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Numerical models are effective tools for simulating complex physical processes such 

as hydrodynamic and water quality processes in aquatic systems. The accuracy of the 

model is dependent on multiple model parameters and variables that need to be 

calibrated and regularly updated to reproduce changing aquatic conditions accurately. 

Multi-sensor water temperature observations, such as remote sensing data and in situ 

monitoring technologies, can improve model accuracy by providing benefits of 

individual monitoring technology to the model updating process. In contrast to in-situ 

temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit 

of collecting measurements with better X-Y spatial coverage. However, the temporal 

resolution of satellite data is limited comparing to in-situ measurements. Numerical 

models and all source of observations have large uncertainty coming from different 

sources such as errors of approximation and truncation, uncertain model inputs, error 

in measuring devices and etc. Data assimilation (DA) is able to sequentially update the 

model state variables by considering the uncertainty in model and observations and 

estimate the model states and outputs more accurately. Data Assimilation has been 

proposed for multiple water resources studies that require rapid employment of 

incoming observations to update and improve accuracy of operational prediction 

models. The usefulness of DA approaches in assimilating water temperature 

observations from different types of monitoring technologies (e.g., remote sensing and 



 

 

 

in-situ sensors) into numerical models of in-land water bodies (e.g., reservoirs, lakes, 

and rivers) has, however, received limited attention. Assimilating of water temperature 

measurements from satellites can introduce biases in the updated numerical model of 

water bodies because the physical region represented by these measurements do not 

directly correspond with the numerical model's representation of the water column. The 

main research objective of this study is to efficiently assimilate multi-sensor water 

temperature data into the hydrodynamic model of water bodies in order to improve the 

model accuracy. Four specific objectives were addressed in this work to accomplish 

the overall goal: 

 Objective 1: Propose a novel approach to address the representation challenge 

of model and measurements by coupling a skin temperature adjustment 

technique based on available air and in-situ water temperature observations, 

with an ensemble Kalman filter (EnKF) based data assimilation technique for 

reservoirs and lakes. 

 Objective 2: Investigate whether assimilation of remotely sensed temperature 

observations using the proposed data fusion approach can improve model 

accuracy with respect to in-situ temperature observations as well as remote 

sensing data. 

 Objective 3: Investigate a global sensitivity analysis tool that combines Latin-

hypercube and one-factor-at-a-time sampling to investigate the most sensitive 

model inputs and parameters in calculating the water age and water temperature 

of shallow rivers. 

 Objective 4: Propose an efficient data assimilation framework to take the 

advantage of both monitoring technologies (e.g., remote sensing and in-situ 

measurements) to improve the model efficiency of shallow rivers. 

Results showed that the proposed adjustment approach used in this study for four-

dimensional analysis of a reservoir provides reasonably accurate surface layer and 

water column temperature forecasts, in spite of the use of a fairly small ensemble. 

Assimilation of adjusted remote sensing data using ensemble Kalman Filter technique 

improved the overall root mean square difference between modeled surface layer 



 

 

 

temperatures and the adjusted remotely sensed skin temperature observations from 5.6 

ᵒC to 0.51 o C (i.e., 91% improvement). In addition, the overall error in the water column 

temperature predictions when compared with in-situ observations also decreased from 

1.95 °C (before assimilation) to 1.42 °C (after assimilation), thereby, giving a 27% 

improvement in errors. In contrast, doing data assimilation without the proposed 

temperature adjustment would have increased this error to 1.98 °C (i.e., 1.5% 

deterioration). The most effective parameters to calculate water temperature were 

investigated and perturbed among the acceptable range to create the ensembles. Results 

show that water temperature is more sensitive to inflow temperature, air temperature, 

solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Results 

also show in contrast to in-situ data assimilation, remote sensing data assimilation was 

able to effectively improve the spatial error of the model. Assimilation of in-situ 

observation improved the model efficiency at observation site. However, the model 

error increased by time and after less than two days, the model predictions of updated 

model were the same as base model before data assimilation. Hence, a maximum 

acceptable error between model and measurements was defined based on the 

application of model. Remote sensing data were assimilated into the model as they 

become available to improve the model accuracy for the entire river. In-situ data were 

also assimilated into the model when the error between model and observations exceeds 

the maximum error. Results showed that by assimilation of in-situ data one to three 

times per day, the average daily error reduced up to 58% comparing to situation that 

in-situ data were assimilated only once. In addition, the average spatial error reduced 

from 2.59 °C to 0.66 °C after assimilation of remote sensing data. 
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CHAPTER 1. Introduction 

 

 Problem statement 

Water temperature is a crucial factor that affects water quality of in-land water bodies, 

such as lakes, reservoirs, and rivers, because of its significant impact on mixing 

processes and rate kinetics of multiple contaminants (Babbar-Sebens et al., 2013). 

Vertical stratification occurs because of water temperature difference. It also directly 

affects the vertical exchanges of mass, energy and momentum within the water column 

(Piccolroaz et al. 2013). Water temperature has been also identified as a critical factor 

that significantly affects the biological activity and metabolic rates of aquatic 

organisms living in the rivers or lakes. All aquatic species have a preferred water 

temperature range and if temperature exceeds too much from this range, major 

mortality will happen (Chu, 2003; Todar, 2012). The dissolved-oxygen in water is also 

highly affected by water temperature. 

Sequential data assimilation methods can be used to update the initial condition of 

water quality numerical models as new observations become available (Evensen, 

2007). The numerical model and measurements have large uncertainty coming from 

different sources such as errors of approximation and truncation, uncertain model 

inputs, error in measuring devices and etc. Ensemble Kalman Filter (EnKF), as a 

sequential data assimilation technique, is able to update the model state variables by 

considering the uncertainty in model and observations and estimate the states and 

outputs more accurately. EnKF has been successfully applied to various water 

resources problems such as studies that investigate the assimilation of temperature 

(Keppenne and Rienecker, 2003; Javaheri et al. 2016). Water temperature from 

different sources (e.g., satellite data and in-situ measurements) can be assimilated into 

model to update the state variables. However, assimilating multi-sensor water 

temperature measurements can introduce biases in the updated numerical model of 

water bodies because the physical region represented by these measurements do not 

directly correspond with the numerical model's representation of the water column. 

Also, it is not clear whether assimilation of data from a specific source would improve 

the model comparing to other measurements with different physical domain. 
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 Goals and objectives 

The overall goal of this research is to investigate how assimilation of multi-sensor data 

from different monitoring technologies would affect the model accuracy in numerical 

hydrodynamic models of in-land water bodies (e.g., rivers, lakes, reservoirs). To 

accomplish the overall goals, four specific objectives were addressed as follow: 

 Objective 1: Proposes a novel approach to address the representation challenge of 

model and measurements by coupling a skin temperature adjustment technique 

based on available air and in-situ water temperature observations, with an ensemble 

Kalman filter (EnKF) based data assimilation technique. 

 Objective 2: Investigate whether assimilation of remotely sensed temperature 

observations using the proposed data fusion approach can improve model accuracy 

with respect to in-situ temperature observations as well as remote sensing data. 

 Objective 3: Investigate a global sensitivity analysis tool that combines latin-

hypercube and one-factor-at-a-time sampling the most sensitive model inputs and 

parameters in calculating the water age and water temperature of shallow rivers. 

 Objective 4: Propose an efficient data assimilation framework to take the 

advantage of both monitoring technologies (e.g., remote sensing and in-situ 

measurements) to improve the model efficiency of shallow rivers. 

 Outline 

The organization of this research is as follow. Chapter 2 describes a novel strategy for 

adjusting remotely sensed skin temperature before it can be used for assimilation in 

numerical hydrodynamic model of reservoirs or lakes. Proposed methodology was 

applied to Eagle Creek Reservoir in central Indiana to investigate whether assimilation 

of adjusted remotely sensed temperature observations can also improve model accuracy 

with respect to in-situ temperature observations. Chapter 3 investigates a global 

sensitivity analysis to determine the most sensitive parameters in calculating water 

temperature and water age of shallow rivers. Results from this chapter, help to create 

the ensemble members more accurately for the next chapter. Chapter 4 uses the finding 

from previous chapter and presents a methodology to effectively assimilate the multi-
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sensor observations into the hydrodynamic model of lower Klamath River to 

sequentially improve the model accuracy for the entire river. Finally, chapter 5 

concludes the main findings from this research. 
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CHAPTER 2. From skin to bulk: An adjustment technique for assimilation of 

satellite-derived temperature observations in numerical models of small inland 
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 Abstract 

Data Assimilation (DA) has been proposed for multiple water resources studies 

that require rapid employment of incoming observations to update and improve 

accuracy of operational prediction models. The usefulness of DA approaches in 

assimilating water temperature observations from different types of monitoring 

technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land 

water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In 

contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) 

provide the benefit of collecting measurements with better X-Y spatial coverage. 

However, assimilating water temperature measurements from satellites can introduce 

biases in the updated numerical model of water bodies because the physical region 

represented by these measurements do not directly correspond with the numerical 

model's representation of the water column. This study proposes a novel approach to 

address this representation challenge by coupling a skin temperature adjustment 

technique based on available air and in-situ water temperature observations, with an 

ensemble Kalman filter based data assimilation technique. Additionally, the proposed 

approach used in this study for four-dimensional analysis of a reservoir provides 

reasonably accurate surface layer and water column temperature forecasts, in spite of 

the use of a fairly small ensemble. Application of the methodology on a test site - Eagle 

Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed 

skin temperature data using the proposed approach improved the overall root mean 

square difference between modeled surface layer temperatures and the adjusted 

remotely sensed skin temperature observations from 5.6 ᵒC to 0.51 ᵒC (i.e., 91% 

improvement). In addition, the overall error in the water column temperature 

predictions when compared with in-situ observations also decreased from 1.95 °C 

(before assimilation) to 1.42 °C (after assimilation), thereby, giving a 27% 

improvement in errors. In contrast, doing data assimilation without the proposed 

temperature adjustment would have increased this error to 1.98 °C (i.e., 1.5% 

deterioration). 

Keywords 
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Data assimilation; Ensemble Kalman filter; Hydrodynamic model; In-situ data; Remote 

sensing data 

 Introduction 

Management of water quality in in-land water bodies, such as lakes and reservoirs, 

is critical for minimizing human and ecological risks from contaminants. In the 1999 

Drinking Water Infrastructure Needs Survey conducted by the Environmental 

Protection Agency (EPA), it was reported that an investment of $150 billion in drinking 

water systems over a 20-year period will be needed to ensure clean and safe drinking 

water [1]. Water column temperature is among the primary factors that affect water 

quality because of its significant impact on mixing processes and rate kinetics of 

multiple contaminants [2]. Vertical stratification caused by temperature affects vertical 

exchanges of mass, energy and momentum within the water column [3]. Hence, 

numerical water quality models that predict spatio-temporal changes in water column 

temperature have become critical tools for water managers operating lakes and 

reservoirs for human use and consumption [4-6]. However, the prediction efficiency of 

such models is dependent on multiple parameters and state variables that must be 

calibrated using all available data. While calibration techniques help improve the 

consistency between the model predictions and historic observations [7-11], they are 

not enough to ensure that a well-calibrated model will continue to predict accurately 

under operational and evolving conditions in water bodies. 

For time dependent water quality numerical models, sequential data assimilation 

techniques can be used towards continued updating of an operational model’s state 

variables, as and when new observations of the changing system become available [12]. 

A data assimilation process also has the potential to reduce uncertainty in prediction by 

integrating real-time observations from a variety of monitoring technologies [13]. 

However, using diverse data sources for updating water quality models requires an 

understanding of both strengths and limitations of individual data sources that may 

impact the assimilation process [2], [13]. For example, Satellites provide spatially-

dense observations of skin temperature in water bodies. But they cannot be used to 

obtain sub-surface parameters, and have limited temporal resolution. On the other hand, 

in-situ sensors can provide multiple temporal observations at multiple sub-surface 



7 
 

 

depths to complement remote sensing data, even though in-situ sensors may not have 

a good X-Y coverage. With respect to remote sensing data, several studies in different 

fields have incorporated them in data assimilation. These include studies investigating 

the assimilation of temperature ([14-16]), aquatic contaminants ([17-21]), soil moisture 

([22-26]), subsurface soil moisture ([27]), and snow cover ([28-31]). However, there 

are limited papers that report whether assimilation of remotely-sensed water surface 

temperature observations would produce updated models that are also accurate with 

respect to in-situ water column measurements. Babbar-Sebens et al. [2] recently used 

a variational data assimilation approach that used remotely sensed water temperature 

to correct the initial condition of the hydrodynamic model. Their results demonstrated 

that assimilation of remotely sensed data derived from Landsat-5 Thematic Mapper 

(TM) satellite reduced the overall error from 20.9% to 15.9%, when the model forecasts 

were compared to tests datasets derived from the same satellite. However, when they 

compared the water column temperature of model layers in the original and updated 

model with the in-situ measurements at different depths, it was found that the model 

error had actually increased by 50%, specifically from 1.8 ᵒC (before assimilation) to 

2.7 ᵒC (after assimilation) [2]. While Babbar-Sebens et al. (2013) did not provide any 

solution to resolving this discrepancy between performance of updated models 

estimated by different data sources, their study highlighted the need for an adjustment 

method that would enable a direct comparison between skin temperature measurements 

obtained from satellites and the bulk temperatures of water column layers simulated by 

the numerical water quality model. The relationship between skin temperature and bulk 

temperature has been investigated by some previous studies [3], [32-35]. Hook et al. 

(2003) used four monitoring stations permanently deployed on Lake Tahoe, 

California–Nevada to compare the surface skin temperature and bulk temperature. 

They found that during the diurnal cycle, there is a noticeable difference between the 

bulk and skin temperatures which is related to strong solar radiation and low wind 

speeds at the site in the morning [33]. Donlon et al. (2002) using the remotely sensed 

sea surface temperature (SST) and high quality in-situ data obtained from radiometer 

systems considered the relationship between the SSTskin, the subsurface SST at depth 

(SSTdepth), and the surface wind speed. They found that for wind speed lower than 6 
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m/s, there is a complicated relationship between SSTskin and SSTdepth during the day 

because of the stratification of upper layers of ocean, while at night the skin layer is 

usually cooler. Also for wind speed higher than 6 m/s, there is a cool bias of -0.17 ± 

0.07 K rms for both day and night conditions [32].  

In this study, we have proposed a novel strategy for adjusting remotely sensed skin 

temperature collected in an operational setting. The adjustment enables incoming 

satellite-derived data to be converted into a representative bulk temperature of surface 

layer, before it can be used for assimilation in numerical hydrodynamic and water 

quality models. Additionally, coupling of the adjustment and assimilation techniques 

takes advantage of easily available daily air temperature, and the intermittently 

available in-situ observations that may or may not be collected on days and times when 

the remote sensing observations are obtained. The scientific merit of this work is that 

it provides an efficient adjustment and bias correction technique for extrapolating 

remotely sensed skin temperature observations to temperatures representing surface 

layers of numerical models that simulate in-land water bodies. Another scientific and 

practical merit is that the overall approach is able to produce an updated model with 

reasonably accurate forecasts in spite of the use of a small ensemble size during data 

assimilation. This is especially important for the purpose of high computational 

efficiency, when data assimilation is performed under operational settings.  

