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with variables, whereas a tree instance has no variables. A tree pattern matches
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tree patterns is called a forest. In this thesis, we study the learnability of tree
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ability is determined by the semantics of matching as defined by the types of
mappings from the pattern subtrees to the instance subtrees. Angluin's exact

supervised learning model is used, in which the learner has to exactly identify
the target from a polynomial number of queries and in polynomial time.

We first show that ordered tree patterns and forests, with an infinite label
alphabet (or equivalent condition), are learnable from equivalence and member-

ship queries. Ordered forests and similar classes with bounded alphabet and
branching factor are shown to be as hard to learn as DNF. We next show that
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EXACT LEARNING OF TREE PATTERNS

1. INTRODUCTION

Trees are abstract data structures that are used throughout computer

science, in particular, in parsing and information retrieval. Trees also serve as

a natural representation for mathematical expressions. Manipulating symbolic

expressions is crucial in tasks such as computer algebra and natural language

processing. Such manipulation is usually performed by a collection of rewrite

rules. To decide if a rule applies, the system tries to match a pattern, represent-

ing the rule precondition, to an instance which is the data for the problem being

solved. One approach to building high performance systems for these tasks is

to hand-design these rules. However, hand-designing rules is time-consuming

and involves exhorbitant human effort. This problem is sometimes called the

knowledge acquisition bottleneck. A solution to this problem is to make the

computer learn the rules from examples. In this thesis, we investigate several

approaches to learning tree patterns that represent sets of symbolic expressions

or parse trees from an expert that answers queries.

Several applications, such as information extraction, symbolic mathe-

matics, compilation, and databases deal more directly with trees (and tree pat-

terns) rather than with, for example, string patterns or integer or real-valued

vectors (Cardie, 1997; Calif & Mooney, 1997; Aho, Sethi, & Ullman, 1987;

Ullman, 1982). It is unnatural, if not impossible, to represent mathematical

expressions as fixed-size vectors. Tree patterns provide more information than

simple string patterns; the latter treats all of its individual elements as being on

the same levelthere is no hierarchy. Even when the input is given in some form

other than a tree structure, many applications would derive a corresponding

tree, e.g., by parsing, which effectively turns a string into a tree. The prob-

lem of deciding which trees are of interest from examples would then be a tree

pattern learning problem.
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Symbolic mathematics is useful because of its ability to derive formulas

(rather than just numerical answers) and to aid in understanding a problem

or discipline. For example, a user may want a formula for the motion of a

body, given a formula for its velocity or acceleration. It would be more general

and useful to have a result as a formula rather than just a curve plotted from

numerical data. If the problem is complex, it would be useful to have a computer

perform the symbolic manipulation rather than do that derivation by hand.

Such symbolic mathematical formulas are naturally represented as trees. In

mathematical applications, some operations require the parts of the structures

to be in a particular order, so trees with these operators are called ordered. Other

math operations such as functions which are commutative (add and multiply)

allow their arguments to be in any order, making their trees unordered.

x x + n 1

FIGURE 1.1. Simple Integration Rule

A sample integration rule is shown in tree form in Figure 1.1. This figure

represents a transformation which takes a tree expression of the form on the left

(where the pattern variables x and n can be replaced by other tree expressions)
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FIGURE 1.2. Simple Learning Illustration (Integration/Ordered Trees)

Programming symbolic mathematical systems by handcoding of rewrite

rules is a difficult, laborious process which is prone to error. We ask if such

programming could be automated. As a first step we investigate whether tree

patterns can be learned from examples.

For example, consider the simplest possible problem for learning a sym-

bolic integration rule. Here we consider learning the precondition (left hand

side) of a rule of the form, f xda XT1+/(fl + 1). Figure 1.2 shows two train-

ing examples (a) and (b). The generalized result, (c), is produced by combining

the two examples using a technique called least general generalization (lgg). It

x

3

and changes it into the tree on the right. The left tree has integration as its

top-level operation; the integration is done with respect to the right child (the

lone x). The right tree represents the result of integrating x1 with respect to

x, i.e., x-/(n + 1). It should be noted that leaves which are variables from

the viewpoint of the integration operation can be constants from the viewpoint

of tree pattern matchingand vice versathese two notions of "variable" are

independent.



Noun Phrase

Noun Prep. Noun
Phrase

A
Adj. Noun

Verb Phrase

Verb Prep. Prep.

Phrase Phrase

Prep Noun Prep Noun

x y z

Shares of IBM stock fell by 25 cents last week.

FIGURE 1.3. Information Extraction Example

4

represents the precondition of a general transformation rule which can also be

seen as the set of all applications of this rule.

Tree instances represent specific expressions and are effectively the con-

stants in the tree-learning problem because they represent only themselves. Tree

patterns contain variables which can match any constant subtree and therefore

represent a set of tree instances. The learning problem is to find a predetermined

tree pattern called the target which is hidden from the learner. The learner is

given a collection of examples through access to some query oracles and tries to

derive the target tree pattern from this information.

Sentence
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With more complex integration techniques such as integration-by-parts,

a single tree pattern is insufficient to cover all the cases in which a rule would

apply. Therefore it becomes necessary to study learning of multiple tree patterns

which we call forests.

Applications to process natural language text on the internet can first

parse the text into tree form and then perform information extraction from

those trees. An application may need to put the extracted information into

a database which can then be queried using a formal language. One way to

perform the extraction is to write rules that process the parsed trees. A rule

would then be represented as a tree pattern as in Figure 1.3. The tree is a

template for recognizing a certain structure so certain fields of interest can be

isolated. The example sentence matches this structure, so the fields of interest

can be paired with the variables x, y, and z. The values corresponding to these

variables (i.e., "IBM", "fell", and "25 cents") can then be put into a database

that records stock news.

The learning problems discussed in this thesis have the following form.

First, there is a set or universe of instances called an instance space. A hypothesis

or a concept represents a subset of the instance space. A hypothesis space is a

set of hypotheses for the learner to consider. The teacher picks an arbitrary

hypothesis from the hypothesis space called the target and hides it from the

learner. The job of the learning algorithm is to form hypotheses which are

better and better approximations to the target until a hypothesis is found that

is equivalent to the target. The learner is allowed to use query oracles which

answer questions about the relation between a specified example or hypothesis

to the target (e.g., is a specified hypothesis a subset or superset of the target).

In the learning framework used in this thesis, one of these query oracles tells

when the hypothesis is equivalent to the target.



So the pattern represents

features a face pattern has, the larger the set of instances it represents and

therefore the more general it is. A learning algorithm for this problem would

take some instances as examples (e.g., the two instances shown above) and find

the least general pattern which covers/includes those instances (the face pattern

above).

A A A

B C B C z y

D E F GH
(a) (b)

Examples Pattern

FIGURE 1.4. Learning with Tree Patterns

Figure 1.4 shows a sample learning problem for learning with tree pat-

terns. The instance space consists of trees labeled with uppercase letters, which

represent constant labels, on both leaves and internal nodes. Hypotheses are

single tree patterns which have constant labels on internal nodes and constants

and

6

The following is a simple facial pattern learning problem. The instances

("constants" in the learning problemwhich represent only themselves) are 8

possible faces ranging from to with 3 binary features. A face

pattern or hypothesis may have some missing features and represents the set of

all instances where the missing features can take any value.

The more missing
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or variables on leaves. Lower case letters are used to represent variables and can

match any constant subtree. The target tree pattern is hidden from the learner,

which must therefore rely on example trees to learn it. Figure (a) shows two

examples which are included in the set of instances matched by the target (b).

The learner must derive a single tree pattern which matches each example, i.e.,

a tree pattern which becomes identical to the example when a constant label

or subtree is substituted for each variable. First consider finding an appropri-

ate pattern to match the left subtrees of two examples. The examples have

B with no child and B with two children, respectively. But no tree pattern

with any specific number of children can match a tree instance unless it has

the same number of children. Therefore no single tree pattern can match both

of these example subtrees unless it matches every possible subtree. The result

must therefore be a variable (z in (b)). Now find a subpattern for the right

subtrees. The examples have C with two children and C with one child. The

same situation applies, so the result must be another variable (y in (b)). Part

(b) is therefore the most specific tree pattern which matches both examples.

This technique for combining examples is known as least general generalization

(or most specific generalization) and the class of which this learning problem

is a member is known as ordered trees. With ordered trees, the corresponding

children must be in the same order at each corresponding node in the pattern

and instance (Chapter 3). With unordered trees, the correspondence can be

any permutation (Chapters 5 and 6).

To formally analyze learning, we use the exact learning framework of

Angluin with a variety of queries (Angluin, 1988). In this framework, the teacher

can pick any target concept in the hypothesis space. The learner is allowed to

ask queries about the target. The number of queries asked by the learner must

be bounded by a polynomial function in the size of the target concept. The

learner has to exactly identify the target concept, i.e., find a hypothesis which

matches exactly the set of instances denoted by the target, in time polynomial
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in the size of the target and the size of the input to the learner (in the form of

various responses to its queries).

When learning tree patterns, the instances are ordered or unordered trees

with nodes labeled by constant identifiers. The hypotheses are tree patterns

and with leaves labeled with constants or variables. A tree pattern matches

any tree instance that can be obtained by replacing the pattern's variables

with constant subtrees (possibly with other adjustments as allowed by various

matching semantics discussed below).

Many transformations on trees will work for a whole family of expressions

which cannot be expressed as a single tree pattern. So we also consider the

learning of ordered forests (OF) which are finite sets of tree patterns. Certain

mathematical operations are very rigid in that each of the subexpressions must

appear in a fixed order. But other operations use commutative operators like

addition and multiplication and allow subexpressions to occur in any order to

be matched by a tree pattern. When an expression is represented as a tree

pattern, these properties imply the children of a tree node having one of those

operators can be in any order to be matched by a tree pattern. So we consider

learning of both ordered and unordered tree patterns. These tree patterns could

be the antecedents and consequents of our mathematical transformations.

Having only examples (from an equivalence oracle) is insufficient for ef-

ficient learning, so we consider learning with a variety of oracles. After seeing

some examples, the learner can form a hypothesis pattern and ask the teacher

a question about this hypothesis pattern and the correct "target" pattern. For

example, an equivalence oracle (EQ) would be given the hypothesized pattern

and if the pattern were equivalent to the target pattern then the oracle would

say yes. But if the hypothesized pattern were not equivalent to the correct pat-

tern, the oracle would respond no and also give a counterexample, which would

be either an example included in the hypothesized pattern but not included in

the target pattern, or an example not included in the hypothesized pattern but
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included in the target pattern. Query oracles allow the learner to ask questions

about the relationship of a specific hypothesis pattern or instance to the target

pattern. The response is either a yes or a no with an optional counterexample,

depending on the oracle used. We consider a variety of such oracles and attempt

to show which sets of oracles are sufficient and which are insufficient for effective

learning. For example, a membership query (MQ) is given a single instance

and returns yes iff the instance is a member of the target. A subset query (SQ)

is given a possible hypothesis and returns yes if that hypothesis is a subset of

the target.

(b) (c)

(a) Ordered Unordered

Tree Pattern 1toi Onto 1toi Onto

R R

BAC BACD
(e) (IT)

(d) Manyi Onto Manyi Into
1toi Into

FIGURE 1.5. Mapping Unordered Tree Pattern Children to Instance Children
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Learnability is a function not only of what queries are allowed but also

of how matching is defined. Matching semantics are classified by the type of

mapping allowed from pattern children to instance children of corresponding

nodes. Learnability with one-to-one onto, one-to-one into, and many-to-one

into matching semantics is shown. In Figure 1.5, tree pattern (a) matches the

tree instances (b) through (f) according to various matching semantics. Tree

instance (b) is matched by pattern (a) by ordered one-to-one onto semantics

because substituting A for x and C for y in (a) without reordering the children

produces (c). (This same match also works for the other semantics mentioned

below). The pattern matches (c) by unordered one-to-one onto semantics since

substituting A for x and C for y in (a) and then permuting the children produces

(c). (Other mappings and permutations are possible.) The various kinds of onto

semantics require all instance children to be mapped to by some pattern child,

but into semantics allows an instance to have extra children that do not take

part in a match. Tree pattern (a) matches instance (d) by unordered one-to-one

into semantics using the same substitution and permutation as for (c) but with

the addition of an extra child D to produce (d). Instance (e) is matched by

pattern (a) according to many-to-one onto semantics by the same substitution

but with both x's mapping onto the same A child and similarly the y's mapping

onto the C. Similarly, (f) is mapped to by many-to-one into semantics with the

same substitution and mapping, but there is an extra child (D) that is not in

the range of the mapping.

We show the following results on ordered trees and forests with one-to-

one onto semantics in this thesis. Ordered trees with one-to-one onto semantics

are learnable from equivalence queries alone. Ordered forests with the same

semantics and an infinite constant alphabet (or equivalent) are learnable from

equivalence and membership queries. Similar (but not necessarily identical)

results are also shown by (Page, 1993; Arimura, Ishizaka, & Shinohara, 1995;

Ko, Marron, & Tzeng, 1990).
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We showed that unordered trees without repeated variables are learnable

from equivalence and membership queries and that superset queries and equiv-

alence queries are sufficient to learn unordered trees with repeated variables.

Here we show that unordered trees with repeated variables are not learnable

with equivalence and subset queries (SQ). Unorderered trees are learnable from

superset query oracles, and unordered forests are learnable with either superset

and equivalence or superset and subset oracles.

With one-to-one into semantics, unordered trees and forests are learnable

from equivalence and membership queries. With many-to-one into semantics,

unordered forests are learnable from equivalence and membership queries. We

also show some strong negative results by proving that some classes of tree

patterns are not learnable. Unordered trees using superset and membership

queries are not learnable because the learner has no way to test when it is

done. Unordered trees with equivalence and subset/membership queries are

not learnable because the oracles give too little information. Many-to-one onto

semantics has the same difficulty.

The rest of the thesis is organized as follows: Chapter 2 formally de-

fines the learning framework. Chapter 3 shows that ordered trees and forests

are learnable with one-to-one onto semantics. Chapter 4 ties the learnabil-

ity of various tree classes with bounded alphabet and branching factor to the

learnability of DNF. Chapter 5 shows that unordered trees and forests are not

learnable with equivalence and subset queries under one-to-one onto semantics.

Chapter 6 shows the learnability of unordered trees (and forests) with superset

(and equivalence) queries. Chapter 7 gives formal definitions for all matching

semantics and shows unordered trees and forests are learnable from equiva-

lence and membership queries using one-to-one into semantics. Chapter 8 ties

trees with many-to-one into semantics to Horn clauses. This chapter also shows

many-to-one onto semantics is not learnable for trees with equivalence and sub-
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set queries. Chapter 9 gives a summary of the results, discussion, conclusions,

and future work.



2. PRELIMINARIES

2.1. General Definitions

The following definitions and explanations are applicable to learning in

general and not specific to trees. First learning is defined (for the exact frame-

work) in general. Some general properties of the concept classes of particular

interest to this work are discussed. Then the query oracles are defined and

explained.

There are may variations of machine learning problems. A supervised

learning problem uses a teacher in the form of query oracles which provide

examples and (positive or negative) class labels for instances selected by the

teacheror the learner. It is therefore immediately clear to the learner which

class label given instance has. Another mode of learning, called reinforcement

learning, also uses a teacher but class labels are only provided indirectly usually

in the form of a delayed reward, so it is not immediately clear which choice is

correct. With this type of learning, the learner has the additional burden of

determining which choices correspond best to the rewards. The least studied

type of learning is called unsupervised learning which has neither class labels

nor a teacher. This type of learning is also called clustering because the task of

the learner is to discover patterns or clusters in the data without the guidance

of any externally-provided answers.

Supervised learning is used throughout this thesis. The supervised con-

cept learning problem is to find an unknown concept which represents a set of

instances. These instances are the specific values or constants of the learning

problem and are members of some universal set of instances called an instance

space. A concept represents a set of instances which is usually infinite and

therefore is implicitly described in some finite form. In each learning session, an

unknown concept called a target is to be determined by the learner. The learner

may receive only examples labeled as being either in or not in the concept

13
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(positive and negative training examples, respectively) for the chosen learning

problem. Sometimes other queries or oracles help the learning process. This

unknown concept is often thought of as having been chosen by a teacher which

also provides the examples and responds to the queries. The learner then tries

to find an equivalent concept called a hypothesis.

For example, suppose the universal set of instances is all possible pieces

of furniture (including chairs and tables). Each instance is defined by its char-

acteristics (number of legs, whether upolestered, material used, shape of top,

presence of arms, etc.). In supervised learning, the teacher chooses the subset

of chairs as the target, then gives examples, some of which are specified to be

chairs and some are not. The learner then looks for patterns in the positive and

negative examples and decides which characteristics correspond to and predict

that a given piece of furniture is a chair (e.g., 4or more legs, top not flatmay

have arms, tall back).

A learning problem is a triple <I, 1, L >, where I is a set of instances

called the instance space, H is a set of hypotheses called the hypothesis space

or concept class, and L is a matching function from 71 to subsets of I. Each

hypothesis h E -1 represents a set of instances in I defined by the matching

function L : 7-1 -* 21. An instance x E I is a positive example of h E 7-1 according

to L if x E L(h) and a negative example of h if x L(h). We informally speak

of h containing or coveringx if xe L(h).

Usually hypotheses contain an infinite number of elements and must

therefore be specified in some language which allows a specification of finite size

to define this infinite set of elements. All the hypothesis specified in a given

language constitute a hypothesis space 7-1. It is meaningful to talk about the

learnability of a hypothesis space (many possible hypotheses) but not about a

single set of instances (i.e., one specific hypothesis) because the latter represents

just a single answer and it would be trivial to encode that one answer in the

learning algorithm.
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For learning to be meaningful, the concept class used must have a prop-

erty called bias. Bias is the learner's prior knowledge (Natarajan, 1991) or any

basis for choosing one generalization over another. (Mitchell, 1980) gives the

definition, "...bias to refer to any basis for choosing one generalization over an-

other other than strict consistency with the observed training examples." The

type of bias from that reference used here is, "the generalization language is

not capable of expressing all possible classes of instances" which is sometimes

also called restricted hypothesis space bias. Otherwise, there would be no way

for a learner to predict the class label (positive or negative) of an example it

has not yet seenand therefore effectively no learning at all. The hypotheses

in a concept class are therefore described in some language which restricts the

possibilities to be considerably less than all possible subsets of the instances.

The faces pattern class (Section 2.2) and the class it is isomorphic to (Boolean

conjunctions of three variables), restrict hypotheses to those which can be rep-

resented by a conjunction. For example, a hypothesis could represent all faces

with open eyes and a smile, but no hypothesis represents all faces having ex-

actly one of these features. Therefore, if a (positive) example is seen with open

eyes and a frown and another example has closed eyes and a smile (with either

nose), then necessarily open eyes and a smile is in the target as is closed eyes

and a frown. No allowable hypothesis in the concept class includes those two

training examples without also including the examples with all combinations of

these features.

Similarly, the tree pattern classes have bias. Those classes which permit

only a single tree pattern as a hypothesis require all instances to have the

same basic structure; i.e., the upper part of the instance trees must look like

the corresponding part of the tree pattern. The forest classes which permit

more than one tree pattern in a single hypothesis also have a bias even though

they are more expressive and hence less restricted than the single-tree classes.

First, only a finite number of possible upper-level structures are permitted.
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Second, wherever a pattern variable appears, any possible constant subtree can

be substituted for it; restriction to some arbitrary set of possible substitutions

is not permitted. Thus, the forests classes actually greatly restrict the possible

sets of instances represented even if it might not seem to be that way at first.

There is another way to look at the restriction which bias imposes on

the set of possible hypotheses. Note that the set of instances for the tree classes

is couritably infinite (the same as the number of integers). The class of possible

subsets of these instances is therefore uncountably infinite (the same as the

number of real numbers). But each allowable hypothesis in any of the classes

has a finite representation, so there is some way to encode it as an integer.

Therefore the set of possible hypotheses in any of the tree classes is countably

infinitefar less than the number of subsets of instances. Without a restriction

of this type, learning in these classes would be impossible.

Exactly learning a hypothesis space corresponds to identifying a target

concept that the teacher chooses from the hypothesis space (Angluin, 1988).

The learner is allowed to ask various queries such as equivalence, membership,

superset, and subset. The equivalence query (EQ) oracle allows the learner to

determine when it is done learning. EQ is also a source of examples that give

the learner a clue on how to adjust its tentative hypothesis to make it converge

to the target. The equivalence and other queries are defined more precisely as

follows.

An equivalence query EQ(h) asks if a hypothesis h chosen from the given

hypothesis space 7- is equivalent to the target, i.e., represents the same set

of instances as the target. The query is answered yes if they are equivalent

and answered no with a counterexample otherwise. The counterexample

may be in h and not in the target or vice versa.

A subset query SQ(h) asks if the hypothesis h E 'H represents a subset of

the instances in the target. The query is answered yes if it represents a

subset and no otherwise.
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A superset query SupQ(h) asks if the hypothesis h E 1- represents a

superset of the instances in the target. The query is answered yes if it

represents a superset and no otherwise.

A superset query with a counterexample, SupQc(h), behaves like SupQ(h)

but also returns a counterexample when the answer is no.

A membership query MQ(x) asks if the argument instance x E I is a

member of the target set of instances. The query is answered yes if it is a

member and no otherwise.

We are now ready to define the exact learning framework of Angluin that

uses a set of query oracles Q (Angluin, 1988).

Definition 2.1 A concept class 7-1 is exactly learnable from a set of queries

Q if there is a learning algorithm A and polynomial p which meet the follow-

ing condition. Given any possible (target) hypothesis T in 7-1, A always finds a

hypothesis in 7-1 which represents exactly the same set of instances in a num-

ber of queries and time bounded by O(p(f, size(T))) using (only) the queries in

Q, where f is the maximum size of any counterexample returned by the query

oracles.

The exact learning framework is stronger (more demanding) than the

Probably Approximately Correct (PAC) model of Valiant (Valiant, 1984b) that

requires that the examples are chosen using a fixed but unknown distribution.

This framework is discussed along with PAC-predictability in the introductory

section of Chapter 4. In the PAC learning model, the learner merely needs to

learn a concept which approximates the target. In exact learning, the learner

is required to learn the concept exactly, even though the teacher may choose

the examples arbitrarily. It is known that if a concept class is exactly learnable

in Angluin's framework from the EQ oracle and membership of examples in

a hypothesis can be evaluated in polynomial time, then it is PAC-learnable

from examples (Angluin, 1988). Similarly, any positive results on learning with
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EQ and MQ transfer to PAC learning with MQ, and positive results on exact

learning with EQ and SupQ transfer to PAC learning with SupQ.

2.2. Simple Learning Problem: Faces

The learning problem will be introduced through a simple example of

learning facial patterns. An instance (constant or specific example) is a face,

Let us assume that each face has one of two types of eyes,

either circles or arcs, e.g., either o o or - one of two types of noses (either

o or A), and one of twO types of mouths either '-' or '-'. So there are a total

of 8 different faces: . These 8

faces are the set of instances, i.e., the instance space.

We want to be able to learn sets of faces. Since there are 8 faces, there

are 28 256 possible sets of faces. Fortunately we will not try to represent

all of these sets. Instead, we define a face pattern which is similar to a face,

but some features (eyes, nose, mouth) may be missing. The idea is that a face

pattern represents the set of faces that have the features which are explicit in

it. If a feature is missing in the face pattern then a face in the represented set

may have either value for the missing feature. For example,

pattern which represents the set { ,
}. Face pattern

is the face

represents

the set {, , , }.

The face patterns are the hypotheses. The set of all face patterns is the

hypothesis space or concept class. A face pattern matches a face instance when

the instance includes all the features present in the pattern.

In our learning task, we want to discover which face pattern (hypothesis)

matches the target set of faces. If the target can be any subset of the instance

space, this task is impossible, because there are 256 sets of faces, but only

27 face patterns. If we include every possible subset of the instance space in

the hypothesis space, it becomes impossible to generalize and find the correct
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hypothesis without being given every possible face as a (positive or negative)

training example. So instead we assume that the target has a face pattern

representation, and we seek to discover which face pattern matches the target.

FIGURE 2.1. Faces Generalization Lattice/Hasse Diagram

The face patterns can be arranged into a Hasse diagram (or generaliza-

tion lattice) as in Figure 2.1 so that a face pattern is connected upward to the

patterns which represent supersets of the sets represented by the lower pattern.

Only direct supersets are explicitly represented in that if the set of face in-

stances matched by a face pattern A contains the set matched by a face pattern

C (denoted A D C) but there is another pattern B so A D B C, then no
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edge is drawn directly between A and C since A D C is implied by the edges

between A and B and between B and C (transitivity of containment). At the

lowest level are face patterns which represent a set with only one face. Each

face pattern represents all of the faces at the lowest level which can be reached

by following the lines downwards and is a superset of any other face pattern

than can be similarly reached. We use the single-representation trick which uses

the single face at the lowest level as both a face instance and the face pattern

representing the singleton set containing that face instance. At the top, is the

The number of face patterns is 1 for no facial features, 6 for one feature,

12 for two features and 8 for all three features. These numbers correspond to

the terms in the binomial expansion of (1 + 2).

Learning for this hypothesis space is very easy. If our learner is given

a face instance, it responds with the hypothesis consisting of the face pattern

which matches only the given instance. Now the learner asks the oracle if this

is the target (or is equivalent to the target). If the oracle says yes, then the

learner has correctly and quickly learned the target. If the oracle answers no,

and gives a counterexample, i.e., another face that is covered by the target but

is not covered by the hypothesis, then the learner finds (computes) the face

pattern which is lowest in the diagram and covers both the old hypothesis (the

old face pattern) and the new face instance. In this example, it is easy to show

that this least upper bound of the generalization lattice, also called least general

generalization exists, is unique, and is easy to compute.

The learning then proceeds in a similar manner. The learner submits a

hypothesis to the oracle, and either the learning is finished or a new counterex-

ample is returned, a new hypothesis is computed and the learning continues.

In each step, the learning algorithm creates a new pattern by eliminating any

features which are not consistent with all of the examples. This process can be

done incrementallyi.e., by maintaining a hypothesis which is consistent with
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the examples seen so far and adjusting the hypothesis (by generalizing it) for

each new example. In this simple learning problem, the learning can take at

most 4 rounds since the new hypothesis is always at a higher level in the diagram

than the old hypothesis.

(a) (b)

(c) (d)

FIGURE 2.2. Computing New Faces Hypotheses From Examples/Old Hypoth-
esis

Figure 2.2 gives some examples of computing the new hypothesis from

the old hypothesis and a new instance. Each diagram within that figure shows

the two example faces (or face patterns) which are to be combined to form the

result above. Lines are drawn to indicate that the result is more general than

either of the two faces supplied just as they are in the generalization lattice

(Figure 2.1). In diagram (a), the two faces combined are the same except for

the mouth, so the result has the mouth omitted. Similarly diagram (b) omits

both the mouth and nose. Diagram (c) differs in and omits all three features.

Diagram (d) starts with a face pattern with the mouth omitted; it keeps that
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omission and also omits the nose which differs between the two faces to be

combined.

As a sample learning sequence, suppose the first example is The

learner can interpret this instance as a tentative hypothesis (which only repre-

sents this one instance). Let the second training example be . The learner

would find the face pattern which covers both of these examples by eliminating

the feature which differs between them: . Suppose the third training

The resulting hypothesis face pattern must have the mouth

eliminated to cover all of these examples: . If this pattern was indeed the

target, no further steps would be needed, and learning would terminate at this

point. But suppose a fourth example, , was given. Then the only pattern

The faces problem above is equivalent to learning the concept class of

Boolean conjunctions over a space of 3 boolean variables. Let these 3 variables

be e, n, and m representing the eyes, nose, and mouth, respectively. Let false

for each of the three variables represent closed eyes, triangular nose, and frown,

respectively (and true be the opposite features).

