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ABSTRACT

The oxygen concentration in a stream is an important parameter o f

water quality . Changes in oxygen concentrations can affect various strea m

organisms including fish . Foresters have become concerned with predictin g

the impacts of forest activities on oxygen levels in streams . Slash ,

which accumulates in streams as a result of harvesting activities, i s

a food source for stream organisms . During aerobic respiration, oxyge n

is utilized . Under some conditions the oxygen concentration can b e

depleted below acceptable levels .

A natural process counteracting oxygen depletion is reaeration .

Reaeration is the exchange of gases between the atmosphere and water .

This process operates to maintain oxygen near the saturation concentration .

The change in the oxygen deficit in a stream is a function of the existin g

deficit and the reaeration rate coefficient .

The objective of this study was to develop a predictive equation fo r

the reaeration rate coefficient based on the hydraulic characteristic s

of stream channels . This is a first step in developing guidelines t o

regulate harvesting residues in streams . Seven natural stream site s

were selected in Oregon .

Several models for the reaeration process were tested using regressio n

techniques . Some were models proposed by other investigators and some were

developed independently . The predictive equation which fit the data bes t

is a function of the maximum unit energy dissipation rate (E D ) and a depth

parameter (HD ) :

ED
1/2

H220 = 37 HD'/ ,

This equation is consistent with theoretical descriptions of gas exchang e

phenomena .

For field applications, predicting the reaeration coefficient for an y

temperature (T) requires that the slope (s), active width (W D ), maximum

velocity (UD ), and discharge (Q), be measured for uniform stream segments .
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These variables are combined in the following equation :

K

	

= 1 .016(T-20) 37
WD2/3 s 1/2 g l/2 UD7/ 6

2T

	

Q2/ 3

Using the predicted reaeration rates, estimates of mean segmen t

velocities, biochemical oxygen demand loading, and rates of oxyge n

demand decay, it is possible to predict the oxygen concentration of a

stream moving through and downstream from a harvesting site . The

reaeration rate influences the maximum deficit and time required fo r

recovery and can be used to evaluate the risks that debris accumulation s

pose to water quality .

KEY WORDS : dissolved oxygen, reaeration, logging residue, turbulence .
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REAERATION IN A TURBULENT STREAM SYSTE M

INTRODUCTIO N

The harvesting and removal of timber provides an important economi c

base to the Pacific Northwest . These same silvicultural activities ca n

endanger water quality by modifying associated forest stream ecosystems .

In the Pacific Northwest, small forest streams are often valuabl e

spawning and rearing sites for anadromous fish species . Even when stream s

provide no fish habitat, they may influence water quality downstream wher e

it is critical for fish habitat . Because of these conflicts, it is necessary

to be able to predict the impact of forest activities on water quality i n

a wide range of stream systems .

The dissolved oxygen concentration is an important component of th e

water quality . The suitability of a stream as a fish habitat is dependen t

on adequate oxygen concentrations . Changes in stream oxygen concentration s

can affect the development, growth, activity, reproductive capacity, an d

survival of a variety of stream organisms .

The concentration of oxygen in a stream is a function of the solubil-

ity of oxygen and the various sources and sinks that modify the oxyge n

concentration . Harvesting can affect each of these factors . For example ,

harvesting activities can increase the load of organic debris in the stream ,

modify streambed characteristics, and alter the physical environment o f

the stream system causing large changes in stream temperature .

Accelerated accumulations of organic debris are a major concern o f

foresters . Debris deposited in a stream is available to organisms as a

food source . The oxygen concentration of a stream can be depleted as the

organic matter is oxidized during respiration of these organisms .

Reaeration is a process that counteracts oxygen depletion in smal l

streams . During this process gas is exchanged between the atmosphere and

the water . This physical process operates to modify the oxygen concentra-

tion in a stream towards its saturation value . The difference betwee n

the saturation concentration and actual concentration is the oxygen
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deficit . Molecular diffusion causes a flux of oxygen molecules into a

solution with a deficit . The change in the deficit of a gas in a body

of liquid is a function of the existing deficit and a rate constant .

This relationship can be expressed as a first order kinetic reaction .