The main research objective of this study is to investigate whether assimilation of 

remotely sensed temperature observations using the proposed data fusion approach can 

also improve model accuracy with respect to in-situ temperature observations. The 

proposed data fusion approach was tested using a hydrodynamic-temperature model of 

Eagle Creek Reservoir (ECR) in central Indiana, and involved the steps below: 

(1) Adjust the remotely sensed water skin temperature observations by using daily 

air temperatures and intermittently available in-situ water column temperatures, and, 

thereby, resolve the problem of bias arising due to sampling depths of remote sensing 

observations and in-situ measurements.  

(2) Assimilate the water temperature using adjusted remotely sensed water skin 

temperature from multi-spectral Landsat-5 TM band into the hydrodynamic-
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temperature model, and update the model’s initial conditions using an ensemble 

Kalman filter data assimilation framework.  

(3) Compare the predictions from the model updated using the proposed 

methodology with incoming new in-situ observations to validate whether the updated 

model also produces more accurate sub-surface water column forecasts. 

The remainder of the paper is organized in the following sections: Section 2.2 

(Methodology) describes the study area and data collection, simulation model, sources 

of observations, relationship between remote sensing and in-situ observations and data 

assimilation algorithm, Section 2.3 describes the results of various experiments 

conducted in this study, and finally Section 2.4 provides concluding remarks. 

 Methodology 

2.3.1. Study area and data collection 

Eagle Creek Reservoir (ECR), located northwest of Indianapolis, Indiana, was used 

as the test site in this study (Figure 2.1). It lies within the Eagle Creek watershed and 

has a catchment area of about 419 km2. The Eagle Creek Reservoir was originally 

constructed in 1967 for flood control, and is also used as the main drinking water supply 

for metropolitan Indianapolis and for recreational activities [36]. However, this 

reservoir tends to be in eutrophic to hypereutrophic states, with high concentration of 

phosphorous and blue algae [37]. The reservoir is small and shallow with total area of 

5.1 km2 at normal depth (240.79m above sea level) and mean depth of 5.7 m. The 

reservoir is divided into three main zones based on physical characteristics: the quarry 

(0.57 km2), the northern basin (2.07 km2), and the southern basin (2.97 km2). The 

quarry has negligible interaction with the northern and southern basins. A land bridge 

separates the southern and northern basins, and water exchanges between them through 

an approximately 50 meter opening. The main streams flowing into the northern and 

southern basins of the reservoir include Eagle Creek, Bush Creek, Fishback Creek, and 

School Branch. 

In this study, we used the hydrodynamic and temperature model built by Babbar-

Sebens et al. (2013), described in more detail in Section 2.2.3. This model was 

developed using data obtained from different sources. Bathymetry data for the reservoir 
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and the water column temperature observations at multiple in-situ sites (see Figure 2.1 

and Section 2.2.4 for details) were measured by Center of Earth and Environmental 

Sciences (CEES), Indiana University Purdue University Indianapolis (IUPUI) 

(http://www.cees.iupui.edu/). Hourly precipitation and air temperature data used for the 

model was obtained from National Climatic Data Center (http://www.ncdc.noaa.gov/) 

and Eagle Creek Airpark/Airport (53842) station, and the hourly solar radiation for 

2008 was obtained from Indiana State Climate Office 

(http://climate.agry.purdue.edu/climate/). Inflows to the reservoir were estimated from 

the calibrated SWAT model of entire Eagle Creek Watershed (ECW) [38] and outflow 

measurements were obtained from a United States Geological Survey (USGS) gauge 

Station #03353460 at Clermont (1 km downstream from reservoir). Daily pool 

elevation data was obtained from USGS gauge Station #03353450 in the ECR. Since 

evaporation in ECR is unknown, measurements of a local water utility company at 

Carmel, 27 km (17 miles) east of ECR were used as evaporation rates.  

 

 

Figure 2.1: Eagle Creek Reservoir. Left: aerial photograph showing the reservoir in 

green. The dark green feature at northeastern corner of the reservoir is the abandoned 

 

http://climate.agry.purdue.edu/climate/
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quarry. Right: Gridded representation of the reservoir, with bottom topography shown 

in color. Units are meters above sea level. Black grid squares depict in-situ water quality 

observation sites and circles are monitoring regions encompassing the observation sites: 

1- Dam region, 2 - Intake region, 3 - Marina region, and 4 - Eagle Creek inlet region. 

 

2.3.2. Proposed approach for adjustment and assimilation of remotely-

sensed temperature observations 

Figure 2. 2 illustrates the overall components and the steps of the methodology 

proposed in this study. Orange trapezoids show the different types of observations used 

for the proposed assimilation methodology, green boxes display the process steps, and 

the blue ellipsoid shows the output. When using the method under operational 

conditions, Steps 1-11 in the method are repeated whenever new remote sensing data 

becomes available. The first set of steps – i.e., Steps 1-3 – are for calibrating the 

Air2Water model, which is then used to adjust the satellite-derived temperature 

observation to make them equivalent to EFDC numerical model’s surface layer. Steps 

4-7 are next conducted in order to complete the data assimilation procedures, and 

involve the use of Ensemble Kalman Filter technique and the adjusted remote sensing 

temperature measurements. After assimilation is over, Steps 8-10 are performed for 

validating the newly updated EFDC model with the new incoming in-situ observations, 

and for testing if assimilation with surface data also improved temperature predictions 

in the entire water column. Finally, in Step 11, it is tested if new remote sensing data 

are available, and re-starts the steps 1-11 whenever the condition is met. While, specific 

models and data used in the Methodology are described in this section, additional detail 

discussions on individual steps of the Methodology along with the results are described 

in the Results and Discussion section.  

Since the study site used in this study was also used in previous work by Babbar-

Sebens et al. (2013), it is worth noting the main differences between the previous study 

and this study. Specifically, unlike the previous work, in this study (1) the skin 

temperature was adjusted using the proposed approach to estimate an equivalent 

surface layer temperature that would be comparable to numerical model’s surface layer 

predictions, (2) the ensemble Kalman filter approach which is more suitable for time 
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dependent problems has been implemented, and finally, (3) spatial bias from the model 

predictions was removed. 

 

Figure 2. 2: Flowchart summarizing the methodological steps 
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2.3.3. EFDC Simulation model 

The Environmental Fluid Dynamic Code (EFDC) [39], used in Steps 5, 7, and 9 of 

Figure 2. 2, and calibrated by Babbar-Sebens et al. (2013) for the Eagle Creek 

Watershed, was used in our study. EFDC is a widely used hydrodynamics models that 

has been applied to over 100 water bodies including rivers, lakes, reservoirs, wetlands, 

estuaries, and coastal ocean regions [40-44]. The EFDC model is able to solve the three 

dimensional, hydrostatic, free surface, turbulent averaged equations of motions for a 

variable density fluid. The EFDC uses dynamically coupled transport equations for 

turbulent kinetic energy, turbulent length scale, salinity and temperature, and supports 

stretched or sigma vertical coordinates and Cartesian or curvilinear orthogonal 

horizontal coordinates. The model is also able to solve an arbitrary number of Eulerian 

transport transformation equations for dissolved and suspended materials as well as 

complimentary Lagrangian particle transport transformation scheme. The continuity 

equation used by EFDC is given by 

𝜕𝐻

𝜕𝑡
+
𝜕(𝐻𝑢)

𝜕𝑥
+
𝜕(𝐻𝑣)

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 𝑄𝐻               (2. 1) 

where H = water depth, u and v = horizontal velocity components in x and y direction 

respectively, w = vertical velocity component in z direction; QH = the volumetric 

source and sink term concerning evaporation and rainfall. The conservation of 

momentum equations are given as 

𝜕𝑡(𝐻𝑢) + 𝜕𝑥(𝐻𝑢𝑢) + 𝜕𝑦(𝐻𝑣𝑢) + 𝜕𝑧(𝑤𝑢) − 𝑓𝐻𝑣 = −𝐻𝜕𝑥(𝑔𝜉 + 𝑝 + 𝑝𝑎𝑡𝑚) +

(𝜕𝑥ℎ − 𝑧𝜕𝑥𝐻)𝜕𝑧𝑝 + 𝜕𝑧(𝐻
−1𝐴𝑣𝜕𝑧𝑢) + 𝑄𝑢                    (2. 2) 

𝜕𝑡(𝐻𝑣) + 𝜕𝑥(𝐻𝑢𝑣) + 𝜕𝑦(𝐻𝑣𝑤) + 𝜕𝑧(𝑤𝑣) − 𝑓𝐻𝑢 = −𝐻𝜕𝑦(𝑔𝜉 + 𝑝 + 𝑝𝑎𝑡𝑚) +

(𝜕𝑦ℎ − 𝑧𝜕𝑦𝐻)𝜕𝑧𝑝 + 𝜕𝑧(𝐻
−1𝐴𝑣𝜕𝑧𝑢) + 𝑄𝑣               (2. 3) 

where f = Coriolis factor, p = the water column hydro-static pressure; patm = the 

kinematic atmospheric pressure; Av = vertical turbulent momentum diffusion 

coefficients, and Qu and Qv = momentum source-sink terms. The transport equations 

for temperature and salinity are 

𝜕𝑡(𝐻𝑇) + 𝜕𝑥(𝐻𝑢𝑇) + 𝜕𝑦(𝐻𝑣𝑇) + 𝜕𝑧(𝑤𝑇) = 𝜕𝑧(𝐻
−1𝐴𝑣𝜕𝑧𝑇) + 𝑄𝑇           (2. 4) 

𝜕𝑡(𝐻𝑆) + 𝜕𝑥(𝐻𝑢𝑆) + 𝜕𝑦(𝐻𝑣𝑆) + 𝜕𝑧(𝑤𝑆) = 𝜕𝑧(𝐻
−1𝐴𝑣𝜕𝑧𝑆) + 𝑄𝑆            (2. 5) 
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where Qs and QT are horizontal diffusion and thermal sources and sinks. A number of 

alternatives are in place in the model to simulate general discharge control structures 

such as weirs, spillways and culverts [39]. 

The Courant-Friedrichs-levy condition (CFL condition) was used to test the 

suitability of grid sizes and time steps. The final grid (Figure 2.1) selected by Babbar-

Sebens et al (2013) was built using Cartesian horizontal coordinate and sigma stretch 

vertical coordinate. It included expanding grids with minimum grid size 40 m to 

maximum 60 m and sigma scale of 0.2 for each layer. The expanding factor of 1.005 

was used to expand grid sizes from the focal point (water intake). Time steps of the 

numerical model was chosen to be two seconds considering the model stability and the 

computational burden.  

2.3.4. Temperature Data 

One of the main objectives of this study is to assimilate remotely sensed water skin 

temperature into the hydrodynamic numerical model of in-land freshwater water body 

and to investigate the model accuracy with respect to in-situ temperature observations 

(i.e. Steps 1-4, 6-7, and 9-10). In order to achieve this goal, we used the remotely sensed 

water skin temperature data that Babbar-Sebens et al. (2013) had derived from the 

Landsat 5 TM satellite. In their study, in-situ measurements had been collected at 54 

different (X, Y) locations (Figure 2.1) throughout the reservoir, and consisted of 

multiple measurements at several depths (starting from 25 cm below the surface to the 

bottom of reservoir) at each location. Four TM (band 6) thermal images were obtained 

from the satellite on dates Aug 7, Aug 23, Sept. 24, and Oct. 10 2008, and at local times 

16:09, 16:08, 16:07, and 16:07 hours, respectively. The spectral radiance data from the 

satellites were converted into water skin temperature based on the Planck’s law:  

𝑇(𝜆) =
𝐾2

𝑙𝑛[
𝐾1
𝐿(𝜆)

+1]
                    (2. 6) 

where λ is the wave length; K1 and K2 are the calibration constants as 607.76 Watts m-

2 ster-1 μm-1 and 1260.56 Kelvin respectively; L is the spectral radiance in Watts m-2 

ster-1 μm-1. To assimilate data obtained from satellite, 300 random sampling locations 

in the reservoir were identified and then divided into two groups for training and 

testing. Out of these locations, 150 random locations were selected as training locations 
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to implement the ensemble Kalman filter data assimilation and remaining 150 locations 

were used for testing the efficiency of data assimilation process. In-situ observations 

are available at six times between August 14 and September 30 (as also shown in Table 

2.1), at one location in each of the four monitoring regions (Figure 2.1). The 

instrumental error reported for the YSI probes that were used to measure the water 

column temperature at sampling locations has been reported to be ±0.15°C [2]. These 

in-situ measurements were used as unbiased references to adjust the remotely sensed 

skin data as well as the hydrodynamic model calibration and validation. 

Table 2.1: Collection dates of remotely sensed and in-situ observations during the data 

assimilation period 

 Jul 

17 

Jul 

30 

Aug 

7 

Aug 

14 

Aug 

20 

Aug 

23 

Aug 

27 

Sep 

3 

Sep 

16 

Sep 

24 

Sep 

30 

Oct 

10 

Oct 

16 

Remotely 

sensed 

data 

             

In-situ 

data 

             
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2.3.5. Air2Water Model  

 

Figure 2.3: Discrepancies between temperature observations from different sensors and 

temperature represented in the modeling domain. Tair represents air temperature 

collected at weather station, Tskin represents skin temperature derived from remote 

sensing measurements, Tdepth n,m represent the in-situ measurements taken at depth m in 

layer n, and TEFDC n represent the bulk temperature of the numerical model’s nth layer. 

 

As discussed earlier, the numerical hydrodynamic model of the reservoir simulates the 

water column temperature at discrete depths (depending on the vertical discretization 

of the model) shown by the layer temperatures TEFDC 1, TEFDC 2, … TEFDC n in Figure 2.3, 

whereas, remotely sensed observations used for data assimilation represent the skin 

temperature of the lake’s surface (i.e. Tskin in Figure 2.3). Hence, to make an accurate 

comparison between the model outputs and observations, any existing bias would need 

to be removed and the remote sensing data would need to be converted into an 

equivalent bulk temperature value (i.e. which would be equivalent to TEFDC 1) that 

represents the depth of surface layer of the numerical model. In-situ observations (i.e. 

Tdepth n,m) are also usually collected at specific depths in the water column, and are not 

directly comparable to the remotely sensed skin temperature (Tskin) or the numerical 

EFDC Layer 1:

Surface layer

EFDC Layer 2

Tskin

EFDC Layer n

Tdepth 1,m

Tdepth 1,1

TEFDC 1

TEFDC 2

TEFDC n

Tair

Tdepth 2,m

Tdepth 2,1

Tdepth n,m

Tdepth n,1
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model’s surface layer temperature (TEFDC 1). Additionally, remotely sensed and in-situ 

data for most applications, including this study, may not be collected simultaneously. 

This makes it further complicated to relate the skin temperature and surface layer 

temperature of the reservoir. In this study, we used the method presented by Piccolroaz 

et al. (2013) to find the relationship between the water skin temperature and the air 

temperature above the reservoir (i.e., Steps 1-2). The skin temperature predicted by 

their method was then converted into a predicted surface layer bulk temperature (Tadj) 

by identifying the bias between the predicted skin temperature and a surface layer bulk 

temperature estimated from in-situ observations. We used the average of in-situ 

observations in the surface layer (i.e. Tdepth 1,1 to Tdepth 1,m) to estimate the surface layer’s 

observed bulk temperature. Piccolroaz et al. (2013) developed a simple model called 

Air2Water to relate the temperature of lake skin (shown by Tskin in Figure 2.3) to air 

temperature (shown by Tair in Figure 2.3). This model is based on ordinary differential 

equation with at least 4 parameters (p3, p4, p5 and p6) as shown by Equation 2.7 and up 

to 8 parameters (not used in this study) that need to be calibrated using air and water 

temperature measurements. They suggested equations 2.7-2.9 that account for all the 

heat exchanges with the atmosphere and the deeper layer of the lake. 

