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The short-term duration of most ecological studies can make it difficult to 

capture the long-term dynamics of ecosystems and populations. Infrequent or high-

impact events can be missed, or erroneously documented as baselines. Long-term 

ecological research enables a deeper understanding of complex processes, provides a 

foundation for future insights, and can help improve research methods and 

management. In my research, I used long-term data collected at the H.J. Andrews 

Experimental Forest in Oregon’s Western Cascades, established by the U.S. Forest 

Service in 1948. The H.J. Andrews Experimental Forest is one of 80 U.S. Forest 

Service Experimental Forests and one of 28 sites in the National Science Foundation-

funded Long-Term Ecological Research Network.  

Air temperature is a critical variable in ecology because it regulates biological 

processes, influencing growth, development, reproduction, thermoregulation, and the 

phenology of organisms, as well as biogeochemical rates. Air temperature data has 

been recorded globally for hundreds of years, and is one of the most highly leveraged 

research investments. However, air temperature time series can include substantial 



 

 

random variation and systematic deviation (bias) from non-climatic artifacts, such as 

instrument configuration and instrument and method changes. The goal of my first 

study was to quantify measurement differences between the current air temperature 

instrument used at H.J. Andrews Experimental Forest’s primary climate station and 

three other instruments that have been used there over the past twenty years. The 

current instrument is widely considered to be the most accurate, while the other 

instruments are prone to warm-biased measurements. The magnitude of bias depends 

on siting and environmental conditions (particularly incoming solar radiation, albedo, 

and wind speed), time of day, and the measurement’s temporal and statistical 

aggregation. While other field studies have quantified differences between air 

temperature instruments, they were typically only a few weeks duration and did not 

explore how bias aggregates at different temporal and statistical resolutions. Using 

data collected continuously over a period of six years, we found that measurement 

differences for average temperatures in the daytime were as large as 7.7°C, median 

differences up to 0.9°C, and that as many as 68% of measurements had differences 

+/-0.4ºC. Daily maximum resolution was the most sensitive to differences, with 

median differences up to 1.2°C, and as many as 78% of measurements with 

differences +/-0.4ºC. H.J. Andrew’s air temperature data are publically available on 

the web site, and often used by researchers in trend analyses, such as for climate 

change. Data from warm-biased instruments, especially when combined and treated 

as continuous with data from more accurate instruments, can complicate analyses and 

may lead to erroneous conclusions. One of the practical goals of the study was to 

explore if incoming solar radiation, reflected solar radiation, and wind speed 

observations recorded concurrently with air temperature data can be used to model 

measurement differences. We found that differences can be relatively well-estimated 

using models incorporating these variables. The results of this study will be used to 

supplement H.J. Andrews air temperature data and metadata, and can potentially be 

used by researchers to adjust measurements taken by warm-biased instruments at the 

H.J. Andrews climate station.  

The goal of my second study was to evaluate how terrestrial flying insect 

abundance and thermal patterns vary across landscape gradients over a period of five 



 

 

years, and if there is a relationship between abundance and thermal variation. 

Complex forest landscapes like H.J. Andrews can contain a variety of microclimates, 

which have the potential to act as refugia for insects and other wildlife in changing 

climate conditions. Even though insects are the most abundant and diverse organisms, 

they are underrepresented in the literature, with a bias towards species of medical and 

economic importance. This study contributes valuable information about the 

springtime abundance dynamics of a broad flying forest insect population, as well as 

three genera from the Diptera (true flies) and Coleoptera (beetles) orders, for which 

there is little information in the literature. We found that thermal patterns (represented 

as cumulative growing degree days) and insect abundance (broadly and for the three 

genera) were widely variable across sixteen sites within a year, and less variable 

within sites over five years. One year in particular (2011) had dramatically different 

abundance patterns than the other four years of the study. We also modeled the 

relationship between cumulative growing degree-days and insect abundance at each 

site, and found the relationship was widely variable in a sampling year among sites, 

as well as within sites among sampling years, suggesting that factors other than 

thermal accumulation may strongly influence abundance. These types of long-term 

studies are important to establish baselines and understand the environmental 

conditions under which terrestrial flying insect abundance within a forest can 

fluctuate, as well as the habitat characteristics that may be associated with abundance.   
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CHAPTER 1: GENERAL INTRODUCTION 
 

The short-term duration of most ecological studies can make it difficult to capture the 

long-term dynamics of ecosystems and populations. Infrequent or high-impact events can be 

missed, or can be erroneously documented as baselines when they occur during small study 

windows. Long-term ecological research can enable a deeper understanding of complex 

processes, provide a foundation for future insights, and improve research methods and 

management.  

In my research, I used data collected in two long-term studies at the H.J. Andrews 

Experimental Forest in Oregon’s Western Cascades, established by the U.S. Forest Service in 

1948 and one of 28 stations in the National Science Foundation-funded Long-Term Ecological 

Research Network. In my first chapter, I examine measurement differences between four types 

of instruments which have been used for various durations in the past 50 years to collect air 

temperature data of record at a benchmark meteorological station. I evaluate how much 

measurement differences among instruments can be explained by three environmental variables, 

and how differences may impact trend analyses. The broader purpose of this study was to 

improve air temperature collection methods, as well as inform researchers how method changes 

could potentially impact analyses and how to adjust their analysis methods to account for these 

changes.  

In my second chapter, I examine insect abundance and air temperature data collected in 

the spring for five years at 16 sites representative of H.J. Andrews’ diverse landscape gradients. I 

evaluate the variability of insect abundance and thermal patterns between and within sites over 

time, as well as how the relationship between insect abundance and growing degree-days 

differed between sites. This study provides foundational knowledge about thermal and insect 

abundance patterns at H.J. Andrews, which will be synthesized with similar studies of vegetation 

and birds in the forest, allowing researchers to better understand the complex dynamics of 

trophic linkages within the forest. 
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CHAPTER 2: MEASUREMENT DIFFERENCES BETWEEN AIR TEMPERATURE 
INSTRUMENTS AND IMPLICATIONS FOR TREND ANALYSES 
 

INTRODUCTION 

Climate change impacts are a key research focus across ecological domains. High-quality 

climate data are necessary to construct models to accurately estimate and predict trends and 

ecosystem changes. As sensor technology has improved and decreased in cost, environmental 

sensor networks have proliferated. Data publishing efforts have given researchers access to 

extensive global climate datasets at ever-increasing temporal resolution (Daly 2006, Hampton et 

al. 2013, Rundel et al. 2009). Affordable sensor technology has also enabled researchers to 

deploy exponentially more sensors and gather climate data at finer spatial resolutions (Potter et 

al. 2013). However, abundant data are not necessarily high-quality or consistent data. 

Climate time series can include substantial random variation and systematic deviation 

(bias) from non-climatic artifacts, such as instrument configuration and instrument and method 

changes (Michener 2015, Peterson et al. 1998, Quayle et al. 1991, Thorne et al. 2016). These 

inconsistencies over space and time lead to additional variation that can complicate trend 

analyses, making it difficult to accurately identify climate change signals (Peterson et al. 1998, 

Thorne et al. 2005). Researchers who are unaware or underestimate the impact of this additional 

variation may draw incorrect conclusions due to unaccounted for effects (Peterson et al. 1998). 

For example, high-elevation warming in the western United States was overestimated by 

approximately 1°C per decade due to systematic measurement bias in the SNOTEL network 

from method and instrument changes which were unaccounted for in analyses (Oyler et al. 

2015). Bias can also propagate in subsequent studies when climate datasets are reused. In the 

case of the SNOTEL network, propagated bias in climate data products were found to amplify 

minimum temperature warming estimates over three decades by 217-562% (Oyler et al. 2015).   

A key challenge for climate data reuse is that much historic weather station data were 

collected using methods best suited for near-term weather forecasting, not continuous, long-term 

analyses (Thorne et al. 2005). Documentation and metadata related to siting, instrumentation, 

methods, and timing of changes are widely variable; and this issue is prevalent in most data 

repositories (Hampton et al. 2013, Thorne et al. 2005, Trewin 2010). Metadata on quality control 

procedures, including changes to raw data, are often incomplete (Michener 2015). Even when 
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quality metadata are available, it can be difficult for researchers to find and understand how best 

to incorporate this information (Peterson et al. 1998).  

Bias arising from changes to air temperature instruments are mainly a function of 

differences in instrument performance. Air temperature instruments have two main components: 

a sensor and a radiation shield. The radiation shield protects the sensor from direct and indirect 

radiation and other elements (Thomas and Smoot 2013). Ideally, the sensor is at equilibrium with 

the ambient air temperature and delivers an accurate measurement. However, the shield can 

create a concentrated space for convection and conduction around the sensor, and these 

microclimate effects can cause systematic deviations from the true ambient temperature (Lin et 

al. 2001a, Lin et al. 2001b).  

These systematic deviations are commonly referred to as “radiation bias,” and are well-

documented in the literature. Both field and lab experiments have linked deviations in wind 

ventilated instruments to incoming solar radiation and wind speed (Hubbard et al. 2001, Lin et al. 

2001a, Lin et al. 2001b, Lin et al. 2001c, Mauder et al. 2008, Richardson et al. 1999). These 

deviations have been found to be up to 4ºC at low wind speeds (< 2 m/s) (Hubbard et al. 2004, 

Lin et al. 2001c, Richardson et al. 1999). The height at which instruments are located and site 

surface conditions can influence environmental interactions which impact instrument 

performance (Ashcroft 2018, Nakamura and Mahrt 2005). When wind-ventilated instruments are 

located over snow, 30-minute mean deviations can be up to 10ºC due to albedo effects (Huwald 

et al. 2009). Passive instruments with custom-fabricated shields were found to experience a 

deviation of 0.7ºC for every 10% of impervious site surface area (Terando et al. 2017). Custom-

fabricated shield performance is particularly concerning as construction and materials aren’t 

typically standardized or well-documented, and are often deployed without testing or calibrating 

with higher-quality instrumentation (Terando et al. 2017). Mechanically ventilated (aspirated) 

shields are considered the best option and the “gold standard” as they ensure adequate airflow 

across the sensor body, independent of site conditions (Thomas and Smoot 2013).  

Biases can also propagate depending on data aggregation and the choice of summary 

statistics. Before digital sensors were widely available, daily average temperature was recorded 

by taking the average of the maximum and minimum temperatures recorded by a maximum-

minimum thermometer (Wang 2014). Growing degree-days (GDD), used in agricultural and 

ecological phenology studies, have long been derived using this method to calculate daily 
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average temperature. Now that researchers have access to high-resolution data, a more accurate 

daily average temperature can be calculated. However, issues can arise when comparing GDD 

accumulation estimates derived from these different daily average temperature calculation 

methods (Weiss and Hays 2005). Daily average temperatures calculated from maximum and 

minimum temperatures are biased primarily because they’re only based on two measurements, 

leaving most of the day unmonitored. There is also systematic bias due to differences in the 

drivers of daytime warming and nighttime cooling, which are dependent upon geography and 

other factors (Wang 2014). This bias is reduced when using high-resolution measurements to 

calculate the daily average temperature. 

Here we examine the differences in air temperature measurements between an instrument 

with a fan-aspirated shield (the reference) and three with wind-ventilated shields, including the 

extent to which variation in these differences can be explained by environmental variables. Each 

of these instruments have been used historically at H.J. Andrews Experimental Forest and Long-

Term Ecological Research Site, where climate monitoring has been conducted since the 1950s. 

Instrumentation at the site has been regularly upgraded as new technology and methods have 

developed (Figure 2.1). These changes in air temperature instrumentation changes at one of the 

site’s primary meteorological stations are a good example of how frequently these types of 

discontinuities can occur in a long-term climate dataset.  

Previous studies have assessed the measurement differences between air temperature 

instruments using various shields. However, long-term field studies conducted over a range of 

environmental conditions that compare a manufactured aspirated shield with both manufactured 

and custom-fabricated wind-ventilated shields are lacking, as is evaluation of how these 

differences may propagate in data at different temporal and statistical aggregations. We 

examined: 1) air temperature measurement differences between aspirated and wind-ventilated 

radiation shields, 2) how air temperature measurement differences may aggregate in common 

summary statistics (high-resolution average, daily average, maximum, and minimum; monthly 

mean daily average, maximum, and minimum; and growing degree-days), and 3) the degree to 

which measurement differences can be explained by incoming solar radiation, albedo, and wind 

speed using modeling techniques that can be relatively easily applied by researchers. 
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METHODS  

Research site  
The study was located at the Primary Meteorological Station (PRIMET) at H.J. Andrews 

Experimental Forest, located in Oregon’s Western Cascades (44.21, -122.26, elevation 430m). 

The PRIMET site is approximately 29 x 23 m2, exposed and relatively flat, with conifer forests 

outside the perimeter. It is located in the bottom of a valley with steep ridges to the southeast and 

northwest. Annual precipitation is 2200 mm, which occurs primarily November through May. 

Snow can accumulate at this site in winter, but it does not remain for long periods. Summers are 

generally dry and warm, with cool nights and occasional thunderstorms.   

 

Instrumentation  
General instrument descriptions 

Instruments measuring air temperature, wind speed, incoming solar radiation and 

reflected solar radiation (see Table 2.1 for photos and specifications) were placed side-by-side at 

1.5m above the ground. There were four air temperature instruments, all using an identical 

sensor (Campbell Scientific 107 thermistor) but different radiation shields: 1) fan-aspirated (ASP 

or aspirated), 2) cotton region shelter (CRS), 3) Gill multi-plate (Gill), and 4) a custom-

fabricated shield developed by staff at the research site (HJA). One propeller anemometer was 

used to measure wind speed. One upward-facing pyranometer measured incoming solar radiation 

(ISR), and one down-facing pyranometer measured reflected solar radiation (for brevity, we use 

the term “albedo”, though it is technically reflected solar radiation and not albedo). All sensors 

were connected to the same data logger (Campbell Scientific CR1000). 

  

Air temperature instrument radiation shield descriptions  

Fan-aspirated shields use a blower motor to draw air over the shield, providing 

ventilation independent of wind speed (Richardson et al. 1999) and are currently considered the 

best-performing shield option (Thomas and Smoot 2013). However, their power requirements 

limit use at remote sites without line power or solar arrays. They are also more expensive than 

other shield options.  

The CRS (sometimes referred to as a Stevenson screen) has been used for many decades 

at meteorological stations (Hubbard et al. 2001). It is a wooden cabinet painted white to reflect 
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solar radiation, allowing passive airflow through slats. The structures are large, originally built to 

accommodate liquid-in-glass maximum and minimum thermometers (Hubbard et al. 2001). The 

development of small and accurate temperature sensors led to the development of smaller 

radiation shields. The CRS is still widely used, but smaller instruments have either replaced or 

supplemented the CRS at many stations (Hubbard et al. 2001). 

The multi-plate Gill shield is commonly used at weather stations and in field 

experiments. The shield’s parallel slats allow air flow across the sensor while shielding from 

direct solar radiation. However, some upwelling shortwave radiation can reach the sensor (Arck 

and Scherer 2001). For stations that consistently experience wind speeds greater than 1-2 m/s, 

this shield usually provides sufficient ventilation to mitigate radiation bias (Richardson et al. 

1999).   

The HJA is one of many custom-fabricated shields that researchers have developed as a 

cost-effective alternative to manufactured shields (Holden et al. 2013, Hubbart et al. 2005, 

Terando et al. 2017). The HJA consists of an 8-inch long, 3.5 inch diameter, schedule 40 PVC 

pipe split in half lengthwise and placed over ¾-inch diameter PVC tubing that houses the sensor 

(Smith 2002).  

 

Data collection and processing 
Air temperature, incoming solar radiation, albedo, and wind speed data were collected 

continuously between April 2011 and April 2017. Measurements were taken every 15 seconds, 

and the average for a 15-minute period (60 observations) was recorded (referred to hereafter as 

“15-minute average observations”). Additionally, from April 2015 to April 2017, measurements 

were taken every 15 seconds, and for each 5-minute period (20 observations), the maximum and 

minimum air temperature and maximum incoming solar radiation, albedo, and wind speed were 

recorded (referred to hereafter as “5-minute observations” with the relevant statistic specified). 

Table 2.2 outlines the data resolution, observation dates, and statistics collected for each 

instrument. 

All data were reviewed for quality control using an automated process (GCE Data 

Toolbox Version 3.9.4b - https://gce-lter.marsci.uga.edu/public/im/tools/data_toolbox.htm). 

Rows with missing observations for aspirated air temperature, incoming solar radiation, albedo, 

or wind speed were removed, with a total of 6,097 rows (out of 210,504) removed from the 15-
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minute data and 8,358 rows (out of 210,792) removed from the 5-minute data. Data logger issues 

from February 27-March 7, 2013 and August 2-31 in 2016 caused most missing values. Data 

flagged as questionable in the automated process were checked manually to determine if values 

were feasible. Additionally, a quality check was performed on the fan-aspirated air temperature 

observations, since the instrument can experience large daytime temperature spikes if power to 

the fan stops. The 15-minute average, 5-minute average, and 5-minute maximum observations 

were analyzed separately for these spikes. Fan-aspirated observations that deviated more than 

0.4°C (double the range of sensor accuracy) warmer than the maximum simultaneous wind-

ventilated instrument observation were examined using boxplots. Observations greater than 

twice the interquartile range above the median were checked manually to determine if they were 

feasible, and likely outliers were removed. Between these two quality checks (data flagged as 

questionable and the fan-aspirated observations), six values were removed from the 15-minute 

average data and none were removed from the 5-minute data (as values were determined to be 

feasible).   

 

Data aggregation 
The 5-minute observations were summarized with the following statistics: daily average 

(from 5-minute average), daily maximum (from 5-minute maximum), and daily minimum (from 

5-minute minimum – air temperature only as incoming solar radiation, albedo, and wind speed 

were assumed to be zero). Only days missing less than one hour’s worth of measurements were 

included. From the daily statistics, we calculated the monthly mean daily average (average of all 

daily average values for a month) monthly mean daily maximum (average of all daily maximum 

values for a month), and monthly mean daily minimum (average of all daily minimum values for 

a month). Observations from August 2016 were removed due to missing aspirated observations 

described above.  

Cumulative growing degree-days were also calculated. A degree-day is typically 

calculated by taking a daily average air temperature statistic and subtracting a minimum 

threshold temperature specific to an organism of interest. Growing degree-days (GDD) are the 

cumulative sum of degree-days > 0 in a specified date range. As mentioned in the introduction, 

historic GDD calculation methods use the average of the daily maximum and minimum as the 

daily average temperature statistic. However, with recent availability of high-resolution data, a 
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potentially more accurate daily average can be calculated. Issues may arise in analysis when 

GDD accumulations are compared or synthesized when different methods for calculating the 

daily average temperature are used. To quantify the magnitude of difference between methods, 

we calculated GDD for the period November 2015 through July 2016 using two methods: one 

using the daily average air temperature calculated from 5-minute resolution measurements (Tavg), 

and the other using the average of the daily maximum and daily minimum air temperature 

(calculated as described in the previous paragraph) (Tmma). A minimum threshold temperature of 

5°C (Tbase), commonly used in insect studies (Hodgson et al. 2011), was applied in the degree-

days calculation. 