Stream segments with large reaeration rates can assimilate greate r

amounts of organic debris before the deficits become unacceptable . The

time required for the stream to recover from a deficit is also shorte r

for streams with larger reaeration rates . For these reasons, foresters

need to be able to predict the reaeration rate for a stream in orde r

to model the impact of forest operations on the stream environment .

Implementation of the Federal Water Pollution Control Act Amend-

ments of 1974 (Public Law 92-500) calls for identification o f

"silviculturally related nonpoint sources of pollution" and developmen t

of "procedures and methods including land use requirements to contro l

to the extent feasible such [pollution] sources ." The Oregon Forest

Practices Act and Public Law 92-500 require that streams important t o

fisheries be protected and that water quality be maintained at hig h

levels .

Much of the controversy about developing best management practice s

for forest sites is associated with small first and second order streams .

These small streams are classified as class II streams in the Orego n

Forest Practices Act . These are streams that have not been identifie d

as directly important for fish habitat, recreation, or domestic use .

The concern, however, is that deaerated water, leachates, and organi c

debris from class II streams can be transported downstream to adversel y

impact class I streams which have important fish resources .

Data on reaeration rates in these typically small and turbulen t

streams is limited . Direct measurement of reaeration for all site s

would be ideal . Unfortunately, direct measurement of reaeration woul d

be a difficult and costly technique to apply to all forest streams nea r

Northwest harvesting sites . Further, the reaeration rate is relate d

to the hydraulic properties of the stream . Therefore, directly measured

values become invalid with changes in discharge rates and streambe d

characteristics .
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A predictive equation for the reaeration rate which is based o n

stream hydraulic characteristics would allow foresters to evaluat e

where potential oxygen problems might occur . Using a predicted reaera-

tion rate coefficient, the projected organic loading, and decay rat e

constants, the oxygen concentration within and downstream from a , -

harvesting site can be calculated .

It is important that foresters be able to discriminate betwee n

sites that may have oxygen problems and sites that-can tolerate organi c

inputs . Where a stream cannot assimilate large amounts of organi c

debris, it may be necessary to prescribe buffer strips or stream +side

management zones around the streams . This could be a costly reductliop

of the timber available for harvesting on a site . The clean-up of .'debri s

deposited in the stream and special felling techniques are alternative ,

procedures for treating sensitive sites . Buffer strips, stream clean-up ,

and special harvesting techniques generally increase operation costs ,

thus reducing revenues . Streamside zones are often the most productive .

The removal of these sites from commercial wood production conflicts wit h

society's needs for future wood supplies . Therefore, the social cost of

reduced future timber revenues must be considered . On the other hand, th e

economic and social consequences of allowing practices which adversel y

deplete oxygen are fish mortality and habitat reduction .

The purpose of this study is to develop a predictive method fo r

estimating reaeration rate coefficients that could be used to predic t

reaeration downstream from harvest units . One of the criteria for the

method is that it be suitable for use in the field . Using the predicted

reaeration rate, foresters can estimate the distance required for a

stream to recover from organic debris inputs and oxygen deficits, an d

the maximum deficit that could be expected . The relative sensitivity

of streams to organic loads can also be evaluated .
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LITERATURE REVIE W

Accurately predicting reaeration in a small, turbulent strea m

system depends upon adaptation of physical laws governing gas exchang e

to a highly variable field environment . This review of literature

will focus upon the selection of a model structure for evaluating oxyge n

exchange in a stream and the theories developed to predict reaeration .

Modeling Dissolved Oxygen

Dissolved oxygen is an important component in the physical environ-

ment of aquatic organisms . The dissolved oxygen concentration in a

stream is vulnerable to significant changes due to natural shifts an d

man-made disturbances . Modeling the impacts of human activities o n

dissolved oxygen has become an important tool for controlling detrimenta l

changes in water quality and aquatic habitats .

In order to model the behavior of dissolved oxygen in streams, it i s

necessary to determine how dissolved oxygen enters streams and how it i s

removed . The processes that contribute or remove oxygen are known a s

sources and sinks . Some processes can be either sources or sinks depending

on stream conditions . One such process is the exchange of oxygen betwee n

the atmosphere and stream . The movement of oxygen into solution is calle d

reaeration .