𝑑𝑇𝑠𝑘𝑖𝑛

𝑑𝑡
=

1

𝛿
{𝑝1 cos [2𝜋 (

𝑘

𝑘𝑦𝑟
− 𝑝2)] + 𝑝3 + 𝑝4(𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑘𝑖𝑛) + 𝑝5𝑇𝑠𝑘𝑖𝑛}          (2. 7) 

𝛿 = 𝑒𝑥𝑝 (
𝑇𝑟−𝑇𝑠𝑘𝑖𝑛

𝑝6
),        𝑇𝑠𝑘𝑖𝑛 ≥ 𝑇𝑟                (2. 8) 

𝛿 = 𝑒𝑥𝑝 (
𝑇𝑠𝑘𝑖𝑛−𝑇𝑟

𝑝7
) + 𝑒𝑥𝑝 (

−𝑇𝑠𝑘𝑖𝑛

𝑝8
),        𝑇𝑠𝑘𝑖𝑛 < 𝑇𝑟              (2. 9) 

where pi are model parameters, k is time, kyr is the duration of the year in suitable time 

units, Tair (Figure 2.3) is the air temperature (ᵒC), Tskin  is the skin water temperature 

(ᵒC) and Tr represents the deep-water temperature and can be chosen depending on the 

thermal regime of the lake [3]. In the case of cold monomictic lakes, Tr is considered 

as the maximum surface temperature measured during the year. In the case of warm 

monomictic lakes, Tr is assumed to be the minimum surface temperature registered 

during the year. Finally, for the case of dimictic lakes, Tr can be assumed to be equal 

to the temperature of maximum density (4 ᵒC). The Eagle Creek reservoir can be 

considered as warm monomictic, so Tr is equal to minimum surface temperature 

registered during the year (2 ᵒC). Piccolroaz et al. (2013) also found that not all the 
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parameters in the Air2Water model are equally significant, and the number of 

parameters can be decreased from eight to four by eliminating the parameters p1, p2, 

p7, and p8. Piccolroaz et al. (2013) found that the first term in Equation 2.7 was 

insignificant compared to the second and third term, and hence this term (including 

parameters p1 and p2) was omitted. Also, since equation 2.9 was not valid for Eagle 

Creek Reservoir, parameters p7 and p8 were deemed unnecessary. It is worth 

mentioning here that Air2Water model provided one estimate of water skin temperature 

for the entire reservoir, since only one air temperature Tair value was available for the 

entire X-Y domain of the reservoir. On the other hand, unique remote sensing 

observations were available for every spatial grid cell (Figure 2.1) in the reservoir, and 

in-situ observations were present at 4 X-Y locations (in the 4 monitoring regions of 

Figure 2.1). But since the standard deviations in spatial distribution of skin temperature 

derived from remote sensing measurements and the surface layer bulk temperatures 

estimated from in-situ observations in the four regions were found to be small enough 

(See Table 2.2 for details), the lack of variability in Tair measurements across the X-Y 

domain of this small reservoir was considered to have insignificant effect on the 

proficiency of Air2Water model. 

Table 2.2: Standard deviations in spatial observations of data used for Air2Water model 

(ᵒC) 

 

Jul 

17 

Jul 

30 

Aug 

7 

Aug 

14 

Aug 

20 

Aug 

23 

Aug 

27 

Sep   

3 

Sep 

16 

Sep 

24 

Sep 

30 

Oct 

10 

Oct 

16 

Remotely 

sensed 

data 

  

0.4   0.34    0.28  0.35  

In-situ 

data 

0.17 0.11 

 0.15 0.27  0.38 0.41 0.06  0.3  0.21 
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2.3.6. Ensemble Kalman Filter algorithm  

The Kalman filter [45], a sequential data assimilation method (Figure 2.4), is a 

commonly used data assimilation technique that was initially developed to update the 

state variables of linear systems as new observations became available [46]. Although 

the classical Kalman filter has been used for nonlinear problems [47-49], it is more 

applicable for state estimation of linear system under Gaussian noise [50-51]. Extended 

Kalman filter (EKF) has been proposed for updating the model state variables of 

nonlinear problems by assuming that these state variables are differentiable. This 

technique is based on linearization about the current mean and covariance [52]. 

However, this method is not applicable for fully nonlinear systems and leads to unstable 

results [53]. Ensemble Kalman filter (EnKF), another data assimilation technique, was 

introduced by Evensen [53] to deal with non-linear models, when the assumption of 

linearity cannot be used. It overcomes these limitations by using Monte Carlo 

simulations of the probability distribution of the state. EnKF is widely used in high 

order and nonlinear models such as hydrological models and weather forecasting 

models, when large numbers of observations are available [54]. In this study, we used 

the Ensemble Kalman Filter as the data assimilation method because of the non-

linearity in the EFDC numerical model. Multiple studies have also used this method in 

the past to update hydrologic and hydrodynamic models (e.g., [55-63]).  

Data assimilation systems incorporate the model prediction and observations in the 

presence of random, zero-mean error. However, they can be affected by biases from 

different sources [64]. The bias generally occurs due to systematic errors rather than 

random errors. It may be caused by inaccurate data, by inaccuracies in the observation 

operators that are used to express the relationship between observations and model 

states, by the assimilation methodology, and by incorrect physical parameterizations or 

boundary conditions [64, 65]. Thus, the bias existing in the datasets and models should 

be removed before starting data assimilation algorithm. However, identifying sources 

of biases is not a trivial task, and is a subject of active research in the data assimilation 

field [64].  
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Figure 2.4: Schematic diagram of the sequential data assimilation system 

The ensemble Kalman filter algorithm was used in Step 7 of the proposed methodology 

(Figure 2. 2) to assimilate adjusted remotely sensed skin temperature observations into 

the hydrodynamic model. In the ensemble Kalman Filter, the hydrodynamic numerical 

model is represented using Equation 2.10: 

X𝑘 = 𝐹(X𝑘−1, u𝑘−1) + w𝑘              (2. 10) 

And measurements are represented using Equation 2.11: 

Y𝑘 = H(X𝑘) + v𝑘                (2. 11) 

where X denotes the vector of state variables, Y denotes the vector of measurements, 

uk is the input vector, wk and vk are stationary zero-mean white noises with covariance 

matrices of Qk and Rk for process and observations respectively, F represents the 

nonlinear model, H is the linear transformation which relates the state variables to 

observations, and the subscript “k” denotes the time step. If an ensemble of n predicted 

state variables is available, Xf
 can be written as 

X𝑘
𝑓
= (X𝑘

𝑓1 , … , X𝑘
𝑓𝑛)                (2. 12) 

where superscript “fi” represent the i-th forecast ensemble member. The closest station 

reporting solar radiation is 63 miles northwest from ECW which increases the 

uncertainty in data. Hence, the solar radiation and water initial temperature were 

considered as the main sources of error in the EFDC model, and were used to generate 

the ensemble. The ensemble of initial temperature and solar radiation were created by 

perturbing these variables. The average of ensemble is defined by 
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X̅𝑘
𝑓
=

1

𝑛
∑ X𝑘

𝑓𝑖𝑛
𝑖=1                                                  (2. 13) 

Since true states are not known, we estimate them using the average of realizations in 

the ensemble. Then the error matrix can be estimated by 

P𝑘
𝑓
=

1

𝑛−1
〈(X𝑘

𝑓
− X̅𝑘)(X𝑘

𝑓
− X̅𝑘)

𝑇
〉              (2. 14) 

The error matrix is then used to calculate the Kalman gain matrix by 

K𝑘 = P𝑘
𝑓
H𝑘
𝑇(H𝑘P𝑘

𝑓
H𝑘
𝑇 + R𝑘)

−1
                   (2. 15) 

The updated state vector (Xa) is taken to be a linear combination of the forecast and the 

observations. The observations should be treated as random variables to get consistent 

error propagation in the ensemble Kalman filter [66]. Hence, the actual measurements 

were used as reference and random noise with zero mean and covariance R was added 

to measurements. The updating equation is given by: 

X𝑘
𝑎 = X𝑘

𝑓
+ K𝑘(Y𝑘 − H𝑘X𝑘

𝑓
)                               (2. 16) 

Even though it is not needed for the updating step, it is straightforward to calculate the 

error covariance of the updated field by 

 P𝑘
𝑎 = (I − K𝑘H𝑘)P𝑘

𝑓
                                           (2. 17) 

2.3.7. Undersampling 

The accuracy of ensemble Kalman filter is highly dependent on the ensemble size. 

However, due to computational costs especially in complex models, it is not optimal to 

generate large ensembles. On the other hand, if the number of ensemble members is 

relatively small, the system may be undersampled and the ensemble may not accurately 

estimate the statistics of the system. Undersampling causes three main problems such 

as inbreeding, filter divergence and spurious correlations [67]. Inbreeding happens 

when the error covariance is underestimated due to small ensemble size. Inbreeding is 

a possible reason of filter divergence and development of spurious correlations [68-

69]. Filter divergence appears when state variables are not able to be accurately updated 

by the observations. If the covariance is underestimated then more weighting in the 

Kalman gain is given to the observations and less to the model predictions. Conversely, 
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if the covariance is overestimated, there is a large uncertainty in the model prediction, 

and so less weighting is given to model prediction in Kalman gain and more weighting 

is given to the observations [67]. Spurious correlations can occur when all the 

observations seem to effect each of the state variables [70], even when the state 

variables are physically far from the observations. As a consequence, the state variables 

may get updated by the observations that have no underlying physical relationship 

between them [67]. The most common methods for dealing with these problems are 

covariance inflation and covariance localization [69].  

2.3.7.1 Covariance inflation 

The purpose of inflation is to increase the underestimated covariance matrix. Equation 

2.18 is used to inflate the deviation of the forecast error with respect to their mean [71]: 

X𝑘
𝑓
← 𝑟(X𝑘

𝑓
− X̅𝑘

𝑓
) + X̅𝑘

𝑓
                               (2. 18) 

where ← denotes the replacement of previous value and r is the inflation factor which 

is slightly greater than 1. The optimal inflation factor is related to ensemble size and 

may vary between 1.01 and 1.07 [69], and [72]. Several methods have been proposed 

to estimate the inflated forecast and observational error covariance matrices [73-74]. 

The adjusted forms of forecast and observational error covariance matrices are λkPk and 

μkRk respectively. Wu et al. 2013 suggested to use the second-order least squares (SLS; 

Wang and Leblanc, 2008) to estimate λk and μk [75].  

𝜆𝑘 =
Tr(d𝑘

𝑇H𝑘P𝑘H𝑘
𝑇d𝑘)Tr(R𝑘

2)−Tr(d𝑘
𝑇R𝑘d𝑘)Tr(H𝑘P𝑘H𝑘

𝑇R𝑘)

Tr(H𝑘P𝑘H𝑘
𝑇H𝑘P𝑘H𝑘

𝑇)Tr(R𝑘
2)−Tr(H𝑘P𝑘H𝑘

𝑇R𝑘)2
              (2. 19) 

𝜇𝑘 =
Tr(H𝑘P𝑘H𝑘

𝑇H𝑘P𝑘H𝑘
𝑇)(d𝑘

𝑇R𝑘d𝑘)−Tr(d𝑘
𝑇H𝑘P𝑘H𝑘

𝑇d𝑘)Tr(H𝑘P𝑘H𝑘
𝑇R𝑘)

Tr(H𝑘P𝑘H𝑘
𝑇H𝑘P𝑘H𝑘

𝑇)Tr(R𝑘
2)−Tr(H𝑘P𝑘H𝑘

𝑇R𝑘)2
                     (2. 20) 

where d𝑘 ≡ Y𝑘 − HX̅𝑘
𝑓
 

Then, the updated states can be computed as 

X𝑘
𝑎 = X𝑘

𝑓
+ 𝜆𝑘P𝑘

𝑓
H𝑘
𝑇(H𝑘𝜆𝑘P𝑘

𝑓
H𝑘
𝑇 + 𝜇𝑘R𝑘)

−1
(Y𝑘 − H𝑘X𝑘

𝑓
)           (2. 21) 

2.3.7.2 Covariance localization 

The process of trimming off the error covariance at a specified distance is called 

covariance localization [67-70]. It is achieved by applying the correlation function with 
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local support, r, to the covariance matrix by using Schur product. The correlation 

function is defined as [76]: 

𝜌 =

{
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            (2. 22) 

where z is the Euclidean distance between grid points in the model and c is a length 

scale that the correlation reduces to zero at a distance of 2c. The length scale can be 

estimated as 𝑐 = √
10

3
𝑙, where l is any cut of length. 

After localization, the Kalman gain can be written as: 

K𝑘 = (𝜌ₒP𝑘
𝑓
)H𝑘

𝑇[H𝑘(𝜌ₒP𝑘
𝑓
)H𝑘

𝑇 + R𝑘]
−1

             (2. 23) 

Which is approximately 

K𝑘 = [𝜌ₒ(P𝑘
𝑓
H𝑘
𝑇)][𝜌ₒ(H𝑘P𝑘

𝑓
H𝑘
𝑇) + R𝑘]

−1
             (2. 24) 

Finally, the updated state variables can be estimated by 

X𝑘
𝑎 = X𝑘

𝑓
+ [𝜌ₒ(𝜆𝑘P𝑘

𝑓
H𝑘
𝑇)][𝜌ₒ(H𝑘𝜆𝑘P𝑘

𝑓
H𝑘
𝑇) + 𝜇𝑘R𝑘]

−1
(Y𝑘 −H𝑘X𝑘

𝑓
)         (2. 25) 

 Results and discussion 

2.4.1. Hydrodynamic Model Calibration  

In this study, before the proposed adjustment-assimilation approach was used for the 

data available from August 1st to October 10th, 2008 time period, the EFDC model was 

calibrated using the in-situ data available in the period January 1st, 2008 to July 31st, 

2008. We used calibrated model of Babbar-Sebens et al. (2013) that has root mean 

square errors of 0.029 meter and 1.3 o C in pool elevation and temperature, respectively. 

It took approximately 20 hours on Intel(R) Xeon(R) CPU E3-1240 V2 @ 3.40 GHz 

processors to run the numerical model with 2 second time steps for the entire year and 

execute the assimilation steps for the days when remote sensing observations were 

available. 
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2.4.2. Lake superficial layer temperature and air temperature relationship 

Note that using the Air2Water model with even four parameters can be challenging 

when the availability of remote sensing data is highly limited. For example, on August 

7 when only one remote sensing data was available, Air2Water model was calibrated 

using one observation and led to overfitting. However, as new observations become 

available, the robustness of Air2Water model calibration can be expected to increase 

because the Air2Water model is then calibrated using the new observations as well as 

the previous ones (Figure 2. 2, step 1). As also discussed earlier, only one air 

temperature observation was available for each time when the four remote sensing 

datasets were collected. Hence, for calibration purposes, an average of all the skin 

temperature observations at various X-Y locations of the reservoir and collected at the 

same time was calculated to represent Tskin in the Air2Water model for that time. Table 

2.3 shows the calibrated parameters p3 to p6 for each time that Air2Water model was 

updated. The calibrated model was then used to predict water skin temperature from 

air temperature, including on the days when in-situ data were available. The blue curve 

in Figure 2.5 (a-d) shows the predicted daily water skin temperature estimated by the 

four Air2Water models calibrated at different times. The predicted skin temperature 

(Tskin) was then compared with the average (shown as purple triangles in Figure 2.5) of 

all in-situ observations in EFDC model’s surface layer (i.e. average of Tdepth1,1 to 

Tdepth1,m in Figure 2.3). Finally it was concluded that skin temperatures of the lake 

predicted by the four Air2Water models had values 3.1 ᵒC, 3.7 ᵒC, 3.3 ᵒC and 3.3 ᵒC 

cooler than the average bulk temperature of top layer at the same X-Y location. So, the 

biases in remotely sensed observations that were estimated at the different data 

assimilation times using the Air2Water model and the available in-situ observations 

were removed, before the actual data assimilation steps were conducted. The remotely 

sensed skin temperature observations were adjusted in the following manner (Figure 2. 

