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PROPERTIES OF REAL VALUED CONTINUOUS
FUNCTIONS IN RELATION TO VARIOUS

SEPARATION AXIOMS

CHAPTER I

INTRODUCTION

A topological space (X, T-) is said to satisfy the

Hausdorff or T
2

axiom iff for every two distinct points

a and b , there are disjoint open sets U and V such

that a E U and b E V. Thus, the points a and b

can be "separated" by the open sets U and V . The

question arises whether two such points a and b can

be separated by a function; that is, does there exist a

continuous, real valued function f: X [0,1] such that

f(a) = 0 and f(b) = 1 ?

This paper poses the same type of question for top-

ological spaces satisfying other separation axioms, as

well as Hausdorff spaces. All of the implications between

these separation axioms, holding in arbitrary topological

spaces, are also proved in the paper.
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RELATIONSHIP BETWEEN SEPARATION AXIOMS

CHAPTER II

Since different separation axioms are sometimes re-

ferred to by the same terminology, a precise definition

of terms is in order.

Definition 2.1 A topological space (X,/) is said

to be a T
0

space iff for every pair of distinct points,

there is an open set which contains one but not the other.

Dafin_Ltion 2.2 A topological space (X,() is said

to be a T
1

space iff for every ordered pair of distinct

points, there is an open set which contains the first but

not the second.

Obviously, a T1 space is a To space; however, the

following space is frequently cited to demonstrate that

not all T
0

spaces are T
1

spaces.

Example 2.3 X = {a,b} = {0 , {a} , X} (X,Z)

is a T
0

space, but fails to be T
1

since any open set

containing b must also contain a .

Lemma 2.4 A space is T1 iff all singletons are

closed.

Proof: Assume (X,') is T1 and let a be a

member of X . For all b E X such that b a , there

is an open set Ub such that b E Ub and a E X - Ub .
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Therefore X {a} = U ub is an open set, so {a} is
bra

closed.

Now assume all singletons are closed, and let (a,b)

be an ordered pair of distinct points of X . Since {b}

is closed, X - {b} is an open set which contains a but

not b .

Definition 2.5 A topological space (X,95) is said

to be a T
2

or Hausdorff space iff for every pair of

distinct points a and b , there are disjoint open sets

U and V such that a E U and b E V.

Again it is obvious that a T2 space is T1 , but

there are T
1

spaces which fail to be T2 . Pervin [21

cites the following space as a T1 , non-T2 space.

Example 2.6 X = [0,1] al= {0 , X , all complements

of countable sets }. (X,21) is a T1 space, since for

any pair (a,b) , where a b , X {b} is an open set

containing a but not b . However, it is impossible to

separate any two points a and b by disjoint open sets

U and V such that a E U and b E V. If U is an

open set which contains a but not b , then X - U is

a countable set. Since X is itself an uncountable set,

the only open set contained in X - U is the empty set,

which obviously cannot contain b .

Definition 2.7 A topological space (X,) is said

to be T22 or Urysohn space iff for any pair of distinct
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points a and b , there are disjoint closed sets F and

G such that F is a neighborhood of a and G is a

neighborhood of b .

By considering the definition of a neighborhood, we

see immediately that a T2 space is T2 ; however, there

are T
2

spaces which fail to satisfy the T*, axiom.

Urysohn [3] gives the following example of such a space.

Example 2.8 X= { (x,y) x and yE N} U

{(x, -y) x and y E U {(x,0)
I x E 1\11-} U {(0,1)}

U {(0, -1)} , where le denotes the set of all positive

integers. A basis for the topology is defined in the

following manner.

{ (x,y) } E if x 0 # y

V
(x,0)

= {(x,0)} U ( U(x,y)) U ( U(x,-y)) E °X, if
y>n y>n

x E le for n E le

00 co

0 = {(0,1)} U ( U ( U (x )) for n E N
(0,1) y=1 x=n

co co

Un = (0,-1) U ( ( U (x,-y))) E ll for n E
(0,-1) y=U1 x =n

We can easily verify that this does define a basis for a

topology, as claimed, since

X = 01 U U1 U ( U Vi )

(0,1) (0,-1) + (x,0)
xeN

0(0,1) n U(07-1)= ,
for every m and n E N

+



On n vm u { (x,1) } , if n < x
(0,1) (x,0) y>n+m

(I) , if n > x

un
(0,-1)

0
n
0 1)

fl

(

n v
(x,0)

{(x,y)} =

y>n+mf(x,-y)}

, if n > x

{ (x,y) } , if

x > 0 , y > 0

(I) , if n> x

y < 0

, if

n <

or

n < x

x and

x> 0 and

Un
,-1)

n { (x,y)}

{ (x,y) } if n < x and x > 0 ,

y < 0

(I) if n> x or x> 0 and

y > 0 .

5

Example 2.8 is a T2 space, but it fails to satisfy

Urysohn's axiom. Consider the following chain of relations.

(m + n, 0) E (o7t)?1)) fl (u771)) s (°110,1)) (uTo,-1)"

where (A) denotes the closure of the set A . Since the

intersection of the closures of any two basic open sets of
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the points (0,1) and (0,-1) respectively is nonempty,

there can be no disjoint closed neighborhoods of the points

(0,1) and (0,-1) .

Definition 2.9 A topological space (X,e) is said

to be a T
3

space iff it is T
1

and has the property

that given any closed set F and xEX-F, there are

disjoint open sets U and V such that x E U and

F c V .

Lemma 2.10 In a T
3

space (X,e), closed neigh-

borhoods form a basis for the topology q:/

Proof: We need only show that given any open set 0

and x E 0, there is a closed neighborhood G of x

such that G c 0 . Since our space is T3 , {x} and

X - 0 are disjoint closed sets, which are contained in

the disjoint open sets U and V . This means that

UcX-Vc0 . Since X-V is closed, (17) is a

closed neighborhood of x which is contained in 0 .