Then the instances might be represented by boolean conjunctions with

all three variables. The hypotheses or face patterns are boolean conjunctions

with 0 to 3 variables. Instead of using a distinct notation for instances and for

patterns that represent only one instance, we use boolean conjunction notation

for both. Therefore the 8 possible instances (corresponding to the 8 faces shown

at the beginning of this section) are represented as erim, enTh, eim, ënrn,

un-i, and u u, respectively. The equivalent generalization lattice for

Figure 2.1 would have these 8 boolean conjunctions of 3 variables on the bottom

row, and the 12 boolean conjunctions with 2 of these 3 variables on the row

next to the bottom (ranging from en to u). The next row up would have

just individual variables e through u, but the top row would have some symbol
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that represents always true. For example, the hypothesis em represents the set

{enm, eim} and Yi represents {em, m,

Generalization works like Figure 2.2. In example (a), enm and eni?i

combine to yield the pattern en. In example (b) enm and eii combine to yield

e. Example (c) combines enm and to get true. Example (d) combines en

(which represents 2 instances) with eiim to get e. The general technique is to

eliminate those variables which are not the same in all examples or hypotheses

combined.

The learning example sequence for faces described earlier is the following.

The first two training examples are enm and em, and the resulting pattern is

em. The third example is ei which yields the pattern, e. The fourth example

is and yields the final pattern true. Thus, learning in this class of boolean

conjunctions over three variables is equivalent to learning with faces in that all

operations correspond between the two classes.

This example is easy to understand because the instance space and the

hypothesis space are both finite. In more realistic situations as in the case of

tree patterns, one would expect both of these spaces to be infinite. Nevertheless,

similar algorithms apply with some variations.



3. LEARNABILITY OF ORDERED TREES AND FORESTS

This chapter studies the learnability of ordered trees and ordered forests

(OT and OF, respectively). The algorithms for both OT and OF use the

equivalence query (EQ) to provide examples and the least general generalization

(lgg) algorithm to combine multiple examples/patterns. OT is shown to be

learnable with EQ. OF is shown to be learnable with EQ and either subset or

membership queries (SQ or MQ) to help decide which hypothesis tree pattern

each example should be combined with.

Ordered trees have been shown to be learnable with equivalence queries

alone (Ko et al., 1990; Page, 1993; Goldman & Kwek, 1999). Ordered forests

with a bound on the number of trees have been shown to be learnable with

equivalence queries alone (Goldman & Kwek, 1999). This algorithm gives a

time bound which is exponential in the number of tress in the forest. A different

method to show learnability of a bounded number of trees using equivalence

and membership queries was used by (Arimura et al., 1995). This result uses a

number of queries bounded by the number of target trees pius the number of

symbols in the constant alphabet to prove that membership queries will perfectly

simulate subset queries. Our results assume an infinite label alphabet and use

negative counterexamples to detect when the simulation of subset queries by

membership queries fails. Ordered forests without bounding the number of

trees are learnable from equivalence and membership queries (Page & Frisch,

1992; Page, 1993).

The class of ordered tree patterns consists of single tree patterns including

which represents the empty set of tree instances. The ordered trees (OT)

class therefore only has representations for those sets of tree instances whose

members all have the same basic "tree structure" such as the set of all tree

instances having A as the root node label and three children. OT is actually

24
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equivalent to the class of first order terms defined over a set of function symbols,

constants, and variables (Arimura et al., 1995).

A Y

B y BCD

z E x w

(a) (b)

Tree Pattern Hypotheses

A A Y XA AA
BH BJ BCD E

A A AA
FE GE LMNO

(c) (d) (e) (f)

Tree Instances

FIGURE 3.1. Ordered Tree and Forest hypotheses example

Figure 3.1 has two tree pattern hypotheses (a) and (b) and instances (c)

through (f). Tree (a) is a hypothesis in the OT class and matches (c) and (d)

but not (e). There is no way a single OT hypothesis tree pattern could cover (c),

(d), and (e) without covering every possible tree instance including (f) because

(e) has 3 subtrees at the top level and (c) and (d) have only 2. The ordered

forests class includes all finite unions/collections of ordered tree patterns and

is denoted OF. Hence, an ordered forest hypothesis could include tree patterns
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such as (a) and (b) and would then cover all three instances (c), (d), and (e)

but not (f).

The learning algorithms for both classes use the least-general generaliza-

tion (lgg) algorithm as a tool to combine multiple examples into the best possible

hypothesis. The lgg algorithm finds the tree pattern covering the smallest set

of instances that includes both of two tree instances or patterns given to it as

arguments. Both classes use an equivalence oracle to obtain training examples.

The OF algorithm uses a membership or subset query to determine whether

two examples should be in the same tree pattern. The OT algorithm needs no

oracle other than EQ since the hypothesis space guarantees that there is a single

tree pattern consistent with all the examples.

3.1. Formal Preliminaries

A tree has a root node and zero or more subtrees, each of which is a tree.

All trees are finite. The root nodes of the immediate subtrees of any tree are

the children of the root of the that tree. A node with no children is a leaf A

node with children is an internal node of the tree. A tree t with a root label L0

and subtrees t1,.. . , tk may be written as L0(t1,. . , tk). If k - 0, it is simply

written as L0.

The internal nodes of all trees are constant labels chosen from a label

alphabet. Except where stated otherwise, we only consider infinite label alphabets

in this thesis. A tree instance is a tree without any variables so all nodes

including the leaves have constant labels from the label alphabet. A tree pattern

is a tree that may have variables or constant labels at its leaf nodes.

A substitution a is a set of pairs v/t, where v is a variable, t is a tree,

and each variable v appears at most once in a. In this case, we write t = via. If

t is a tree pattern and a is a substitution, the substituted tree pattern ta is the

tree pattern (or instance) obtained by replacing each occurrence of each variable
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v in t with vcr. Note that the above definition implies that a substitution always

replaces the same variable with the same tree pattern.

The rules for how/when a tree pattern is matched to an instance are

determined by the match semantics. All semantics allow constant labels to

match themselves. But nodes with variable labels can match any tree instance.

By convention, we use small letters at the end of the alphabet such as x, y,

and z to stand for variables, and uppercase letters at the beginning of the

alphabet such as A, B, and C to stand for constant labels. We also introduce a

special symbol q denoting a pattern that matches no tree instances, and hence

represents an empty set. A tree pattern consisting of just a single variable

matches the entire instance space. A tree pattern represents the set of all tree

instances that match it according to a given matching semantics.

Every subtree in the tree pattern must correspond to some subtree in

the tree instance. The different matching semantics are distinguished by how

the subtrees of the tree pattern are allowed to correspond to the subtrees of

a tree instance.The definition is recursively applied to those children until the

leaves of the tree pattern are reached. Matching can be ordered, meaning

the corresponding subtrees are in the same order in the pattern and instance or

unordered, meaning the corresponding subtrees may be in any order. The target

can be required to be a single tree or be allowed to be a union of treesa forest.

These specifications define four classes: ordered tree, ordered forest, unordered

tree, and unordered forest.

For ordered trees, we only consider one-to-one onto maps between sub-

trees, and define match as follows.

Definition 3.1 A tree pattern y matches a tree instance t (or another tree

pattern /3) written y >- t (-y >- /3) by ordered one-to-one onto semantics if there

is a substitution a for variables in '' such that 'ya is identical to t (or /3).

Definition 3.2 L(P) is the set of instances matched by tree pattern P (i.e.,

the language represented by P).
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Lemma 3.1 For ordered one-to-one onto semantics, if P Q and Q >- R,

thenP>-R.

Proof (Sketch): A full proof will be given for Lemma 7.4 in Chapter 7. For

ordered trees, the essential point is that the composition of two substitutions is

a substitution (Lemma 7.1). 0

Theorem 3.2 Let P and Q be two ordered tree patterns. Then L(P) 2 L(Q)

iffP>-Q.

Proof: if: For any tree instance I e L(Q), Q >- I. This fact and P Q

implies P >- I by Lemma 3.1, and I e L(P). Hence L(P) 2 L(Q).

only if: Given L(P) 3 L(Q). Since the alphabet of constant labels is infinite,

we can choose any instance I L(Q) with each variable in Q replaced with a

constant label not appearing in either P or Q. Then for some a, Qa = I with a

being a very simple substitution which replaces each variable with a constant.

Since these constants appear nowhere else in these trees, there is an inverse

substitution a' which substitutes variables for constants (in a one-to-one onto

fashion) such that Ia' = Q. L(P) 2 L(Q) also implies I E L(P) and therefore

Pa' = I for some a'. So, Pa'a' = Q, Pa" = Q for some a" by Lemma 3.1,

and P >- Q by Definition 3.1. [1

3.2. Least-General Generalization (lgg):

The primary operation used by the ordered tree and forest algorithms

is the least general generalization (lgg) (also known as the most specific gener-

alization). The purpose of this operation is to form the hypothesis from two

arguments (either examples/tree instances or hypothesis tree patterns) which

satisfies the following two criteria. First, this resulting combined hypothesis

(tree pattern) will cover all the examples covered by each argument given to
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lgg. Second, this result will also be the minimal or most specific hypothesis tree

pattern which satisfies the first criteria.

The learning algorithm then uses lgg to combine successive examples

until the target is found. The examples are therefore combined in a manner that

is "minimal" (i.e., covers the smallest set of instances) while still keeping the

result a member of the class of tree patterns. A learning algorithm will therefore

use lgg to create a hypothesis that is just sufficient to cover the examples it is

given. Since the resulting hypothesis pattern is the least general which covers the

examples/arguments, it cannot be overgeneral (more general than the target).

The tree patterns form a generalization lattice (Birkhoff, 1967) with lgg

as the join operation, and intersection of the corresponding sets of instances

can be used as the meet operation. The more general than relation is the partial

ordering operation used by the lattice. A tree pattern is more general than

another if it represents a set of tree instances which is a superset of the tree

instances represented by the other tree pattern. The intersection of two tree

patterns is either another tree pattern or the symbol () corresponding to the

empty set of tree instances.

Figure 3.2 shows how two examples can be combined into a tree pattern

using lgg. The common parts are retained, but the parts of the trees which

differ between the two examples are replaced by variables, since that is the only

result that can cover both arguments. Note that the corresponding subtrees of

the two trees are combined in exactly the same way as the original tree patterns.

The lgg algorithm therefore recursively descends down the tree. (However,

multiple, identical pattern variables make this process more complicated as will

be explained below.) More formally, the lqg operation is defined as follows.

Definition 3.3 The least general generalization (lgg) of two tree patterns X

and Y is the tree pattern U such that L(U) D L(X), L(U) L(Y) and for all

V such that L(V) D L(X) U L(Y), L(V) D L(U).
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FIGURE 3.2. Example Constant Trees and Igg Pattern Tree

This definition implies that the lgg is matched by every possible V which

matches both of the arguments given to the lgg algorithm (which therefore

implies that the lgg is the most specific tree pattern satisfying the latter).

An algorithm to compute the lgg of two tree patterns must recursively

examine the trees. The corresponding subtrees (i.e., ith subtree from left to

right of each tree) are compared. If the corresponding subtrees have the same

(internal) node label and number of children, then they are identical as far as

this particular level of recursion is concerned. Hence a tree with the same label

and number of subtrees is returned where each subtree is the result of the lgg of

the corresponding subtrees of the two argument trees. But a pattern variable is

returned to represent corresponding subtrees which are different, either in the

root label or the number of subtrees.

These variables must be generatedi.e., a new variable name must be cre-

ated for each such pair of different, corresponding subtrees. Further, whenever

30



Initialize cache = {} %= empty (before main/non-recursive call to ordlgg)

ordlgg(X, Y) %given two tree patterns/instances
case

XorY=:
return the other

X and J) are both constant leaves and equal:
return X

root node labels of X and)) differ,
at least one of X and )) is a variable,

or number of children differ:
variablize(X, Y) % returns cached

%variable for X, )), if any.
% or creates a new variable and caches it.

default
return a tree with X's root node label at top and

the n children:
(ordlgg( X1,y1 ),

ordlgg( X,Y))
% where X1 is the ith subtree of X.

variablize(r, s) %Given two (sub)tree patterns/instances
if there is a triple of the form (r,s,var) in cache,

then return var
else create a new variable var,

add (r,s,var) to cache,
return var

FIGURE 3.3. Algorithm ordlgg for computing the lgg of ordered tree patterns

31
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the same, identical pair of subtrees occurs more than once in the tree patterns,

the same variable must be returned. This restriction is needed so the resulting

output tree pattern will not be more general than necessary. The learning algo-

rithm depends on having the least general hypothesis that will cover the training

examples. So the lgg algorithm must not return an overgeneral hypothesis. The

algorithm remembers when the pair of subtrees reoccurs by caching the sub-

tree pairs along with the corresponding generated variable. Whenever the same

pair of arguments with different root labels or different numbers of children is

given to lgg more than once in generalizing a pair of trees, the same (repeated)

variable is returned.

A proof that the ordlgg algorithm produces a result which satisfies the

lgg definition follows. Induction on the minimum depths of the two arguments

of ordlgg is used. (Where the root node is taken to be depth 0, and the depth

of a tree is defined to be the maximum length of the path from the root to any

leaf.)

Lemma 3.3 ordlgg (X,Y) >- X and ordlgg (X,Y) Y.

Proof: Let k be the minimum of the depths of the two argument trees and

the inductive hypothesis be: given X and J) with depth k <n, ordlgg (X,Y)

X and ordlgg (X,y) >- y. To prove the lemma's conclusion, substitutions o

and o- are defined so ordIg (X,y) a, = X and ordlgg (X,y) a, = Y.

Base Cases: n 0: The following cases apply.

The bottom/empty-set symbol (q) is handled as a separate case. If X is q,

then ordlgg returns)) which is >- )) as well as X. The same argument applies if

X= ))= the same constant leaf C. Then ordlgg(X,Y) = C and a = = {}.

Induction Cases: n > 0: (3) either X or )) is just a single variable, or X =

X0(X1 .. . Xm) and)) = )ooYi . . . )) with 24 )) or m I and no repeated

variables. (if X is a variable, then 24 is that variable and m = 0; similarly for

)).) ordlgg returns a variable v; a = {v/X} and o = {v/Y} shows that V
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matches both lgg arguments by Definition 3.1.

(4) Xo = Y0 and rn = 1 (otherwise same as (3)with no repeated variables).

ordlgg is called with each pair of corresponding subtrees. By the inductive

hypothesis for tree depth n 1, ordlgg computes the lgg of each each and Y

pair. By Definition 3.1, there are substitutions crj and cr,,j so ordIgg(k, Yi)crj

= X, and similarly for cr. Since the have no variables in common, o Uj

cx.

Repeated Variables: (5) (in cases 3 and 4). Denote all pairs of subtrees

combined by cases (3) or (4) as p and q and the corresponding variables as

v2. Then ordlgg produces v = v if pj = Pi and qj = q3. Let substitutions a

= {. . . v/p. . .} and cr = {. . . vi/qi ... } (with duplicate variable substitutions

eliminated). Then V vcr = p, and va qj, so ordlgg(X,Y) >- X, J). 0

Lemma 3.4 If Z >- X and 2 >-)) then 2>- ordlgg(X,Y).

Proof: Following Lemma 3.3. let k be the minimum depth of the two argu-

ments and the inductive hypothesis be: V Z>- X, Y = Z ordlgg(X,Y).
Base Cases: n = 0:

X= 5. Then any 2 >- X, J) also implies 2 >- ordlgg (X,y) since the latter

is just 3). The equivalent argument applies if Y .

X 3) = the same constant leaf C. Then 2 >- X,J) implies Z >- C, and

ordlgg gives C also implies 2 >- ordlgg(X,Y).

Induction Cases: ii> 0: (3) X or)) is just a variables, or X = X0(X1 . . . Xm)

and 3) = 3)0(3)1 . . . ))) with X0 or m I and no repeated variables in ordlgg

(X,y) or 2. Then Z >- X,y and 2 is a tree rather than a variable implies any

substitutions a and a can not change the root label and number of subtrees of

2. But X and 3) differ in one of these characteristics, yielding a contradiction.

2 can only be a variable so 2 >- ordlgg (X,y).

(4) X0 Yo and m = I (and the other conditions same as (3)including no

repeated variables). 2 >- X,y implies VZ >- X, )). By the induction hypoth-

esis for n 1, Z >- ordlgg (Xi, y). By Definition 3.1, there is a substitution a2
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corresponding to this match. Given that there are no repeated variables in 2

or ordlgg (X,y), form a substitution a Ua to show 2 >- ordlgg (X,y).

(5) Repeated variables in 2 or ordlgg(X,Y). Adapt the arguments in cases (3)

and (4), but merge the substitutions as follows. Denote the variables in 2 as

z1, ..., z .....Then by 2 X, and the corresponding substitutions a

and a, there must be subtrees at the positions corresponding to these variables

in X and )) (i.e., same depth and child of child ...). Denote them as x1,

and Yi, ... , ......Let the corresponding subtrees in ordlgg (X,y)
be o, ..., o, .. . (which must exist by the arguments of cases (3) and (4)).

Suppose variables z and z1 in first-level subtrees Z and 2, respectively, of

2 are the same variablecall it z. Let x, x1, Yj, Yt, o, and o be the subtrees

corresponding to z and z1 in X, y, and ordlgg (X,y) . ordlgg therefore forms

03 from x and y3 in a deterministic manner except for choosing the name of

a new variable (similarly for 01). But subroutine variablize ensures that the

same variable name will be returned for the same argument trees; hence 03

= 01. The substitutions for the subtrees are za = ordlgg(X, 3))3 and z1a1 =

ordlgg(X, J))1. The substitutions for first-level subtrees Z and Z must be of

the form, a1 = {. . .
, z/o3,.. .} and a9 = {. . .

, z/o1,.
. .}. But the substitutions

for z are really the same, so af and ag can be merged by taking the union of

the substitutions and eliminating duplicates. This approach applies to all of 2,

so 2 >- ordlgg(X,Y). 0

Theorem 3.5 The algorithm ordlgg (Figure 3.3) computes the lgg of two or-

dered trees (Definition 3.3) in polynomial time.

Proof: By Lemma 3.3, ordlgg (X,y) >- X, 3). By Lemma 3.4, V 2 X, 3), 2

>- ordlgg (X,y). Hence, by Definition 3.3, ordgg (X,y) = lgg(X,3)).

The time complexity of the lgg algorithm is bounded by the need to

examine each node of the input trees. This time is therefore O(total input tree

nodes). 0



3.3. Ordered Tree Algorithm and Its Justification

The learning algorithm for ordered trees uses the equivalence query (EQ)

to obtain training examples (tree instances). This algorithm maintains a hy-

pothesis tree representing the examples it has seen so far and successively com-

bines this hypothesis with new examples using lgg until EQ indicates that the

target has been found. The properties of the ordered-tree class and lgg guaran-

tee that this algorithm will successfully terminate after a polynomial number of

examples (i.e., the chain of generalization steps can't be exponentially long).

The learning algorithm works as follows. The initialization sets the ten-

tative hypothesis h to ç which represents the empty set of tree instances. This

value ensures that the hypothesis is a subset of any possible target. If the target

was the empty set, then learning would be done and the while ioop terminates

(since EQ immediately returns true), returning q as the correct target.

The learner then executes the loop. EQ is used at the beginning of the

loop to serve two purposes: to supply examples and to test when the loop is

done. The ioop test determines if the learner's hypothesis h is equivalent to

the target and if so terminates the loop. The way the algorithm is structured

guarantees both that h is always a subset of the target and that this terminating

condition will eventually become true.

While the loop is not done, EQ supplies an example tree instance which

is covered by the target but not by h. This example therefore suggests how

the hypothesis h should be generalized to bring it closer to the target. The lgg

algorithm then combines the new example with the previous hypothesis h to

form a new hypothesis which covers both the hypothesis and the new example

and hence all examples seen so far. This routine retains all those parts of the

example and hypothesis which could be part of some target consistent with the

examples already obtained.

The new hypothesis formed by lgg is then stored as the current hypoth-

esis h. Because it covers an example not covered by the previous h, this new h
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is always guaranteed to be more general. Further, the amount of generalization

will always be significant (as measured by a metric to be explained later).

This hypothesis will always be a subset of the target. The initial hy-

pothesis () represents a subset of all possible targets. The dual invariant of all

examples being positive and the hypothesis being a subset of the target is then

preserved in all subsequent learning steps (Lemma 3.6). The resulting h will

therefore never become more general than the target (i.e., never "overshoot" or

overgeneralize the target). These facts together guarantee that the target will

be found within a limited number of steps.

For example, Figure 3.4 shows several aspects of this learning. The

sample target is given in (a), and the first two examples are (b) and (c). Note

that learning process after that point alternates between calculating the Igg

and getting an additional exampleuntil the target is obtained. The lgg is first

calculated from the initial hypothesis (q, not shown) and the first example (b),

and the result is the same as (b). Then taking the lgg with (c) yields (d), taking

lgg with (e) yields (f), etc.

Note that examples (b) and (c) require generalization in different parts

of the tree. When these two examples are combined into a single tree pattern by

lgg (d), the result covers more than just the union of the sets of instances covered

by (b) and (c). Example (c) is deeper in the first subtree than example (b), but

example (b) is more general in the second and third subtrees. A tree pattern

which covers both examples must necessarily be at least as general as either in

the first child, and the only way to accomplish that is to make the first child

a variable (t) in the lgg (d). The second (and third) subtrees have root C and

two children with the left child being D so that part is retained in the lgg. But

the right child is quite different so it is replaced with a variable (s) in (d). The

target necessarily includes all the instances covered by (d) because the target

has to cover both lgg arguments(b) and (c) and there is no more specific tree

within the ordered tree class which can cover both of these arguments because
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any tree pattern that is more specific in one of the child subtrees won't cover

both of the corresponding subtrees in examples (b) and (c).

There are some more subtle issues involving the presence of more than

one copy of the same variable in a tree pattern. \Vhen lgg forms (d), it also

detects the fact that the same pair of subsubtrees is combined by lgg twice-

E(K) and Hand therefore must be given the same variable name s. Tree (f)

is a generalization of (d) which keeps the variables identical but at the next,

higher level. Tree pattern (h) separates these repeated variables into two distinct

variables. This result is equivalent to the target, so EQ indicates that learning

is done.

h = ç % initialize hypothesis to empty set
while EQ(h) yields a counterexample x %each counterexample is in

% the target set.
h =lgg(h,x)

return h

FIGURE 3.5. OT Learning Algorithm Using EQ only

Lemma 3.6 In the ordered tree algorithm (Figure 3.5), the training examples

returned by EQ are always positive and the hypothesis h is always a subset of

the target T.

Proof: The two points to be proven mutually depend on each other, and are

therefore proven together. Use mathematical induction on the learning sequence

with the inductive hypothesis being L(h) c L(T).
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Base case: h is initialized to q and clearly L(q) c T.

Induction step: Assume L(h) c L(T) when EQ is called. Then any coun-

terexample x supplied by EQ is in the set difference L(T) - L(h) since
L(h) c L(T) = L(h) - L(T) = . Therefore both h and the positive coun-

terexample x are contained in T. Let 1 = lgg(h,x). By definition, I must be

matched by any tree pattern that matches both h and x, so L(l) c L(T). Since

I becomes the new h, the inductive hypothesis is true the next time EQ is called.

D

Theorem 3.7 Ordered trees are exactly learnable from EQ in time polynomial

in the size of the initial instance and target.

Proof: By Lemma 3.6, the hypothesis is always a subset of the target. On

each loop iteration, the new example must be outside of the old h but in the

new h. This guarantees that h is made more general in each step and makes

progress toward the target. The following argument bounds the number of

iterations needed to converge to the target.

The Igg must result in a change in the learned hypothesis in one of the

following ways:

Turning a constant label on a leaf node into a variable

Trimming the children/subtrees below a node and turning that node into

a variable

Making two identical variables distinct (or, more generally, splitting a set

of identical variables into two sets with each such set having a distinct

variable

Let n be the number of nodes in the hypothesis tree pattern and v be the

number of distinct variables in that tree. Then it is easy to see that in each of

the above cases this tree-size metric n - v decreases by at least 1. Since initially



40

n equals the number of nodes in the first counterexample and v is 0, the total

number of queries, including the first EQ query on the null pattern, is bounded

by ri0 + 1, where n0 is the maximum number of nodes in any counterexample.

Recall that the lgg algorithm runs in time linear in the sizes (number

of nodes) of its input trees. Other operations which manipulate the trees as

a whole obey the same bound. The time for each ioop iteration is therefore

bounded by 0(no). The time complexity for the OF algorithm is therefore

O(n). 0

The OT result can be extended to a concept class in which the label

alphabet is finite and there is a bound on the number of subtrees allowed under

any node in a tree. Using the notation of Section 4.2, this class is OT1,b.

Corollary 3.8 Ordered trees with both label alphabet and the number of subtrees

bounded (OTI,b with 1, b finite) are e.xaetly learnable.

Proof: No part of the ordered-tree or lgg algorithms or proofs depends on the

ordered-tree class having an infinite label alphabet or lack of a bound on the

number of subtrees. 0

3.4. Ordered Forests

This section describes the ordered forests (OF) concept class and its

learnability. OF allows hypotheses containing more than one tree pattern and

therefore is more expressive in that it can represent sets of instances which the

OT class (ordered trees) can't. As described in the ordered tree introduction,

this class can represent sets of tree instances which do not all have the same

structure, and hence are not representable by hypotheses in the OT class. This

class requires an additional oracle in order to be learnable. We will use the subset

query or the membership query. Ordered forests obey a special property called
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compactness (Definition 3.5) which makes this class learnable from equivalence

and subset queries.

Definition 3.4 In the concept class of ordered forests (OF), each hypothesis is

a finite set of tree patterns, where the sub trees of each tree pattern are ordered

from left to right. Further, either the label alphabet is infinite or the number of

children of any node is unbounded (or both).

The OF algorithm (Figure 3.8) maintains a set of hypothesis trees. It

obtains examples one at a time from EQ, and uses SQ (or MQ) to determine

whether a particular example should be combined with a particular hypothesis

tree pattern. Each target tree is therefore successively approximated as ad-

ditional examples are obtained and combined with the appropriate hypothesis

tree as judged by SQ. The learning process therefore works like multiple copies

of the OT learning algorithmin effect there are multiple "slots" where each slot

is a hypothesis tree pattern, and SQ helps decide which slot an example should

be placed in and combined with the corresponding hypothesis tree pattern. The

else part in the code creates a new slot (hypothesis tree) when necessary.

This approach might seem to be sufficient to guarantee that the target

can be efficiently found, but there is a problem. The correspondence between

hypothesis trees and target trees is not a priori guaranteed and must be justified.

A guarantee of this correspondence depends on the hypothesis space having the

compactness property as defined below.

To prove that various learning algorithms work in polynomial time, there

is a need to show that not too many potential tree patterns are created compared

to the size of the target. Often this is easy to show if the concept class is

compact in the sense that if a union of concepts covers a concept, then one of

the concepts in the union covers it by itself.

Definition 3.5 A concept class C is compact if for any Z and V1, ..., V E
C, U1 L(V) D L(Z) = i L(V) D L(Z)
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FIGURE 3.6. OF Learning Depends on Compactness

See Figure 3.6 for an example illustrating the compactness property. Let

the two pattern trees in (a) be the target and let (b) be a hypothesis tree. Then

(b) does not represent a subset of the left tree of (a) because it has a variable in

place of A nor a subset of the right target tree because of the variable in place

of E. Is it possible for a hypothesis tree such as (b) to cover examples outside of

each of the target trees and yet be a subset of their union? At first glance, this

might seem possible because (b) has a variable in place of one of the constants

of each of the target trees and (b) contains only constant and variable children

which also have an equivalent in one of the target trees. But a more careful

analysis shows that the instance (c) is matched by (b) but not by either tree in

(a), so the assumption is false.

\Vith a more complex example, an OF learning algorithm might create

so many hypotheses like (b) that it would have great difficulty finding the cor-

rect target trees. Can the OF algorithm fall into this trap? The compactness

property for OF says no; i.e., if (b) is a subset of the target, then it must be a

subset of an individual target tree in (a). Therefore SQ would reject (b) in the

vB CDu MBCDN
(b) Hypothesis (c) Instance

not in Target
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OF algorithm so that this tree pattern would never be placed in h. Note that

the OT class does not have this problem because all examples must be under

the same target tree since the class restricts the target to consist of only one

tree pattern. We now formally show that this property holds for the OT class.

Lemma 3.9 The class of ordered tree patterns (OT) is compact.

Proof: From the tree pattern Z, form the tree instance e by leaving each

constant in Z alone and substituting constant subtrees for variables as follows.

Replace each distinct variable in Z with either a single constant label (or a 1-

level constant subtreeroot plus children). Use the same constant tree for each

copy of a repeated variable. Choose these labels or subtrees so they are not

matched by any nontrivial subtrees (other than a single variable) in any of the

V. Since either the label alphabet size or number of children is unbounded,

there are always enough of these distinct subtrees or labels available.