2, step 4): 

𝑇𝑎𝑑𝑗𝑡 = 𝑇𝑠𝑘𝑖𝑛𝑡 + 𝐵𝑖𝑎𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑡 = 𝑇𝑅𝑆𝑡 + 𝐵𝑖𝑎𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑡          (2. 26) 

where Tadj is adjusted skin temperatures, TRS is remotely sensed skin temperatures (or, 

Tskin in Figure 2.3), and t is time. The green curve in Figure 2.5 illustrates the adjusted 
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skin temperatures (Tadj) at each time when remote sensing data becomes available and 

the Air2Water model is re-calibrated.  

 

Figure 2.5: Comparison of predicted water skin temperature by Air2Water model 

calibrated at four different times using all available remote sensing (RS) measurements 

at that time (solid blue line), air temperature (dashed orange line), RS measurements (red 

circles), average bulk temperature of top layer (violet triangles), and adjusted skin 

temperatures (solid green line). 

 

Table 2.3: Estimated Air2Water model parameters 
 

7-Aug 23-Aug 24-Sep 10-Oct 

p3 [ᵒC d
-1] 2.07×10-2 1.77×10-2 2.09×10-2 1.99×10-2 

p4 [d
-1] 5.12×10-3 4.88×10-3 5.51×10-3 5.62×10-3 

p5 [d
-1] -2.31×10-3 -2.31×10-3 -2.38×10-3 -2.43×10-3 

p6 [ᵒC] 4.5 4.3 4.4 4.5 

 

2.4.3. Remote sensing data assimilation 

The period August 1st to October 10th, 2008 was selected to investigate how model 

predictions are updated via remotely sensed data assimilation and how the model 

performs with respect to in-situ observations. The remote sensing data are available at 
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August 7th, August 23rd, September 24th, and October 10th, while in-situ observation 

were provided at different days (August 14th, August 20th, August 27th, September 3rd, 

September 16th, and September 30th). Therefore, errors were reported for the two types 

of observations on different days. 

The calibrated EFDC model was set up to restart at August 1st. Then the model was 

run from day 213th (August 1st) to the first observation which is at day 219th at 16:00 

(Figure 2. 2, step 5). The Air2Water model was also calibrated using the remote sensing 

observation at August 7th, and the bias from observation was removed by comparing 

the Air2Water model results with in-situ observations at July 16th and July 30th (as 

shown in Figure 2.5a). On comparing the adjusted observations and model outputs at 

this time, a spatial bias in errors was observed over the reservoir (Figure 2.6). This bias 

was, therefore, removed before implementing ensemble Kalman filter because the filter 

assumes a zero-mean white noise error [63]. Figure 2.6 illustrates the difference 

between model predictions and adjusted skin temperatures along the reservoir. Figure 

2.6.a displays the bias in the model outputs for August 7th. It indicates that the error is 

increasing from north to south with a sudden decrease near the bridge. The bias was 

removed by a linear trend (Eq. 2.27) as shown in Figure 2.6.a.  

𝐵𝑖𝑎𝑠 = −0.054(𝑗 − 1)                   1 < 𝑗 < 75                 (2. 27.a) 

𝐵𝑖𝑎𝑠 = −0.118(𝑗 − 76)                   76 < 𝑗 < 120              (2. 28.b) 

where j (y direction in Figure 2.6) is grids coordinate. The average of error along the i-

coordinate (x direction in Figure 2.6) between the model outputs and adjusted 

temperatures for the observations at August 23rd and September 24th was constant along 

the reservoir with a sudden change near the bridge. The errors were 3.3 ᵒC and 1.2 ᵒC 

at southern basin and 4.2 ᵒC and 2.1 ᵒC at northern basin for second and third 

observations respectively (Figure 2.6.b and 6.c). For the last observation at October 

10th, the average error was 1.2 ᵒC in southern and northern basins. These spatial biases 

were removed by subtracting the absolute errors from the model outputs (Figure 2. 2, 

step 6). The ensemble Kalman filter data assimilation was then applied using the 

unbiased EFDC outputs and adjusted remotely sensed skin temperatures (Figure 2. 2, 

step 7).  
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Figure 2.6: Left panel: i and j coordinates of reservoir grid. Right panel: Difference 

between bulk temperatures derived from EFDC and adjusted temperatures from satellite 

retrievals at 300 points on the lake at four different times, a) August 7, b) August 23, c) 

September 24, and d) October 10. Red lines show the average of error that reduced from 

the model outputs. 

Figure 2.7.a, 8.a, 9.a, and 10.a compare the remotely sensed data before and after 

removing the bias from the observations versus model outputs for August 7th, August 

23rd, September 24th, and October 10th respectively. The root mean square errors were 

improved by 3.13 ᵒC for August 7th, 3.2 ᵒC for August 23rd, 3 ᵒC for September 24th, 

and 2.8 ᵒC for October 10th. Figure 2.7.b, 8.b, 9.b, and 10.b present the model outputs 

before and after removing the spatially bias from the model outputs against unbiased 

remotely sensed observations. The root mean square errors for the days that remote 

sensing data are available were reduced by 1.86 ᵒC, 3.08 ᵒC, 1.12 ᵒC, and 0.48 ᵒC for 

Figure 2.7.a, 8.a, 9.a, and 10.a respectively. Figure 2.7.c, 8.c, 9.c, and 10.c illustrate the 

unbiased model outputs before and after remotely sensed data assimilation for the 

testing points comparing with unbiased remotely sensed observations. After ensemble 

 

Grid coordinate - i 

ECR Main Zones
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Kalman filter data assimilation, the RMSE was reduced for the first to the fourth 

observations by 0.21 ᵒC, 0.4 ᵒC, 0.66 ᵒC, and 0.35 ᵒC respectively. Table 2.4 presents 

the summary of root mean square errors (ºC) for the remote sensing data assimilation 

frame work. The error values were reported for the calibrated model without removing 

biases and before data assimilation, after skin temperature adjustment, after removing 

the spatial bias from model outputs and after implementing the remotely sensed data 

assimilation for training and testing locations. Results show that remotely sensed data 

assimilation can reduce the error of training locations as well as testing locations. 

 

Figure 2.7: Model outputs vs. remote sensing observations for training locations (a) before 

(red crosses), and after (green diamonds) removing bias from the observations, (b) before 

(green diamonds), and after (orange circles) removing spatially bias from the model 

outputs, and (c) before (orange circles), and after (blue triangles) remote sensing data 

assimilation for August 7, 2008. 

 

Figure 2.8: Model outputs vs. remote sensing observations for training locations (a) before 

(red crosses), and after (green diamonds) removing bias from the observations, (b) before 

(green diamonds), and after (orange circles) removing spatially bias from the model 

outputs, and (c) before (orange circles), and after (blue triangles) remote sensing data 

assimilation for August 23, 2008. 
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Figure 2.9: Model outputs vs. remote sensing observations for training locations (a) before 

(red crosses), and after (green diamonds) removing bias from the observations, (b) before 

(green diamonds), and after (orange circles) removing spatially bias from the model 

outputs, and (c) before (orange circles), and after (blue triangles) remote sensing data 

assimilation for September 24, 2008. 

 

Figure 2.10: Model outputs vs. remote sensing observations for training locations (a) 

before (red crosses), and after (green diamonds) removing bias from the observations, (b) 

before (green diamonds), and after (orange circles) removing spatially bias from the 

model outputs, and (c) before (orange circles), and after (blue triangles) remote sensing 

data assimilation for October 10, 2008. 

 

Table 2.4: Summary of root mean square errors (ºC) of EFDC model with respect to 

remote sensing derived temperature observations 

Date Original 

Calibrated 

Modela 

Original 

Calibrated 

Modelb 

Adjusted 

Calibrated 

Modelc  

RSDA_TAd RSDA_TAe 

7 – Aug 5.73 2.6 0.74 0.43 0.61 

23 – Aug 7.2 4 0.92 0.48 0.65 

24 – Sep 5.32 2.31 1.19 0.51 0.70 
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10 - Oct 4.23 1.43 0.95 0.58 0.68 

Mean error 5.62 2.59 0.95 0.51 0.66 

Original Calibrated Modela: Raw remote sensing derived temperature observations 

vs. original calibrated model.  

Original Calibrated Modelb: Adjusted remote sensing derived temperature 

observations vs. original calibrated model 

Adjusted Calibrated Modelc: Adjusted remote sensing derived temperature 

observations vs. adjusted calibrated model obtained by removing spatial bias 

from original calibrated model 

RSDA_TAd: Training error (using 150 training X-Y locations) of updated model after 

the proposed temperature adjustment and remote sensing data assimilation steps (Steps 

1-7 in Figure 2. 2). 

RSDA_TAe: Testing error (using 150 testing X-Y locations) of updated model after 

the proposed temperature adjustment and remote sensing data assimilation steps (Steps 

1-7 in Figure 2. 2). 

 

2.4.4. Effect of remotely sensed data assimilation on model accuracy with 

respect to in-situ temperature observations 

After assimilating adjusted remotely sensed skin temperatures into EFDC model, the 

updated model was run until the times when new in-situ observations became available 

(Figure 2. 2, step 8 and 9). All new incoming in-situ data that were collected after the 

most recently assimilated remote sensing measurements, and before the next set of 

available remote sensing observations, were used to validate the newly updated model 

(Steps 8, 9, and 10 in Figure 2. 2). This process was continued until the last set of 

observations that were available (Figure 2.4). The errors were calculated between in-

situ measurements and model outputs for each of the three scenarios where (a) data 

assimilation was not conducted, (b) data assimilation was conducted but without any 

temperature adjustment, and (c) data assimilation was conducted with adjusted 

temperatures. The errors were calculated for the time period covering the data 

assimilation window (Figure 2. 2, step 10). Figure 2.11 compares the in-situ 

observations with the temperature vertical profiles predicted by models before and after 

data assimilation with adjusted satellite observations. The results in this figure illustrate 

temperature profiles for four different regions (Figure 2.1), and for one of the times 
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when in-situ data was collected after each remote sensing observation. The figure 

shows that data assimilation with adjusted satellite temperatures also improved the 

modeled water column temperatures, which the previous study by Babbar-Sebens et al. 

(2013) was not able to accomplish.  

Table 2.5 lists the statistical summary of root mean square errors in water column 

temperatures at different X-Y locations and for the days that in-situ observations are 

available. The errors were calculated for model predictions before data assimilation 

(Before RSDA), after data assimilation with remotely sensed satellite observations that 

were not adjusted using Air2Water model (After RSDA), and after data assimilation 

with satellite observations that were adjusted using Air2Water model (RSDA_TA). 

The overall average of errors across time and space (last row in Table 2.5) show that 

data assimilation with unadjusted satellite-derived temperature data increased the 

overall error slightly from 1.95 ᵒC to 1.98 ᵒC. This is similar to the observation made 

by Babbar-Sebens et al. (2013) because even though the remotely sensed data 

assimilation significantly reduced the error of surface temperature in comparison to 

remote sensing observations (e.g., Table 2.4), the water column error increased from 

1.95 °C to 1.98 °C (i.e. 1.5% increase) in contrast. As discussed earlier, the primary 

reason for this discrepancy in errors is the difference in depths represented by remote 

sensing and in-situ observations. However, after implementing the data assimilation 

with adjusted remotely sensed satellite observations (RSDA_TA), the water column 

temperature error had an overall decrease to 1.42 °C (i.e. 27% improvement).  

The errors decreased for all the stations, except for stations measured on August 

20th. Results in Figure 2.11 show that the original calibrated hydrodynamic model 

tended to predict water temperature warmer than the in-situ observations. The proposed 

coupled approach on temperature adjustment and data assimilation approach was able 

to generate models with updated initial conditions whose temperature values were 

lower than the original calibrated model. Hence, the updated initial conditions led to 

forecasted temperatures that were also cooler than what the original calibrated model 

would have forecasted. While this decreased the forecast error with respect to in-situ 

observations on most of the days, the error increased on August 20th. This could be 

attributed to multiple reasons, including the possibility that the model inputs for this 
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day were inaccurate. Moreover, the actual root mean square errors (Columns 4-6 in 

Table 2.5) are close in scale to the estimated √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (or, Estimated Error in 

Column 7 of Table 2.5) for all the stations. This indicates that the small ensemble size 

did not significantly deteriorate the performance of the data assimilation method. 

The shaded rows in Table 2.5 show the stratified water column and white rows 

show the well-mixed layers. There is no observable consistency between the model 

error and the reservoir stratification. Additionally, on comparing these results with 

those reported by Babbar-Sebens et al. (2013), the reliability of proposed data 

assimilation framework is illustrated. The data assimilation framework used by 

Babbar-Sebens et al. (2013) showed that even though remotely sensed data assimilation 

improved the model prediction with respect to remote sensing data by 26%, the updated 

model’s performance with respect to the in-situ observations in the water column 

worsened by 50 %. However, in present study, the model’s performance was improved 

with respect to both remote sensing and in-situ observations by 91% (i.e., RMSE of 

5.62 °C to 0.51 °C in Table 2.4) and 27% (i.e., 1.95 °C to 1.41 °C in Table 2.5), 

respectively.  
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Figure 2.11: Temperature vertical profiles at (a) August 14, (b) September 3, (c) 

September 90, and (d) October 16 in 4 different regions. Overall error metrics for other 

days and regions are presented in Table 2.5. The blue densely-dashed horizontal lines are 

the water surface elevation, the solid brown horizontal lines are the bottom elevation, the 

grey curves with circle markers are in-situ measurements, the red dashed curves with no 

markers are modeled before data assimilation, and green solid curves with no markers 

are modeled after data assimilation with adjusted remotely sensed observations. 

 

 

 

a) 

b) 

c) 

d) 



34 
 

 

Table 2.5: Statistical summary of remote sensing data assimilation (RSDA) before and 

after temperature adjustment (RSDA_TA) versus estimated square root of variance of 

water column temperatures averaged across depth. Shaded rows represent the stratified 

water column and white rows show the well-mixed water column. All errors are 

calculated with respect to in-situ observations in the vertical profile for a specific (I, J) 

location (see left panel of Figure 2.6). 