 

Data analysis 
Air temperature measurement differences (referred to hereafter as “ΔT”) were calculated 

for each of the three wind-ventilated instruments (CRS, Gill, and HJA) as the wind-ventilated 

instrument temperature measurement minus the fan-aspirated instrument temperature 

measurement (ºC). Positive ΔT indicates the wind-ventilated instrument measured warmer than 

the fan-aspirated, and negative ΔT indicates that the wind-ventilated instrument measured cooler. 

We define a “substantial” ΔT as |ΔT| > 0.4°C. This threshold is double the range of sensor 

accuracy specified by the manufacturer in conditions that are most typical for the study site (see 

Table 2.1). The threshold is intended to distinguish ΔT due to inherent sensor error from error 

due to other variables.  

 

Distribution of air temperature measurement differences 

Histograms and summary statistics were used to examine ΔT distributions for the 

following statistics: 15-minute average (all and daytime-only observations), daily average, daily 

maximum, daily minimum, monthly mean daily average, monthly mean daily maximum, and 

monthly mean daily minimum. GDD derived using the two different calculation methods were 

compared both within and among shield types using summary statistics and graphically using 

line plots.  

 “Daytime” is defined as one hour after sunrise and one hour before sunset. This 

definition was necessary due to the topography of the mountainous research site (located in the 

bottom of a valley with steep ridges to the southeast and northwest), which impacts daylight 
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timing and reduces the amount of daylight that the site receives. Sunrise and sunset times are 

calculated using the StreamMetabolism package for R (R Core Team 2016, Sefick 2016), which 

uses National Oceanic and Atmospheric Administration (NOAA) solar calculation methodology 

for apparent sunrise and sunset (NOAA 2018). Seasons were defined based on equinox and 

solstice dates and times from NOAA (NOAA 2018). 

 

Estimating measurement differences from incoming solar radiation, albedo, and wind speed 

A key study objective was to examine if ΔT can be estimated by incoming solar 

radiation, albedo, and wind speed using regression methods relatively easily applied by 

researchers. Unless otherwise specified, explanatory variables are incoming solar radiation 

(W/m2), albedo (W/m2), and wind speed (m/s). For each wind-ventilated instrument (CRS, Gill, 

HJA) the relationship between daytime 15-minute average ΔT and incoming solar radiation, 

albedo, and wind speed were examined using scatterplots, conditioning plots, and with multiple 

regression. We excluded nighttime observations since our method of measuring incoming solar 

radiation and albedo would not properly capture the relationship with nighttime ΔT, and an 

appropriate measure (like net radiation) was not available. Additionally, the majority of 

substantial ΔTs (|ΔT| > 0.4°C) occur during the daytime (Figure 2.2).  

We chose not to use a time series analysis for these data. Rather, we patterned our 

regression analysis after a similar study analyzing ΔTs that used a method involving binning data 

to reduce the correlation among observations for analysis (Nakamura and Mahrt 2005). The 

range of daytime 15-minute average values for incoming solar radiation, albedo, and wind speed 

were each evenly split into 20 bin, resulting in 8,000 possible combinations of explanatory 

variables (20*20*20 = 8,000). The median observed value for each explanatory variable and the 

median observed ΔT for each unique combination of the three explanatory variable bins were 

used to create a new dataset for the statistical analysis. For example: in one bin, the incoming 

solar radiation range was 556-612 W/m2 (median = 586.2 W/m2), the albedo range was 101-126 

W/m2 (median = 114.0 W/m2), and the wind speed range was 0.6-0.7 m/s (median = 0.6 m/s). 

The median observed CRS ΔT for those explanatory variable ranges was 1.1°C. The four median 

values then became one row in the new dataset used for analysis (CRS ΔT = 1.1°C, incoming 

solar radiation = 586.2 W/m2, albedo = 114.0 W/m2, wind speed = 0.6 m/s).  
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We carried out the regression analysis and model selection on the binned median values 

for the response and explanatory variables (referred to hereafter as “binned data”). Some bins 

represented explanatory variable ranges in which no response variable was observed, and these 

were treated as missing values. Weighting of the binned response values by the number of 

observations in each bin was not used.  

 

Model selection 

For each wind-ventilated instrument, conditioning plots of the daytime 15-minute 

average observations showed a non-linear ΔT response to incoming solar radiation, albedo, and 

wind speed, as well as potential interactions between these explanatory variables (Figure A.8). 

The full model for best subsets model selection included linear and quadratic terms for each of 

the explanatory variables, as well as interactions. We developed our set of candidate models as 

follows: 1) incoming solar radiation and wind speed were included as explanatory variables in all 

models because their relationship with ΔTs have been well-established in the literature, 2) albedo 

was allowed in models but not required, 3) any explanatory variable was allowed to present as 

either only linear, or linear plus quadratic terms, 4) all components of interactions were required 

to be main effects in the model. For example, for an interaction of wind speed and albedo2, then 

wind speed, albedo, and albedo2 were included as main effects in the model.  

There were 24 candidate models evaluated in the selection process. Model selection was 

performed separately for each wind-ventilated instrument on the binned data (see Table A.4 for 

binned data summary statistics). Candidate models were evaluated for adherence to linear 

regression assumptions, including graphical examination of residuals for each model. Graphical 

examination of residuals from regression models suggested that the assumptions of multiple 

regression were met. A best “simple” model (no interaction terms) and a best “complex” model 

(interaction terms included) for each wind-ventilated air temperature instrument were selected 

based on: 1) high value of adjusted R2, 2) low value of mean squared error (MSE), and 3) low 

value of AIC. 

After models were selected, the R rms package was used to fit models using the ols() 

function. An optimism-corrected bootstrap procedure with 2,000 resamples was performed to 

adjust the precision of the regression coefficient estimates for overfitting bias using the bootcov() 

function (Harrell 2018, Harrell et al. 1996, Harrell et al. 2015, R Core Team 2016). Model 
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performance was evaluated using adjusted R2 and MSE values and observed (binned data) vs. 

predicted data plots. Additionally, the regression coefficient estimates from each wind-ventilated 

instruments’ respective best models were used to estimate ΔTs on the unbinned daytime 15-

minute average observations, and the observed vs. estimated summary statistics were compared.  

Data cleaning and statistical aggregation were performed using R (v. 3.6.1) (R Core 

Team 2016) and the tidyverse (v. 1.2.1) packages (Wickham 2017). All data exploration and 

analysis were performed using R (R Core Team 2016) and rms (v. 5.1-2) (Harrell 2018). Most 

visualizations were created using the ggplot2 (v. 3.2.1) package (Wickham 2016). Summary 

statistic tables were created using the stargazer (v. 5.2.2) package (Hlavac 2018). The forecast (v. 

8.9) package (Hyndman et al. 2018) was used to generate ACF plots. 

 
RESULTS 

Study site climate conditions 
Between April 2011 and April 2017, air temperatures measured by the fan-aspirated 

instrument ranged from -16.1°C to 40.4°C, median 8.2°C and mean 9.2°C (SD = 7.8°C) (n = 

204,399). For observed incoming solar radiation, the maximum was 1112.0 W/m2, minimum 

0.00 W/m2, and daytime median 121.0 W/m2. For observed albedo, the maximum was 546.0 

W/m2, minimum 0.00 W/m2, and daytime median 21.8 W/m2. For observed wind speed, the 

maximum was 2.0 m/s, minimum 0.00 m/s, and median 0.00 m/s (Table A.1).  

Climate conditions at the study site were seasonally variable (Figures A.3 & A.4). Winter 

and spring are typically cloudy, and incoming solar radiation and albedo were low in this period 

compared to the summer and fall. In the summer and early fall, median daytime incoming solar 

radiation was typical of clear, sunny days. Mean wind speed was slightly higher during the 

daytime than nighttime, and slightly higher during the summer and fall than compared to spring 

and winter. The site experienced periodic snow cover from November-March during the 

sampling period (with the amount of snow cover varying by year). 

 

Distribution of air temperature measurement differences 
The values for the 15-minute average ΔT values (the wind-ventilated instrument 

temperature measurement minus the fan-aspirated instrument temperature measurement) were 

considerably larger and more widely distributed in the daytime than at nighttime. Median 

daytime ΔT values were between 0.5-0.7ºC, while median nighttime ΔT values were between -
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0.1- 0.04ºC (Table 2.3, daytime: Figure 2.3; nighttime: Figure A.5). The largest daytime ΔT 

values were between 3.3-6.5ºC larger than at nighttime, with the largest HJA daytime ΔTs up to 

7.7°C, Gill up to 7.0°C, and CRS up to 4.0°C. Compared to nighttime, the daytime percentage of 

substantial ΔT values (|ΔT| > 0.4ºC) were nearly 10 times greater for the CRS and Gill and five 

times greater for the HJA.  

The daytime 15-minute average ΔT values were most variable between April and 

September. This is the period at the study site when sunny days are most frequent. All 

instruments had greater median daytime ∆T values in the spring and summer than in the fall and 

winter. The median HJA daytime ΔT was substantial (|ΔT| > 0.4ºC) from April – September 

(Figure 2.4). October – March is peak rainy season, with infrequent clear days. Low solar angles, 

combined with steep terrain around the study site, limit the daily incoming solar radiation 

window in October – March, but substantial daytime ΔT values were still observed during this 

period, particularly for the HJA and Gill. For all daytime and nighttime 15-minute average 

observations combined, the median ΔT was close to zero for each instrument at 0.1°C for CRS 

and HJA and 0.03°C for Gill (Table 2.3). The percentage of substantial ΔT values for HJA was 

35.3%, Gill 21.1%, and CRS 29.5%.  

The median daily average and median daily maximum ΔT was 0.3ºC for the CRS (Table 

2.4, Figure 2.5). The median Gill daily maximum ΔT was 0.5ºC, compared to a median daily 

average of 0.1ºC. The HJA median daily maximum ΔT was 1.2ºC, compared to a median daily 

average of 0.3ºC. The percent of substantial ΔT values were greater for the daily maximum than 

daily average for all instruments: CRS 13.9 percentage points greater, Gill 55.1 percentage points 

greater, and HJA 48.5 percentage points greater. The median daily minimum ΔT for all 

instruments was within 0.1ºC of zero, with between 2.7-11.3% of ΔT values considered 

substantial (|ΔT| > 0.4ºC) (Figure A.6 and Table A.2). 

Each instruments’ median monthly mean daily average ΔT was approximately equal to 

its median daily average ΔT (Table 2.4, Figure 2.5). The percentage of substantial ΔTs for the 

CRS monthly mean daily average increased to 43.5% from the daily average percentage of 

30.8%, the percentage for the HJA decreased to 39.1% from 39.7%, and the percentage for the 

Gill decreased to 0.0% from 3.3%.  

Each instruments’ median monthly mean daily maximum ΔT was within 0.1ºC of its 

median daily maximum ΔT. The largest monthly mean daily maximum ΔTs were between 2.0-
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3.8ºC smaller than the largest daily maximum ΔTs. However, for each instrument, the percentage 

of substantial ΔTs for the monthly mean daily maximum was at least 16 percentage points 

greater than its daily maximum percentage (Table 2.4, Figure 2.5), with the percentage for the 

HJA increasing to nearly 100%. Each instruments’ median monthly mean daily minimum ΔT 

was equal to its median daily minimum ΔT, with all median values within 0.1ºC of zero, 

indicating that minimum temperature summary statistics are not as differentially sensitive to 

measurement differences as the maximum temperature. No substantial monthly mean daily 

minimum ΔTs were observed for any instrument (Figure A.7 and Table A.3). 

 

Explanatory variable relationships 
 Scatterplots showed that the relationship between daytime 15-minute average ΔTs and 

incoming solar radiation, albedo, and wind were similar for each instrument (Figure 2.7). The ΔT 

values for each instrument became less variable and closer to zero with increasing wind speed. 

The ΔT values tended to increase with incoming solar radiation until ~ 600 W/m2, then 

decreased at levels > ~ 600 W/m2. Nearly all ΔT values were substantial (|ΔT| > 0.4ºC) when 

albedo was > 200 W/m2. We were interested in knowing how snow cover was associated with 

albedo, so snow cover estimates from the study site from 2010-2012 were compared with albedo 

measurements from the same time period. Values of albedo > 200 W/m2 were associated with 

values of snow cover > 40%. Values of snow cover > 40% were also associated with ΔTs  

> 4.0ºC for the HJA, and ΔTs > 2.5ºC for the CRS and Gill. 

Conditioning plots showed a non-linear ΔT response to incoming solar radiation, albedo, 

and wind speed, as well as potential interactions between these explanatory variables (Figure 

A.8). When levels of incoming solar radiation were > 600 W/m2 and albedo was > 200 W/m2 

simultaneously, 97% of ΔT values were substantial (|ΔT| > 0.4ºC). When wind speed was > 0.5 

m/s, substantial ΔT values were less frequent, even when incoming solar radiation was > 600 

W/m2 and albedo was > 200 W/m2. 

We also evaluated the relationships between explanatory variables in the daytime 15-

minute average data, and found that, as expected, there was a strong positive relationship 

between incoming solar radiation and albedo (Figure 2.8). Most (69%) incoming solar radiation 

observations > 600 W/m2 occurred at wind speeds > 0.5 m/s (which may be adequate to mitigate 
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radiation bias according to some manufacturer specifications). Only 3 albedo observations > 200 

W/m2 were observed concurrent with wind speeds > 0.5 m/s.  

 

Growing degree-day (GDD) accumulation method differences 
Total GDD accumulation (November 2015-July 2016) was greater for all instruments 

when the daily average temperature was calculated using the daily maximum and minimum 

averaging method compared to averaging the high-resolution (5-minute average) observations 

(Figure 2.6). The largest within-instrument difference between the two methods was the HJA 

(243 GDD), and the smallest was the CRS (187 GDD) (Figure 2.6). The largest among-

instrument differences when using the same method was between the fan-aspirated and the HJA, 

with a difference of 72 GDD using the high-resolution averaging method, and 115 GDD using 

the daily maximum and minimum averaging method (Table 2.5). Between instruments using two 

different methods, differences were 130-316 GDD.  

 
Estimation of air temperature measurement differences 

The candidate model rankings, based on evaluation of adherence to linear regression 

assumptions, high adjusted R2, low MSE and AIC, and model complexity, were similar for all 

instruments. The best simple (no interaction terms) and complex (included interaction terms) 

models for each instrument included all linear terms (incoming solar radiation, albedo, and wind 

speed) (Table 2.6). In addition to the linear terms, in their respective simple models, the CRS 

included the incoming solar radiation quadratic term, the Gill included the albedo quadratic term, 

and the HJA included both the incoming solar radiation and albedo quadratic terms. All 

instruments had the same best complex model, which included all linear terms, quadratic terms 

for incoming solar radiation and albedo, and interactions between all terms (except between two 

quadratic terms, which was not allowed in models) (Table 2.6). None of the best models included 

a quadratic term for wind speed.  

Table A.5 outlines the optimism-corrected estimates and regression statistics from the 

bootstrap resampling procedures performed on each best model. The complex models for each 

instrument had higher adjusted R2 and lower MSE values than the simple models, however, for 

the CRS and HJA instruments, the differences between these metrics for the simple and complex 

models was small (adjusted R2 difference 0.03 and 0.04 and MSE difference 0.01 and 0.05 for 

CRS and HJA, respectively) suggesting that the additional terms in complex models do not 
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account for additional substantive variation over the simpler models. Based on observed (binned 

data) vs. estimated plots (Figure 2.9), the simple models seemed to perform slightly better for the 

CRS and Gill, and the complex model better for the HJA.  

Additionally, we tested model performance by using the best models’ regression 

coefficients to estimate ΔTs in the unbinned daytime 15-minute average data. A comparison of 

the observed vs. estimated ΔT summary statistics (Table 2.8) showed that for the CRS, the 

summary statistics for the simple model’s estimated ΔTs were closer to observed than the 

complex model, with estimated median and mean ΔT the same as observed. For the Gill and 

HJA, the summary statistics for the complex model’s estimated ΔTs were closer to observed than 

the simple model, with estimated median and mean ΔT within 0.1ºC of observed. None of the 

models did well in estimating minimum ΔTs, with estimates between 1.1-2.2ºC off from the 

observed values. 

 

DISCUSSION 

This long-term field study assesses how air temperature measurements differ between an 

air temperature instrument with a fan-aspirated shield and three instruments with wind-ventilated 

shields in a range of weather conditions, allowing us to differentiate between instrument error 

and systematic deviations related to weather conditions. Our comparison shows that shield type 

influences the air temperature measurement, which has implications for calculations of long-term 

trends that use measurements from multiple instruments over time. We show that our custom-

fabricated radiation shields are prone to producing systematic deviations, and maximum 

temperature statistics are particularly sensitive to these deviations. We also show that ΔTs can be 

partially explained by incoming solar radiation, albedo (technically reflected solar radiation 

based on our methods), and wind speed. However, the estimated relationships between ΔTs and 

these environmental variables differ by shield type. Statistical inference is limited to our study 

site. 

 

Predictors of air temperature measurement differences 

As expected, substantial ΔTs (|ΔT| > 0.4°C) for all instruments were most common in the 

daytime, and were larger and more variable from April – September, when clear and sunny days 

are more frequent than in October – March. At wind speeds > 0.5 m/s, ΔTs were smaller and less 



16 

 

 

variable than at lower wind speeds, even at relatively high levels of incoming solar radiation and 

albedo. Contrary to expectation, ΔTs were less variable and decreased toward zero when 

incoming solar radiation was > 600 W/m2 , in contrast to ΔTs when incoming solar radiation is  

< 600 W/m2. However, ~70% of the incoming solar radiation observations that were > 600 W/m2 

occurred at wind speeds considered adequate to ventilate the shield and mitigate radiation bias (> 

0.5 m/s). Albedo > 200 W/m2 was associated with snow cover and particularly large ΔTs in all 

instruments (> 2.5°C). Local site conditions exerted strong influence on these patterns and 

interactions among environmental variables: wind speed and incoming solar radiation are highest 

and most predictable during summer afternoons when up valley flows dominate, and winter 

periods with snow cover and high reflected solar radiation are consistently calm.  In models with 

a single predictor, reflected solar radiation (referred to in our study as “albedo”, though it is not 

technically albedo) explained the most variation in ΔT for all instruments. These results suggests 

that researchers should consider the radiation bias effects on measurements due to albedo in air 

temperature instrument selection, siting, and data quality control. This is especially true for 

exposed study sites with ground surfaces vulnerable to upward heat flux, such as sites with 

impervious cover or those that experience snow accumulation.  