Then for each i, either e V2 or V2 >- Z by the following argument.

When a particular V matches e, by the above choices any constant subtree c

in e is only matched by single variables in V2. Therefore c can be replaced by

any constant subtree in e and V2 will still match e. This observation implies

that any tree instance Z matches will also be matched by V, so some V2 Z

orUV2. 0

It is also worth noting why the following simpler algorithm does not work

for learning OF. The simpler algorithm takes each positive example obtained

from the equivalence query and uses a series of subset queries to generalize it

as much as possible until it cannot be generalized any more, in which case it

is stored away as one of the tree patterns in the target. This version of the

algorithm uses just one example per target tree to be learned and depends on

the fact that the number of possible ways to generalize a hypothesis is limited to

be polynomial. The algorithm is therefore informally described as "bottom-up

learning from single examples". This approach works fine as long as there are no
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(a) (b) (c)

Target Single Example 1 of 64 Possible SQ's
(fails')

FIGURE 3.7. OF Bottom-Up from Single Example Not Polynomial

repeated variables in the tree and is indeed the algorithm we give for the UF

class (Figure 6.1). If there are repeated variables, however, it is not possible to

extract a tree pattern from a tree instance with a reasonable number of subset

queries. Consider, for example, a tree pattern with 2n leaves, half of which are

labeled with the variable x and the rest labeled with the variable y (Figure 3.7

(a)). Suppose the counterexample has all the 2n variables instantiated to the

same constant A (part b of figure). Now, unless the algorithm correctly guesses

which half of the 2n constants should be generalized to the same variable, any

attempt to generalize a subset of the constants will get a negative answer from

the subset querye.g., (c) in the figure. The process of finding the correct

subset of the variables would be like guessing a password. Exhaustive search for

the correct generalization requires a number of queries exponential in ri. (The

number of choices to test would be close to because there might not be the
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same number of copies of the two variables and each child could independently

be either variable.')

Our algorithm (Figure 3.8), instead, uses several examples to learn each

tree pattern in the forest, and combines them using the lgg algorithm described

earlier. It solves the above problem by letting the counterexamples determine

which subset of the constants should be generalized to the same variable. The

method is similar to the approaches used elsewhere for learning propositional

and first order Horn clauses (Angluin, Frazier, & Pitt, 1992; Reddy & Tadepalli,

1998, 1999).

initialization: h = {}
while EQ(h) gives counterexample x (which is positive):

If a tree pattern p in h such that SQ(p')
where p' = lgg(p, x)

I then replace the first such p with p'
else h = h U x. % add another tree to hypothesis

1 Return(h)

FIGURE 3.8. OF-EQSQ algorithm

'The cases with all one variable are not generalizations and swapping the two vari-
ables makes no difference, so the actual number is a bit less. Also see the Chapter 5
on the non-learnability of UT for a discussion of additional issues related to this
approach.



3.5. Learning Ordered Forests With Subset Queries

In this section, we describe and analyze a learning algorithm for OF

for an infinite label alphabet or with an unbounded number of children using

equivalence and subset queries (and from EQ and membership queries in the

next section).

The algorithm for OF using EQ and SQ is given in Figure 3.8. This

algorithm works much like the OT algorithm for each individual hypothesis

tree being formed in h. But it uses the subset query to decide which examples

should be combined into the same hypothesis tree. The algorithm keeps getting

example tree instances and combining them into tree patterns while maintaining

the tree patterns it has generated so far in h. The algorithm doesn't know which

examples belong in the same target tree pattern, so it tries combining each

example with every hypothesis tree in h in sequence using lgg. Each such result

is then tested to see if it is a subset of the target and therefore that example

really belongs in that tree pattern. If so, then the resulting tree pattern is kept

in h. Otherwise that change is rejected and the next hypothesis tree is tried. If

the new example cant be successfully combined with any tree pattern in h, it

is added to h as a separate, new tree (which therefore matches only itself).

Lemma 3.10 below proves a property of the OF learning algorithm which

is needed to support the OF-learnability proof (Theorem 3.11). This lemma

applies the compactness property to the OF algorithm. The result shows that

each tree pattern in h has to correspond to (is a subset of) a particular target

tree and no two tree patterns correspond to the same target tree (i.e., there is a

one-to-one into mapping from the tree patterns in h to the target tree patterns).

This result is needed to show that the OF algorithm will not produce an overly

complex hypothesis any more hypothesis with excess tree patterns and in turn

implies that the learning algorithm will work within reasonable time and query

complexity bounds.
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Lemma 3.10 Let the target forest for the OF algorithm be f {t1 . . . t} and
let the hypothesis at some stage be h = {pi . . . p}. Then: (1) for every Pj E h,

there is a t2 E f such that L(p3) c L(t). (2) No two distinct Pi 's in h are

subsets of the same t2.

Proof: (1): Every Pj which is introduced by the algorithm is a subset of the

target because the introduced Pj is either a positive counterexample x or was

approved as a subset by the SQ call in Figure 3.8. Then by compactness of

ordered trees, part (1) follows.

(2): Assume the contrary: Pj,Pk c t for some i < n and j < k at some

point in the algorithm. Let p and p' be the th and the ktL patterns in the

hypothesis immediately after the kt pattern was first introduced. Since the

OF algorithm monotonically generalizes the tree patterns in the hypothesis,

all previous versions of Pj and Pk, including p and p, must be subsets of t.

When p' was first introduced, it was just a new example, and t

by Definition 3.3 of lgg. Hence these two trees would have been combined

into one in the hypothesis by the OF-EQSQ learning algorithm, leading to a

contradiction. LI

The proof of correctness of the algorithm relies on the fact that lgg and

SQ wrork together in the OF algorithm to determine which examples should be

combined into a tree pattern.

Theorem 3.11 OF is learnable from equivalence and subset queries.

Proof: The algorithm tries to combine each new example with each hypothesis

tree accumulated so far using lgg, the result of which is verified with SQ. By

compactness, the result of each such lgg step that passes the subset query must

yield a tree pattern which is matched by one particular target tree pattern.

Further, each such step must generalize the tree nontrivially, or else the new

example would have been matched by the original tree pattern, and would not

have been a counterexample.
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For the bounds calculation, recall that Theorem 3.7 uses the metric nv

to measure progress in generalizing a tree pattern (where n is the number of

nodes and v is the number of distinct variables.) This same metric is used to

calculate a similar bound for OF. But it is not sufficient to use the metric on just

one example. Instead, each hypothesis tree which eventually becomes equivalent

to one of the target trees is essentially independent of all the other hypothesis

trees. Therefore not just the first example for the learning sequence but the

first example used in forming each hypothesis tree must be used in calculating

the bound.

Hence, for each target tree, the number of counterexamples is bounded by

the number of nodes in the first example and one more for that initial example.

The equivalence queries, or counterexamples for the entire target are therefore

bounded by t(m+1) where t is the number of target trees and mis the maximum

size of any counterexample.

An attempt is made to generalize each counterexample with each hy-

pothesis tree; by Lemma 3.10, the number of hypothesis trees is never more

than the number of target trees. Therefore, the number of subset queries is

bounded by t times the number of counterexamples or t2(m + 1) or O(t2m).

D

3.6. Learning Ordered Forests With Membership Queries

A subset query tests whether a given tree pattern matches a subset of

the instances matched by the target. A membership query (MQ) merely tests if

one particular instance is matched by the target. It might therefore seem that

SQ is more powerful than MQ but that is not true in most classes. An MQ

test accurately simulates an SQ test if all variables in the tree pattern given to

SQ are replaced with unique constants (or constant subtrees) that do not occur

anywhere in the target.
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FIGURE 3.9. How MQ can simulate SQ

Figure 3.9 shows an example of membership queries simulating subset

queries. Let the target be (a). If a subset query is executed with the tree

pattern (b), the answer will be true because z can cover everything matched

by the subtree at B. A membership query would simulate this operation by

replacing x with a new constant N as in (c) and would get the correct answer.

But there is a problem: suppose it is desired to simulate a subset query

that has pattern (d) as an argumentwhich would give false (for the target in

(a)). Then substituting constants N and M for the two variables as in (e)

would again give the correct answer. But the learner has no way of knowing

which constants are in/not in the target and it might also try substituting C

for the second variable, yielding the tree (c) and getting an incorrect answer.

(Equivalently, the target could have M as the right child, giving the same result.)

These examples show both how the simulation can work quite well in most cases

but still be imperfect. Some error detection and recovery is therefore necessary

to be able to learn with membership queries.
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FIGURE 3.10. Learning With MQ

Figure 3.10 shows a possible learning sequence using MQ. The chosen

target consists of the two trees in (a); then the examples in (b) are given to the

learner. The learner forms the lgg with (c) which is overgeneral. Suppose the

learner calls MQ with the constants E and F substituted for the variables in

(c) as shown in (d); the MQ returns true because this instance is matched by

the right tree pattern in the target and because one of the constants chosen (F)

also appeared in the target. The learner therefore incorrectly concludes that (c)

is a subset of the target, so the algorithm has overgeneralized. The malfunction

is not detected until further learning is attempted by giving tree pattern (c)

as hypothesis to EQ and obtaining a negative counterexample (e) (matched by

the hypothesis but not by the target). The learner can therefore conclude that
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some of the constants it used (either E or F) caused the malfunction but it

doesn't know which. To fix the problem, the learner simply does not use any

of those constants anymore but uses new ones (say C and H). Step (d) is

repeated with C and H as the leaves in (e) and MQ returns the correct value,

false. The learner must then make the union of the two examples (without any

generalizationi.e., no variables) as the new hypothesis because there are no

other examples available and therefore no guide on how to further generalize

the examples at this point. The rest of the steps will work like the SQ. G and H

can continue to be substituted for variables until another overgeneral hypothesis

is detected or learning is done.

The MQ algorithm (Figure 3.11) is given with a version that works with

either an infinite constant alphabet or an unbounded number of children under

any tree node. To simulate a subset query on a tree pattern with v variables,

when the label alphabet is infinite, the algorithm tries to find v consecutive

unused labels with sequential search. When the number of children of a node

is not bounded, the algorithm searches for v distinct 1-level tree instances with

a root and large enough numbers of children, w, w + 1.....so that they do not

occur as subtrees of the target tree patterns. The search is done by doubling w

each time an equivalence query gives a negative example suggesting that one of

such tree instances occurs in the target.

The theorem below depends on the results above that learning OF with

SQ work as well for MQby using the error correction process. When the sim-

ulation of SQ by MQ works perfectly, the MQ version of the algorithm works

exactly like the SQ versionincluding the bounds on the number of queries. But

if an overgeneralization occurs, it will always be detected by EQ returning a

negative example within a time bound no greater than that for the SQ algo-

rithm to learn the target. The MQ algorithm then restarts learning with a

new sequence of constants. Since only constants in the target can cause such

failures, the number of restarts is bounded by the number of constant labels in



c test constant for MQ simulate SQ):
= first label if node label alphabet is infinite, or

1-level tree instance with number of children w = 1
if unbounded

repeat % use new constants until MQ
% correctly simulates SQ:

c = next label if infinite labels or
= tree with number of children doubled if unbounded.

% The following is essentially the OF-EQSQ algorithm
% with constants in place of variables:

initialize hypothesis: h = {}
while EQ(h) gives a positive counterexample x:

If a tree pattern p in h such that
MQ(lgg(p, x) with variables replaced by

c and its successors)
returns "true"

then replace p with lgg(p, x)
else h = hUx.

until no negative counterexample is returned by EQ.
Return(h)

FIGURE 3.11. OF algorithm using EQ and MQ

the target; and after all these constants are exhausted, no overgeneralization

can occur. This factor multiplied by the bounds for the SQ algorithm gives

corresponding bounds for the MQ algorithm.

Theorem 3.12 OF (with either an infinite label alphabet or an unbounded

number of children) is learnable from equivalence and membership queries.

52

Proof: The algorithm is given in Figure 3.11. First we consider the case

where there is no bound on the maximum number of children of any node in
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the tree patterns. The subset query of the OF-EQSQ algorithm is simulated

by a membership query where the variables are substituted with distinct tree

instances c and its successors, which have a root with a number of children

w, w + 1,..., where the "width" w is initialized to 1. If MQ answers false,

then SQ would have answered false as well and the algorithm works correctly.

But if MQ answers true, it may be falsely interpreted as a true for SQ if one

of the tree patterns in the target forest contains c as a subtree. In that case,

the algorithm overgeneralizes. This will be detected when there is a negative

counterexample to EQ, then the algorithm doubles the width w and starts all

over. If the maximum number of children of any node in the target is b, then

in [log bl iterations, it will reach a w which is larger than b and from then on

MQ faithfully simulates SQ. Hence all the bounds for the OF-EQSQ will have

to be multiplied by log b to get the bounds for the new algorithm.

When there is no bound on the number of possible node labels, the algo-

rithm substitutes each variable with a distinct new label generated successively

starting with c in Figure 3.11. If the number of constant labels in the target

forest is 1, it is easy to see that there are 1 consecutive unused labels in the first

12 + 1 labels. So, in this case, the multiplication factor for the time and query

complexity bounds is 12 + 1. 0

3.7. Summary and Discussion

Ordered trees were proven to be learnable from from equivalence quer-

ies alone. Ordered forests are learnable from equivalence and either subset or

membership queries. An algorithm for combining multiple examples (lgg) is an

important tool for both of these learning algorithms.

Tree patterns are known to be learnable from equivalence queries when

the subtrees of the tree pattern are ordered and are mapped to subtrees of

the instance in the same order by a one-to-one onto mapping (Ko et al., 1990;
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Goldman & Kwek, 1999). Finite unions or "forests" of ordered tree patterns

are learnable from equivalence and membership queries (Page & Frisch, 1992;

Page, 1993; Arimura et al., 1995; Amoth, Cull, & Tadepalli, 1998).

In related work on ordered forests, Arimura considers a slightly different

learning setting in which each symbol in the alphabet has an associated arity

(the number of children allowed for a node labeled by it) and gives a learning

algorithm for OF with EQ and MQ, where the size of the label alphabet is

greater than the number of trees in the target forest (Arimura et al., 1995).

Their algorithm assumes a bound on the number of trees in the target forest,

while our algorithm uses negative examples to determine this number.

Ordered forests with a bound on the number of trees have been shown

to be learnable with equivalence queries alone (Goldman & Kwek, 1999); this

claim gives a time bound which is exponential in the number of tress in the

forest.



55

4. REDUCTIONS BETWEEN ORDERED FORESTS AND DNF

This chapter ties the learnability of some tree classes to learnability of

Boolean formulas in disjunctive normal form (DNF). DNF has been proven to

not be exactly learnable with equivalence queries only (Angluin, 1990). PA C

is a learning framework in which the learner is allowed to return a hypothesis

which approximates the target within some error rate parameter, e. But PAC

learnability of DNF is an open question. Unlike PAC, the PAC predictability

framework does not require the learner to return a hypothesis, but merely re-

quires the class of examples the learner has not seen before to be predicted with

an error rate no greater than a parameter e. Membership queries have been

shown to not be helpful in learning DNF in the PAC predictability framework

by (Angluin & Kharitnov, 1995), based on the assumption that cryptographic

systems such as the RSA cryptosystem are hard to break. The PAC (or ex-

act) learnability of DNF with (equivalence and) membership queries is still not

known.

On the assumption the above classes are hard, this chapter concentrates

on negative results. When both the label alphabet and a bound on the number

of children of any node are finite, this chapter shows that exactly learning

ordered forests without repeated variables (jt-OF) is at least as hard as learning

DNFwith both equivalence and membership queries. With equivalence queries

alone, several classes are proven to not be learnable without relying on any

complexity assumptions. These classes include OF, DNF for any base, and

even n-UT (Section 5.2) (However, the simplest classordered treesis learnable

under these conditionsCorollary 3.8.)

Under the prediction with membership queries (pwm) framework, DNF

in base k is shown to be reducible to ordinary base-2 DNF, and DNF (in an

appropriate base) is shown to be reducible to OF with repeated variableseven
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though these reductions (with membership queries) are open problems in the

exact framework.

4.1. PAC Prediction

PA C prediction is a probabilistic learning framework which, unlike prob-

ably approximately correct (PA C), does not require a hypothesis to be returned

(Valiant. 1984a; Natarajan, 1991; Kearns & Vazirani, 1994; Pitt & Warmuth,

1990). The prediction framework merely requires the learner to be able to pre-

dict the class of test instances. Prediction-preserving reducibility (PPR) (Pitt

& Warmuth, 1990) and prediction with membership queries (pwm) (Angluin &

Kharitnov, 1995) are learning reduction techniques with explicit criteria given

in the literature. The PA C or Probably Approximately Correct learning frame-

work is probabilistic in that it requires a hypothesis with a small error rate to

be returned at the end of learning with high probability. The examples during

training and testing are to be chosen from the same stationary distribution un-

known to the learner. PPR is a reduction technique in the PAC-predictability

framework which has no queries in addition to that which provides random ex-

amples. But pwm is a criterion for reduction with membership queries in the

predictability framework.

Each reduction definition requires conversion functions between the two

classes for the target and for examples and hypotheses between the two classes as

needed by the learning framework and queries used. Consistency requirements

between hypotheses and example conversions then ensure that the queries for

the two classes in the reduction behave properly. Each concept class is actually a

class of representations (hypotheses) 17?. with a corresponding implicit mapping L

from each representation r E 7?. to a subset of the instance space I. A reduction

consists of mappings of instances and representations with certain properties.
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FIGURE 4.1. Simulation for pwm Reduction

Definition 1 of (Angluin & Kharitnov, 1995) is an explicit criterion for

reduction between concept classes in the prediction with membership queries

(pwm) framework. This reduction of 7?. to 7?-' is denoted 7?. _<pwm 7?.'and im-

plies 7?.' is at least as hard to learn as 7?. is, or learnability of 7?.' in the PAC-

predictability framework with membership queries implies the same for 7?.. De-

fine I and I' to be the corresponding instance spaces.

Figure 4.1 diagrams the simulation used by the reduction. Function f

converts and defines the correspondence from examples in I provided to the

learner to examples in TE' which are then given to learning algorithm A' for

7?.'. Function f' does the reverse (but not necessarily inverse) conversion of

example arguments in I' given to MQ by A' to examples in I which can then

be given to MQ for 7?. as shown in the figure. This function f can return T

or I which represent "always true" and "always false", respectively. These

special values are then translated directly to yes or no without calling MQft.
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There is no requirement for an explicit conversion of hypotheses in either direc-

tion in prediction reductions, so none is shown in Figure 4.1. But a mapping

g is implied by the requirement that for each hypothesis r E 7, there exists

a corresponding hypothesis g(r) e Rj'. All of these functions are required to

produce a result with polynomial size and be computable in polynomial time,

except the definition does not require g to be computable in polynomial time.

PAC-predictability differs from the exact learning model both in that it is prob-

abilistic and it does not require a hypothesis to be returned. Hence there is no

need to convert a hypothesis to the class being learned. Following (Angluin &

Kharitnov, 1995), here is a version of the pwm definition simplified by removing

the explicit polynomial-size arguments:

Definition 4.1 Let 7?. and 7?' be representations of concepts with corresponding

instance spaces I and T'. Let I and I be elements not in I Then 7?. is pwm-

reducible to 7?.' , denoted 7 _<m 7?!, if and only if there exist three mappings

f: I -* I', g: 7?. -+ 7?.', and f': I' -* I with the following properties:

for r e 7?., g(r) is a hypothesis r' of size polynomial in the size of r.

V r E 7?., w E I, f(w) E I' and wE L(r) f(w) E L(g(r)). Moreover

f is computable in time polynomial in the sizes of w and r

For every hypothesis r 7?. and every w' E I', f'(w') is either T, I, or

f'(w') E L(r) w' E L(g(r)). If f'(w') T, then w' E L(g(r)); if f'(w')

I, then w' L(g(r)). Moreover f'is computable in time polynomial in

the sizes of r andw'.

This definition essentially says g converts hypotheses in a way consistent

with f and f' for converting examples in both directions, but a little bit of

flexibility is allowed by using T and I which act like special instances even

though they are not in I. The definition for PPR reduction, denoted here by
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PPR, (Pitt & Warmuth, 1990) is identical to the above except for the absence

of any h function to convert the instance arguments of membership queries).

The following concept class is used as an intermediate step between DNF

and Ii-OFI,b:

Definition 4.2 The concept class k- value DNF consists of disjunctions of con-

junctions of statements of the form v = x, where v is a variable and 0 x < k.

k can be infinite in which case x can be any natural number.

Constructs associated with this class will be designated with the k-prefix;

e.g., k-target, k-variable, etc.

This class generalizes the usual DNF in which a variable x can be taken

to mean x = 1 and a negated variable - can be taken to mean x = 0. But

explicit negation (e.g., a literal of the form, x 2) is not allowed. In 3- value

DNF, x 2 can be represented as x = OVx = 1. But the size of such expressions

such as x1 2 A x2 1 . . . x 1 will grow exponentially in the number of

variables when translated to DNF.

DNF with explicit negation which permits expressions such as x 2Ax

3 would allow conjunctions of arbitrary subsets of the set of possible values for

each variablewith a polynomial-sized expression. This variation of the DNF

class can therefore convert hypotheses between bases while directly representing

the corresponding set of instances. However, explicit negation is not easily

translated to and from the OF domain. Hence we only consider k- value DNF

without negation.

The following definitions for concept classes are used in this chapter.

Definition 4.3 OF1,,, is the concept class of ordered forests with a label alphabet

of I symbols and at most ("branching factor") b children at each node, where I

and b are assumed to be finite unless otherwise specified.

is identical to OF in Section 3.5, and OF,,, and OF1, have

identical learnability. These notations will be used when there is a need to
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distinguish classes corresponding to particular values of I and b. For these class

to be meaningful, b must be 2, and generally I needs to be as well.

By analogy with the notation for read-once Boolean formulas:

Definition 4.4 The prefix i- in front of any tree or forest patterns restricts

that class to hypotheses without repeated variables. So jt-UT means unordered

trees without repeated variables.

The following lemma and proof support the claim that, as with DNF in

(Angluin & Kharitnov, 1995), MQ does not help learning DNF with k values.

This lemma and Angluin's version are essentially reductions between sets of

queries rather than between concept classes. In this case the reduction is from

pwm (prediction with membership queries) to PAC-predictability (prediction

without membership queries).

Lemma 4.1 Under widely believed cryptographic assumptions, if k- value DNF

is learnable with membership queries in the FAG-predictability framework, then

it is learnable without membership queries in the same framework.

Proof (Sketch): (Angluin & Kharitnov, 1995) showed under widely believed

cryptographic assumptions. if DNF can be learned (within the PA C predictabil-

ity framework) with membership queries, then it can be learned without mem-

bership queries. The proof ties the problem of cracking the cryptography sys-

tems mentioned in Angluin's paper to learning. Further, the proof encodes

the logic and arithmetic of the cryptography systems in DNF by representing

implications between Boolean variables in CNF (conjunctive normal form).

The argument of that paper can be adapted to k-value DNF and thereby

suggests that the learnability of k- value DNF with membership queries has

similar behavior to that of learning DNF without membership queries since the

same relationship to learnability without membership queries holds for both

classes.
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The proof in Angluin's paper can be adapted to k- value DNF with MQ

showing if DNF is learnable with MQ then it is learnable without MQ (in the

PAC predictability framework). Merely change the arithmetic and logic used in

the cryptography system to work in base k. The top right of page 344 in that

reference shows how to encode a logic and gate and an inverter in CNF. To show

how the encoding could be done for a base k > 2, let k = 3. Then x = 1 = y = 2

would be represented in k-value CNF as: (x iVy 1)A(x ivy 0). Note

that the individual literals of k-value CNF must be inequalities (not restricted

to equalities) or the language would not be very expressive (and would also not

be the complement of k-value DNF). For general k, this kind of implication will

use k - 1 disjunctions. Li

Lemma 4.2 k- value DNF _<pwm (2-value) DNF with k> 2.

Proof (Sketch): Represent each k-value variable as a tuple of 2-value variables,

and define f to convert instances and g to convert hypotheses accordingly. In

general, not all codes in a tuple of variables will be used, so define f'to map

instances in DNF with an unused code to T. Make g consistent with this

mapping to T by augmenting a hypothesis with conjunctions covering all of

these unused codes when translating that hypothesis from 7 to W.

It is readily seen that the consistency properties of g with f and f'are

satisfied as well as the polynomial size/time requirements in Definition 4.1. 0

For the reduction proof from 1(1*1)-value DNF to bt-OFI,b, represent each

of n DNF variables as a particular tree node at depth d = logb 1
(tree skeleton

on left in Figure 4.2 for b = 2, 1 3, and n = 3). Each conjunction in a DNF

expression is represented as a single tree. Each DNF variable v corresponds to

tree node v for i 0 to n - 1. Make each combination of one of the I node

labels and 0 to b children under a given node be equivalent to one of the l(b+1)
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Proof (Sketch): Represent each DNF variable as (always the same) node in a

tree as in Figure 4.2. Each of the k values for DNF is represented as one of the

z y x

FIGURE 4.2. Tree skeleton (left), pattern produced by g from v0 = 3 A v2 7

with b = 2, 1 = 3, ii 3 (right).

values for the DNF variable corresponding to that tree node. Without loss of

generality, we assume the values for DNF variables are 0 . . . l(b+ 1)-i and the

tree node labels are 0 .. . 1 - 1. The corresponding tree node for a DNF value

v will then have [v/lj children and node label v mod 1. Conversion of a tree

node to a DNF value will be the inverse of this conversion, i.e., a tree node with

label i and c children will be mapped to ci + i. Figure 4.2 (left) shows a tree

skeleton with m = 3 nodes representing DNF variables at depth d = 2. The tree

on the right shows the tree pattern equivalent of the conjunction v0 = 3 A v2 = 7

for b = 2, 1 = 3, n = 3. The right (third) subtree has node label 7 mod 3 = 1

and two children with variables that are not used elsewhere, the middle subtree

is just a tree pattern variable since v1 is unconstrained in the conjunction.

Lemma 4.3 k- value DNF _<EQMQ OFI,b for 2 k l(b+ 1).
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l(b*-l) combinations of the node label and number of children in the correspond-

ing tree node. Functions f and g are then straightforward. Function f'will be

the inverse of f by translating each node label/children combination in a tree

instance to the corresponding value of a DNF variable, where applicable. Oth-

erwise, f'will translate a tree instance not conforming to this conversion scheme

to I. But a tree instance w' having a combination of node label and number of

children not representing a DNF code will be translated to T. Further, g will

be defined to append tree patterns covering each of these unused codes.

Then the consistency requirements for g with I and f'in Definition 4.1

hold because tree instances not matched by any tree pattern produces by g are

translated to I, and tree instances corresponding to an unused label-children

combination are mapped to T and matched by the extra patterns added by g.

Further, the polynomial size/time requirements are met. 0

4.2. Definitions

The following definitions are used to help show that exact learning an

ordered forest (or unordered tree) with certain restrictions is as hard as exact

learning of DNF.

The reduction definitions for PAC prediction are not directly applicable

to exact learning with EQ so Definition 4.5 below will be used. The symbol

<EQ below means exact reducibility with only the EQ oracle available. This

definition requires the mapping f always produce an element in the instance

space of jR'.

In the following, a reduction is defined from exact learning of a class (set

of representations) 7 to exact learning of another class 7' with corresponding

instance spaces I and I'. Functions f and g map instances and hypotheses

from R to 7?!, and g' maps hypotheses in the reverse direction subject to the
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conditions in these definitions. Unlike in the definition of pwm reduction, the

hypotheses in 7?! are all required to map back to 1 via g' in a way consistent

with all the instances in I.

Definition 4.5 7 <EQ??' with corresponding instance spaces I and I' if

mappings f: I -* I', g': 7?! -* 7?, and g: 1?. - 7?.' such that:

V r E 7?. and wE I, wE L(r) <> f(w) e L(g(r))

Vr' E 7?.' and w e I, w e L(g'(r')) f(w) E L(r')

Function g produces a polynomial-sized result, and the other functions pro-

duce a result in polynomial time (and therefore polynomial size).

The following lemma essentially says that as far as the subsets of in-

stances in I are concerned, functions g and g' behave like inverses:

Lemma 4.4 V r E 7?. L(r) = L(g'(g(r))).