 

Region ID 

(Figure 

2.1) 

Grid 

Coordinates 

(I, J) 

Date 

RMSE (ᵒC) 

Actual 

Error 

Before 

RSDA 

Actual 

Error 

After 

RSDA 

Actual 

Error 

After 

RSDA_TA 

Estimated 

Error 

1 (41,12) 14-Aug 2.0 1.6 1.0 1.0 

2 (36,67)  14-Aug 1.5 2.2 1.0 1.1 

3 (36,98)  14-Aug 2.2 1.1 1.4 1.1 

4 (32,118) 14-Aug 1.9 2.0 1.4 1.1 

1 (41,13) 20-Aug 1.4 3.3 1.6 1.0 

2 (37,65) 20-Aug  0.8 3.2 1.3 1.1 

3 (36,97) 20-Aug  1.5 3.5 1.9 1.0 

4 (34,121) 20-Aug  1.3 2.6 1.5 1.2 

1 (43,14) 27-Aug 1.6 3.4 1.5 1.0 

2 (40,65) 27-Aug  2.3 2.2 1.7 1.1 

3 (38,97) 27-Aug  2.7 1.1 1.6 1.0 

4 (34,121)  27-Aug 4.7 2.2 2.7 1.2 

1 (40,12) 3-Sep 0.4 3.7 0.3 1.0 

2 (42,65) 3-Sep  1.9 2.1 1.7 1.1 

3 (35,105) 3-Sep  2.1 2.5 1.9 1.2 

4 (34,120) 3-Sep  2.8 2.6 2.5 1.1 
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1 (40,11) 16-Sep 1.8 2.1 1.2 1.0 

2 (41,67) 16-Sep  1.8 0.7 0.8 1.1 

3 (37,98) 16-Sep  1.6 0.3 1.4 1.1 

4 (33,121) 16-Sep  2.7 1.7 2.2 1.1 

1 (43,12) 30-Sep 1.7 1.9 0.7 1.0 

2 (39,65) 30-Sep  1.8 1.0 1.0 1.1 

3 (38,99) 30-Sep  2.5 0.7 1.8 1.1 

4 (34,121) 30-Sep  3.7 2.2 2.2 1.2 

1 (41,12) 16-Oct 1.9 1.5 1.3 1.0 

2 (37,65) 16-Oct 1.8 1.8 1.3 1.2 

3 (38,97) 16-Oct 1.2 1.0 0.9 1.1 

4 (34,121) 16-Oct 0.4 0.8 0.3 0.8 

Composite statistics (average of 

errors across time and space) 
1.95  1.98  1.42  1.1 

 

 Conclusion 

The limitations in using remotely sensed data assimilation in a numerical 

hydrodynamic model of inland reservoirs was investigated in this study. A data 

assimilation frame work was proposed to investigate how use of remotely-sensed 

inland lake temperatures in data assimilation will affect model accuracy with respect 

to in-situ temperature observations using ensemble Kalman filter. The results of the 

study highlighted the following findings: 

a) The hydrodynamic model provides the water column temperature of the lake, 

while the remote sensing technology can only represent the skin temperature of 

water column. Hence, to make a consistent comparison between model outputs 

and remotely sensed data, we needed to find the relationship between water skin 

and bulk temperature of the reservoir. Air2Water model was implemented to 
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predict the water skin temperature of the reservoir. The predicted skin 

temperatures were calibrated using remotely sensed observations and then 

compared with in-situ measurements as new observations became available. 

Finally, the bias from remotely sensed temperatures was removed using the 

achieved relationship. 

b) Comparing model outputs with adjusted remote sensing skin temperature 

showed the spatial biased over the reservoir for the days when remote sensing 

data were available. Due to assumption of zero-mean error in implementing 

ensemble Kalman filter, the spatial biases were removed by subtracting the 

absolute errors from the model outputs. 

c) Among 300 sampling locations, 150 locations were used as training locations 

for estimating model errors during the data assimilation process and the other 

150 locations were used as testing locations to estimate the model errors after 

assimilation was completed. After implementing ensemble Kalman filter, the 

model prediction was improved for the training locations as well as testing 

locations for all the observations.  

d) The model predictions after remotely sensed data assimilation were compared 

with in-situ observation to investigate the model accuracy with respect to in-

situ temperature observations. After data assimilation without temperature 

adjustment, the overall error worsened by 1.5%. However, after implementing 

data assimilation with temperature adjustment, the error was reduced by 27%. 
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CHAPTER 3. Global sensitivity analysis of water age and water temperature of 

shallow rivers 
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 Abstract 

Many watersheds in the Pacific North West of North America are 

anthropogenically manipulated, with system-wide impacts. Identification of abiotic 

parameters that can be altered in managed rivers would inform associated 

management actions. Water age and water temperature are among the main factors 

that could help decision makers identify the required management actions to reduce 

fish diseases and other ecological impacts. We conducted a global sensitivity 

analysis of water temperature and water age of shallow rivers to a comprehensive 

set of hydraulics and meteorological parameters. We applied an analysis technique, 

which combined Latin-hypercube and one-at-a-time sampling method, to the 

hydrodynamic numerical model of the shallow Lower Klamath River in California, 

USA. This effective method requires a relatively small number of model runs and 

is able to globally assess the sensitivity of the model to all of the parameters. The 

response of water temperature and water age to the bathymetry data was also 

investigated using the Monte Carlo sampling method. We found that flow rate and 

bottom roughness are the most effective parameters in calculating the water age. 

Water temperature is more sensitive to inflow temperature, air temperature, solar 

radiation, wind speed, flow rate, and wet bulb temperature respectively. Although 

other parameters such as heat exchange parameters are less effective on river water 

temperature, they are important in model calibration.  

Keywords 

Latin-Hypercube; One at a time; Sensitivity analysis; Water temperature; Water age 

 Introduction 

In the Pacific North West of North America, many major rivers are managed. In 

the Klamath River, which flows through Oregon and California to the Pacific Ocean, 

discharge is regulated by a series of reservoirs and dams. Changes to the natural 

hydrograph post-manipulation are associated with economic and ecological impacts 

including the health of native fishes. 

Ceratonova shasta (C. shasta), a myxosporean parasite, is known as a significant 

source of mortality for salmonid fishes in the Klamath River. The parasite is fully 
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aquatic, with immotile, waterborne infectious stages that cycle through sessile 

invertebrate polychaete worms as well as migrating salmonids. The annual prevalence 

of C. shasta-infection in out-migrating juvenile Chinook salmon has been estimated at 

up to 84 percent in some years (True et al. 2016). Infection can cause significant 

mortality in juvenile salmonids when river temperatures reach 15-18° C in late spring 

and following low magnitude peak winter and spring flows (Bartholomew and Foott 

2010; Hallett et al. 2012; Jordan 2012). Reduced risk of C. shasta infection in 

salmonids has been observed following high magnitude winter and spring discharge 

(Hallett et al. 2012; True et al. 2011). Low river water temperature is one mechanism 

that may explain the reduced risk of infection under these conditions because cooler 

water temperatures slow parasite proliferation in both hosts. 

Releasing cooler water from the lowermost dam is generally considered as one of 

the main management actions to reduce downstream river water temperature. The 

threshold for parasite density that would causes high mortality of salmonids especially 

Chinook salmon is ~10 spores per liter (Hallett et al. 2012). Hence, releasing dam water 

also reduces the parasite density. Travel time is another important factor that has the 

potential to help decision makers identify the management actions to reduce the disease 

risk. Travel time will inform epidemiological models and monitoring efforts, 

addressing specific questions including, (i) how long parasites may be expected to stay 

in the system after dam release, (ii) when and how much water would need to be 

released from dam to achieve a certain decrease in water temperature and decrease in 

parasite density, (iii) when is the best time to collect water samples to document 

temperature and parasite density before, during and after a water release event. 

In previous studies, atmospheric conditions have been reported to be significant 

drivers of river temperature (Edinger et al. 1974; Ward 1985; Stefan and Preud'homme 

1993). Other researchers have also recognized flow discharge into the river as a 

significant driver of the river water temperature (Morse 1972). The water temperature 

is expected to be lower for higher flow rates (Grant 1977; Hockey et al. 1982). There 

are several studies that have evaluated the sensitivity of river temperature to hydraulic 

and meteorological conditions (Wu 1992; Sinokrot and Stefan 1994; Gu and Li 2002). 

Sinokrot and Stefan (1994) introduced the air temperature and shortwave solar 
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radiation as the most important parameters that affect the water temperature. Gu and Li 

(2002) found that sensitivity of river temperature to flowrate and inflow temperature to 

be as important as atmospheric conditions. They reported that air temperature, flowrate, 

relative humidity, and inflow temperature are the most sensitive parameters in 

calculating the maximum temperature, and slope and bottom roughness have no effect 

on the daily mean temperature and small effect on maximum water temperature. They 

considered the river slope to be a constant value for the entire river. However, in large 

scale numerical models, the river is divided into several meshes, and, hence, the bottom 

elevation and slope of each cell should be specified separately. Estimating spatially 

varying slopes requires an accurate bathymetry dataset for the entire length of the river. 

Light Detection And Ranging (LIDAR) is one approach to get high resolution 

topographic data to represent the land surface. However, only a specific type of LIDAR 

data, called green LIDAR, can penetrate the water and collect the bathymetry data. In 

absence of green LIDAR, bathymetry could be collected by in-situ data collection 

techniques. However, in-situ bathymetry data has lower resolution comparing to 

LIDAR. Another limitation is that when acoustical sounding is used to determine the 

water depth in shallow rivers with high vegetation, the acoustic signal reaches the 

vegetation instead of riverbed (Rogala 1999). Hence, in-situ bathymetry data can have 

uncertainty in its values, thereby requiring its effects to be considered in hydrodynamic 

models.  

The time elapsed since a water particle moving from its boundary to a specific 

location is called water age (Delhez et al. 1999). Water age represents the travel time 

when the initial water age is set to zero. Shen and Haas (2004) calculated the mean age 

and residence time of a released substance from the tributaries to the tidal York River, 

and found that water age mostly depends on the river discharge. Gong et al. (2009) 

developed a three-dimensional model to evaluate the effect of wind on travel time by 

using the concept of water age in the tidal Rappahannock River. They found that water 

age distribution is highly affected by the local wind in estuaries, and depends 

significantly on the interaction of wind, buoyancy forcings, and on the pre-status of the 

circulation (Gong et al. 2009). However, sensitivity of water age to these parameters in 

shallow rivers is not clear. Additionally, the sensitivity of water age to the bathymetry 
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data has not been evaluated in previous studies. Hence, there is still the need to 

investigate the effect of a comprehensive set of parameters on the water age in shallow 

rivers. 

Even though there are several studies that present the response of water temperature 

and water age to meteorological and hydraulic conditions, more research is still needed 

to completely investigate the effect of a comprehensive set of model inputs and 

parameters. Since, model calibration is usually time consuming and requires a large 

amount of effort, knowledge of sensitive parameters would help model developers. The 

sensitivity of a model to calibration parameters such as surface (water/air and 

bed/water) heat exchange variables has not been entirely explored. Furthermore, due to 

a relatively large uncertainty in bathymetry data, the sensitivity of models to this 

parameter needs to be investigated. In this study, we built a three-dimensional 

hydrodynamic model to model the Lower Klamath River. We used a global sensitivity 

analysis tool that combines Latin-hypercube and one-factor-at-a-time sampling to 

investigate the most sensitive model inputs and parameters in calculating the water age 

and water temperature of shallow rivers. Monte Carlo sampling method was also 

implemented to evaluate the sensitivity of model to bathymetry data. 

 Study site  

The Klamath River basin is located in southern Oregon and northern California. It 

is divided into upper basin and lower basin at Iron Gate Dam (IGD) at river kilometer 

304. The modeled reach for this study begins at IGD and continues 100 km downstream 

to the Seiad Valley (river kilometers 304 to 204). This reach incorporates a high 

infection zone likely to be influenced by a prescribed release of dam water.  The lower 

Klamath basin is generally covered by forest except the drainages of Shasta and Scott 

River which is used mostly for agriculture and rangeland. Unlike the upper basin, the 

lower basin is steep and rocky with a complex terrain. Two main tributaries join the 

main-stem:  the Shasta and Scott Rivers, draining from the Shasta and Scott basins 

respectively. However, there are smaller tributaries from the lower Klamath basin that 

drain into the river, including Beaver Creek, Horse Creek, and Grider Creek (Figure 

3.1). 
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Figure 3.1: Map of the Klamath River showing the study area from Iron Gate Dam to 

Seiad Valley. Red dots show the USGS discharge stations at IGD, Shasta, Scott, and Seiad 

Valley stations. Green dots show the stations at Tree of Heaven (TH), Beaver Creek (BC), 

and Community Center (CC) where bathymetry data have been measured. Yellow dots 

show the weather stations at Collins Baldy (CLB) and Slater Butte (SRB). Blue arrows 

also show the major tributaries joining the Klamath River. 

 

 Methodology 

3.4.1. Data collection 

Data required for building this model included flow measurements obtained from 

the United States Geological Survey (USGS) gauge Stations #11516530 at IGD, 

#11517500 at Shasta River, #11519500 at Scott River, and #11520500 at Seiad Valley; 

atmospheric data including the precipitation, air temperature, relative humidity, wind 

speed, and wind direction collected at Collins Baldy (CLB) and Slater Butte (SRB) 

stations. The water temperature measurements were collected from Karuk Tribe Water 

Resources measurements at IGD, Seiad Valley, and Shasta River. Bathymetry data 

were obtained from a survey conducted by Department of the Interior, Bureau of 

Reclamation (USBR) with support from the USGS. They used two boats equipped with 

a multibeam Acoustic Doppler current profiler (ADCP) interfaced with Global 

Positioning System (GPS). However, there are 6 areas with total length of 11.5 km that 

boats could not collect the data due to gaps in GPS coverage and data collection issues 

(aeration, shallow depth, etc.). Woolpert, Inc. gathered LIDAR data from the Link Dam 

to Happy Camp with 0.91 m (3 ft) resolution which totally covers the study site. Since 

LIDAR used for collecting these data cannot penetrate the water, collected data 
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represent the water surface elevation instead of the bathymetry. Water depth is also 

gathered from USBR for the entire length of study site. The bathymetry was generated 

by subtracting the water depth from water surface elevation for areas with missing data. 

However, the water elevation and water depth were not been collected on the same 

date, so the generated bathymetry needed to be adjusted by comparison with measured 

data. Accurate bathymetry with error tolerance of approximately ±0.03 m were 

collected using GPS and echo sounder at Tree of Heaven, Beaver Creek, and 

Community Center sites (Wright et al. 2014). Woolpert also collected a set of 

bathymetric cross sections for 4.8 km starting from I-5 to the Shasta River. These two 

sets of data were used for bathymetry adjustment of missing areas. Furthermore, the 

data collected by boats were not dense across the river. The nearest neighbor 

interpolation was used to generate the bathymetry data for missing areas in lateral 

direction.  

Table 3.1: Data used for bathymetry generation and adjustment with their coverage. 

Data Region Process 

LIDAR IGD to Seiad Valley Bathymetry generation 

Bathymetry IGD to Seiad except 6 areas 

(total length of 11.5 km) 

Bathymetry generation 

Water depth IGD to Seiad Valley Bathymetry generation 

Bathymetry Tree of Heaven, Beaver Creek and 

Community Center site 

Bathymetry adjustment 

Cross sections 4.8 km upstream of Shasta river Bathymetry adjustment 

 

3.4.2. Numerical model 

         3.4.2.1. Hydrodynamics 

The Environmental Fluid Dynamic Code (EFDC) was used to create a three-

dimensional hydrodynamic model of the lower Klamath River in this study. This model 

has been applied to several studies to simulate the flow. EFDC contains three functional 

modules including hydrodynamics, water quality, and sediments-contaminants. It 
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supports Cartesian and curvilinear orthogonal horizontal coordinates and stretched or 

sigma vertical coordinates. EFDC solves the following continuity and momentum 

equations (Eqs. 3.1-3.3) given by 

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
+
∂w

∂z
= QH               (3. 1) 

∂t(Hu) + ∂x(Huu) + ∂y(Hvu) + ∂z(wu) − fHv = −H∂x(gξ + p + patm) + (∂xh −

z ∂xH)∂zp + ∂z(H
−1Av ∂zu) + Qu                              (3. 2) 

∂t(Hv) + ∂x(Huv) + ∂y(Hvw) + ∂z(wv) − fHu = −H∂y(gξ + p + patm) + (∂yh −

z ∂yH)∂zp + ∂z(H
−1Av ∂zu) + Qv                (3. 3) 

where H is water depth, u and v are horizontal velocity components in x and y direction 

respectively, w is vertical velocity component in z direction, QH is the volumetric 

source and sink term concerning evaporation and rainfall, f is Coriolis factor, p is the 

water column hydro-static pressure, patm is the kinematic atmospheric pressure, Av is 

vertical turbulent momentum diffusion coefficients, and Qu and Qv are momentum 

source-sink terms. The transport equations for temperature is (Tetra tech 2007) 

∂t(HT) + ∂x(HuT) + ∂y(HvT) + ∂z(wT) = ∂z(H
−1Av ∂zT) + QT           (3. 4) 

where T is temperature, and QT is the source and since term.  