Pioneering work on reaeration was done by Adeney and Becker in 1914 .

In their study they used the concept of a gas deficit which is th e

difference between the saturation and actual gas concentration in a

solution . Working with oxygen and nitrogen gases, they found that the

change in the gas deficit in a body of liquid was a function of it s

existing deficit and a rate constant . The rate constant is now referre d

to as the reaeration rate constant, reaeration coefficient, or exchang e

coefficient . The change in the gas deficit is expressed as a first order

kinetic reaction :

dD =
dt

	

-K2 D (1)
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where D is the deficit in mg/1 (or kg/ m 3 ), t is time Ain'days (or s) ,

and K2 is the reaeration coefficient in days -l (or C I ) .

A second major step in oxygen modeling resulted from the Streete r

and Phelps (1925) study of natural purification in the Ohio River . They

assumed that the only sink for oxygen in the Ohio River was the oxyge n

demand of organisms and chemical that were oxidizing organic matter i n

the water. This oxygen sink, called the biochemical oxygen demand ,

could be modified (like the reaeration process) as a first order kineti c

equation . The biochemical oxygen demand (BOD) is the amount of oxyge n

organisms require to oxidize organic matter to a non-reaction state .

The rate at'which oxygen is utilized for oxidation is a function of th e

total biochemical oxygen demand and a rate constant .

The rate of BOD utilization is expressed as :

dL =
dt

	

- K1 L

where L is the BOD in mg/l (or kg/ m 3 ), t is time in days (or s) and K1

is the BOD rate constant in days 1 (or s -l ) .

The oxidation of organic matter results in a decrease in the BOD .

The oxidation also utilizes dissolved oxygen and therefore increase s

the dissolved oxygen deficit . Since both the deficit and BOD are expresse d

in units of mg/1 (or kg/m 3 ) of oxygen, the equations for atmospheri c

reaeration and biochemical oxygen demand can be combined . Streeter and

Phelps combined equations (1) and (2) to yield :

dD

	

d L-_
dt

	

dt

From equation 3, the equation for the oxygen sag curve was developed :

D = K1	 LO e-K1 t + D - K1	 L0

	

t
K2 -Kl

	

0

	

K2 -Kl ' e 2

where LO is the initial BOD in mg/1 (or kg/m 3 ) and DO is the initia l

deficit in mg/1 (of kg/m 3 ) .

(2 )

(3 )

(4)
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The development of the oxygen sag curve allowed prediction of a

future oxygen deficit if information on the K1 , K2 , L0 , D0 , and t were

available . It also enabled calculation of any one of these variables

from measurements of the others .

More detailed models . based on the work of Streeter and Phelps have

been proposed to account for additional oxygen sources and sinks .

Figure 1 diagrams the possible sources and sinks of oxygen in surfac e

water . Oxygen sources that can be modeled include reaeration, inflowing

oxygenated water, and photosynthesis . Oxygen sinks can include biochemica l

oxygen demand, respiration of photosynthetic organisms, inflowin g

deoxygenated water, deaeration of supersaturated water and benthic oxyge n

demand . Most oxygen models assume that the riverFapproaches a uniform

and steady state condition with the stream cross section being completel y

mixed . This allows one-dimensional modeling of dissolved oxygen concentra-

tions along a reach and simplifies the equation . Additional complexity

is required where significant diurnal or tidal fluctuations occur, wher e

longitudinal dispersion modifies dissolved oxygen and BOD concentrations ,

.where other mechanisms contribute to BOD inputs and removal, and wher e

other factors invalidate the model assumptions . .

Several more detailed models using the balancing approachLof Streete r

and Phelps have been found to be appropriate under various stream conditions .

From studies on the biochemical oxygen demand created by logs, needles ,

and leaves, Schaumburg and Atkinson (1970), Atkinson (1971), and Berry (1974 )

concluded that BOD additions could not realistically be modeled as eithe r

slug or constant inputs . Berry noted that the BOD leaches from the slas h

before it is available for rapid oxidation . Soluble organics, once released

from the slash, are then oxidized according to the process described b y

equation 1 . Berry visualized the leaching process as a linear first orde r

decay reaction . Equation 5 represents the leaching process :

dS =
dt -K

4S

where S is the potential BOD remaining as slash in mg/l (or kg/ m 3 ) and K4

is the leaching rate constant in days -l (or s 1 ) .