Proof: V w I, w L(r) f(w) E L(g(r)) by property (1) w E L(g'(g(r)))

by property (2) of Definition 4.5. D

(This lemma says nothing about the relationship between g and g' with

instances in I' which are not in the range of f, nor does it imply L(g(g'(r'))) =

L(r') for r' E 7?.'.)

Lemma 4.5 If 7?. <EQ7?.' and 7?! is exactly learnable with EQ only, then 7?. is

exactly learnable with EQ only, i.e., 7?. is no harder to learn than 7?.' is.

Proof: Suppose that a learning algorithm A' is given for learning 7?! with only

equivalence queries. Construct an algorithm A for 7?. using the mappings f and

as follows. When A' calls EQ with a hypothesis r', r' gets translated by g'

and EQ is called with g'(r') (Figure 4.3). The example returned is translated

by f and is provided to A' as a counterexample to r'. By property (1) of

Definition 4.5, for any target t 1?., there is always a corresponding hypothesis

t' E 7?.' of size polynomial in r. When A' calls EQ with a hypothesis r'



true. Counterexample x is in L(g'(r')) L(t) (symmetric difference of converted

hypothesis and target). Then f(x) L(r') L(g(t)) by properties (1) and (2).

Similarly, when EQ says yes, then L(g'(r')) = L(t), and the reduced learning

algorithm A will therefore correctly identify the target set t. The learning

problem will therefore look like a valid problem to algorithm A', and A' can

learn any target corresponding to one in 7?. while getting a normal response

from EQ. El
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FIGURE 4.3. Reduction Simulation Learning R. using A' algorithm.

which is converted to g'(r') and a counterexample x is returned, the following is



4.3. Reductions for Exact Learning With Equivalence Queries

The following lemma shows a reduction of exact learning of DNF classes

from a lower base to a higher base.

Lemma 4.6 For any infinite or finite k> 2, 2-value DNF _<EQ k-value DNF.

Proof: Let variables v1 . . . v, in DNF be mapped to variables v . . . v in k-

value DNF and each conjunction in DNF be mapped to a conjunction in k-

value DNF. Define f to map each instance variable-value pair v = j within

each conjunction to v = j.
Let r denote the ith variable in r and similarly for w and g(r). Define

g to map constrained variables like f does: v = j to v = j. Then for all w E

I and r e 7Z, a single-conjunction hypothesis r matches an instance w if for

each variable-value pair r1 = e in r, there is a pair w = c in w. Further there

will also be the same sets of pairs g(r) c and w = c. If r is a disjunction,

then one of its conjunctions matches w if one conjunction in g(r) matches f(w).

So the same subset and matching relationship holds in 7?! and property (1) of

Definition 4.5.

The g' function works like the inverse of g except conjunctions with

values (i.e., the c3) not equal to 0 or 1 are discarded. Then for any r' and

w, the latter is matched by g'(r") if some conjunction in r' has a subset of

the variable-value pairs in f(w), and this conjunction will not be one of the

discarded ones. Property (2) is therefore satisfied.

All of these functions compute polynomial-sized results in polynomial

time, satisfying property (3) and all of Definition 4.5. LI

Theorem 4.7 k- value DNF with k > 2 and k either finite or infinite is not

learnable with EQ alone.
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Proof: Combine nonlearnability of 2- value DNF (Angluin, 1990) and

Lemma 4.6. 0
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To make a reduction mapping work between trees and DNF, the same

tree node must always map to or from the same DNF variable. Otherwise,

generalization will be inconsistent between the two classes.

Lemma 4.8 l(b+l)-value DNF _<EQ p-OFj,b with l(b-i-1) either finite or infinite

andb> 2,1 1.

Proof: Suppose the DNF expressions to be represented have variables v1

v. Fix a tree with just sufficient children under each node to represent

each v with a tree node v at depth d = [1og 1
levels below the root as in

Figure 4.2 and Lemma 4.2. (If b = oo, then d = 1.) The parts of the tree

above depth d are fixed to be the same for all hypotheses and instances mapped

from R,. The combinations of I available node labels and 0 to b children under

each v represent the l(b+ 1) possible DNF values, Without loss of generality,

value c for variable v in DNF could be translated to tree node v with c/lj

children and label number c mod I. Unconstrained DNF variables are mapped

to unconstrained tree pattern variables.

Define f(w) to map variable-value pairs w1 = C1 . . . w = e in DNF

instance w to the corresponding tree variables f(w)1 . . . f(w) with subtrees

according to the above representation. Similarly, define g to use the same cor-

respondence but with each unconstrained DNF variable r, translated to tree

node g(r) as a tree variable not appearing elsewhere in the tree. Property (1)

of Definition 4.5 is satisfied for the same reasons as in Lemma 4.6.

Define g'(r') to perform the inverse of g for each tree it is given in a

forest hypothesis which conforms to the above definitions. Other tree patterns

are mapped by g' according to what set of tree instances produced by f they

match. If a tree pattern in r' does not match any tree instance of the form

f(w), g' ignores it (and g' returns , the empty DNF hypothesis if all the tree

patterns are this way). Otherwise subtree r at depth d will match either just

one of the combinations of label and number of children or all I(b+1) of them;

return a constrained or unconstrained DNF variable number i, respectively.
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This definition automatically guarantees the ith subtree at depth d of r' will

match the ith subtree of f(w) if DNF variable i in g'(r') is unconstrained or

constrained to have the same value as variable un w, satisfying property (2).

All functions produce polynomial-sized results in polynomial time, sat-

isfying property (3) of Definition 4.5. 0

The following theorem ties together ali the classes with a finite number

of values (and using oniy equivalence queries).

Theorem 4.9 DNF _<EQ l(b+1)- value DNF _<EQ OFI,b and all of these classes

are not learnable with EQ alone.

Proof: Combine (Angluin, 1990) with Lemmas 4.6, 4.8 (and 4.5). 0

4.4. Reductions for Exact Learning with Equivalence and Member-
ship Queries

These sections show reductions between DNF and OF classes when both

equivalence and membership queries are available.

Unlike the previous reductions for exact learning with EQ only, the fol-

lowing reductions from class 7? to 1?! allow membership queries which permit

the learner to ask if an example it chooses is a member of the target. A learning

algorithm A' for class R,' will be used to learn 7, assuming the EQ and MQ or-

acles for R. are available. This requirement means conversion of examples from

1 to R' (f below), and the reverse for MQ (f'), and the hypotheses (g'). The

requirement that R' have a target corresponding to each target in 7? also implies

a correspondence of hypotheses in the forward direction (call this function g).

As in the reductions for exact learning with EQ only, there is no requirement

for an explicit conversion routine for this case.

The simulation to reduce a class R to a class R' for exact learning with

membership queries is diagrammed in Figure 4.4. Start by invoking the learn-
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hypothesis

FIGURE 4.4. Simulation for EQ+MQ Reduction

ing algorithm A' for RI. We assume that for each target r e R, there is a

corresponding target gfr) E Rj'. A' learns a target in RI by calling EQ with

hypotheses in RI and MQ with instances in I'. But as Figure 4.4 shows, we

simulate these oracles with the corresponding oracles for R.

When A' asks a membership query over an instance x' e I', it is then

fed to f' which maps this instance to an instance f'(x') I. The MQ oracle for

R, looks at f'(x') and responds yes or no depending on whether or not f'(x')

is in the target. This answer is then passed on to A'. When A' makes an

equivalence query on a hypothesis, the function g' maps the hypothesis in RI

to a hypothesis in R. This function can be many-to-one.

It is only necessary to find a target giving the correct subset of I, but

membership queries with examples not represented in I must be answered to
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make the algorithm A' work correctly. Following the pwm definition in (An-

glum & Kharitnov, 1995), the special symbols I and T (called bottom and top,

respectively) represent special instances associated with I that return false and

true when queried with a membership query. The function f' is allowed to map

an instance in I' to Tor I. Further, Twill always be matched by (contained in

the set of instances represented by) any pattern r E 7?.. Similarly, I will never

be matched by any hypothesis r.

The following definition enforces three consistency relationships between

the functions used in the reduction. The purpose of each part of the MQ re-

duction definition is as follows: Part (1) enforces consistency between f' and

g so membership queries will get a response consistent with the target. Part

(2) covers consistency between g and f to achieve consistency between coun-

terexamples returned by EQ and the target. Part (3) requires consistency

between f and g' to make counterexamples returned from EQ consistent with

the hypothesis given as an argument of EQ. Part (4) specifies the time and size

requirements of these functions. Unlike Definition 4.1 of pwm reduction, this

definition requires a means, i.e., g', to convert the returned hypothesis.

Definition 4.6 7?. EQMQl?. with corresponding instance spaces I and I' if

mappings g: 7?. -* 7?.', g': 7?.' -+ 7?., f: I -* I', and f': I' -+ I u{ I, T}

such that V w E I, w' E I', r E '1?., r' E 7?.':

(MQ-target) f'(w') e L(r) U {I} w'e L(g(r))

(EQ counterexample-target) w e L(r) f(w) E L(g(r))

(EQ hypothesis-counterexample) w E L(g'(r')) f(w) E L(r')

() Function g produces a result of polynomial size, and the other functions run

in polynomial time (and therefore produce polynomial-sized results).

Corollary 4.10 If 7?. _<EQMQ '1?.', then 7?. _<pwm 7?'.

Proof: The requirements for <EQMQ (Definition 4.6) are a superset of those

for <m (Definition 4.1). D
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A learning algorithm for the class on the upper side of a reduction (i.e.,

7?!) is supposed to be able to learn any target in the lower class (7?.). The

conversions in the reduction must therefore make learning the lower class look

like learning the upper class. The following lemma establishes this claim.

Lemma 4.11 If 7?. <EQMQ 7?.' and 7?' is (exactly) learnable with equivalence

and membership queries, then 7?. is learnable with equivalence and membership

queries.

Proof: The poly size bound on g guarantees the target in 7?.' has size poly-

nomial in the target r for 7?.. By property (1) of Definition 4.6, a simulated

membership query with argument w' will give an answer yes (with respect to

the target g(r)) if MQ(f'(w')) answers yes with respect to r. Therefore mem-

bership query responses will faithfully test the simulated target. Even if f'

returns I or I, the property is still required to hold so the membership query

simulation gives a faithful response.

Similarly, by property (2) of the definition, a counterexample w returned

by EQ will be matched by a target r if f(w) which is the example translated

to I' is matched by the converted target g(r)for any r. The simulation will

therefore properly provide appropriate counterexamples in the class 7?! for the

learning algorithm A'.

Property (3) implies a counterexample w to a hypothesis g'(r') when

converted to f(w) E I' will always be a counterexample for hypothesis r' E 7?!,

even if r' does not represent the same set of instances as any g(r).

Each simulated query for 7?! invokes no more than one query in 7?.. So the

number of actual queries is bounded by the bound for algorithm A' for targets

of size determined by the size of the target r E 7?. and the size polynomial for

g and similarly for the example sizes. LI

The simulation implied by the reduction (Figure 4.4) assumes there is a

learning algorithm A' for 7?.'. Then an algorithm A for learning 7?. is constructed
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using conversion routines for the three functions f', f, and g'. The mapping g

is required by the existence of a target in 1' for each target in R although this

mapping is not explicitly used in the reduction simulation.

The reduction definition effectively splits I' into equivalence classes of in-

stances, each of which corresponds to a single instance in I. But some instances

are not so mapped, so f' maps them back to T or I (which are always and

never matched, respectively). The mapping from I to the equivalence classes

of I' is therefore one-to-one into. All corresponding hypotheses between the

two classes have to be consistent with this mapping by either matching or not

matching corresponding instances in these classes.

4.5. Reducing DNF to a Higher Base

The following lemma compares DNF classes of different bases by reduc-

ing a DNF class with a lower base to a DNF class with a higher basewith

membership queries.

Lemma 4.12 (2-value) DNF <EQMQ k- value DNF with 2 < k < cx.

Proof: Let variables v . . . v in k-value DNF correspond to variables v1 .. v,

in (2-value) DNF. Define g to map each of the values in 2- value DNF to first 2

values in k- value DNF and convert a target/hypothesis r E 7 to

n k-i
g(t') = r V VV(vj)

i=1 j=2

Where r' is r with each v is replaced with v. This conversion adds a

term to r for each value in k-value DNF not appearing in 2- value DNF and for

each Boolean variable v . . . v used in k-value DNF.

Define function f' to map instances w' E I' using only values 0 and 1

back to their corresponding instances in I (i.e., effectively the inverse of g when

applicable to instances in I). Instances using values> 2 would be mapped to T
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and always return true when used with MQ. Since g has hypothesis terms which

cover all of the examples when an instance has values 2, both sides of equation

in property (1) are true. When an instance does not have variables with values

2, g(r) matches w' implies the set of variable-value pairs in g(r) (not counting

the special terms added by gwhich do not apply) is a subset of those in w'.

The same is true for r and f'(w') so the latter pair also matches. This argument

works equally well in both directions, so property (1) of Definition 4.6 is satisfied

in all cases.

Define f as follows. An instance w will have all variables constrained.

Convert v = j in 2- value DNF to v = j in k- value DNF. Then an example w

is matched by a conjunct c of a hypothesis r e 7 if that example contains all

the variable=value pairs of c. This relation holds for f(w) and g(r), so property

(2) for consistency between f and g is satisfied.

Function g' is defined by discarding hypothesis terms having values 2

through k - 1. That is, for each conjunctive term c' that contains a constraint

of the form v = j with j 2, g' will discard e'. Otherwise g' converts the

term by converting to corresponding variables (v to v) and otherwise leaving

e' unchanged.

The justification of property (3) between f and g' is as follows. A positive

counterexample will not be matched by any conjunctive term in the hypothesis,

whereas a negative counterexample will be matched by (at least) one term. If

term c' in r' has values > 2, then it will not match any example converted from

I by f and will be discarded when converted by g'. Otherwise, as above, the

term will be converted with the only change being to replace the v with v, and

corresponding instances will match corresponding hypotheses in both classes.

In both cases, property (3) is satisfied. All of these functions/conversions are

polynomial time and size. 0

The requirement that k be finite is needed to prevent the expression for

g(r) from being infiniteand to avoid contradicting Corollary 4.14.



4.6. Reducing DNF to Ordered Forests

Lemma 4.13 k- value DNF <EQMQ bL-OFI,b for k = l(b+1), with l,b > 2 and

either finite or infinite.

Proof: Define g as follows. Follow the approach of Lemma 4.8 for EQ only

and Figure 4.2. Use a tree skeleton U' with n distinct variables at the lowest

level (depth d = [logo
1

or 1 if b = oo) to represent ii DNF variables. Include

only enough subtrees in the skeleton at each level to have n nodes at depth d.

Each DNF conjunction is mapped to a single tree pattern. Within a particular

conjunction, each DNF variable is mapped to a particular tree node at depth d.

Lettheconjunctionrber1=c1Ar2=c2A...ArcwithPfl. Theng
converts r to subtree r with root label c, mod 1 and number of children [c/lj

which replaces variable v in the tree skeleton. The DNF variables v that do not

appear in that term will be represented as nodes labeled by unique variables v

in the corresponding tree pattern r'. Function f is similar to g except it maps

only specific instances, i.e., all variables are assigned specific values.

Define f' to map instances in the reverse direction as follows. Have f'

map any tree instance w' not matched by the skeleton U' to I. Otherwise each

v in U' corresponds to some subtree w in w'. Hence the tree instance w' can

be converted back to I by inspecting each w and translating its root label and

number of children back to the corresponding value for v. If w has root label

m and c children, then it is translated as v = ci + m.

To satisfy property (1) of Definition 4.6, suppose that w' is a tree instance

and w = f'(w') is the corresponding vector of variable-value pairs. Let the target

r be a disjunction of terms, where each term is a conjunction of variable=value

pairs. Then r' = g(r) is a forest of tree patterns. A term r in r' matches w if

each variable that is constrained in r3 is similarly constrained in w. The same

conversion between DNF values and node label/number of children is used for

g and f. Because the unconstrained variables in r are left as unconstrained
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variable nodes in g(wj) Ti matches w if the corresponding subtree g(wj) matches

the corresponding tree instance w'. Hence 'r matches w if there is a tree in g(w)

that matches w'. In other words, w = f'(w') E L(r) if w' E L(g(r)).

Define g' as follows. Ignore any tree pattern that is not subsumed by

the skeleton U'. All other tree patterns are mapped similarly to f' except leaf

nodes which are labeled by variables are unconstrained in the corresponding

conjunction. Function g' maps T1 to a disjunction of all such conjunctions, or

(the empty hypothesis) if no conjunction remains.

To show that property (2) is satisfied, note that 'w E Lfr) if all con-

straints in some term s in r are satisfied by w. Since f and g work the same

way for the constrained variables, all the constrained variables in s and the

corresponding variables in w will be mapped to identical subtrees by g and

f, respectively. Since unconstrained variables in T map to variable nodes that

match any subtree, and f(w) and g(r) share the same skeleton U', f('w) E

L(g(T)) if w E Lfr).

To show that property (3) is satisfied, first note that any tree pattern in

T' that does not share the skeleton U' cannot match any f('w). Let rt be the

subset of tree patterns in hypothesis r' that share U'. Since U' also matches

f(w), f(w) e Lfr') if f(w) Lfrt). For the tree patterns in T*, g' and g are

exact inverses of each other since they all share U'. This implies that gI(r*) T

if T* g(r). From property (2), it follows that w e L(gI(r*)) if f(w) L(r*).

From the relation between r' and T* above, 'w E L(gI(r*)) if f(w) E L(r').

Since glfr*) = g'(r'), w e L(g'(r')) if f'(W) L(r'). All functions produce

polynomial-sized results in polynomial time. All properties in Definition 4.6 are

therefore satisfied. 0

Corollary 4.14 no- value DNF is learnable with equivalence and membership

queries.

Proof: By Lemma 4.13, no-value DNF reduces to j-OF. The latter is learnable

by Theorem 3.12 for OF. The algorithms for each of this class works just as well
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for the si-OF subclass by stripping the parts dealing with multiple copies of the

same variable, since this type of hypothesis is not allowed in j-OF. LI

4.7. Discussion and Open Problems

Some potential reductions such as reducing k-value DNF to a lower base

such as 2- value DNF will not be able to represent accurately all hypotheses

in the former class (lower side of the reduction) as hypotheses in the latter

class. The obvious way to reduce 4- value DNF to 2- value DNF would be

to represent each variable in the former as a pair of variables in the latter.

But if one variable in a pair is constrained and the other is not, there is no

compact way to exactly represent such a hypothesis in 4- value DNF (without

exponential size if there are many variable pairs of this type). Any attempt

to approximately translate the hypothesis would lead to an inconsistency with

some instances; other approaches lead to similar problems. We call this problem

the overly expressive hypothesis space problem or untranslatable generalization

problem, since the hypothesis space contains some hypotheses that cannot be

translated into the space at the lower side of the reduction. The problem of

reducing k- value DNF to ordered forests with repeated variables has this same

difficulty because the hypotheses with repeated variables apparently can not be

translated back to DNF in a way consistent with all instances. We now list the

open problems from this chapter.

Open Question 1 k- value DNF <EQMQ (f-value) DNF with k > 2?

Open Question 2 k-value DNF <EQMQ OFI,b for 2 k <l(b+1)?
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These two reductions will work in the pwm framework (Lemmas 4.2 and

4.3) because no hypothesis ever needs to be returned, avoiding the above difficul-

ties. But the PAC framework will have similar difficulties with the hypotheses

that can't be accurately translated since the final hypothesis must be converted.

Open Question 3 u-OF1, _<EQMQ l(b+1)-value DNF?

This question asks whether ordered trees without repeated variables can

be reduced to DNF. Part of the difficulty with this reduction is a size prob-

lem. Trees could be very deep and narrow, so a fixed correspondence between

tree nodes and DNF variables would require exponentially many DNF vari-

ables. An attempt to assign the correspondence dynamically (which probably

requires making the learner also learn this correspondence) faces the difficulty

of preventing the DNF learner from using up all the allocated DNF variables

prematurelyin the worst case, using membership queries. In this sense, tree

patterns are a sparse representation whereas DNF is a fixed representation.

These same obstacles would occur when trying to reduce any sparse notation

class to a fixed notation class, so this reduction problem could be called the

sparseness mismatch problem.

Open Question 4 OFIb _<EQMQ l(b+1)-value DNF?

This question asks whether ordered trees with repeated variables can be

reduced to DNF. Any proof of this question also requires a solution to the same

problem encountered in reducing trees without repeated variables to DNFthe

sparseness mismatch problem or the sparse reduction difficulty.

In this chapter, we have shown that DNF learning reduces to learning

unions of ordered tree patterns with bounded degree and bounded alphabet

size (bounded ordered forests) without repeated variables (Theorem 4.8). The



78

reduction proofs for the exact learning model (Angluin, 1988) also apply to the

PAC-predictability with and without membership queries (Pitt Warmuth.

1990; Angluin & Kharitnov, 1995). It is simpler to reduce the classes in the

prediction frameworks because the hypotheses of the learning algorithm need

not be translated back by the reduction algorithm. The argument in (Angluin

& Kharitnov, 1995) that membership queries are not helpful for learning DNF in

the PAC framework (assuming certain cryptography problems are hard) applies

equally well to k- value DNF. This latter result strongly suggests, but does not

prove, that the DNF classes with different bases have the same complexity in

the exact learning framework.



5. NONLEARNABILITY OF UNORDERED TREES WITH
ONTO-SEMANTICS

Ordered trees and forests have been shown to be learnable from equiva-

lence and membership queries in Chapter 3. In this chapter, we show that the

unordered trees and unordered forests (with one-to-one onto semantics) are not

learnable with these queries. The proof is based on a combinatorial argument

that does not depend on any complexity theoretic assumptions.

5.1. Unordered Tree Matching

Section 3.1 defines ordered tree matching (Definition 3.1) of a tree pat-

tern to a tree instance merely consists of substituting subtrees for variables to

produce a tree identical to the tree instancewithout rearranging the subtrees.

But unordered tree matching allows the corresponding children to be in any

order, so there is a mapping between the subtrees which can be an arbitrary

permutation. Whereas ordered tree matching requires the mapping to be one-

to-one onto and respect subtree ordering and be the identity permutation. For

ease of analysis, the matching process is therefore separated into substitution

and mapping/permutation steps (in that order).

Definition 5.1 A tree pattern or instance r ro(rj . . . r) maps to a tree
instance s - so(si . . . s7) according to unordered one-to-one onto semantics if

(1) r0 = (2) there is a one-to-one onto permutation from {ri,. . . ,r}
to {si, . . s} such that (3) the child subtree r recursively maps to some child

subtree s3 according to unordered one-to-one onto semantics. (Where 1 i k

andl <j <1.)
We write Tj. = s3 and rjtt s. Mapping i is then consistent with

one-to-one onto semantics.
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Definition 5.2 A tree pattern t matches an instance w according to unordered

one-to-one onto semantics if there is a permutation consistent and a substi-

tution 9 consistent with unordered one-to-one onto semantics such that t91u =

w.

R R

A A A A

x x y z y C DDE BE C
(a) Pattern (b) Ordered

Match

R R

A A A A

CBCBBC BBBDDE
(c) Unordered (d) No

Match Match

FIGURE 5.1. Unordered Tree Matching

In Figure 5.1, tree pattern (a) matches tree instance (b) according to

ordered (or unordered) one-to-one onto semantics. The tree pattern matches

instance (c) (only by unordered semantics) with substitutions (of the form, tree

pattern variable/instance subtree) {x/C, y/B, z/b} by permuting the second

and third child of the first subtree.. But instance (c) can also be matched with

the substitutions {x/B, y/C, z/B} by swapping the two subtrees and the first
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and second children of the right pattern subtree. Instance (d) is not matched by

tree pattern (a) according to unordered one-to-one onto semantics both because

the is no C child to be matched by the C in the pattern and because there is

no child label common to both subtrees for the y variable to match.

5.2. Unordered Tree Reductions with Equivalence Queries

This section shows that unordered trees without repeated variables (ji-

UT) are not learnable with equivalence queries alone (based on a reduction

from DNF). The monotone DNF class (MDNF) is used as an intermediate step.

The notation EQmeans a reduction in the exact learning framework with only

equivalence queries available (as defined in Chapter 4). The functions f, g, and

g' map instances and hypotheses between the two classes in the reduction.

Definition 5.3 Monotone DNF (IVIDNF) is the subclass of (2-value) DNF ex-

pressions which has no negated variables.

Lemma 5.1 DNF <EQ Monotone DNF (MDNF).

Proof (Sketch): Use the standard reduction of representing each DNF vari-

able v and its negation -iv as two separate MDNF variables (Kearns & Vazirani,

1994). ü

Lemma 5.2 MDNF <EQ si-UT.

Proof: First assume the number of conjunctions in the MDNF target formula

is known, and define gas follows. The disjunction of conjunctions is represented

as just a single tree pattern rather than as a forest of trees as in the ordered-

tree reductions in Chapter 4. Represent each conjunctive term in an MDNF

expression as one subtree of a two-level ji-UT tree pattern with each subtree

having as many children as the number of Boolean variables. Let v1,. . . v be
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FIGURE 5.2. Monotone DNF hypothesis xy V xw V zy to 1i-UT (g mapping)

these Boolean variables available for MDNF; then associate each variable v

with a tree node label C3. Convert each conjunction number i of the form

v1 A v2 A . . . 'Vik to a subtree with leaves CC ... C Sik+1 .. . s. Where
the are unique variables within the u-UT pattern. For example, Figure 5.2

shows a MDNF expression and its corresponding tree (where the letters t .. . i

are the unique variables and the letters A . . F represent the constants C3 which

correspond to variables z .. . u).

Define f to convert each instance with variables v1 . Vk true to tree

having the first subtree with C1.. . CkG. . . G, where G is a constant not used in

any tree pattern returned by g. The other subtrees have the entire set of C's:

C1 . . . C7, (Figure 5.3). Then an MDNF expression r matches a boolean instance

w implies the set of (true) variables in some conjunction (say conjunction i with

variables v1. vk) in r is a subset of the set of true variables in w (say 'Vi Vi,

with I > k). Therefore constants C1 . . . Ck will be present in subtree i of g(r)

and constants C1 . . . C1 in the first subtree of f(w), and the other subtrees of

f(w) have all constants C1 . . C7,, so g(r) matches f(w) Similarly the same

82
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ABFGGG ABCDEF ABCDEF

FIGURE 5.3. Monotone DNF instance zyu to p-UT

subset relationship in these tree patterns (g(r) matches f(w)) implies the above

subset of variables relationship for r and w, and property (1) of Definition 4.5

is satisfied.

Define g'(r') for any r' e RI to produce an MDNF formula matching the

set of instances w I such that r' matches f(w) as follows. If r' does not match

any tree instances produced by f, i.e., not even a tree in which all subtrees have

all C3 constants, then return the empty hypothesis. For each subtree r of r',

perform the following. Determine what subset of {C1,. . . C} is required in the

first subtree of a tree instance for r (and therefore r') to match. Return an

MDNF conjunction for r with the variables corresponding to this subset of the

C's. Tree pattern r' then matches f(w) if some subtree of r' has a subset of

the C3's in the first subtree of f(w). The latter is true if some conjunction of

g'(r') has a set of variables constrained to be true which is a subset of the true

variables in w. Property (2) of Definition 4.5 is therefore satisfied for both the

empty hypothesis and non empty r' with this translation.

Use the following strategy for an unknown number of conjunctions. Rep-

resent the empty MDNF hypothesis with the empty tree hypothesis (q). Run
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the learning algorithm for R-UT with k = 1 subtrees. Either the algorithm

succeeds or exceeds its polynomial running time. In the latter case, increase k

by 1 and repeat the process. This process terminates in polynomial time.

All functions produce polynomial-sized results in polynomial time, sat-

isfying property (3) and therefore Definition 4.5. D

Note that the ordering of different subtrees and the ordering of children

within subtrees doesn't matter because they effectively behave like sets.

Theorem 5.3 ,a-UT is not learnable with EQ alone.

Proof: Combine Lemmas 5.1 and 5.2 with (Angluin, 1990). U

Angluin's result uses a combinatorial argument to show DNF is not learn-

able with EQ alone, then these lemmas show MDNF and pt-UT are at least as

hard to learn with EQ aloneand are therefore not learnable.

