results from experiments done to determine the

spectroscopic details of the decay (i.e. the exact gamma-ray energies and intensities that

it emits). Once it was proposed as a calibration standard further experiments were done to

improve on the spectroscopic information about the decay, and now l66mHo can be

considered once of the most carefully studied radioactive decays on the chart of the

nuclides.

The first comprehensive experimental studies of the l66mHo decay were performed

by Reich and Cline in 1963 [14] and 1965 [15]. Their first experiment was performed

using NaT detectors which have a significantly poorer resolution than the Ge detectors

used in later experiments. Despite this difficulty the experiment was able to effectively

explain much of the structure of the populated levels of '66Er. Their 1965 experiment was

conducted using both NaT and Ge detectors and allowed them to clarify their earlier

experiment and expand on it quite a bit. 33 gamma-rays were observed in these

experiments and 14 nuclear levels were proposed.

Since these early experiments several experiments have been done to extend and

improve the work of Reich and Cline, notably the works by Kato [16], Sampson [17] and

Danilenkov [18]. Comparisons between the measured intensities of the gamma-to-ground

transitions and those expected from the band-mixing model are also performed in these

papers, generally with favorable results. The most recent comprehensive spectroscopic

work on 166m110 was done by J. Morel in 1995 [19] and the results of all these

measurements have been compiled by Shurshikova and Timofeeva in the Nuclear Data

Sheets [12].
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4.3.2. Nuclear structure studies

Interpretations of the level scheme were also performed by Reich and Cline in

their 1965 experiment [15]. In this study angular correlation experiments were used to

assist in assigning spins to the nuclear levels. Calculations of S(E2/M1) mixing ratios

were presented and both band-mixing and asymmetric rotor models were compared with

the experimental results. Investigations of the negative parity bands in '66Er were also

performed here along with possible theoretical interpretations. These experiments also

solidified the Q-value of this decay and firmly established the existence of the gamma-

vibrational band. The mixing ratios in this paper were deduced from the quadratic forms

of the angular correlation coefficients.

A 1967 experiment by Gunther and Parsignault [20] confirmed much of the work

by Reich and Cline and added a few transitions to their decay scheme. In addition this

work presented band-mixing analysis and claimed that the intrinsic quadrupole values of

the gamma and ground bands were in fact different by a factor of 1.38 (a claim later

disputed by another Reich and Cline paper).

A short time later in 1967 Burson [21] performed a spectroscopic study of the

166Er nucleus using all three fl-decay parents. This study contributes a small amount of

new spectroscopic information to the decay scheme and offers analysis of the observed

intensities in terms of band-mixing theory.

In 1969 Sunyar [22] published a paper describing the cascade-to-crossover

intensity measurement, and the mixing ratios of the cascade transitions predicted by the
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basic rotational model. This paper did not present new experimental data but used the

currently available experimental intensities. It should be noted that Sunyar uses an

intrinsic electric quadrupole moment for the gamma band that is 1.38 times that of the

ground band (as per the work by Gunther and Parsignault above). Mixing ratios for three

cascade intra-gamma band transitions are presented based on intensities and simple

rotational model calculations.

Reich and Cline published another treatment of the l66mHO decay in 1970 [13]

addressing the question of whether the gamma and ground bands have differing intrinsic

electric quadrupole moments. They conclude that the two bands do indeed have the same

intrinsic electric quadrupole moment (within their uncertainty limits) and give some

convincing arguments regarding why previous studies have concluded otherwise. In this

paper Reich and Cline observe and quantify the odd-even energy shift of the gamma

band. They also observe evidence for considerable Ml transition strength inside the

gamma band and use a cascade-to-crossover analysis to predict the mixing ratios of three

of the intra-gamma band cascade transitions (using equal Qo values for both bands). This

analysis concludes with the deduction that the quantity IgK gRI is constant within the

gamma band.

In 1972 Carlsson [23] used a perturbed angular correlation experiment to

determine the gyromagnetic ratio, g, of the 6 ground-band state which agreed with

previously determined values for the gR(4) and gR(2) ground-band states well enough
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that the authors concluded that this ratio stays constant throughout the band, as predicted

by theory if there is no centrifugal stretching of the nucleus at higher spins.

In 1975 Baker [24] used both Ge-Nal and Ge-Ge coincidence systems to

investigate this decay. Their measurements of angular correlations involving nine

gamma-to-ground band transitions represents the first attempt to comprehensively study

the S(E2 I Ml) mixing ratios of all the gamma-to-ground transitions observable in this

decay (the 2 gamma to 2 ground transition is not present in the I6omHo decay with

enough strength to be measured). Their results were compared with what they call the

dynamic deformation model (DDM), in which the g-factors of the excited states depend

on intrinsic properties like the quadrupole deformation parameters. While the authors do

not compare their work with that of previous measurements, they generally agree with the

order of magnitude and sign found by Reich & Cline [15]. The mixing ratios in this paper

were deduced from the quadratic forms of the angular correlation coefficients.

In 1981 Krane and Moses [25] performed an LTNO experiment on l6ômHo

allowing a slightly different view of the angular distribution measurements. LTNO

experiments measure the Ak angular distribution coefficients, whereas angular correlation

experiments can measure either the Ak angular distribution coefficients or Bk orientation

parameters. From this experiment Krane and Moses extract angular distribution

coefficients for 24 gamma rays and E2/M1 mixing ratios for nine of the gamma-to-

ground transitions. They measured these mixing ratios from two different oriented

sources and published two sets of values for the mixing ratios. Investigations of the

mixing ratios emitted by the negative parity states fed in the lóómHO decay were also
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presented, allowing further interpretation of these negative parity bands. The mixing

ratios in this paper were deduced from the quadratic forms of the angular correlation

coefficients.

As mentioned previously, in 1981 Kato [16] performed precision measurements

of the relative intensities of gamma rays in the l66mHo decay. Mixing ratios were also

measured for six of the gamma-to-ground transitions, however, the signs of the mixing

ratios were not presented. Kato's values are generally in poor agreement with other

measurements done around the same time. The mixing ratios in this paper were deduced

from the quadratic forms of the angular correlation coefficients.

Also in 1981 Lange [26], who is part of the same group as Baker [24], added to

their previous measurements of the l66mHo decay. This study measured the angular

correlations and mixing ratios of nine gamma-to-ground transitions, improving over

previous measurements. Measurements of transitions from the negative parity bands were

also performed and compared with the measurements performed by Reich and Cline. A

possible hindrance of these experiments is that while most gamma rays were detected

using high resolution Ge detectors, a Nal detector was used to gate on the 184 keV 4 to

2 ground band transition. Thus coincidence measurements with the 184-keV transition

could be susceptible to Compton backscattering processes (see Section 5.5.2). This would

affect only a few measurements, but the poor resolution of the Nal detector leaves open

the possibility that this effect was unaccounted for. The mixing ratios in this paper were

deduced from the quadratic forms of the angular correlation coefficients.
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In 1984 Marshak [27] published a paper describing a method for finding the

mixing ratios by chi-squared minimization using a new set of LTNO data. The authors

compare this method to the previously dominant method of solving for 5 using the

angular correlation coefficients. The authors noted that while the previous method often

produces satisfactory values of ô, it tends to underestimate the uncertainty in the result.

Comparisons of the two methods are presented for five cases, including three gamma-to-

ground transitions.

In another 1985 paper, Alzner [28] used the integral perturbed angular correlation

method to measure the gyromagnetic ratios of the 4, 6 and 8 ground band states and of

the 6 gamma band state. In contrast with the work done by Carlsson [23] they concluded

that there is evidence that the g-factor is being reduced at higher spins. Measurements of

the angular correlation coefficients and mixing ratios were also presented for three

gamma-to-ground transitions.

A 1988 paper by Adam [29] takes on the question of whether the intrinsic electric

quadrupole moments of the gamma band and ground band are equal. Their chi-squared

minimization analysis argues strongly for the two bands having equal intrinsic electric

quadrupole moments. They then use this assumption to calculate the band mixing

parameter Z2.

In 1990 Hamilton [30], who collaborates with Marshak [27], published a paper

discussing the inconsistency of the signs of the mixing ratios being produced by

experimentalists. Their results for nine gamma-to-ground mixing ratios are presented in

comparison with other recent experiments. These mixing ratios are extracted using the
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chi-squared minimization of Marshak's LTNO data, rather than the quadratic method

used by most previous studies. Results are also compared with the dynamic deformation

model introduced in the paper by Baker in 1975. They find that this model has some

success in predicting the signs and relative magnitudes of the mixing ratios. They

conclude that experiment and theory predict that most of the iJ =0 transitions between

the gamma and ground bands will have the opposite sign compared to the other gamma-

to-ground transitions.

A 1992 paper by Wagner [31] uses high accuracy intensity measurements of the

intra-gamma band transitions to calculate the mixing ratios for four cascade transitions.

These measurements follow from the paper by Adam [29] (who works in the same

research group as Wagner), and use their assumption of equal intrinsic electric

quadrupole moments in the gamma and ground bands.

Also in 1992 a paper by Ardisson [32] calculated band-mixing values which

compare favorably with previous measurements, though are not as precise as those of

Adam [29].

Finally, in 1996 Aifter [33], a collaborator of Alzner [28], was the first to directly

measure a mixing ratio of one of the intra-gamma band mixing ratios in the '66Er nucleus.

They arrived at a value of 1.94i'i for the mixing ratio of the 119 keV 5 to 4 gamma to

gamma transition. However, they measured this mixing ratio using the coincident 875

keV 4 to 2 gamma-to-ground transition, which is also in coincidence with another

gamma ray of energy 121 keV. It appears from the partial spectrum displayed in their
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article that they did not take into account the effects of this nearby peak. This paper also

presents analysis of the intra-gamma band transitions in terms of the IBA-2 model.

4.4. Previous examinations of the decay of 166Tm

4.4.1. Spectroscopic studies

The decay of '66Tm is significantly more difficult to study than l66mHO The half-

life is only 7.7 hours, offering a narrow window for experimental counting. In addition a

Q-value of just over 3 MeV means that many states are populated by the /3 and E.C.

decay; resulting in a spectrum of more than 350 gamma rays spread from 74 to 2860 keV.

One of the early comprehensive studies of this decay was performed by Zylicz

[34] in 1965. In this work the authors were able to place 70 of the 90 gamma rays they

observed into a consistent level scheme and solidified the observed levels not populated

in the l66mHo decay. Internal conversion measurements are used to determine the parities

and likely spins of the observed levels. Some analysis of the levels, given in terms of

single-particle states, is presented here as well.

Considerable improvements to the spectroscopic information for this decay were

introduced by Adam in 1979 [35]. This study used y--y coincidences and internal

conversion electrons to identify over 301 gamma rays, most of which were successfully

placed into their proposed level scheme. This same group updated their study in 1989

[36] using refined coincidence techniques and an anti-Compton spectrometer.



The data from this later experiment by Adam remains by far the most

comprehensive and precise spectroscopic information on the '66Tm decay, and the

Nuclear Data Sheets summary of this decay is almost entirely built from the data

produced by Adam.

4.4.2. Nuclear structure studies

The 1979 paper by Adam [35] was primarily focused on the spectroscopy

information for the '66Tm decay but also included some analysis of their measured

intensities in terms of band mixing and intrinsic properties of the bands. Their values are

compared with those found by Reich and Cline in 1970 [13].

In 1980 Budzynski [37] performed a set of measurements of angular correlations

following the decay of 166Tm. Much like the experiment by Lange [26] this experiment

could be susceptible to backscatter problems arising from using a NaT detector as a

coincidence gate (see Section 5.5.2). Given the difficulty of measuring gamma-to-ground

mixing ratios from the 166Tm decay this paper gives a decent set of values for the lowest-

spin transitions and is in good agreement with an earlier similar study by West [40].

However, in comparison with contemporary measurements from the 166m110 decay there

is very poor agreement with Budzynski's results.

In 1987 Kracfková [38] performed an LTNO measurement on the 166Tm decay in

which they measured the angular correlations and mixing ratios of many gamma rays

including four gamma-to-ground transitions. No analysis of the data was presented.
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4.5. Previous examinations of the properties of 166Er

In 1972 Domingos [39] performed a Coulomb excitation experiment to study the

lower-spin transitions between the gamma and ground bands in several even-even nuclei,

including 166Er. Values are presented for the mixing ratios of the 2 to 2 and 4 to 4

gamma-to-ground transitions as well as analysis based on first order band mixing theory.

In 1976 West [40] used the reaction 160'162'1Dy(u,2n)162"64"66Er to produce

gamma rays for which they measured angular distributions (relative to the projectile

beam). These data were used to explore the properties of rotational bands in 162Er, 164Er

and '66Er. Previously unidentified JIT = 9 and 1O members of the gamma band in 166Er

were presented along with mixing ratios from a few of the lower-spin gamma-to-ground

transitions. A graphical version of the quadratic method for deducing the mixing ratios

was used in this paper.

In 1991 and 1992 Berendakov and Demidov [41,42] published a two papers on

neutron scattering with three different Er nuclei, A 166, 168 and 170. They present

mixing ratios for the lower spin members of the gamma-to-ground transitions. Generally

speaking their numbers agree with other previous and concurrent measurements and they

agree with Hamilton [30] in their signs, but their error bars are larger and thus don't

contribute much to the values themselves. This group did adopt the chi-squared

minimization method for finding values of the mixing ratio, as proposed by Marshak

[27].
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In 1996 Brandolini [43] performed Coulomb excitations on '64Er, 166Er and 168Er.

The g-factors for the ground band were measured for states up to spin 10 as well as for

the 2 gamma-band head. They conclude, in contrast with the work by Alzner [28], that

the g-factors of the ground band do not change appreciably as the spin increases.

4.6. Previous relevant theoretical work

In 1987 Lipas [44] published a comprehensive calculation of the gamma-to-

ground mixing ratios using a second-order IBA-1 model (the inclusion of the second

order allows Ml transitions between the bands to occur). They attempt to model the

mixing ratios of a wide grouping of nuclei in an attempt to find a consistent

parameterization. Their results are compared with the experimental results by Lange [26]

as well as to the DDM calculations done by Baker [24].

A paper by Binarh in 1989 [45] examines the properties of the intra-gamma-band

transitions in deformed even-even nuclei. They deduce mixing ratios for these transitions

based on intensity measurements (from contemporary works) and compare these with

basic IBA-1 models. They conclude that the mixing ratios for cascade transitions in the

gamma band are systematically close to 2 using several different theories.

4.7. Summary of previous work

Previous investigations of the properties of '66Er have been extensive and

productive. We summarize this work as follows:
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The "spectroscopy (meaning energies and intensities of gamma rays, and

energies, spins and parities of excited levels) of the l66mHo decay to '66Er are very

well understood. lo6mHo is used as a calibration standard in many gamma-ray

experiments.

The spectroscopy of the 166Tm decay to 166Er is less well-understood, with

uncertainty about the placement of several gamma rays as well as doubt about the

spins of the excited states fed in this decay.

In both decays, the gamma-vibrational band is well-defined and has been solidly

established by experiment. In the l6ómHO decay states up to spin 8 in the gamma

band are fed, while the 166Tm decay feeds gamma band states up to spin 5.

Band-mixing analysis, following the model proposed by Bohr & Mottelson [10]

and using the Mikhailov plot, has been very successful in describing the E2

transition probabilities of the gamma-to-ground transitions.

Methods for deducing ö(E2/M1) mixing ratios have been examined and chi-

squared minimization has been proposed as the preferred procedure.

Mixing ratios have been measured for many gamma-to-ground transitions on

several occasions, though the agreement between different experiments is not

always good. In particular, early experiments left much doubt about the signs of

the mixing ratios. Such measurements are much rarer for the '66Tm decay.

Several models have been proposed to explain the observed gamma-to-ground

mixing ratios, with varying degrees of success.



Analyses of the mixing ratios of intra-gamma-band transitions using model-

dependent calculations have been presented on several occasions, but only one of

these values has been measured directly.

There have been some conflicting results regarding whether the ground and

gamma bands have the same intrinsic electric quadrupole moment. Current

consensus indicates that if the two values are different it is by less than 5%.

There have also been conflicting reports about whether the gyromagnetic ratios of

states in the rotational bands are constant or changing with increasing spin. The

most comprehensive of these studies concludes that they are constant as the spin

increases.