In modeling the relationship between ΔTs and incoming solar radiation, albedo, and wind 

speed, we binned our time series data to reduce correlation between observations before 

performing multiple regression. We acknowledge that a time series analysis would likely 

produce more precise estimates, but our method still produced a model-estimated mean and 

median ΔT within 0.1ºC of the observed mean and median ΔT when applied the full, unbinned 

daytime 15-minute average data. So, regression modeling that includes incoming solar radiation, 

albedo, and wind speed may be a useful tool for researchers to estimate ΔTs between instruments 

using different shields. However, we acknowledge that the availability of concurrent data from 

co-located instruments measuring each of the variables used in our analysis may be a barrier to 

this approach.  

 

Shield performance and statistic choices 

There were considerable differences in the estimation of the air temperature maximum by 

the tested shields at daily and monthly mean daily temporal resolutions. The custom-fabricated 

HJA shield instrument had median daytime 15-minute average ΔTs up to 0.7ºC larger than the 
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manufactured CRS and Gill shield instruments. For all instruments, the median ΔTs for the 

maximum temperatures were larger than the median ΔTs for the average or minimum 

temperature of equivalent temporal resolution. These results align with other studies that have 

shown maximum temperatures are particularly prone to systematic deviations due to radiation 

bias. Extreme temperatures have become a focus in climate change research, and researchers 

should be aware of the potential for measurement bias in estimated maximum temperatures, even 

when using high-resolution measurements.  

The CRS had the smallest median ΔT value for the maximum temperature statistic at all 

temporal resolutions, while the Gill had the smallest median ΔT value for the average 

temperature statistic at all temporal resolutions. The median ΔT for the minimum temperature 

statistic were smaller than the median ΔTs for the average and maximum temperature statistics, 

and no instrument had a median ΔT greater than 0.1ºC. This was expected, as minimum 

temperatures usually occur at nighttime, when radiation bias is least likely to cause measurement 

differences.  

Our GDD accumulation comparison shows how shield-related measurement bias may 

carry into aggregated statistics. GDD is derived using a measure of daily average temperature. 

We compared GDD accumulations using two methods to calculate daily average temperature: 

the average of the daily maximum and daily minimum temperature vs. the average of all 5-

minute temperature measurements for a day (288). We expect that GDD accumulation will differ 

between methods - independent of the air temperature instrument - due to different sources of 

bias in the daily average temperature calculation (Wang 2014). The magnitude of difference in 

GDD accumulation between methods in the fan-aspirated instrument is what might be expected 

due to difference in methods alone (with a key assumption that the instrument isn’t vulnerable to 

shield-related bias). The GDD accumulation differences between the two methods were smaller 

for the CRS than for the fan-aspirated instrument. A potential explanation is that the CRS shield 

is a large cabinet, and heat takes longer to both build up and dissipate around the sensor than in 

compact shields (like the fan-aspirated). Thus, it is less sensitive to rapid ambient air temperature 

changes, as well as radiation bias. We see evidence of this in our analysis of the maximum 

temperature ΔTs , as the median and maximum ΔT for the CRS maximum temperature statistic 

were the smallest among all instruments at all temporal resolutions. So, the smaller difference in 
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GDD accumulation between the two methods within the CRS, compared to the other 

instruments, may partially be an artifact of the shield.  

Shield-related measurement bias is most apparent when comparing GDD accumulation 

among instruments using the same daily average temperature calculation method. The Gill’s 

compact design is more sensitive to rapid heating inside the shield than the CRS, especially in 

low-wind conditions. However, the compact design enables a more rapid response to ambient air 

temperature changes than the CRS, and thus more precise (and potentially more accurate) 

measurements. The Gill GDD accumulation for the high-resolution averaging method was 

closest to the fan-aspirated, which is expected based on our results (the Gill had the smallest 

median ΔT value for the average statistic at all temporal resolutions). While the HJA design is 

also compact, it apparently heats up quickly and stays warm (evidenced by our maximum 

statistics results), so it is not surprising it had the largest GDD accumulation when using the 

daily maximum and minimum averaging method.  

 

Implications for data synthesis and analysis 

Researchers should consider our study results when evaluating which  air temperature 

data and instruments will best answer their specific research questions. Radiation bias can 

influence air temperature measurements, and our results demonstrate that deviations in measured 

air temperatures do not “average out” in a time series, even in coarse temporal resolutions like 

the monthly mean, so there is a risk in assuming that all air temperature data is accurate. Using 

biased data may lead to erroneous conclusions. A scenario where measurement bias could lead to 

incorrect conclusions  is in phenology studies when, for example, historical GDD accumulations 

derived using the maximum-minimum averaging method for calculating daily average 

temperature are synthesized with accumulations derived using the high-resolution averaging 

method. In our results, the GDD accumulation on May 15, 2016 was 553 GDD for the HJA 

instrument using the maximum-minimum averaging method, compared to 384 GDD for the fan-

aspirated instrument using the high-resolution averaging method – a difference of 169 GDD. 

According to a model sourced from Oregon State University’s Integrated Plant Protection 

Center, adult emergence of the Asian Longhorned Beetle (Anoplophora glabripennis 

(Motschulsky)), a significant hardwood pest species, is estimated to begin at 442 GDD, with 25% 

adult emergence by 652 GDD (IPPC 2019). So, the difference in GDD accumulation between 
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two instruments using different methods is close to the difference between 1-25% adult 

emergence of an important pest species.  

Instrument changes can introduce additional variation that can affect trend analysis. For 

example, if a time series starts with air temperature measurements collected using an instrument 

with a shield vulnerable to warm-biased measurements due to radiation bias, and the data record 

transitions to measurements collected by an instrument with a fan-aspirated shield, then 

relatively small warming trends - such as the IPCC’s estimated 0.2ºC anthropogenic warming per 

decade - may not be detected since the measurement bias may be as large as the warming trend 

(Masson-Delmotte et al. 2018). As evidenced in this and other studies, custom-fabricated shields 

are particularly prone to measurement bias at a magnitude that could mask relatively small trend 

signals (Terando et al. 2017). However, if used consistently over time, the measurements from 

instruments with shields prone to radiation bias can still be effective in detecting patterns, such 

as ranking years or sites from cool to warm, depending on the precision of the evaluation and the 

statistic chosen.  

 
Best practices for data collection and reuse  

Researchers must consider bias in air temperature measurements, and the impact it may 

have on the answers to their research questions. If the “true” ambient air temperature is important 

for a research question, and measurement bias in instruments with lower-quality shields cannot 

be assessed, researchers should use an instrument with a high-quality shield or use published air 

temperature data that was collected using a high-quality shield. If the research budget doesn’t 

accommodate the cost of a high-quality shield, consider whether data from a nearby weather 

station would be better than potentially biased data collected on-site. However, we acknowledge 

this can be a difficult decision, especially for research focused on microclimate. Despite their 

variable and sometimes marginal performance, custom-fabricated shields remain popular 

because high-quality shields are cost-prohibitive, especially for multi-site studies. The Gill shield 

used in this study cost $117, and the fan-aspirated shield cost $667, though less-expensive 

models are available. The CRS was almost $1,000, compared to approximately $10 for the PVC 

pipe used to create the HJA shield. Additionally, fan-aspirated shields require power, which may 

not be feasible at study sites. In choosing a design for (or developing) a custom-fabricated shield, 

researchers should consider: 1) Materials: some materials heat up and/or retain heat more than 
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others, 2) Airflow: openings for air must be balanced with the need to shield the sensor from 

direct and reflected solar radiation, and 3) Reflection: white surfaces are better to reflect solar 

radiation. However, to reiterate a key message of this study – even if you custom-fabricate a 

shield according to best practices, it is important to assess whether it can produce accurate and 

precise measurements. 

Measurement bias can also be influenced by environmental factors at the study site, and 

there are some practical ways that researchers can mitigate this when using less-accurate shields. 

In considering study design and site selection, there is evidence that radiation bias occurs less 

frequently in areas with canopy cover and shade (Lundquist and Huggett 2008, Terando et al. 

2017). Areas with average wind speeds greater than 1.0 m/s may also have fewer issues. Co-

locating lower-quality instruments with a high-quality instrument for a period of time can also 

help researchers document the conditions when performance may be poor, and the magnitude of 

measurement bias that may occur. No matter what type of shield is used, if there is a mid-study 

instrument change, old and new instruments should be co-located for a period to calibrate 

measurements. Also, as part of data quality control before analysis, researchers should closely 

evaluate air temperatures for spikes when collected under conditions associated with bias. For 

example, at the H.J. Andrews study site, this would include clear, sunny days in warmer months, 

periods of low wind, and sunny days with snow cover. 

Good metadata practices can also help to address measurement bias issues. When 

documenting and archiving their own climate data, researchers should include instrument 

configurations and specifications for any custom-fabricated instruments, as well as the details of 

any instrument or method changes occurring during the study. When using published data, 

researchers should scrutinize metadata for sensor or shield changes that have the potential to 

impact data before doing analysis.  

 

Assumptions, inference, and limitations 

A key assumption in our study is that the fan-aspirated air temperature instrument 

measures most closely to the actual ambient air temperature, and is not prone to bias. It is 

important to note that the statistical inference of this study is limited to our study site, and that its 

specific results should not be assumed to apply in other locations, as site conditions strongly 

influence air temperature instrument measurements (Milewska and Vincent 2016, Yamamoto et 
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al. 2017). For example, our study site had minimal wind speed variability and higher wind 

speeds in warm months than cool months, and experiences prolonged topographic and vegetation 

shading in winter months. Elements including ground surface reflectivity, surrounding vegetation 

mass and height, and humidity, as well as the vertical height in which instruments are placed, can 

also influence interactions that are known to cause radiation bias (Huwald et al. 2009, Nakamura 

and Marht 2005). Unexplained variance in our models suggest that non-shield-related factors 

may influence deviations from the true ambient air temperature at our study site, such as azimuth 

and cold-air drainage. It is also likely that there is a lag effect in the temperature and 

measurement difference response to the explanatory variables, and this lag is unaddressed in our 

models.  

 

Conclusion 

The open data movement has resulted in frequent calls for researchers to share, reuse, and 

synthesize published research data. Ecologists are encouraged to join their multiple (often small) 

dissociated studies into unified, strong foundations of knowledge. To achieve these goals, data 

standardization is crucial. Climate data is one of the most highly leveraged research investments, 

and perhaps the most used type of published data (Wallis 2010). Yet, even data from “official” 

meteorological stations following expert-recommended guidelines can have standardization 

issues. We encourage researchers to be vigilant in thoroughly documenting the climate data that 

they collect and share, as well as to be educated about the methods, instrumentation, and 

limitations of the climate data they reuse and synthesize. Making metadata and provenance more 

user-friendly and accessible to researchers is a worthy focus of future research and innovation. 

We also hope that more data sharing, reuse, and synthesis appeals are accompanied by 

educational resources and practical guidelines on domain-specific data quality concerns. Without 

education and awareness, ecology will have a foundation of flawed analyses, instead of the 

knowledge required to address challenges like climate change.  
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FIGURES 

 

 
 

Figure 2.1 Timeline shows various radiation shield and sensor combinations that have been used 
to record air temperature historically at PRIMET. The 107 thermistor sensor was used with all 
instruments in this study (details in Table 1). The Campbell Scientific HMP35C and HMP45C 
sensors require a larger shield than the 107 thermistor.  
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Figure 2.2 Figure shows the ΔTs between three wind-ventilated air temperature instruments and 
a fan-aspirated instrument by time of day (15-minute average observations, n = 204,399). Darker 
areas have more observations. Solid yellow lines encompass ΔTs not considered substantial (|ΔT| 
< 0.4°C). Dashed yellow line indicates ΔT = 0. Most substantial differences occur during the 
daytime. 
 



27 

 

 

 
Figure 2.3 Density plot of ΔTs for the daytime 15-minute average observations. Differences are 
calculated as the wind-ventilated instrument measurement minus the fan-aspirated instrument 
measurement. Vertical dashed line indicates ΔT = 0. The ΔTs outside the shaded region are 
considered substantial (|ΔT| > 0.4°C). 
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Figure 2.4 Ridgeline plots show the monthly distribution of differences in the daytime 15-
minute average observations. Colors denote quartiles: first – purple, second – blue, third – green,  
fourth - yellow. 
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A) Daily average 

  
B) Daily maximum

  

C) Monthly mean daily average 

 
D) Monthly mean daily maximum 

 
 
Figure 2.5 Density plot of ΔTs (°C) for the A) daily average, B) daily maximum, C) monthly 
mean daily average and D) monthly mean daily maximum observations. The ΔTs are calculated 
as the wind-ventilated instrument measurement – aspirated instrument measurement. Vertical 
dashed line indicates ΔT = 0. The ΔTs outside the shaded region are considered substantial 
(|ΔT| > 0.4°C). 
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Figure 2.6 Plots comparing cumulative growing degree-days (GDD) for each instrument using 
two methods: one using the daily average temperature (blue line) and the other using the average 
of the daily maximum and minimum temperature (green line). Using the average of the daily 
maximum and minimum temperature results in greater cumulative GDD for each instrument. 
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Figure 2.7 Plots showing daytime 15-minute average observation ΔTs (°C) against: (A) 
incoming solar radiation (W/m2), (B) albedo (W/m2), and (C) wind speed (m/s). The ΔTs outside 
the shaded region are considered substantial (|ΔT| > 0.4°C). The dashed line indicates ΔT = 0. 
The yellow line is the GAM smoothing curve (cubic regression spline). 
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Figure 2.8 Plots show daytime 15-minute average observations of explanatory variable 
relationships: (A) incoming solar radiation (W/m2) vs. albedo (W/m2), (B) incoming solar 
radiation (W/m2) vs. wind speed (m/s) and (C) albedo (W/m2) vs. wind speed (m/s). The yellow 
line is the GAM smoothing curve (cubic regression spline).  
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Figure 2.9 Plots show the estimated vs. observed differences (°C) for each best model. Dark 
dashed line indicates where the estimated difference equals the observed difference. Note that x-
axis and y-axis scales are different for each instrument.  
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TABLES 
 
Table 2.1 Summary of instrumentation used in the study. All air temperature sensors 
manufactured by Campbell Scientific. Photos sources: ASP, Gill, Wind from R.M. Young; ISR, 
ALB from Campbell Scientific; CRS from NovaLynx; HJA author photo.  
 

 Instrumentation Code Description Specifications 

 

Fan-aspirated  
(reference):  

air temperature 
ASP 

107 thermistor sensor; R.M. 
Young 43502-L compact 
aspirated shield 

Sensor accuracy:  
±0.2°C between 0 and 60 
±0.4°C  below 0 to -35; 
shield radiation error <0.2°C @ 
1000 W/m2 

 

Cotton region 
shelter:  

air temperature 
CRS 

107 thermistor sensor; 
NovaLynx 380-605 large 
instrument shelter 

Sensor accuracy:  
±0.2°C between 0 and 60 
±0.4°C below 0 to -35; shield 
information not available 

 

HJA/PVC shield:  
air temperature HJA 

107 thermistor sensor; shield: 
8-inch long, 3.5 inch diameter, 
schedule 40 PVC pipe split in 
half lengthwise over PVC 
tubing containing sensor 

 

Gill shield:  
air temperature Gill 

107 thermistor sensor; R.M. 
Young 41303-5A  
6-plate solar radiation shield 

 

Pyranometer 
(facing upward): 

incoming  
solar radiation 

ISR CM3 Kipp & Zonen 

Response time: 18s;  
spectral range 305-2800 nm; 
sensitivity: 10-35 µV/W/m2; 
error: ±25 W/m2 

 

Pyranometer 
(facing 

downward): albedo 
ALB CM3 Kipp & Zonen 

Response time: 18s;  
spectral range 305-2800 nm; 
sensitivity: 10-35 µV/W/m2; 
error: ±25 W/m2 

 

Anemometer:  
wind speed WIND R.M. Young 05103 

Resolution: 1.0 m/s ; accuracy: 
±0.3 m/s or 1% of reading 
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Table 2.2 Data for the study were recorded at two temporal resolutions and in three statistical 
formats (average, maximum, minimum). The table outlines the dates for which observations 
were logged, the resolution at which they were recorded, and the statistics recorded. 
 

Resolution Instruments Dates  Statistics 

15-minute 
ASP, CRS, Gill, 
HJA, ISR, ALB, 

WIND 
4/2011 – 4/2017 Average for a 15-minute period  

(60 observations per period) 

5-minute 
ASP, CRS, Gill, 

HJA 4/2015 – 4/2017 
Average, maximum, and minimum 

for a 5-minute period 
(20 observations per period) 

5-minute 
ISR, ALB, 

WIND 4/2015 – 4/2017 
Average and maximum for a  

5-minute period 
(20 observations per period) 
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Table 2.3 Summary of daytime, nighttime, and all (daytime and nighttime combined) 15-minute 
average ΔTs (°C). The ΔTs were calculated as the wind-ventilated instrument measurement 
minus the aspirated instrument measurement. A “substantial ΔT” is defined as |ΔT| > 0.4°C. The 
percentage in the last column of the table is the percentage of the n ΔT values considered 
substantial. The maximum and median ΔTs were larger and more variable in the daytime than at 
nighttime.  
 

CRS n Min Max Median Mean St Dev Substantial ΔT 
Daytime 87,129 -1.9 4.0 0.5 0.6 0.6 60.6% 
Nighttime 117,270 -1.0 1.7 0.04 0.04 0.2 6.5% 
All 204,399 -1.9 4.0 0.1 0.3 0.5 29.5% 

Gill n Min Max Median Mean St Dev Substantial ΔT 
Daytime 87,129 -1.9 7.0 0.3 0.5 0.6 43.9% 
Nighttime 117,270 -1.4 0.7 -0.1 -0.1 0.1 4.1% 
All 204,399 -1.9 7.0 -0.03 0.1 0.5 21.1% 

HJA n Min Max Median Mean St Dev Substantial ΔT 
Daytime 87,129 -2.4 7.7 0.7 0.9 1.0 65.0% 
Nighttime 117,270 -1.3 1.2 -0.1 -0.1 0.2 13.1% 
All 204,399 -2.4 7.7 0.1 0.3 0.8 35.3% 
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Table 2.4 Summary of ΔTs (°C) for: A) daily average, B) daily maximum, C) monthly mean 
daily average, and D) monthly mean daily maximum statistics. The ΔTs were calculated as the 
wind-ventilated instrument measurement minus the aspirated instrument measurement. A 
“substantial ΔT” is defined as |ΔT| > 0.4°C. The percentage in the last column of the table is the 
percentage of the n ΔT values that were considered substantial.  
 