5.3. Unordered Onto-Trees are not Learnable from EQ and SQ

In this section, we show that unordered tree patterns for one-to-one onto

matching semantics are not learnable with polynomially many queries regardless

of the computational power of the learner. For this proof, we introduce a matrix

notation for compactly representing trees.

A 3-matrix is a 3xn array of natural numbers. Two 3-matrices are

equivalent if one can be changed into the other by permutations of the rows

and columns. Two non-equivalent 3-matrices are called distinct. A 2-matrix is

a 2xn array of natural numbers. A 3-matrix is consistent with a 2-matrix if

there are permutations of the columns of the 3-matrix so that one row of the

3-matrix is identical to one row of the 2-matrix and the sum of the other two

rows of the 3-matrix is identical to the other row of the 2-matrix.

For example, the 3-matrix (a) in Figure 5.4 is consistent with the 2-

matrix (b). This is because permuting the last two columns and adding the
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FIGURE 5.4. Matrix Representation of Tree Matching

bottom two rows of the 3-matrix gives the rows 5 4 2 and 0 1 3 which are the rows

of the 2-matrix. One necessary (but not sufficient) condition for consistency is

that the row totals of one matrix can be produced by adding a subset of the

row totals for a matrix it is consistent with. Matrix (a) is not consistent with

(c) because its row totals of 4, 10, and 1 can't be combined to produce 3 and

12 for (c).

For our purposes, we want to show that there can be a large number of

distinct 3-matrices which are consistent with a given pair of 2-matrices.

Lemma 5.4 There are n! distinct 3-matrices which are consistent with the pair

of 2-matrices:

0 n 2n ... (n-1)n
c cn c-2n ... c(n-1)n

and

c ci c-2 ... c(n-1)01 2 ni
where c - 1
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Proof: We form the n! 3-matrices by taking the n! permutations of the n

columns of the second 2-matrix and use the th column of the first 2-matrix

and the th column of the permuted second matrix to compute the th column

of a 3-matrix. So, for example, from the columns . and
C

we formcin 3

in
c - j - in . No matrix entry is allowed to be less than 0. This condition is

3

satisfied if c - j - in> 0 in the worst case of i = j = n - 1, or c> n2 - 1.

\tVe claim that the 3-matrices so formed are distinct. First, notice that

permuting rows cannot change any of these 3-matrices into another of these

3-matrices because the top row will consist of multiples of n, the bottom row

will consist of the numbers 0 through n - 1, and the middle row will contain

a set of numbers which satisfies neither of these criteria. Second, no column

permutations can convert one of these 3-matrices to another of these 3-matrices

because by our construction technique, the top row of each 3-matrix will consist

of the multiples of n in order from 0 . n to (n - 1) n, and the bottom row will

consist of a distinct permutation of the numbers 0 through n - 1. To convert

one of these 3-matrices to another, the columns must stay as they are in order

to make the top rows agree, but the columns must be permuted to make the

bottom rows agree. This contradiction shows that all of these 3-matrices are

distinct. 0

We now use this lemma to show that unordered trees are not polynomial

time learnable from equivalence and subset queries. The idea is that a matrix

corresponds to a tree pattern with root and 2 levels and consistency of matrices

corresponds to matching of trees. The top of the tree is a root with label, say R,

and the second level has n nodes each with the same label, say A1. A 3-matrix

corresponds to a tree pattern with 3 distinct variables and each column of the

matrix corresponds to a subtree. Each subtree rooted at one of these nodes

labeled A1 has some number of each of 3 variables, say x and y and z. The top

element in each column is the number of x's in that subtree, the second element
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FIGURE 5.5. Sample UT target with n 3 subtrees.

in each column is the number of y's in that subtree, and the bottom element

is the number of z's. See Figure 5.5 for a tree pattern with n = 3 subtrees,
306

which corresponds to the matrix, 5 7 0. For a specified value of n, let T be
012

the set of potential 3-variable targets formed by converting the n! 3-matrices

of Lemma 5.4 to tree patterns. A 2-matrix corresponds to an unordered tree

with 2 distinct constant leaves and can be produced from a tree pattern by

substituting one variable with a constant, say B, and the other two variables

with a constant C. We can now show the unlearnability theorem.

Theorem 5.5 Unordered trees (UT) under one-to-one onto semantics are not

polynomial-time learnable from equivalence and subset queries.

Proof: Let 7L (the set of targets consistent with the oracle answers and

examples received so far) be initialized to Y. The argument of EQ must be a

single tree (pattern), so the most useful examples that the learner can force EQ

to yield are trees corresponding to two 2-matrices. If the learner tries to obtain

any more examples by converting constant leaves in one of these examples to
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variables and calling EQ, the oracle returns the other example. Since all the

targets in 'Tare consistent with/match these two examples, they do not eliminate

any hypothesis.

If the learner guesses any consistent 3-variable tree pattern and calls EQ,

the oracle responds no and returns the guessed 3-variable tree pattern with each

of the 3 variables assigned a different constant as a negative counterexample

(and eliminates that pattern from '1-1). (None of the types of guesses below

eliminates any targets from 'H.) Guesses inconsistent with the two 2-constant

examples are handled by answering no and returning one of the two examples.

Guesses with more than 3 variables are responded to in a similar fashion. For

EQ queries with 1- or 2-variable guesses, answer no and give one of the two

examples. The SQ oracle behaves similarly. Each query eliminates at most one

target from 9-1, so in the worst case n! - 1 guesses are needed. 0

This result can also be proven using Angluin's sunflower lemmaLemma

2 of (Angluin, 1988)although it does not simplify the proof.

Lemma 5.6 (Angluin, 1988) Suppose the hypothesis space contains a class

of distinct sets L1 . . . LN, and there exists a set L which is not a hypothesis,

such that for any pair of distinct indices i and j, L fl L3 = L. Then any

algorithm that exactly identifies each of the hypotheses L using equivalence,

membership, and subset queries must make at least N - 1 queries in the worst

case.

This lemma uses the assumption that the hypothesis space contains a collection

of sets L any distinct pair of which have a set L as their intersectionwhere

the latter is not in the hypothesis space.

A diagram could be made with L in the middle and all the Li's would

include that middle and some petals that collectively surround it. The result

would look like a sunflower. The lemma says, given that assumption, the learner
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has to do an exhaustive search by testing the Li's one at a time in order to

identify an arbitrary L.

Theorem 5.7 At least n! queries are required to find the target in Theorem 5.5.

Proof: An alternative proof for Theorem 5.5 can be built using the above

lemma as follows. Let E1 and E2 be the two example trees obtained from

EQ which can be represented as the 2-matrices in Lemma 5.4. Let L =
variablize(Ei) U variablize(E2), where variablize converts each distinct con-

stant leaf to a variable (yielding a forest of 2 tree patterns). Let the L2 be

the n! possible targets consistent with those two examples; i.e., the 3-matrices

of Lemma 5.4. Then this choice satisfies the conditions of Lemma 5.6 because

L0 has two trees and is therefore not a hypothesis in UT. To show the intersec-

tion of distinct L and L3 is L, analyze the sets of instances matched by these

tree patterns. Note that the matching process is a many-to-one onto mapping

from variables in the (potential) target tree to arbitrary constant (subtrees).

Multiple variables can map onto the same value. By the properties of matrix

matching, an instance with 3 distinct constants matched by a 3-variable target

will have the same form and matrix, apart from permutations; so this type of

instance cannot be in the intersection of two such L. An instance having only

one value on all of its second-level children will be matched by all n! 3-variable

targets and will be in L. Again, by the properties of matrix matching, a 2-

variable instance will be matched by L if its matrix is formed by combining two

rows in L and permuting. An instance matched by both L and L3 cannot form

one of its rows by adding the top and bottom rows of one of those 3-variable

targets, because the other row would then have to come from the middle row

of L2 and would have a different set of values than are present in L. Therefore

the only 2-constant instances matched by both L and L3 are those that add

the top tow rows (represented by example E1) and those that add the bottom

two rows together (covered by the tree pattern corresponding to E2). This set

of examples is clearly in L.



A1 A1 A1 A2 A2 A2A3AAAAA
Block 1

using z,y,x
Block 2

using w,v,u
Block 3

using t,s,r

FIGURE 5.6. Sample UF Target for n = 3

The proof for unordered tree nonlearnability does not directly apply to

forests, when the target space is 7 in the previous section. Since the hypoth-

esis can then consist of forests, the learner could call EQ with a forest of two

trees and thereby obtain a third example, which gives away the target. In fact,

any fixed number of target variables is insufficient to prove UF is not learnable

because the learner could force EQ to effectively yield all possible ways of parti-

tioning the set of target variables. These approaches to learning the target must

be blocked by the availability of exponentially many partitions and examples.

Even though forest hypotheses are allowed, the following subclass of

UT will be sufficient to create a set of targets simultaneously consistent with

an exponential number of examples and thereby to construct a proof. Define
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By Angluin's lemma, at least ri! - 1 queries are needed, and so UT is not

learnable from EQ and SQ. U

5.4. Unordered Onto-Forests are not Learnable from EQ and SQ



91

'T to be the set of 3-level tree patterns (not forests) each containing several

(independent) sets of subtrees and variables we call "blocks". Each block is of

the form used in the UT nonlearnability proof with 3 variables, and n subtrees,

each with n2 - 1 children (as in Figure 5.5 for n = 3). All blocks/subtrees share

a common root. Make the number of blocks in each potential target tree also

be n, for a total of n2 subtrees, and 3n variables. Figure 5.6 shows a sample UF

target for n = 3. The subtrees in the first block are identical to those used in a

target for the UT proof (Figure 5.5), and the other blocks are the same except

for using different sets of 3 variables. As in the UT version, each block is derived

by combining one example with a permuted version of a second example. In

each UF target, the same permutation of the subtrees in the second example is

used to generate all blocks. Each block will be consistent with the subtrees of 2

2-constant examples (examples using 2 distinct constants in the leaves of each

block) having the same form as in the UT proof and will be independent of all

other blocks in the same tree since each block has a distinct set of variables.

Every target in Y will therefore match every example in a set of 2 2-constant

examples.

These blocks will be distinguished by using a different root label for the

subtrees in each block, so the first block uses label A1, and the second block

could use label A2, etc. Matching ambiguity between these blocks will then

be eliminated, but the learning problem is still difficult due to the choice of

matching of subtrees within each block. Any permutation within each of these

groups of subtrees is still allowed for matching.

Unordered trees potentially have many ways to make variables corre-

spond to constants when matching a pattern to an instance, which would un-

necessarily complicate the proof. T is therefore chosen to enforce a particular

correspondence between target variables and constant leaves in examples as fol-

lows. Each block of 3 variables in the target will be associated with one of

these subtree root labels, and therefore with the corresponding block of con-
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stants in an example. The pattern used in the block in the UT proof guarantees

which variables within each block must match each constant, so the correspon-

dence between variables in a tree pattern and constant leaves in an instance is

completely determined.

As in the UT proof, each block of the target is one of n! possible choices

which are consistent with the two example blocks. All blocks in each target are

the same (employ the same permutation) except for variable renaming. Hence

'Thas n! targets by the same argument as for the UT proof. The strategy of

the UF nonlearnability proof will be to use T as the adversary's set of potential

targets, so up to 272 counterexamples would be returned by EQ while SQ could

eliminate at most one of n! targets in T. The following lemma essentially says

only corresponding blocks match:

Lemma 5.8 A tree pattern P e Twith blocks (of subtrees) P1 . . . P1 matches

an instance (or subsumes another pattern) I with blocks I. . . I if each P

matches I.

Proof: only if: Subtree identification via subtree root labels guarantees that

only subtrees in corresponding blocks can match. The definition of matching

and the equality of the number of subtrees guarantee that each each P must

match I.

if: Combine the mappings for each pair of corresponding blocks, into a mapping

for all subtrees. Each block uses a different set of 3 variables, so there is no

conflict between blocks. This mapping and matching root labels guarantee the

entire trees match. LI

Suppose a query with a 3-variable block is made. Lemma 5.8 guarantees

that the query will be a subset of the target if that block of 3 variables in the

query is a subset of the corresponding block in the target. Each query with a

3-variable block will therefore be a subset of at most one target in the chosen

set of targets.
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Theorem 5.9 UF with one-to-one onto semantics is not learnable with equiv-

alence and subset queries.

Proof: Let 71 be initialized to T. The following invariants are preserved: (1)

H represents the set of targets in Tconsistent with all the queries answered so

far, i.e.. the version space, (2) 7-1 is nonempty for any polynomial number of

arbitrary queries.

The adversary will respond to a subset (or equivalence) query with an

argument having at least one 3-variable block with the answer no. (A coun-

terexample will be returned by choosing a simple 3-variable block and turning

each variable into a constant.) At most one target in 71 will be eliminated be-

cause that 3-variable block can be a subset of only one target by the argument

in the UT-nonlearnability proof.

Query arguments without any 3-variable blocks but which match the

2-constant examples give the following results. Each block in the argument

will be matched by all n! target blocks by the argument in the UT proof. By

Lemma 5.8, the argument tree is matched by all targets in 7-1 and therefore

will not eliminate any of the targets in 7-1. SQ will return yes. EQ with a

forest hypothesis still cannot cover all 21 2-constant examples without having

an argument of exponential size, so a new 2-constant example can always be

returned as a positive counterexample.

Since the original size of 7-1 is n! and at most one target is eliminated

from 7-1 by each query, 7-1 is not exhausted by any polynomial number of queries,

and UF is not (polynomial query) learnable. 0

Corollary 5.10 UT and UF with one-to-one onto semantics are not learnable

with equivalence and membership queries.

Proof: Follows since SQ trivially simulates MQ. 0

The nonlearnability proofs of the UT and UF classes can also be viewed

as showing that these classes do not have polynomial certificates-see Defini-
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tion 4.1 of (Hellerstein, Pillaipakkamnatt, Raghavan, & Wilkins, 1996) and

are therefore not learnable by the contrapositive of Hellerstein, et.al.'s Theo-

rem 4.1.2. Polynomial certificates are a general, abstract criteria characterizing

those concept classes which can be exactly learned with a polynomial number

of queries.

This criteria constrains the number of queries, but proves nothing about

polynomial-time learnability. Hellerstein, et.al.'s Definition 4.1 uses examples of

size < n, target size < m, polynomials p and q as the maximum learned hypoth-

esis size and total size of the examples, and f is an arbitrary concept (subset

of the instance space) which is not equivalent to any small (size p) hypothesis.

This definition essentially compares the consistency of f with hypotheses of size

<p(m, n) on all examples of size < ri versus the consistency of f with targets of

size <m on a q-sized subset of those examples. The negation of the definition

is (with consistency tested only on examples restricted to size < n): A concept

class does not have polynomial certificates if V polynomials p, q m, n, and an f

not consistent with any concept of size at most p(m, n) and V sets Q of examples

of total size < q(m, n) a concept of size < rn consistent with f over a set of

examples Q.

For UT, the the following values can be used for the parameters in Defi-

nition 4.1. The examples used in the proof are all of the same size and therefore

equal to the value of n for polynomial certificates (n subtrees of ri2 - 1 leaves

each using the n defined in the UT nonlearnability proof for Theorem 5.5). The

target size rn is also the same. Let f be the single concept formed by taking the

union of the two examples (with their constant leaves converted to variables).

This concept is not expressible as a single tree pattern and therefore satisfies the

requirements by not being in the hypothesis space. By the UT proof, any set

Q of (polynomially many) examples of size ii will be insufficient to distinguish

all targets of size m from f because f is consistent with many targets on the

2-constant examples and exponential 3-constant examples would be required to



95

cover all the targets described to force one of them to be inconsistent with f.

Therefore UT does not have polynomial certificates.

For UF, the polynomial-certificate parameters are as follows. Again, the

chosen examples and targets are all of the same size (m2 subtrees with n2 - 1

leaves each using the n defined in the UF nonlearnability proof, giving a total of

1 + n2 + (n4 - = n4 + 1 tree nodes). For the hypothesis of exponential size,

f, choose the union of variablized versions of all 2 2-constant examples. Then

any set Q of examples will be inconsistent with at most polynomially many of

the targets described and therefore consistent with f on at least one target. UF

does not have polynomial certificates showing this class is not learnable.

Hence these proofs are not based on any complexity theoretic assump-

tions, and are the first of their kind for any "natural" class using polynomial

certificates to the best of our knowledge.

5.5. Summary

This chapter showed that the unordered tree and unordered forest con-

cept classes are not learnable with equivalence and subset (or membership quer-

ies). These proofs used a combinatorial approach by showing that there are too

many choices for how to generalize a hypothesis and no way for a learner to

know which one is right without potentially trying them all. The class 1u-UT

was also shown to not be learnable with EQ alone by reduction from (Angluin,

1990) which uses a combinatorial argument.
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6. LEARNING UNORDERED ONTO TREES WITH SUPERSET
QUERIES

In Chapter 5 we showed that unordered trees and unordered forests are

not learnable with equivalence and subset queries (under one-to-one onto seman-

tics). This chapter first shows there is no difficulty learning unordered trees or

forests without repeated variables. Without repeated variables, unordered trees

are learnable from subset queries and a single positive example (or equivalence

and membership queries) and unordered forests are learnable from equivalence

and membership queries.

Like ordered trees, unordered trees are compact. Unlike ordered trees,

matching is NP-Complete for unordered trees with repeated variables. One way

to circumvent the nonlearnability of unordered trees and forests with repeated

variables is to use more powerful queries. This chapter describes algorithms

for learning unordered trees with superset queries and a single positive train-

ing example. Then unordered forests are shown to be learnable from equiv-

alence and superset querieswith both returning counterexamples. The latter

algorithm goes to great lengths to avoid the need for matching because of the

NP-Completeness of that test.

6.1. Unordered Compactness

Recall that an unordered tree pattern matches an instance if any per-

mutation (one-to-one onto mapping) of the subtrees of the pattern results in a

match. We now show that unordered tree patterns are compact.

Lemma 6.1 The class of Unordered tree patterns (UT) with one-to-one onto

semantics is compact.

Proof: Let Z be a UT pattern so that U V >- Z. Any permutation 71(2)

of 2 is contained (according to ordered tree matching) in the union of the

permutations of the V's. Now treat ir(Z) as an ordered tree, and by Lemma 3.9,



Corollary 6.3 [t- UF is learnable from EQ and MQ.
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7r(V) >- 'ir(Z) for some permutation 7r and some V. Since the permutations

form a group, each permutation of 2 is contained in some permutation of V,

and hence V >- Z when these are considered as unordered trees. 0

6.2. Unordered Forests With No Repeated Variables

When there are no repeated variables, unordered forests are easy to

learn with equivalence and either subset or membership queries by indepen-

dently pruning different parts of the tree pattern. We call this class i-UF in

analogy to read-once u-formulas of propositional logic. The lack of repeated

variables implies the subtrees can be generalized independently. Starting from

a single example (for each target tree pattern), each subtree having only leaves

as children can be pruned, replaced by a new variable, and the change retained

iff the result is a subset of the target. Only polynomially many operations need

be performed with this approach to learn the target.

Theorem 6.2 a-UF (UF without repeated variables) is learnable from EQ and

SQ.

Proof: Because repeated variables are not allowed, each branch of a tree

pattern can be generalized independently of the other branches in a bottom-

up way, using the SQ oracle to decide when to stop generalizing (Figure 6.1).

Generalization is performed by trimming the bottom level of leaves or 1-level

subtrees under one node, replacing that node with a variable, and keeping only

those changes which are accepted by SQ. The algorithm forms one hypothesis

tree from each example. Compactness (Lemma 6.1) guarantees no superfluous

trees are generated. The number of queries is bounded by the sum of all the

nodes in the examples plus the number of tree patterns in the target. Hence the

algorithm runs in polynomial time in the size of the examples presented. 0



Initialize hypothesis h = {} %start with empty hypothesis
while EQ returns a positive example x

%(SQ guarantees negative examples won't occur)
t=x
t = bot-up-generalize(x)
h=hut

return h

bot-up-generalize(s): %uses t as global variable
% and s is a pointer within t
% which is modified destructively.

if s has children
then for i = 1 to number of children

bot-up-generalize (si)
if all of the children of s are now variables

replace s with a new variable
if not SQ(t) then undo this change

else if s is a constant
change s to a variable
if not SQ(t), undo the change.

FIGURE 6.1. i-UF-EQSQ algorithm

98
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Proof: We can use the same "width-doubling" or label-selection techniques as

for OF with an unbounded number of children (Theorem 3.12). SQ is simulated

using MQ b selecting successive constant subtrees to substitute for variables

and rerunning the SQ-based learning until EQ does not return any negative

counterexamples (which imply the simulation was imperfect since the SQ-based

algorithm would never overgeneralize). These constant subtrees can start with

width w 1 meaning the trees have only one child. On each retry of the

algorithm w would be doubled. The second and third variables in a tree pattern

to be given to MQ would use constant subtrees with w + 1 and w + 2 children,

etc. Labels could be substituted for variables starting with label number c (with

numbers c + 1 and c +2 for the second and third variables, etc.). Each time the

simulation failed, increase c by the maximum number of variables in any tree

pattern in which this substitution was used. 0

Corollary 6.4 bL-UT is learnable from SQ and one positive example.

Proof: The one example can be generalized in the same bottom-up fashion.

Further, SQ is required to always give correct answers, so EQ is not needed to

assist in a simulation of SQ by MQ. 0

6.3. Learning Unordered Trees with Superset Queries

This section describes a learning algorithm for unordered trees with onto

semantics that uses equivalence and superset queries (or just one positive exam-

ple and superset queries). The unordered tree learning algorithm (Figure 6.2)

uses a single training example as a template for forming the hypothesis tree

pattern starting from the most general hypothesis (a single variable). The hy-

pothesis tree pattern is refined in two stages. In the first stage, the grow-tree

routine incrementally refines the hypothesis tree by adding subtree branches

to the hypothesis as dictated by the example tree instance, while the result is



% grow-tree grows the hypothesis tree until it is identical
% to the target except for variable names.
% s is the hypothesis subtree.
% p is the example subtree, initialized to an example tree instance.

% h is the hypothesis (global), initialized to the
% universal hypothesis (a single variable).
procedure grow-tree (s, p):
If p has at least one child
then Expand s to include the top level of

tree p with a new variable for each child.
if SupQ(h)

then for i = 1 to number of children of p
Call grow-tree(subtree s of s,

subtree pj of p)
else restore s to a single variable

else store constant label from p in s
if not SupQ(h)

then restore s to a single variable

procedure fuse-vars (h): % finds variables identical
for each pair of variables in h % in the target

make the second one identical to the first
if SupQ(h)

then make the change permanent
else undo the change

FIGURE 6.2. SupQ-Based Algorithm for UT
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cccc(a) Target (c) Hypothesis Steps
(b) Example

FIGURE 6.3. UT Learning Example

accepted by SupQ. All the variables in the hypothesis are distinct during this

stage. The routine redurses down the example tree by calling itself with each

pair of corresponding children in the example and the pattern being formed. For

example, in Figure 6.3, the training example (b) is generated for the target tree

(a). The algorithm then forms a series of hypothesis trees (c) by successively

specializing its current hypothesis. A simple variables hypothesis is first tried

and then a tree is formed by copying the top level of the example and making

each child be a distinct variable. Then subtrees are formed and specialized, and

oniy those specializations which are accepted by SupQ are kept. The result is

the last tree in (c).

The following key lemma licenses specializing each part of a hypothesis

tree pattern independently of other parts by grow-tree.
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Lemma 6.5 Let h = h0(h1, ..., h) be a hypothesis tree pattern with no

repeated variables. Let t = to(t1, . . ., t) be a target tree pattern. Then
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L(h) D L(t) if h0 = t0 and there is a one-to-one onto mapping jf from

{h1, . . . , h} to {t1,. . . , t}, such that L(h) D L(ht*).

Proof: Only if: Since L(h) J L(t), by Theorem 7.5, h >- t. There is a

substitution a and mapping (by Definitions 7.2 and 7.1, respectively) such

that hap = t. Define the mapping jf to give the same result on the subtrees

as the combined effect of a and ,i. The mapping i is one-to-one onto, so f is

also. Therefore, for each h, there is a t3 so h >- t3. Finally, L(h) L(ht*)

by Theorem 7.5.

if: Suppose x L(t). The root label of x must be t0 = h0, since otherwise t

cannot include x. Moreover, each subtree of x must be in one of the subtrees

in t in such a way that all subtrees are covered. Since jf is a one-to-one onto

map, the th subtree of x, x e L(h/i*) for 1 < i < ii. Since L(h) L(hjJi*),

x2 e L(h) as well. This means h, - x, so there exists a substitution a such

that there is a one-to-one onto map from ha, to x. Consider the substitution

a = (J a. Since no variables are shared between different hi's, a is a valid

substitution, and ha, is the same as ha. From this it follows that h >- x, and

so x E L(h). Hence L(h) D L(t). 0

When the grow-tree routine terminates, it will have found the most

specific tree pattern that covers the target and has all variables different. The

second stage, fuse-vars, determines which variables should be identical. In

the example (Figure 6.3 (c)), the algorithm makes the two variables x and y

identical, the result is accepted by SupQ, and is equivalent to the target. In

general, the algorithm works by fusing each pair of variables and asking a SupQ

on the result. If the result is accepted by SupQ, the change is retained, otherwise

it is undone (see Figure 6.2). Any such identification of variables, once accepted

by SupQ, need not be undone, as shown by the following theorem. When the

algorithm terminates, the resulting hypothesis is equivalent to the target.

Theorem 6.6 An unordered tree with repeated variables is learnable using

SupQ and one-to-one onto semantics from a single arbitrary positive example.
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Proof: Note that the hypothesis in the grow-tree routine does not have any

repeated variables (see Figure 6.2). At any time if the new hypothesis h is a

superset of the target as determined by SupQ, then there is a one-to-one onto

map ji such that each subtree h is a superset of a corresponding target tree

by Lemma 6.5, and so the hypothesis can be refined further. If on the other

hand, h is not a superset of the target, there is no such ji by Lemma 6.5, and the

hypothesis is over-refined. Since the refinement of h occurs either by replacing a

single variables with a constant or by adding one more level to a single subtree.

At each step, the grow-tree routine retracts the last refinement, and tries

refining other subtrees. If no subtree can be refined successfully, the hypothesis

tree must be identical to the target tree except for grouping of variables by

applying appropriate substitution.

After this first phase the hypothesis tree has all leaves labeled with con-

stants or distinct variables. fuse-vars tries making each pair of variables iden-

tical, tests with a superset query and keeps the change only if it is accepted by

SupQ. If the change is accepted by SupQ, that means that L(h) L(t), which

implies that h >- t by Theorem 7.5. Since h and t share the identical struc-

ture, this means that there exists a. substitution a of variables to variables that

makes h map to t. If the change is not accepted, h t by Theorem 7.5, and

hence there is no such substitution. Since each change in each step is confined

to identifying two variables, if it is not accepted, that change can be retracted

with no further repercussions.

Only one positive example is used. The bound for the number of superset

queries is n+1-l-v2, where the number of nodes n and the number of leaves I have

to be potentially created and tested to see if they can be constants. All pairs of

the v variables have to be tested to see if they can be identical. These measures

all refer to the target not the example. The time complexity is bounded by the

query complexity times the target size, or n(rt + I + v2). D



6.4. Learning Unordered Forests from EQ and SupQc

Unfortunately, the matching problem is computationally hard for onto

semantics.

Lemma 6.7 The problem of deciding whether an unordered tree pattern with

repeated variables matches a tree instance with either onto or into semantics is

NP- Complete.

A
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Proof: (CLIQUE < match): It is easy to see that the matching problem is

in NP. We now reduce the problem of deciding whether a graph has a clique

y 3z B 3C
CLIQUE GRAPH

[Complete

(Sub)Graphj

o 0 0 U 0 0 0 0AAA AAAA
x y x z y z ABACBCCD
TREE PATTERN CONSTANT TREE

FIGURE 6.4. CLIQUE as Unordered Tree
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(complete subgraph) of size k to the matching problem of unordered tree pat-

terns. A representation of graphs in terms of unordered trees is chosen, where

the graph is represented by a 2-level tree instance and a clique is represented

by a 2-level tree pattern, both of which have roots labeled with a label 0. The

mapping is done as follows:

For each edge (F, Q) in the graph, there is a first-level subtree O(P, Q) in

the tree instance, where P and Q are constants.