5. Experimental Method

5.1. Radioactive sources

5.1.1. Holmium decay source

The 166m110 source (t), =1200 y) was purchased in June 1999 from Isotope

Product Laboratories. 10 microcuries were purchased in the form of HoC13 in 0. 1M HCI

with a concentration of 2tCi/mL, i.e. there was a total of 5 mL. The activity was created

by neutron bombardment of chemically separated stable Ho and contained no other

radioactive contaminants. Approximately 1 jiCi of this source was removed and kept at

Oregon State University, while the remaining 9 Ci sample was transported to the LBNI..

facility.

This source was counted in the 8it for a total of 107 hours during the period

October 15th to 24th 1999. In this time approximately 3.5x108 multiplicity-one and

1.7 x 108 coincidence events were collected.

5.1.2. Thulium decay source

The 166Tm source was prepared by the reaction '66Er(u,4n)'66Yb. The 166Yb then

decays to '66Tm with a half life of 56.7 hours, emitting a single gamma ray of energy 82.3

keV in the process. By producing 166Yb rather than the 166Tm, we have the advantage of

working with a source with a much longer half life. The 166Er-oxide powder, which was

enriched to 96.3%, was purchased from Oak Ridge National Laboratory. The powder was



contained within folded aluminum foils which were then bombarded by 50 MeV alpha

particles on the 88" Cyclotron at LBNL. No degrader foils were used to reduce the beam

energy. The samples were allowed to cool for at least 24 hours allowing any activated

aluminum to decay away. The powder was then dissolved into a solution of water and

HC1, creating a source with an activity of approximately 20 RCi. Other similar samples

were created with the purpose of combining samples on a regular basis to bolster the

source activity. After approximately one half life of counting a given sample, a 2nd

sample would be added, creating a sample of approximately the same strength as the

original.

The 166Tm activity was counted in the 8ir for a total of 265 hours during the period

October 30th to November 10th,
1999. In this time approximately 5.5x108 multiplicity-

one and 5.5 x 108 coincidence events were collected.

5.1.3. Thulium source contaminants

Due to the reaction used to create 'Yb, some amounts of l67y10 and '65Yb were

also created by (u,3n) and (a,5n) reactions. See Figure 5-1 for a schematic of the

contaminant decays. These two parents /3 decay to Tm daughters with corresponding

masses, '67Tm and 165Tm, with half lives of 17.5 minutes and 9.9 minutes respectively.

The gamma rays associated with these decays were not observed, which make sense due

to the many hours between the source coming out of the beam and being placed into the

8ir apparatus for counting.
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Figure 5-1: Beta decays of the contaminants in the 166Tm source.

The 167Tm and 165Tm daughters also /3 decay to Er daughters of the same mass.

The decay of 167Tm to 167Er has a half-life of 9.25 days, and produces only 11 gamma

rays, out of which only one could possibly interfere with the measurement of the 166Tm

decay. This one gamma has an energy of 531.54 keV and occurs only 1.6 times per 100

decays. This contaminant was determined to have an activity approximately 0.37 times

that of the activity of '66Tm, indicating that the bombarding energy in the reaction used to

create the sample was a bit lower than it should have been. The effects of these

contaminants were mostly avoided using coincidence gating methods, though they were

carefully considered when dealing with singles spectra (such as during the calculation of

detector efficiencies).

The decay of 165Tm (ty = 30 h) is associated with many gamma rays across a

wide range of energies. However, this contaminant was determined to have an activity of



no more than 0.007 times that of '66Tm. This small contribution was carefully checked

for overlaps with important peaks in the 166Tm decay, but was mostly avoided through

the use of coincidence measurements, which make up the bulk of this work.

5.2. The 8it spectrometer

The 82t spectrometer was constructed in 1984 at the Chalk River Nuclear

Laboratories in Chalk River, Ontario. It was originally designed for the study of nuclear

structure and reaction dynamics through gamma-ray spectroscopy [46] and was used

primarily for "in-beam" work while at Chalk River. The 8it was moved to the 88"

cyclotron at LBNL in 1996 which is where the present work was done.

5.2.1. Physical apparatus

The core of the 8ic spectrometer consists of twenty high-purity germanium

detectors arranged in a spherical array facing inward. The face of each detector was 22

cm from the center of the sphere, where the radioactive source was placed for counting.

The twenty detectors, numbered 0-19, were arranged on four rings, with five detectors on

each ring. The rings are centered on a horizontal axis (which is the beam line when this

instrument is used online). Imagining the beam line as a z axis, the four rings have polar

angles of approximately 37°, 79°, 101°, and 143°, relative to the center of the array. A

schematic representation is shown in Figure 5-2.



Figure 5-2: Schematic showing the geometry of the 8m spectrometer. Four
rings of five detectors each are shown. The horizontal axis about which
the four rings are centered would be the beam line in an online
experiment. Selected detector numbers are shown. The diagram shows the
sizes of the germanium crystals relative to a source to detector distance of
only 14 cm, rather than the 22 cm actually used in these experiments.
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5.2.2. Germanium detectors

The germanium semiconducting crystal in the detectors absorbs a gamma ray

through three competing processes: the photoelectric effect, Compton scattering and

electron-positron pair production. In all three cases the end result is that many electrons

absorb enough energy to move out of the valence band of the Ge semiconductor crystal

and move up into the conduction band. These electrons are then collected by the high

voltage applied to the crystal. If the gamma ray is entirely absorbed inside the crystal the

amplitude of the resulting electrical signal is proportional to the energy of the gamma ray.

However, it is possible for a gamma ray to Compton scatter inside the crystal and then

escape, leaving behind only part of its total energy. This results in a "Compton

background" in the spectrum of a gamma ray detector that occurs at a lower energy than

the gamma ray in question. A typical spectrum is shown in Figure 5-3. Here we can see

that each gamma ray in the spectrum sits on top of the Compton background generated by

gamma rays of higher energy.

lO003O
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Figure 5-3: bo6mHo sample spectrum showing the Compton background
present underneath nearly all gamma-ray peaks. The horizontal scale is in
channels (2 chn = 1 keV) and the vertical is a log scale of counts.
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5.2.3. Compton suppression

Due to the experimental difficulty presented by the Compton background, the 8ir

spectrometer was built so that each Ge detector is enclosed on its back (furthest from the

source) and sides by a Bismuth Germanium Oxide (BGO) detector. The BGO detector

serves to partially suppress the Compton background in the main detector. If the BGO

detector detects a gamma ray, any signal coming from the main detector at that moment

is ignored. Since the BGO detector is shielded from the source itself, we can assume that

when it fires it is detecting a gamma ray that has escaped the Ge detector that the BGO

detector surrounds. As we can see in Figure 5-3 this process does not entirely suppress

the Compton background. This is because the BGO detector does not cover the entire

germanium detector and the BGO detector is not perfectly efficient. However, the

presence of this "Compton suppression" significantly improved the quality of the data

and increased the sensitivity of the experiment.

5.2.4. Scaled-down singles mode

Once the signal left the germanium detector it went through a series of electronics

and was eventually delivered to a computer that recorded the data on tape. Several

noteworthy processes happened to the data on its way to being recorded. First, a time

window of approximately 100 ns is applied to the detector as a whole. This window

discriminates between multiplicity-one events, in which only one gamma ray is detected

in the entire array within the time window, and higher-multiplicity events, in which two

or more gamma ray signals are received within the time window. An ideal experiment
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would have roughly equal quantities of multiplicity-one and multiplicity-two events.

Since multiplicity-two events allow for more sensitive measurements of weak gamma

rays, we generally want to collect as much multiplicitytwo data as possible. However,

given that the 87r array had an overall efficiency on the order of 1%, a multiplicity-two

event was roughly 100 times less likely to be recorded than a multiplicity-one event.

With the source strength we used, the resulting multiplicity-one events would overload

the array, making it nearly impossible for the coincidence events to be counted. For this

reason, the 8m array was run in "scaled-down singles" mode. First, when a signal from the

entire detector was processed it was "labeled" as being either a multiplicity-one event or

a multiplicity-two or greater event. Multiplicity-one events were then "scaled-down" by

an adjustable factor. For example, if the scale-down factor was 24, then only every 24th

multiplicity-one event was actually processed by the electronics and recorded, all others

being immediately rejected. This reduced the processing load of the system significantly

and allowed the counting of stronger sources than the system could otherwise handle.

Events with a multiplicity greater than one were not "scaled down" in this

manner. Instead they were sent through slightly different timing circuitry so that their

time stamp would be noticeably different from that of a multiplicity-one event. This

created an additional way to discriminate between events of different multiplicity.

5.2.5. Timing

The timing information served two purposes in this experiment. First, it allowed

us to separate actual multiplicity-one events from pile-up events. A pile-up event is when
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a second gamma ray enters a detector while the scattered electrons from the first are still

being collected (modern detectors are able to tell when this happens if the timing between

the two gamma rays is larger than a certain minimum value). When this occurred, the

electronics of the system allowed the event through, marking it as a multiplicity-one

event, but giving it the time delay associated with events of multiplicity two or greater.

Thus, in the timing spectrum of the multiplicity-one events there is a sharp peak full of

actual multiplicity-one events, and a wider background of pile-up events. By setting a

narrow gate of only about 4 ns on this multiplicity-one event "peak" we were able to

exclude the pile-up data from our analysis.

The second purpose of the time stamp information was to allow timing gates to be

used to separate actual cascade coincidences, in which the two gamma rays come from

the same nucleus, from "accidental" coincidences, in which the two gamma rays come

from different nuclei that happen to emit at almost the same moment. Ideally, when

viewing the time-difference spectrum of all coincidences there would be a sharp peak

near zero and a low background extending to infinity. The low background would stem

from the "accidental" coincidences that occur when two different nuclei happen to emit

the gamma rays in question at nearly the same moment in time. Since these events are

uncorrelated, they are equally likely to occur with any given time difference. The

experimenter can then set a time-difference window on this spectrum, selecting the "real"

coincidences in the sharp peak and excluding most of the accidental coincidences in the

low background. To account for the few remaining accidental coincidences a gate of the
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same size can be set on the background away from the peak and then the resulting

spectrum can be subtracted from the spectrum of real coincidences.

However, the design of the electronics in the 8ir was such that the entire time-

difference spectrum was only 100 ns wide (coincidences outside this limit were not

recorded as such). In addition, each detector in the array had a different inherent timing

offset, causing the time-difference spectrum to deviate quite a bit from the ideal. A timing

gate of 35 ns was set on the time-difference spectrum with the safe assumption that

nearly all real coincidences would be well within this window. However, the shape of the

time-difference spectrum lead us to conclude that a background timing gate could not be

subtracted to account for accidental coincidences. A method for accounting for

accidentals was developed later in the analysis (see Section 5.5.3).

5.3. Experimental data stream

5.3.1. Raw data format

The data from this experiment were recorded on 8 mm magnetic tape as a

sequence of double integers (integers written using two bytes instead of one, allowing

values up to 65535). Each signal coming from the detector electronics, which can be of

any multiplicity, is recorded as an "event". In the resulting data stream, each event has

the same structure. First there are three numbers representing information from the inner

BGO ball, which was not used in this experiment. These numbers are ignored. Then

comes a number representing the multiplicity of the event (GeMu) followed by signals
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from the individual detectors involved in the event. The number of the detector is

recorded (GelD), followed by the energy of the gamma ray (GeE), followed by the time

stamp for that gamma ray (GeT). Finally, the end of the event is signified by the number

65535 (FFFF in hexadecimal notation) called the End Of Event flag. Thus, a multiplicity-

2 event would have 11 numbers: 3 BGO numbers, GeMu, GelD, GeE, GeT, GelD, GeE,

GeT, EOE.

The data stream for this experiment contained a small proportion of "bad" events.

These are events in which some part of the event format is incorrect. This includes events

with a multiplicity of zero, events without an EOE flag, or events in which any of the

values were not possible, such as a GelD of 30, or an energy above 8095. As part of the

first step of analysis these bad events were catalogued and removed from the data.

5.3.2. Dropped bits

When viewing a gamma ray spectrum from the data it was noted that sometimes

there was a distinct pattern of odd-even staggering in the data. Figure 5-4 shows an

example of this pattern. Combining this with the observation that on many occasions the

EOE flag was written as 65534 instead of 65535, we concluded that sometimes the last

bit of a particular number was being dropped from the data. In binary the last bit

determines whether the number is odd (last bit = 1) or even (last bit = 0). Thus, if the last

bit were occasionally dropped, the counts from the odd channels in a spectrum would be
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Figure 5-4: Section of a spectrum showing the odd-even staggering
present in the original spectrum. This effect was eliminated by
compressing the spectrum so that the original odd-even pairs would be
combined into a single channel.

deposited on the even channel immediately below, resulting in the observed pattern. This

evidence suggested the disturbing possibility that bits were being dropped from other

numbers in the data stream, with potentially disastrous affects on the validity of the data.

In analyzing this possibility we considered each number in the data stream and the

consequences to the data if it the last bit were dropped for that number.

Dropping the last bit would have very limited consequences in the time stamp

(GeT) of each gamma ray because the timing gates used are all much wider than 1

channel. Thus, dropping the last bit of the time stamp was not a major concern.

If the multiplicity number (GeMu) were affected by dropped bits, we would

expect to see many events listed as multiplicity-two, but with the structure of a

multiplicity-three event. There is very little evidence of this, and this would not

compromise the data since it would be an obviously wrong multiplicity.
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Most disturbing was the possibility that the last bit of the detector number (GelD)

was being dropped. If this had occurred, incorrect identification of the detector would

lead to the incorrect angle being used to calculate angular correlations. However, several

observable situations should arise if bits were being dropped in the GelD number. First, a

similar odd-even staggering in the detector-hit patterns should be apparent, i.e. if we look

at how often a gamma ray was detected in each detector, dropped bits from the GelD

would cause the even detectors to seem to be triggered more often than the odd detectors.

Some detectors were indeed triggered more often than others, but the pattern was

consistent with efficiency measurements and did not exhibit any odd-even staggering.

Second, we would expect to see many "self-coincidences" in which a multiplicity-two

event has the same detector listed for both of its gamma rays. This would happen if

detector 16 was in coincidence with detector 17, but detector 17 was recorded as 16 due

to a dropped bit. Real self-coincidences are not possible given the electronics

configuration, so they would be strong evidence of dropped bits in the GelD number.

There are instances of self-coincidences in the data, though they are very rare, comprising

less than 1 per every 100,000 events recorded. However, they occur just as often with odd

detectors as with even detectors, which would not be true if they were caused by dropped

bits. Given the lack of an odd-even staggering in the detector hit pattern, and the extreme

rarity of even detector self-coincidences, we feel secure in concluding that bits were not

dropped from the detector number.

Therefore the only remaining consequence of dropped bits is the odd-even

staggering in the energy spectrum. To correct for this the spectrum was compressed from



an 8191-channel spectrum to a 4095-channel spectrum. In the process each even channel

and the odd channel immediately above it were combined into a single channel. This

eliminates the odd-even staggering at the cost of some resolution. Since most peaks are

many channels wide this had only small effects in general, but did make it more difficult

to separate peaks that lie very close together.

5.4. Data sorting

The data sorting process for this experiment consisted of using several computer

programs to refine, filter and sort the raw data stream. Programs to accomplish these

tasks were written for that purpose and tested on multiple data sets under consideration.

All programming was done in the C++ computer language.

5.4.1. Filtering the raw data stream

The first step in the process of analyzing the data was to remove the bad events,

compress the energy scale as described, and sort the resulting events by multiplicity.

Although there is interesting physics to be found in the study of high multiplicity events,

in this experiment we were not interested in events with multiplicities greater than two.

For this reason, an event with a multiplicity greater than two was broken down into

several multiplicity-two events. For example, a multiplicity-three event can be treated as

three unique multiplicity-two events.

The next step was to make sure that the data from each run were gain matched so

that the energies of the strong peaks matched the previous measurements summarized in
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the Nuclear Data Sheets [12]. In the case of the l66mHO decay it was decided that the

energy calibration was good enough without a gain matching process. However, the

'66Tm decay spans a much larger energy range and it was decided that this data needed to

be gain matched. For reference the 38 peaks used for the 166Tm gain matching are

presented in Table 5-1. Note that the three lowest energy peaks are actually a weighted

average energy of groups of x-rays and that the 82.3-keV peak is the one gamma ray

emitted by the '66Yb parent.

Table 5-1: Peaks used for gain matching of '66Tm data set. Energies
presented are those found in the Nuclear Data Sheets [12]. X indicates an
energy that comes from a weighted average of x-ray energies. a indicates a
peak that comes from the '66Th parent.