(5)
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Using the varying addition rate expressed in equation 5, Berr y

solved for the rate change of the soluble BOD (L) :

	

dt = K4S0 e - K4t - K 1 L

	

(6 )

where SO is the initial slash BOD in mg/l '(or kg/m 3 )-. '

In cases concerned with loggin g . del5ris in streams, Berry showe d

that the. dissolved oxygen deficit is then found using equation 7 :

D =	
K1 (LO - K4S0 ) (e-K4t -

K2 - K4

	

. K1 -K4

+

	

K1

	

K4-S0

	

(e-K4t - e-K
2t ) - + Doe

-K2t

K2 - K4 ( K1 - K4 )

Equation 7 is applicable for forest streams where . there is steady an d

uniform flow, uniform debris loading, constant temperature, and n o

scouring, deposition, or photosynthesis .

Atmospheric Reaeration ,

With the development of models tosimulate oxygen processes i n

streams, it has become necessary to estimate the parameters an d

coefficients in the various models . Atmospheric reaeration costs t o

adjust gas concentrations in solutions toward saturation as defined b y

equation 1 . When stream temperature and barometric pressure are known ,

it has been shown that the saturation concentration of oxygen can b e

calculated . Measuring the actual dissolved oxygen concentration permit s

determination of the deficit . .Knowing the deficit allows calculatio n

of the rate of gas exchange when the reaeration rate constant (K 2 ) i s

known or can be predicted .

(7)
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Several different approaches to predicting reaeration coefficient s

have been used . Early research and practical observations showed tha t

the rate of gas transfer between the atmosphere and a solution is muc h

more rapid in agitated fluids than in quiescent fluids . As interna l

motions or'turbulence increase, the rate of gas transfer increases .

Turbulence results where the viscous forces of adhesion and cohesio n

become small compared to inertial forces . Volume elements are swirled

and mixed within the bulk motion in an irregular and unpredictable -

spectrum of motions . Because turbulence arises from the physica l

interaction of the stream and its channel, the accepted approach ha s

been to predict reaeration,rates using stream flow and channel parameters .

This overall approach which links the rate of reaeration to physical an d

hydraulic parameters has been examined in two different types of studies :

those which concentrate on gas exchange theories, and those which ar e

empirical or semi-empirical in nature .

Gas Exchange Theorie s

The gas exchange theories most appropriate to this study of .reaeration

in small streams are those proposed by Dobbins 0456, 1964 ; 1965), O'Conno r

and Dobbins (1956), Thackston and Kienkel (1969),'and Tsi•voglou (1967) .

Dobbins (1956, 1964, 1965) and O'Connor and Dobbins (1956) develope d

a model in which a laminar film of thickness x overtops the turbulen t

bulk flow . Using the age distribution assumed by Danckwerts (1951), Fick' s

second law of diffusion, and the boundary conditions :

C = C L whent = 0, 0 < y < x

C = C s when t>0, y = O

C = CE when t>0,_y = x

a solution for the liquid film coefficient was developed :

KE =

	

coth (rx2 )½m

	

D
,_m

( 8 )
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Another model, which does not assume a film at the liquid surface ,

but does assume periods of quiescence in vertical columns were als o

proposed :

Kt.

= 4TF

tanh ( rD2 ) 2
Dm

where H is the hydraulic depth of the stream in ft (or m) . Since the

terms coth (rp2)2 and tanh (rp2) approach 1 for most stream conditions ,
m

	

m

Dobbins suggested that equations 8 and 9 be simplified to :

	

A (Dm
r) 2

K2 - KL V

	

H

Thackston and Krenkel (1969) assumed that the reaeration coefficien t

was a function of the surface renewal and was inversely proportional t o

the depth of the stream . In the Danckwerts and O'Connor and Dobbin s

models, the reaeration coefficient was found to be proportional to r 2.

Thackston and Krenkel proposed that K 2 should be proportional to r .