A T
3

space is also TA. , but the converse impli-

cation fails. If (X,/,() is a T3 space and a and b

are distinct points of X , we may consider a as a point

and {b} as a singleton closed set not containing a .

Using our T3 axiom , we may choose disjoint open sets

U and V which contain a and {p} respectively. By

Lemma 2.10, we may find closed neighborhoods F and G

of a and b respectively such that aEFcU and

bEGcV. Since U and V are disjoint, F and G
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will be disjoint, closed neighborhoods of a and b

respectively, as we desired.

Example 2.11 Let A = {(x,y) 1 x,y are real and

y > 0} and B = f(x,0) 1 x is real }. Our space shall be

X = A U B. We shall define a basis for the topology in

the following manner.

O
n = B((x,y), X, if (x,y) E A (and n E e)
(x,y)

vn
x,0)

03((x,0), n A) U {(x,0)}, if
(

(x,0) E B, (and n E N+) where

B((x0,170), T11-) = f(x,Y) E R2 d((x0,y0) , (x,y)) < 12-1-}

and d is the usual Euclidean distance in R
2

. Check-

ing the conditions needed for the existance of a basis, we

see immediately that we do have a topology.

Now let (x1,171) and (x2,y2) be distinct points

1
in our space; therefore d((x1,y1) , (x2,y2)) > 7 for

0

some m
0

> 0 .

4m
0

4m
(i) if Y1 0 Y2

1

)) fl (o (x°0

2 2
=

o
4m

1,
n (o

(x
2'

y
2

) (1)
, if y1 y2

4m

(vx
0) (4m0

n (vx
2'

0)
4m°

(1) , if Y1 = y2
(
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Therefore, Example 2.11 is T2 space.

This space, which is cited by Pervin, is not a T3

space, however. The point (0,0) is not in the closed set

F = {(x,0) x 0}. If U is any open set containing

(0,0) , there is an n E N
+

such that Vn
0,0)

c U . The
(

point 4,0) is a member of F , yet no basic open set

Vni( 1
1

---,0) has a nonempty intersection with
2n

'2n'-'
of (

Vn
0,0)

, and therefore with U . Since any open set V con-

taining F must contain a basic open set Vm 1 of
(277,0)

(21

,"(1)
, there can be no open set containing V which'n"

fails to meet U .

Definition 2.12 A topological space (X,(6 is a

T space iff it is a T
1

space and has the property that

given any closed set F and x E X - F , there is a con-

tinuous function f: X - [0,1] such that f(x) = 0 and

f(F) = {l} .

Since the inverse images under f of the open sets

]-00,2[ and ]*,00[ are open, disjoint sets which contain

a and F respectively, it is clear that a T32 space is

T3 . There are T3 spaces which fail to be T32 , how-

ever. Before we give an example of such a space, we shall

first prove the following lemma.

Lemma 2.13 The product of two T3 spaces is also a

T
3

space (with the product topology.)

Proof: Let X and Y be two T
3
spaces, and let

(x1,171) and (x2,y2) be distinct points in X x Y .
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Therefore, either xl x2 or y1 y2 . If x
1

x
2 '

then there is an open set U C X such that xl E U and

x2 E X- U. Therefore U x Y is an open set in X x Y

which contains (x1,171) but not (x2,y2) . The argument is

quite similar if y1 y2 . Since for any ordered pair of

distinct points in X x Y , we can find an open set

0cXxY which contains the first ooint but not the

second, X x Y is a T space,

Now, let F be a closed set in X x Y and

(x,y) EXxY-F. Since F is closed, there is a basic

open set UxVcXxy-F such that (x,y) EUxV.

Since X is T
3

and x is not a member of the closed

set X - U , there are disjoint open sets A and B

such that x E A and (X - U) c B . This means that

.1- XAcX-BCU. Since X-B is closed, (A) cX-Bc U,

where (A)X denotes the closure of A in the space X .

Similarly, we can find an open set 0 c Y such that

y E 0 c (-(5)1. c V, where (17)Y denotes the closure of 0

in the space Y . Therefore, (x,y) E A x0 and

X Y X x Y
F c X x Y - (A x 0 ) = X x Y - (A x0) , which means

that X x Y is a T
3

space.

Example 2.14 Let X denote the set of all ordinals

less than or equal to the first uncountable ordinal SZ

and let Y denote the set of all ordinals less than or

equal to the first infinite ordinal w . We define the
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bases for the topologies of X and Y in the following

manner. In X , we shall let each set consisting of a

single countable ordinal be open. Neighborhoods of Q

will consist of all sets which contain 0 and have count-

able complements. Similarly, we shall let each set con-

sisting of a single finite ordinal be open in Y , as

well as all sets containing w that have finite comple-

ments.

It is obvious that both spaces are T
1

, since all

singletons are closed. Now let F be a closed set in

X , and xEX-F. If C.2, then F is open, so F

and X - F will be disjoint open sets containing F and x

respectively. If SZ E F, then {x} is open, so {x}

and X {x} will be disjoint open sets containing x

and F respectively. Therefore, X is a T3 space.

A similar exercise will show that Y is also a T
3

space.

By Lemma 2.13, we know that X x Y is also a T3

space. A quick check of the definition of the relative

topology will verify that the subspace Z =

X x Y {.(0 w)} must also be T3 .

Lemma 2.15 If f: Z R1 is a continuous function

with the property that there is a sequence {in}n E N+

of distinct ordinals < w such that f(Q,i
n

) > r for all

n E N
+

, then there is a SO < Q such that f(d,w) > r
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for all 6 > 60. The lemma also holds if both the in-

equalities are reversed.

Proof: Since f is continuous, for every m and

n N
+

there is an ordinal 6
(m,n)

< Q such that

f(6,i
n

) > r -
1- for all 6 > 6

(m,n)
Let 6

o
=

sup {6
(m,n)

I m,n E N +}
(m,n)

l . Since {6 I m,n E e} is

a countable set contained in X - {Q} , 60 < S2 . If

6 > 60 , f(6,i
n

1
) > sup {r - -ImEN+ } =r. Since

f is continuous, lim f(6,i ) = f(6,w) > r for all
n->-co

6 > 6
0

The argument is quite similar if the inequalities

are reversed.