Peak # Energy Peak # Energy Peak # Energy
lx 49.761 14 496.935 27 1176.7
2x 55.613 15 594.409 28 1203.87
3X 57.762 16 598.764 29 1235.43
4 80.574 17 672.242 30 1273.54

82.29 18 674.788 31 1300.73
6 130.9 19 691.25 32 1347.04
7 147.301 20 705.333 33 1374.19
8 184.405 21 757.798 34 1867.94
9 215.185 22 778.814 35 1895.12
10 280.461 23 785.904 36 2052.36
11 345.569 24 810.29 37 2079.53
12 404.004 25 875.65 38 2092.13
13 459.6 26 1152.35

The gain matching was accomplished using a fourth-degree polynomial fit on a

plot of energies in the "raw" data and the energies quoted in the Nuclear Data Sheets



[12]. The energy of every gamma ray was then shifted according to this fit function so

that any non-linear properties of the electronics were corrected for. This allowed the data

from all runs to be combined and treated as a whole.

5.4.2. Building the 'true-singles' spectrum

The next step is to correct the data for the detector efficiencies. Ideally the

absolute detector efficiencies would be calculated using a calibrated source with known

activity. Unfortunately, these data were not collected. Therefore the source itself was

used to do the efficiency calibration. However, in order to calculate the efficiency of a

detector we must carefully account for all the gamma rays observed by that detector at as

wide a range of energies as possible. At this point it is important to note the difference

between what we have called "multiplicity-one" events and what experimentalists in this

field would call "singles" events. Singles events are those that would be observed by a

single detector that is unconcerned with whether the gamma rays it observes are in

coincidence or not. A multiplicity-one event, on the other hand, is essentially an anti-

coincidence event, i.e. one for which no other gamma ray was observed within the

coincidence timing window. Multiplicity-one events are therefore not the same as singles

events. In particular, multiplicity-one events under-represent those gamma rays that occur

often in coincidence.

In addition it was discovered that the electronics of the 8ir were such that when a

multiplicity-two or higher event was detected, the scaled-down counter would trigger



only once. Thus if the scale-down factor was set to 24, it was not actually letting through

every 24th gamma ray, but some number even less than that.

Both of these factors were eventually accounted for by re-creating a gamma-ray

spectrum that represents the overall emissions of the sample in the way that a singles

spectrum does. This spectrum, known as the "true-singles" spectrum was constructed as

follows. An effective scale-down factor was calculated to offset the miscounting that

occurred as the data was recorded. The multiplicity-one event spectrum was scaled up by

this factor, at which point all other events (multiplicities two and higher) were added

back into the spectrum. This combined spectrum was then scaled back down to reflect the

correct Gaussian statistics of the actual data.

A true-singles spectrum was constructed in this way for each of the 20 detectors

in the array and it was these spectra that were used in the detector efficiency calculations.

5.4.3. Detector efficiency

Due to the competing ways in which a germanium detector absorbs a gamma ray,

the efficiency with which a detector will capture a gamma ray is energy dependent.

Moreover, each detector used will have a different energy dependent response, depending

primarily on the effective volume of the Ge crystal, but also upon other factors such as

neutron damage from use in in-beam experiments. To represent this effect we define an

energy dependent factor, e7 known as the efficiency

Area
Jr (5-1)

Er



where I is the relative intensity of a gamma ray (usually normalized to the strongest peak

in the spectrum) and Area is the experimentally measured area of the peak corresponding

to that gamma ray.

It is impossible to measure the efficiency at all energies. However, the physical

theory behind the processes by which a gamma ray is absorbed leads us to conclude that

efficiency will be a smoothly varying function of energy. Thus, a relative-efficiency

function was extrapolated from the data. The relative efficiencies were calculated for

selected strong peaks from across the largest possible range of energies using literature

intensities from the Nuclear Data Sheets [12]. These relative efficiency data points were

then plotted against the energy of the gamma rays on a log-log scale. The resulting plot

was then fitted to a 4th order polynomial using a least-squares regression. A sample

relative-efficiency curve is shown in Figure 5-5.

Due to the length of time between the two experiments described here efficiency

curves were calculated separately for the l66mHo and 166Tm experiments. Note that due to

the importance of the 80.5-keV transition present in both decays it was particularly

important to pin down the relative efficiency curve at low energy. This was difficult due

to the rapidly changing response curve in that energy range. In the '66Tm decay the

erbium x-rays were used as an additional low-energy data point on the efficiency curves.
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Figure 5-5: Typical relative efficiency plot and fit. The log-log efficiency
data are fit to a 4thorder polynomial. These data come from detector 1 in
the '66Tm decay. Note that the vertical scale is arbitrary

5.4.4. Creating angle matrices

The primary focus of this investigation was to measure the E2/M1 mixing ratios

of various gamma-ray transitions in the '66Er nucleus. A previously described, this is

accomplished by measuring the angular correlation of the gamma rays emitted in

coincidence. For this reason it was important to know the angle between detectors for

each coincidence event recorded.



Due to the symmetry of the 8ir instrument, it turns out that there are only five

unique opening angles between all 190 pairs of detectors: 41.8°, 70.5°, 109.5° 138.2°, and

180°. The angles formed by each detecto:r pair can be found by consulting Table 5-2.

Table 5-2: Opening angles for each detector pair. The key is as follows: .
-* 41.8°, . -* 70.5°, 0 -* 109.5°, o -* 138.2°, -* 180° and - -+ 00

which is a detector with itself (and is not used in the analysis). Note that
the redundant upper right of the table has been left blank. The five unique
angles (not including 0°) appear in the proportions 3:6:6:3:1 respectively.
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There are more detector pairs that create some of these angles than others.

Specifically out of the 190 unique detector pairs that can be created from combinations of

all 20 detectors, 60 detector pairs form the 70.5° angle, 60 form the supplementary angle

109.5°, 30 form the angle 41.8°, 30 others form the supplementary angle 138.2°, and only

10 form the 1800 angle. For this reason the statistics of the 180° angle are often the

limiting factor in measuring angular correlations.

The task of combining the mass of data collected into a coherent angular

correlation measurement was accomplished by creating an "angle matrix" for each of

these five angles. To do so, each coincidence event in the data stream was first corrected

for the efficiency of the detectors and energies involved and then added into the energy-

energy matrix of the angle that that pair of detectors forms. For example, if a coincidence

event consists of a 100-keY gamma ray in detector 3 and a 500-keV gamma ray in

detector 9 we would first look up the angle formed by this pair, which is 70.5°, we would

then add
1

to the [100,500] location in the 70.5°
e(det3, 100 keV)e(det9, 500 keV)

matrix. We would also add the same quantity to the [500,100] location in the 70.5°

matrix, creating a symmetric matrix and removing any concern about which energy

happens to be listed first in the data stream. The resulting matrix has a certain value in

each energy-energy location that represents an efficiency-corrected count of how many

times that energy-energy pair occurred. Thus, data from all detector pairs can be

effectively combined into these five angle matrices.



In this process both an efficiency-corrected angle matrix and a "raw", uncorrected

angle matrix were created. The raw matrix was used to approximate the errors introduced

by efficiency correction, as described in Section 5.5.4.

5.5. Angular conelation measurements

5.5.1. Pulling a gate

Measuring a particular angular correlation involves a two-step process. First, a

"slice" must be taken of each of the five angle matrices discussed in the previous section.

This entails setting a window on the energy-energy angle matrix and creating a gamma-

ray spectrum from the counts within the window. As an illustrative example let us

consider measuring the angular correlation of the 810-keV gamma ray (which connects

the 5 state of the gamma band to the 4 state of the ground band) in coincidence with the

184-keY gamma ray (which connects the 4 and 2 states of the ground band). We would

first set an energy window on each matrix corresponding to the 1 84-keV gamma ray. For

example, we might take every location in the matrix whose first energy is listed between

183 and 185 keV and combine them to create a counts vs. energy spectrum. This

spectrum now represents a summary of all gamma rays that were in coincidence with a

gamma ray that had an energy between 183 andl85 keV at that particular angle. This

process is known as "creating a slice".

Due to the Compton background that is constantly present in this type of

experiment, there is a small number of background coincidences that has been counted in



this slice. To account for these background coincidences we also create a similar slice

from a nearby energy range that we are confident contains no peaks at all. This slice

should now represent the background coincidences that are also present in our peak slice.

Accounting for any difference in size between our peak window and our background

window we then subtract the background window from the peak window leaving only

real coincidences and the accidental coincidences that are due to a gamma ray with the

correct energy but that didn't come from the same nucleus. The five spectra created in

this fashion are collectively referred to as the "184 gate" as they represent gamma rays in

coincidence with the 1 84-keV gamma ray from all the data collected.

5.5.2. Fitting peaks in a gate

In each of these spectra we can now measure the area of the other gamma ray we

are concerned with, the 810-keV peak. This was done using a powerful analysis tool

called GF3 which is specifically designed for analyzing gamma ray spectra generated by

Ge detectors. GF3 is part of the Radware software suite created by David C. Radford

[47]. The fitting routine uses a chi-squared minimization method that includes a skewed

Gaussian peak shape, a quadratic background function and a step-function background

that accounts for Compton scattering. This program is quite adept at fitting multiple

close-lying peaks, though there are limits to this resolution of doublets and multiplets. An

example fit of a section of the 42° spectrum from the 184-keV gate produced by the

166Tm decay is shown in Figure 5-6.



103003-

103CC

583 603 640

Figure 5-6: Example GF3 gamma-ray spectrum fit showing the resolution
of multiplets in the 42° spectrum of the 1 84-keV gate produced by the
decay of 166Tm. The raw spectrum is shown by the step-like channels and
the fitted function is shown as a smooth line, with the component peaks
and fitted background functions displayed below it.

One issue to consider in measuring the angular correlation is the possibility of

"Compton backscatter". In certain circumstances a gamma ray may encounter one

detector, scatter backwards to some degree and be detected in another detector. This

would happen fast enough that the two partial gamma rays would be interpreted as a

coincidence by the detector electronics. Due to the strong energy dependence of the

Compton scattering formula [2] this can occur only for a small range of energies. In fact,

when this occurs for gamma rays between 200 and 3,000 keY, one of the partial gamma

rays will always be between 100 and 240 keV. Thus we can see that this will be a

concern for only a few gamma rays. Unfortunately, right in the middle of this range is

one of the strongest gamma rays in either decay. The 184 keV 4 to 2 ground-band

transition is used as a gate for many measurements, and so it is important to consider the

effects this backscattering could have. A careful analysis of all the strong gamma rays in



each decay shows that the only potential problem comes from the 779-keV gamma ray.

This gamma could backscatter in such a way that it would leave 192 keV in a particular

detector and then deposit the remaining 586 keV in the detector opposite the first. This

could, in principle cause trouble with the 1800 measurement of the 594-184 angular

correlation. However, given that the typical resolution of the detectors is well under 3

keV, we believe this effect did not contribute to the data in any meaningful way. Previous

measurements of angular correlations that use the 184-keV gate [26] with a NaT detector

may have suffered from of this potential problem.

Once we have measured the area of the 810-keV peak in the spectra of all five

angles we are ready to plot our experimental angular correlation data.

5.5.3. Correcting for accidental coincidences

Before using the data to calculate the angular correlation coefficients we must

first account for the still present accidental coincidences. This is accomplished by using

self-coincidences of the gate to determine the overall accidental coincidence rate and then

correcting the peak in question based on its relative intensity to that of the gate.

First, we measure the self-coincidences present in the gate. In our example this

would mean measuring the area of the 184-keV peak in the 184 gate. Since we know that

there can be no legitimate coincidences between the 1 84-keV gamma ray and itself, we

can conclude that this entire area must come from accidental coincidences. We can then

calculate the amount of accidental coincidences in another peak in the same spectrum,

such as the 8 10-keV peak, by



'rel.
(810)

Acc(810) = Self-coinc(1 84). (5-2)
'rd.

(184)

where Ire!, is the relative intensity taken from the Nuclear Data Sheets. This number of

counts is then subtracted from the area of the 810 peak to remove the contribution of

accidental coincidences.

By repeating this process for each of the five angles we can arrive at a set of

angular correlation measurements that are ready to be analyzed further.

5.5.4. Calculating angular coefficient coefficients

As mentioned before it is the extreme symmetry of the 8it apparatus that creates

only five unique angles among all 190 detector pair combinations. This is somewhat

contrary to the purpose of extracting angular correlations in that one would normally like

to measure the angular correlation at as many angles as possible. Further hindering this

process is the fact that the angular correlation function, Equation (2-14), is symmetric

about 90°, i.e. the angular correlation function treats the angles 41.8° and 138.2° as the

same angle. In some sense this further reduces the sensitivity of our measurement of

angular correlations.

The angular correlation function W(0) is plotted with counts on the vertical axis

and angle on the horizontal axis. The five data points can then be fitted to the theoretical

angular correlation function given in Equation (2-22) (reproduced here for ease of

reference).

W(0) = N(1 + A22Q2G2F (cos 0) + AQ4G4P4 (cos 0)) (2-22)
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The variables N and the two AkkQkGk coefficients were calculated by a

minimizing the chi-squared function given by

(W(0)exp W(0)theorY
(5-3)

a (SW(0)exp)2

where there is one term in the sum for each of the five unique angles used in this

experiment. W(0)exp is the experimental area measured for the coincidence in question at

the angle 0 , öW(0)exp is the experimental uncertainty in this quantity and W(0)theory is

the theoretical value of the angular correlation function for a given value of N and the two

AkkQkGk coefficients. Minimizing this function for all three unknown quantities gives

their best fit value. The standard rules of error propagation are used to find the

uncertainties in these best fit values.

The effects of finite detector size (Qkk), and oriented level lifetime (Gk) are then

divided out, producing the Akk coefficients (recall that Qoo and G0 are unity). An example

plot of the 8 10-184 angular correlation function is shown in Figure 5-7.

The uncertainties for the angular correlation functions were calculated using a

combination of the fitting uncertainty generated by GF3 (which include statistical

uncertainties as well as uncertainties caused by the fitting routine) and uncertainty due to

the efficiency correction applied to the data. The efficiency uncertainty was calculated in

an unusual manner due to the profound averaging effects of combining the 190 detector

pairs into five angle matrices. The process described so far was done for both the
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Figure 5-7: Example angular correlation fit. The angular correlation data
for the 810-184-keY cascade are plotted with error bars and fitted to the
theoretical form of W(0) given in Equation (2-22).

efficiency-corrected and raw angle matrices (described in Section 5.4.4). The final fitted

area for the raw coincidences was divided by the efficiency-corrected coincidence area to

produce an effective efficiency correction parameter.

Arearaw
8eff

Areacoflted
(5-4)

The effective efficiencies were then compared across the five angles. In this way we

could estimate how much the efficiency correction varied in the experiment. The standard

deviation of these five effective efficiency values was then takes as the uncertainty in the
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efficiency and combined (as a relative error) with the uncertainty produced by the GF3

fits.

The Qkk coefficients (see Section 2.6) were calculated for gamma rays from 100 to

2000 keV. As noted previously these correction factors are generally on the order of 2-

5%, and are relatively insensitive to the gamma-ray energy. Qkk is calculated by the

product of two Qk values (one for each gamma ray), which are presented in Table 5-3.

Table 5-3: Calculated Qk coefficients for the 8ir detector array.
Coefficients are calculated every 100 keV between 100 and 2,000 keV.

E (keV) Q2 Q
100 0.991 0.971
200 0.992 0.973
300 0.992 0.973
400 0.992 0.974
500 0.992 0.974
600 0.992 0.975
700 0.992 0.975
800 0.993 0.975
900 0.993 0.976
1000 0.993 0.976
1100 0.993 0.976
1200 0.993 0.976
1300 0.993 0.976

1400 0.993 0.976
1500 0.993 0.976
1600 0.993 0.976
1700 0.993 0.977
1800 0.993 0.977
1900 0.993 0.977
2000 0.993 0.977

The Gk coefficients deviate from unity only when the lifetime of an intermediate

oriented state is long enough to allow the environment of the nucleus to affect the



populations of the magnetic substates (see Section 2.6). In these experiments the 81 keV

2 ground band level is low enough in energy that its lifetime is 1.82 ns. This is on the

order of 1000 times longer than the lifetime of the typical nuclear level, which is the

picosecond range. Because the exact environment of the liquid source sample is

impossible to determine, effective Gk factors must be measured for each experiment. To

determine the Gk factors for this first 2 level, several measurements of well understood

angular correlations were performed and compared to their theoretical values. In

particular, angular correlations that consist of monotonically decreasing spin sequences

with AJ = 2 for each transition give large, well understood A22 coefficients. Table 5-4

shows six measured values of A22 for the 81-keV state in 166m110 along with their

weighted average. All six A22 values (which are unitless) have the same theoretical value

of A22 = 0.102.