Tsivoglou (1967) developed his model using the steady state conditio n

of saturation . At saturation the rate of movement of gas molecules int o

the water (re in mg/s) is equal to the rate of movement of gas molecule s

out of the water (r o in mg/s) . The rate at which molecules move int o

solution is a function of the gas concentration in the atmosphere . The

rate of molecules moving out of solution is a function of the concentra-

tion of the dissolved gas in the liquid at the interface . Tsivoglou

modeled ro as :

ro = b(hCwn sA)

	

(11 )

where h is the thickness of liquid available for loss of gas, b is th e

percent of molecules being lost from h, C w is the concentration o f

dissolved gas at the surface, n s is the number of fresh surfaces expose d

at the interface, and A is the area of interface .

(9 )

(10)
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Empirical Equation s

Many attempts have been made to measure hydraulic parameters an d

correlate them directly to the reaeration coefficient .

Streeter and Phelps correlated measured reaeration rates agains t

several streamflow characteristics in the Ohio River . They proposed

that the reaeration rate constant could be predicted .using the equation :

	

K2 =	 C	 U
0 .434 H 2

m

where the coefficient C is a function of stream surface slope, H m i s

the depth above the minimum flow in ft (or m), U is the velocity in ft/ s

(or m/s), and n is a function of the mean relative increase in velocity

with a 5 ft increase in depth . This formula is applicable only for thos e

reaches of the Ohio River studied and only during periods in which th e

discharge levels are comparable to those studied (Wilson= and MacLeod 1974) .

Owens, Edwards, and Gibbs (1964) developed an empirical equation fo r

small English streams by artificially depleting dissolved oxygen . Usin g

data from their own study and the Churchill study, the English grou p

proposed that the reaeration coefficient could be estimated by th e

equation :

	

9 .41	 0 .67 -1 .85

	

K2 __ 0 .434 U

	

H

Isaacs and Maag criticized the use of data sets that were not continuou s

and noted that the equation was biased in favor of sites where reaeratio n

was rapid .

Holtje (1971) studied reaeration rates in a small Oregon stream usin g

procedures similar to those employed by Owens, Edwards and Gibbs . Holtje

recommended the equation :

(12 )

(13 )

K2(T) = 1
.016

(T-20)
(181 .6 sUg - 1657 s + 20 .86) (2 .304)

	

(14)
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as the best predictor of reaeration rates in small, turbulent mountai n

streams . Although Holtje's equation showed a correlation coefficient

of 0 .9920, it is strongly influenced by a few large K 2 values and show s

substantial variations where K 2 values are small . Critical oxyge n

problems are more likely to occur where reaeration is slow . The genera l

use of this equation must also be questioned because it is based on dat a

from a single stream site .

Extreme Turbulence Effects

Most of the equations discussed above for predicting the reaeratio n

rate coefficient were developed under the assumption that thesurfac e

remains continuous . In many small streams this'is not the case . Where

turbulence is severe, entrainment of bubbles, free fall, and drople t

formation may contribute to an increasing rate, of reaeration .

Bubble Mass Transfer

Much theoretical work has been done in the field of industria l

engineering to describe and quantify the process of mass transfer betwee n

bubbles and liquids . Even under controlled conditions with the releas e

of uniformly sized bubbles, the liquid mass transfer coefficient (KL ) i s

not constant . In natural streams, the relative oxygen concentrations of

the bubble and the liquid will determine whether bubbles decrease i n

size (as in a deaerated liquid) or increase (as in a supersaturate d

liquid) .
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STUDY SITE S

Seven streams were selected for field testing . These sites were

chosen because they represent a range of hydraulic conditions that woul d

typically be found in small first or second order Oregon streams . Two

streams are in the Willamette Valley, two are in the Coast Range, an d

three are in the Cascade Range (Figure 2) .

Oak Creek

The Oak Creek site is located in the .Willamette Valley, 6 .5 km

(4 miles) north of Corvallis . Oak Creek is a tributary of . the Marys

River, joining it near the confluence of the Willamette River . The

Oak Creek study site is near the south entrance of McDonald Forest, a n

experimental tract owned and managed by Oregon State University .

Immediately downstream is an experimental vortex weir and gaging station .