For each edge (x, y) in a clique of size k, there is a first-level subtree

0(x, y) in the tree pattern, where x and y are variables.

The pattern tree has enough extra children in the form of single-variable

subtrees so its root has the same number of children as the root of the

constant tree.

See Figure 6.4 for an example of a 3-clique and a 4-vertex graph. The

problem of testing if a graph has a clique (complete subgraph of a specified

number of vertices) reduces to the matching problem for unordered trees by the

above mapping. Unordered tree matching is therefore NP-Complete (Garey &

Johnson, 1979). D

Note that both repeated variables and unordered matching are necessary

to make the tree-matching problem NP-Complete. The matching problem would

have been related to "First Order Subsumption" in (Garey & Johnson, 1979)

except that UT trees are unordered whereas the arguments in the expressions

or functions in the latter are ordered.

In this section, we briefly sketch the algorithm that learns unordered

forests using equivalence and superset queries (both with counterexamples). As

in the UT learning algorithm, the hypothesis is repeatedly specialized until it

matches the target. A version of the SupQ oracle which returns counterexamples

is used:
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Definition 6.1 SupQc(F) is a (Forest) Superset Query (with counterexample)

oracle which is given a forest (F) as an argument and returns either just "true"

(ifF D target) or "false" with a counterexample.

The biggest problem facing the algorithm (Figures 6.6 and 6.7) is that

matching a counterexample to the hypothesis trees is too hard (Theorem 6.7).

The algorithm therefore goes to extraordinary lengths to avoid the need for

matching. A second problem is that the SupQc oracle will not give useful

guidance when a tree is specialized (or "split" into several more specific trees)

making the hypothesis not cover the target. In effect, additional, specialized

trees must added "blindly" until the result is again a superset of the target.

Further, the learner doesn't know beforehand how many trees are in the target,

so there is no way for it to know how many specialized trees would be needed

for some tree split to be successful.

The algorithm therefore faces a double difficulty. It doesn't know which

tree (or even node) is too general when a negative counterexample is returned

by EQ. Even if it could guess which tree/node to specialize, several new trees

could be needed before that fact could be verified. All choices for specializing

the trees by just one level must be tried in a parallel/breadth-first fashion until

a specialization which works is found.

The algorithm (initial phase in Figure 6.6 and main loop in Figure 6.7)

will now be described in more detail along with a sample execution (Figure 6.5).

The initial phase first checks for two default cases and then generates the one-

level top covers of the target trees. The target could be either the empty/null

or universal hypotheses, in which case the algorithm is done. If EQ returns a

negative counterexample, showing the universal hypothesis (a single tree pattern

variable) is overgeneral, that hypothesis is effectively "split" or specialized into

a set of one-level tree patterns called top covers as follows ("TOPCOVER:"

in Figure 6.6). The empty hypothesis is given to EQ, and a series of positive

counterexamples are collected and converted a tree pattern with the same root
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FIGURE 6.5. EQSupQc UF Example

label and number of children as the top level of the example, but with a distinct

variable in place of each subtree. For example, let the target be Figure 6.5(a),

then the top covers are Figure 6.5(b). SupQc can then be used to guide the

specialization of each such tree as much as is possible without adding any new

trees but keeping the result a superset of the target ("SPECTOP:"). This step

yields the hypothesis in Figure 6.5(c) for the sample execution. These trees are

the hypothesis at the end of the initial phase and the start of the main ioop

(Figures 6.6 and 6.7).

Each main ioop execution ("MAINLP:" through "FINALSPEC:" in the

Figure 6.7 code which is all of that figure except the final return statement)

successfully performs a 1-level specialization on one of the tree patterns t in
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Initialize hypothesis h = {} %start with empty hypothesis
If SupQc(h) returns 'true' then return(h)

else save x = counterexample
h = v %universal hypothesis (single variable)
If EQ(h), return(h) %keep the simpler, top-level
TOPCOVER: % tree split separate from main loop:
specialize h to top level of x %(root label+number of children)
while SupQc(h) gives example x %until cover target

h= hU top level of x
% Also keep track of examples x used to create t to guide spec-
% ialization of those trees later. At this point, h=all root label-#
% of children combinations that are needed to cover the target.

SPECTOP:
for each tree t in h

while SupQc(h) returns 'true'
specialize all parts of t as guided by corresponding example

(undo changes not accepted)

FIGURE 6.6. Initial part of Algorithm EQSupQc for Learning UF

the current hypothesis h. Where a 1-level specialization is the minimum amount

a tree can be specialized and still be changed to represent a proper subset of

the previous tree. That is, either expand a variable leaf by changing it to

a label with childreneach of which is a variable or make two leaf variables

identical. These specializations are guided by the example originally used to

form each tree, and the algorithm keeps track of this hypothesis tree-example

correspondence, although this aspect is not explicitly shown in the pseudocode.

Specializations are tested by by SupQc at several points in the code. The
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MAINLP: %Main loop does additional tree splits:
while not EQ(h) %(negative exampleneed to split some tree)

define t so U=1 t = h %(i.e., h is trees ti tr)
for i 1 to r

gj = h -
ALLSPEC:

for j indexing all 1-level specializations of t2 based on x:
= gi U that specialization

COVER:
for all in parallel:

repeat %add trees to each h3 until one covers target:
SupQc(h3)

%make u cover as well as t does by:
= as specialized as possible based on

while gj U still covers target
SPECCOVER:

= h3 U all 1-level specializations of uj
until SupQc(h) is true for one of the

PRUNE:
for all trees v in that - gj %eliminate unneeded trees:

if SupQc(h3 - v) h3 = - v
FINALSPEC:

for all trees v in gj that %and generalizations:
specialize v as long as SupQc accepts h3

h=
Return(h)

FIGURE 6.7. Main loop of Algorithm EQSupQc
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main ioop continues until EQ indicates no more specialization is needed. Each

potential specialization (tree t in the current hypothesis h and node within

t) and its corresponding resulting hypothesis is refined separately and in

parallel until one succeeds in covering the target again with a more specific

hypothesis. This refinement process gives each repeatedly to SupQc to get

additional examples x which are converted into an additional specialized trees

that are combined with h13. These additional trees fill the gap created by the

specialization and eventually cover the target again. The parallelism is needed

because the learner has no way to tell beforehand which specialization will

succeed and how many trees need to be added to the corresponding h3.

Each iteration of the main ioop starts with EQ returning a negative

counterexample, but the learner doesn't know which tree is overgeneral or how

the tree should be specialized to avoid covering the example. The code at the

beginning of of the main ioop ("MAINLP:" through "ALLSPEC:" in Figure 6.7)

therefore tries all possible specializations of each hypothesis tree t (as guided by

the examples originally used to form them). For each tj, gj represents the rest of

the hypothesis h, and is g2 combined with the jth specialization of t. In the

Figure 6.5 sample execution, (c) is h, (ii) could be labeled t2; since there are only

two trees in h, g is just (i), and suppose (d) is the negative counterexample (not

shown in code) from EQ at "MAINLP:". Then "ALLSPEC:" then generates

(e) as a specialization of (ii) which represents h21 when combined with g2 = (i)

and is the one of many specialized versions of t2 which eventually yields a useful

result.

When a possibly overgeneral tree t is specialized to form a hypothesis

and a new example x is returned which represents the part of the target

now uncovered, the algorithm doesn't know how to change that example into

a new tree pattern to help fill in the gap between and h. Further, even

the problem of discovering how the example is related to t2 is complicated by

the fact matching a tree pattern to an instance is NP-Complete. In the code,
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"COVER:" and "SPECCOVER:" call SupQc to obtain an example x. This

example is generalized to u just enough to cover part of the target as well as

t does with the help of gj (i.e., each leaf is trimmed bottom up until gj U

covers the target, then each part of u is specialized as long as this union still

covers the target). Next all possible 1-level specializations of u consistent with

are combined into the common hypothesis (rather than being maintained

separately as in the other specialization loop). This covering phase loop repeats

in parallel with each thread building its own hypothesis until one of the

successfully covers the target again. In the Figure 6.5 sample execution, (ii) is a

hypothesis tree which is more general than the target, but any one value for the

left child is too specific to cover the target; therefore an adequate hypothesis

can't be generated by generalizing or specializing this one tree. A step we call

hypothesis tree splitting is needed. Tree (f) represents the counterexample x21,

(g) represents the generalization to u21 which covers the target with the help

of g (i) as well as t2 (ii) does. Tree (h) is the one specialization of (g) which

eventually proves useful. Hypothesis tree (ii) is then effectively split into (e)

and (h).

If the hypothesis generated from the previous step is used without change

in succeeding iterations of the main loop, its size will grow exponentially with

executions of the main ioop. But most of the trees that were added to the

hypothesis are not useful and must therefore be pruned, and then the remaining

trees are specialized as much as SupQc will accept. This step will be called the

pruning phase in the proof section below. The code in "PRUNE:" therefore tests

each tree in the successful hypothesis to see if it really needed. If elimination

of that tree still leaves a superset of the target, then that tree is dropped.

Then "FINALSPEC:" makes each tree as specialized as possible (again guided

by the example used to produce each tree) while h3 is still a superset of the

target, Finally, h3 is made the new hypothesis h and the main loop repeats.

These steps are not explicitly shown in the sample execution. However, several
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specializations of the Figure 6.5(g) tree are created and added to h21. Each leaf

in the former can be changed to look like example (f). But trees with constants

in place of the r and q leaves in (g) either do not help to cover the target or

are redundant. These other trees are therefore pruned. In this example, no

further specialization of (g) is needed, but some learning problems will need

specialization similar to that which was done to get both trees in (c) from (b).

0 0 0

0 0 0 0 0 0AAAAAAABCv AuCB CBAu
S11 S12 S12 Permuted

ti = U11

=AAAA
AuC v uB vw

Covers11 and: S12 S12 Permuted

FIGURE 6.8. Two Different least-general generalizations Covering Examples
s11 and 812

The following lemma shows that the justification of algorithm EQSupQc

is not quite straightforward. It might seem at first that Ujj in the algorithm
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FIGURE 6.9. EQ and SupQc Algorithm Covering/Pruning
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(Figure 6.5(g)) would always cover (matches) the same set of instances as t

(Figure 6.5(c)), since was generalized from the counterexample generated

by the removal of t, from a hypothesis covering (representing a superset of) the

target. But as the lemma below shows, this assumption is incorrect. A more

flexible proof which takes this discrepancy into account must therefore be found.

Lemma 6.8 The least-general unordered tree pattern that covers a set S of

(unordered) tree instances is not unique.

Proof: Let the example trees be as in Figure 6.8. Two examples are used, and

a permuted version of the second is shown. The first tree is then generalized

with each permutation of the second, giving the two tree patterns below. Then,

depending on how the children in the two trees are paired, 2 different minimal

covering generalizations are possible. These covers are generated by taking the

ordered lgg of the two tree patterns. LI

A detailed justification of the remainder of algorithm EQSupQc follows.

It is split into two major parts: the covering and pruning phases. This is

followed by a correctness proof of the algorithm (main theorem). Where ap-

propriate, notation is used which corresponds to the variable names used in the

pseudocode. The notation for the first tree is used (t1 and u11) but the lemmas

apply equally well for all instances. Note that there could be other parts of the

hypothesis h (i.e., h - t1). This remaining hypothesis part is not shown and will

not affect the following because it will be kept covered on all SupQc queries.

Covering Phase: The set S U1 S11 of trees represents the target trees

left uncovered when t1 is eliminated from the hypothesis (this set is therefore

covered by t1 as well as by u for each j). This set and the variables s11 are

different from all previous variables mentioned in the algorithm, hence the use

of different names (i.e., S is not necessarily the same as any 1J1 ti where the

lj represents the trees generated by splitting hypothesis tree t1). The following
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lemmas assume the target is expressed in minimal form in the sense that no

target trees represent a subset of other target trees. First it is shown the fact

that Uj is not the same as t does not matter.

Lemma 6.9 Given a nonempty subset {t2} of the hypothesis trees in h, each

of which covers more than one target tree, then the covering phase of the EQ-

SupQc algorithm will discover a way to split one of the t1 while still maintaining

hypothesis h as a superset of the target.

Proof: For each hypothesis tree t, in the current hypothesis h, let S = {Sk}

represent the set of target trees t covers which are not completely covered by

= h - t. The algorithm derives u from counterexample Xjj to cover S (with

the possible help of gj). But by compactness of UT and the fact none of the Sk

are completely covered by gj, u covers all of S.

For each i with t2 covering more than one target tree, some 1-level spe-

cialization of covering tree pattern u23 separates the set of target trees into at

least two groups by the following argument. There is more than one target tree

in S, Uj covers all of them, and none of these target trees are redundant. There-

fore, all the 8jk represent proper subsets of u3. Since u is a proper superset of

each 3jk, and therefore the former matches the latter, the top-level structure of

that target tree is the same as u. A given Sik is therefore a specialization of

u,,2 in some leaf 1 of the latter, so some 1-level specialization of uj in I will still

cover Sk. The are not all specialized in I or u could have been specialized

in I and still cover all of S. Therefore specializing Ujj in 1 will still make it cover

Sik but not some other tree in S.

In the parallel covering loop, each thread is building a particular hy-

pothesis hi,. The specializations generated from the corresponding u from

each iteration will cover at least one target tree by the above argument. Some

of the threads will attempt to split a single target tree and would therefore

never terminate. But the negative counterexample obtained at the beginning of

the main loop guarantees some thread will eventually be successful after a finite
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number of cover-loop iterations. Therefore, one of these threads will eventually

create a more specific hypothesis more specific than the previous h which covers

the target and the hypothesis h3 assigned to that thread will be reassigned to

h.D
The algorithm does not specifically try to find all configurations of a

specific subtree (e.g., like the left child of the right two trees in Figure 6.5(a)

having values A and B). Instead, each iteration uses a divide-and-conquer

approach to split the set of remaining target trees (when there are more than

one) and guarantee at least one more tree is covered. Even within one thread,

successive iterations of the cover ioop are likely to split the set of remaining

target trees on different parts of the trees.

Pruning: The above lemma shows that the target really does get covered with

more specialized trees (the 1-level specializations of u11). But there is still a

need to show the number of these trees does not become excessive and threaten

the polynomial bound.

Lemma 6.10 After the algorithm's pruning phase, for every target tree pattern

in S, there is at most one hypothesis tree pattern in h3.

Proof: Recall that the pruning phase tries eliminating one of the special-

izations of at a time from the hypothesis and restores it only if the target

becomes uncovered. Those 1-level specializations can be separated into two

classes: those that completely cover one of the target trees and those that don't.

By (the contrapositive of) compactness (lemma 6.1), a collection of specializa-

tions each of which only covers part of the target tree can't completely cover

that tree. The latter class of specializations will be pruned from the hypothesis

because there must be others which cover the target. Each hypothesis tree that

completely covers a target tree will be kept if and only if it is the only remaining

tree to do so. Therefore, for each target tree, all but one of the hypothesis trees

which cover it will be pruned.
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Hence, the number of remaining hypothesis trees after pruning will be

bounded by the number of target trees. G

Example: Figure 6.8 is used again for the first steps demonstrating the above

aspects of algorithm EQSupQc and Figure 6.9 completes the example. Assume

that s11 U s12 is the remainder of the target yet to be covered (there might be

other trees not shown in this example). Let t1 (middle bottom of Figure 6.8) be

the tree pattern used to cover this part of the target during an earlier phase of the

algorithm and x1 be the example from which t1 was generated. The algorithm

then creates all possible 1-level specializations of t1 and tests them separately.

For the rest of this example, we consider just one of those specializations: t11

(top of Figure 6.9). SupQc is then called with h - t1 U t11 and the example x11

is obtained (which is therefore covered by ti but not t11).

This example is then used to guide the top-down formation of a pattern

to cover the target (sii U s12) and the result could be u11. Notice that the

latter has a different number of variables than t1 even though it is intended to

cover the same set of trees as the latterand therefore looks like it could cause

trouble. But the algorithm handles this supposed difficulty perfectly. Next, all

possible one-level specializations of u (as guided by an examplenot shown

whose children are GB and AD) are created (trees a, b, and c in Figure 6.9).

This collection of specializations succeeds in covering the target showing that

t11 was a successful specialization choice (the other specializations not shown

would be unsuccessful). The pruning phase then decides which of these trees

are not needed when used with t11 to cover the target; s11 is covered by tii, so

the new trees only need to cover s12. There is no problem if (a) is eliminated

because (b) still covers s12. If both (a) and (b) are eliminated, the target is

no longer covered, so (b) or at least one of these two must be retained. Tree

(c) fails to cover s12, so it is useless and is eliminated. Finally, the remaining

tree (b) is specialized as much as possible while keeping the target covered (b').

Now we are ready to prove the main result of this section.
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Theorem 6.11 Unordered forests with one-to-one onto semantics are learnable

from EQ and SupQc.

Proof: The separate first/top-level iteration ("SPECTOP:") pass is guar-

anteed to find all the root-number-of-children combinations in the target.

"MAINLP:" is guaranteed to cover the target with a more specialized set of

trees on each iteration by lemma 6.9 and to prune the result to something no

more complex than the target by lemma 6.10. Eventually no more specializa-

tions will be possible while keeping the target covered and the algorithm will

terminate by EQ returning true.

Bounds: Learning starts with the "TOPCOVER:" phase, which creates no

more hypothesis trees than target trees. These trees are supersets of target

trees so they have no more leaves than the target. The initial hypothesis is

therefore bounded by the target size.

The dominant bound for the number of queries superficially at first glance

seems to be determined by two sets of 3-level loops (Figure 6.7). The main loop

"MAINLP:" with "while not EQ(h)" is the outermost ioop for both sets of 3-

level loops. The first set of loops is the specialization part of the code (first

part of the main loop and "ALLSPEC:") with loops "for i" and "for j". The

second set of loops is "COVER:" and "SPECCOVER:". But these two sets of

loops are not really disjoint/independent even though they superficially appear

to be in the code. The second set operates in parallel for all i and j which were

created by the first and therefore inherits the complexity of the first. Further,

the second set also has a repeat . . . until loop and the loop implied by "all 1-

level specializations of u". On this basis, it could be argued that the second

loop set is really a 5-level ioop. But even these loops do not quite reflect the

actual execution time of the algorithm because the number of possible 1-level

specializations is not linear in the tree sizeas will be explained below. There

is also another loop level which examines each node within a tree. "PRUNE:"
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and "FINALSPEC:" do not have as many nested ioops and therefore do not

affect the order of the execution time.

Let f be the total number of nodes in the target forest, and t be the

number of nodes in the largest target tree. The number of possible 1-level spe-

cializations (i, j index loops) will be determined by the total number of leaves

in the target. The first of three ways of specializing a tree is to turn a leaf

into a one-level subtree (as guided by the example used to form that tree). A

second mode of specialization turns a variable leaf into a constant. But this

specialization is mutually exclusive of the above one because the specialization

must be guided by an example and therefore has only one choice. A third spe-

cialization mode is to make two leaf variables identical. This last specialization

mode dominates because it depends on pairs of leaves rather than just a single

leaf. The dominant term in the bound on the number of specializations ("j

loop") is therefore t2/2 for an individual hypothesis tree or ft/2 for the target

forest.

By an argument like the metric for OT (Theorem 3.7), the number of

iterations of "MAINLP:" is bounded by f. The "for i" loop iterates over the hy-

pothesis (and potentially all target) trees. "ALLSPEC:" (for j) will potentially

try t2/2 possible specializations for an individual tree, giving a total factor of f

times ft/2 or f2t/2 so far. The "COVER:" loop potentially executes as many

times as target trees, and the "SPECCOVER:" loop could call SupQc for each

pair of nodes in the giving a bound of ft/2 again, and an overall bound of

f3t2 /4.

By lemma 6.10, the hypothesis after pruning will be maintained with a

complexity less than the target so the above bounds will hold with successive

"MAINLP:" iterations. The overall queries bound would therefore be of order

O(f3t2). Execution time could be that quantity multiplied by tree size: O(f3t3).

LI



6.5. Learnability of UF Using SupQc and SQ or MQ

The availability of SQ allows the learner to directly test which trees are

overgeneral thus significantly simplifying the algorithm for learning unordered

forests when SQ and SupQc are available. This test avoids the need for paral-

lelism in the covering loop. But the specialization step and covering loops are

still needed. The combination of SQ and SupQc allows the learner to achieve

the equivalent of an EQ test except for negative counterexamples. But SQ can

be used to test each tree so the lack of negative counterexamples causes no

difficulty. The process of splitting an overgeneral tree is still somewhat compli-

cated.

Theorem 6.12 UF is learnable from SQ and SupQc.

Proof: The learning algorithm for this class will start with a null/empty hy-

pothesis (no trees). Then a topcover is formed by repeatedly calling SupQc

with the current hypothesis and creating trees from the top level of the ex-

ample. (These trees are therefore as general as possible without covering the

entire instance space.) After SupQc verifies the target is covered, each tree is

specialized as long as it is accepted by SupQc. The part of the algorithm up to

this point is the same as the initial part of algorithm EQSupQc.

SQ is then used to test which hypothesis trees are still overgeneral. Those

that are overgeneral are specialized/split by trying the following steps. First,

an overgeneral hypothesis tree t is replaced by all of its 1-level specializations.

If the result is a superset of the target, prune the specialized trees which are not

needed and repeat these steps. Otherwise generate new trees using a process

very similar to the covering loop of the EQSupQc algorithm. These steps are

repeated until SQ verifies each tree is not overgeneral and SupQc verifies the

target as a whole is a superset, proving equivalence of the hypothesis and target.

D
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The following lemma shows that the MQ and SupQc combination of

queries (unlike SupQc and EQ or SQ) lacks the capability to tell the learner

when it has found the correct target.

Lemma 6.13 UF is not learnable from SupQc and MQ.

Proof: Any learner with these two oracles cannot correctly know whether the

target is the universal set, which is represented by a tree with a single node

which is a variable, because there will always be other targets which are also

consistent with the information that the learner has received. Specifically, if the

learner reports that it has learned the universal set (one possible target), then

all of the calls to MQ must have resulted in the responses of "true." Further, the

calls to SupQc can oniy have resulted in a yes or in a positive example. While

the universal hypothesis is consistent with their data, another target consisting

of all received positive examples is also consistent with this data. If the learner

reports either one of these two targets as its hypothesis, the teacher can always

choose the other, and the learner will have failed to learn the correct target. 0

6.6. Learnability of Bounded Unordered Trees and Forests

This section discusses the learnability of UT and UF with a finite label

alphabet and a bound on the number of children below each node. For all of the

learning problems given so far, a training example (or a source of examples) is

necessary. This claim applies in general whenever an infinite label alphabet is

used because then the learner can't guess a label in a finite number of queries.

It is also true when subset (rather than superset) queries are used because the

former requires learning to be bottom up and must have an initial example as

a starting point (e.g., the algorithm for p-UF, Theorem 6.2).

But there is an exceptional concept class which does not require any

training examples. Adapting Definition 4.3 of Section 4.2, this class can be
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called UTI,b, meaning the concept class of (single) unordered trees with a label

alphabet of 1 symbols and a bound b on the number of subtrees below any node

(with both 1 and b finite).

Theorem 6.14 UT1,,, is learnable with SupQ and no training examples.

Proof: The algorithm for this class works the same as for the UT algorithm,

except where the single example is used as a guide for specializing the hy-

pothesis. Instead of using an example as a guide to refine the hypothesis, this

algorithm tries out all single-step refinements exhaustively until one succeeds.

In other words, it tries all l(b + 1) possible ways of refining a given node by

replacing a variable with any of I labels and from 0 to b children (with new vari-

ables as the children), tests the result with SupQ and keeps any changes that

are accepted. It is easy to see that when the algorithm terminates, it would

have exactly learned the target tree. 0

The problem of learning unordered forests with a bounded label alphabet

and number of children using superset and equivalence queries is similar to

the unbounded alphabet and children case; but there are additional, subtle

problems.

Open Question 5 UF,,, is learnable with equivalence and superset queries

where both return counterexamples ?

A proof might be attempted along these lines: The bounded class is not

compact (Definition 3.5). but that might not matter because The algorithm has

to maintain a hypothesis which represents a superset of the target and which

is no more complex than necessary. It would be highly desirable to guarantee

there are no more hypothesis trees than target tree patterns.

The version of the algorithm for unbounded trees tries specializing a par-

ticular node in the hypothesis (say p) and then adds more tree patterns until



123

the target is covered. When the alphabet is infinite, this approach necessarily

oniy succeeds when the corresponding target tree is more specialized than the

hypothesis. But with a bounded alphabet and children, a finite set of special-

ized trees could cover the same instances as the original treeif there are at least

l(b+1) trees. The result would make the hypothesis too complex. The algo-

rithm for UFI,b must be adjusted to stop just before this happens. There is still

another problem; the target could include all l(b+1) refinements of a particular

hypothesis nodebut require some of them to be further specialized. This possi-

bility requires the algorithm to try generating all specializations of node p and

then exploring further specializations of the resulting trees. Since the algorithm

should not use exploration this complex unless it is really needed, refinement to

greater depths would not be used until all lesser choices are exhausted.

The problem is that the proof for EQSupQc requires compactness to

bound the size of the hypothesis. A learning algorithm for UFL,b needs to bound

the complexity of its hypothesis which essentially needs the hypotheses to be

restricted to those which don't violate the compactness property. That is, no

set of hypothesis trees should include all l(b-i-1) values of node label and number

of children for a particular tree node.

Presumably if UFI,b could be learned then DNF could also be learned

with EQ and SupQc. But the problem of deciding whether a DNF hypothesis

violates a compactness property is equivalent to deciding whether the hypoth-

esis covers all instance values represented by a particular conjunct. The latter

problem is equivalent to the dual problem of finding satisfying instance for a

CNF expression and therefore to solving SAT-which is NP-Complete.



6.7. Summary

Unordered trees without repeated variables are learnable from one exam-

ple and subset queries. Unordered trees and forests without repeated variables

are learnable from equivalence and either subset or membership queries.

Like the class of ordered trees, the class of unordered trees is compact.

But unlike for ordered trees, matching for unordered trees with repeated vari-

ables is NP-Complete. Unordered trees with repeated variables are learnable

from superset queries and one positive example. Unordered forests with re-

peated variables are learnable from superset and equivalence queriesboth with

counterexamples. Unordered forests are learnable from superset queries with

counterexamples and subset queries. But unordered forests are not learnable

from superset queries with counterexamples and membership queries.

Unordered trees with repeated variables and with a finite label alpha-

bet and bound on the number of children are learnable from superset queries

(without counterexamples) and no training examples (or even a source of ex-

amples). The question of whether unordered forests with a finite label alphabet

and bound on the number of children is learnable from equivalence and super-

set queries with counterexamples is an open problem. These results seems to

suggest that superset queries are at least in some sense more powerful than

subset queries. This distinction is really tied to the conjunctive nature of tree

matching (see the discussion in Section 9.1).
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7. LEARNING UNDER ONE-TO-ONE INTO SEMANTICS

Chapter 5 showed that learning unordered trees with one-to-one onto

semantics using only EQ and either SQ or MQ is hard. In Chapter 6, we

say that learning this class is easy with superset and equivalence queries. But

suppose superset queries were unavailable or not practical? The difficulty of

learning unordered tree patterns can also be circumvented by using one-to-

one into semantics. In this chapter, we describe a bottom-up algorithm for

unordered forests with one-to-one into semantics and give an analysis of the

algorithm.

7.1. Introduction

First-order predicate Horn clauses can be learned without superset quer-

ies even though there is no constraint on the order of the predicates within the

clause (Reddy & Tadepalli, 1999). This capability contrasts with the above limi-

tations in learning unordered tree patterns with onto semantics. Yet there seems

to be a connection between tree and predicate learning. Both have variables

which match structures and under certain conditions can use algorithms such

as lgg. But Horn-clause learning allows extra literals in an instance matched by

a predicate clause. One-to-one onto tree matching is quite rigid in comparison.

To get a better comparison, tree matching is altered to allow extra children in an

instance matched by a tree pattern. This changes the mapping of the children

of a tree pattern node to the children of a tree instance node from one-to-one

onto to one-to-one into.