Table 5-4: Angular correlations used to calculate G2 for the 81-keV level
in lo6mHo The six A22 values shown have the same theoretical value of
0.102. Unobserved intermediate gamma rays are shown in parentheses.

Gamma-Ray Energies Spin sequence A22

184-81 4-2-0 0.0788 0.0145
280-( 1 84)-8 1 6-4-2-0 0.0782 0.0 190

365-(280)-(1 84)-8 1 8-6-4-2-0 0.0757 0.0352
875-8 1 4-2-0 0.0933 0.0734

951-(184)-81 6-4-2-0 0.0811 0.0363
10 10-(280)-(1 84)-8 1 8-6-4-2-0 0.2242 0.2209

Weighted Avg. 0.079 1 0.0 104
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From these data the G2 value for the 81-keV level in the lo6mHo decay was

determined to be G2 = 0.78 ± 0.10. This value compares favorably with other similar

studies [15,24].

A similar calculation was done for the 81-keV level in the 166Tm decay, using the

data shown in Table 5-5. Only three values could be used in this case due to the lack of

high spins populated in this decay.

Table 5-5: Known angular correlations used to calculate G2 for the 81-keV
level in 166Tm. The three A22 values shown have the same theoretical value
of 0.102. Unobserved intermediate gamma rays are shown in parentheses.

Gamma-Ray Energies Spin sequence A22 +1-

184-81 4-2-0 0.0754 0.0225
280-(184)-81 6-4-2-0 0.2058 0.1048

875-81 4-2-0 0.1042 0.0372
Weighted Avg. 0.0872 0.0 190

From these data the G2 value for the 81-keV level in the '66Tm decay was

determined to be G2 = 0.85±0.19. This value also compares favorably with other similar

studies [15,24].

The G4 value for this level in the 166Tm decay was calculated using the strong

gamma ray cascade 705-8 1 keV. The 705-keV gamma ray is emitted in the transition

from the 2 gamma band state to the 2 ground band state. This angular correlation does

not have a well known theoretical value, due to the mixing of E2 and Ml multipolarities

in the 705-keV gamma ray. However, all measurements of this mixing ratio, including

the present work (see Section 6.2.1) have given very large values. Since the B4 coefficient



is asymptotic at large values of 8(705), we could safely assume that the value of the A

would be very close to Auth = 0.327. The measured coefficient for this cascade was

Aexp = 0.2 14 ± 0.023, which yields a value of G4 = 0.66 ± 0.07.

Due to the lack of such an angular correlation in the 166Ho decay, the G4 value

for the 81 keV in the '66Tm decay was also used in the l66mHo analysis.

With both the Qk and Gk values corrected for, the measured Akk coefficients can

now be compared with previous measurements and used in further analysis.

5.6. Extracting mixing ratios

The mixing ratio ö has often been a good experimental check on the theory of

nuclear structure. Rather than simply measuring the intensities of transitions as a test of

theoretical models, the mixing ratio allows a glimpse of the cause of those intensities. A

given transition rate may match well with theory, but if theory predicts that the intensity

stems from an enhancement of E2 transitions, while the 8(E2/M1) mixing ratio is small,

then the theory will have to be reexamined.

In many experiments the value of 5 is extracted from the Akk coefficients produced

by angular correlation measurements. As described in Section 2.5, these coefficients are

quadratic functions of 5. In addition, the A22 coefficient is sensitive to the sign of 5. A

plot of the Akk coefficients vs. 5 can be a good way to understand the relationship between

these quantities.
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Figure 5-8: Plot of A coefficients vs. 5 for a 4-4-2 angular correlation.
A22 is sensitive to the sign of delta and so is plotted once for positive
values of delta and once for negative values. Note the common asymptotic
behavior of A22(+ö) and A22(-5) when is very small or very large.

Figure 5-8 shows such a plot for an angular correlation sequence 4-4-2 (such as

the 691-184-keY gamma-to-ground-to-ground coincidence). Here we can see that a

different sign of 5 does indeed give a different value, but the two values come to the same

asymptotic limit if 5 is very large or very small. A44 is also very insensitive to ô for large

or small values of delta and does not depend on the sign of delta.



5.6.1. Extracting 1/cä instead of ô

In situations where is expected to be large, as in the case of gamma-band to

ground-band transitions, it is our opinion that solving for 1M gives more information and

is more useful than solving for ö itself.

As seen in Figure 5-8, the angular correlation coefficients, and therefore the

W(0) function itself, converge to a single value as 5 approaches positive or negative

infinity. For this reason an experimental determination of 5 is often unable to tell the

difference between a large positive and large negative value (imagine an experimental

value of 0.11 ± .03 for A22 in Figure 5-8). It is common in these situations to come

across a value of in the literature that extends to infinity. The reality of this

measurement is often that while the data indicated a certain large value of delta, the

uncertainty limits could not exclude the possibility of a large value of delta with the

opposite sign. If the authors had instead quoted a value of 1M they could quote their full

uncertainties and make it clear to the reader that while they are confident that 5 is large,

they cannot conclusively state the sign of ô. For example, a measurement of

1/8 = 0.0 10 ± 0.011 means that delta is likely positive, and if it is negative it is very large.

Tn either case this transition is more than 99.95% E2 (the %E2 calculation, Equation

(2-16), depends only on ö2). In the past, such a measurement would probably be quoted

as 6 = 100. However, there are a few circumstances, such as the '66Er nucleus that is

the focus of this work, in which the sign of delta is of some interest and so a statement of

ho can clarify the measurement.



In addition, averaging large values of delta can be very difficult. Imagine three

measurements of a certain mixing ratio: Sa = 108, ö,, = 100 and ö = 93.

Attempting to average these values directly is both difficult and can potentially leave out

useful information. By recasting these as liSa = 0.0093 ± 0.0100, 1/Sb = 0.010 ± 0.011

and 1/8 = 0.0107 ± 0.0120 we can easily do a weighted average of these, resulting in

= 0.0099 ± 0.0063, which does exclude the possibility of a negative result.

Thus, in this work when the (5 value was expected to be large, it was 11(5 that was

actually calculated and, when possible, averaged. For the sake of convenience we will

still refer to "extracting (5" even though we were actually solving for 1/(5 in many cases.

The mixing ratio (5 was calculated in several different ways in this study.

However, these different methods can be broken down into two distinct groups. In one

group (5is calculated from the angular correlation coefficients, or from a combination of

same. In the second group, delta is calculated directly from the angular correlation data

by means of a chi-squared minimization process. In both cases, multiple angular

correlation measurements may go into extracting each value of (5.

5.6.2. Extracting (5from Akk with a pure transition

The (5 of a gamma ray can be most easily extracted from angular correlation

coefficients by using a coincidence with another gamma ray of pure multipolarity. In this

method (5can be easily extracted from either Ak or a Bk depending on whether the mixed

gamma ray comes first or last in the coincidence cascade. We can then use the equations
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given in Section 2.5 to solve for (5. For example, in the 810-184-keV angular correlation,

the A22 coefficient is a combination of a B2(810) and an A2(184). The A2(184) can be

calculated from theory because we expect the 1 84-keV gamma ray, which links the 4

and 2 levels in the ground band, to be a pure-E2 transition. Any M3 component would

be at least seven orders of magnitude weaker, and probably even less due to the

enhancement of E2 radiation between collective states. This lets us extract an

experimental value for B2(810), which is a quadratic function of the mixing ratio (5(810),

given by Equation (2-18). This quadratic can be solved, yielding two values of (5(810)

based on the experimental A22 coefficient.

A similar process using the A coefficient yields another two values, and in

principle one of the (5 values from A44 should match one of the (5values from A22 and the

two values can be averaged. However due to the vanishing of the constant and linear

terms in the B4 numerator, this coefficient is much less sensitive to (5. For this reason it

has long been standard practice to calculate the two (5 values from the A22 coefficient and

then use theA coefficient to choose between them.

In this method the uncertainties in (5are calculated using the uncertainties in the

Akk coefficients and standard propagation of error methods.

5.6.3. Extracting ô from a ratio of Akk coefficients

A clever way of extracting a (5 when you cannot use a pure gamma ray in

coincidence is to use a ratio of angular correlation coefficients. For example, consider the

705 keV 2 gamma to 2 ground transition in the 166Tm decay. We can get one
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measurement of 8(705) using the 81 keV 2 to 0 ground-band transition as a pure

coincidence, but there are no other pure multipolarity gamma rays in coincidence with

this transition. However this gamma ray is in coincidence with several strong transitions

from other high lying levels fed in the '66Tm decay, such as the 672-keV gamma ray that

comes from the 1458-keY level. In theory, we could measure the ö of the 672-keV

gamma ray using the 785-keY 2 gamma to 0 ground pure transition. We could then use

8(672) in combination with the 672-705-keV angular correlation data to solve for

8(705). However, in practice this method expands the uncertainties of the final so

much that it becomes nearly useless.

However, there is a way to use the 672-keV transition, and others like it, to solve

for 6(705) without introducing additional uncertainty. Consider that the A22 coefficient

of the 672-705 angular correlation fit consists of B2(672) times A2(705). The A22

coefficient of the 672-785 angular correlation fit consists of the same B2(672) times

A,(785), which is directly calculable because the 785 is a pure transition (2 gamma to

0 ground). Now, if we take the ratio of these two angular correlation coefficients we

have

A22(672 705) B2(672)A2(705) A2(705)

A22(672 785) B2(672)k(785) A2 (785)

From here we can solve for A2(705) and use this as we have previously to solve for

6(705). Thus, without introducing any error associated with the actual properties of the

672-keV transition we can use it to get another measurement of 6(705). In fact, this
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method can be used with any higher lying gamma ray, regardless of whether it feeds the

2 gamma level directly or not. In the same way that the B2 (672) cancelled out in the

above expression, the deorientation coefficient Uk associated with any unobserved

intermediate radiations will also cancel out. In a decay that feeds higher lying states

strongly, such as both the decays in this work, this method offers many additional data

points for an otherwise difficult to measure (5.

In this method the uncertainties in (5 are calculated using the uncertainties in the

Akk coefficients and standard propagation of error methods.

5.6.4. Extracting (5from an Akk ratio with a mixed transition

The above method cannot be used for gamma rays emitted from odd spin levels in

the gamma band because there are no pure-multipole gamma rays emitted from the same

level (e.g. the 3 gamma band state can decay only to the 2 or 4 ground band states by

mixed E2+M1 radiations). However, the same principle can be used by considering a

cascade with a mixed transition that feeds the gamma ray of interest. Consider the 779

keY 3 gamma to 2 ground gamma ray, fed by the 599-keV gamma ray that is emitted

from the 1458-keV level. We can use the 599-594 angular correlation in much the same

way that we used the angular correlation with a pure transition in the previous case. We

know that A21(598-594) = B2(598)A2(594) where the A2(594) is a function of mixing

ratio 6(594) as per Equation (2-20). We plan to divide the A22 (598 779) coefficient by

A22 (598 594) in much the same way as in the previous section, but this time there is the
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additional uncertainty of having to use the experimentally determined 8(594) in the

calculation. However, 8(594) has been measured with high accuracy through other

methods in this study, in good agreement with previous measurements. As with the

previous method, this procedure can be extended to any gamma ray that is in appreciable

coincidence with the 594 and 779-keV gamma rays, regardless of whether it feeds them

directly or not.

In this method the uncertainties in 8(594) (continuing our example) must be

taken into account when determining the experimental uncertainty in 8(779). Using

standard propagation of error methods we put in the maximum and minimum values for

6(594) and then use the largest and smallest limits of the extracted 8(779) to determine

the final limits of uncertainty.

5.6.5. Extracting ô by chi-squared minimization

The second category of ways to calculate 5 involves using the angular correlation

data directly. Let us again first consider an angular correlation in which the mixed

gamma ray in question is in coincidence with a pure multipolarity gamma ray. First, the

theoretical angular correlation function W(0) is recast in terms of 5, including

corrections such as the Qk and Gk factors. This function is then fit to the experimental

data using a chi-squared minimization method that parallels the method described in

Section 5.5.4. It should be noted here that recasting W(0) in terms of 5 does not remove

N as a variable. For this reason, the value of N determined in the angular correlation fit is
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used for the chi-squared minimization. Once a minimum has been located, N is adjusted

to find an even deeper minimum. These adjustments are always smaller than the

experimental uncertainty in N and are usually on the order of 0.1%.

As W(0) is still a quadratic function of we still expect there to be two minima

in the chi-squared function. In good cases, such as the example shown in Figure 5-9 one

minimum is clearly deeper and sharper than the other. In less straight-forward cases, such

as that shown in Figure 5-10, the two minima may be nearly the same depth and other

factors may influence us to choose one over the other.

CM-Squared Minimiiation
10000

1000

I.

100

10

1 I I I I I I
I

I I I I I

I
I I I

-8 -7 -6 -5 -4 -3 -2 -1 0
i/o

Figure 5-9: Example of a chi-squared minimization where the choice
between the two possible minima is clear. This plot comes from the '66Tm
decay and is the plot of the chi-squared function for the 810-184-keV
angular correlation. Note that the x-axis is 1/0, which allows the very large
value of 0 to be located more effectively.
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CM-Squared Minimization
100

0.1 I I I I I
I

I I I
I

I I I I

-2 -1.5 -1 -0.5 0 0.5
1/t5

Figure 5-10: Example of a chi-squared minimization where the choice
between the two possible minima is not clear at all and other factors are
used to choose the favored solution. This plot comes from the l66mHo

decay and is the plot of the chi-squared function for the 691-260-keV
angular correlation. Note that the x-axis is ho.

In this method the experimental uncertainties are determined by taking the values

of delta given by adding one to the chi-squared minimum. This can be visualized by

imagining the spread of delta values that is included below a line one unit above the chi-

squared minimum (as shown in Figure 5-11, a magnified version of Figure 5-9).

In Figure 5-11 we can see that this will correspond to a small range of 1/0 (but

remember that 0 is very sensitive to 1/0 in this range). In contrast, the same process

applied to the plot in Figure 5-10 indicates that include both minima will be included by

the uncertainty.
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CM-Squared Minimiiation
100-

10-

i-
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

i/o

Figure 5-11: Magnified plot of chi-squared illustrating the method of
finding uncertainty limits in a chi-squared minimization. The straight line
in the figure is one unit above the minimum chi-squared value. The ends
of the line represent the limits of uncertainty for the value of 1/0. The 1/0
value determined by this plot is (0.0362g) which corresponds to a 0
value of _(27.6ii8).

This chi-squared minimization method is preferable to extracting 0 from the A22

coefficient because in some sense that method leaves out the information contained in the

A44 coefficient. The chi-squared minimization method uses all the experimental data

available. In addition, it has been previously noted [27] that the uncertainties produced by

extracting 0 from the A coefficient are smaller than those produced by the chi-squared

minimization method raising some questions about the validity of those limits. See the

end of Section 7.1 for a brief analysis of this issue in our data.
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A major problem with the traditional method of determining 5 from the A22

coefficient is that it may not immediately show that a value of up to infinity is possible.

As noted, this issue can be addressed by solving for ho. If the limits on this value

encompass zero, it is obvious that 0 itself could then be either positive or negative.
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6. Experimental Results

We first present some spectra to show the basic character of the data we collected.

Since the primary focus of this work was to measure the properties of the gamma band

states, the second section presents our results for the ö(E2 / Ml) mixing ratios for the

gamma-to-ground transitions and the third section presents results for the three intra-

gamma-band transitions for which we were able to measure S(E2 / Ml).

6.1. Experimental spectra

Figure 6-1 shows the singles spectrum collected for the l66mHo decay. This

spectrum is the "true" singles spectrum described in Section 5.4.2 and accurately

represents the total statistics collected for this decay.

Figure 6-2 shows the singles spectrum collected for the '66Tm decay. This

spectrum is the "true" singles spectrum and accurately represents the total statistics

collected for this decay.