Now let I denote the space of all integers -

positive, negative and zero - with the discrete topology.

Forming the product I x Z , we have a T3 space in which

points may conveniently be renresented in the form

(n,6,i) where nEI, 6 E X and iEY. All points

of the form (n,Q,w) are omitted.

We now form a new space K by taking the quotient

space formed by the following equivalence relation r .

r = A
(IxZ) x (IxZ) U {(n,6,10),(n+1,6,w)) I n is even}

U {((n+1,6,w),(n,6,w)) I n is even}

U {((n,Q,i),(n+1,0,i)) In is odd}

U {((n+1,0,i),(n,Q i)) In is odd} , where A (Ixz)x(IxZ)
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is the diagonal in the space (I x Z) x (I x Z) . Since

(I x Z)/
r

= K does form a quotient space, a set G C K

will be open (or closed) iff f-1(G) is open (or closed)

in I x Z . We want to show that K is a T
3

space.

Let [z] be an equivalence class in K . By the manner

in which we defined r , [z] will consist of either

one or two points of I x Z . Therefore f
-1

([z]) will

be a set in I x Z consisting of either one or two points.

In either case, f
-1

([z]) is closed, since I x Z is a

T
3

space. Therefore K is a T
1

space, since singleton

sets are closed. Now let F be a closed set in K , and

let [x] e K - F . If [x] consists of only one point

of I x Z , then x is of the form (n,S,i) where

6 < 0 and i < w . Since all such points are open sets

{[x]} is open as well as closed. Therefore {[x]}

and K - {[x]} are disjoint open sets containing [x] and

F respectively. If [x] consists of two points of

I x Z , we may represent [x] by [(n0,60,w)] where n0

is even or by [(n0,Q,i0)] where n0 is odd. If [x] =

[(n0,60,w)] , the f
-1 ([x]) = {(n0,60,w)}U{(n0+1,60,0} .

Since [x] F , there is an open set U' K - F such

that [x] E U' . Therefore f
-1

(U') is an open set in

I x Z which contains f
-1

([x]) . There is an i
0

< w

such that U = {(m,60,i) Im = n0 or n0 +1 , i > i0}

f
-1

(U') . Examining the equivalence relation r , we
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see that f (f(U)) = U . Since f(U) C U' c K - F and

I x z - U is the union of basic open sets in I x z ,

f(U) and K - f(U) are disjoint open sets which contain

[x] and F respectively. The argument is in the othercase.

Now let us adjoin two new points a+ and a_ to K .

Neighborhoods Un(a+) of a+ consist of all triples

(j,(5,i)E K such that j > n > 0 along with a+ itself.

Similarly, neighborhoods Un(a_) of a_ consist of all

triples (-j,d,i) E K such that j > n > 0 along with a

itself. The families {U
n
(a
+

) I n E N+} and { U
n
(a

-
)11.1E1\1+}

are a bases for the neighborhood systems of the points a+

and a_ respectively.

Let us denote the space K U {a +} U {a } = A , with

the topology generated by the union of the topology for

K and the open neighborhoods for a+ and a_ . This

space is the one to which Example 2.14 refers. It is clear

that (A,T)is a T1 space, since every singleton is closed.

Let F be a closed set in A, and xEA-F. If x=

[(n,6,i)] where (5 < SZ and i < w, then {x} and A -{x}

will be disjoint open sets. If x = [(n,O.,i)] , there is

a So < Q such that 0 = {[(n,6,i)] 1 d > (50]} fails to

meet F . A - 0 may be written as the union of basic

open sets, however, so A - 0 and 0 will be disjoint

open sets containing F an x respectively.

Similarly, if x = [(n , S ,w)] , a+
or a_
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we can find an open set 0 such that x E 0 , 0 fl F =

and A - 0 can be written as the union of basic open sets.

Since the various cases considered are the only possiblil-

ities, (A,C) is a T
3 -

space.

We will now show that no continuous real valued fun-

ction can separate a+ and a_ . Since {a } is a

closed set, this is sufficient to demonstrate that (A,r/6

is not a T31 space. It will suffice to show that if

f : A + R 1 is a continuous function such that f(a ) = 0 ,

then f(a ) = 0 .

Let us assume that f : A + R1 is a continuous

function and f(a+) = 0 , and let 6 > 0 be arbitrary.

Since f is continuous, and f(a+) = 0 , there is an odd

integer n such that f([(n,Q,i)]) < 6/2 for all i < w .

By Lemma 2.15, we know that there is a 61 < Q such that

f([(n,(5,w)]) = f([(n-1,8,w)]) < E/2 for all 6 < 61 .

From this we can conclude that f([(n-2,0,i)]) =

26
f([(n-1, 0 -T,i)]) < - for all but a finite number of i < w.

26
If not, we have f([(n-1,6,w)]) = f([(n,6,w)]) > for

all 6 > 6
2 '

where 6
2

< . Since this would mean that

26f([(n,61 + 62 + 1 ,w)]) > -T. and

f([(n, 61 + 62 + 1,w)]) < E/2 , an obvious contradiction,

our conclusion must hold. We can use a similar argument

46
to show that f([(n-4,0,i)]) < 77 for all but a finite

26
number of ordinals < w , since f([(n-2,Q,i)]) < 7r. for



15

all but a finite number of ordinals < w . Continuing

by induction, we can show that for every even integer,

p > 0 , there is a finite ordinal i < w such that

f([(n- p,Q,i)]) < p+1 for all ordinals i > i . Since

f is continuous, f(a ) < e . Since we can also show that_

f (a_ ) > -e , f(a ) = 0 .