Upstream about 200 m is an experimental flume . Discharge measured durin g

the study varied from less than 0 .006 m 3/s (0 .2 cfs) to nearly 0 .03 m 3/s

(1 cfs) . At the top of the study reach elevation is about 146 m (480 ft )

above msl .

The study section is a natural channel . Along this stretch of Oa k

Creek the streambed has long pools separated by riffles . The streambed

varies from silty in the pools to rocky in the steep sections, . Surroundin g

vegetation includes red alder (Alnus rubra Nutt .), bigleaf maple'(Ace r

macrophyllum Pursh .), black cottonwood (Populus trichocarpa Torr . and

Gray), Pacific serviceberry (Amelanchier alnifolia Nutt, var . semiihtegeri7

folia (Hook) C .A. . Hitchc .), mountain snowberry (Symphoricarpos'molli s

Nutt .), Himalaya blackberry (Rubus procerus Muell .), and poison oak (Rbu s

diversiloba Torr . and Gray) .

Six segments were recognized as hydraulically distinct in the stud y

reach . Segments 1, 2, and 4 are pools with very low gradients and

velocities of flow . Segments 3, 5, and 6 are riffles with exposed rock .

The six segments total 87 .5 m (287 ft) in length . Total drop over the

study reach is about 1 .2 m (4 ft) .
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Berry Creek

Berry Creek is located about 16 km (10 miles) north of Corvalli s

in Dunn Forest, another tract owned by Oregon State University . Berry

Creek is a tributary of Soap Creek which flows into the Luckiamut e

River . The Luckiamute is a tributary of the Willamette River .

The study site is surrounded by second growth Douglas-fir .

(Pseudotsuga menziesii (Mirb) Franco) and the steep banks are line d

with red alder . Berry Creek is a small, moderate to swiftly flowin g

stream; the streambed is rocky . Discharge in Berry Creek varies from

0 .003 m3/s (0 .1 cfs) in the summer to a peak of 0.57 m3/s (20 cfs) i n

the winter or spring (Warren et al . 1964) . The elevation of the stud y

site is about 135 m (450 ft) above msl .

In 1971 Holtje studied reaeration in Berry Creek about 270 m (900 ft )

downstream'from the present site . Although hydraulic modifications t o

the earlier test site prevented closer replication, the use of the sam e

stream allows a comparison of results between these two studies .

Four segments totaling 64 m (210 ft) in length were selected . The

total drop for the four segments is nearly 2 m (6 ft) . A section of

dissected streambed between segments 2 and 3 was excluded from the study .

Segment 1 is a pool ; the other three are riffles of moderate gradient .

Needle Branch

Needle Branch is a coastal stream in the Alsea River basin . The

study site is located 16 km (10 miles) east of the Pacific Ocean nea r

Toledo . Needle Branch is a tributary of Drift Creek which flows int o

the Alsea River .

The study site was clearcut in 1966 as part of the Alsea Watershe d

Study . No buffer strip was left during the clearcutting but a dens e

thicket of red alder, willow (Salix-spp . L .), and salmonberry (Rubu s

spectabilis Pursh) now shades the stream . Understory components of th e

vegetation include sword fern (Polystichum munitum (Kaulf) Presl . var .



- 18 -

munitum), .vine maple (Acer circinatum Pursh), and bracken fer n

(Pteridium aquilinum (L . ) Kuhn var . lanuginosum (Bong .) Fernald) .

Douglas-fir seedlings planted after harvesting are restocking the

site away from the stream .

Needle Branch is a very small and slow flowing stream . Discharge

is reported to vary from 0 .0003 m3/s (0 .01 cfs) to winter peaks of 1 .81

m3/s (64 cfs) . The streambed is a composite of gravels . The elevation

of the study site is about 134 m (440 ft) above msl .

Two segments of 30.5 m (100 ft) and 24 .4 m (80 ft) in length were

tested . Both sections have a low gradient ; the second section is deeper

and narrower. Total drop for the test segments is 0 .64 m (2 .1 ft) .

Deer Creek.