Figure 6-3 shows the so-called 184 gate for the 166mb decay. This spectrum

represents a background-subtracted gate on the 184-keV gamma ray in the l6omHo decay.

See Section 5.5.1 for a description of how a gate such as this was created.

Figure 6-4 shows the 184 gate for the '66Tm decay. This spectrum represents a

background-subtracted gate on the 184-keV gamma ray in the 166Tm decay.
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Figure 6-1: l6omHo full singles spectrum. For convenience there is some
overlap in the energy ranges. Note that the vertical scale changes for each
partial spectrum.
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Figure 6-2: '66Tm full singles spectrum. For convenience there is some
overlap in the energy ranges. Note that the vertical scale changes for each
partial spectrum.
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Figure 6-3: l66mHo 184 gate. This spectrum represents a background-
subtracted gate on the 184-keV gamma ray in the 166Ho decay.
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Figure 6-4: '66Tm 184 gate. This spectrum represents a background-
subtracted gate on the 184-keV gamma ray in the 66Tm decay.
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6.2. Gamma band to ground band 8(E2 / Ml) mixing ratios

In the following 10 subsections results are presented for each gamma-to-ground

transition in order of initial spin. Each section describes the following: The angular

correlation measurements used in the analysis, the angular correlation fits associated with

these data, the methods by which the 6(E2 / Ml) mixing ratio was calculated for each

angular correlation, the individual calculated values for 5 and the final weighted average

of these values. Presented in Table 6-1 for convenience are the final values for ten

gamma-to-ground transitions measured in the present work. Recall that throughout this

work it was actually ho that was calculated, and the values of 0 are then inferred. In a

few instances this may cause the error limits of 0 to be asymmetric with the error bar that

extends towards zero being larger than the one extending toward infinity. This is contrary

to the usual error bars on 0 but comes from irregular shapes of the chi-squared

minimization curves.

In order to help the reader understand the coincidence relationships described in

the following sections Figure 6-5, Figure 6-6 and Figure 6-7 present partial decay

schemes for 166Er. Figure 6-5 shows the ground and gamma bands and shows the intra-

band transitions. Figure 6-6 shows all gamma-to-ground transitions up to initial spin 8.

Figure 6-7 shows transitions from higher-lying states that feed the gamma band directly.

Between them these three diagrams show all coincidence cascades used for the

measurements presented in the following ten sections.
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Table 6-1: Summary of gamma-to-ground mixing ratios. The "+" and "-"
columns represent the uncertainty limits of the value in the preceding
column. For those transitions where ö overlaps infinity see the text for
limiting values. Note that throughout we have intentionally quoted every
ho value to four decimal places regardless of its uncertainty. This is done
because 0 is so sensitive to small changes in 1/0.

E(y) toJ 0 + i/o +

705 2 to 2 -128 83 X -0.0078 0.0147 0.0147
779 3 to 2 -21.5 1.6 1.8 -0.0464 0.0036 0.0036
594 3 to 4 -7.6 0.4 0.4 -0.1309 0.0068 0.0068

691 4 to 4 -41 15 50 -0.0242 0.0133 -0.0133

810 5 to 4 -25.3 3.5 4.9 -0.0395 0.0064 0.0064

530 5 to 6 -33.7 1.8 2.0 -0.0297 0.0017 0.0017
671 6 to 6 +9.2 3.7 4.2 +0.1082 0.0899 -0.0312
831 7 to 6 -15.4 2.0 2.7 -0.0649 0.0098 -0.0098

465 7 to 8 -110 64 ce -0.0091 0.0127 -0.0127
645 8 to 8 +2.4 26.4 0.9 +0.4088 0.2527 -0.3742
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Fi6gure 6-5: Partial decay scheme showing the gamma and ground bands of
16 Er. Intra-band transitions are also shown. Each excited state is labeled
with its energy, spin and parity. Gamma rays are labeled by energies in
keV. Labels are horizontally adjacent to the gamma ray they label.
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6.2.1. The 2 gamma to 2 ground transition (705 keV)

The 2 to 2 gamma-to-ground transition, which has an energy of 705 keV, is not

fed in the l66mHo decay with any appreciable strength, so only the 166Tm data were used

to calculate the 8(E2 / Ml) mixing ratio for this gamma ray. In only one case could the

chi-squared minimization method be used for this gamma ray (see Section 5.6 for a

description of the various methods used to solve for (5). However, this angular correlation

involved the 81 keV 2 to 0 ground-band transition, which is subject to the Gk correction

factors. The uncertainty introduced by the inclusion of the Gk correction factors in the

chi-squared minimization was such that no useful information could be gleaned from this

angular correlation. Fortunately, nine other data points were obtained using the ratio of

Akk coefficients method. The angular correlations for these nine coincidences are

presented in Table 6-2. Note that in this case all the gamma rays used with the 705-keV

gamma ray fed the 2 gamma band state directly.

Recall that the ratio of Akk coefficients method can be used even for a doublet

such as the 1216-keV doublet. Both of the 1216-keV transitions feed the 705-keV

transition in different ways, but all of the factors relating to the complex feeding of the

705-keY transition will cancel out in the ratio. The S(E2 / Ml) values produced by these

measurements are presented in Table 6-3, along with their weighted average. In this study

we are not able to exclude a positive result for 8(705) but we can place the limits that

6(705) >145 or 8(705) <-45.
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Table 6-2: Summary of angular correlation fits for the coincidences used
to determine 8(705). E(y) refers to the energy (in keV) of the gamma

ray that comes first in the cascade, E(YL) to the second. Each energy is
followed by the spin and parities of the levels the gamma ray connects.
Uncertainties in the last two digits of the A values are expressed in
italics. Cascade refers to whether the two gamma rays presented are
connected directly or if there are unobserved gamma rays that connect
them. Correlations are listed in order of increasing EQ'L).

Source E(y) J, to Jf E(YL) to Jf A22 A Cascade

Tm 672 (2 to 2 705 2 to 2 -0.052 10 -0.006 10 Direct
Tm 728 3 to 2 705 2 to 2 0.033 32 -0.033 34 Direct
Tm 1132 3 to 2 705 2 to 2 -0.015 51 0.003 54 Direct
Tm 1152 (3) to 2 705 2 to 2 0.016 21 -0.004 22 Direct
Tm 1216 Doublet 705 2 to 2 -0.001 33 0.023 34 Direct
Tm 1235 (2,3) to 2 705 2 to 2 -0.042 19 -0.001 19 Direct
Tm 1347 3 to 2 705 2 to 2 0.077 24 -0.025 26 Direct
Tm 1374 3 to 2 705 2 to 2 0.047 13 0.02 1 14 Direct
Tm 1505 (3) to 2 705 2 to 2 0.09 1 30 0.0 19 32 Direct
Tm 672 (2) to 2 785 2 to 0 0.2 16 10 -0.004 11 Direct
Tm 728 3 to 2 785 2 to 0 -0.072 35 -0.037 35 Direct
Tm 1132 3 to 2 785 2 to 0 -0.025 64 0.025 66 Direct
Tm 1152 (3) to 2 785 2 to 0 -0.057 25 -0.0 12 25 Direct
Tm 1216 Doublet 785 2 to 0 -0.036 37 -0.023 38 Direct
Tm 1235 (2,3) to 2 785 2 to 0 0.264 22 -0.013 24 Direct
Tm 1347 3 to 2 785 2 to 0 -0.367 26 -0.024 24 Direct
Tm 1374 3 to 2 785 2 to 0 -0.163 15 -0.015 15 Direct
Tm 1505 (3) to 2 785 2 to 0 -0.27 1 36 0.023 35 Direct

It bears repeating that measurements using the ratio of Akk coefficients method are

independent of the nature of the gamma ray that feeds the two angular correlations. Thus,

even though there may be some uncertainty in spin assignment for the level which a
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gamma ray comes from, and nothing may be known about its multipole character, these

considerations are all removed when the ratio is taken.

Table 6-3: Summary of 8(705) values. In this measurement we are not
able to rule out a positive value for 8(705) though we can say with
confidence that it is very large. The averaged value of ho indicates that
8(705) >145 or 8(705) <-45. E(y) indicates the energy of the gamma
ray which was used in coincidence for this measurement. In the method
column, A indicates the Akk coefficient from a pure transition method, A/A
indicates the ratio of Akk coefficients method, A/A(Eg) indicates the ratio
of Akk coefficients with a mixed intermediate method, x2 indicates the chi-
squared minimization method and X2(Eg) indicates the chi-squared
minimization with a mixed transition method. Note that some methods
produce symmetric uncertainty limits, which is noted by NA in the "-"
column.

Source Method E(y) J. to J + - 1/0 +

Tm A/A 672 (2) to 2 -75 48 ce -0.0132 0.0233 NA
Tm A/A 728 ito 2 -8 6 co -0.1250 0.2784 NA
Tm A/A 1132 3to 2 3 ce -2 0.3828 5.3792 NA
Tm A/A 1152 (3) to 2 -28 24 co -0.0352 0.1894 NA
Tm A/A 1216 Doublet 9 ce -7 0.1122 0.4317 NA
Tm A/A 1235 (2,3) to 2 38 ce -21 0.0262 0.0332 NA
Tm A/A 1347 3to2 356 ce -328 0.0028 0.0317 NA
Tm A/A 1374 3 to 2 -29 16 co -0.0349 0.04 18 NA
Tm A/A 1505 (3)to2 -16 8 -1877 -0.0618 0.0613 NA

Weighted Average -128 83 cc -0.0078 0.0147 0.0147

6.2.2. The 3 gamma to 2 ground transition (779 keV)

The 3 to 2 gamma-to-ground transition, which has an energy of 779 keV, is fed

in both the l66mHo and 166Tm decays. It is found in coincidence with the 81 keV 2 to 0

ground-band transition with sufficient strength to be of use in finding a value for 0 in
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both decays. In addition, two transitions in the lô6mj0 decay and nine in the 166Tm decay

feed this gamma strongly enough to be used to find ö values. The 24 relevant angular

correlation fits are presented in Table 6-4.

The 8(E2 / Ml) values produced by these measurements and the methods used

are presented in Table 6-5, along with their weighted average. The agreement between all

thirteen measurements in this case is remarkable, and the weighted average reduces the

uncertainty limits significantly.

As noted, the ratio of Akk coefficients with a mixed transition was used for 11 of

these measurements. In these ratios, the mixing ratio for the 594 keV 3 to 4 gamma-to-

ground transition is used, but as shown in the next section, the value is relatively large

and has a narrow uncertainty range. The large value means that the k(59) coefficient is

relatively insensitive to changes in 8(594). In fact, this insensitivity is such that applying

the uncertainty limits of 8(594) has only negligible effects on the values calculated for

8(779).
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Table 6-4: Summary of angular correlation fits for the coincidences used
to determine 8(779). See Table 6-2 for table notation.

Source E(y) J, to Jf E(YL) to A22 A Cascade

Tm 779 3 to 2 81 2 to 0 -0.20 1 23 -0.06 1 23 Direct
Ho 779 3 to 2 81 2 to 0 -0.196 36 -0.118 45 Direct
Ho 713 Doublet 594 3 to 4 0.009 19 0.000 24 Indirect
Ho 752 6 to 5 594 3 to 4 0.02 1 32 0.034 42 Indirect
Tm 599 (2) to 3 594 3 to 4 -0.035 19 0.024 20 Direct
Tm 654 3 to 3 594 3 to 4 0.0 13 30 0.005 3] Direct

Tm 713 (4) to 3 594 3 to 4 -0.029 30 -0.010 3] Direct

Tm 1079 (3) to 3 594 3 to 4 0.017 41 -0.022 43 Direct

Tm 1162 (2,3 to 3 594 3 to 4 -0.009 34 0.037 35 Direct

Tm 1274 3 to 3 594 3 to 4 0.0353 8] -0.0006 85 Direct

Tm 1301 3 to 3 594 3 to 4 0.049 20 -0.0 12 21 Direct

Tm 1313 3 to 3 594 3 to 4 0.001 48 0.032 50 Direct

Tm 1432 (3) to 3 594 3 to 4 0.054 35 -0.044 36 Direct

Ho 713 Doublet 779 3 to 2 0.056 48 0.014 66 Indirect
Ho 752 6 to 5 779 3 to 2 -0.09 11 0.07 14 Indirect
Tm 599 2 to 3 779 3 to 2 0.08 1 24 0.0 13 26 Direct
Tm 654 Y to 3 779 3 to 2 -0.112 55 0.002 56 Direct
Tm 713 (4) to 3 779 3 to 2 0.053 55 -0.0 14 57 Direct
Tm 1079 (3) to 3 779 3 to 2 -0.093 64 -0.013 65 Direct
Tm 1162 (2,3) to 3 779 3 to 2 0.087 49 0.036 51 Direct
Tm 1274 3to3 779 3to2 -0.119 12 0.014 13 Direct
Tm 1301 3 to 3 779 3 to 2 -0.138 35 -0.026 35 Direct
Tm 1313 3 to 3 779 3 to 2 -0.06 10 -0.14 11 Direct
Tm 1432 (3) to 3 779 3 to 2 -0.149 78 -0.02 1 79 Direct



123

Table 6-5: Summary of 8(779) values. See Table 6-3 for notation.

Source Method E(y) J, to J1 + 1k5 +

Tm x2 81 2to0 -21 16 ce -0.0474 0.0694 0.133
Ho x2 81 2to0 -11.4 6.9 ce -0.0881 0.0921 0.136
Ho AIA(594) 713 Doublet -13.4 3.2 6.1 -0.0744 0.0233 NA
Ho A/A(594) 752 6 to 5 -19.7 6.1 15.8 -0.0507 0.0226 NA
Tm AIA(594) 599 2 to 3 -26.5 7.9 19.3 -0.0377 0.0 159 NA
Tm A/A(594) 654 3 to 3 -17.5 4.2 8.1 -0.0572 0.018 1 NA
Tm A/A(594) 713 (4 to 3 -32 18 ce -0.0309 0.0380 NA
Tm A/A(594) 1079 (3) to 3 -18.8 6.7 23.6 -0.0532 0.0296 NA
Tm A/A(594) 1162 (2,3) to 3 -17.2 5.3 14.1 -0.0582 0.0263 NA
Tm AIA(594) 1274 3 to 3 -21.8 2.0 2.4 -0.0460 0.0046 NA
Tm AIA(594) 1301 3 to 3 -23.7 4.5 7.1 -0.0423 0.0098 NA
Tm AIA(594) 1313 3 to 3 -15.9 7.3 90.9 -0.0630 0.0536 NA
Tm AIA(594) 1432 (3) to 3 -23.9 6.6 14.6 -0.0419 0.0159 NA

Veighted Average -21.5 1.6 1.8 -0.0464 0.0036 0.0036

6.2.3. The 3 gamma to 4 ground transition (594 keV)

The 3 to 4 gamma-to-ground transition, which has an energy of 594 keV, is fed

in both the l66mHO and 166Tm decays. This transition is in coincidence with both the 184

keV 4 to 2 and the 81 keV 2 to 0 ground-band transitions in both decays. The angular

correlation fits for these four coincidences are presented in Table 6-6. Note that even

though the 594-keV gamma ray does not directly feed the 81-keV gamma ray, there is

only one path for the cascade to take (i.e. via the pure 184-keV transition), thus the 81-

594-keV angular correlation is still marked as "direct" as opposed to an angular

correlation where there are several paths for the cascade to take, or where the

intermediate radiation is of mixed multipolarity. This same notation will hold for angular
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correlations involving any ground band gamma ray that is not directly fed by the gamma-

to-ground transition.

Table 6-6: Summary of angular correlation fits for the coincidences used
to determine 8(594). See Table 6-2 for table notation.

Source E(y) J to Jf E(YL) to Jf A22 A Cascade

Tm 594 3 to 4 81 2 to 0 0.0433 57 -0.1359 59 Direct
Ho 594 3 to 4 81 2 to O 0.1536 38 -0.1672 51 Direct
Tm 594 3 to 4 184 4 to 2 0.08757 91 -0.09 16 10 Direct
Ho 594 3 to 4 184 4 to 2 0.0850 27 -0.1009 35 Direct

The 8(E2 / Ml) values produced by these measurements are presented in Table

6-7, along with their weighted average. The measurement in the 184-keV gate of the

'66Tm decay dominates this determination.

Table 6-7: Summary of 8(594) values. See Table 6-3 for notation.