A) Daily average 
Instrument n Min Max Median Mean St Dev Substantial ΔTs 
CRS 700 -0.3 0.9 0.3 0.3 0.2 30.8% 
Gill 700 -0.2 0.6 0.1 0.1 0.1 3.3% 
HJA 700 -0.7 1.1 0.3 0.3 0.3 39.7% 

  
B) Daily maximum 
Instrument n Min Max Median Mean St Dev Substantial ΔTs 
CRS 697 -0.7 3.0 0.3 0.4 0.5 44.7% 
Gill 697 -0.8 5.2 0.5 0.7 0.7 58.4% 
HJA 697 -0.8 5.6 1.2 1.2 0.9 78.2% 

  
C) Monthly mean daily average 
Instrument n Min Max Median Mean St Dev Substantial ΔTs 
CRS 23 -0.03 0.5 0.3 0.3 0.2 43.5% 
Gill 23 -0.05 0.3 0.1 0.1 0.1 0.0% 
HJA 23 -0.03 0.6 0.3 0.3 0.2 39.1% 

 
D) Monthly mean daily maximum 

Instrument n Min Max Median Mean St Dev Substantial ΔTs 
CRS 23 0.1 1.0 0.4 0.4 0.2 60.9% 
Gill 23 0.3 1.4 0.6 0.7 0.3 82.6% 
HJA 23 0.3 1.8 1.3 1.2 0.5 95.7% 
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Table 2.5 Comparison of total GDD accumulation (November 2015-July 2016) between two 
methods for calculating the daily average temperature: A) average of the daily maximum and 
minimum temperature; B) average of all five 5-minute average observations in a day. 
Accumulation differences were variable among instruments using the same method (3-113 GDD 
difference), and between instruments using different methods (130-316 GDD difference). For 
individual instruments, the difference in GDD accumulation between methods was 187-243 
GDD.  
 

 Total GDD Accumulation: November 2015-July 2016 

Method ASP CRS Gill HJA 

Daily maximum & 
minimum average 1394 1442 1445 1507 

Daily average of all 5-
minute observations 1191 1255 1218 1264 
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Table 2.6 The explanatory variables included in the best models for each wind-ventilated 
instrument. ISR = incoming solar radiation (W/m2), ALB = albedo (W/m2), WIND = wind speed 
(m/s). A dot in the box indicates that the variable is included in the model. The best complex 
model was the same for all instruments. All candidate models were forced to include ISR and 
WIND.  
 

Term CRS Simple  Gill Simple HJA Simple Complex (All)  
ISR • • • • 
ALB • • • • 
WIND • • • • 
ISR2 •  • • 
ALB 2  • •  
ISR*ALB    • 
ISR*WIND    • 
ISR 2* ALB    • 
ISR2*WIND    • 
ALB*WIND    • 
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Table 2.7 Table shows the adjusted R2 value for models that included only the explanatory 
variable term listed in the column. Models were fit on the binned data. Albedo alone explained 
more variation in ΔT for each instrument than incoming solar radiation or wind speed.  
 

Instrument Incoming solar radiation 
(W/m2) 

Albedo 
(W/m2) 

Wind speed 
(m/s) 

CRS 0.14 0.53 0.29 
Gill 0.02 0.61 0.37 
HJA 0.11 0.49 0.10 
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Table 2.8 A comparison of the summary statistics for the observed vs. estimated ΔTs in the 
daytime 15-min average data. For the CRS, the summary statistics for the simple model’s 
estimated ΔTs were closer to observed than the complex model, with estimated median and mean 
ΔT the same as observed. For the Gill and HJA, the summary statistics for the complex model’s 
estimated ΔTs were closer to observed than the simple model, with estimated median and mean 
ΔT within 0.1ºC of observed. 
 

Statistic Observed ΔT 
(ºC) 

Simple Model 
Estimated ΔT (ºC) 

Complex Model  
Estimated ΔT (ºC) 

CRS 

Min -1.9 -0.8 -0.1 
Max 4.0 3.0 3.4 

Median 0.5 0.5 0.4 
Mean 0.6 0.6 0.5 
SD 0.6 0.4 0.5 

Substantial ΔTs 60.6% 63.6% 47.7% 
GILL 

Min -1.9 -0.5 -0.4 
Max 7.0 5.2 5.0 

Median 0.3 0.9 0.3 
Mean 0.5 0.9 0.4 
SD 0.6 0.3 0.5 

Substantial ΔTs 43.9% 96.2% 45.6% 
HJA 

Min -2.4 -0.2 -0.3 
Max 7.7 6.4 6.3 

Median 0.7 1.0 0.6 
Mean 0.9 1.1 0.8 
SD 1.0 0.6 0.9 

Substantial ΔTs 65.0% 95.9% 56.4% 
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CHAPTER 3: MICROCLIMATE AND ABUNDANCE OF FLYING INSECTS IN A 
CONIFER FOREST 
 

INTRODUCTION 

Recent increases in global surface temperatures have been found to impact insect 

phenology and abundance (Bale et al. 2002, Deutsch et al. 2008, Menzel et al. 2006, Parmesan 

2006, Parmesan and Yohe 2003, Woods et al. 2015). Many insects are poikilotherms with 

limited thermoregulation ability, so climate has a strong direct influence on their development, 

reproduction, and behavior. Most projections of future climate change are at coarse spatial 

scales, but climate conditions at a fine spatial scale (often referred to as microclimate) are most 

relevant to insects (Kingsolver et al. 2011, Woods et al. 2015).  

Complex montane forest environments can have heterogeneous microclimates, with wide 

spatiotemporal variation in air temperature, forms of precipitation, moisture, wind, and incoming 

solar radiation intensity (Chen et al. 1999, Frey et al. 2016). Microclimate is influenced by 

landscape characteristics such as latitude, elevation, slope, aspect, vegetation, and canopy cover 

(Dobrowski 2011). In the northern hemisphere at latitudes between 30°-55°, aspect strongly 

influences the amount of heat that slopes receive from the sun. South-facing slopes receive more 

direct sunlight, and are typically warmer and drier than north-facing slopes, effecting vegetation 

composition. Air temperature tends to decrease with increasing elevation, but in montane 

environments with steep slopes and narrow valleys, cold air drainage and pooling result in 

temperature inversions where exposed slopes and ridges can be warmer than the valley below 

(Daly et al. 2010). Vegetation composition and structure also influence microclimate. In a study 

at an old-growth Douglas-fir forest in southern Washington, the mean daily average air 

temperature at the forest interior was 0.95°C lower than at the edges during a 35-day period in 

the summer. Forest vegetation can also reduce variation in temperature. The difference between 

the daily average maximum and minimum temperature at the forest interior was 4.7°C lower 

than at an exposed clearcut site. Mean wind velocity and incoming solar radiation were also 

found to be lower, and relative humidity higher, at the forest interior compared to clearcut (Chen 

et al. 1993).  

Understanding and quantifying microclimatic variation is integral to predicting organism 

response to climate change, and has been a key ecological research focus (Chen et al. 1999, De 
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Frenne et al. 2013, Hodkinson 2005, Potter et al. 2013, Storlie et al. 2014, Woods et al. 2015). 

Insect life cycle event timing is often driven by environmental cues such as thermal 

accumulation, chilling, photoperiod, and precipitation (Forrest 2016, Hodkinson 2005, 

Kingsolver et al. 2011, Wolda 1988). Due to their diverse life history and adaptation strategies, 

predicting insect response to climate change is complex (Forrest 2016, Kingsolver et al. 2011). 

For a multivoltine species, early spring warming and snowmelt may result in early emergence 

and multiple broods, and consequently, increased abundance (Forrest 2016, Saunders 2002). 

However, for a species that requires a certain period of winter chilling to signal that it’s safe to 

terminate diapause, early spring warming and snowmelt can significantly lengthen pupae 

development time and result in decreased abundance (Forrest 2016, Stålhandske et al. 2015). 

Studies have shown that heterogeneous microclimates within forests may act as “microrefugia” - 

areas of favorable climate within regions of unfavorable climate - for insects and other organisms 

adapting to climate change (Buckley et al. 2013, Dobrowski 2011, Frey et al. 2016, Kearney et 

al. 2009, Maclean et al. 2015). However, life history characteristics, such as dispersal ability and 

range, will impact whether insects can take advantage of microrefugia.  

Insect response to environmental conditions is also mediated by trophic and community 

interactions (Gilman et al. 2010, Ovaskainen et al. 2013, Pureswaran et al. 2018). There has been 

significant research on potential phenological “mismatch” in trophic interactions related to 

climate change (Gilman et al. 2010, Parmesan 2006, Parmesan and Yohe 2003, Thackeray et al. 

2016, Thackeray et al. 2010, Visser and Both 2005). As earlier spring warming can advance 

plant phenology, the phenology of herbivorous insects, pollinators, and parasitoids must also 

advance to acquire sufficient resources for reproduction and development (Parmesan 2006). 

Photoperiod is not impacted by climate warming, and there is concern that some insect and bird 

species which rely on photoperiod cues may miss optimal resource windows advanced by 

warming, such as plant leafout, which could have rippling trophic effects (Gwinner 1990, 

Hodgson et al. 2011).  

Recent studies have shown evidence of steep insect abundance and biomass declines 

which may be linked to climate change and phenological mismatch, raising public alarm about 

an “insect apocalypse” (Hallmann et al. 2017, Jarvis 2018, Lister and Garcia 2018, Sánchez-

Bayo and Wyckhuys 2019). Researchers warn that these insect declines could have calamitous 

impacts to ecosystem structure and function, since insects are the sole or primary food source for 
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a number animal species, and an integral part of food webs, in addition to providing ecosystem 

services like pollination and decomposition (Noriega et al. 2018, Ovaskainen et al. 2013). 

However, there are significant knowledge gaps about the life history, species interactions, and 

population dynamics of many insect taxa, making generalized conclusions about global trends 

unreliable (Cardoso et al. 2019, Cardoso et al. 2011, Fisher 2019, Saunders et al. 2019, Visser 

and Both 2005). Insects are the most abundant and diverse group of organisms, but are 

underrepresented in the scientific literature, with limited geographic representation and 

taxonomic bias towards species of medical and economic importance (Noriega et al. 2018, 

Saunders et al. 2019, Titley et al. 2017, Wolda 1988).  

Knowledge gaps about insect life history and population dynamics, changing climate 

conditions, and trophic synchrony have resulted in a high degree of uncertainty about future 

insect populations and potential impacts to community structure and function. Our observational 

study contributes to the field by examining thermal variation and its relationship to the spring 

activity of terrestrial flying insects over five years at the H.J. Andrews Experimental Forest and 

Long-Term Ecological Research Station in Oregon. We examine the general abundance of 

terrestrial flying insects at H.J. Andrews, as well as the abundance of three select genera: 1) 

Diptera: Dolichopodidae: Scellus (long-legged flies), 2) Diptera: Bolbomyiidae: Bolbomyia (tiny 

black flies), and 3) Coleoptera: Scraptiidae: Anaspis (small beetles). Our research questions are:  

1. How do cumulative growing degree-days (GDD) vary in a sampling year among sixteen 

study sites and within a site among sampling years? 

2. How does cumulative abundance per sampling day vary in a sampling year among 

sixteen study sites and within a site among sampling years?  

3. What is the relationship within a site between abundance per sampling day and: 1) air 

temperature during the sampling period and 2) the proportion of days with measurable 

precipitation during the sampling period? 

4. How much does the slope of the relationship between cumulative abundance per 

sampling day and cumulative GDD differ among sixteen study sites in a sampling year? 
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METHODS 

Research sites 
Insect sampling took place between the months of March and July in 2009-2014 at 

sixteen sites within the H.J. Andrews Experimental Forest and Long-Term Ecological Research 

site (44.21, -122.26). Due to challenges with study start-up and consistent data collection in 

2009, data from this sampling year is excluded unless otherwise noted. H.J. Andrews is a 

conifer-dominated forest occupying 6,400 hectares of the Lookout Creek Watershed, located in 

the western slopes of the Cascade Range, approximately 80.5 km east of Eugene, Oregon. H.J. 

Andrews’ complex terrain experiences a range of interesting climate phenomena, including 

temperature inversions and cold-air drainage. Thus, it provides an ideal location to evaluate the 

ways that spatial variation in microclimate can impact forest insect abundance. The sixteen study 

sites were selected based on representation of landscape gradients at H.J. Andrews, varying in 

elevation (460m to 1300m), slope (10.8% to 79.2%), aspect (30° to 347°), and relative forest age 

(with “young” defined as 40-60 years since last harvest “old” defined as unlogged stands with 

dominant canopy trees 150-500 years old). All sites were located at the forest interior, away from 

road edges. Sites were also selected based on proximity to existing long-term climate monitoring 

stations and forest plots. Proximity to these stations allowed for data quality checks and 

validation using similar temperature data, as well as to associate microclimate conditions to long-

term climate station records. Site characteristics are outlined in Table 3.1, and a map with study 

site locations is shown in Figure 3.1.  

 
Insect sampling and processing 

At each site, flying insects were collected using a single malaise trap suspended from a 

central line suspended between two trees with the bottom of the trap 0.3-0.5m above ground. For 

logistics and consistency among sites, malaise traps were hung at locations within a 25m radius 

of an air temperature instrument at plot center, in an area that was at least 2x2m and free of 

shrubs. Traps were set and collected at each site approximately weekly from March to July in 

2010-2014. Due to early season access and the risk of trap damage in snowstorms, trapping start 

dates at higher elevation sites typically lagged behind those of low elevations sites.  Other 

logistical constraints precluded a strict seven-day sampling window for every site/trapping bout. 
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Hence, the total number of samples collected and total number of sampling days at each site was 

variable in each sampling year (Table 3.2).  

Weekly samples were preserved with 95% ethanol and delivered to a lab at Oregon State 

University. Samples were examined using a binocular dissecting microscope. In 2009, samples 

were fully processed, and then partially processed in 2010-2014. In fully processed samples, all 

winged insects were counted and identified to varying taxonomic levels, from order to genus, 

depending on key availability and ease of use (Table A.8) (McAlpine et al. 1981, Covell 1984, 

Arnett 2000, Arnett and Thomas 2001, Arnett et al. 2002, Triplehorn and Johnson 2005, Merritt 

and Cummins 2008) (note that these citations are listed separately in Literature Cited under the 

“Insect identification” header). For partially processed samples, total counts of all flying insects 

and counts of three genera were recorded: Diptera: Dolichopodidae: Scellus (long-legged flies), 

Diptera: Bolbomyiidae: Bolbomyia (tiny black flies), and Coleoptera: Scraptiidae: Anaspis 

(small beetles) (Johnson and Li 2016). These taxa were selected as they are common and 

abundant at H.J. Andrews, and would allow for cross-site comparisons. Taxonomic data from the 

2009 pilot year were used as an indicator of the types and diversity of insects captured with the 

sampling method, but per-sample abundance data from this year were omitted from analyses due 

to the degree of inconsistency in trapping periods. 

 

Climate data collection and processing 
Air temperature data were recorded year-round at each site using Onset Hobo U22-001 

(accuracy 0.2°C) temperature sensors with a custom-fabricated shield. Shields were 8 inches 

long and made from a 3.5-inch diameter schedule 40 PVC pipe split in half lengthwise (Johnson 

and Frey 2009). The air temperature instrument was located on a fiberglass pole 1.5 m above 

ground in a shaded understory location, and instantaneous air temperature was recorded at 15-

minute intervals. An automated quality assurance program developed in Python was used to 

identify and flag impossible and missing values in the data, and to detect when sensors were 

buried by snow (Johnson and Frey 2009). Data were also checked manually, and values were 

compared to those from nearby temperature stations to identify erroneous snow flags (i.e., data 

flagged as “sensor buried by snow” when no snow was at that site), temperature spikes, and other 

questionable values not identified by the Python program. For missing data and periods when the 

sensor was buried by snow, data were filled using regression relationships with other sensors 
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(Table A.6 and Table A.7). Regressions were calculated using the best fit with other sensors 

during periods of time when the full data were available. The hourly average air temperature was 

calculated after quality control and assurance processes.  

Cumulative growing degree-days (GDD) was selected as a thermal measure. It has long 

been used in plant and insect phenology studies, since physiological development begins at a 

temperature threshold unique to the organism, and is then mediated by immediate conditions 

(Crimmins and Crimmins 2019, Hodgson et al. 2011, Snyder et al. 1999, Zalom and Goodell 

1983). We calculated cumulative GDD for each site based on a method established for a 

concurrent vegetation phenology study at H.J. Andrews (Ward et al. 2018). We established a 

minimum threshold temperature of 5°C (Tbase), commonly used for insect development and 

reproduction (Hodgson et al. 2011). The average daily degree-day was calculated by summing 

the hourly average temperature degrees (°C) > Tbase for a day, then dividing by 24. For each site 

and sampling year of the study, the cumulative sum of average daily degree-days (referred to 

hereafter as “cumulative GDD”) was calculated for the period beginning December 1 of the year 

prior to sampling through the date of the last sample collection (variable by site and year).  

Daily total precipitation (mm) was recorded at the H.J. Andrews Primary Meteorological 

Station (PRIMET) site (44.21, -122.26, elevation 430m). The PRIMET site is approximately 29 

x 23 m2, exposed and relatively flat, with conifer forests outside the perimeter. Precipitation was 

measured using a heated tipping bucket gage at a height of 100 cm. All precipitation data were 

evaluated using automated (GCE Data Toolbox Version 3.9.4b - https://gce-

lter.marsci.uga.edu/public/im/tools/data_toolbox.htm) and manual quality control processes, 

which included checks for questionable and missing values (Daly and McKee 2019).  

We estimated the last day of significant snow cover - defined as snow cover > 50% and 

deep enough to bury herbaceous plants - at each plot in each sampling year.  Observations of 

snow cover and depth were made on all site visits. For sites at which snow melt occurred prior to 

the first visit of the year, we used supplemental data from snowstakes located in forest 

understory at comparable elevation and aspect (Levno and Schulze 2017) and on snowfall and 

melt from meteorological stations spanning the elevation gradient (Daly and McKee 2019) to 

infer last day of snow cover. 

Finally, daylength data for each site, based on latitude and day of year, was generated 

using the R geosphere (v. 1.5-10) package (Hijmans 2019). 
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Data and statistical analysis 
Due to variation in the number of days insects were sampled at each site, two insect count 

response variables were used: 1) “abundance per sampling day” is the total number of insects 

collected in a sample divided by the number of sampling days, and 2) “cumulative abundance per 

sampling day” is the cumulative sum of abundance per sampling day, as of the sample collection 

date (both response variables have n = 935; for sample size per site in each sampling year, see 

“Total samples collected” columns in Table 3.2).  