3.4.2.2. Heat exchange 

Surface and sediment heat exchange can be formulated as equations 3.5 and 3.6 

respectively. 

𝐻𝑛 = 𝐻𝑠 + 𝐻𝑎 + 𝐻𝑐 + 𝐻𝑒 − (𝐻𝑠𝑟 + 𝐻𝑎𝑟 + 𝐻𝑏𝑟)                         (3. 5) 

𝐻𝑠𝑤 = −𝐾𝑠𝑤(𝑇𝑤 − 𝑇𝑠)                            (3. 6) 

where Hn is the net rate of heat exchange, Hs is the short-wave solar radiation, Ha is the 

long-wave solar radiation, Hc is the heat conduction, He is evaporative heat loss, Hsr 

the reflected short-wave radiation, Har is the reflected long-wave radiation, Hbr is the 

back radiation from the water surface, Hsw the rate of sediment/water heat exchange, 

Ksw is the coefficient of sediment/water heat exchange, Tw is the water temperature, and 

Ts is the sediment temperature. 

3.4.2.3. Water age 
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Water age can be calculated based on tracer and age concentration (Deleersnijder et al. 

2001): 

𝜕𝑐(𝑡,𝑥⃗)

𝜕𝑡
+ ∇(𝑢𝑐(𝑡, 𝑥⃗)) − 𝐾∇𝑐(𝑡, 𝑥⃗) = 0                          (3. 7) 

𝜕𝛼(𝑡,𝑥⃗)

𝜕𝑡
+ ∇(𝑢𝛼(𝑡, 𝑥⃗)) − 𝐾∇𝛼(𝑡, 𝑥⃗) = 𝑐(𝑡, 𝑥⃗)                          (3. 8) 

where 𝑥⃗ is a coordinate, u is the velocity in space and time, c is the tracer concentration, 

K is the diffusivity tensor, and α is the age concentration. 

3.4.3. Model set up 

Curvilinear model grids were used in this study with five cells across the river and 

three vertical layers. The longitudinal grid resolution ranged from 85 m to 150 m. 

Boundaries include the flows from IGD, Shasta River, Beaver Creek, Horse Creek, 

Scott River, Grider Creek, and the open boundary at Seiad Valley. The model was run 

for three days with one second time steps. 

3.4.4. Sensitivity method and effective parameters 

A complete sets of parameters used in EFDC have been shown in Table 3.2 and 

Table 3.3. These parameters were used in the sensitivity analysis in order to investigate 

the model representation of water age and water temperature. LH-Oat (Van Griensven 

et al. 2005), a novel sampling method that is a combination of latin-hypercube and one-

factor-at-a-time sampling method, was used in this study. This method is done by 

taking N Latin Hypercube sample points (user defined) with a probability of occurrence 

equal to 1/N and varying each LH sample point by changing the parameters one at a 

time. This efficient method requires a total of N × (P + 1) runs where P is the total 

number of parameters. The partial effect Si,j (in percent) of each parameter is estimated 

as 

𝑆𝑖,𝑗 = |
100×(

𝑀(𝑒1,…,𝑒𝑖×(1+𝑓𝑖),…,𝑒𝑃)−𝑀(𝑒1,…,𝑒𝑖,…,𝑒𝑃)

[𝑀(𝑒1,…,𝑒𝑖×(1+𝑓𝑖),…,𝑒𝑃)+𝑀(𝑒1,…,𝑒𝑖,…,𝑒𝑃)]/2
)

𝑓𝑖
|                         (3. 9) 

where M is the model function, i and j refer to the parameters and LH point respectively, 

ei refers to model parameters, and fi is a fraction by which parameters are changed. 

Finally, each parameter can be ranked as the largest effect to the smallest effect by 
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giving rank 1 to a rank equal to the total number of parameters respectively. The 

parameters listed in Table 3.2 and Table 3.3 were changed randomly over the range of 

± 50% considering five LH sampling points. 

Table 3.2: Parameters and parameters range used in water age sensitivity analysis 

Name Min Max Definition 

Q 30 80 Flowrate 

WINDS 0 10 Wind speed 

WINDD 0 360 Wind direction 

Z0 0.001 0.2 Bottom roughness 

AHO 0.001 100 Horizontal momentum and mass diffusivity 

AVO 10-6 10-2 Vertical eddy (kinematic) viscosity 

ABO 10-9 10-5 Vertical molecular diffusivity 

 

Table 3.3: Parameters and parameters range used in water temperature sensitivity 

analysis 

Name Min Max Definition 

Q 30 80 Flowrate 

TSER 5 25 Inflow temperature 

PATM 945 960 Atmosphere pressure  

TDRY 0 40 Dry atmosphere temperature 

TWET 0 15 Wet bulb atmosphere temperature 

EVAP 0 0.03 Evaporation rate  

SOLSWR 0 1200 Solar short wave radiation at water surface 

CLOUD 0 1 Fractional cloud cover 

WINDS 0 10 Wind speed 

WINDD 0 360 Wind direction 

Z0 0.001 0.2 Bottom roughness 

SWRATNF    0 2 
Fast scale solar short wave radiation attenuation 

coefficient  

FSWRATF 0 1 
Fraction of solar short wave radiation adsorbed in the 

top layer  
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DABEDT 0 1 Thickness of active bed temperature layer  

HTBED1 0 1 
Convective heat coefficient between bed and bottom 

water layer   

HTBED2     0 0.5 
Heat transfer coefficient between bed and bottom 

water layer 

AHO 0.001 100 Horizontal momentum and mass diffusivity 

AVO 10-6 10-2 Vertical eddy (kinematic) viscosity  

ABO 10-9 10-5 Vertical molecular diffusivity 

 

3.4.5. Model sensitivity to bathymetry data 

The calibrated model of Klamath River for 2015 was obtained from previous 

model developed by Javaheri et al. (2016). Monte Carlo sampling approach was used 

for assessing the sensitivity of model to bathymetry data. This method samples from 

the possible range of the input values. The samples are usually generated randomly. 

Based on the estimated error of bathymetry from section 3.4.1, the bottom elevation of 

each cell was perturbed among the range of error to create the ensembles. The 

advantage of this method is that sensitivity and uncertainty analysis can be 

accomplished at once. Since this method is computationally expensive, two extreme 

event during 2015 were selected to evaluate the water temperature and water age 

sensitivity to bathymetry data. However, usually the maximum fish mortality in the 

lower Klamath River occurs in June when the temperature exceeds 15 °C and the 

number of fishes in the river are greatest. Hence, another scenario was added during 

this time to investigate the effect of bathymetry on water temperature. 

 Results and discussions 

3.5.1. Bathymetry data generation 

After subtracting the water depth from water surface elevation, it was concluded 

that water surface elevation provided by LIDAR data needed to be adjusted by 31 cm 

in order to minimize the error. After water surface elevation adjustment and 
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interpolation of data across the river, the overall root mean square error between 

generated bathymetry and actual data is less than 40 cm. 

3.5.1. Water age (travel time) sensitivity  

Table 3.3 shows the sensitivity rank of all the parameters for water age at Seiad Valley. 

Based on the partial effects, parameters were classified into three groups. Flow rate was 

classified as the most important parameter (global sensitivity rank equal to 1). Bottom 

roughness was classified as very important (global sensitivity rank equal to 2). Wind 

speed, wind direction, and vertical eddy viscosity were classified as slightly important 

(3 ≤ global sensitivity rank ≤ 5). Horizontal mass diffusivity and vertical molecular 

diffusivity have no impact on the water age, so they were ranked 7 (total number of 

parameters). Figure 3.3 shows the partial effect of each parameter colored based on the 

importance group. 

Since flow rate is the most sensitive parameter, two different periods during 2015 

were selected, one with a high flow rate (80 cms) and one with a low flow rate (25 

cms), to investigate the water age sensitivity to bathymetry data. Figure 3.4 shows that 

average variance decreases by number of sample size. For sample size more than 200, 

the average variance converges to a constant value. It states that this model with more 

than 200 sample size could be representative of the bathymetry error in the system. 

Figure 3.5 illustrates the average travel time from Iron Gate dam to Seiad valley with 

the minimum and maximum bounds at to different times with various flowrate. The 

average difference between lower bound and upper bound is about 20 minutes and the 

maximum difference between bounds are 25 minutes for low flow and 40 minutes for 

high flow. Water age is slightly affected by bathymetry, however, flow rate does not 

impact the sensitivity of water age to bathymetry. 
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Figure 3.2: Estimated bathymetry (blue filled circles) vs measured data (red open 

triangles). 
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Table 3.4: Sensitivity rank of parameters for water age (parameters with no appearance 

of sensitivity get rank 7). 

Parameter/Input 

Sensitivity 

rank 

Q 1 

Z0 2 

WINDS 3 

WINDD 4 

AVO 5 

AHO 7 

ABO 7 

 

 

Figure 3.3: Partial effect of each parameter on water age for f = ±50.  
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Figure 3.4: Average of variance versus sample size for water age model. 

 

Figure 3.5: Average travel time from Iron Gate dam to Seiad valley (solid line) with the 

minimum and maximum possible bounds (dashed line) for a) high flow during winter (80 

cms), and b) low flow during summer (25 cms). 
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3.5.2. Water temperature sensitivity  

Table 3.4 lists all the parameters and their sensitivity rank for predicting the water 

temperature at Seiad Valley. Based on the partial effects, we classified the parameters 

into five groups. Inflow temperature was classified as the most important parameter 

(global sensitivity rank equal to 1). Air temperature, solar radiation, wind speed, 

flowrate, and wet-bulb temperature were classified as very important (2 ≤ global 

sensitivity rank ≤ 6). Bottom roughness, fast scale solar short wave radiation 

attenuation coefficient, fraction of solar short wave radiation absorbed in the top layer, 

and evaporation rate were classified as important (7 ≤ global sensitivity rank ≤ 10). 

Heat transfer coefficient between bed and bottom water layer, vertical eddy viscosity, 

convective heat coefficient between bed and bottom water layer, and wind direction 

were classified as slightly important (11 ≤ global sensitivity rank ≤ 14). Finally, 

thickness of active bed temperature layer, fractional cloud cover, atmospheric pressure, 

horizontal mass diffusivity, and vertical molecular diffusivity were classified as not 

important (global sensitivity rank ≥ 15). Figure 3.6 illustrates the partial effect of each 

parameter highlighted based on the importance group. Figure 3.7 shows the correlation 

estimates between the various parameters, and it is seen that only dry temperature and 

wet bulb temperature are highly correlated (correlation value of 0.91). Since these two 

parameters are positively correlated, the uncertainty in model will be greater than if 

they were not correlated. 

Table 3.5: Sensitivity rank of parameters for water temperature. 

Parameter/Input Sensitivity Rank Parameter/Input Sensitivity Rank 

TSER 1 HTBED2 11 

TDRY 2 AVO 12 

SOLSWR 3 HTBED1 13 

WINDS 4 WINDD 14 

Q 5 DABEDT 15 

TWET 6 CLOUD 16 

Z0 7 PATM 17 

FSWRATF 8 AHO 17 
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SWRATNF 9 ABO 17 

EVAP 10   

 

Figure 3.6: Partial effect of each parameter on water temperature for f = ±50. 

 

 

Figure 3.7: Correlation matrix of forcing parameters 
 

Table 3.5 lists the most effective parameters on water temperature and their range 

for three periods, the warmest period, the coldest period, and the period with highest 

fish mortality during 2015 to investigate the water temperature sensitivity to 

bathymetry. Figure 3.8 represents the timely averaged variance versus the sample size. 

By increasing the sample size from 50 to 100, the average variance decreases. 

However, there is no significant change for sample size more than 100. Figure 3.9 
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illustrates the average water temperature at Seiad valley with the minimum and 

maximum bounds of possible results. It is seen that with 40 cm error in bathymetry, the 

average and maximum difference between upper bound and lower bound are 0.48 °C 

and 0.59 °C respectively during the winter (Figure 3.9.a). However, these differences 

are bigger for figure 8.b. The average and maximum difference between upper bound 

and lower bound are 1.2 °C and 1.7 °C respectively. During the summer (Figure 3.9.c), 

the average and maximum difference between upper bound and lower bound are 

1.65 °C and 2.3 °C respectively. It represents that water temperature is more sensitive 

to bathymetry for low flows and warm meteorological conditions. 

 

Table 3.6: The most effective parameters on water temperature and their range for 

selected days in order to investigate the water temperature sensitivity to bathymetry. 

Parameter 
 Range of variations 

11 Jan – 13 Jan 19 May – 21 May 4 Jul – 6 Jul 

TSER (°C) 3 - 4 14 - 16 20 - 23 

TDRY (°C) 1.6 - 5 8 - 16.7 20 - 33.3 

SOLSWR 

(watt/m2) 

0 - 265 0 - 600 0 - 949 

WINDS (m/s) 0 - 1.8 0 - 2.2 0 - 2.7 

Q (cms) 48 - 51 32 - 33 24 - 25 

TWET (°C) (-1.9) - 0.3 1.2 - 4.7 6.1 - 11.9 
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Figure 3.8: Average of variance versus sample size for water temperature model. 
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Figure 3.9: Average water temperature at Seiad valley (solid line) with the minimum and 

maximum possible bounds (dashed line) for a) cold period (January), period with highest 

fish mortality (May), and c) warm period (July). 
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each parameter and rank them from the most important to not important. The results 

highlighted the following findings: 

- Bathymetry data were generated (with overall error less than 40 cm) for the 

areas that data were not available.  

- Flowrate and bottom roughness are the most sensitive parameter in estimating 

the water age. Even though wind speed, wind direction, and vertical eddy 

viscosity are sensitive parameters in estuaries (Gong et al., 2009), water age is 

not sensitive to these parameters in shallow rivers. Horizontal mass diffusivity 

and vertical molecular diffusivity have no impact on the water age. 

- Travel time is slightly affected by bathymetry. Considering the error in 

generated bathymetry data, the average error between lower bound and upper 

bound of possible results is less than 20 minutes. Also, flowrate does not affect 

the travel time sensitivity to bathymetry. 

- Inflow temperature was found to be the most effective parameter on river water 

temperature. Air temperature, solar radiation, wind speed, flowrate, wet-bulb 

temperature, bottom roughness, fast scale solar short wave radiation attenuation 

coefficient, fraction of solar short wave radiation absorbed in the top layer, and 

evaporation rate are the other important parameters in calculating the water 

temperature respectively. The other parameters are less important comparing to 

stated parameters. 