Source Method E(y) J, to Jf ô + - 1M + -

Tm x2 81 2 to 0 -40 30 co -0.025 1 0.074 1 0.0789
Ho z2 81 2 to 0 -4.6 1.7 3.0 -0.2164 0.0844 0.1296
Tm 184 4 to 2 -7.52 0.37 0.42 -0.1330 0.0070 0.0070
Ho 184 4 to 2 -10.8 2.8 5.9 -0.0928 0.0328 0.0332

Weighted Average
I

-7.641 0.381 0.42
I

-0.1309J 0.0068
I

0.0068

The average value of ö for this transition is used to calculate 8(779) using the

ratio ofAkk coefficients with a mixed intermediate method (see the previous section).
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6.2.4. The 4 gamma to 4 ground transition (691 keV)

The 4 to 4 gamma-to-ground transition, which has an energy of 691 keV, is fed

in both the lóómHO and '66Tm decays. This transition is in coincidence with both the 184

keV 4 to 2 and the 81 keV 2 to O ground-band transitions in both decays. In addition

this transition is in coincidence with one other strong gamma ray in the bo6mHo decay and

five others in the 166Tm decay. These other gamma rays can be used in the ratio ofAkk

method to find ö. The angular correlation fits for the 13 coincidences used are presented

in Table 6-10.

The data from the 81 and 184-keY gates in both decays were used with the chi-

squared minimization method to find values of 8(691). However, these calculations

produced results that were scattered and did not correspond well with our other

measurements. These data were also used to calculate 8(691) using the Akk coefficients

with a pure transition method. This produced a more satisfactory and consistent set of

values. The 8(E2/M1) values produced by these measurements and from the other five

applicable angular correlations are presented in Table 6-9, along with their weighted

average.
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Table 6-8: Summary of angular correlation fits for the coincidences used
to determine 8(691). See Table 6-2 for table notation.

Source E(y) to J E(YL) to Jf A22 A Cascade

Tm 691 4 to 4 81 2 to O -0.109 62 0.03 1 63 Direct
Ho 691 4 to 4 81 2 to 0 -0.047 57 0.0 16 74 Direct
Tm 691 4 to 4 184 4 to 2 -0.1110 66 0.1400 67 Direct
Ho 691 4 to 4 184 4 to 2 -0.146 18 0.156 23 Direct
Ho 260 6 to 4 691 4 to 4 -0.077 22 0.0 12 29 Direct
Tm 558 3 to 4 691 4 to 4 0.088 33 0.006 35 Direct
Tm 1177 3 to 4 691 4 to 4 0.2043 93 -0.018 10 Direct
Tm 1204 3 to 4 691 4 to 4 0.307 19 -0.111 21 Direct
Tm 1217 Doublet 691 4 to 4 0.296 70 -0.088 77 Direct
Tm 558 3 to 4 875 4 to 2 -0.136 52 -0.014 5] Direct

Tm 1177 3 to 4 875 4 to 2 -0.325 13 -0.011 12 Direct

Tm 1204 3 to 4 875 4 to 2 -0.468 27 -0.080 25 Direct

Tm 1217 Doublet 875 4 to 2 -0.47 11 -0.202 97 Direct

Table 6-9: Summary of 8(691) values. See Table 6-3 for notation.

Source Method E(y) to Jj 5 + 1M + -

Tm A 81 2to0 25 c 21 0.0401 0.2300 NA
Ho A 81 2 to 0 -6.0 2.9 63.9 -0.1674 0.153 1 NA
Tm A 184 4 to 2 -54 29 cij -0.0186 0.0216 NA
Ho A 184 4 to 2 8.8 26.0 3.8 0.1134 0.0847 NA
Ho 260 6 to 4 -8 5 cx -0.13 10 0.7653 0.282
Tm AlA 558 3to4 -24 20 cc -0.0415 0.1799 NA
Tm AlA 1177 3to4 -38 17 155 -0.0262 0.0210 NA
Tm NA 1204 3 to 4 -22.0 9.1 54.1 -0.0455 0.0323 NA
Tm NA 1217 3to4 -41 34 cc -0.0244 0.1149 NA

Weighted Average -41 15 50 -0.0242 0.0133 -0.0133
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6.2.5. The 5 gamma to 4 ground transition (810 keV)

The 5 to 4 gamma-to-ground transition, which has an energy of 810 keV, is fed

in both the l6ómHO and 166Tm decays. This transition is in coincidence with the 184 keV

4 to 2 and the 81 keV 2 to 0 ground-band transitions in both decays, as well as with

the pure-E2 301 keV 7 to 5 intra-gamma band transition in the l66mHO decay. Two other

mixed multipolarity transitions in the 166mJj0 decay and three pure 3 to 5 transitions in

the 166Tm decay feed the 810-keV gamma ray with sufficient strength to enable us to find

a value. The 12 applicable angular correlation fits are presented in Table 6-10.

The two mixed multipolarity gamma rays that feed this transition in the ló6mHO

decay used in the chi-squared minimization method. However, since these transitions are

not pure multipolarity, their mixing ratios were calculated and then used in the chi-

squared minimization for 8(810). The calculated mixing ratios for the 712 and 753 keV

gamma rays, using the 216 keY 5 to 3 intra-gamma band transition as a pure gate, are

0.009 ± 0.02 and 0.01 ± 0.04. The uncertainty limits were incorporated into the

subsequent chi-squared minimization for 8(810). The 6(E2/M1) values produced by

these ten angular correlations are presented in Table 6-11, along with their weighted

average.
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Table 6-10: Summary of angular correlation fits for the coincidences used
to determine 8(810). See Table 6-2 for table notation.

Source E(y) to Jf E(YL) to J A22 A Cascade

Tm 810 5 to 4 81 2 to 0 -0.22 12 -0.11 13 Direct

Ho 810 5 to 4 81 2 to 0 -0.114 18 -0.033 21 Direct

Tm 810 5 to 4 184 4 to 2 -0.153 11 -0.056 11 Direct
Ho 810 5 to 4 184 4 to 2 -0.1558 82 -0.0648 83 Direct
Ho 301 7 to 5 810 5 to 4 -0.017 14 -0.022 17 Direct
Ho 712 6 to 5 810 5 to 4 0.021 11 -0.008 12 Direct
Ho 753 6 to 5 810 5 to 4 0.009 15 -0.008 17 Direct
Tm 1058 3 to 5 810 5 to 4 -0.014 28 -0.123 28 Direct
Tm 1085 3 to 5 810 5 to 4 -0.017 38 -0.162 39 Direct
Tm 1097 3 to 5 810 5 to 4 -0.069 75 -0.135 76 Direct
Ho 712 6 to 5 216 5 to 3 -0.076 14 -0.010 17 Direct
Ho 753 6 to 5 216 5 to 3 -0.063 27 -0.0 14 34 Direct

Table 6-11: Summary of 8(810) values. See Table 6-3 for notation.

Source Method E(y) J, to Jf 5 + 1M +

Tm 81 2 to 0 -3.3 2.9 8.3 -0.2995 0.2 135 1.9805
Ho X2 81 2 to 0 -38 28 ce -0.0262 0.0542 0.07 18
Tm 184 4to2 -27.7 6.8 12.3 -0.0361 0.0111 0.0119
Ho 184 4 to 2 -22.4 3.7 5.4 -0.0447 0.0087 0.0089

Ho 301 7 to 5 -27 12 98 -0.037 1 0.029 1 0.0289
Ho x2(712) 712 Doublet -20 10 30 -0.0490 0.0290 0.0430
Ho x2(7S3) 752 6 to 5 -46 37 ce -0.02 18 0.06 18 0.0882
Tm 1058 3to5 -145 113 cc -0.0069 0.0249 0.0251
Tm 1085 3 to 5 -25 12 142 -0.0399 0.0339 0.034 1
Tm 1097 3 to 5 -11.5 5.2 44.0 -0.0868 0.0688 0.0712

Weighted Average -25.3 3.5 4.9 0.0395 0.0064 0.0064
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6.2.6. The 5 gamma to 6 ground transition (530 keV)

The 5 to 6 gamma-to-ground transition, which has an energy of 530 keV, is fed

in both the l66mHo and 166Tm decays. This transition is in coincidence with the 280 keV

6 to 4, the 184 keV 4 to 2 and the 81 keV 2 to 0 ground-band transitions in both

decays. However, Compton backscattering from a higher peak ruins the measurement of

both the 81-keV and 184-keV gates for the 166Tm decay. As with the 810-keV transition,

this gamma ray is also fed by the pure-E2 301 keY 7 to 5 transition in the l6ómHO decay.

Two other mixed multipolarity transitions in the 166H0 decay and three pure 3 to 5

transitions in the 166Tm decay feed the 530-keV gamma ray with sufficient strength to

enable us to find a ö value. The 12 applicable angular correlation fits are presented in

Table 6-12.

Table 6-12: Summary of angular correlation fits for the coincidences used
to determine 6(530). See Table 6-2 for table notation.

Source E(y) to Jf E(YL) to Jf A22 A Cascade

Ho 530 5 to 6 81 2 to 0 0.015 27 -0.102 33 Direct
Ho 530 5 to 6 184 4 to 2 0.024 12 -0.092 13 Direct
Tm 530 5 to 6 280 6 to 4 0.012 18 -0.121 19 Direct
Ho 530 5 to 6 280 6 to 4 0.0109 17 -0.1163 21 Direct
Ho 301 7 to 5 530 5 to 6 -0.042 24 -0.016 31 Direct
Ho 712 6 to 5 530 5 to 6 0.042 12 -0.016 14 Direct
Ho 753 6 to 5 530 5 to 6 0.025 19 0.007 24 Direct
Tm 1058 3 to 5 530 5 to 6 -0.082 56 -0.006 57 Direct
Tm 1085 3 to 5 530 5 to 6 -0.041 68 -0.191 69 Direct
Tm 1097 3 to 5 530 5 to 6 -0.32 25 -0.14 24 Direct
Ho 712 6 to 5 216 5 to 3 -0.076 14 -0.010 17 Direct
Ho 753 6 to 5 216 5 to 3 -0.063 27 -0.014 34 Direct
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As with the 810 keV gamma ray, two strong gammas in the l66mHo decay feed the

530-keV gamma ray and were used in the chi-squared minimization method. However,

since these transitions are not pure multipolarity, their mixing ratios were calculated and

then used in the chi-squared minimization for 8(530). See the previous section for the

values and uncertainties of the mixing ratios for the 712 and 752-keV transitions used to

calculate 8(530). The 8(E2/M1) values produced by these ten angular correlations are

presented in Table 6-13, along with their weighted average.

Table 6-13: Summary of 8(530) values. See Table 6-3 for notation.

Source Method E(y) J, to Jf ö + ho + -

Ho 81 2 to 0 -35 22 cc -0.0284 0.05 14 0.0486
Ho 184 4 to 2 -16.6 3.1 4.7 -0.0603 0.0133 0.0137
Tm 2 280 6to4 -40 16 103 -0.0249 0.0179 0.0171
Ho 280 6 to 4 -34.1 1.9 1.6 -0.0293 0.0013 0.0017
Ho 301 7 to 5 -17 9 cc -0.0587 0.0627 0.0633
Ho x2(712) 712 6 to 5 -27 16 cc -0.0372 0.0732 0.0528
Ho x2(753) 752 6 to 5 -46 34 cc -0.02 18 0.0358 0.0602
Tm x2 1058 3 to 5 -11.3 4.8 28.7 -0.0885 0.0635 0.0645
Tm x2 1085 3 to 5 +69 cc 58 +0.0 145 0.0735 0.0725
Tm x2 1097 3to5 +1.9 4.4 1.6 +0.5305 2.8195 0.3705

Weighted Average -33.7 1.8 2.0 -0.0297 0.0017 0.0017

The value produced by the 1097-530 keV angular correlation disagrees with the

other values significantly. However as indicated by the angular correlation fit above,

which produces unusually large values for A and A44, this angular correlation is suspect

and should perhaps be excluded from the average. However, due to the influence of the
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value produced by the 280-530 keV angular correlation, exclusion of the 1097-530 keV

has an almost negligible effect on the weighted average.

6.2.7. The 6 gamma to 6 ground transition (671 keV)

The 6 to 6 gamma-to-ground transition, which has an energy of 671 keV, is not

fed in the '66Tm decay due to the low spin of the 166Tm parent. This transition is in

coincidence with the 280 keY 6 to 4, the 184 keV 4 to 2 and the 81 keY 2 to 0

ground-band transitions in the lo6mHo decay. Two other mixed multipolarity transitions in

the l6omHo decay feed the 671-keV gamma ray with sufficient strength to enable us to

find a ö value. The seven applicable angular correlation fits are presented in Table 6-14.

Table 6-14: Summary of angular correlation fits for the coincidences used
to determine 6(671). See Table 6-2 for table notation.

Source E(y) to Jf E(YL) to Jf A22 A Cascade

Ho 670 6 to 6 81 2 to 0 -0.104 12 0.072 14 Direct
Ho 670 6 to 6 184 4 to 21 -0.125 12 0.086 14 Direct
Ho 670 6 to 6 280 6 to 4 -0.128 11 0.097 13 Direct
Ho 571 6 to 6 670 6 to 6 -0.132 14 0.014 18 Direct
Ho 612 6 to 6 670 6 to 61 -0.103 24 0.043 30 Direct
Ho 951 6 to 4 571 6- to 6 0.179 21 -0.021 28 Direct
Ho 951 6 to 4 612 6- to 6 0.140 40 -0.055 54 Direct

The 951-keY pure-E2 6 to 4 gamma-to-ground transition is used to find the

mixing ratios of the 571 and 612-keV transitions. The chi-squared minimization method

gives 0. 17 and 0.004 respectively. The error limits of these mixing ratios is

incorporated into the chi-squared minimization for 6(671). When this is done for the
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571-keV transition the resulting error bars make the measurement useless, so it is not

included below. The 8(E2/M1) values produced by the remaining four angular

correlations are presented in Table 6-15, along with their weighted average.

Table 6-15: Summary of 8(671) values. See Table 6-3 for notation.

Source Method E(y) to J (5 + 11(5 +

Ho 81 2to0 +9 cc 7 +0.1055 0.3095 0.1510
Ho 184 4 to 2 +8.9 28.4 7.6 +0.1123 0.6273 0.0855
Ho 280 6to4 +11.3 43.3 6.5 +0.0884 0.1204 0.0701
Ho x2(612) 612 6to6 +8.1 3.8 4.5 +0.1234 0.1546 0.0394

Weighted Average +9.2 3.7 4.2 +0.1082 0.0899 -0.0312

6.2.8. The 7 gamma to 6 ground transition (831 keV)

The 7 to 6 gamma-to-ground transition, which has an energy of 831 keV, is not

fed in the 166Tm decay due to the low spin of the 166Tm parent. This transition is in

coincidence with the 280 keV 6 to 4, the 184 keV 4 to 2 and the 81 keV 2 to 0

ground-band transitions in the l66mHo decay. Two other mixed multipolanty transitions in

the l66mHo decay feed the 831-keV gamma ray with sufficient strength to enable us to

find a (5 value. The seven applicable angular correlation fits are presented in Table 6-16.
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Table 6-16: Summary of angular correlation fits for the coincidences used
to determine 8(831). See Table 6-2 for table notation.

Source E(y) to Jf E(7L) to J A22 A Cascade

Ho 831 7 to 6 81 2 to 0 -0.152 31 -0.020 37 Direct
Ho 831 7 to 6 184 4 to 2 -0.143 12 -0.060 13 Direct
Ho 831 7 to 6 280 6 to 4 -0.143 10 -0.048 11 Direct
Ho 411 6 to 7 831 7 to 6 0.043 11 0.004 14 Direct
Ho 452 6 to 7 831 7 to 6 0.016 16 0.005 20 Direct
Ho 411 6 to 7 301 7 to 5 -0.100 11 0.002 12 Direct
Ho 452 6 to 7 301 7 to 5 -0.085 16 -0.025 20 Direct

The 301-keV pure-E2 7 to 5 intra-gamma transition is used to find the mixing

ratios of the 411 and 452-keV transitions. The chi-squared minimization method gives

-0.011±0.013 and 0.023±0.021 respectively. The error limits of these mixing ratios is

incorporated into the chi-squared minimization for 8(831). The 8(E2/M1) values

produced by these five angular correlations are presented in Table 6-17, along with their

weighted average.

Table 6-17: Summary of 5(83 1) values. See Table 6-3 for notation.