Deer Creek is located about 3 .2 km (2 miles) northwest of . Needl e

Branch Creek . It is a tributary of Horse Creek which flows into Drif t

Creek . The drainage was part of the .Alsea Watershed Study and parts o f

it were clearcut in 1966 . A buffer strip was left to protect the stream .

Red alder, salmonberry, vine maple, and sword fern are common near th e

study site .

The section of Deer Creek used in this study is a steep and rocky

channel . Discharge and velocity of flow are much greater than in Needl e

Branch Creek . Discharge is reported to range from 0 .004 m 3/s (0 .15 cfs )

to 5 .6 m3 /s (201'cfs) . The .creek drains an area of 300 hectares (1 .1 7

miles 2 ) ; elevation of the study site is about 188 m (625 ft) above msl .

Five segments totaling 74 .7 m (245 ft)-in length were isolated ;

total drop is 1 .70 m (5 .59 ft) . Sections 2 and 5 have the least gradient .

Section 5 is a large pool . Sections 1, 3, and 4 are turbulent riffle s

with exposed rocks .

Watershed3

Watershed 3 is located in the H .J . Andrews Experimental Forest ,

72 km (45 miles) east of Eugene . The stream draining Watershed 3 i s

a tributary of Lookout Creek, which flows into Blue River . Blue River
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is a tributary of the McKenzie River which joins the Willamette nea r

Eugene . Watershed 3 is an experimental basin that has been used i n

several water quality studies (Brown 1967 ; Rothacher et al . 1967) .

The site used in this study was scoured to'bedrock by a debris torrent .

The resulting streambed has several sections with virtually no particl e

roughness . The rack underlaying the basin is largely greenish breccias

and tuffs (Rothacher,.et al .) . Vegetation in the basin includes Douglas -

fir, red alder, vine maple, red huckleberry (Vaccinium parvifolium Sm ..) ,

thimbleberry (Rubus parviflorus .Nutt .), trailing blackberry (Rubus

ursinus Cham . and , Schlect . var . macropectolus (Dougl .) Brown'), and black -

cap raspberry (Rubus•leucodermis Dougl' .) .

Discharge is'reported by Rothacher to have varied from minimums :

below 0 .006 m3/s (0 .2-+fs) to a maximum of 1 .2 m 3/s (40 cfs) . Elevation

.of the study site . is about 564 m (1850 ft) above msl . The total chang e

in elevation for the 44.2 m (145 ft) of streambed Studied is 5 .14 m

(16 .85 ft) .

Four segments were identified . Segment 1 is a fast-dropping, narrow

channel of smooth bedrock . : Segment . 2 is deeper buiz drops even more rapidl y

over bedrock and rock debris . The third segment iS flatter with more bed

material ; the fburth is a waterslide dropping more than 2 m (6 ft) .

AndrewsI

Andrews I is an unnamed stream less than 1 .6 km (1 mile) east of

Watershed 3 . It flows[into Lookout Creek . Andrews' I is a steep an d

turbulent stream ; both upstream and downstream from the study segmen t

are numerous small waterfalls and drops . The study segment is relativel y

narrow and shallow . The streambed is stair-stepped with uniform smal l

drops totaling 2 .9 m (9 .5 ft) over the 27 .4 m (90 .4 ft) section studied .

No data on discharge is available, but frequent mealsurements and obser-

vations indicate flow patterns similar to those of atershed 3 . The

streamside vegetation and elevation are also comparable .
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Andrews I I

Andrews II is a small stream about 4 .8 km (3 miles) east o f

Andrews I . It also is a tributary of Lookout Creek . The upper sectio n

of Andrews II is similar to Andrews I, and the lower section is simila r

to segments in Berry Creek and Oak Creek . The streambed materia l

ranges from large rocks in the steep upper portions to small pebble s

in the flat lower section . Vegetation is similar to that of the othe r

Andrews sites, although elevation is slightly higher .

Five segments were used, totaling 33 m (110 ft) in length . A

portion of the channel within the study reach was excluded from measure-

ments because it was highly dissected . The total drop is 1 .84(6 .04 ft) ,

most of which occurs in the upper 15 m (50 ft) of the test reach .
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PROCEDURES

The disturbed equilibrium method was used to determine the reaeratio n

rate coefficient in natural streams . The procedures used by Holtje were

closely followed .