Definition 2.16 A topological space (X,() is said

to be a T
4

space iff (X,2) is T
1

and has the pro-

perty that given any pair of disjoint closed sets F and

G , there are disjoint open sets U and V such that

F c U and G c V .

Since singletons are closed in a T1 space, the

following lemma and theorem will demonstrate that a T4

space is also a T3i space.

Lemma 2.17 In a T4 space (X,
filp) , if F is a

closed set contained in the open set U , then there is

an open set V such that FcVcVcU.

Proof: Let F and U be sets as described in the

Lemma. Since FcU, F and X - U are disjoint closed

sets. This means that there are disjoint open sets 0

and V such that F c V and (X U) c 0 . Since

c (X - 0) c U and (X - 0) is closed,

FcVcVc (X - 0) cU.

Theorem 2.18 (Urysohn's Lemma) If (X,L
r'

i) is a

T
4

space, and F and G are disjoint closed sets, then
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there is a continuous function f: X [0,1] such that

f(F) = {0} and f(G) = {1}

Proof: Let F and G be disjoint closed sets in the

T
4

space (X, e) . By Lemma 2.17, there is an open set

U
0

csuch that FU
0
c U

0
c- X-G. Let X - G = U

1

Ordering the rationals in ]0,1[ as follows:

11213 ={ri,r2,r3,...} and invoking Lemma 2.17

again, we define Ui as an open set such that U0 cHUi

c U2 U1 . We continue our induction by taking the

smallest r, and largest rk such that j and k are

lesstharimaricirk<rm<riand defining the open

set U
r

such that U cU c17 E U . Again,
m rk

Ur Ur
rj

Lemma 2.17 guarantees us that such a set exists. We now

define a relation g(x) in the following manner.

inf {r I x E Ur } , if x E U
1g(x) = n E N+

n

1 , if x X - U
1

.

The relation g is obviously a well-defined function,

and g(X) E [0,1] . Also g(F) = {0} and g(G) = {1} ,

since F s U0 and G c X - U1 . Continuity is a con-

sequence of the following equations.

-1
g ([0,3[) U u

, for 3 > 0
r
n
<3

Ur

g
-1 (]a,1]) = r >a

(X -
r
n

, for a < 1 .

n
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Since the inverse images of sub-basic open sets are open,

g is continuous.

However, there are T
1ff

spaces which fail to satisfy

the T
4

axiom. The following space is often used as an

example of such a space.

Example 2.19 Our space X shall consist of the

same points as in Example 2.11. We shall also denote the

sets A and B in the same manner. We shall define a

basis for our topology as follows.

0',,y) = B((x,y), 131-:) n X , if (x,y) E A

V(x,0) = B((x, 111),.24.17 ) U {(x,0)} if (x,0) E B

where B((x,y), a) is the normal open Euclidean ball of

radius a > 0 and center (x,y), with m and n E N+ .

Now let F be a closed set and (x0,y0) E X - F .

Since F is closed, there must he an n
0

E N
+

such that

0 0
,y )

(or V
n
0

(x
0'0

) is contained in X F . Let us

0 0

assume ( x0,170) E A , so our basic neighborhood will be

nil
0,`'

,y ).
0

In order to construct our function, we must extend

our notation slightly.



Oa , 1
fl X , for= B((x,y), -) i

(x,y) a
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a > 0 , if (x,y) E A

1 1
V (ax,0)

= B((x,y407)-27dn {(x,0)} , for a > 0 , if

(x,0) E B .

We shall now define the function which gives us the

desired separation.

11, if (x,y) E X - 0no
0'17 '0

f(x,y) = no inf
1 (x,Y) E d(x o,y0) , if

no
(x,y) E 0 (x ,y )

0 0

It is clear that f is a well defined function and that

f(x
0'

y
0

) = 0 and f(F) = {1} . Continuity follows from

the following equations.

Sx n

)
f
-1

(]0,(3[) = 0 0 for 0< a < 1 .

( ,y
0 0

f
-1 (la,1]) = X (0

a.no
)

) for 0 < a < 1 .
(x
0,y0

°

Since the inverse images of sub-basic open sets are open,

f is continuous.

The proof is quite similar for the case when

(x0,170) E B .
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It remains to show that (X, f)() is not a T4

spce. Let F = { (x,o) I x is rational} and G = { (x,0)

x is irrational} . It is easy to show that F and G

are disjoint closed sets.

Now let V be any open set which contains G . We

shalldefinea sequence of sets {Gn }n E N+ in the follow-

ing manner.

G
n

= { (x,0) E G 1 Vn
x,0)

c V} , for n E N
+

.

(

Clearly U G = G .

n E N+
n

A famous theorem known as the Baire Category Theorem

states that the complement of a set of first category

is dense. Since G is of the second category

R
1
x {C} with the usual relative topology from the metric

space R
2

, there must be an
0

E N
+

such that the in-

terior of ( ) is nonempty in the usual metric top-
0

ology. This means that there is a rational xo such that

(xo,°) E (G
n

) , where we are again talking about the
0

usual metric topology for R
1 x{0} A short argument

now shows that for any m E N+ , there is a point

(ym,0) E G
n

m

'

such that V
(x 0)

n
n

v 0
( m ,0)

But
0 0

any open set U which contains the closed set F must

contain a basic open set of the form V
(x
m0) for some
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m E N+ . Therefore V n U # (1) , for any such open set

U ; ie, the space of Example 2.19 fails to be a T4 space.

Definition 2.20 A topological space (X,Q)) is said

to be a T
5

space iff it is a T
1

space and has the

property that for every pair of separated subsets A and

B , there are disjoint open sets U and V such that

A c U and B c V. (Two sets A and B are separated

iff (A n "ff) U (T n B) = (1)).

Since any two disjoint closed sets clearly satisfy

the above relation, a T
5

space is also T4 . Before we

give an example of a T4 space which fails to be T5 , we

will first prove the following two lemmas.

Lemma 2.21 A compact Hausdorff space (X,c( ) is T4.