- In contrast to Gu and Li (2002), we found that water temperature is sensitive to 

bathymetry especially during warm periods. Considering the estimate error in 

generated bathymetry, the average difference between lower bound and upper 

bound of possible results are 1.65 °C and 0.48 °C during the summer and winter 

respectively. 
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CHAPTER 4. Assimilation of multi-sensor water temperature observations into 
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 Abstract 

There is lack of knowledge in assimilation of multi-sensor water temperature 

observations into hydrodynamic model of shallow rivers to find, (a) how model 

accuracy would improve after assimilation of each measurements, and (b) how to 

assimilate these data into the prediction model to increase the model accuracy and 

decrease the computational burden. Mutli-sensor observations used in this study 

include in-situ observations with dense temporal resolution, and remote sensing 

measurements with better spatial coverage. The physical region represented by satellite 

data does not directly correspond with the numerical model's representation of the 

water column. Satellite data show the skin water temperature, while numerical models 

estimate the bulk temperature. Furthermore, for rivers narrower than the resolution of 

satellite data, temperature of each cell represent the weighted average temperature of 

land and water. These factors introduce biases in the updated numerical model of water 

bodies.  

This study implements an efficient ensemble Kalman filter method using Latin-

Hypercube sampling to assimilate unbiased multi-sensor water temperature 

observations into the hydrodynamic model of the lower Klamath River located in 

northern California. Results showed that assimilation of remote sensing data from 

Landsat-7 improved the model prediction for the entire river. The average spatial error 

reduced from 2.59 °C to 0.66 °C (i.e., 75% improvement). In-situ data assimilation 

reduced the error at observation location, however, updated model predicts the water 

temperature the same as un-updated model in less than two days. In the other hand, it 

is not computationally efficient to assimilate all the available data into the model. In 

order to overcome these challenges, in-situ data were sequentially assimilated into the 

model as the error exceeded the maximum allowed error (i.e., depends on model 

application). Results showed that by assimilation of in-situ data one to three times per 

day, the average daily error reduced up to 58% comparing to situation that in-situ data 

were assimilated only once. 

Keywords 
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 Introduction 

Water temperature has been identified as a critical factor that significantly affects 

the biological activity and metabolic rates of aquatic organisms living in the rivers or 

lakes. All aquatic species have a preferred water temperature range, and if temperature 

varies too much from this range major mortality can occur. While fishes (such as 

salmonids) live in cold water streams, other aquatic organisms (such as plants) prefer 

to live in warm water temperatures (Chu, 2003; Todar, 2012). Bartholomew and Foott 

(2010) found that if river temperatures reach 15-18 °C in late spring, infection can cause 

high mortality in juvenile salmonids. Furthermore, dissolved oxygen in water is related 

to water temperature, and is also a main factor for aquatic life. Water temperature also 

affects the water quality due to its significant effect on fate and transport of 

contaminants (Schnoor, 1996; Chapra, 2008; Babbar-Sebens et al., 2013). 

Typical methods of water temperature monitoring include remote sensing 

measurements and in-situ data collection. Remote sensing data from satellites provide 

spatially-dense but temporally limited data, while and in-situ sensors collect temporally 

continuous data with limited spatial coverage. Remote sensing water surface 

temperature can be extracted from Landsat-7 Enhanced Thematic Mapper plus (ETM+) 

Band 6 with 60 m (resampled to 30 m) resolution and repeat cycle of 16 days. However, 

satellite data is limited by errors introduced by low resolution and impermeability to 

water. For rivers and stream narrower than the remote sensing grid cells, measured 

temperature represents the average temperature of river banks and water. Also, remote 

sensing data represents the skin temperature which does not directly correspond with 

the numerical model's representation of the water column (Donlon et al. 2002). It is 

also directly affected by solar radiation and wind and it could be cooler or warmer than 

the bulk temperature of water. While adjustment techniques have been proposed to 

remove the bias from water temperature satellite data for lakes, reservoirs and oceans 

(Javaheri et al., 2016a; Cohn et al., 1988; Reynold et., al 2002; Donlon et al., 2002), 

this relationship is not determined for shallow rivers. 
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The numerical model and measurements have large uncertainty coming from 

different sources such as errors of approximation and truncation, uncertain model 

inputs, error in measuring devices and etc. Data assimilation (DA) is able to 

sequentially update the model state variables by considering the uncertainty in model 

and observations and estimate the states and outputs more accurately. Data assimilation 

has been successfully used in several water resources problems such as water 

temperature prediction (Ezer and Mellor, 1997; Keppenne and Rienecker, 2003; 

Troccoli and Haines, 1999). Javaheri et al. (2016a) assimilated remote sensing water 

temperature obtained from Lansat-5 Thematic Mapper (TM) satellite into the 

hydrodynamic model of Eagle Creek Reservoir located in central Indiana. They found 

that adjustment of remote sensing data before assimilation into the model not only 

improves the model efficiency with respect to satellite data, but it also reduces the error 

comparing with in-situ data. Since the fate and transport and mixing processes of lake 

and rivers can be significantly different (e.g. in shallow rivers due to high mixing the 

temperature stratification is negligible), it is unknown whether similar adjustment-

assimilation techniques would help improve prediction of numerical models of shallow 

rivers. Additionally, for rivers that have regular temperature measurements, an 

effective and efficient data assimilation framework is needed to assimilate 

heterogeneous data sources from different monitoring technology into the prediction 

model in order to (i) keep the model error below the maximum acceptable error, and 

(ii) decrease the computational cost by assimilating less data. 

In this study, we have proposed a temperature data assimilation methodology that 

takes advantage of observations coming from different sources and an efficient 

ensemble Kalman Filter technique based on Latin hypercube sampling method. This 

methodology was applied to a hydrodynamic model of lower Klamath River located in 

northern California, in order to investigate the following specific research questions: 

(1) How does assimilation of in-situ water temperature observations into 

the hydrodynamic model of a river affect the model accuracy comparing with 

remote sensing data? 
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(2) How does assimilation of remote sensing data derived from satellite 

affect the model accuracy when results of updated model are compared with in-

situ data? 

(3) What is the most efficient way to take the advantage of both monitoring 

technologies and assimilate them into the prediction model to increase the 

overall model accuracy (spatial and temporal) and decrease computational 

costs? 

This paper is organized as follow. Section 4.3 explains the case study and data 

collection, extracting water temperature from Landsat-7 Enhanced Thematic Mapper 

Plus (ETM+) band 6, hydrodynamic model, and data assimilation formulation. In 

section 4.3, results for different scenarios after assimilation of in-situ data, remote 

sensing data, and both were discussed and finally Section 4.4 provides the conclusion. 

 Methodology: 

4.3.1. Case study 

The Klamath River is emanates from Cascade Mountains and flows from the Upper 

Klamath Lake through southern Oregon and Northern California and continues to the 

Pacific Ocean. The total length of river is about 410 km and it is divided into upper and 

lower Klamath River at Iron Gate dam (IGD). This study is focused on the lower 

Klamath River (Figure 4. 1) starting from IGD at river kilometer (RKM) 304 to the 

Seiad Valley (SV) (RKM 205). The lower Klamath basin is steep and rocky with a 

complex terrain generally covered by forest except the drainages of Shasta and Scott 

River. Among the several tributaries draining from the Lower Klamath Basin to the 

river, Shasta and Scott Rivers have the highest flow. Flows at IGD vary during the year; 

December and January usually have the highest flow and lowest flow occur from June 

to September. 
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Figure 4. 1: Lower Klamath River from Iron Gate dam to Seiad Valley. Red dots show 

the USGS discharge stations at IGD, Shasta, Scott, and Seiad Valley stations. Blue arrows 

also show the locations where major tributaries join the Klamath River. Water flows from 

IGD station to Seiad Valley station. 

4.3.2. Temperature data 

In-situ data has been collected every 15 minutes at Saied Valley station (Figure 4. 

1). This data was used for model calibration as well as data assimilation. The remotely 

sensed water temperature data was obtained from Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) band 6. Remote sensing temperatures were selected at three 

different dates during the year with different temperatures (May 23rd, July 1st, and 

September 19th of 2015).  The spectral radiance from satellite images need to be 

converted into at-satellite brightness temperature, BT, by Planck’s law 

𝐵𝑇 =
𝐾2

𝑙𝑛[
𝐾1
𝐿𝜆
+1]
                    (4.1) 

where K1 and K2 are the calibration constants as 666.09 Watts m-2 ster-1 μm-1 and 

1282.71 Kelvin respectively, and 𝐿𝜆 is spectral radiance which is estimated by 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿                    (4.2) 
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where ML is band-specific multiplicative rescaling factor, Qcal is quantized and 

calibrated standard product pixel values, and AL is band-specific additive rescaling 

factor. The brightness temperature at satellite is converted to Land Surface 

Temperature (LST) by (Artis & Carnahan, 1982) 

LST = 𝐵𝑇/(1 + 𝑤 × (𝐵𝑇 𝑃⁄ ) × 𝑙𝑛(𝑒))               (4.3) 

The emissivity of water is 0.98 and LST represents the skin water temperature of 

river. To assimilate remote sensing data, approximately 200 random sampling locations 

along the river were selected. Half of these sampling locations were used as training 

locations to implement the ensemble Kalman filter data assimilation and the other half 

were used for testing the efficiency of data assimilation method. Since cell size of 

temperature raster at some areas is bigger than the river length, the temperature of that 

cell represents the weighted average temperature of land and water which expects to be 

warmer than the water temperature. Also, remote sensing data represents the skin 

temperature of water which is affected by solar radiation and wind. Hence, the bias 

from satellite data should be removed before data assimilation. 

4.3.3. Simulation model 

The Environmental Fluid Dynamic Code (EFDC) is a three-dimensional surface water 

modeling system for hydrodynamic, water quality, and sediment-toxic contaminant 

simulations. The EFDC was originally developed at the Virginia Institute of Marine 

Science to model the estuarine system. However, it has been widely used to model the 

flow characteristics of different water bodies such as rivers, lakes, reservoirs, wetlands, 

and coastal ocean regions (Hamrick and Wu, 1997). EFDC solves the equations of 

continuity and momentum as well as transport equations to estimate the dynamics and 

temperature respectively (Tetra tech, 2007). It supports Cartesian and curvilinear 

orthogonal horizontal coordinates and stretched or sigma vertical coordinates (Craig, 

2005). Grid size and time step were determined by considering the Courant-Friedrichs-

levy condition (CFL condition). The model was built using curvilinear coordinate and 

sigma stretch vertical coordinate. The final model grid include 1270 longitudinal grids, 

5 lateral grid, and 3 layers (1270 × 5 × 3). The model was run with 2 seconds time step 

considering the stability and the computational burden. 
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4.3.4. Ensemble Kalman filter algorithm 

The ensemble Kalman filter (EnKF), introduced by Evensen (1994), was used as 

the data assimilation technique in this study. This method is effective for high order 

nonlinear models. If we denote X as vector of state variables and Y as vector of 

measurements, we may write out hydrodynamic numerical model, F, and 

measurements as: 

X𝑘 = 𝐹(X𝑘−1, u𝑘−1) + w𝑘                 (4.4) 

Y𝑘 = H(X𝑘) + v𝑘                   (4.5) 

where uk is the input vector, wk is the uncertainty due to error in model, vk is the vector 

of measurement errors, H is linearized observation transformation matrix, and the 

subscript “k” indicates the time step. We need to estimate the forecast error covariance 

in order to update the state variables. Since, the true values for state variables are 

unknown, we use the average of ensembles as true values. 

P𝑘
𝑓
=

1

𝑛−1
∑ (X𝑘

𝑓
− X̅𝑘)(X𝑘

𝑓
− X̅𝑘)

𝑇𝑛
𝑖=1                 (4.6) 

The updated state vector is taken to be a linear combination of model predictions 

and measurements: 

X𝑘
𝑎 = X𝑘

𝑓
+ K𝑘(Y𝑘 − H𝑘X𝑘

𝑓
)                                  (4.7) 

where K is Kalman gain and it can be estimates by: 

K𝑘 = P𝑘
𝑓
H𝑘
𝑇(H𝑘P𝑘

𝑓
H𝑘
𝑇 + R𝑘)

−1
                    (4.8) 

In order to avoid the problems such as inbreeding, filter divergence and spurious 

correlations due to undersampling, covariance inflation and covariance localization 

methods were applied. Hence, the updating equation can be expressed by 

X𝑘
𝑎 = X𝑘

𝑓
+ [𝜌ₒ(𝜆𝑘P𝑘

𝑓
H𝑘
𝑇)][𝜌ₒ(H𝑘𝜆𝑘P𝑘

𝑓
H𝑘
𝑇) + 𝜇𝑘R𝑘]

−1
(Y𝑘 −H𝑘X𝑘

𝑓
)                         (4.9) 

where λk and μk are inflation factors for forecast and observation covariance 

respectively, and ρ is correlation function (Javaheri et al., 2016a). Random noise with 

zero mean and covariance R was added to measurements to get consistent error 

propagation in the ensemble Kalman filter (Burger et al., 1998). 

4.3.4.1 Latin-hypercube sampling 
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Typically, EnKF uses a Monte Carlo approach to randomly sample the variables 

among their distribution range. In this study, instead of Monte Carlo, Latin-Hypercube 

sampling was selected to increase the efficiency. Latin-Hypercube sampling method 

(McKay et al., 1979; Iman and Conover, 1980; McKay, 1988) is based on Monte Carlo 

simulation but instead of random sampling approach, it uses a stratified sampling 

approach. This method divides the distribution of each parameter into N equal 

probability intervals (with a probability of occurrence equal to 1/N). Then, for each 

parameter, each interval is sampled once. This method is robust and requires less 

number of simulations comparing to Monte Carlo simulation which reduces the 

computational costs. 

4.3.4.2 Estimation of ensembles spread 

The performance of EnKF is highly dependent on the quality of ensemble 

generation. Ensembles are created by perturbing the forcing data. If ensembles have 

too much spread, the covariance matrix of model may be over predicted and if 

ensembles have too little spread the covariance matrix may be underestimated. A 

simple method was introduced by Anderson (Anderson, 2001) to evaluate the amount 

of forcing data perturbation. According to this method, root mean square error (RMSE) 

ratio, Ra, is the ratio of the time-averaged RMSE of the ensemble mean, R1, to the 

mean RMSE of the ensemble members, R2 (Moradkhani et al., 2005). 

𝑅𝑎 =
𝑅1

𝑅2
                 (4.10) 

𝑅1 =
1

𝑇
∑ √[(

1

𝑛
∑ 𝑦̂𝑡

𝑖𝑛
𝑖=1 ) − 𝑦𝑡

𝑖]
2

𝑇
𝑡=1               (4.11) 

𝑅2 =
1

𝑛
∑ √

1

𝑇
∑ (𝑦̂𝑡

𝑖 − 𝑦𝑡
𝑖)
2𝑇

𝑡=1
𝑛
𝑖=1               (4.12) 

where n is ensemble size and T is period of analysis. The Normalized RMSE Ratio 

(NRR) is calculated: 

𝑁𝑅𝑅 =
𝑅𝑎

𝐸[𝑅𝑎]
                 (4.13) 

where E[Ra] is the expected value of the Ra and can be estimated as (Murphy, 1988): 



75 
 

 

𝐸[𝑅𝑎] = √
(𝑛+1)

2𝑛
                  (4.14) 

Optimum value for NRR should be close to unity. NRR>1 indicates that ensemble 

spread is too small, while NRR<1 shows that ensemble spread is too big (Moradkhani 

et al., 2005). 