Scatterplots were used to evaluate how both cumulative GDD and cumulative abundance per 

sampling day varied within the spring sampling season among the 16 sites and within sites 

among the five sampling years. Scatterplots were also used to evaluate the relationship between 

abundance per sampling day and the average hourly air temperature and proportion of days with 

measurable precipitation during each sampling period (defined as the date a malaise trap was set 

through the day before the trap was collected). Average hourly air temperature during the 

sampling period was calculated by taking the average of all hourly air temperature measurements 

in the sampling period. Proportion of days with measurable precipitation was calculated by 

summing the number of days in the sampling period with a precipitation measurement > 0.0 mm 

and dividing by the total number of days in the sampling period.  

To evaluate how much the relationship between cumulative abundance per sampling day and 

cumulative GDD differed between the 16 sampling sites in each sampling year, we estimated the 

slope of the regression of cumulative GDD on cumulative abundance per sampling day for each 

site. To perform the analysis, we first separated data by sampling year, and then fit a generalized 

least squares (GLS) model to the data for each sampling year using the R nlme package (Pinheiro 

et al. 2017). The interaction between site (as a categorical variable) and cumulative GDD, 

allowed the slope of cumulative GDD to vary by site. A check of model assumptions showed 

autocorrelation of observations within sites, and non-constant residual variance in each sampling 

year. A Gaussian spatial correlation structure was added to the original models to address 

autocorrelation within sites by day of year, and the assumption of constant residual variance 

among sites was relaxed. A graphical evaluation of semivariograms and residual vs. fitted plots 

showed that model assumptions were now adequately met. We then used the emtrends function 

in the R emmeans package to generate the cumulative GDD slope estimate and confidence 

intervals for each site, and to make pairwise comparisons (Lenth 2019). The p-values of pairwise 
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comparisons include a Tukey method adjustment for comparing the 16 site estimates. Estimates 

and confidence intervals, as well as comparisons, were visually evaluated using scatterplots. 

 

RESULTS 

Thermal variation 
Among sites within a sampling year, there was wide variation in cumulative GDD by day 

of year 90 (beginning of April, “winter GDD”) and by day of year 180 (end of June, “spring 

GDD”) (Figure 3.2, Figure 3.4). In 2011-2013, winter GDD for all sites were typically < 100 

GDD, and in 2011 and 2012, low- and high-elevation sites had similar accumulation. The 

smallest range of winter GDD values among sites was in 2011. Winter GDD in 2010 and 2014 

were greater than average, with some lower-elevation sites accumulating > 100 GDD, and with a 

larger range of values among sites than in other years. Average winter GDD for the sites was 

smallest in 2011 and largest in 2014. During the sampling season, in 2010, 2011, and 2013, and 

beginning in May, (~ day of year 120-150) GDD accumulation rates at sites below 650m 

elevation start to increase more than at higher-elevation sites. In contrast, GDD accumulation 

rates in 2012 and 2014 were more similar among sites through the spring than in 2010, 2011 and 

2013. In all years, spring GDD was generally ordered from warmest to coolest by low to high 

elevation, with some exceptions (Figure 3.4). Site rankings from coolest to warmest were the 

same for both winter and spring GDD in 2011 (the coolest year based on average spring GDD) 

and in 2014 (the warmest year based on average spring GDD). In 2010, average winter GDD was 

the second warmest of all years, but average spring GDD was the second coldest of all years. So, 

winter GDD is not necessarily an indicator of spring GDD.  Within a site, among sampling years, 

the winter GDD values differed by as little as 25 GDD (PC9) to as much as 93 GDD (PC12) 

(median 57 degree-days) (Figure 3.3). Spring GDD values differed by as little as 237 GDD 

(PC9) to as much as 318 GDD (PC5) (median difference 263 GDD).  

Some snow was present at sites < 650m in 2010 and 2012 to approximately day of year 

85 (Figure 3.5), and GDD accumulation rates at sites < 650m in 2010 and 2012 were nearly 

identical to each other (Figure 3.3). At sites between 650m-1100m in elevation, snow presence 

was variable among years, until as late as day of year 146 (PC9) in 2012. PC7 had the most 

variability in snow presence, with no snow detected in some years and presence up to day of year 

105 in 2011. At sites > 1175m, snow presence was relatively consistent inter-annually, with 
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snow present on median to approximately day of year 125. In 2011, snow persisted up to day of 

year 158, and in 2014, only persisted to day of year 94 at one site (PC13).  

 
Insect abundance 

Among sites in each sampling year, cumulative abundance per sampling day by day of 

year was variable (Figure 3.6). Generally, cumulative abundance per sampling day either 

increased steadily across the sampling period (sites PC1, PC2, PC4 and PC14) or increased 

starting around day of year 120, such as at PC7. In 2011, there were anomalously large 

abundance values (relative to other years) at all but lower-elevation sites PC4 and PC5 and 

higher-elevation sites PC17 and PC18. Mid-elevation sites generally had greater cumulative 

abundance per sampling day. There were no clear patterns of cumulative abundance per 

sampling day by slope, aspect, or forest age. Within sites among sampling years, abundance 

accumulation patterns were generally consistent, with the exception of most sites in 2011 (the 

coldest year) and at some sites in 2014 (the warmest year). The difference between the most and 

least cumulative abundance per sampling day on the last day of sampling among years was the 

smallest at PC4 (difference of 6) and the largest at PC9 (difference of 153) (Figure A.12).  

The Scellus was most abundant at sites > 900m in elevation (Figure 3.7). The lowest 

cumulative abundance per sampling day was in 2011 and highest in 2014. The Bolbomyia was 

most abundant at sites > 900m in elevation and of old forest age, with lowest overall cumulative 

abundance per sampling day in 2014 and highest in 2011 (the opposite of the Scellus) (Figure 

3.8). Anaspis cumulative abundance per sampling day was not clearly associated with elevation 

or forest stage. Anaspis had the lowest overall cumulative abundance per sampling day in 2012 

and highest in 2014 (Figure 3.9). Where present, each genera’s cumulative abundance per 

sampling day rate tended to increase markedly around day of year 135, when daylength reaches 

about 14 hours (Figure A.13). Scellus and Bolbomyia abundance appeared to be associated with 

snowmelt at sites with elevation > 965m, as they did not begin to substantially accumulate until 

after snowmelt, which was similar to general insect abundance.  

 
Relationship between sample abundance and air temperature and precipitation during the 
sampling period 
 Temperature and precipitation during the sampling period can impact insect activity, and 

thereby the number of insects collected in a sample, so we examined this relationship. 
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Abundance per sampling day (the total insects collected in a sample divided by the number of 

sampling days) had a positive relationship with the average hourly temperature during the 

sampling period, and a negative relationship with the proportion of days with measurable 

precipitation (Figure 3.10). However, these relationships were not particularly strong at most 

sites. Based on R2 values, there was a stronger relationship at sites > 1100m elevation with 

average hourly temperature and proportion of days with measurable precipitation than at lower 

elevation sites.  

 

Comparison of cumulative abundance per sampling day and cumulative GDD relationships 
There was strong statistical evidence that the estimates of the change in cumulative 

abundance per sampling day for each cumulative GDD (slopes from the regression models) 

varied among sites and that this persisted in all years (2010: F15,153 = 35.0, 2011: F15,140 = 28.5, 

2012: F15,154 = 141.2, 2013: F15,161 = 62.5, 2014: F15,167 = 102.4,  p < .0001 all years, α = 0.05) 

(Figure 3.11). Year 2011 had the largest estimates of change in cumulative abundance per 

sampling day for each cumulative GDD, as well as the largest confidence intervals, for most 

sites. In other years, at sites < 650m elevation (PC1, PC2, PC4, PC5), estimates of the change in 

cumulative abundance per sampling day for each cumulative GDD were fairly similar within 

sites among years, and were generally smaller and less variable than at higher-elevation sites. 

Pairwise comparisons of slope estimates by site showed that the coldest year, 2011, had the 

lowest proportion of sites with statistically significant slope differences (0.23). The largest 

proportion of sites with statistically significant slope differences (0.56) occurred in 2010, a year 

with high winter GDD (cumulative GDD on day of year 90), relatively late snow at all sites, and 

relatively low spring GDD (cumulative GDD on day of year 180).  

 

DISCUSSION 

 We found that GDD accumulation and insect abundance were widely variable at sites 

with differing topography within H.J. Andrews. GDD accumulation was not consistently 

correlated with site-level cumulative abundance per sampling day, perhaps due to the large 

number and diversity of taxa at each site. The presence of many different microclimates across 

the landscape interacting with diverse insect taxa, the composition of which varies by site, may 

make it difficult to predict site-level abundance based on simple temperature metrics.  
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Elevation was more reliably associated with spring GDD (cumulative degree days on day 

of year 90) than winter GDD (cumulative growing degree days on day of year 180) in each year. 

The range of winter and spring GDD within a site among sampling years was also not 

consistently associated with elevation. Topography and other climate factors, such as cold-air 

drainage and pooling, may explain why elevation and thermal accumulation were not reliably 

associated with GDD. For example, site PC5 was consistently warmer than three nearby sites 

(PC1, PC2, PC4) that were between 160-180m lower in elevation (Figure 3.4). These sites are in 

an area where cold-air drainage and pooling can occur in calm and clear conditions during the 

winter. Additionally, PC5 has a south-facing aspect and is the most exposed site, while the 

lower-elevation sites are north-facing and more shaded. Site PC12, located on a ridge, was 

consistently ~50 GDD warmer than site PC11, despite having a similar aspect, a slightly lower 

elevation, and an older forest age. Site PC9, which is shaded and frequently experiences cold-air 

pooling, had a lower median winter GDD than site PC17, which is located on a ridge at an 

elevation 300m higher. However, the median spring GDD at PC9 was higher than at PC17. The 

frequency of persistent cold-air pooling decreases in the spring, so air temperatures, and thus 

thermal accumulation, become more consistently associated with elevation through the season 

(Crimmins and Crimmins 2019).  

 GDD accumulation has been shown to be a consistent predictor of emergence for specific 

insect species, but our results show differential relationships between cumulative GDD and 

cumulative abundance per sampling day among and within sites, indicating it may not be a 

reliable predictor of general flying insect abundance within H.J. Andrews. Some sites had similar 

GDD accumulation but much different cumulative abundance per sampling day. For example, 

winter and spring GDD, as well as GDD accumulation rates, were nearly identical at PC1 and 

PC4 in each year, as was snow persistence. However, abundance patterns were noticeably 

different in every year except 2010 (which had the least variation in abundance among all sites), 

with final cumulative abundance differing by as much as 230 in 2013. Within most sites, the 

cumulative GDD slope estimates were substantially larger in 2011 relative to other sampling 

years, suggesting that other climate variables can strongly influence abundance.  

The differential abundance response to GDD at each site is likely partially explained by 

variance in the response of diverse insect taxa at each site. Each insect species responds in a 

different way to environmental conditions - including thermal accumulation and chilling over the 
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winter and local conditions during the spring - based on their life history and functional 

characteristics. To continue the comparison of PC1 and PC4, approximately 20 more insect 

families were identified at PC1 than PC4 in a 2009 family-level identification by site (Figure 

A.14, Table A.8). It’s possible that the more diverse composition of insect taxa at PC1 is related 

to the increased abundance at that site. Adding to the complexity of understanding insect 

response, in the analysis of the Scellus, Bolbomyia, and Anaspis genera, we saw that insects that 

are more closely related don’t necessarily have the most similar abundance response. Scellus and 

Bolbomyia, both from order Diptera, had less similar site association and abundance 

relationships with GDD accumulation than Scellus did with Anaspis, a member of order 

Coleoptera. However, both Scellus and Bolbomyia tend to accumulate abundance at sites > 965m 

after snowmelt, while Anaspis abundance did not appear to be associated with snowmelt. 

Information on the life history characteristics of these particular genera are sparse, making 

explanations of some of the seemingly contradictory associations difficult. For example, 

McAlpine et al (1981) was one of the few sources with life history information documented for 

the Scellus, and stated the genus is very sensitive to cold temperatures (McAlpine et al. 1981). 

We found that Scellus at H.J. Andrews were associated with cooler mid- and high-elevation sites, 

though their abundance was greater at those sites in warmer years (2013 and 2014), and 

abundance generally increased after snowmelt.   

 We acknowledge that our study has some limitations. Our sampling method did not 

include sites at elevations between 650-900m, which limits our study inference. Some low- and 

high-elevation sites were relatively close in distance compared to intermediate-elevation sites, so 

it’s possible spatial proximity influenced similarities observed among those sites. Road access 

and potential (and actual) trap damage from heavy snowfall, limited early-season sampling at 

some higher elevation sites and resulted in uneven sampling effort in some years.  Due to the 

vast diversity of terrestrial flying insects, a single (and often multiple) trapping method cannot 

capture the full range of taxa at a site. Malaise traps are commonly used in flying insect studies, 

but can be biased towards day-active species. Future studies could include multiple trapping 

methods to potentially capture a broader range of taxa. Finally, due to the extremely labor-

intensive nature of insect processing and identification and budget constraints, there was a 

tradeoff between a long-term study of general abundance with identification of a few common 

taxa, or a short-term study with more granular insect identification. Consequently, information 
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on the broader insect taxa composition by site for the full sampling period was not available, 

which may limit our ability to explain some of the observed abundance patterns, since insect life 

history information can’t be linked to the observed thermal and abundance patterns.  

Even with these limitations, this study provides an important contribution to 

understanding some of the patterns and variability of flying insects in a conifer forest and how 

they might be influenced by air temperature and topography. The importance of multi-year 

sampling was well-demonstrated with our study as well – if our sampling window had not 

included 2011, or only included 2011, our conclusions may have been very different and 

potentially flawed.. With the specter of climate change, there is a need to establish baselines of 

insect abundance and variability for groups that are not traditionally a research focus, especially 

in light of potential impacts on forest food webs, which could have cascading effects on 

ecosystem function and biodiversity. Long-term studies like this can provide key foundational 

knowledge to enable better management and resource allocation, such as partitioning future 

study efforts based on functional groupings or key species in trophic linkages.  
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FIGURES 
 

 
 
Figure 3.1 Relative location of study sites within the H.J. Andrews Experimental Forest. Brown represents lower elevations and blue 
represents higher elevations. 



60 

 

 

 
 
Figure 3.2 Cumulative GDD by day of year from day of year 90 (~April 1) to 180 (~June 30), paneled by sampling year. Curve and site 
label color indicates elevation. Site labels are ordered by largest to smallest cumulative GDD on day of year 180. Low-elevation sites 
accumulate significantly more GDD than high-elevation sites by day of year 180, with differences ranging from 390 GDD in 2011 to 447 
GDD in 2014. Low- and high-elevation site accumulation rankings are mostly consistent in each year, while the ranking at intermediate 
elevation sites vary.  
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Figure 3.3 Cumulative GDD by day of year, paneled by site. Sites are in order of low to high elevation, from left to right in each row (PC1 
is the lowest elevation, PC18 is the highest elevation). Curve and site label color indicates sampling year. Site labels are in order of the 
largest to smallest spring GDD (cumulative GDD on day of year 180). Within sites, the range of accumulation in winter GDD (cumulative 
GDD as of day of year 90) varied by 25-93 GDD, and for winter GDD, varied by 237-318 GDD.  



62 

 

 

A) 

        
B) 

    
 
Figure 3.4 Plots show the relationship between: A) winter GDD (cumulative GDD by day of year 90) and elevation (m) and B) spring 
GDD (cumulative GDD by day of year 180) and elevation (m). Points are colored by aspect (º). Black line is the loess smoothing curve and 
gray shaded area is the confidence interval. The relationship of elevation with winter GDD was more variable than with spring GDD. Some 
lower-elevation sites had lower median winter GDD than higher-elevation sites, likely due to topography (such as aspect) and other factors, 
including cold-air drainage and pooling. 
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Figure 3.5 Plots shows the last day of year with > 50% snow cover, which we use as an indicator 
of snow persistence, for each site and sampling year. Day of year 0 indicates that no snow was 
detected in the sampling year. Sites are ordered from left to right from lowest to highest 
elevation. Snow persistence was relatively consistent inter-annually at sites > 1100m in 
elevation, with early snowmelt in 2013 and 2014. Snow persisted at sites < 650m in 2010 and 
2012. At sites between 650m-1100m in elevation, persistence was variable inter-annually. PC7 
had the most inter-annual variability in snow cover/persistence.  
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Figure 3.6 Plot shows cumulative abundance per sampling day by day of year, paneled by site and year, with points colored by year. 
Dotted line indicates the last day of > 50% snow cover at the closest reference site (Table A.8). Sites are listed left to right in order of 
low to high elevation. Note that y-axis range is different for each year, but the scale sizing is the same. Cumulative abundance per 
sampling day did not exceed 600 in any year except for 2011.  
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Figure 3.7 Plot shows Scellus cumulative abundance per sampling day by day of year, paneled by site and year. Dotted line indicates 
the last day of > 50% snow cover at the closest reference site (Table A.8). Sites are listed left to right in order of low to high elevation. 
Note that y-axis range is different for each year, but the scale sizing is the same.   
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Figure 3.8 Plot shows Bolbomyia cumulative abundance per sampling day by day of year, paneled by site and year. Dotted line 
indicates the last day of > 50% snow cover at the closest reference site (Table A.8). Sites are listed left to right in order of low to high 
elevation. Note that y-axis range is different for each year, but the scale sizing is the same.   
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Figure 3.9 Plot shows Anaspis cumulative abundance per sampling day by day of year, paneled by site and year. Dotted line indicates 
the last day of > 50% snow cover at the closest reference site (Table A.8). Sites are listed left to right in order of low to high elevation. 
Note that y-axis range is different for each year, but the scale sizing is the same.   
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Figure 3.10 Abundance per sampling day by: A) average daily temperature (°C) during the 
sampling period, and (B) proportion of days with measurable precipitation during the sampling 
period. Abundance per sampling day had a positive relationship with average hourly temperature 
and a negative relationship with proportion of days with measureable precipitation (note that 
temperature values were taken at each site, but precipitation measured at a single climate 
station). Black line is loess smoothing curve and gray shaded area is confidence interval. Two 
extreme data points from PC9 in 2011 were removed to improve visualization: 1) abundance 
581, average hourly temperature 9.48°C, proportion of days with measurable precipitation .43; 2) 
abundance 522, average hourly temperature 12.16, proportion of days with measurable 
precipitation 0.00. 
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Figure 3.11 Estimates and confidence intervals of the change in cumulative abundance per 
sampling day per cumulative GDD for each site and sampling year, colored by year. Sites are 
ordered left to right from low to high elevation. Year 2011 had the largest estimate and 
confidence interval for most sites. In other years, estimates at sites < 650m elevation were fairly 
similar within sites among years. Estimates and confidence intervals were larger and more 
variable at sites > 650m elevation, particularly sites PC7 and PC9. 
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TABLES 
 
Table 3.1 Characteristics of the selected study sites, which vary in elevation (460m to 1300m), 
slope (10.8% to 79.2%), aspect (30° to 347°), and forest age. 
 