Proof: Let F and G be disjoint closed sets in

the compact T2 space (x,/,r) . Fix x E F . For every

y E G , there are disjoint open sets U and V such

that x E U and y E Vy . Since G is a closed subset

of a compact space, G is also compact. Since GCU V ,

yEG

there is a finite subset {yi,y2,...,yri} C: G such that

n n

G c U V . U is therefore an open set
i-1 Yi i=1 Yi

n

containing x which fails to meet U V . Therefore,
i=1 Yi

(X,7=l) is a T
3

space.

Now, for every x E F , there are disjoint open sets
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U
x

and V
x

such that x E Ux and G c V
x

. Since F

is compact and F c U Ux , there is a finite subset
xEF

{xl,x2,...,xm} c G such that G C u Ux . Therefore

i=1
m m

U U and n V are disjoint open sets which
x.

1
x.

i=1 1 i=1

contain F and G respectively. Since X is Tl , it

is therefore a T
4

space.

Lemma 2.22 A topological space (XX) is a T5

space iff every subspace (X*4-!,*) is T4 which the

relative topology.

Proof: Suppose (X, ) is a T5 space and let

F and G be disjoint (relatively) closed subsets of the

subspace (X *, /,(*) . Denoting the relative closure of a

set A c X* by IT* = A fl x* , we have F n G =

(F fl x*) n G = F fl F fl G= . Similarly, F fl G= cp.

Therefore, there are disjoint open sets(in X ) U and

V such that F c U and G c V. Then U* = U P X* and

V* = V n X* are disjoint open sets (in X*) such that

F c U* and G c V* . Since T
1

is a hereditary pro-

perty, (X *, Z *) is a T4 space.

Now assume that every subspace is T4 , and let A

and B be separated subsets in X . X* = X - (T n f) is

an open subset of X . Let us consider X* as a sub-

space with the relative topology. X* n A" and x* n
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will be disjoint closed subsets of X* . Since X* is

a T
4

space by hypothesis, there must be open sets U

and V in X such that U* = U fl X* and V* = V fl X*

are disjoint (open) sets in X* that contain A and B

respectively. Since X* is open in X , however,

U* and V* are disjoint open sets in X . Since

(x,i)r) is T1 , (x,9') is a T5 space

Example 2.23 (Tichonov) Let X* = X U {a} be the

one point compactification of an uncountable discrete space

X . Similarly, let Y* = Y U be the one point com-

pactification of an infinite discrete space Y . Since

both X* and Y* are compact Hausdorff spaces, x y*

is a compact Hausdorff space. By Lemma 2.21, x* x y*

is a T
4

space. In order to show that X* x Y* is not

a T
5

space, we only need exhibit a subspace Z* which

is not T4 . Let Z* = X* x Y* - { (a,13)} , and define

F and G in the following manner.

F = { (a,y) E z *}

G = { (x,(3) E z *}

Clearly F and G are disjoint sets. If (x0,y0)

F , then {x0} x y* is an open set containing (x0,y0)

that fails to meet F . A similar exercise will prove

that G is closed as well.

Now suppose that U and V are disjoint open sets

that contain F and G respectively. Pick any infinite



sequence fy
n
ln

E N+
of distinct points in Y . For

each n E N+ , the set 0 = {(x,y
n ) 1 x E X} must be

contained in U for all but a finite number of terms.

Now, the sets Vx = { (x,y)
1
y E Y*} can be entirely con-
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tained in V for only finitely many x E X . If not, 01

would have more than a finite number of terms in the com-

plement of U . Next, we see that the sets V
x

that have

all points but 1 belonging to V must also be finite in

number. If not, U would not contain all but a finite

number of points of 01 U 02 . Continuing by induction,

we see that for any n, the number of x E X such that

V
x

contains all but exactly n points in V must be

finite. If not, 01 U 02 U U On would not have

all but a finite number of terms contained in U , which

is a contradiction. Therefore, only a countable number

of points in X have the property that Vx n(z - V) is

finite. If this is true, then V cannot be an open set

containing G , since vx n (Z - V) must be finite for

all of the points in the uncountable set X . This

contradiction leads us to conclude that there cannot be

disjoint open sets that contain F and G respectively,

so Z* is not T4 . Therefore X* x Y* fails to be a

T
5

space

We have proven the followng implications

T5 T4 T31 T3 Ti T2 TI To .
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We also showed that the above implications are, in general,

not reversible. Therefore, the above chain of implications

gives the only valid interrlation of the separation

axioms in arbitrary topological snaces. It should be

noted, however, that a separation axiom along with an arl

ditional property will sometimes 7uarantee a stronger

axiom.

The topological spaces satisfying the various sena-

ration axioms above are the ones with which we shall con-

cern ourselves in this thesis. It should be noted there

are other separation axioms, but we shall not examine them

in any detail.
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CHAPTER III

PROPERTIES OF REAL-VALUED, CONTINUOUS FUNCTIONS
IN RELATION TO VARIOUS SEPARATION AXIOMS

We know that if a topological space (X,Z) is T2 ,

then for any pair of distinct points a and b , there

are disjoint open sets U and V such that a C U and

b E V . Since topologists are often concerned with con-

tinuous maps from arbitrary topological spaces into the

real line R
1

, it is natural to consider the possibility

of a continuous function f: X -> R
1 such that f(a)

f(b) .

If there is such a function f then there is a con-

tinuous function g: X -0- [0,1] such that g(a) = 0 and

g(b) = 1 . This is a consequence of the following com-

positions.

g(x) = min{ max{ f(x) f(a)
f(b) - f(a) ; 0} ; 11

If f is continuous, then g must also be continuous,

and g has the desired bounds and values at a and b .