 Results 

Calibrated model of Lower Klamath River from January 1st to April 30th was obtained 

from Javaheri et al. (2016b). The calibrated model predicts the water temperature of 

river with root mean square errors of 0.88 ᵒC comparing with in-situ data collected at 

Seiad Valley station. The period of May 1st to September 31st was selected as data 

assimilation period. 

4.4.1. Ensemble generation 

The distribution of each input parameter was divided into 30 intervals and each 

interval was sampled only once. The most sensitive parameters in calculating the water 

temperature of shallow rivers include inflow temperature, air temperature, solar 

radiation, wind speed, flowrate, and wet-bulb temperature (Javaheri et al., to be 

submitted). These model inputs were perturbed to generate the ensemble members. 

Figure 4.2 illustrates the variation of normalized RMSE ratios for different perturbation 

factors. It was found that with 15% distribution range for input parameters and 20 

ensemble members, NRR is 1.013 which is very close to unity.  
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Figure 4.2: Normalized RMSE ratio (NRR) against input perturbation.  

4.4.2. Assimilation of in-situ temperature data 

Observations at Seiad Valley were assimilated into the model at noon on May 23rd, 

July 1st, and September 19th (Figure 4.3), the same time that Lansat-7 has collected 

remote sensing data. Figure 4.3 compare the model predictions of model before and 

after in-situ data assimilation with in-situ observations at Seiad Valley. It also illustrates 

that depending on forcing data of each day, after 36 to 48 hours after in-situ data 

assimilation, updated model predicts the water temperature the same as un-updated 

model. Table 4.1 presents the RSME of model before data assimilation and different 

time periods after data assimilation. According to the results, the error decreased up to 

48 hours after in-situ data assimilation for Figure 4.3.a and b. Model underestimates 

the minimum and maximum temperature at these days. After assimilation of in-situ 

data, updated model is run with warmer initial conditions that causes the error 

reduction. However, for September 19th, the error of updated model increased after 12 

hours. At the time of data assimilation, model first overestimates the water temperature. 

It makes the model to be run with cooler initial conditions and error reduces for few 

hours. Then, model underestimates the water temperature so updated model with cooler 

initial condition would have higher error. Table 4.2 presents the error between modeled 

temperature, in-situ measurements, and remote sensing observations at the time that in-

situ data were assimilated (12 pm, the same time that satellite data was collected). 

Results show that after assimilation of in-situ observations, the RMSE reduces at the 

observation site. However, in-situ data assimilation is not capable to efficiently 
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improve the spatial temperature predictions (Figure 4.4). The error reduction for May 

23rd and September 19th is not noticeable. For July 1st, even though in-situ data 

assimilation reduced the error for the observation site, the error for the entire river 

increased. The main reason low spatial resolution and lack of enough observation along 

the river.  

Table 4.1: The averaged root mean square error of model before and after in-situ data 

assimilation. 𝑬𝒙̅̅̅̅  denotes the averaged error “x” hours after in-situ data assimilation.   

Date 

Root mean square error (°C) 

Before in-situ DA After in-situ DA 

𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸48̅̅ ̅̅̅ 𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸48̅̅ ̅̅̅ 

May 23rd 0.77 0.65 0.69 0.49 0.44 0.55 

July 1st 0.74 0.59 0.54 0.44 0.39 0.4 

September 

19th 

0.64 0.55 0.56 0.34 0.55 0.57 

 

Table 4.2: Root mean square error of model before and after in-situ data assimilation 

comparing with in-situ and remote sensing observations at the assimilation time. 

Date 

Root mean square error (°C) 

Comparing with in-situ 

observations for entire river 

Comparing with RS 

observations at Seiad Valley 

Before in-situ 

DA 

After in-situ 

DA 

Before in-situ 

DA 

After in-situ 

DA 

May 23rd 0.4 0.07 2.76 2.68 

July 1st 0.51 0.18 3.29 3.91 

September 

19th 

0.58 0.08 1.71 1.55 
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Figure 4.3: Depth-averaged water temperature observation at Seiad valley comparing 

with model predictions before and after in-situ data assimilation at 12 pm for a) May 23rd, 

b) July 1st, and c) September 19th. Black thick line shows the RS observation, red solid 

line shows the model prediction before in-situ data assimilation, and blue dashed line 

shows the updated model after in-situ data assimilation. 
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Figure 4.4: Longitudinal profile of water temperature observations comparing with 

model predictions before and after in-situ data assimilation at 12 pm for a) May 23rd, b) 

July 1st, and c) September 19th. Black thick line shows the RS observation, red solid line 

shows the model prediction before in-situ data assimilation, and blue dashed line shows 

the updated model after in-situ data assimilation.  
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4.4.3. Assimilation of remote sensing temperature data 

The bias in remote sensing observations (from Lansat-7) was first removed by 

comparing with in-situ data at Seiad Valley station and then the unbiased observations 

were used for remote sensing data assimilation (RSDA). The results of updated model 

were then compared with in-situ observations to investigate how assimilation of remote 

sensing observation will affect the model efficiency comparing with future in-situ data 

(Figure 4.5). The RMSE of modeled temperature before remote sensing data 

assimilation and for different time periods after data assimilation was estimated (Table 

4.3). The error reduced for all the assimilation dates, however, updated model after in-

situ data assimilation was able to predict water temperature more accurately than 

updated model after remote sensing data assimilation for July 1st. The results of updated 

model after RSDA was then compared with satellite data (Figure 4.6). Table 4.4 

summarizes the RMSE of modeled temperature after RSDS comparing with in-situ 

measurements, and remote sensing observations at the time that satellite data were 

assimilated (12 pm, the same time that satellite data was collected). 

Table 4.3: The averaged root mean square error of model before and after Remote 

sensing data assimilation.   

Date 

Root mean square error (°C) 

Before RSDA After RSDA 

𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸48̅̅ ̅̅̅ 𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸36̅̅ ̅̅̅ 

May 23rd 0.77 0.65 0.69 0.4 0.38 0.48 

July 1st 0.74 0.59 0.54 0.54 0.44 0.42 

September 

19th 

0.64 0.55 0.56 0.43 0.47 0.47 
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Figure 4.5: Depth-averaged water temperature observation at Seiad valley comparing 

with model predictions before and after remote sensing data assimilation at 12 pm for a) 

May 23rd, b) July 1st, and c) September 19th. Black thick line shows the RS observation, 

red solid line shows the model prediction before in-situ data assimilation, and blue dashed 

line shows the updated model after in-situ data assimilation. 
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Figure 4.6: Longitudinal profile of water temperature observations comparing with 

model predictions before and after remote sensing data assimilation at 12 pm for a) May 

23rd, b) July 1st, and c) September 19th. Black thick line shows the RS observation, red 

solid line shows the model prediction before in-situ data assimilation, and blue dashed 

line shows the updated model after in-situ data assimilation. 
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Table 4.4: Root mean square error of model before and after remote sensing data 

assimilation comparing with in-situ and remote sensing observations at the assimilation 

time. 

Date 

Root mean square error (°C) 

Comparing with RS observations 

for entire river 

Comparing with in-situ 

observations at Seiad Valley 

Before 

RSDA 

After RSDA Before RSDA After RSDA 

 Training  Testing    

May 23rd 2.76 0.82 1.03 0.4 0.14 

July 1st 3.29 0.95 1.08 0.51 0.27 

September 

19th 

1.71 0.71 0.82 0.58 0.44 

 

4.4.4. Assimilation of remote sensing and in-situ temperature data 

We then assimilated both in-situ and remote sensing data into the model at 

appropriate time to keep the model updated as new observations (irrespective of source) 

become available. In-situ measurements at Seiad Valley station are available every 15 

minutes, however, it not computationally efficient to assimilate them every 15 minutes. 

A maximum error between model predictions and observations was defined. When the 

error exceeds this value, new in-situ measurements are assimilated into the model. This 

maximum error depends on the operation of the temperature model in different fields. 

In this research, it was set to be 0.5 °C. Remote sensing data also assimilate when they 

are available. Satellite date collected at 12 pm on May 23rd, were assimilated into the 

model to improve the water temperature for the entire river, then the model was run 

until the error was exceeded from the maximum acceptable range. Then in-situ data 

were assimilated into the model (Figure 4.7.a). The same procedure was repeated for 

other days that remote sensing data are available (i.e. July 1st and September 19th; 

Figure 4.7.b and c respectively). It is seen that instead of assimilation of data every 15 

minutes, two to five data assimilation during 48 hours is enough to keep the model 

error below the satisfactory range for selected dates. Table 4.5 summarizes the error 
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values for the periods of 12, 24, and 48 hours after RSDA and while in-situ data were 

sequentially assimilated into the model. 

 

Figure 4.7: Depth-averaged water temperature observation at Seiad valley comparing 

with model predictions before data assimilation and after assimilation of remote sensing 

data at 12 pm for a) May 23rd, b) July 1st, and c) September 19th, while in-situ data were 

sequentially assimilated into the model. Black thick line shows the RS observation, red 

 

15

16

17

18

19

20

143 144 145

W
at

er
 t

em
p

er
at

u
re

 (
 C

)

Date

23

24

25

26

27

28

181 182 183

W
at

er
 t

em
p

er
at

u
re

 (
 C

)

Date

16

17

18

19

20

21

262 263 264

W
at

er
 t

em
p

er
at

u
re

 (
 C

)

Date



85 
 

 

solid line shows the model prediction before in-situ data assimilation, and blue dashed 

line shows the updated model after in-situ data assimilation. 

 

Table 4.5: The averaged root mean square error of model before and after RSDA and 

sequentially assimilation of in-situ observations. 

Date 

Root mean square error (°C) 

Before in-situ DA After in-situ DA 

𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸48̅̅ ̅̅̅ 𝐸12̅̅ ̅̅  𝐸24̅̅ ̅̅̅ 𝐸36̅̅ ̅̅̅ 

May 23rd 0.77 0.65 0.69 0.23 0.30 0.31 

July 1st 0.74 0.59 0.54 0.31 0.25 0.25 

September 19th 0.64 0.55 0.56 0.33 0.39 0.38 

 

 Conclusion 

A data assimilation framework using ensemble Kalman filter and Latin-hypercube 

sampling was implemented to update the initial condition of a three-dimensional 

hydrodynamic model of lower Klamath River. Observations from different monitoring 

technologies (i.e. in-site data, and remote sensing data from Landsat-7) were 

assimilated into the model to improve the model efficiency. Most effective parameters 

in water temperature calculation of shallow rivers were used to generate the ensemble 

members among the acceptable perturbation range. In contrast to in-situ data 

assimilation, remote sensing data assimilation was able to considerably improve the 

spatial error of the model. The average spatial error reduced from 2.59 °C to 0.66 °C. 

Assimilation of in-situ observation into the model improved the model efficiency at 

observation site. However, the model error increased by time and after less than two 

days, the model predictions of updated model were the same as base model before data 

assimilation. In order to decrease the model error by time and avoid the computational 

cost by assimilating all the available in-situ measurements, a maximum acceptable 

error between model and measurements was defined. In-situ observations were 

assimilated into the model when the error exceeded this threshold. Results showed that 

by assimilation of in-situ data one to three times per day, the average daily error reduced 

up to 58% comparing to situation that in-situ data were assimilated only once. 
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CHAPTER 5. Final Discussion 

 Conclusion 

The limitations in assimilation of multi-sensor data into numerical hydrodynamic 

model of inland water bodies (e.g., reservoirs, lakes, and rivers) was investigated in 

this study. A data assimilation frame work using ensemble Kalman Filter was proposed 

for each water bodies to investigate how assimilation of water temperature from 

different monitoring technologies affects the model accuracy. Water temperature 

measurements used in this study include (i) in-situ temperature data with high temporal 

resolution and low spatial availability, and (ii) remote sensing data with better X-Y 

spatial coverage and low temporal resolution. The results of this research are 

categorized in two sections: 

5.1.1. Water temperature data assimilation in reservoirs and lakes 

Application of the methodology on Eagle Creek Reservoir, located in Central 

Indiana highlighted the following findings: 

- An adjustment technique was proposed based on air and in-situ water 

temperature to remove the bias from satellite data. Air2Water model was 

implemented to predict the water skin temperature of the reservoir and then they 

were calibrated using remotely sensed observations. The predicted skin 

temperatures were then compared with in-situ measurements as new 

observations became available for bias correction. 

- For the days that satellite data are available, model outputs were compared with 

adjusted remote sensing skin temperature. The spatial biases were removed by 

subtracting the absolute errors from the model outputs. 

- Sampling locations were divided into two groups, training locations to estimate 

model errors during the data assimilation process, and testing locations to 

estimate the model errors after assimilation. After implementing ensemble 

Kalman filter, the model prediction was improved for the training locations as 

well as testing locations for all the observations.  
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- Assimilation of remotely sensed skin temperature data using the proposed 

approach improved the overall root mean square difference between modeled 

surface layer temperatures and the adjusted remotely sensed skin temperature 

observations from 5.6 ᵒC to 0.51 ᵒC (i.e., 91% improvement).  

- The overall error in the water column temperature predictions when compared 

with in-situ observations also decreased from 1.95 °C (before assimilation) to 

1.42 °C (after assimilation), thereby, giving a 27% improvement in errors.  

5.1.2. Water temperature data assimilation in rivers 

A global sensitivity analysis technique which combined latin-hypercube and one at a 

time sampling method was applied to the hydrodynamic numerical model of the 

shallow Lower Klamath River in California. The results can be summarized as follow: 

- Flowrate and bottom roughness are the most sensitive parameter in estimating 

the water age. Wind speed, wind direction, and vertical eddy viscosity slightly 

affect the water age. Horizontal mass diffusivity and vertical molecular 

diffusivity have no impact on the water age.  

- Water age is not sensitive to bathymetry. Considering the error in generated 

bathymetry data, the average error between lower bound and upper bound of 

possible results is less than 20 minutes (less than 2%). 

- Water temperature is most sensitive to inflow temperature. Air temperature, 

solar radiation, wind speed, flowrate, wet-bulb temperature, bottom roughness, 

fast scale solar short wave radiation attenuation coefficient, fraction of solar 

short wave radiation absorbed in the top layer, and evaporation rate are the other 

important parameters in calculating the water temperature respectively. The 

other parameters are less important comparing to stated parameters. 

- Even though Gu and Li (2002) claimed that water temperature is not sensitive 

to bathymetry, results showed that the average difference between lower bound 

and upper bound of possible results is 1.65 °C during the summer. However, 

model sensitivity to bathymetry reduces for cold seasons. 

The abovementioned results were used to generate the ensembles for ensemble Kalman 

Filter approach used in chapter 4. The ensembles were created by perturbing water, air 
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temperature, solar radiation, wind speed, flowrate, and wet-bulb temperature by 15%. 

The perturbation range was estimated using Normalized Room Mean Square Error 

Ration (NRR). Results showed that: 

- Assimilation of in-situ data improved the model accuracy at observation site. 

However, the spatial error reduction is negligible. 

- After less than two days, the updated model predicts the water temperature the 

same as un-updated model which shows the potential need for further 

assimilation of observations. 

- Due to computational cost, it is not optimal to assimilate all the available in-

situ data (every 15 minutes) into the model. A maximum error between model 

and observations was defined. As error exceeded the threshold, in-situ 

observations were assimilated into the model. 

- Results showed that by assimilation of in-situ data one to three times per day, 

the average daily error reduced up to 58% comparing to situation that in-situ 

data were assimilated only once. 

- Remote sensing data assimilation significantly improved the model prediction 

for the entire river. The average spatial error reduced from 2.59 °C to 0.66 °C. 
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