Site ID Latitude Longitude Elevation (m) 
Forest 

Age 
Slope 
(%) Aspect (º) 

PC1 44.21 -122.26 460 Young 51.35 30 
PC2 44.21 -122.25 488 Old 49.58 347 
PC4 44.22 -122.26 481 Young 79.22 153 
PC5 44.22 -122.26 644 Young 64.74 174 
PC7 44.22 -122.20 903 Old 28.19 311 
PC8 44.24 -122.19 647 Old 36.16 213 
PC9 44.23 -122.12 979 Old 54.41 250 
PC10 44.24 -122.14 994 Old 19.35 237 
PC11 44.25 -122.15 1116 Young 45.39 147 
PC12 44.25 -122.16 1082 Old 35.45 169 
PC13 44.25 -122.14 1178 Old 16.8 226 
PC14 44.26 -122.16 965 Old 20.41 267 
PC15 44.27 -122.17 971 Old 10.8 228 
PC16 44.27 -122.18 1030 Young 27.5 153 
PC17 44.27 -122.14 1301 Old 43.3 308 
PC18 44.27 -122.14 1339 Young 30.1 275 
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Table 3.2 Total number of samples and total number of days that traps were set by site for each 
sampling year. The number of samples and the duration of sampling periods varied due to road 
access and technician availability. 
 

Site ID Total samples collected Total sampling days 

  2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 

PC1 14 13 13 13 13 97 93 90 94 89 

PC2 14 13 13 13 13 97 93 90 88 89 

PC4 14 13 13 12 13 97 94 90 80 90 

PC5 14 13 13 12 13 98 94 90 80 90 

PC7 11 11 11 12 13 93 76 74 81 90 

PC8 14 13 13 12 13 98 92 89 81 90 

PC9 10 10 10 12 12 68 70 69 83 85 

PC10 11 10 11 12 12 92 70 76 83 85 

PC11 11 10 11 12 11 92 69 76 84 86 

PC12 11 10 11 12 12 92 70 76 83 84 

PC13 11 10 11 12 12 92 70 76 84 86 

PC14 10 9 12 12 13 68 64 83 83 89 

PC15 10 9 12 12 13 68 64 83 82 89 

PC16 10 9 12 12 12 68 64 83 82 89 

PC17 10 9 10 12 12 70 62 68 84 83 

PC18 10 10 10 11 12 68 69 68 77 83 
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CHAPTER 4: GENERAL CONCLUSION 
 

My research results demonstrate some of the benefits of using long-term data for 

ecological research. In the second chapter, using air temperature measurements gathered over the 

course of years (rather than weeks or months) allowed us to better understand the range of 

variability in measurement differences between instruments, as well as to estimate these 

differences and their relationship with key drivers in a broad range of environmental conditions. 

In the third chapter, we saw the value of collecting insect count data over multiple years, as 

patterns were strikingly different in one year than the other four years in comparison. Also, 

patterns of abundance were not all consistent within a site over time.  

Long-term ecological research data can provide insights to complex ecological 

phenomena, but it can also introduce complications in data analysis. Maintaining perfectly 

consistent study methods over several years, especially in field studies, may not be possible or 

desirable. Advanced statistical methods have developed over time that can address these 

challenges, but researchers must first recognize the potential issues in their data. Historical 

climate data is widely available to download online, but researchers cannot assume the methods 

used to collect this data have been continuous. As discussed in Chapter 2, it is not uncommon for 

instruments used in climate data collection to be frequently upgraded. However, measurement 

differences between these instruments can be substantial, and some metrics are particularly 

sensitive to differences. As discussed in Chapter 3, the insect sampling effort at each site varied 

due to technician availability and site access, so it was necessary to transform count data in order 

to make valid abundance comparisons between sites. Without correcting for these types of 

differences in methods before analysis, researchers are at risk of producing flawed estimates and 

conclusions about trends.  

The results from the analysis in Chapter 2 will be used to supplement H.J. Andrews air 

temperature metadata, and to educate researchers about best practices when using air temperature 

time series data collected at H.J. Andrews and similar meteorological stations. The results from 

the analysis in Chapter 3 will provide a foundation for understanding broader insect population 

and community dynamics at H.J. Andrews, which will be synthesized with the results from 

similar vegetation and bird phenology studies that were conducted there during the same time 

period.   



73 

 

 

BIBLIOGRAPHY 
 
Arck, M. and Scherer, D. 2001. A physically based method for correcting temperature data 

measured by naturally ventilated sensors over snow. Journal of Glaciology 47(159):665-
670. 

Ashcroft, M.B. 2018. Which is more biased: Standardized weather stations or microclimatic 
sensors? Ecology and Evolution 8(11):5231-5232. 

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., 
Butterfield, J., Buse, A., Coulson, J.C. and Farrar, J. 2002. Herbivory in global climate 
change research: direct effects of rising temperature on insect herbivores. Global Change 
Biology 8(1):1-16. 

Buckley, L.B., Tewksbury, J.J. and Deutsch, C.A. 2013. Can terrestrial ectotherms escape the 
heat of climate change by moving? Proceedings of the Royal Society B: Biological 
Sciences 280(1765):20131149. 

Cardoso, P., Branco, V.V., Chichorro, F., Fukushima, C.S. and Macías-Hernández, N. 2019. Can 
we really predict a catastrophic worldwide decline of entomofauna and its drivers? 
Global Ecology and Conservation 20:e00621. 

Cardoso, P., Erwin, T.L., Borges, P.A.V. and New, T.R. 2011. The seven impediments in 
invertebrate conservation and how to overcome them. Biological Conservation 
144(11):2647-2655. 

Chen, J., Franklin, J.F. and Spies, T.A. 1993. Contrasting microclimates among clearcut, edge, 
and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology 63(3-
4):219-237. 

Chen, J., Saunders, S.C., Crow, T.R., Naiman, R.J., Brosofske, K.D., Mroz, G.D., Brookshire, 
B.L. and Franklin, J.F. 1999. Microclimate in forest ecosystem and landscape ecology: 
variations in local climate can be used to monitor and compare the effects of different 
management regimes. Bioscience 49(4):288-297. 

Crimmins, M.A. and Crimmins, T.M. 2019. Does an Early Spring Indicate an Early Summer? 
Relationships Between Intraseasonal Growing Degree Day Thresholds. Journal of 
Geophysical Research: Biogeosciences 124(8):2628-2641. 

Daly, C. 2006. Guidelines for assessing the suitability of spatial climate data sets. International 
Journal of Climatology: A Journal of the Royal Meteorological Society 26(6):707-721. 

Daly, C., Conklin, D.R. and Unsworth, M.H. 2010. Local atmospheric decoupling in complex 
topography alters climate change impacts. International Journal of Climatology 
30(12):1857-1864. 

Daly, C. and McKee, W.A. 2019. Meteorological data from benchmark stations at the Andrews 
Experimental Forest, 1957 to present (MS00103). Forest Science Data Bank. 
https://doi.org/10.6073/pasta/c96875918bb9c86d330a457bf4295cd9 

De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellend, M., 
Bernhardt-Römermann, M., Brown, C.D., Brunet, J. and Cornelis, J. 2013. Microclimate 
moderates plant responses to macroclimate warming. Proceedings of the National 
Academy of Sciences 110(46):18561-18565. 

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. and 
Martin, P.R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. 
Proceedings of the National Academy of Sciences 105(18):6668-6672. 

https://doi.org/10.6073/pasta/c96875918bb9c86d330a457bf4295cd9


74 

 

 

Dobrowski, S.Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. 
Global Change Biology 17(2):1022-1035. 

Fisher, M. 2019. The small, the hidden, the less-loved: conserving other species. Oryx 
53(2):199-200. 

Forrest, J.R.K. 2016. Complex responses of insect phenology to climate change. Current Opinion 
in Insect Science 17(Supplement C):49-54. 

Frey, S.J.K., Hadley, A.S., Johnson, S.L., Schulze, M., Jones, J.A. and Betts, M.G. 2016. Spatial 
models reveal the microclimatic buffering capacity of old-growth forests. Science 
advances 2(4). 

Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. and Holt, R.D. 2010. A framework 
for community interactions under climate change. Trends in Ecology & Evolution 
25(6):325-331. 

Gwinner, E. 1990. Circannual rhythms in bird migration: control of temporal patterns and 
interactions with photoperiod. In Bird migration. pp. 257-268, Springer. 

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., 
Müller, A., Sumser, H. and Hörren, T. 2017. More than 75 percent decline over 27 years 
in total flying insect biomass in protected areas. Plos One 12(10):e0185809. 

Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller, A.L., 
Duke, C.S. and Porter, J.H. 2013. Big data and the future of ecology. Frontiers in 
Ecology and the Environment 11(3):156-162. 

Harrell, F.E. 2018. rms: Regression Modeling Strategies. 5.1-2.  
Harrell, F.E., Lee, K.L. and Mark, D.B. 1996. Multivariable prognostic models: issues in 

developing models, evaluating assumptions and adequacy, and measuring and reducing 
errors. Statistics in medicine 15(4):361-387. 

Harrell, J.F.E., Bickel, P., Diggle, P., Fienberg, S.E., Gather, U., Olkin, I. and Zeger, S. 2015. 
Regression Modeling Strategies: With Applications to Linear Models, Logistic and 
Ordinal Regression, and Survival Analysis, Cham: Springer International Publishing, 
Cham. 

Hijmans, R.J. 2019. geosphere: Spherical Trigonometry. 1.5-10. https://CRAN.R-
project.org/package=geosphere 

Hlavac, M. 2018. stargazer: Well-Formatted Regression and Summary Statistics Tables. 5.2.2. 
https://CRAN.R-project.org/package=stargazer  

Hodgson, J.A., Thomas, C.D., Oliver, T.H., Anderson, B.J., Brereton, T.M. and Crone, E.E. 
2011. Predicting insect phenology across space and time. Global Change Biology 
17(3):1289-1300. 

Hodkinson, I.D. 2005. Terrestrial insects along elevation gradients: species and community 
responses to altitude. Biological Reviews 80(3):489-513. 

Holden, Z.A., Klene, A.E., F. Keefe, R. and G. Moisen, G. 2013. Design and evaluation of an 
inexpensive radiation shield for monitoring surface air temperatures. Agricultural and 
Forest Meteorology 180:281-286. 

Hubbard, K., Lin, X. and Walter-Shea, E. 2001. The effectiveness of the ASOS, MMTS, Gill, 
and CRS air temperature radiation shields. Journal of Atmospheric and Oceanic 
Technology 18(6):851-864. 

Hubbard, K.G., Lin, X., Baker, C.B. and Sun, B. 2004. Air temperature comparison between the 
MMTS and the USCRN temperature systems. Journal of Atmospheric and Oceanic 
Technology 21(10):1590-1597. 

https://cran.r-project.org/package=geosphere
https://cran.r-project.org/package=geosphere
https://cran.r-project.org/package=stargazer


75 

 

 

Hubbart, J., Link, T., Campbell, C. and Cobos, D. 2005. Evaluation of a low-cost temperature 
measurement system for environmental applications. Hydrological Processes 19(7):1517-
1523. 

Huwald, H., Higgins, C.W., Boldi, M.-O., Bou-Zeid, E., Lehning, M. and Parlange, M.B. 2009. 
Albedo effect on radiative errors in air temperature measurements. Water Resources 
Research 45(8):1-13. 

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., 
Petropoulos, F., Razbash, S., Wang, E. and Yasmeen, F. 2018. forecast: Forecasting 
functions for time series and linear models. 8.4. http://pkg.robjhyndman.com/forecast 

IPPC, I.P.P.C. 2019. Asian longhorned beetle invasive insect model of OSU IPPC model 
analysis Accessed on December 10, 2019. uspest.org 

Jarvis, B. 2018. The Insect Apocalypse Is Here: What does it mean for the rest of life on Earth? 
The New York Times. Accessed on 12/17/2019. 
https://www.nytimes.com/2018/11/27/magazine/insect-apocalypse.html 

Johnson, S. and Frey, S.J.K. 2009. Air temperature at core phenology sites and additional bird 
monitoring sites in the Andrews Experimental Forest, 2009-Present. Forest Science Data 
Bank, Corvallis, Oregon. Retrieved from: 
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=MS045 
doi:http://dx.doi.org/10.6073/pasta/f64dc0ba1f0e2015a6b4da92939efe37 

Johnson, S. and Li, J. 2016. Aquatic and terrestrial insect activity phenology with trap collections 
at the Andrews Experimental Forest, 2009-2014. Forest Science Data Bank, Corvallis, 
OR. Retrieved from: 
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=SA025 doi: 
http://dx.doi.org/10.6073/pasta/89707e1fc94c1d4fa96f48fc5f273c59 

Kearney, M., Shine, R. and Porter, W.P. 2009. The potential for behavioral thermoregulation to 
buffer “cold-blooded” animals against climate warming. Proceedings of the National 
Academy of Sciences 106(10):3835-3840. 

Kingsolver, J.G., Arthur Woods, H., Buckley, L.B., Potter, K.A., MacLean, H.J. and Higgins, 
J.K. 2011. Complex life cycles and the responses of insects to climate change. Integrative 
and Comparative Biology 51(5):719-732. 

Lenth, R. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package. 
1.4.2. https://CRAN.R-project.org/package=emmeans 

Levno, A. and Schulze, M. 2017. Snow depth and snow water equivalent measurements along a 
road course and historic snow course in the Andrews Experimental Forest, 1978 to 
present. Forest Science Data Bank, Corvallis, Oregon. Retrieved from: 
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=MS045 
doi:http://dx.doi.org/10.6073/pasta/ff5465b74f592e3114138a79d5cfe290 

Lin, X., Hubbard, K., Walter-Shea, E., Brandle, J. and Meyer, G. 2001a. Some perspectives on 
recent in situ air temperature observations: Modeling the microclimate inside the 
radiation shields. Journal of Atmospheric and Oceanic Technology 18(9):1470-1484. 

Lin, X., Hubbard, K.G. and Meyer, G.E. 2001b. Airflow characteristics of commonly used 
temperature radiation shields. Journal of Atmospheric and Oceanic Technology 
18(3):329-339. 

Lin, X., Hubbard, K.G. and Walter-Shea, E.A. 2001c. Radiation loading model for evaluating air 
temperature errors with a non-aspirated radiation shield. Transactions of the ASAE 
44(5):1299-1306. 

http://pkg.robjhyndman.com/forecast
https://www.nytimes.com/2018/11/27/magazine/insect-apocalypse.html
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=MS045
http://dx.doi.org/10.6073/pasta/f64dc0ba1f0e2015a6b4da92939efe37
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=SA025
http://dx.doi.org/10.6073/pasta/89707e1fc94c1d4fa96f48fc5f273c59
https://cran.r-project.org/package=emmeans
http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=MS045
http://dx.doi.org/10.6073/pasta/ff5465b74f592e3114138a79d5cfe290


76 

 

 

Lister, B.C. and Garcia, A. 2018. Climate-driven declines in arthropod abundance restructure a 
rainforest food web. Proceedings of the National Academy of Sciences 115(44):E10397-
E10406. 

Lundquist, J.D. and Huggett, B. 2008. Evergreen trees as inexpensive radiation shields for 
temperature sensors. Water Resources Research 44:5. 

Maclean, I., Hopkins, J.J., Bennie, J., Lawson, C.R. and Wilson, R.J. 2015. Microclimates buffer 
the responses of plant communities to climate change. Global Ecology and Biogeography 
24(11):1340-1350. 

Masson-Delmotte, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., Pirani, A., 
Moufouma-Okia, W., Péan, C. and Pidcock, R. 2018. IPCC, 2018: Summary for 
Policymakers. Global Warming of 1.5°C. An IPCC Special Report on the impacts of 
global warming of 1.5°C above pre-industrial levels and related global greenhouse gas 
emission pathways, in the context of strengthening the global response to the threat of 
climate change, sustainable development, and efforts to eradicate poverty 1. 

Mauder, M., Desjardins, R.L., Gao, Z. and van Haarlem, R. 2008. Errors of Naturally Ventilated 
Air Temperature Measurements in a Spatial Observation Network. Journal of 
Atmospheric and Oceanic Technology 25(11):2145-2151. 

McAlpine, J., Peterson, B., Shewell, G., Teskey, H., Vockeroth, J. and Wood, D. 1981. Manual 
of Nearctic Diptera, Volume 1, Research Branch Agriculture Canada. 

Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., 
Braslavska, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., 
Defila, C., Donnelly, A., Filella, Y., Jatcza, K., Mage, F., Mestre, A., Nordli, O., 
Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, 
A.J.H., Wielgolaski, F.E., Zach, S. and Zust, A. 2006. European phenological response to 
climate change matches the warming pattern. Global Change Biology 12(10):1969-1976. 

Michener, W.K. 2015. Ecological data sharing. Ecological Informatics 29:33-44. 
Milewska, E.J. and Vincent, L.A. 2016. Preserving continuity of long-term daily maximum and 

minimum temperature observations with automation of reference climate stations using 
overlapping data and meteorological conditions. Atmosphere-Ocean 54(1):32-47. 

Nakamura, R. and Mahrt, L. 2005. Air temperature measurement errors in naturally ventilated 
radiation shields. Journal of Atmospheric and Oceanic Technology 22(7):1046-1058. 

NOAA. 2018. Solar Calculation Details. Accessed on 6/12/2018. 
https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html 

Noriega, J.A., Hortal, J., Azcárate, F.M., Berg, M.P., Bonada, N., Briones, M.J.I., Del Toro, I., 
Goulson, D., Ibanez, S., Landis, D.A., Moretti, M., Potts, S.G., Slade, E.M., Stout, J.C., 
Ulyshen, M.D., Wackers, F.L., Woodcock, B.A. and Santos, A.M.C. 2018. Research 
trends in ecosystem services provided by insects. Basic and Applied Ecology 26:8-23. 

Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, N., 
Shcherbakov, A., Meyke, E. and Delgado, M.D.M. 2013. Community-level phenological 
response to climate change. Proceedings of the National Academy of Sciences of the 
United States of America 110(33):13434. 