Similarly, if g: X -0- [0,1] is a continuous fun-

ction such that g(a) = 0 and g(b) = 1 , then for any

pair of real numbers a and 13 such that a < S , there

is a continuous function h: X -> [a,.] which has the
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property that h(a) = a and h(b) = 6 . This also fol-

lows from a composition of several continuous functions.

h(x) = minfmaxi((a)(1 g(x)) + 6-g(x)); al; 6}. If

g is continuous, h must also be continuous, and h cer-

tainly has the values at a and b and the bounds that

we desired.

Therefore, it suffices to just consider the existence

of a continuous function g: X [0,1] such that

g(a) = 0 and g(b) = 1 . Throughout this chapter, we

shall restrict ourselves to functions corresponding to the

function g above, as they will exist iff the more arbi-

trary continuous, real-valued functions of the type dis-

cussed above exist.

We have examined several separation axioms, and now

wish to discuss them further in the manner mentioned at

the beginning of this chapter. The next theorem will show

that we need only consider spaces which satisfy the T21

separation axiom.

Theorem 3.1 Let (X,2,7) be a topological space.

If, for every pair of distinct points a and b in X ,

there is a continuous function f: X [0,1] such that

f(a) = 0 and f(b) = 1 , the space is Tr .

Proof: Let a and b be distinct points in a

topological space (X,()() which possesses a family of

continuous, real-valued functions which separates points,
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Let f be a member of this family such that f(a) = 0 and

3f(b) = 0 . Therefore f
-1 ([0,4 ]) and f

-1 (4,11) are

disjoint closed sets which are neighborhoods of the points

a and b respectively.

This leads one to wonder whether there are any nec-

essary and sufficient conditions in order to guarantee that

an arbitrary T2,_ space (X, () has the property that for

any pair of distinct points a and b there is a con-

tinuous, real-valued function f: X [0,1] such that

f(a) = 0 and f(b) .

We know by Lemma 2.21 that if a T2I space is com-

pact, it is a T
4

space. Since singletons are closed in

a T space, Theorem 2.18 assures us that every compact,

T space has a family of continuous, real-valued fun -
22

ctions which separate points. However, the condition of

compactness is by no means a necessary one, since R
1

is

a non-compact T4 space.

The following example by Hewitt demonstrates that

several other powerful properties are not enough to guaran-

tee the existence of our family of functions.

Example 3.2 Our space shall be defined by the

following sets.

X = { (x,y) x,y are rational, x,y E ]0,10 U

{ (0,0)} U { (1,0) } U { ( ,y) ! y = r7 , r is



rational and r,72- E 10,1[1 Uf (,17) I y = r1/7 ,

r is rational and r/ E ]0,1[} U

{4,y) 1 y = 1./5 , r is rational and r7 E [0,1] }

A basis for the topology is defined in the following man-

ner.

On
(0,0)

= (x,y) EXIO< y< , for

n E N
+

,

V11 = { (x,y) E X 13 < x < 1 , 0 < y < , for
(1,0)

n E N
+

n
= { (x,y) E X 3,-. < x < r1/7 - n< y< r1/7

t
,

+
1

, for n E N+ .
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All remaining points will have the usual Euclidean balls of

1radii , for n E N+ , with center at the particular

point in question as a neighborhood basis.

A quick check shows that this does define a topology,

and that the resulting topological space is T
2

, how-

ever, no continuous, real-valued function separates the

points (0,0) and (1,0) . Let us assume that there is

a continuous function f: X [0,1] such that f((0,0)) =

0 and f((1,0)) = 1 . Since f is continuous,

f-1([0,4]) = A and f-1([3,1]) = B are disjoint closed
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sets which are neighborhoods of (0,0) and (1,0)

respectively. This implies that there is an mo N
+

m
0

such that (O(0,0)) c A and (V (1,0)) B . Picking a

rational r0 such that 0 < r
0
/7 < = we denote

m0
1f((,r01/7)) by a . Therefore, f

-1
([a - a + 7]) = C

is a closed neighborhood of (I,r01/7) . Therefore there is

a k E N
+

such that U ( V7)
c C . Since r0 is pick-

- 0

MOin such a manner that Uk(1/2,r01/7) meets 0
(0,0)

for any

N
+

, the sets A and C must also meet. This means

3
that a T . We can similarly show that B n C , so

a >
5

. Since this is an obvious contradiction, there can
8

be no continuous, real-valued function which separates the

points (0,0) and (1,0) .

Example 3.2 is a space which is countable, and there-

fore separable. It is a C
I

space, (i.e., has a countable

neighborhood base at each point) and is therefore a CI,

space (i.e., has a countable base for the topology).

Since Example 3.2 was a T22 space which failed to possess

the family of functions that we desired, none of the above

properties will be sufficient to guarantee the existence

of such a family.

Many other elementary properties fail to be

necessary for the existence of such a family. Discreteness
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is certainly sufficient, since any function from a discrete

space into any other space is continuous, but it is by no

means necessary. Connectedness and the Lindeloff property

are neither necessary nor sufficient, since Example 3.2 is

a connected, Lindeloff space, and an uncountable discrete

space is neither connected nor Lindeloff. Metrizability

is sufficient, since every metric soace is T4 , but

Example 2.19 is a non-metrizable T3 space.

We have not shown that there exists no set of con-

ditions which is equivalent in a T22 space to the exist-

ence of a family of real-valued, continuous functions

which separates points. In fact, it would be very im-

practical to attempt such a feat, since we would have to

demonstrate that every conceivable set of properties fails

to be equivalent in a T21 space to the existence of a

family of functions of the type we have discussed. We

have, however, demonstrated that all the conditions con-

sidered, which constitute many of the basic properties of

topology, fail to have the equivalence that we desired.

Turning to the case of T3 spaces, we ask ourselves

if there is any set of conditions which is necessary and

sufficient in a T
3

space to the existence of a family

of continuous, real-valued functions which separates points

from disjoint closed sets. (We shall use the terminology

above to mean that for any closed set F and x E X - F ,

there is a function f: X [0,1] such that f(x) = 0
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and f(F) = {1} .) If we examine our proposal more close:-

ly we see that we are seeking a set of conditions that is

satisfied in every T31 space, as well as making every

T
3

space that satisfies that set of conditions also

satisfy the T
3i

axiom.

