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Shortcomings of Transfer Ratio

• Hard to explain: no well-defined units
• Large dependence on correctly estimating the asymptotic performance 

p*AB
• Infinite when p*AB > p*B
• Does not give an instantaneous value at each sample size.  This can 

hide many interesting phenomena
• Alternate minimum TR metric only measures the worst-case.  Can hide 

excellent performance at small-to-medium sample sizes
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Proposed Metrics

• Average speedup
– advantage: easy to interpret
– disadvantage: can be infinite even after 

removing obvious cases
• Average relative reduction in amount of 

training data required
– advantage: also easy to interpret
– advantage: avoids most infinite answers



Notation

• Let p = perfalg(N) be the performance of algorithm 
“alg” after N training “experiences”

• Let N = lexpalg(p) be the inverse function: the number 
of training experiences N required to achieve target 
level p
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Learning Speedup and 
Relative Reduction

• Let 
– algorithm B = learning without transfer
– algorithm AB = learning with transfer

• The speedup in the number of training examples required to reach target 
performance level P is

• The relative reduction in amount of training required is
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Statistical Interpretation of Speedup

• The asymptotic value of the ratio

is known as the statistical efficiency of 
algorithm AB relative to algorithm A.  It is a 
standard measure employed in statistics to 
compare consistent learning algorithms – that 
is, algorithms that reach optimal performance 
asymptotically

lim
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Integrated Speedup

• Goal: obtain a single number that summarizes the relative 
performance.

• Solution: Integrate this speedup p0 up to the asymptote for the 
task:
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Issues

• The ratio will be infinite if the AB curve has a 
Y-axis intercept above the B curve intercept
– at such points, we have infinite speedup

• The ratio will be infinite if the AB curve has an 
asymptote above the B curve asymptote
– for levels p > the B curve asymptote, we 

have infinite speedup



Partial Solution:
Remove the Problem Regions

• Define three quantities:
– “jump start”:  p0

AB –p0
B

– “asymptotic advantage”: p*AB – p*B
– “integrated speedup”: 
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There is Still a Problem

• The integrated speedup can still be infinite
• At p0

AB, the speedup is usually infinite
– although this occurs only at a point, it can cause the integral 

to diverge
– example:
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Solution: 
Use Relative Reduction Instead

• “average relative reduction”: 

– avoids (almost) all of the division-by-zero problems
– define integral to run from min(p0

B, p0
AB)  to max(p*B, p*AB)
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One More Quantity of Interest

• “handicap”: How much training does it take B to 
reach performance level p0

AB?  (i.e., to overcome the 
jumpstart)
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Corner Cases

• Crossing curves:  all 3 auxiliary measures can be negative
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Corner Cases (2)

• Transfer curve can be completely above the no-transfer curve:
– large jumpstart
– modest asymptotic advantage
– infinite handicap
– RR = 1 everywhere
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Additional Notes

• The algorithm(s) can attain performance level p multiple times. 
lexp(p) must be defined as the minimum of such occurrences

• The RR integral can be < 0, which indicates that transfer 
learning was worse than no-transfer

• In practice, each learning curve must be approximated, and 
because it is measured at fixed training experiences N1, N2, …, 
it is unlikely that the measured performance will exactly match a 
given target level p.  Hence we propose approximating the 
learning curve by a piece-wise linear curve and interpolating p 
and N linearly to compute lexp(p).  With this approximation, the
integral can be computed exactly (over a series of trapezoids 
defined by perf(N1), perf(N2), …).

• Of course the measured learning curve is only an estimate of 
the true curve.  We could generate bootstrap learning curves 
(via bootstrap replicates of the test data), compute the metrics
for each curve, and then compute and report confidence 
intervals for the metrics.



Summary

• Four proposed metrics:
– average relative reduction in training time (sample 

size, number of training experiences)
– jumpstart (initial advantage of transfer algorithm)
– handicap (how long it takes the no-transfer 

algorithm to overcome the jumpstart)
– asymptotic advantage (how much better the 

transfer learning algorithm does in the limit of 
large sample sizes)



• Average relative reduction:

• Auxiliary metrics:
– jump start: p0

AB – p0
B

– asymptotic advantage: p*AB – p*B
– handicap: xB(p0

AB)

Relative Reduction vs. Transfer Ratio

• Problems:
1. Does not give instantaneous measure
2. Assumes p*AB = p*B (gives infinite ratio 

otherwise)
3. Hard to explain (unclear units)

• Solution:
1. Compute instantaneous measure, then 

integrate
2. Integrate along the performance axis
3. Measure reduction in amount of training 

needed (“amount reduced by 75%”)
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