With one-to-one into semantics, each subtree of the tree pattern maps to

a subtree of the instance, but some instance subtrees may not be mapped to by

any pattern subtree. In other words, any node in the instance may have more

children than the corresponding node in the tree pattern that matches it. In

particular, a constant node with no children matches only itself under one-to-one
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onto semantics, but matches any tree with the same root label under one-to-one

into semantics, i.e., A matches any A( ...). A target with multiple copies of

the same variable, e.g., A(x x), would therefore match any tree instance having

the same label at the root of the subtrees corresponding to those variables-

for example A(B B(C D)). This is so because substituting {x/B} in the tree

pattern yields A(B B) which maps to the example. Note that this semantics is

slightly different from that of (Amoth, Cull, & Tadepalli, 1999), which required

that both variables should map to exactly the same unordered subtrees. While

the old algorithm is still correct with respect to its semantics, the new semantics

is cleaner. For example, >- is not transitive according to the old semantics,

because A(x x) >- A(B B) and A(B B) >- A( B B(C D)), and yet A(x x)

A( B B(C D)). The new semantics obeys transitivity and is more natural than

the old semantics. It also simplifies the algorithm of (Amoth et al., 1999) as

will be shown below.

Unfortunately, the lgg algorithm as used with Horn clauses still won't

work with unordered trees even with this altered semantics. A different algo-

rithm similar to the algorithm for ti-UT (Theorem 6.2) will work. This algorithm

starts with one example target tree to be learned and repeatedly tries all pos-

sible ways of generalizing the resulting pattern until no further generalization

is possible. The result is one of the target tree patterns. This algorithm de-

pends on there being only polynomially many ways to generalize a tree pattern

at each step. This property is not true for one-to-one onto semantics because

the number of ways to generalize a hypothesis can be exponential for repeated

variables/constants. But a variation in the approach makes an end-run around

this obstacle possible. The algorithm still uses a bottom-up generalization ap-

proach from a single example. But instead of generalizing directly from a tree

pattern with repeated variables, the algorithm first makes the pattern more spe-

cific by adding extra subtrees to a node. Then further generalization becomes

possible.



7.2. General Definition of Tree Matching Semantics

The standard, most-often used mapping is called one-to-one onto which

means that each (one) pattern child maps to exactly one instance child, and

onto requires that all instance children are included in this mapping. Further,

no instance child is mapped from more than one pattern child. This mapping

therefore requires that the numbers of pattern and instance children are the

same; the mapping is a permutation if it is also allowed to be unordered (or is

the identity mapping if it is required to be ordered).

How do tree patterns represent/correspond to expressions? If an expres-

sion is one of the tree instances represented by a tree pattern, then each node

in the pattern must correspond to some node in the instance. The children of

the node in the pattern must correspond to the children of the corresponding

instance node in some fashion. This correspondence will be called matching se-

mantics and will be defined by the type of mapping used. The simplest mapping

type is one-to-one onto. But difficulties with learning with this semantics and

the desire to compare with other logical formulations inspired a study of one-

to-one into and many-to-one into semantics, both of which allow an instance to

have more children than a matching pattern. One-to--one into semantics is the

same as one-to-one onto except that the requirement that all of the instance

children take place in the mapping is removed.

The semantics are classified according to the kind of mapping allowed

between subtrees of corresponding trees. In many-to-one mapping each pattern

subtree maps to exactly one instance subtree. This is true in one-to-one map-

pings as well, but it is also required that each instance subtree is mapped to by

at most one pattern subtree. One-to-one onto or bijective mappings are further

restricted by having every instance subtree mapped to by some pattern subtree.

Neither of the into mappings has this restriction; one-to-one into semantics is

also an injective mapping, and many-to-one into is an unrestricted mapping.
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FIGURE 7.1. Match Semantics Example

In Figure 7.1, the tree pattern (a) matches instance (b) according to

ordered one-to-one onto and all unordered semantics because the structure is

basically the same and the identical subtrees D(AC) are matched by the iden-

tical y variables. For ordered matching, E and F must be substituted for x and

w, respectively. Pattern (a) matches instance (c) according to any unordered

semantics (one-to-one onto, one-to-one into, or many-to-one into) by swapping

the two subtrees and permuting the subtree with 3 children. Again, D(A C) is

substituted for y but in this match, E and F can be substituted for x and w in
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either order. The pattern (a) matches instance (d) using (many- or one-to-one)

into semantics. But this instance is not matched using one-to-one onto seman-

tics because of the extra leaf C under the left subtree as well as the two nodes

labeled D having a different number of children. For either into semantics, an

appropriate substitution is {z/B, y/D, x/E, w/F} (note that the y's can match

both D with no children and D(A C)). Tree pattern (a) does not match instance

(e) by one-to-one onto/into semantics because there is no subtree with chil-

dren and there is no pair of identical subtree heads for the identical variables

(y) to match. This match does work for many-to-one into semantics by making

both pattern subtrees match the same instance subtree (which could be either

the right or left subtree) and by making two variables match the same instance

child. One of numerous possible substitutions is {y/B, z/B, x/D, w/B}. With

many-to-one into semantics, the tree pattern would match any instance having

root R with at least one subtree headed by A which in turn has at least one

child, i.e., R(A( any label ...) ...). Tree (f) is not matched for any seman-

tics including many-to-one into because there is no A below the root to match.

Any instance with only the root with one level of children would also not be

matched.'

For ordered tree matching, just a simple substitution is needed for match-

ing. For unordered trees, the definitions are more complicated and depend on

how we define the mapping between the subtrees. We first define when a tree

pattern maps to another (or a tree instance maps to another instance) without

variable substitution.

Definition 7.1 A tree pattern or instance r = ro(ri .. . rk) maps to a tree

pattern or instance s = so(s, . . sj) according to semantics W (one-to-one onto,

one-to-one into, or many-to-one into) if the following conditions hold: (1)

'It could be argued that extra variables in a subtree which do not appear elsewhere
in a pattern are useless in many-to-one into semantics-or that those variables do no
harm.
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r0 = ü, (2) there is a corresponding (one-to-one onto or one-to-one into or

many-to-one into respectively) mapping p from {ri,. . . , rj} to {si,. . . s} such

that (3) the child subtree r recursively maps to some child subtree sj according

to semantics W (where 1 < i < k and 1 <j < 1). Where rjp = sj and rp

and we call p a W-consistent mapping.

Note that p can be viewed as a tree transformation or homomorphism.

In the case of one-to-one onto maps, p simply permutes the subtrees at all levels.

In the case of one-to-one into maps, it permutes the subtrees as well as adds

new subtrees at any level to get the instance tree. In the case of many-to-one

into maps, p can identify several subtrees into one, permute the subtrees, and

add new ones. The homomorphism p preserves edges (for each node r1 in r,

= some 89 in s and Parent(rf)p = Parent(s9), unless rj is the root of r) and

node labels (label(rf) = label(s9), meaning rj and s9 are the same constantor

variable).

Definition 7.2 A tree pattern F matches a tree instance (or pattern) t accord-

ing to a given semantics iji, denoted by F >- t, if (t is empty hypothesis or)

there is a substitution a for F 's variables so that Fa maps to t under W. We

omit the subscript 111 when it is irrelevant or is clear from the context.

A tree pattern represents (according to a semantics iTt) the set of tree

instances that it matches (with iTt). Hence we say that these instances are in

the pattern. The instances that are in a given pattern are called its positive

examples, and the instances that are not in a given pattern are its negative

examples.

Definition 7.3 L,(P) is the set of instances matched by tree pattern P with

semantics 'I' (i.e., the language represented by P with iTt).

The notation L(P) without the iji will be used when it is clear from the

context what semantics is being used. We treat substitutions and mappings as

left associative (i.e., apply in left to right order).
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Definition 7.4 The composition of two substitutions, a1 {x1/s1, . . .,

and a2 = {yi/ti, . . . , ym/tm} is U 0 = {xi/sia2, ..., x/sa} U {y/t
{x1,.. .,x}}.

Lemma 7.1 For any tree pattern p, (pa1)a2 = p(ai o a2).

Proof: If y çt {x1,. . . , x}, then any 7ji in p is substituted with t1 on both sides

of the above equation. If y2 is one of the x's, then a1 o a2 correctly eliminates

y/t. Otherwise if y, is part of s, So-2 yields the same as first applying a1, then

a2toxi. 0

Lemma 7.2 The composition of two 'T!-consistent mappings is a 'Ti-consistent

mapping.

Proof: Let and i2 be two mappings of the same type 'If (one-to-one onto,

one-to-one into or many-to-one into). Define the composition of i and IL2,

IL2, in the natural way so that x(Iti ° IL2) = (xILl)IL2 (written as xi1t2) for

any x. It is easy to see that a IL2 is of type 'I' as well. 0

Lemma 7.3 For every pattern P, substitution a, and 'If-consistent mapping IL

there exists a 'Ti-consistent mapping ' such that PILa = PaIL'.

Proof: Let s be a subtree of P. If IL maps s in P to t, let IL' map sa to ta.

Hence sap' = ta = spa. Since this holds consistently for any subtree s of F, IL'

is a 'Ti-consistent mapping, and PaIL' = PILU. 0

The lemma implies a string of substitutions and mappings can be re-

ordered with all substitutions before all mappings (using different mappings).

The reverse direction PIL'a = PaIL doesn't work because could map substitu-

tions for identical variables to nonidentical subtrees.2

2For example, given R(x x)a/1 = R(A(B) A(B))p = R(A(B) A(B C)). Then a can't
produce both A(B) and A(B C). R(x x)aIL = R(A(B C) A(C B)) shows one-to-one
onto semantics can have the same difficulty.



Lemma7.4IfP-QandQ>--R,thenP-R.

Proof: Given Pa maps to Q for substitution a and semantics 111, there is a

mapping so that Paj = Q. Similarly, Q >- R implies there exists a' and ,u' so

Qa'p' = R. Therefore Papa'ji = R, or Paa'ji"' = R by Lemma 7.3. Further,

P(aoa')(il'o,u') = R by Lemmas 7.2 and 7.1. Finally, P R by Definitions 7.1

and 7.2. U

Theorem 7.5 Let P and Q be two tree patterns. Then L(P) L(Q) with

semantics I' if P matches Q (P >- Q) with II'.

Proof: if: For any tree instance I E L(Q), Q >- I. This fact and P Q

implies P >- I by Lemma 7.4, and I e L(P). Hence L(P) L(Q).

only if: Given L(P) D L(Q). Since the alphabet of constant labels is infinite,

we can choose an instance I L(Q) with each variable in Q replaced with a

constant label not appearing in either P or Q. Then for some a, Qa = I with a

being a very simple substitution which replaces each variable with a constant.

Since these constants appear nowhere else in these trees, there is an inverse

substitution a1 which substitutes variables for constants (in a one-to-one onto

fashion) such that 1a1 = Q. Similarly I E L(P) implies Pa'i' = I for some

a' and bi'. Therefore Pa',u'a1 = Q. By Lemma 7.3, there is a mapping ii!' so

Pa'a1u" = P(a' o a')jz" = Q. Hence, P Q. U

Trees are compact for all matching semantics:

Lemma 7.6 The classes of (Ordered or) Unordered tree patterns (UT) with

one-to-one onto, one-to-one into, many-to-one onto, and many-to-one into

semantics are compact.

Proof: Let 2, V1 . . . V be tree patterns such that U=1 L(V) 2 L(Z). Let I =

Za where a replaces each variable in 2 by a constant that does not appear in any

of the V or 2. Then the inverse substitution is well defined, giving 1a' = Z.

Further, I e L(Z), so I (J L(V) and since I is just one tree instance,
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I E L(V) for some i. Therefore, for some substitution a' and mapping 1il,

Va',u' = I. Combining with the above gives Va'u'a' = Z. Using Lemma 7.3,

Va'a'p. = Z for another mapping p. Substitution composition via Lemma 7.1

gives V(o-' a a')i = Z or V, >- Z for some i. By Theorem 7.5, L(V1) L(Z)

for some i. 0

7.3. One-To-One Into Algorithm Description

The main part of the unordered forests learning algorithm for one-to-

one into-semantics using EQ and SQ (equivalence and subset queries) is based

on a bottom-up generalization approach from single examples and is shown in

Figure 7.2. The algorithm gets a new example tree from EQ, and then applies

two generalization routines: prune and variablize. prune removes the extra

nodes and edges in the tree instance while making sure that it still remains

a positive instance of the target pattern. variablize turns the constants into

variables while testing with SQ that the result is a subset of the target. There

still remains the problem of finding a target with multiple variables when the

example has the same constant label that corresponds to all variables. This

problem is solved by a third routine partition (called by variablize) that

partitions the constants into groups that are instances of the same variable in

the corresponding target tree pattern. Throughout this process, the hypothesis

represents a subset of the target, so the validity of each step can be verified.

The tree is then added to the hypothesis and the process repeats until the target

is covered. We now describe the three subroutines in more detail.

Pruning: The pruning subroutine is shown in Figure 7.2. Pruning operates

by trimming each (constant) leaf. After each change, the hypothesis is tested to

be sure it is still a subset of the target; and the change is undone if not. Once all

the children of a node are pruned, that node becomes a leaf and is a candidate



function into-main()
initialize: h = {}
while EQ(h) gives

counterexample t
%(which is positive)

h=hU
variablize (prune (t))

return h

FIGURE 7.2. Into-Semantics Main (left) and Pruning Routines (right)
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(a) Target
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(b) Instance
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procedure prune(t):
% (example) tree t

while haven't tried leaf f
cut f and its edge
if not SQ(t)

undo the change
return t

A

B B

C E F

(c) Prune

FIGURE 7.3. Bottom-Up Pruning Sample Execution
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for pruning. The process repeats as long as pruning yields a tree pattern that

is accepted by SQ.

Figure 7.3 illustrates how the simple pruning technique works. A possible

target is given in (a) and single training example could be as in (b). The bottom-

up pruning algorithm then attempts to generalize one leaf at a time by trimming

the leaf and its edge. The result is the simplest such tree which still represents

a subset of the target (c).

Variablizing: This routine (Figure 7.4) picks each set of identically labeled

constants or variables (including singleton sets), creates a new variable that

corresponds to them, and calls partition. Partitioning is necessary because

the identical constants may have arisen from substituting the same constant

for multiple variables in the target pattern. The task of partition is to sep-

arate these constants into groups so that the constants in different groups are

generated from different target variables if acceptable by SQ. If partition is

successful in partitioning this set into two sets, they become candidates for fur-

ther partitioning (except for single, unique variables). When a set of two or

more constants is converted to the same variable, partitioning is called on that

set. This step repeats until partitioning or variablization is unsuccessful on each

remaining non-singleton set of identically labeled constants or variables. The

actual turning of constants into variables occurs in partition as a side-effect.

Partitioning: The task of the partition routine is to split many copies of

the same constant/variable (called c's below and in routine variablize) in the

hypothesis into two sets such that the two sets correspond to mutually exclusive

sets of target variables. With one-to-one onto semantics, this problem is

too difficult (Theorem 5.5). But one-to-one into semantics has an additional

flexibility which permits this kind of set to be partitioned in polynomial time.

The approach used by partition introduces a new variable, say v, and

converts part of the set of c's to this new variableif possible. One-to-one into



procedure variablize(t)
%generalize leaves to variables in tree t

while there is a set of one or more leaves in t with identical labels c
on which partition has not been called

create a new variable v
partition(t, c, v) %try partition/variablize c's

return t

procedure partition(t,o,n):
%partition old by adding new

designate the copies of o in t as 01 Ok

fori=ltok
add n (a copy of n) to the parent of o

flag = true %ensure delete at least one n and one o by:
for i = 1 to k

if flag then %try deleting o's first until
delete o
if not SQ(t), then undo that change

else flag = false %. succeedthen
delete n
if not SQ(t), undo that change

else %. delete n's first
delete n
if not SQ(t), undo that change
delete o
if not SQ(t), undo that change
%(do not eliminate all of one variable first)

return t

FIGURE 7.4. UF 1-to-i Into Repeated Variable Partition Algorithm
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semantics permits a matched instance to have extra children not present in a

matching pattern; therefore adding extra children (i.e., the v's) to the pattern

will cause the latter to match a subset of the set of instances it previously

matched. It is therefore possible to add a copy of v wherever c appears, and

then eliminate one c or v at a time while doing meaningful subset tests. If all

copies of a constant c really should be the same variable, partition fails to

partition the set of c's, but is designed to favor changing all copies of c to vif

acceptable to SQ. Similarly, if there is only one copy of c, that copy will be

converted to a variable, if appropriate. If only one copy of c corresponds to a

particular target variable, then eventually successive applications of partition

will separate this variable. The above cases cover all tasks, but there is also

a default case. If all copies of a constant c really are constants in the target,

then partition will fail to do anything because all attempts to delete c's will

be rejected by SQ and deletion of all introduced variables will be accepted.

Subroutine partition (Figure 7.4) uses the following technique to in-

dividuallv test each copy of c. For each copy of c, a copy of a new variable v

is hung on the parent of c. For each subtree, the same number of v's is added

as there are c's in that subtree. Therefore each subtree gets an equal number

of c's and v's, and the total number of v's added in the entire tree is the same

as the number of c's. The variables are then eliminated one at a time while

checking that the resulting tree t is still accepted by SQ. If all copies of one

variable were eliminated first, the result might be unchanged or all copies could

be converted to the new variable. Therefore elimination alternates between the

two sets of variables (or variable and constant). To ensure the set of c's will be

split, if possible, the alternation first works by preferring to delete c before the

corresponding vuntil one c is successfully deleted. Then v is removed before its

corresponding c is for the rest of the tree. Without this switch in the preference,

either all the c's or all the v's might be removed even when it is possible to split

the set.
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A A A A A A

xx xxy yxy z CCCCCCCCC
Target Training Example

FIGURE 7.5. Partition/Repeated Variables Bottom-Up Example

Figure 7.5 shows the start of the execution of a simple repeated-variable

example. First the target is shown to be A(A(xxx) A(xyy) A(xyz)). The

training example is assumed to be the same but with all variables substituted

with the same constant, say C. Further steps in the example will be shown with

just the leaves since the upper part of these trees is the same. (The target and

training example would be represented as xxx xyy xyz and CCC CCC CCC

in this notation.)

The variable duplication step would then produce CCCrrr CCCrrr

CCCrrr (3 subtrees but now with 6 children each). The algorithm would then

start on the first subtree and eliminate one variable at a timefirst a C, then one

of the r's, yielding CCrr CCCrrr CCCrrr. The first hypothesis subtree is no

longer matched by the first target subtree, but it can still match the other two

target subtrees. Then another s is eliminated, yielding Crr CCCrrr CCCrrr.

This first subtree can still match either the second or third target subtrees,

so these hypotheses are all accepted by SQ. But further pruning will result in
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rejectionat least 3 children are necessary in all hypothesis subtrees to satisfy

SQ.

Similar pruning of the second hypothesis subtree gives Crr Crr CCCrrr.

Eliminating one of each from the third subtree gives Crr Crr CCrr, but no sub-

tree can match the 3 x's. Backtracking and eliminating r's gives Crr Crr CCC.

Another call to partition the C's changes all C's into a variable, say s, giving

srr srr sss. Partitioning r gives srrww srrww sss for the duplication step.

Eliminating one of each gives srw srrww sss which is accepted showing this

partition attempt was successful. Further pruning eliminates one variable (say

r) in the second subtree, giving the target. But further partitioning must be

attempted on any variable not already tested (just w).

Note that the algorithm has a "flag" which causes it to first eliminate the

old/original children. Then once it has succeeded the algorithm switches modes

to try eliminating the new child/variable first. This is to avoid eliminating all

of one variable even when it is possible to partition the set of identical variables

(e.g., for a target of the form xxx yyy).

7.4. Proof of Algorithm

We will now give a correctness proof of our algorithm. The proofs

cover the following three tasks: prune all leaf nodes as much as possible, convert

constant leaves to variables, and partition sets of identical constants or variables

as much as possible.

Theorem 7.7 After prune (Fig'are 7.2), the hypothesis tree will be isomorphic

to the target tree (aside from repeated variables).

Proof: Since the target matches the hypothesis, there is a corresponding

a and . If there are extra nodes/edges that do not have maps, they would

be removed by prune. Given the hypothesis tree p which is already pruned

by routine prune, since p was accepted by SQ, so L('T) D L(p) and Y p by



140

Theorem 7.5. Hence, there exists a substitution a and a mapping p so Ta = p.

Since T matches p, and p has been pruned, these trees must be identical in all

of the corresponding internal nodes; so only the leaves can differ. Further, p has

the same number of leaves as T which correspond by j, so the mapping t is one-

to-one onto for this case. It follows that there is a correspondence between I

and p represented by the mapping ji of Definition 7.1, and this correspondence

is one-to-one onto (otherwise, the extra subtrees permitted by the into mapping

would have been removed by routine prune). Therefore, prune removes all the

nodes which are not needed to correspond to and be matched by some target

tree. 0

Lemma 7.8 Given a pruned hypothesis tree t, which represents a subset of the

target, an "old" leaf o in t and a "new" variable leaf n to replace o as arguments,

routine partition will generalize the set of o 's in t if that set is less general than

some target tree.

Proof: The generalization occurs by either turning constants into variables or

by splitting a set of repeated variables into sets of two or more distinct variables

(or by splitting a set of repeated constants into sets of constant and a variable).

By Lemma 7.6, UT with one-to-one into semantics is compact. Given that t is

a pruned tree which represents a subset of the target, there is some tree I in

the target, so I t.

If the set of o's in t is less general than the set of corresponding leaves in

I, then t will be generalized by the following argument. Designate the o's as o1

through 0k Target tree J can only be more general than the o's in t by having

a variable in the former correspond to one or more constant o's in the latter, or

by having at least two distinctly labeled leaves in I correspond to two o's in t.

This algorithm adds n's as extra children (copies of a new variable) to

those subtrees of t having o's. One-to-one into semantics permits the original t

to match all of the instances matched by the version of t augmented with these

n's. So the result will represent a subset of t and therefore of I. Next o's or
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n's are eliminated one at a time while keeping oniy those changes which keep

this new t a subset of T. This approach permits the set of identical constant or

variable o's to be split or partitioned into two sets without having to separately

test an exponential number of such splits. Since oniy changes accepted by SQ

are kept, the condition that t represents a subset of the target is maintained.

As one of the cases, suppose 'T has variable v in all positions correspond-

ing to the 0'S in t. Then partition will add a number of n's equal to the number

of o's. Then this routine will try to remove the o's first and will succeed on the

first try. An attempt to then remove the n's first will fail because the target has

all the same variable v corresponding to the 0's and will not be more general

than t with two different variables in those positions. The result will be t with

o's replaced with n's which is as general as the target for those positions.

Further split the remaining cases into two possibilities; first assume some

of the leaves in T corresponding to the 0's are constants (which must therefore

be identical to o) as well as one or more distinct variablesrefer to these variables

collectively as v. Then partition will successfully eliminate n's corresponding to

the constants in T and also eliminate the o's corresponding to v's. Eliminating

more n's than the constants in the target or more o's than the variables in v will

not pass SQ. Hypothesis tree t will therefore have been successfully partitioned

and generalized by changing some of its constants into the new variable n.

If the corresponding leaves in T have two or more variables, but no

constants, arbitrarily split these variables into two sets of variables and designate

them as x and y. Then partition will, without loss of generality, eliminate 0's

in positions which can correspond to y's, leaving the n's for those positions.

When a position corresponding to an x is encountered, partition can eliminate

the n in that position. The result will be n's in positions in t corresponding to

y's in 'T and o's in positions corresponding to x's. Thus, whenever the target

has two or more variables corresponding to the o's, partition can separate these

leaves into two distinct variables, o and n. U
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Lemma 7.9 Routine variablize will learn one of the target trees from a pruned

example.

Proof: One of the following cases must apply: hypothesis tree p is equivalent

to 'T, in which case variablize is done, or T is strictly more general than t. In

the latter case, the difference must be in some leaf oftor a set of identical leaves.

Since variablize calls partition for all such sets of leaves, t will be generalized

by Lemma 7.8. This process continues until t is eventually equivalent to 1. 0

Theorem 7.10 UT with one-to-one into semantics is learnable with equiva-

lence and subset queries.

Proof: Given a tree instance t e L(T) where T is a target tree, by Defini-

tions 7.2 and 7.1, respectively, there exists a substitution a and mapping 1tt so

= t. If u is not one-to-one onto, by Lemma 7.7, routine prune can remove

leaves until the mapping satisfies that criteria. Then, by Lemma 7.8, routine

variablize will generalize t to be equivalent to T. So this algorithm will learn

any UT target with into semantics.

Define a metric for (hypothesis) tree complexity as the total number of

tree nodes n, minus the number of distinct variables v, plus the number of edges

e, giving n - v + e. Let this value for a given example tree be r. Each possible

generalization must convert a constant to a variable, partition a variable or

eliminate an edge with a distinct variable and thereby decrease this metric.

The total number of generalizations is therefore bounded by the value r of this

metric for the example tree given to the algorithm. The total number of queries

is bounded by the number of ways to generalize 1-level trees times the number

of nodes to be generalized. Each factor is bounded by r, so the overall bound

is 0(r2) = 0('n2). Time complexity is bounded by the example size times the

number of queries or 0(n3). 0

Corollary 7.11 UF with one-to-one into semantics is learnable with equiva-

lence and subset queries.
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Proof: By Lemma 7.6 this class is compact. Therefore in the algorithm in

Figure 7.2 each hypothesis tree that cannot be further generalized will cover

a single target tree rather than merely covering parts of multiple target trees.

Each target tree is learned from a single example. EQ then supplies another

example not already in the hypothesis. This example is then generalized to

another hypothesis tree patternuntil the entire target is covered. The bounds

are the sum of the bounds for the individual target trees. 0

Corollary 7.12 UF with one-to-one into semantics is learnable with EQ and

MQ.

Proof: We can simulate SQ with MQ by using a unique constant in place of

each distinct variable. Either the simulation is faithful or a constant conflicts

with one in a target tree. In the latter case we get a negative counterexample

from EQ and we can restart the algorithm with constants not already tried for

this purpose. 0

This strategy of learning in a bottom-up fashion from one example for

each target tree is applicable under the following condition. The number of

possible minimal or 1-step generalizations (those having no intermediate gen-

eralization) from any pattern must be polynomial. Equivalently, if the partial

ordering representing all generalizations is viewed as a directed acyclic graph

(dag) and undergoes a transitive reduction, then the out-degree (the number

of edges pointing toward more general hypotheses) must be polynomial. This

condition is not required to apply to the number of edges pointing to more

specific hypotheses (and indeed it does not for UT since the label alphabet is

infinite and the number of children is unbounded). The depth of the dag will

correspond to the complexity of the training example used. The learning time

will therefore be polynomial in both this depth and degree of the dag nodes.

A bottom-up algorithm of this general class was also used for it-UT, unordered

tree patterns using onto semantics but without repeated variables, (Theorem 6.2

in Section 6.2).



7.5. Summary

This chapter showed that although one-to-one onto semantics is not

learnable with equivalence and subset queries, the flexibility of one-to-one into

semantics permits an algorithm which generalizes from one example per target

tree to work. An lgg algorithm similar to what was used for ordered one-to-one

onto semantics will apparently not work for this semantics. But an algorithm

related to that for j-UT (Lemma 6.3) does work. Unlike the algorithm for the

latter class, this algorithm can't directly generalize a set of repeated variables

because there are too many choices for the direct approach. The algorithm has

to perform an end-run around this obstacle by first specializing a hypothesis

and then generalizing it.
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8. OTHER SEMANTICS

We wanted to make a connection between tree learning and predicate

Horn-clause learning. Since more than one predicate can be satisfied by being

matched to the same instance literal, one-to-one into semantics is not flexible

enough to represent predicate learning. This discrepancy also explains why lgg

doesn't work for one-to-one into semantics. Many-to-one semantics (both onto

and into) will therefore be studied and compared to Horn-clause learning.

A Horn clause is a conjunction of predicates. Horn clauses are unordered

and variable in number as far as the literals (individual predicates) are con-

cerned. Further, an instance is allowed to have extra laterals which are not

matched by a predicate clause containing variables. But the arguments within

the predicates tend to be fixed in number and in a specific order, and an in-

stance matches only if there are exactly the same number of arguments in each

predicate. Predicate learning thus resembles a mixture of unordered into and

ordered onto tree matching. This issue will be explored.