Theorem 3.3 A topological space (X, q) is a

space iff it is homeomorphic to a subset of a compact

Hausdorff space (Y, ) .

Proof: Let us assume that (X,Z) is homeomorphic to

a subset of the compact T2 space (Y,1?) . By Lemma

2.21, we know that (Y,9?) is a T4 space, and therefore

. Since every subspace of a T31 space is T3i,

(X, ,r) is homeomorphic to a T space. Let us denote

that space by (YI, 1) and let f be the bicontinuous

bijection from X to Yl . Therefore, if F is a closed

set in X and x E X - F , we know that f(F) = F1 and

f(x) = x1 are a closed set and disjoint point in Yl .

3

Since Y
1

is T
3

, there is a continuous function

g: Y
1

[0,1] such that g(x
1

) = 0 and g(F
1

) = {1}

Therefore the composition function gof will be a contin-

uous function taking X into [0,1] and maps x into

0 and F into {1} .

Now, let us assume that (X, ) is a T3i space. We

shall let {f X}X E A
be the collection of all real-valued,

bounded, continuous functions defined on X , and let
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be acollection of closed and bounded intervals
{IA

}A
A

in R1 such that fx(X) E Ix . Since the product of com-

pact spaces is compact, and the product of T
2

spaces is

also T
2

, II I is a compact, Hausdorff space. Let us
AEA A

define a mapping g: X II I

AEA
A by setting g(x) =

f
x
(X) for all x E X , and denote Y = g(X) II I

AEA A

To show that g is a homeomorphism from X to Y , we

only need show that g is a continuous, open injection.

g is continuous, since the Ath projection HA° g = fx

is continuous for all A E A . If x and y are distinct

pointsinX,thereisanA0EAsuchthatf(x) = 0
AO

and f
A

(y) = 1 . Obviously, g(x) g(y) since the two
0

points of Y differ in the A0th place. Now let G be

an open set in X , and let x be in G . Since (X,,9)

is T3yz , there must be an a C A such that fa(x) = 0
-1

and fa (X - G) = {1} . Clearly Y n Ea (]-00,1[) = U is an

open set in Y . If z E U , then g (z) E G , and

z E g(G) . Therefore g(x) F g(U) Cg(G) , and g(G) is

open in Y .

Clearly, if a topological space (X, c) is homeo-

morphic to a subspace of a compact Hausdorff space (Y,

then (X, i(1) can be embedded in its closure in (Y, x2) ,

which is a compact Hausdorff space. In light of Theorem 3.3

and the above remark, the following theorem is immediate.
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Theorem 3.4 A T
3

space (X,5) is T3 iff

(X,15) is homeomorphic to a subspace of a compact

Hausdorff space.

In the case of T
4

spaces, we find that there is even

less to prove. We know by Urysohn's Lemma (Theorem 2.18)

that every T4 space has a family of real-valued contin-

uous functions that separates disjoint closed sets. Con-

versely, if a T1 space possesses such a family, and F

and G are disjoint closed sets, then there is a function

f in the family such that f(F) = {0} and f(G) = {1} .

.Obviously f
-1

(]-00,i[) and f
-1 (h-, D are disjoint open

sets which contain F and G respectively. The following

theorem is an immediate consequence of the preceding

remarks.

Theorem 3.5 A topological space (X, Z) is a T4

space iff it is T1 and has a family of continuous, real-

valued functions which separates disjoint closed sets,

In the case of T
5

spaces, we are seeking a set of

conditions which is equivalent in a T
5

space to the

existence of a family of continuous, real-valued functions

which separates separated subsets; (i.e., for any nonerpty

sets A and B such that (A fl B) U (A n f) (1) , there

is a member of the family f such that f(A) = {0} and

f(B) = {1}.)

Theorem 3.6 A T
5

space (X, Z') has a family of
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continuous real-valued functions which separates separated

subsets iff every pair of separated subsets have disjoint

closures.

Proof: Assume every pair of separated subsets have

disjoint closures, and let A and B be separates sub-

sets. Therefore T n B = (1) . Since (X,95) is T5 , it

is T
4

, so there is a continuous function f: X [0,1]

such that f(T) = {0} and f(-f) = {1} .

Now assume there is a family of continuous, real-

valued functions which separates separated subsets, and

let A and B be nonempty separated subsets of X . By

hypothesis, there is a continuous function f: X [0,1]

such that f(A) = {0} and f(B) = {1} . Since f-1({0})

and f
-1(

{l }) are disjoint closed sets which contain A

and B respectively, A and B will have disjoint

closures.

Even though we have found a set of conditions which

gives the desired equivalence in a T
5

space, we do not

really have a good intuitive picture of what these con-

ditions mean in a T
5

space. Before we dwell more on

this, let us first prove the following lemma and theorem.

Lemma 3.7 Let (X, t) be a T
2

space. If x is a

point of X such that there is a sequence of distinct

points {x
n}n E N+

C x - {x} such that { x } N+ -4- xn n N

then the sets ix
2n

n E N+} and Ix
2n-1

En N +} are
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separated subsets of X .

Proof: Let (X, t) be a T
2

space and let x and

fx
nln E N+

satisfy the hypothesiP. It will suffice to

show that { x
2n

1 n E N
+

} = { x
2n

1 n E N+} U {x} and

,

{x2n-1
HIEN+

} = {x
2n-1 1nEN+sU{x} , since the two

sets are disjoint and x belongs to neither set.

Let y be a point in X- ({x2n 1 n E le} U {x})

Then there are disjoint open sets U and V such that

y E U and x E V . Since {x-ril
n E

N+ x , there is an

m N
+ such that x

2k
E V if k > m . For each k < m

there are disjoint open sets U
k

and V
k

such that

m

y E Uk and xk E Vk . Therefore U n ( n Uk) is an
k=1

open set containing y which fails to meet fx2n 1 n E N+}

U { x} . Since x E fx
2n

1 n E N+} { x
2n

1 n E N +} =

x2n n E N+} U {x} . Similarly, we can show that

{x 2n-11 n E N
+}

= 2n-11 n E N
+1

{x} .