Source Method E(y) J. to Jf ö + - 1k5 + -

Ho 81 2 to 0 -7.0 3.4 12.2 -0.1431 0.0911 0.1349
Ho 184 4to2 -13.9 2.4 3.9 -0.0718 0.0158 0.0152
Ho 280 6 to 4 -15.9 3.0 4.6 -0.0628 0.0140 0.0144
Ho x2(41') 411 6 to 7 -14.8 5.0 10.2 -0.0677 0.0277 0.0343
Ho x2(452) 452 6 to 7 -72 57 x -0.0 139 0.0359 0.052 1

Weighted Average -15.4 2.0 2.7 -0.0649 0.0098 -0.0098
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6.2.9. The 7 gamma to 8 ground transition (465 keV)

The 7 to 8 gamma-to-ground transition, which has an energy of 465 keV, is not

fed in the 166Tm decay due to the low spin of the '66Tm parent. This transition is in

coincidence with all four pure-E2 ground-band transitions in the l66mHo decay. Two other

mixed multipolarity transitions in the l66mHo decay feed the 465-keV gamma ray with

sufficient strength to enable us to find a 5 value. The eight applicable angular correlation

fits are presented in Table 6-18.

Table 6-18: Summary of angular correlation fits for the coincidences used
to determine 8(465). See Table 6-2 for table notation.

Source E(y) to Jf E(YL) to Jf A22 A Cascade

Ho 465 7 to 8 81 2 to 0 0.033 50 0.020 67 Direct
Ho 465 7 to 8 184 4 to 2 -0.036 18 -0.106 22 Direct
Ho 465 7 to 8 280 6 to 4 0.009 18 -0.120 22 Direct
Ho 465 7 to 8 366 8 to 6 -0.020 15 -0.088 19 Direct
Ho 411 6 to 7 465 7 to 8 0.051 19 0.010 25 Direct
Ho 452 6 to 7 465 7 to 8 0.010 34 0.011 45 Direct
Ho 411 6 to 7 301 7 to 5 -0.100 11 0.002 12 Direct
Ho 452 6 to 7 301 7 to 5 -0.085 16 -0.025 20 Direct

The 301-keV pure-E2 7 to 5 intra-gamma transition is used to find the mixing

ratios of the 411 and 452-keV transitions. See the previous section for the mixing ratios

determined for these two transitions. The data for the 465-81-keV angular correlation

were too poor to use to find a ö value. The 8(E2/M1) values produced by the remaining

five angular correlations were not sufficient to rule out a positive value for 8(465), but
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we can place the limits that 8(465) > 275 or 8(465) < 46. The 8(465) values are

presented in Table 6-19, along with their weighted average.

Table 6-19: Summary of 8(465) values. See Table 6-3 for notation.

Source Method E(y) J. to J1 + 1M +

Ho x2 184 4 to 2 48 cc 26 0.0209 0.0239 0.0239
Ho 280 6 to 4 -27 11 53 -0.0366 0.024 1 0.0245
Ho 2 366 8 to 6 -165 128 cc -0.006 1 0.0205 0.0207
Ho x2(41 1) 411 6 to 7 -46 32 cc -0.0219 0.0639 0.0521
Ho z2(452) 452 6to7 -8 4 117 -0.1221 0.1141 0.1099

Weighted Average -110 64 cc -0.0091 0.0127 -0.0127

6.2.10. The 8 gamma to 8 ground transition (645 keV)

The 8 to 8 gamma-to-ground transition, which has an energy of 645 keV, is not

fed in the 166Tm decay due to the low spin of the '66Tm parent. This transition is in

coincidence with all four pure-E2 ground-band transitions in the 16mHo decay. However,

Compton backscattering problems were such that the 645-81-keV and 645-184-keV

angular correlations were not measurable. No other gamma rays feed the 8 level of the

gamma band. The two remaining angular correlation fits are presented in Table 6-20.

Table 6-20: Summary of angular correlation fits for the coincidences used
to determine 8(645). See Table 6-2 for table notation.

Source E(y) J, to Jf E(YL) J, to J1 A A Cascade

Ho

Ho

645

645

8 to 8
8 to 8

280

366

6 to 4
8 to 6

-0.178 49
-0.116 42

0.080 65

0.029 56
Direct

Direct
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The 8(E2/M1) values produced by these two angular correlations do not

individually rule out a large negative value. However, their weighted average does bring

the uncertainty limits down to the degree that their weighted average does not allow a

negative value. Conservative limits of uncertainty are quoted in an effort to reflect the

tentative nature of the averaged value. The values are presented in Table 6-2 1, along with

their weighted average.

Table 6-21: Summary of 8(645) values. See Table 6-3 for notation.

Source Method E(y) J, to Jf (5 + 11(5 +

Ho

Ho

280

366

6 to 4
8 to 6

4.1

1.8

cc

cc

2.2

0.6

0.2432

0.5483

0.2938

0.2697

0.2732

0.6643

Weighted Average 2.4 26 0.9 0.4088 0.2527 -0.3742

6.3. Intra-gamma band 8(E2IM1) mixing ratios

As discussed in Chapter 3 the properties of the intra-gamma transitions are also of

interest in testing various theories of deformed nuclei. In this work we were able to

measure the mixing ratios of three intra-gamma transitions, two of which have not

previously been measured. These three transitions are not fed very strongly in the 166Tm

decay and thus the measurements presented here are only from the l66mHo decay.

Presented in Table 6-22 for convenience are the final values for the mixing ratios of all

three intra-gamma transitions determined in this work. Note that since these cSvalues are
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not nearly as large as those of the gamma-to-ground transitions, only three decimal places

are quoted for 1M.

Table 6-22: Summary of intra-gamma mixing ratios. For those transitions
where ö overlaps infinity see the text for limiting values.

E(y) tOJ ô + i/o +

119 5 to 4 2.45 0.93 0.53 0.408 0.112 0.112

141 6 to 5 1.15 1.04 0.62 0.872 1.014 0.416

160 7 to 6 1.65 0.93 1.16 0.607 1.449 0.219

6.3.1. The 5 to 4 intra-gamma band transition (119 keV)

The 5 to 4 intra-gamma transition, which has an energy of 119 keV, is in

coincidence with two strong gamma-to-ground transitions that follow it and two strong

gamma rays that precede it. The correlation fits for these four coincidences are presented

in Table 6-23.

Table 6-23: Summary of angular correlation fits for the coincidences used
to determine 8(119). See Table 6-2 for table notation.

Source E(y) J, to Jj E(7L) J to Jf A A Cascade

Ho 119 5 to 4 875 4 to 2 0.131 55 -0.191 74 Direct
Ho 119 5 to 4 691 4 to 4 -0.068 48 -0.03 1 63 Direct
Ho 712 6to5 119 5to4 -0.261 90 0.10 12 Direct
Ho 753 6 to 5 119 5 to 4 -0.40 18 0.34 24 Direct

For the 691-keV mixed gamma-to-ground transition the final 0 value given in

Section 6.2.4 was used to find 8(119) using the chi-squared with a mixed transition



138

method. The mixing ratios for 712 and 752-keV transitions are given in Section 6.2.5.

The 6(119) values determined using these four coincidences are presented in Table 6-24,

along with their weighted average.

Table 6-24: Summary of 6(119) values. See Table 6-3 for notation.

Source Method E(y) to Jf (5 + 11(5 + -

Ho 875 4 to 2 +2.54 0.89 0.63 +0.393 0.129 0.102
Ho x2(69l) 691 4to4 +2.64 1.63 1.03 +0.379 0.241 0.145
Ho x2(7l2) 712 6 to 5 +1.17 1.26 0.57 +0.854 0.798 0.442
Ho x2(753) 753 6to5 +1.17 2.62 0.73 +0.854 1.423 0.590

Weighted Average +2.45 0.61 0.53 +0.408 0.112 0.081

6.3.2. The 6 to 5 intra-ganima band transition (141 keY)

The 6 to 5 intra-gamma transition, which has an energy of 141 keV, is in

coincidence with two strong gamma-to-ground transitions that follow it and two strong

gamma rays that precede it. The correlation fits for these four coincidences are presented

in Table 6-25.

Table 6-25: Summary of angular correlation fits for the coincidences used
to determine 6(141). See Table 6-2 for table notation.

Source E(y) J to Jf E(YL) J, to Jf A22 A Cascade

Ho 141 6 to 5 810 5 to 4 0.31 34 0.40 47 Direct
Ho 141 6 to 5 530 5 to 6 0.66 35 -0,60 48 Direct
Ho 571 6 to 6 141 6 to 5 0.33 11 0.34 15 Direct
Ho 612 6 to 6 141 6 to 5 0.41 25 0.45 34 Direct
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The experimental uncertainty for both 5(810) and 5(529) is enough to make

those coincidences useless in determining 5(141). Therefore only two values could be

used to get an average for this transition. Fortunately the two values agree remarkably

well. The mixing ratios for the 571 and 612-keV transitions are given in Section 6.2.7.

The 5(14 1) values determined using these two coincidences are presented in Table 6-26,

along with their weighted average.

Table 6-26: Summary of 5(119) values. See Table 6-3 for notation.

Source Method E(y) J, to Jf ô + ho +

Ho

Ho

x2(712)

x2(753)

571

612

6to6
6 to 6

+1.15

+1.15

1.88

3.30

0.67

0.78

+0.873

+0.872

1.215

1.840

0.543

0.647

Weighted Average +1.15 1.04 0.62 0.872 1.014 0.416

6.3.3. The 7 to 6 intra-gamma band transition (160 keY)

The 7 to 6 intra-gamma transition, which has an energy of 160 keV, is in

coincidence with two strong gamma-to-ground transitions that follow it and two strong

gamma rays that precede it. The correlation fits for these four coincidences are presented

in Table 6-27.

The experimental uncertainty for 5(67 1) and 5(452) is enough to make those

coincidences useless in determining 5(160). Therefore only two values could be used to

get an average for this transition. Again, the two values agree favorably. The mixing

ratios for the 41 1-keV transition is given in Section 6.2.8. The 5(160) values determined
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using these two coincidences are presented in Table 6-28, along with their weighted

average.

Table 6-27: Summary of angular correlation fits for the coincidences used
to determine 8(160). See Table 6-2 for table notation.

Source E(y) to J E(7L) to Jf A22 A Cascade

Ho 160 7 to 6 951 6 to 4 0.20 12 -0.24 17 Direct
Ho 160 7 to 6 671 6 to 6 -0.053 99 0.02 13 Direct
Ho 411 6to6 160 7to6 -0.188 71 0.014 94 Direct
Ho 452 6 to 6 160 7 to 6 0.19 16 -0.09 22 Direct

Table 6-28: Summary of 8(160) values. See Table 6-3 for notation.

Source Method E(y) to Jf ô + 1M + -

Ho

Ho x2(4ll)
951

411

6 to 4
6to6

+1.9

+1.5

2.0

2.0

1.6

1.0

+0.517

+0.687

2.973

1.659

0.262

0.399

Weighted Average +1.65 0.93 1.16 +0.607 1.449 0.219

6.4. Band-mixing analysis of gamma-to-ground intensities

In addition to these angular correlation results, data from these experiments reveal

spectroscopic information about the intensities of the gamma rays emitted in the decays.

These intensities can be used to investigate the effects of mixing between the gamma and

ground bands and the E2 transition strengths [48]. Presented here is a brief treatment of

the preliminary results of this analysis, which will assist us in comparing our results to

the band-mixing theory in Chapter 7.
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As discussed in Section 3.8, the following equation should describe the effects of

first order band mixing on the value of the B(E2; J1, K = 2- Jf , K =0) reduced

transition probabilities (reproduced here for convenience)

B(E2;Jj,K=2_->Jf,K=O)=2(Jj,2,2,_2Jf,0)2Ml +M2(X _x1)2 (3-25)

We recast this equation so that a linear plot can be described by

B(E2;J,K=2J,K=0)
=Ml+M2(Xf_X1) (6-1)

'.h(J,2,2,-2Jf,0)

and the parameters M1 and M2 can be calculated by a least-squares regression. The

Mikhailov plot generated with this data is shown in Figure 6-8. The uncertainty limits of

each data point are of the size of the marker circle or smaller. A linear fit to the data gives

the results M1 = 0.4243 ± 0.0025 and M2 = 0.00778 ± 0.00016.

These values for M1 and M2 produce the common band-mixing parameter

z2 = 0.0396 ± 0.0009 which compares very well with recent previous measurements

z2 = 0.0393 ± 0.00 13 by Adam [29], the original measurement z2 = 0.04 1 ± 0.002 by

Reich and Cline [13], as well as others [20,21,32].
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Figure 6-8: Mikhailov plot for '66Er. The error bars on each data point are
the size of the marker circle or smaller.

The precision in this diagram is considerably improved over previous such

analyses [13]. As such the forthcoming analysis of this data is perhaps the first time that

strong evidence for a non-linear shape to this data has been observed. In Figure 6-8 it can

be seen with the naked eye that there is a slightly cubic shape to the otherwise very linear

data. Figure 6-9 shows the same data now fitted by a 3'-order polynomial.
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Figure 6-9: Mikhailov plot for 166Er fitted to a 3'-order polynomial. The
error bars on each data point are the size of the marker circle or smaller.

It can be seen that the data is reproduced quite well by this cubic fit. The four fit

parameters are M1 = 0.4264±0.0013, M2 =0.00883±0.00014, M3 =(7.6±3.5)x106

and M4 = (18.0±2.1)x107. The ramifications for this cubic shape are still under

investigation by this research group.



7. Discussion

Having established our experimental results, we now turn to the questions of how

our values compare with those measured in other experiments and whether our values can

be faithfully reproduced by any of the available theories.

7.1. Gamma-to-ground mixing ratios compared to previous experiments

As described in Chapter 4, mixing ratios of the ten mixed-multipolanty gamma-

to-ground transitions of '66Er have been measured in many previous studies. In Table 7-1

our results are presented in comparison with those in previous studies

Note that West [40] gives two values for 5(671) and 5(645), and Domingos [39]

gives two values for 5(705). In Table 7-1 the values which show the best agreement with

other works are presented.

A discussion of each previous measurement would not be productive. However,

there are a few previous studies worth comment. The work by Hamilton [30] is the only

other work in which chi-squared minimization was used to extract mixing ratio values,

and thus their work offers the most direct comparison. Generally speaking, our values

agree with the general size and sign of Hamilton's values. A notable exception would be

the 594 keY 3 to 4 transition, for which Hamilton's value is significantly larger than

other previous measurements, while ours agrees with other works. In most other cases

widening the uncertainty limits to 1.5 standard deviations brings the two values into
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Table 7-1: Comparison of gamma-to-ground mixing ratios with previous
experiments. Gamma rays are listed in keV. Results are presented starting
with the most recent. If no sign is presented for the mixing ratio it
indicates that the original paper only measured 8]. A "*" indicates that
the chi-squared minimization method was used for finding (5. For some
values that include infinity (marked bold in the "By" column) the notation
has been altered to fit the space available. In one case (underlined in the
"By" column) a sign has been changed to correct what we believe was a
typo in the original paper.

705 779 594 691 810 530 671 831 465 645
By 2-2 3t2 3t4 4t4 5-6 6-6 7-6 7-8 8t8
A* -128 -21.5 *0.38

7.6442 -41'50 -25.3 -33.7 +9.2i -15.4 -110 +2.4

B 181 > 50 -67°44 -23 -120
(51 > 50

I I
-27 -21 +16 _34

C* -44.626 -3571 +566 -21.2 -42.9 +25.0 -17.3 -238 +4.9

D 5+1.4 +156 +5.5 181 <8

-36 -18 -63

F 3.8 24.00 160 76
71

63 -44 11.0

G -18
8

-8 -15
_16fbo

- -15 -60 +9.4 -17.0 -13 181 >1

G -20 -129 +16 -21 -62 +10 -23 -51

H -191 +5 +4
-1627 -20 -25 -20 -22 -32 181 > 1

I -22 +8.4i +58 , +0.5-i.705 8 -17 5< -0.01

J -20i, -84 -5.0 +6.3 -371] -3.1 +1.0
+1.6+055

K -18 +5 i +4-iQ27 -20 -25 -20 -22 ll > 30 11 > 2

L 9+38 33+3.0

M -37 -85 -70°-260

A. Current work B. Berendakov [42] C. Hamilton [30] D. Kracikova [38]
E. Alzner [28] F. Kato [16] G. Krane [25] H. Lange [26]
I. Budzynski [37] J. West [40] K. Baker [24] L. Domingos [39]
M. Reich & Cline [15]
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agreement. The mixing ratio for the 691 keV 4 to 4 transition is large and thus can cast

doubt on its sign. Because Hamilton's value includes infinity we feel comfortable saying

that his value is consistent with ours.