8.1. Many-To-One Onto Semantics

With trees of more than one level, the rules for matching semantics work

recursively. Figure 8.1 shows a pattern which matches an instance according

to unordered many-to-one onto semantics. The two x's can map to the same

subtree in the instance (as allowed by the word, many, in the semantics name);

assume this is the subtree with the C. The subtree A(Byy) (in parent(child

child) notation) maps to the other subtree of the instance by having the

two y's map to the same child (say D). This fact and the other two pattern

children matching the first instance subtree therefore satisfy the requirements

for matching at the top level and for the trees as a whole. Since either instance

subtree can serve either role, there is more than one way for the match to work.
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FIGURE 8.1. Recursive Many-to-One Onto Mapping

It is easiest to understand the effect of many-to-one onto semantics on

matching and subset relationships with one-level trees having all children identi-

cal. Then a tree pattern with p children matches trees with 1 through p children

(compared to > 1 child for many-to-one into semantics). If another child vari-

able is added to a tree pattern, the set represented is a superset of the original

and taking away children produces a subset. Adding and pruning children in

a tree pattern therefore has the opposite effect for many-to-one onto as with

many-to-one or one-to-one into semantics.

The T2 class (single tree hypothesis with two levels, subtrees all the same

number of children, and just three distinct variables) in the nonlearnability proof

for UT with one-to-one onto semantics (Theorem 5.5) can be learned under

many-to-one onto semantics. This fact is true even if the matricies representing

the trees have only l's and 0's, i.e., there are no repeated variables within a

subtreebut there are in the tree as a whole and the trees correspond to Boolean

matrices. Assume there are s subtrees, and the learner knows this fact from an
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Theorem 8.1 UT with many-to-one onto semantics is not learnable.
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initial training example. Further assume these subtrees are interchangeable as

far as matching is concerned, so any pattern subtree could match any instance

subtree if the numbers of each distinct variable or constant are appropriate.

Recall that T2 for Theorem 5.5 was represented with a matrix notation with

each entry giving the count of a particular variable/constant in a particular

subtree. If all entries in the matrix representing the target were 1, then an

algorithm could learn by just creating a hypothesis with all l's and increasing

each entry as long as the result is still a subset of the targetby the above

argument explaining matching and subset relationships for many-to-one onto.

The many-to-one onto learnability question therefore reduced to that of learning

the tree equivalent of arbitrary Boolean matrices.

Suppose the target variables are x, y, and z. If some entries in a target

matrix in the T2 class are 0, then learner needs to discover the count of the

number of subtrees with only x, count of those with just x and z, of all three

variables, etc. Only the counts of these subtrees (not the positions) matters

since matching is unordered. The task is therefore to split the s subtrees into

7 groups each of which corresponds to one of the nonempty subsets of {x, y, z}.

Since the learner knows there are a total of s subtrees, a hypothesis which is a

subset of the target can be found in 0(s6) tries. Searching for three groups of

subsets of only two variables (at a time in a hypothesis hsay x and y) will not

work because the onto part of the semantics requires a match of a target t to h

to have a variable in a subtree of t corresponding to any z in h. Further, the

match must uniformly use the same row (i.e., tree variable) correspondence for

all columns/subtrees. Then the learner can proceed as in the case where all

matrix entries are 1. Even if the variables are interchangeable, 0(s6) cases

would still have to be tested. This approach gives polynomial-time learnability

for any fixed number of target variables, but not for an indefinite number of

variables, since 0(s2v2) tries would be required for v variables.
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Proof (Sketch): To show that UT with many-to-one onto semantics is not

learnable, first note that the above algorithm sketch for T2 depends on the sub-

trees being interchangeable. If the subtrees with a variable to be partitioned

were on many tree levels (or have different root nodes labels) and therefore not

interchangeable (much like the UF-nonlearnability proof, Theorem 5.9), then

exponential combinations would have to be tried to partition one variable into

two. Other query/tree pattern combinations or attempts to combine examples

would encounter similar difficulties. The nonlearnability proof must also retain

some interchangeable subtrees to make it difficult to figure out how to combine

multiple examples. A class similar to that used for UF nonlearnability (Theo-

rem 5.9) could be used. D

An Igg algorithm (similar to the cartesian-product style used for many-

to-one into semantics) will apparently not work for many-to-one onto (or even

one-to-one into) semantics because of difficulties with producing a true lgg. The

algorithm for one-to-one into semantics (which specializes before generalizing)

can't be adapted to many-to-one onto, either.

Corollary 8.2 UF with many-to-one onto semantics is not learnable.

Proof (Sketch): Use a more complex version of the same subclass of tree

patterns representable with Boolean matrices. Then the targets can be shown

to be consistent with an exponential number of examples (as in the one-to-one

onto UF nonlearnability proof). 0



8.2. Relationship to Predicate Clause Learning

In this section, we define a class of tree patterns that makes it possi-

ble to relate tree patterns to predicate clauses, the representation of choice for

Inductive Logic Programming (ILP).'

The primitives of predicate clauses are constants, variables, function

symbols, and predicate symbols. Both constants and variables are considered to

be "terms". If f is a function symbol and t1, . . . , tk are terms, then f(t1, . . . , tk)

is also a term. An atom is of the form p(ti,. . . , tk), where p is a predicate sym-

bol and t1,. . . , tk are terms. A literal is a positive or negated atom. A clause is

a set of literals which are disjunctively combined. A definite Horn clause is a

clause where exactly one literal is positive. It is also written as p -+ q where p

is a set of positive literals (interpreted conjunctively) and q is a positive literal.

There are many logical settings for predicate Horn clause learning, in-

cluding Learning from Entailment, Learning from Interpretations, and Induc-

tive Logic Programming (De Raedt, 1997). Of these, Learning from Entailment

(LFE) is perhaps the easiest setting to map to learning tree patterns. In LFE,

the target concept consists of a set of clauses, P. A positive example e of a

target concept P is a clause which logically follows from P. We denote this by

P = e, and say that P entails e. Entailment is a semantic relationship. P e

means that in any world in which P is true, e is also true. A clause is a negative

example of P if it is not a positive example.

Since tree patterns do not have a logical semantics, entailment cannot be

mapped to trees. However, there is a "match semantics" for predicate clauses

called O-subsumption, which is related to what we called "many-to-one into

semantics" for tree patterns.
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Definition 8.1 Let D and E be two clauses viewed as sets of literals. A pred-

icate clause D 9-subsumes a clause E if there exists a substitution 9 such that

DO c E. We denote this as D >- E, and read it as D subsumes E or as D is

more general than E.

Note that O-subsumption allows more than one literal in D to map to

the same literal in E by substitution. Moreover, not all literals in E need to be

mapped to by the literals in D. This implies that O-subsumption at the level

of clauses is closest to many-to-one semantics of tree patterns. However, at the

lower levels of literals and terms, O-subsumption requires the substituted terms

to match exactly with the terms in the instance in the same order. This means

that matching follows the one-to-one onto mapping of ordered trees at the lower

levels. These observations motivate the following definition.

Definition 8.2 The class Clausal-Tree (CT) is the set of tree patterns that

employ unordered many-to-one into mapping for the top level of the tree and

ordered one-to-one onto semantics for all lower levels.

Definition 8.3 The least general generalization (lgg) of two clauses C1 and C2

is a clause C such that C >- C for i = 1, 2 and for any clause D such that

D>-Cfori=1,2,D>-C.

The lgg of clausal trees is analogously defined. Since multiple literals

in the subsuming clause can match a single literal in the subsumed clause,

computing the lgg of two clauses requires matching each literal in the first

clause with each literal in the second and finding their lgg (Plotkin, 1970).

This is described more fully as the productlgg algorithm (Figure 8.3). Since

literals are matched in one-to-one onto ordered fashion, the lgg of two literals

is computed by matching the corresponding terms in the two literals in the

same order and finding their least general generalization. Thus, the function

lgg in Figure 8.3 is the standard ordered-tree lgg algorithm ordlgg in Figure 3.3

or LGG in the introduction of (Page, 1993), except variable substitutions must
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FIGURE 8.2. A Clausal-Tree equivalent to iP(x, y) V iQ(x, y) V R(z, C)

Theorem 8.3 (Plotkin, 1970) The productlgg algorithm (Figure 8.3) re-

turns the least general generalization of two Clausal tree patterns.

Predicate Horn clauses, e.g., -iP(x,y) V iQ(x,y) V R(z,C) can be repre-

sented by Clausal trees (Figure 8.2), although they do not capture their logical

semantics. In this figure, the root is the symbol for disjunction and its immedi-

ate subtrees match according to unordered many-to-one into semantics. Each

subtree represents a predicate. The children of the subtree are the predicate

arguments and match according to ordered one-to-one onto semantics (as do all

succeeding tree levels which represent functions in the predicate arguments).

For example, suppose we are given two examples of the clause, -iFather(

a, y) V -Mother(y, z) V GrandFather(x, z). Let the first example be -iFather(

John, MotherOf(Lisa)) V Mother(MotherOf(Lisa),Lisa) V -iFather(John, Sam)

V GrandFather( John, Lisa). Let the second example of the same clause be

-iFather( Peter, Alice) V -iMother( Alice, Mary) V -iFather( Peter, Mark) V

GrandFather(Peter, Mary). Computing the lgg of these clauses using the pro-

ductlgg algorithm yields, -iFather(x, y) V -iFather(x, q) V iFather(x, o) V
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be combined so they apply to the Clausal tree as a whole. The following lemma

claims the correctness of the productlgg algorithm.



a2 = {};
productlgg(t to(ti,. . . , t?), r ro(ri,. ,

if t0 L r0 return variablize(to(t1, . . . , ta), ro(ri, . . , r)):
if n = 0, then return t;
else if m = 0, return r.
return x to(xi,1,.. . , Xi,,. . . , X,i,. . ,

where = ordlgg(t2, r) with cr1 and a2 as global substitutions.

variablize(a, b) =
if V s.t. Vu1 = a and Vu2 =

then V
else V = a new variable, a1 = a1 o {V/a}, and

U2 = o {V/b}.

FIGURE 8.3. Cartesian-Product lgg Algorithm: prodnctlgg

-'Father(x, n) V -iMother(y, z) V GrandFather(x, z) with substitutions a1

= {x/John, y/MotherOf(Lisa), q/John, z/Lisa, o/Sam, n/Sam} and a2

{x/Peter, y/Alice, q/Mark, z/Mary, o/Alice, n/Mark}.

Recall that the match semantics of Clausal trees exactly captures 9-

subsumption. Unfortunately, O-subsumption is strictly stronger than, but not

equivalent to entailment. For some subclasses of predicate clauses such as single-

predicate, non-recursive, Horn clauses, 9-subsumption and entailment are equiv-

alent (Gottlob, 1987). Hence, a learning algorithm for Clausal trees also works

for learning these predicate clauses from entailment. In fact, it turns out that the

algorithm of (Reddy & Tadepalli, 1999) to learn single-predicate, non-recursive

Horn programs can be directly adapted to learning CT forests. Figure 8.4 shows

the learning algorithm. The main routine of the algorithm maintains the hy-
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main: initialization: h = {}
while EQ(h) gives counterexample x (which is positive):

If a tree pattern p in h such that SQ(productlgg(p, x))
then replace the first such p with reduce(productlgg(p, x))
else h = h U x. % add another tree to hypothesis

return h

reduce(t):
for each subtree s directly under the root of t

prune s from t
if not SQ(t), restore s

return t

FIGURE 8.4. Algorithm for CT Forests

pothesis as a set of Clausal tree patterns. It uses the productlgg algorithm to

combine each new example with a Clausal tree. If the result passes the subset

query, then it is used to replace the corresponding CT tree.

Each application of productlgg could produce a clause whose size is po-

tentially the product of the sizes of the input clauses. Repeated applications of

lgg with new examples could therefore produce an expression of size exponential

in the number of examples unless some method is used to eliminate unnecessary

predicates. For the same reason, the hypothesis Clausal tree cannot be simply

replaced with the result of productlgg. Hence, it is pruned by the reduce rou-

tine, which removes each subtree and tests if the result still represents subset

of the target. It is sufficient to go through the top level subtrees in sequence,

and prune any subtree when the result is accepted by the SQ oracle. SQ can

be replaced by MQ by substituting variables with unique constant trees.
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In our example, applying reduce to the lgg of the first two examples

eliminates unnecessary predicates, giving: -iFather(x, y) V -Mother(y, z) V

GrandFather(x,z). Note that the functions used in this example are all unary. If

functions with more than one argument were used, the corresponding arguments

would be matched according to their ordering and generalized by the ordered

lgg algorithm.

Multiple clause targets are equivalent to unions of clausal trees-or clausal

forests. One complication in learning forests is to decide which sets of examples

should be combined into a single tree. Following (Reddy & Tadepalli, 1999),

this can be determined by finding the lgg of the new example with each of the

hypothesis trees, and asking a subset query on the result. Compactness of the

Clausal trees guarantees that if the subset query succeeds, then the resulting

lgg clause is subsumed by a single target clause. Otherwise, the next hypothesis

tree is tried. Either the subset query succeeds on the result of lgg with some

hypothesis tree, or a new hypothesis tree is initialized to the new example.

In our example, suppose that a new example is given -iFather(Paul, Bob)

V -iFather(Bob, Ted) V GrandFather(Paul, Ted), which captures a second type

of GrandFather relation. The lgg of this example with the current hypothesis

clause -'Father(x, y) V -Mother(y, z) V GrandFather(x, z) gives iFather(x, y) V

-'Father(w, z) V GrandFather(x, z). However, this new example is not entailed

by the target, which requires that the variables y and w be the same. Hence the

new example is made into a separate clause and stored as part of the hypothesis.

Theorem 8.4 Clausal trees and forests are learnable from equivalence and

membership queries.

Proof: Based on the learnability of single-predicate non-recursive Horn clauses

(Reddy & Tadepalli, 1999). LII



8.3. Summary

This chapter showed a connection between many-to-one into trees and

Horn-clauses (conjunction of predicate clauses). Predicate clause matching to

instances (instantiated predicates) behaves like trees that match in a many-to-

one into fashion in the top level and in a one-to-one onto fashion at all levels

below.

A sketch explaining why many-to-one onto semantics trees/forests is not

learnable with equivalence and subset/membership queries much as one-to-one

onto semantics is not. The precise subclass used for the proofs differ signifi-

cantly, but the technique is basically the same. the classes and the arguments

differ.
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9. CONCLUSIONS

In this chapter, the results are summarized in tables showing which

classes are learnable with which sets of queries and which algorithms are used

to learn those classes. The implications are then discussed. Finally, future work

including open problems and other uses of the theory are described.

9.1. Summary of the Results

Figure 9.1 is a graph summarizing which tree classes are learnable with

which algorithms. The blank spaces correspond to classes which are not learn-

able according to proofs in Chapters 4 and 5 (see the tables below). The row

and column labels specify the query sets and concept classes specify the learn-

ing problem for each small rectangle, and the shading patters indicate which

algorithms are applicable to a given query set-class combination. The query set

"lex" indicates only one example is given to the learner (possibly with another

query oracle). The algorithms are: "Dup.Child" is the algorithm used in the

proof for one-to-one into semantics which generalized repeated variables by du-

plicating those variables. "Bottom-Up" is the algorithm that generalize from a

single example for the ji-UT class, "Top-Down" is the SupQ-based algorithm for

UT (both in Chapter 6), and "lgg" is the least-general-generalization algorithm

(Chapter 3). Figure 9.2 shows the same information for forests. Forests are

never learnable from single examples or without equivalence queries, so those

cases are not included in this latter figure.

The tables summarize the conditions under which tree classes are learn-

able or not learnable. The mapping is a function of the following 3 ma-

jor features: the semantics (one/many-to-one onto/into), the tree class (or-

dered/unordered tree/forest/repeated variables or not), and the set of queries

used (some subset of EQ, MQ/SQ, and SupQc with counterexamples or SupQ

without counterexamples). The mapping yields either learnable with a proof
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reference and abbreviated description of the algorithm, or nonlearnable and the

proof technique. Many other combinations are implied by those given in the

tables. Taking away a query (thereby weakening the learnability) from a com-

bination that is not learnable preserves that result. Conversely, strengthening

the query set (e.g., by changing MQ to SQ) preserves learnability.

TABLE 9.1. Class/Query Combinations Learnable with One-to-One Onto Se-
mantics

For the classes studied in this thesis, if a class is learnable for forests, then

the corresponding tree class is learnable. The contrapositive applies equally well:

if trees are not learnable, then corresponding forests class is also not learnable.

Although this relationship is not true in general, e.g., the proof that UT is not

learnable uses a subclass of UT with only 3 tree pattern variables (Chapter 5,

and this particular subclass is learnable in UF (by calling EQ until all ways of

partitioning the set of variables are exhausted), but the UF class as a whole

is not learnable. (The proof of UT nonlearnability depends on the class of

hypotheses given to queries being restricted to the target class and therefore a

Class Queries Justification Algorithm
OT EQ only
OF EQ+MQ

Theorem 3.7 lgg
Theorem 3.12 lgg + MQ

u-UT SQ+lex.
u-UF EQ+MQ
UT SupQ+lex.
UF SupQc+SQ or

SupQc+EQ

Corollary 6.4 Bot-Up lex
Corollary 6.3 Bot-Up lex
Theorem 6.6 Top-Down lex
Theorem 6.12 Simulates EQ
Theorem 6.11 Top-Down Parallel



TABLE 9.2. Not Learnable with One-to-One Onto Semantics

Table 9.3 summarizes the learnability results for semantics other than

one-to-one onto of the unordered tree classes using EQ and MQ or SQ. For each

query set and semantics for matching a tree to the instance tree, a reference
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separate proof is required for UF.) Similarly the unordered tree/forest classes

which are learnable with the sets of queries given are also learnable as ordered

tree/forest classes with the same sets of queries.

Table 9.1 summarizes the class/set-of-query combinations that are learn-

able with one-to-one onto semantics. The theorem proving the result is given

along with an abbreviated description of the algorithm technique. Recall that

O,U,T,F stand for ordered, unordered, tree, and forest. The prefix 1u repre-

sents no repeated variables. In the technique column, lex represents starting

from a single example (per target tree where applicable). SupQc is the superset

query with counterexamples, but SupQ is without counterexamples. Table 9.2

gives similar results for one-to-one onto class-query combinations which are not

learnable.

Class Queries Justification Technique
OF EQ only
t-OF1,b EQ+MQ

Lemma 4.8 DNF
Lemma 4.13 DNF

it-UT EQ only
UT EQ+SQ
UF SupQc+MQ
UF EQ+SQ

Lemma 5.2 DNF<
Theorem 5.5 Combinatorial
Lemma 6.13 Not Terminate
Theorem 5.9 Combinatorial



TABLE 9.3. UT/F Learnability With Other Semantics

9.2. Discussion

In this chapter we considered the learnability of ordered and unordered

tree patterns under various definitions of match semantics and related it to

learning first order clauses. The main results of this thesis are summarized in

Tables 9.1 to 9.3. Learning of tree patterns offers a rich variety of classes and

an interesting set of connections to other classes.

We began with ordered one-to-one onto semantics. In previous work, it

was shown that it is possible to learn unions of ordered tree patterns when the

degree or alphabet sizes are not bounded (Arimura et al., 1995; Page, 1993),
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to the relevant proof is given along with a an abbreviated description of the

algorithm or proof technique.

Learnable
Concept
Class

Matching
Queries Semantics Justification Algorithm

UT
UF
Clausal
trees(UF)

EQ,MQ 1-1 into
EQ,MQ 1-1 into
EQ,MQ many-i into/

ordered 1-i onto

Theorem 7.10 bottom-up
Corollary 7.12 bottom-up

Theorem 8.4 lgg/prune
Not Learnable

Concept
Class

Matching
Queries Semantics Justification Technique

UF EQ,SQ many-i onto Section 8.1 Combinatorial
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(Theorems 3.7. 3.11 and their accompanying algorithms give details). In this

thesis, we have shown that DNF learning reduces to learning unions of ordered

tree patterns with bounded degree and bounded alphabet size (bounded ordered

forests) without repeated variables (Theorem 4.8). The reduction proofs for the

exact learning model (Angluin, 1988) also apply to the PAC-predictability with

and without membership queries (Pitt & Warmuth, 1990; Angluin & Kharitnov,

1995). It is simpler to reduce the classes in the prediction frameworks because

the hypotheses of the learning algorithm need not be translated back by the

reduction algorithm.

Unfortunately, negative results showed the class of unordered tree pat-

terns is not learnable with examples and membership queries when the mapping

from the subtrees of the tree pattern to subtrees of the tree instance is required

to be one-to-one onto regardless of the computational power of the learner (The-

orems 5.5 and 5.9). This in turn motivated the use of superset queries. We saw

that unordered trees and forests are learnable under one-to-one onto semantics

from equivalence and superset queries.

The theorems have shown that it is easy to learn with superset queries

(and EQ) or without repeated variables but not with subset queries and repeated

variables. While this might lead one to suspect that superset queries are inher-

ently more powerful than subset queries, such is not the case. Superset queries

are more powerful than the subset queries due to the conjunctive nature of our

hypothesis space. Indeed, by the duality of Boolean algebra, the hypothesis

space of the complement sets of those studied here are learnable by subset (and

equivalence) queries and not learnable by superset (and equivalence) queries.

We then showed that unordered trees and forests are learnable with

equivalence and membership queries under one-to-one into semantics. Finally,

we considered Clausal trees which are closely related to predicate clauses and

which have many-to-one into match semantics at the top level and have ordered

one-to-one onto semantics at all the lower levels. These trees and forests are
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learnable from equivalence and membership queries by an algorithm similar to

that of (Reddy & Tadepalli, 1999).

One goal of formal analysis is to pin down the sources of complexity,

so that the problem domain can be carefully circumscribed to eliminate the

difficult cases and find appropriate remedies. Our analysis points to the fol-

lowing sources of complexity in tree learning: onto-semantics, unordered trees,

repeated variables, and restriction to subset queries (instead of superset quer-

ies). Only when all four of these are present, is learning hard (Theorems 5.5 and

5.9). With ordered trees, it is possible to combine multiple examples. If there

are no repeated variables, the tree can be learned in a bottom-up, divide-and-

conquer fashion, since all the subtrees are independent (Theorem 6.2). With

superset queries, the correct partitioning of a set of repeated variables can be

found in a step-by-step fashion. With the into-semantics, it is possible to gain

useful information through queries by generating instances with more branches

than are in the target. If there can be up to k copies of each variable for some

fixed k, then the ,a-UF algorithm can be adapted to try all O(2') ways to split

a set of k variables into two partitions.

A possible criticism of the exact learning model is that it is too demand-

ing. Our negative results on unordered onto trees and forests hold regardless

of the computational power of the learner, but do not imply that the corre-

sponding classes are not PAC learnable (Valiant, 1984b), which only requires

approximately correct learning of the target with a high probability. Our neg-

ative results also do not rule out the possible existence of a larger hypothesis

space that is PAC learnable or even exactly learnable. These are open problems

for the future.

All our positive results directly transfer to the PAC learning model by

replacing the equivalence query with a random source of examples and using

the standard simulation technique described by Angluin (Angluin, 1988). The

other queries used in our results, such as subset and superset must be exactly
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implemented for the theoretical results to hold. While our results are theoretical

at the moment, we were motivated by practical applications in symbolic math-

ematics and information extraction. The practicality of an algorithm depends

entirely on the practicality of implementing the queries used by that algorithm.

Our results underline the important asymmetry between subset and su-

perset queries for implementation. Even though theoretical results require exact

implementations, in many domains it might suffice to approximately implement

these queries by sampling, i.e., by membership queries. While the hypothesis

argument is available to the teacher/oracle in a declarative form and can be used

to efficiently generate instances in it, the target may only be available as a black

box procedure.' This is similar to the situation where a scientist may have an

explicit hypothesis about a phenomenon, while the true law itself is inaccessible,

and can only be tested in individual cases by conducting experiments. Imple-

menting subset query in this case amounts to generating instances that satisfy

the hypotheses and testing them by conducting experiments. It is sometimes

possible to do a faithful simulation of subset query with just one membership

query (an experiment), as it is in our tree domains. When a tree domain has an

infinite constant alphabet or infinite branching factor, the membership queries

are in fact as powerful as subset queries. This is so because for any tree pattern

h, it is easy to generate an instance x by instantiating its variables uniquely so

that h is a subset of a target if and only if x is an instance of it. Hence subset

queries are as easy to implement as the membership queries in our case. The

same cannot be said of superset queries, however. To simulate a superset query,

one needs to ensure that all instances in the target are also in the hypothesis.

The target is only available as a black box and cannot be used to efficiently gen-

erate satisfying instances. Because of the conjunctive nature of the hypothesis

'If the target is also declaratively available to the teacher, he may simply tell it to
the learner, thus making the learning problem superfluous.
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space, generating instances from a superset of the hypothesis (e.g., the entire

rest of the instance space) and filtering by the target before testing them on the

hypothesis would be be too inefficient in any nontrivial domain.

Tree pattern languages bear some similarities to string pattern languages

(Goldman & Kwek, 1999). String patterns are strings of variables and constant

symbols. Each variable in the pattern can be substituted with a non-empty

string of constant symbols to produce instances that match that pattern (An-

glum, 1980). It has been shown that string patterns can be learned with a

polynomial-number of disjointness queries in polynomial-time (Lange & Wieha-

gen, 1991). The disjointness query asks if AflT = {} (where T is the target)

and gives a counterexample if the answer is no. Disjointness queries appear very

powerful since the set A need not be in the hypothesis space.

However, string pattern languages are too hard to learn in the

representation-independent or predictability model, even with arbitrary quer-

ies. This is because string patterns do not have a polynomial size representation

with a polynomial-time membership algorithm (Schapire, 1990). It is not known

if such a strong negative result also holds for unordered tree patterns.

The algorithm for non-recursive Horn clauses (or Clausal trees in Section

6) has been implemented and used to learn goal decomposition rules in planning

(Reddy & Tadepalli, 1999). Each decomposition rule specifies how a goal may be

decomposed into subgoals when certain conditions are satisfied. A subset query

corresponds to testing whether a given rule is valid, i.e., whether it always yields

a set of subgoals, when solved, results in achieving the goal. This query was

implemented by synthesizing problems that satisfy its precondition and trying

to apply the decomposition rule on it. If the rule succeeds on a large enough
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sample, the subset query is answered yes.2 The program was able to learn about

12-24 rules with 60-70 examples in two STRIPS-like planning domains with

approximately 90% accuracy on an independent test set (Reddy & Tadepalli,

1999). Improving the query-efficiency of the algorithms and making them noise-

tolerant would be important steps towards turning our theory into practical

implementations.

9.3. Future Work

Learnability of unordered tree patterns with other variations of matching

semanticssuch as many-to-one into and many-to-one onto at all levels of trees

would be interesting. Another extension is tree patterns with different matching

semantics at each node. Such trees are quite natural in domains such as symbolic

mathematics, where some operators are commutative and associative and others

are not.

The open problems in this thesis are worthy of future study: Reduction

of DNF from a higher base to a lower base seems to have the same difficulty as

reduction of DNF to ordered forests with bounded label alphabet and number of

children. Reduction of bounded OF without repeated variables to DNF which

apparently needs to be solved to be able to reduce bounded OF with repeated

variables to DNF (i.e., if the latter reduction works then presumably the former

does; maybe a "reduction between reductions" could be proven). These four

open questions are all in section 4.7. Although the two problems within each pair

of open problems seem to be related, the following possible, abstract connection

between the pairs is worth investigating: all four problems have difficulty with

any fixed, a priori hypothesis translation scheme. Section 6.6 discusses a fifth

2The limited number of constants in planning domains requires trying the query on
more than one problem.
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open problem: the learnability of unordered forests with a finite label alphabet

and a bound on the number of children below each node (the discussion in that

section ties this problem to SAT).

The effects of the following variations of the tree learning problems and

other problems are worth studying:

Comparison of tree learning with learning of Horn programs as a whole

rather than just individual predicate clauses (analogous to one tree pat-

tern) or a set of clauses with a common antecedent (a forest)

Variations of matching semanticssuch as many-to-one into or "converses"

of the semantics already studied (while satisfying the constraint that each

variable has only one value)

Variations on tree classessuch as mixed ordered/unordered

Heuristics for applicationsfor many nonlearnable classes, the hard cases

are likely to be so obscure in practice that heuristics could be readily used

Applications to mathematics and linguistic processing

Learning tree transformations (e.g., for symbolic mathematics)

Learning from noisy examples

Learning from incomplete membership oracles (meaning the oracle does

not always provide an answer)
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