Theorem 3.8 Let (X, q1) be a topological space

satisfying the CI and Hausdorff axioms. Then every pair

of separated subsets have disjoint closures iff q: is the

discrete topology.

Proof: If 1, is the discrete topology, then

(17 n B) fl (A n implies that Tn B = (I) , since

A = X and B = F .
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Conversely, let us assume that 9:: is not the discrete

topology. Therefore, there is an x E X such that

x E (X - {x}) . This means that there is a sequence of

distinct points {xn}nE N+ E X {x} such that

{x
n}n E N+ + x .

By Lemma 3.7, we have that {x2n 1 n E N
+

}

and {x
2n-1

1 n E N
+
} are separated subsets of X . How-

ever, these two separated sets do not have disjoint

closures, since x is a member of the closures of both

sets. Invoking the contrapositive, we have the result we

desired.

The preceding theorem shows us that a CI , T5 space

has a family of continuous, real-valued functions that

separates separated subsets iff the space is a discrete

space. We are tempted to try to "extend" this result to

arbitrary T5 spaces by using a method similar to the one

used to prove Theorem 3.8. In a non - CI space, however,

we must use a type of convergence more general than

sequences. Instead, we must use nets or filters, which are

not necessarily indexed by either a countable or linearly

ordered set. The method of proof used in proving Lemma

3.7 relied quite heavily on both these properties, which

often escape us when using nets or filters.

In fact, there are non- CI , non-discrete T
5

spaces

which have the property that any pair of separated subsets

have disjoint closures.
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Example 3.9 Let X be the real line, and let

L* be the filter generated by the filter basis

n E N+1 . One of the properties of filters (which

we will not discuss in any detail here) is that every

filter can be extended to an ultrafilter. Accordingly,

let us extend to an ultrafilter . We shall define

our topology Z in the following manner.

7j= {A cX10 A}U{FU{O} 1PE3 }

To show that this is a topology as claimed, we must demon-

strate that arbitrary unions of members of x and finite

intersections of members of g are also members of g'

Let {0
a 1 a E A} be a collection of members of

If 0 0
a

for all a E A, then 0 U 0
a

, so
aEA

U 0 E '. If there is an ao E A such that 0 E O ,

aEA a 0

0 = F U {0} for some F E 3 . SinceFc0
a aEU

0A a°0

U

aEA Oa E 3 . Therefore {0} U (ayA Oa) u 3
aEA Oa

e

Now let {o
k

1 1 < k < n} be a finite collection of

members of 1: . If there is an m such that 0 < m < n

and 0 4 , then 0 U 0
k '

i° e. n 0
k

E t. If
k=1 k=1

0 E 0
k

for all k such that 1 < k < n , then

'This space was suggested to me by Darrell Kent, Professor
of Mathematics, Washington State University.
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Ok = Fk U {0} for all k , where F
k

E 3 . Since is

a filter, n F1, E 3 , so {0} U ( n Fic)-= Ok 15.

k=1 k=1

We now wish to show that (X, Z) is a T
1

space.

Let (a,13) be an ordered pair of distinct points. If

a 0 , then {a} is an open set which fails to contain

. If a = 0 , then there is an n N
+

such that

]0,-1 [ . Therefore, [0,-1, i1 is an open set containg

0 but not 13 .

In order to show that our space is T5 , it will

suffice by Lemma 2.22 to show that every subspace is T4

Therefore, let (X*,P) be a subspace of (X, Z) ,

and let A and B be disjoint, closed subsets in X*

If 0 X A and 0 B, then A and B will be open

in X , so they naturally will be open in X* . If

0 E A , then 0 B . Again B will be open in X , so

will also be open in X* . Since B is also closed,

B and X* - B will be disjoint open sets in X* which

contain B and A respectively. Since the T1 property

is a hereditary property, (X *, Z *) is a T4 space.

Now, let A and B be separated subsets of X

(i.e., (A n TS) U (T n B) = (1) .) We want to show that

T n E = (I) -

Case I: 0 E A. If 0 E A, then A= A, so

TnE=Anf= .
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Case II: OET-A. This means that
(i)

for all F E 3. Since 3 is an ultra-

filter, A E 3. Clearly, 0 B. If

0 E B , then B E 3 , so A n B , an

obvious contradiction. Since 0 B ,

is open. Therefore A is contained in the

closed set X- B, and T c X- B.

Case III: 0 A. If x E X- (A U {0}) , then {x}

is an open set which fails to meet A .

Therefore A= T , and T n B= A n

Example 3.9 is a T
5

space in which every pair of

separated subsets have disjoint closures. However, the

space is not discrete. If {0} is open, then {0} must

be a member of the ultrafilter 3 . This means that {0}

and ]0,i[ must have a non-empty intersection, since

]0,2[ E 3 . Clearly, this is a contradiction, so {o} 9

By Theorem 3.8, this space cannot be a CI space.

The attempt to generalize Theorem 3.8 to the case of

arbitrary T5 spaces must fail, since Example 3.9 is a

counter-example to such a theorem. However, it does re-

strict the number of T
5

spaces which will have the

equivalence that we desired in the case of T5 spaces.

Of the cases considered, the results of the T
3

and

T
4

cases were already known. Although no positive results

were found in the case of T
Zi

spaces, the properties
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that we considered, which constitute many of the basic

properties of topological spaces, all either failed to be

necessary or sufficient. In the case of T
5

spaces, an

equivalence of the type we sought was found. We showed

that this equivalence would exist in a CI , T 5 space iff

the space was discrete. However, there are non CI , T
5

spaces which have the equivalence that we desired, but are

not discrete.
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