All other measurements were analyzed using the quadratic relationship between 5

and the angular correlation coefficients and thus we feel that their uncertainty limits may

be smaller than they should be. Regardless, with only a few exceptions we find good

agreement between our work and previous measurements and we have generally

tightened the uncertainty limits on these values.

In an attempt to address the question of whether finding 5 from the A22 coefficient

produces smaller error bars than the chi-squared minimization method we have

performed both analyses on one of our most accurately measured values. Table 7-2 shows

a comparison between the results of the chi-squared minimization method and the results

of the quadratic method when applied to both ô and 1M for the 810-184 keV 5-4-2

angular correlation. We can immediately see the value in solving for ho directly, as it

more readily reproduces the asymmetric uncertainty limits that are characteristic of

mixing ratios.

This comparison does not show that the quadratic method produces smaller

uncertainty limits than the chi-squared minimization method, though we feel that finding

such an example somewhere in our data set would not be difficult. However, even in this

case the symmetriziation of the uncertainty limits that occurs when solving for 0 directly

could result in a finite uncertainty limit for a value that should include infinity.
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Table 7-2: Comparison of (5 values produced by different methods. The
table represents data from the 810-184 keV angular correlation from the
'66H0 decay. Note that solving for (5 directly produces symmetric
uncertainty limits, thus underestimating the uncertainty in one direction
and overestimating it in the other.

Method (5 + -

Chi-Squared (11(5) -22.4 3.7 5.4

Quadratic (11(5) -21.9 4.7 8.3

Quadratic ((5) -21.9 6.0 6.0

7.2. Theoretical analysis of gamma-to-ground mixing ratios

As described in Chapter 3, Ml transitions are forbidden in the basic rotor model

approximations. One way to introduce the possibility of Ml transitions between the

gamma and ground bands is through first-order band-mixing. Recall from Section 3.9 our

formula for predicting the mixing ratio from band-mixing theory (reproduced here for

convenience).

8E _AQ0
z2(g gR)

(3-28)

Calculations of the constant A were performed by Krane in 1973 [49]. In this paper Krane

calculates relative values of the constant A for the first four mixed-multipolarity gamma-

to-ground transitions. Our calculations, using the same relative units are displayed with

Krane's in Table 7-3.



Table 7-3: Comparison of values for the constant A in Equation (3-28)
between current calculations and those of Krane [49]. Note the
disagreement in both sign and magnitude for the 594 keV 3 to 4
transition, and the systematic sign change whenever Jf > f.

705 779 594 691 810 530 671 831 465 645

By 2-2 3-2 34 4+4+ 54 6-6 7-6 7-8 8-8

A 0.177 0.331 -0.040 0.092 0.064 -0.020 0.063 0.027 -0.012 0.048

B 0.176 0.330 0.048 0.092

A. Current work
B. Krane [49]

Despite many re-calculations for the 594 keV 3 to 4 transition we are forced to

conclude that Krane's value for this transition is incorrect in both magnitude and sign. In

particular, since Krane did not calculate values for the other transitions in which ff > f.

(530 and 465 keV) he may have not noticed the systematic deviation of the sign of these

values.

When comparing these relative values for the mixing ratio to our experimental

values we will normalize their magnitudes to the 810 keV 3 to 4 transition, which we

believe has the best agreement with previous experiments.

Table 7-4 displays our experimental values for the gamma-to-ground transitions

along with the theoretical predictions from several sources (including our own

calculations, described above).
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We can immediately tell from our calculations that the basic band mixing model

does not do well reproducing the sign or magnitude of gamma-to-ground mixing ratios.

Table 7-4: Gamma-to-ground mixing ratios compared to theoretical
predictions. Relative values (indicated by an underline mark in the "By"
column) are normalized to the 810-keV transition. Some literature sources
(marked bold in the ?IBYI column) quote the "reduced" mixing ratio
(SIE), from which we have calculated ô.

705 779 594 691 810 530 671 831 465 645

BY 2-2 3-2 34 4+4+ 54 5-6 6-6 7t6 7t8 8t8
A -128 -21.5 -7.641 -41 -25.3 -33.7 +9.2 -15.4 -110 +2.4

B -70.3 -131.5 +16.0 -36.7 -25.3 +7.9 -25.1 -10.7 +4.7 -19.1

C -11 -49 -35 +4.4 -48 -48 +2.9 -319 +91 +2.5

D -16.8 -9.5 -17.1 -13.4 -4.4 -15.4 -38.5 -2.6 -17.9 +9.4

E -13 -11 -6.4 -5.3 -5.2 -3.3

A. Current experimental values
B. Current calculations (relative, normalized to 8 10-keV transition)
C. Hamilton [30] (Dynamic Deformation Model)
D. Lipas [44] (2''-order IBA-1)
E. Wagner [31] (IBA-2 using calculations done by Van Isacker [50])

Thus, while the Mikhailov analysis given in Section 6.4 shows that the E2 strengths of

the gamma to ground transitions are quite consistent with first-order band-mixing theory,

the same cannot be said of the Ml strengths of those same transitions. Since our values

are relative ones, we cannot draw conclusions regarding whether band-mixing is
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including too-much or too little Ml strength in these transitions, only that the systematics

of the Mis especially in sign are not well reproduced by the band-mixing model.

The dynamic deformation model (DDM) proposed by Hamilton in 1990 [30] is

successful in predicting the sign of the mixing ratio in every case except the 691 keV 4

to and 465 keV 7 to 8 transitions. Though experimental values for these two mixing

ratio have often included infinity (and therefore some uncertainty in the sign of the

mixing ratio) a survey of the experimental results indicates that the negative sign is

favored in nearly all measurements. Hamilton's DDM model does not have as much

success in predicting the magnitude of the mixing ratios, even on a relative basis.

The calculations by Lipas in 1987 [44] are done by including higher order terms

in the Ml operator under the IBA-1 model (first order IBA-1 does not allow Ml

transitions between rotational bands). These calculations are somewhat successful in

predicting the signs of the mixing ratio, only failing for the 671 keV 6 to 6 transition,

but again they do not reproduce the magnitudes of the mixing ratios.

Wagner [311 uses IBA-2 calculations for Mi transition matrix elements produced

by Van Isacker [50] to predict the mixing ratios of both gamma-to-ground and intra-

gamma transitions using the IBA-2 model. Only a few calculations are presented and they

are generally far too small and uniform in magnitude to describe our experimental results

well. They also show no signs of a mechanism for the changing sign of delta that is

experimentally observed.
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7.3. Intra-gamma mixing ratios compared to previous experiment

Due to their significantly smaller intensities the intra-gamma-band transitions are

much more difficult to study than the gamma-to-ground transitions. The mixing ratio for

the 119 keV 5 to 4 transition has been directly measured once previously, but our work

represents the first direct (model independent) measurements of the mixing ratios for the

141 keV 6 to 5 and 160 keV 7 to 6 intra-gamma-band transitions. In Table 7-5 our

values for these three transitions are presented along with the previous measurements.

Table 7-5: Comparison of intra-gamma-band mixing ratios with previous
experiments. Gamma rays are listed in keV. The source of the measured
values are given in the first column. The Method column indicates how
the mixing ratios were measured (see the text for descriptions). If no sign
is given for a value, the sign was not measured.

97 119 141 160

By Method 4t3 5t4 6-5 7-6

Current exp. +2.45°-053 +1 i5'°4
-0.62

+1.65j

Alfter [33] Quad. +1.94

Current calc.* C.-C.O. 1 +0.391_039 1 03+011
1.0 -0.11

1 5)+0.13
-0.13

1 50+0.15
-0.15

' Calculations are based on intensities from the Nuclear Data Sheets [12].

Only one of the previous measurements (Alfter [33]) was done directly, using

angular correlations and the quadratic relationship to extract 5 from the angular

correlation coefficients. The other measurement is based on our calculations using the

cascade-to-crossover formalism developed in Section 3.7 and the intensities listed in the

Nuclear Data Sheets [12]. Several other groups have previously done similar calculations
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using the best intensities available at that time {31,45J. The model dependence of this

calculation may introduce systematic errors that are not accounted for in the quoted

uncertainties, which should be considered when comparing the values.

There is acceptable agreement between our value for the 11 9-keV transition and

that of Alfter. However, as noted in Chapter 4 it appears from the Alfter article that this

group did not account for the presence of the 121-keV gamma ray in their angular

correlation measurement. The effects of this nearby peak could have altered their value

for the mixing ratio, and at the very least we can say that their uncertainty limits should

be considered as minimum estimates.

The model dependent measurements show a trend of decreasing mixing ratios

with increasing spin, which has been seen in previous calculations as well. However, due

to the size of the uncertainty limits on our values we can neither argue for, nor rule out

any systematic trends. That said, we seem to be in good agreement in both sign and

magnitude with the cascade-to-crossover calculations.

7.4. Theoretical analysis of intra-gamma mixing ratios

Despite the lack of experimental values for the intra-gamma-band mixing ratios,

there are several theoretical predictions to compare our values to. Table 7-6 shows our

experimental values along with theoretical calculations based on IBA-1 and IBA-2

models.
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Table 7-6: Comparison of intra-gamma band mixing ratios with theoretical
predictions.

97 119 141 160

By Method 4t3 5t4 6-5 7-6

A Exp. +2.45° +1 15'°
-0.62

B IBA-2 1.5 1.3 1.2 1.1

C IBA-1 0.23 0.23 0.22 0.20

A. Current work
B. Wagner[31]
C. Lipas [44]

As mentioned in regards to the gamma-to-ground transitions, Wagner [31]

calculates IBA-2 values for these mixing ratios using Ml transition matrix elements

calculated Van Isacker [50]. Unlike the gamma-to-ground transitions for which the IBA-2

predictions are arguably the least successful, here IBA-2 seems to reproduce the correct

order of magnitude.

In contrast, the 2"'-order IBA-1 calculations give by Lipas [44] give values for

delta that are much too small, indicating that his model does not allow for strong enough

Ml contributions in the intra-gamma-band transitions.

Again we see that both IBA-1 and IBA-2 theories predict a decrease of the mixing

ratio as the spin increases, in agreement with the cascade-to-crossover analysis presented

in the previous section.

Another calculation that may be performed using our experimental values for the

mixing ratio of the intra-gamma-band transitions is to extract a value of (g g) for the
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emitting state. We can relate the mixing ratio of an intra-band transition to the quantity

g) using Equation (3-12) (reproduced here for convenience)

e
E

1

(3-12)5 4/hc j(J+1)(J-1) (g-g)

Given the energy of the gamma ray, the spin of the emitting level, and a value for the

intrinsic electric quadrupole moment of that band, Qo, we can extract a value for the

gyromagnetic ratio of that state. In these calculations we have assumed Qo = 7.67

electron-barns [51]. Table 7-7 shows the values of (g g) determined from the

measured mixing ratios of the intra-gamma-band transitions.

Table 7-7: Deduced values of (g g) for intra-gamma-band transitions.

(g g) is measured in nuclear magnetons.

E(y) JitOJf (g-g) + -

119 5-4 0.348 0.075 0.132

141 6-5 0.880 0.473 0.801

160 7-6 0.697 0.491 0.393

Due to the large limits of uncertainty on our values for the mixing ratios, our

values for (g g) do not contribute significantly to previous measurements by other

methods. However, previous measurements, such as that by Brandolini [43] deduced a

value of g for the states of the ground band that hovers around a value of 0.28, and a

value of 0.37 for (g. g) of the 2 state of the gamma band. Our values are in
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agreement with these previous measurements and this serves to further validate our

measurements of the intra-gamma-band mixing ratios.
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8. Conclusions

There are three separate but intertwined subjects presented in this work. Primarily

we have presented measurement and analysis of the mixed-multipolarity gamma-to-

ground transitions. We have also measured intra-gamma-band mixing ratios, some for the

first time. Band-mixing analysis has also been presented. A summary of each of these

topics as well as a brief discussion about methodology and future work is presented in

this chapter.

8.1. Band-mixing analysis

The band mixing analysis presented in this work is notable in two respects. The

first-order analysis agrees remarkably well with previous measurements, and current

measurements are of sufficient precision to see a third-order shape the Mikhailov plot.

This shape has not previously been observed and the theoretical interpretation of this new

information will be of some interest.

8.2. Gamma-to-ground mixing ratios

For the ten mixed-multipolarity gamma-to-ground transitions that are fed in the

decays of bo6mHo and 166Tm our measurements agree with previous measurements in

most cases. The signs of our results are consistent with previous measurements but in

some instances the uncertainty limits must be extended to 1.5 standard deviations before

there is overlap between magnitudes.
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First order band-mixing calculations do not reproduce relative values of these

gamma-to-ground mixing ratios, especially in regards to sign. The dynamic deformation

model and 2''-order IBA-1 calculations are moderately successful in predicting the signs

and magnitudes of the gamma-to-ground mixing ratios, but neither model proves to be

entirely accurate. In particular the behavior of the J, = J1 transitions seems to defy

explanation in these theories. IBA-2 calculations do not well reproduce the experimental

values.

8.3. Intra-gamma-band mixing ratios

Measurements of three intra-gamma-band mixing ratios have been presented.

Two of these have been measured for the first time, while the third is in good agreement

with the one prior measurement, despite a potential problem with this previous value.

Calculations of the intra-gamma-band mixing ratios, based on current literature

intensities and the simple rotational model, show good agreement with experimental

values. IBA-1 and IBA-2 models are not as successful, though the IBA-2 predictions are

of the right order of magnitude. IBA-1 gives results that are too small by an order of

magnitude.

Our experimental values are not precise enough to discern whether the predicted

decrease in the mixing ratio with increasing spin is occurring.
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Values for the g-factors of the gamma-vibrational-band, based on the rotational

model, are consistent with previous measurements. This offers some validation that our

measurements of the intra-gamma-band mixing ratios are correct.

8.4. Experimental methods

We have presented an argument that in cases where the mixing ratio is expected

to be large, solving for 1/S rather than 5 offers a clearer experimental result and allows

for more effective communication and averaging.

We also believe there is growing evidence that solving for the mixing ratio using

a chi-squared minimization method is preferable to the quadratic approach, when

possible.

Finally, in terms of methodology we have shown the impressive power of large

detector arrays. Despite years of study of both decays, and the bo6mHo decay in particular,

we were able to produce more precise measurements and extend the limits of

measurability to a significant extent. The flexibility of instruments such as the 8t gives

an impressive glimpse at the tools of modern gamma-ray spectroscopy.

8.5. Future work

While this work has concentrated on the nuclear structure aspects of the 166Er

nucleus, a significant amount of spectroscopic information on this nucleus remains to be

mined from our data. In addition, information regarding E31M2/E1 multipole-mixing may

be accessible from some of the high lying negative parity states in this nucleus.
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Though it might offer an interesting perspective on competing nuclear structure

theories, we feel that it is unlikely further experiments seeking to measure the intra-

gamma-band mixing ratios will be productive. Given that this experiment represents

hundred of hours of data collection on a 20-detector array it would require unprecedented

counting times to improve on the statistical accuracy of these measurements. Due to the

extreme weakness of the intra-gamma-band transitions it is unclear there will ever be a

method for measuring these mixing ratios with any greater accuracy.

Both in experiment and in theoretical models we would like to see further pursuit

of the cubic shape to the Mikhailov data presented here. Several questions present

themselves: Does this shape arise in other highly deformed nuclei? Does the presence of

the cubic shape indicate any processes that might lead to a better theoretical explanation

of the gamma-to-ground mixing ratios?

There are only a few cases in which further study of the gamma-to-ground mixing

ratios in 166Er could be fruitful. The mixing ratio for the 2 to 2 gamma-to-ground

transition remains difficult to measure, mostly due to its very large value and lack of

feeding in the l6ômHo decay. However, it is unlikely that more will be learned by further

study of the majority of the gamma-to-ground transitions in 166Er.

More theoretical work addressing the large variances in the measured mixing

ratios for gamma-to-ground transitions in '66Er does seem warranted by our data. In

particular, the mixing ratios of transitions with J. = J. exhibit anomalous properties

relative to the rest of the transitions.
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