Oyler, J.W., Dobrowski, S.Z., Ballantyne, A.P., Klene, A.E. and Running, S.W. 2015. Artificial 
amplification of warming trends across the mountains of the western United States. 
Geophysical Research Letters 42(1):153-161. 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual 
Review of Ecology, Evolution, and Systematics 37:637-669. 

https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html


77 

 

 

Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts 
across natural systems. Nature 421:37. 

Peterson, T.C., Easterling, D.R., Karl, T.R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., 
Auer, I., Boehm, R. and Gullett, D. 1998. Homogeneity adjustments of in situ 
atmospheric climate data: a review. International Journal of Climatology 18(13):1493-
1517. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S. and Van Willigen, B. 2017. 
Package ‘nlme’. 3.1-141.  

Potter, K.A., Arthur Woods, H. and Pincebourde, S. 2013. Microclimatic challenges in global 
change biology. Global Change Biology 19(10):2932-2939. 

Pureswaran, D.S., Roques, A. and Battisti, A. 2018. Forest Insects and Climate Change. Current 
Forestry Reports. 

Quayle, R.G., Easterling, D., Karl, T. and Hughes, P. 1991. Effects of recent thermometer 
changes in the cooperative station network. Bulletin Of The American Meteorological 
Society 72(11):1718-1723. 

R Core Team. 2016. R: A language and environment for statistical computing. 3.4.3. R 
Foundation for Statistical Computing. https://www.R-project.org/ 

Richardson, S.J., Brock, F.V., Semmer, S.R. and Jirak, C. 1999. Minimizing errors associated 
with multiplate radiation shields. Journal of Atmospheric and Oceanic Technology 
16(11):1862-1872. 

Rundel, P.W., Graham, E.A., Allen, M.F., Fisher, J.C. and Harmon, T.C. 2009. Environmental 
sensor networks in ecological research. New Phytologist 182(3):589-607. 

Sánchez-Bayo, F. and Wyckhuys, K.A. 2019. Worldwide decline of the entomofauna: A review 
of its drivers. Biological Conservation 232:8-27. 

Saunders, D.S. 2002. Insect clocks, Elsevier. 
Saunders, M.E., Janes, J.K. and O’Hanlon, J.C. 2019. Moving On from the Insect Apocalypse 

Narrative: Engaging with Evidence-Based Insect Conservation. Bioscience. 
Sefick, S.J. 2016. Stream Metabolism: A package for calculating single station metabolism from 

diurnal oxygen curves. 1.1.2.  
Smith, J.W. 2002, Mapping the thermal climate of the H.J. Andrews Experimental Forest, 

Oregon. Retrieved from https://andrewsforest.oregonstate.edu/publications/3117 
Snyder, R.L., Spano, D., Cesaraccio, C. and Duce, P. 1999. Determining degree-day thresholds 

from field observations. International Journal of Biometeorology 42(4):177-182. 
Stålhandske, S., Lehmann, P., Pruisscher, P. and Leimar, O. 2015. Effect of winter cold duration 

on spring phenology of the orange tip butterfly, Anthocharis cardamines. Ecology and 
Evolution 5(23):5509-5520. 

Storlie, C., Merino-Viteri, A., Phillips, B., VanDerWal, J., Welbergen, J. and Williams, S. 2014. 
Stepping inside the niche: microclimate data are critical for accurate assessment of 
species' vulnerability to climate change. Biology letters 10(9):20140576. 

Terando, A.J., Youngsteadt, E., Meineke, E.K. and Prado, S.G. 2017. Ad hoc instrumentation 
methods in ecological studies produce highly biased temperature measurements. Ecology 
and Evolution 7(23):9890-9904. 

Thackeray, S.J., Henrys, P.A., Hemming, D., Bell, J.R., Botham, M.S., Burthe, S., Helaouet, P., 
Johns, D.G., Jones, I.D., Leech, D.I., Mackay, E.B., Massimino, D., Atkinson, S., Bacon, 
P.J., Brereton, T.M., Carvalho, L., Clutton-Brock, T.H., Duck, C., Edwards, M., Elliott, 
J.M., Hall, S.J.G., Harrington, R., Pearce-Higgins, J.W., Hoye, T.T., Kruuk, L.E.B., 

https://www.r-project.org/
https://andrewsforest.oregonstate.edu/publications/3117


78 

 

 

Pemberton, J.M., Sparks, T.H., Thompson, P.M., White, I., Winfield, I.J. and Wanless, S. 
2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 
535(7611):241. 

Thackeray, S.J., Sparks, T.H., Frederiksen, M., Burthe, S., Bacon, P.J., Bell, J.R., Botham, M.S., 
Brereton, T.M., Bright, P.W., Carvalho, L., Clutton‐Brock, T., Dawson, A., Edwards, M., 
Elliott, J.M., Harrington, R., Johns, D., Jones, I.D., Jones, J.T., Leech, D.I., Roy, D.B., 
Scott, W.A., Smith, M., Smithers, R.J., Winfield, I.J. and Wanless, S. 2010. Trophic level 
asynchrony in rates of phenological change for marine, freshwater and terrestrial 
environments. Global Change Biology 16(12):3304-3313. 

Thomas, C. and Smoot, A. 2013. An Effective, Economic, Aspirated Radiation Shield for Air 
Temperature Observations and Its Spatial Gradients. Journal of Atmospheric and Oceanic 
Technology 30(3):526-537. 

Thorne, P.W., Menne, M.J., Williams, C.N., Rennie, J.J., Lawrimore, J.H., Vose, R.S., Peterson, 
T.C., Durre, I., Davy, R., Esau, I., Klein-Tank, A.M.G. and Merlone, A. 2016. 
Reassessing changes in diurnal temperature range: A new data set and characterization of 
data biases. Journal of Geophysical Research: Atmospheres 121(10):5115-5137. 

Thorne, P.W., Parker, D.E., Christy, J.R. and Mears, C.A. 2005. Uncertainties in Climate Trends: 
Lessons from Upper-Air Temperature Records. Bulletin Of The American 
Meteorological Society 86(10):1437-1442. 

Titley, M.A., Snaddon, J.L. and Turner, E.C. 2017. Scientific research on animal biodiversity is 
systematically biased towards vertebrates and temperate regions. Plos One 
12(12):e0189577. 

Trewin, B. 2010. Exposure, instrumentation, and observing practice effects on land temperature 
measurements. Wiley Interdisciplinary Reviews: Climate Change 1(4):490-506. 

Visser, M.E. and Both, C. 2005. Shifts in phenology due to global climate change: the need for a 
yardstick. Proceedings of the Royal Society B: Biological Sciences 272(1581):2561. 

Wang, K. 2014. Sampling biases in datasets of historical mean air temperature over land. 
Scientific Reports 4:4637-4637. 

Ward, S.E., Schulze, M. and Roy, B. 2018. A long-term perspective on microclimate and spring 
plant phenology in the Western Cascades. Ecosphere 9(10):e02451. 

Weiss, A. and Hays, C.J. 2005. Calculating daily mean air temperatures by different methods: 
implications from a non-linear algorithm. Agricultural and Forest Meteorology 
128(1):57-65. 

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. 3.0.0.9. Springer-Verlag. 
https://www.R-project.org/ 

Wickham, H. 2017. tidyverse: Easily Install and Load the 'Tidyverse'. 1.2.1. https://CRAN.R-
project.org/package=tidyverse 

Wolda, H. 1988. Insect Seasonality: Why? Annual Review of Ecology and Systematics 19(1):1-
18. 

Woods, H.A., Dillon, M.E. and Pincebourde, S. 2015. The roles of microclimatic diversity and of 
behavior in mediating the responses of ectotherms to climate change. Journal of Thermal 
Biology 54:86-97. 

Yamamoto, K., Togami, T., Yamaguchi, N. and Ninomiya, S. 2017. Machine Learning-Based 
Calibration of Low-Cost Air Temperature Sensors Using Environmental Data. Sensors 
17(6):1290. 

https://www.r-project.org/
https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse


79 

 

 

Zalom, F.G. and Goodell, P.B. 1983. Degree days: the calculation and use of heat units in pest 
management, University of California, Division of Agriculture and Natural Resources. 

 
 
Insect identification 
 
Arnett, R.H. 2000. American Insects: A Handbook of the Insects of America North of 

Mexico (2nd Edition). CRC Press. Boca Raton, Florida. 1003 pp.  
 
Arnett, R.H., and M.C. Thomas 2001. American Beetles, Vol. 1. CRC Press. Boca 

Raton, Florida. 443 pp.  
 
Arnett, R.H., M.C. Thomas, P.E. Skelley, and J.H. Frank. 2002. American Beetles, Vol. 

2. CRC Press. Boca Raton, Florida. 861 pp.  
 
Covell, C.V. 1984. A Field Guide to the Moths. Houghton Mifflin. Boston, 

Massachusetts. 496 pp.  
 
McAlpine, J.F., B.V. Peterson, G.E. Shewell, H.J. Teskey, J.R. Vockeroth, and D.M. 

Wood. 1981. Manual of Nearctic Diptera, Vol. 1-2. Ottawa, Ontario: 
Biosystematics Research Institute.  
 

Merritt, R.W., K.W. Cummins, and M.B. Berg. 2008. An Introduction to the Aquatic 
Insects of North America (4th Edition). Kendall/Hunt Publishing Company, Dubuque, 
Iowa. 862 pp.  
 

Triplehorn, C.A., and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the 
Study of Insects (7th Edition). Thomson Brooks/Cole. Belmont, California. 864 
pp.  

 

  



80 

 

 

 

 

 

 

 

 

 

APPENDICES  



81 

 

 

APPENDICES OF FIGURES 
 

 

 

Figure A.1 Autocorrelation function (ACF) plots of the time series of wind-ventilated 
instrument ΔTs. ΔTs are highly correlated over time.  
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Figure A.2 Time series plots of the 15-minute average temperature recorded by each instrument 
between July 2010 and July 2016. Colors denote seasons: spring – purple, summer – blue, fall – 
green, winter - yellow. 



83 

 

 

 
Figure A.3 Ridgeline plots show the distribution of 15-minute average observations between 
July 2010 and July 2016 for daytime incoming solar radiation and albedo, and day & night wind 
speeds by season. Colors denote quartiles: first – purple, second – blue, third – green, fourth - 
yellow. 
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Figure A.4 Density plot of ΔTs for all 15-minute average observations. The ΔTs are calculated 
as the wind-ventilated instrument temperature measurement minus the fan-aspirated instrument 
temperature measurement. Vertical dashed line indicates ΔT = 0. The ΔTs outside the shaded 
region are considered substantial. 
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Figure A.5 Density plot of differences in the nighttime 15-minute average observations. The 
ΔTs are calculated as the wind-ventilated instrument temperature measurement minus the fan-
aspirated instrument temperature measurement. Vertical dashed line indicates ΔT = 0. The ΔTs 
outside the shaded region are considered substantial. 
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Figure A.6 Density plot of differences in the daily minimum observations. The ΔTs are 
calculated as the wind-ventilated instrument temperature measurement minus the fan-aspirated 
instrument temperature measurement. Vertical dashed line indicates ΔT = 0. The ΔTs outside the 
shaded region are considered substantial. 
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Figure A.7 Density plot of differences in the monthly mean daily minimum observations. The 
ΔTs are calculated as the wind-ventilated instrument temperature measurement minus the fan-
aspirated instrument temperature measurement. Vertical dashed line indicates ΔT = 0. The ΔTs 
outside the shaded region are considered substantial. 
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A)                                                                                    B) 

      
C) 

 
 

Figure A.8 Conditioning plots for each instrument showing daytime 15-minute average 
observation differences (°C) against: 1) incoming solar radiation (W/m2) conditioned on intervals 
of wind speed (m/s), B) albedo (W/m2) conditioned on intervals of wind speed (m/s); and C) 
albedo conditioned on intervals of incoming solar radiation (W/m2). Differences outside the 
shaded region are considered substantial (|ΔT| > 0.4°C).The yellow line is the loess smoothing 
curve. Plots show potential interactions between explanatory variables and a non-linear response.   



89 

 

 

 Simple model Complex model 
 
A) 
 

  
B) 

  
C) 

  
 
Figure A.9 Plots show the simple and complex model residuals (observed – predicted) against: 
A) incoming solar radiation (W/m2), B) albedo (W/m2), and C) wind speed (m/s) (unbinned 
daytime 15-minute average observations). Dark dashed line indicates when residual = 0.  
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A) Simple model Complex model 
 
CRS 
 

  

Gill 

HJA 

 
Figure A.10 (Cont’d on next 2 pages) For each plot, the upper panel shows the ranges of an 
explanatory variable for the subsample of data in the box below it. Plots show the simple and 
complex model residuals (observed – predicted) against: A) incoming solar radiation (W/m2), 
conditioned on intervals of wind speed (m/s), B) albedo (W/m2), conditioned on intervals of 
wind speed (m/s); and C) albedo (W/m2) conditioned on intervals of incoming solar radiation 
(W/m2) (unbinned daytime 15-minute average observations). Dark dashed line indicates when 
residual = 0. Note that y-axis scales are different for each wind-ventilated instrument.  
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B) Simple model Complex model 
 
CRS 
 

  

Gill 

HJA 

 
Figure A.10 (Cont’d on next page) For each plot, the upper panel shows the ranges of an 
explanatory variable for the subsample of data in the box below it. Plots show the simple and 
complex model residuals (observed – predicted) against: A) incoming solar radiation (W/m2), 
conditioned on intervals of wind speed (m/s), B) albedo (W/m2), conditioned on intervals of 
wind speed (m/s); and C) albedo (W/m2) conditioned on intervals of incoming solar radiation 
(W/m2) (unbinned daytime 15-minute average observations). Dark dashed line indicates when 
residual = 0. Note that y-axis scales are different for each wind-ventilated instrument.  
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C) Simple model Complex model 
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Gill 
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Figure A.10 For each plot, the upper panel shows the ranges of an explanatory variable for the 
subsample of data in the box below it. Plots show the simple and complex model residuals 
(observed – predicted) against: A) incoming solar radiation (W/m2), conditioned on intervals of 
wind speed (m/s), B) albedo (W/m2), conditioned on intervals of wind speed (m/s); and C) 
albedo (W/m2) conditioned on intervals of incoming solar radiation (W/m2) (unbinned daytime 
15-minute average observations). Dark dashed line indicates when residual = 0. Note that y-axis 
scales are different for each wind-ventilated instrument.  
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Figure A.11 Plots show ΔT against albedo (W/m2) by season for each wind-ventilated 
instrument. While albedo is higher on average in the summer and fall, occurrences of high 
albedo in the spring and winter, likely due to snow cover, are associated with particularly large 
differences in each wind-ventilated instrument. Dark dashed line indicates when ΔT = 0. Areas 
outside of shaded gray region are considered substantial. 
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Figure A.12 Plot shows cumulative abundance per sampling day on the last day of sampling by site and year. Color indicates 
sampling year. Line is loess smoothing curve and gray shaded area is the confidence intervals. Sites are ordered left to right from low 
to high elevation.  
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Figure A.13 Plot shows cumulative abundance per sampling day by daylength. Color indicates sampling year. Sites are ordered left to 
right from low to high elevation. 
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Figure A.14 Plot shows the number of insect families identified at each site in the 2009 sampling year. Sites are ordered left to right 
from low to high elevation. 
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APPENDICES OF TABLES 
 

Table A.1 Summary statistics for: (A) 15-minute average - all observations, (B) 15-minute 
average - daytime observations), (C) 15-minute average - nighttime observations), (D) daily 
average, (E) daily maximum, and (F) daily minimum, (G) monthly mean daily average, (H) 
monthly mean daily maximum, and (I) monthly mean daily minimum. *Note that the daily/mean 
monthly maximum and daily/mean monthly average values for incoming solar radiation, albedo, 
and wind speed are calculated from instantaneous values, while the daily/mean monthly 
minimum values are calculated from the daily average values. 

 (A) 15-minute average (all observations)  

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 204,399 -16.1 40.4 8.2 9.2 7.8 

CRS °C 204,399 -16.8 41.5 8.4 9.4 8.1 

Gill °C 204,399 -17.0 41.5 8.3 9.3 8.0 

HJA °C 204,399 -17.1 43.0 8.4 9.5 8.3 

RAD W/m2 204,399 0.0 1,112.0 2.1 115.0 227.8 

ALB W/m2 204,399 0.0 546.0 0.0 21.7 43.3 

WIND m/s 204,399 0.0 2.0 0.0 0.1 0.3 

 

(B) 15-minute average (daytime observations)  

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 87,129 -15.5 40.4 12.0 13.0 8.7 

CRS °C 87,129 -16.1 41.5 12.7 13.6 9.1 

Gill °C 87,129 -16.0 41.5 12.5 13.5 8.9 

HJA °C 87,129 -16.2 43.0 12.9 13.9 9.3 

RAD W/m2 87,129 0.0 1,112.0 121.0 266.7 285.6 

ALB W/m2 87,129 0.0 545.8 21.8 50.2 54.7 

WIND m/s 87,129 0.0 2.0 0.0 0.2 0.4 
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(Cont’d) Table A.1 Summary statistics for: (A) 15-minute average - all observations, (B) 15-
minute average - daytime observations), (C) 15-minute average - nighttime observations), (D) 
daily average, (E) daily maximum, and (F) daily minimum, (G) monthly mean daily average, (H) 
monthly mean daily maximum, and (I) monthly mean daily minimum. *Note that the daily/mean 
monthly maximum and daily/mean monthly average values for incoming solar radiation, albedo, 
and wind speed are calculated from instantaneous values, while the daily/mean monthly 
minimum values are calculated from the daily average values. 

 (C) 15-minute average (nighttime observations)  

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 117,270 -16.1 25.2 6.2 6.3 5.6 

CRS °C 117,270 -16.8 25.2 6.3 6.4 5.6 

Gill °C 117,270 -17.0 24.9 6.1 6.2 5.5 

HJA °C 117,270 -17.1 25.1 6.2 6.2 5.5 

RAD W/m2 117,270 0.0 160.0 0.0 2.2 8.3 

ALB W/m2 117,270 0.0 100.0 0.0 0.5 2.0 

WIND m/s 117,270 0.0 2.0 0.0 0.01 0.1 

 

 (D) Daily average 

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 700 -9.6 24.1 8.9 9.2 6.8 

CRS °C 702 -9.9 24.6 9.2 9.4 6.9 

Gill °C 702 -9.8 24.4 9.0 9.3 6.8 

HJA °C 702 -10.3 24.9 9.2 9.5 6.9 

RAD W/m2 702 0.5 284.6 78.1 107.6 91.6 

ALB W/m2 702 0.1 60.6 16.1 21.0 16.5 

WIND m/s 702 0.0 0.5 0.1 0.1 0.1 
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(Cont’d) Table A.1 Summary statistics for: (A) 15-minute average - all observations, (B) 15-
minute average - daytime observations), (C) 15-minute average - nighttime observations), (D) 
daily average, (E) daily maximum, and (F) daily minimum, (G) monthly mean daily average, (H) 
monthly mean daily maximum, and (I) monthly mean daily minimum. *Note that the daily/mean 
monthly maximum and daily/mean monthly average values for incoming solar radiation, albedo, 
and wind speed are calculated from instantaneous values, while the daily/mean monthly 
minimum values are calculated from the daily average values. 

 (E) Daily maximum  

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 697 -5.0 41.4 13.7 15.7 10.5 

CRS °C 702 -4.0 41.9 14.2 16.1 10.6 

Gill °C 702 -3.6 42.2 14.7 16.4 10.5 

HJA °C 702 -4.5 43.5 15.2 16.9 10.9 

RAD W/m2 702 7.0 1,384.0 699.5 616.5 366.8 

ALB W/m2 702 3.0 478.7 140.1 128.8 74.4 

WIND m/s 702 0.0 10.2 3.1 3.0 1.9 

 

 (F) Daily minimum  

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 698 -13.2 18.0 4.6 4.6 4.9 

CRS °C 702 -13.3 18.3 4.6 4.7 4.9 

Gill °C 702 -13.7 17.9 4.5 4.5 4.9 

HJA °C 702 -14.1 17.9 4.5 4.5 4.9 

RAD* W/m2 702 0.0 1.0 0.0 0.0 0.1 

ALB* W/m2 702 0.0 0.0 0.0 0.0 0.0 

WIND* m/s 702 0.0 0.0 0.0 0.0 0.0 
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(Cont’d) Table A.1 Summary statistics for: (A) 15-minute average - all observations, (B) 15-
minute average - daytime observations), (C) 15-minute average - nighttime observations), (D) 
daily average, (E) daily maximum, and (F) daily minimum, (G) monthly mean daily average, (H) 
monthly mean daily maximum, and (I) monthly mean daily minimum. *Note that the daily/mean 
monthly maximum and daily/mean monthly average values for incoming solar radiation, albedo, 
and wind speed are calculated from instantaneous values, while the daily/mean monthly 
minimum values are calculated from the daily average values. 

 (G) Monthly mean daily average 

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 23 -1.5 19.7 9.7 9.1 6.4 

CRS °C 23 -1.5 20.1 9.8 9.4 6.5 

Gill °C 23 -1.5 19.8 9.7 9.2 6.4 

HJA °C 23 -1.6 20.3 9.9 9.4 6.5 

RAD W/m2 23 12.0 244.0 74.5 107.2 83.2 

ALB W/m2 23 3.4 45.6 18.1 21.0 14.1 

WIND m/s 23 0.01 0.3 0.1 0.1 0.1 

 

(H) Monthly mean daily maximum 

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 23 0.7 31.6 16.3 15.6 9.7 

CRS °C 23 1.2 31.9 16.8 16.1 9.8 

Gill °C 23 1.9 32.1 17.0 16.3 9.6 

HJA °C 23 1.8 33.2 17.9 16.9 10.1 

RAD W/m2 23 110.5 1,062.9 610.7 616.1 323.9 

ALB W/m2 23 42.2 220.2 140.1 129.2 56.6 

WIND m/s 23 0.7 4.8 3.1 3.0 1.2 
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(Cont’d) Table A.1 Summary statistics for: (A) 15-minute average - all observations, (B) 15-
minute average - daytime observations), (C) 15-minute average - nighttime observations), (D) 
daily average, (E) daily maximum, and (F) daily minimum, (G) monthly mean daily average, 
(H) monthly mean daily maximum, and (I) monthly mean daily minimum. *Note that the 
daily/mean monthly maximum and daily/mean monthly average values for incoming solar 
radiation, albedo, and wind speed are calculated from instantaneous values, while the daily/mean 
monthly minimum values are calculated from the daily average values. 

 (I) Monthly mean daily minimum 

 
 

Instrument Units n Min Max Median Mean St. Dev. 

ASP °C 23 -3.5 11.3 4.7 4.6 4.2 

CRS °C 23 -3.5 11.3 4.8 4.7 4.2 

Gill °C 23 -3.7 11.0 4.6 4.5 4.2 

HJA °C 23 -3.8 10.9 4.6 4.5 4.2 

RAD* W/m2 23 0 0 0 0.00 0.01 

ALB* W/m2 23 0 0 0 0.0 0.0 

WIND* m/s 23 0 0 0 0.0 0.0 
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Table A.2 Summary of ΔTs (°C) for daily minimum observations. The ΔTs were calculated as 
the wind-ventilated instrument measurement minus the aspirated instrument measurement. A 
“substantial ΔT” is defined as |ΔT| > 0.4°C. The percentage in the last column of the table is the 
percentage of the n ΔT values that were considered substantial.  
 
Instrument n Min Max Median Mean St Dev Substantial ΔTs 

CRS 698 -0.4 0.6 0.1 0.1 0.2 2.7% 

Gill 698 -0.6 0.3 -0.1 -0.1 0.1 3.0% 

HJA 698 -1.1 0.4 -0.1 -0.1 0.2 11.3% 
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Table A.3 Summary of ΔTs (°C) for monthly mean daily minimum observations. The ΔTs were 
calculated as the wind-ventilated instrument measurement minus the aspirated instrument 
measurement. A “substantial ΔT” is defined as |ΔT| > 0.4°C. The percentage in the last column 
of the table is the percentage of the n ΔT values that were considered substantial.  
 

Instrument n Min Max Median Mean St Dev Substantial  ΔTs 

CRS 23 -0.1 0.1 0.1 0.05 0.1 0.0% 

Gill 23 -0.3 0.02 -0.1 -0.1 0.1 0.0% 

HJA 23 -0.4 0.03 -0.1 -0.2 0.1 0.0% 
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Table A.4 Summary statistics for the binned daytime 15-minute average values. 

 
Variable n Min Max Median Mean St Dev 

CRS ΔT (°C) 1051 -0.6 3.6 0.8 0.9 0.7 
Gill ΔT (°C) 1051 -0.2 5.1 0.7 1.0 0.9 
HJA ΔT (°C) 1051 -0.9 6.1 1.7 1.7 1.0 
RAD (W/m2) 1051 15.1 1090.0 518.3 501.5 286.0 
ALB (W/m2) 1051 0.3 545.8 118.5 125.5 86.3 
WIND (m/s) 1051 0.0 2.0 0.5 0.6 0.4 
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Table A.5 Regression results and optimism-corrected coefficient estimates for each of the best 
models using the binned daytime 15-minute average data. Simple models do not include 
interaction terms. Complex models do include interaction terms. ISR = incoming solar radiation 
(W/m2), ALB = albedo (W/m2), WIND = wind speed (m/s).  
 

Model statistics Variables Estimate S.E. 
CRS 

Adj R2 = 0.78 
MSE = 0.09 
F4, 1046 = 907 

Intercept 2.10 x 10-1 3.30 x 10-2 

ISR 2.74 x 10-3 1.28 x 10-4 
ISR2 -2.15 x 10-6 1.21 x 10-7 
ALB 3.72 x 10-3 1.33 x 10-4 
WIND -6.40 x 10-1 2.39 x 10-2 

Adj R2 = 0.81 
MSE = 0.08 
F9, 1041 = 502 

Intercept -1.32 x 10-1  6.44 x 10-2 
ISR 3.71 x 10-3  3.24 x 10-4 
ISR2 -2.85 x 10-6  3.62 x 10-7 
ALB 4.65 x 10-3  4.60 x 10-4 
WIND 1.59 x 10-2  6.54 x 10-2 
ISR * ALB -6.80 x 10-7  1.82 x 10-6 
ISR2 * ALB 7.49 x 10-10  1.91 x 10-9 
ISR * WIND -1.44 x 10-3  2.96 x 10-4 
ISR2 * WIND 1.37 x 10-6  2.74 x 10-7 
ALB * WIND -3.80 x 10-3  4.56 x 10-4 

Gill 

Adj R2 = 0.82 
MSE = 0.14 
F4, 1046 = 1185 

Intercept 8.74 x 10-1 3.52 x 10-2  
ISR -2.24 x 10-5 5.42 x 10-5  
ALB 3.35 x 10-3 4.42 x 10-4  
ALB2 8.93 x 10-6 9.41 x 10-7  
WIND -8.49 x 10-1 2.88 x 10-2  

Adj R2 = 0.91 
MSE = 0.07 
F9, 1041 = 1160  

Intercept -2.26 x 10-1 6.02 x 10-2  
ISR 3.43 x 10-3 3.03 x 10-4  
ISR2 -3.55 x 10-6 3.38 x 10-7  
ALB 9.35 x 10-3 4.30 x 10-4  
WIND 9.47 x 10-2 6.12 x 10-2  
ISR * ALB -3.82 x 10-6 1.70 x 10-6  
ISR2 * ALB 5.01 x 10-9 1.79 x 10-9  
ISR * WIND -8.92 x 10-4 2.77 x 10-4  
ISR2 * WIND 1.19 x 10-6 2.56 x 10-7  
ALB * WIND -7.98 x 10-3 4.27 x 10-4  

HJA 

Adj R2 = 0.66 
MSE = 0.36 
F5, 1045 = 408 

Intercept 3.87 x 10-1 7.23 x 10-2  
ISR 5.06 x 10-3  2.52 x 10-4  
ISR2 -4.32 x 10-6 2.36 x 10-7 
ALB 1.38 x 10-3  7.13 x 10-4  
ALB2 1.32 x 10-5  1.52 x 10-6  
WIND -3.77 x 10-1  4.68 x 10-2  

Adj R2 = 0.70 
MSE = 0.31 
F9, 1041 = 279  

Intercept -3.03 x 10-1  1.27 x 10-1  
ISR 5.94 x 10-3  6.40 x 10-4  
ISR2 -6.23 x 10-6  7.16 x 10-7  
ALB 1.18 x 10-2  9.09 x 10-4  
WIND 1.70 x 10-1  1.29 x 10-1  
ISR * ALB -1.47 x 10-5  3.59 x 10-6  
ISR2 * ALB 1.86 x 10-8  3.78 x 10-9  
ISR * WIND 2.05x 10-3  5.86 x 10-4  
ISR2 * WIND -7.05 x 10-7  5.42 x 10-7  
ALB * WIND -1.28 x 10-2  9.03 x 10-4  
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Table A.6 Table shows the number of hourly air temperature records that were imputed using 
regression relationships with nearby climate stations, for each site and sampling year. The n 
listed under the sampling year is the total number of hourly air temperature records for the 
sampling year, which varied based on the sampling period window. There were no imputed 
values for sampling year 2010.   
 

Study site Reference 
site 

2011 
(n = 5807) 

2012 
(n = 5831) 

2013 
(n = 5807) 

2014 
(n = 5807) 

PC460_1 RS02   539 5807 

PC644_5 RS86   500 5807 

PC903_7 RS05   10  

PC979_9 RS12 765 2 850  

PC1116_11 RS26   549 4134 

PC1082_12 RS26   28  

PC1178_13 RS26   1 10 

PC1030_16 RS05 623  79  

PC1301_17 RS04 2419 884 2318 11 

PC1339_18 RS04 1938 1018 2705 10 
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Table A.7 Regression equations used to fill in any missing or erroneous temperature data.  
 

Site Equation Adjusted 
R2 df F-stat P-value 

PC1 PC1 = RS02 x 0.941 + 0.649 0.989 145,215 425924 *** 
PC2 PC2 = CS2met x 0.933 + 1.074 0.986 149,115 354185 *** 
PC4 PC4 = RS89 x 0.985 + 0.632 0.994 154,915 979041 *** 
PC5 PC5 = RS86 x 0.992 + 0.430 0.994 144,049 706341 *** 
PC7 PC7 = RS05 x 0.987 - 0.075 0.996 155,057 1271158 *** 
PC8 PC8 = RS10 x 1.000 + 0.115 0.997 154,568 1571495 *** 
PC9 PC9 = RS12 x 1.001 + 0.381 0.992 153,536 647952 *** 
PC10 PC10 = RS05 x 1.003 - 0.568 0.986 154,745 376250 *** 
PC11 PC11 = RS26 x 0.975 - 0.554 0.991 147,045 495211 *** 
PC12 PC12 = RS26 x 0.979 + 0.107 0.996 154,593 1402571 *** 
PC13 PC13 = RS26 x 0.952 - 1.235 0.971 154,196 181439 *** 
PC14 PC14 = RS05 x 1.016 - 0.454 0.989 155,067 485521 *** 
PC15 PC15 = HI15 x 0.984 + 0.386 0.985 148,635 320198 *** 
PC16 PC16 = RS26 x 0.996 - 0.026 0.986 154,059 372480 *** 
PC17 PC17 = RS04 x 0.977 + 0.014 0.992 147,550 595117 *** 
PC18 PC18 = RS04 x 1.001 - 0.203 0.984 148,787 308451 *** 
Notes:  
-- Non-significant; * P<0.05; ** P<0.01; ***P<0.001; In the site column, PC represents 
“phenology core”; In the equation column, all abbreviations following = are representative of 
reference stands (RS) or other climate stations (HI15 and CS2met); df, degrees of freedom.  
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Table A.8 Count of insects by family and study site from 2009 sampling year.  
 

Family PC1 PC2 PC4 PC5 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 Total 

Achilidae 2 4 2 3 1 1    1   1 1   16 

Acroceridae    2   2          4 

Agromyzidae    1            2 3 

Aleyrodidae 5  9 4  9 1   1   1   1 31 

Anthomyiidae 1    1  1  1  2     1 7 

Aphididae 1  1  1 1 2  13 6    1  17 43 

Apidae   1              1 

Attelibidae   1              1 

Baetidae  1               1 

Bibionidae       9 1       1  11 

Bolbomyiidae  1   7  4 10 1 15 1  1 2 1 3 46 

Braconidae 1  1 3 4   1 1 3 1   1 2 2 20 

Cantharidae 15  3 3 3 4 2 3  7 2   4  1 47 

Cecidomyiidae 134 111 30 17 170 100 54 114 47 51 9 11 63 66 14 12 1003 

Cerambycidae     1  1 2         4 

Ceratopogonidae 7 1 3 1 3 4 3 8 1 2 1  9 1  10 54 

Chalcidoidea_sp. 2 2 5 2 10 3 2 2 5 3 3  2 3  4 48 

Chironomidae 156 425 15 9 483 46 779 648 77 116 152 57 323 245 46 97 3674 

Chrysomelidae 1        4 1      1 7 

Cicadellidae 1 2  1  1 7       3 4 6 25 

Cleridae  1  1             2 

Clusiidae         1        1 
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Table A.8 Count of insects by family and study site from 2009 sampling year. (continued) 

Family PC1 PC2 PC4 PC5 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 Total 

Coccinellidae 1             1   2 

Coccoidea_sp.   1  1 1 1  2     1   7 

Coniopterygidae     1   2 1  2   1   7 

Copromorphidae/Tortricidae    1      1    1   3 

Culicidae   1          1    2 

Curculionidae     1  2   1  1     5 

Delphacidae 1                1 

Diadocidiidae     1  1 1      2   5 

Diapriidae 1 1 4 4  2 3      2   1 18 

Diptera_sp               1 1 2 

Dolichopodidae 3 1  3 7 1 17 9 6 5 10  2 3 2 15 84 

Drosophilidae 2             1 1  4 

Dryomyzidae   1   1           2 

Elateridae  1 7 5 4 6 1 3   2  1 4 2  36 

Empididae 1 9   22 6 40 17 6 29 4 4 3 5 1 3 150 

Endomychidae  1               1 

Ephydridae                1 1 

Eucinetidae       1          1 

Formicidae       1 1         2 

Geometridae  1     1 5 2 3   1 5   18 

Glossosomatidae  1               1 

Heleomyzidae         2  2  6    10 
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Table A.8 Count of insects by family and study site from 2009 sampling year. (continued) 

Family PC1 PC2 PC4 PC5 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 Total 

Hemerobiidae    2             2 

Hybotidae 1   2    1         4 

Ichneumonidae 2  2 1 4 5 1 5 1  5   3  5 34 

Keroplatidae 7  3   1           11 

Lampyridae 2 1 1   1           5 

Latridiidae 7 2       1    1    11 

Lepidoptera_sp. 1  7 3 1 3 1 4  2 1 1 2 6   32 

Leuctridae             6    6 

Lycidae     1   2  4  1     8 

Lygaeoidea_sp        1         1 

Melandryidae 2 1     1  1    1 1   7 

Microphoridae 1      1 7      1  1 11 

Milichiidae 1                1 

Miridae              1   1 

Muscidae  1         2 1     4 

Mycetophilidae 5 2 3 8 14 5 10 14 4 12 2  7 32 5 58 181 

Nemouridae  2      5 5    10   3 25 

Nitidulidae         2        2 

Noctuidae        2        1 3 

Pentatomidae       1          1 

Phoridae 18 5 4 13 3 9 4 7 4 1 9  6 7 4 20 114 

Pipunculidae 1   3  1           5 
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Table A.8 Count of insects by family and study site from 2009 sampling year. (continued) 

Family PC1 PC2 PC4 PC5 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 Total 

Psocodea_sp. 2   3  2  1         8 

Psychodidae 12 6 3 4 6 5 27 22 3 9 3 1 5 10 3 4 123 

Psyllidae     1            1 

Pyrochroidae 1                1 

Rhagionidae 3   2             5 

Rhaphidiidae    2             2 

Sarcophagidae    1             1 

Scathophagidae       1 2       1 2 6 

Sciaridae 46 14 13 3 13 8 30 86 23 10 21 3 29 20 5 28 352 

Scraptiidae 10 2 7 21 7 13 1 3  1  13 1 3   82 

Scydmaenidae             1    1 

Simuliidae       1   1 1      3 

Sphaeroceridae 3 2 2 1 1   1        2 12 

Staphylinidae   1  10 1 20 64 11 2   1 3 1  114 

Syrphidae 1 1    4       3 4 1 3 17 

Tachinidae   1              1 

Tenebrionidae   1              1 

Tenthridinidae 1      1 1  1   1  1 3 9 

Throscidae 1 1  2   1      1 1   7 

Thysanoptera_sp. 9 1 1 1   1 2        8 23 

Tipulidae  3  1 1   2 2  6  9    24 

Trogossitidae    1     1        2 



112 

 

 

Table A.8 Count of insects by family and study site from 2009 sampling year. (continued) 

Family PC1 PC2 PC4 PC5 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 Total 

Vespidae   1  1 1          1 4 

Xylophagidae  3   1   1 27  1 1  4   38 

Grand Total 472 610 135 134 785 245 1037 1060 255 288 242 94 500 447 96 317 Total 
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