	Creating an Artificial Oxygen Defici t
Using Sodium Sulfit e

Method

Dissolved oxygen was artificially depleted by releasing a reducin g

agent, sodium sulfite (Na 2SO3 ), into the stream . Oxygen combines wit h

sodium sulfite to form sodium sulfate (Na 2SO4 ) in the presence of the

catalyst cobaltous chloride&.(CoC1 2) .

2Na2SO3 + 02	 2-	 -: 2Na2SO4

The concentration of sodium sulfite necessary to create a desire d

deficit in the dissolved oxygen concentration of a stream can be cal-

culated with the equation (developed by Holt4e) :

=
1 .335 x 104 DQ

Css

	

I'

where Css is the concentration of sodium sulfite in g/1, D is the desire d

dissolved oxygen deficit in mg/l, Q is the discharge in ft 3/s (cfs), and

I is the injection rate in ml/min .

A Mariotte injection vessel was constructed from a 5 gallon (20 1 )

glass carboy . A 25 1 rigid polyethylene container was substituted fo r

the glass carboy in later tests . The Mariotte vessel has the advantage

of delivering fluid at a constant rate despite changes in the level o f

the solution . The air inlet tube and solution outlet tube were made o f

CoCI
(15 )

(16)
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3/16 inch (0 .005 m) rigid plastic tubing . A 1 m length of flexibl e

tubing was connected to the top of the outlet tube . The rate of flow

was controlled by , raising the vessel above the stream and adjustin g

the end of the tubing-to a level below the outlet opening . A siphon

was created by blowing into the air inlet tube .

Sources of Erro r

Although sodium sulfite provides a convenient means of depletin g

the dissolved oxygen in a stream, Benedek (1971) notes that thi s

technique can introduce additional sources of error . Three possibl e

errors introduced by the use of sodium sulfite are : a slow reactio n

causing a residual oxygen demand downstream ; interference by the Co
++

catalyst with chemical measurements of dissolved oxygen ; and modificatio n

of stream reaeration properties due t o . the contamination by sodium sulfate .

None of these problems proved to be significant .in this study .

Reaction Time

Rapid and complete reaction of the sodium sulfite is necessary fo r

accurate measurement of K2 values . A solution containing 5 mg of cobaltou s

chlorite per 1 of sodium sulfite solution was suggested by previous studies .

In field tests, it was found that substances in natural waters tie up =:tbe

catalyst so that it must be used in greater strengths . The cobalt demand

seems to vary with the stream and season . In order to insure that a n

adequate but minimum amount of catalyst was injected, Co++ was titrated

into a mixture of stream water and sodium sulfite . A 500 ml sample o f

stream water with approximately 40 mg of Na 2 SO3 was titrated with a

solution .of 50 mg/1 of CoC1 2 . A ..Yellow Stnr-ings Instruments Model 5 4

Dissolved Oxygen Meter was used to monitor the dissolved oxygen concen-

tration . During the titration, little or no change in dissolved oxyge n

is observed until a break-even point is reached where free cobalt i s

available . A small additional quantity of cobalt results in a complet e

and rapid reduction of the dissolved oxygen . the g/l of cobaltou s

chloride (Ccc ) needed for a rapid reaction can be calculated from th e

equation :
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'cc = 17
0

where Ti is the amount of titrants in ml used to achieve the break point ,

Q is the discharge of the stream in cfs, and I is the injection rate i n

ml/min . Use. of the indicated quantity of catalyst resulted in rapi d

deaeration without residual oxygen demand .

Chemical Measurement of Dissolved Oxyge n

The sodium sulfite/catalyst mixture did not interfere with chemica l

determination of dissolved oxygen because samples were taken befor e

injection . Chemical determinations of dissolved oxygen were used onl y

to standardize the Dissolved Oxygen Meter .

Modification of Stream Reaeration Propertie s

Benedek states that the presence of sodium sulfate (or any elecIrolyte )

in water will influence the viscosity and surface tension of the water .

Consequently, the solubility of oxygen and reaeration rate in the solutio n

will also be modified .

The reduction in the solubility of oxygen that results from addition s

of sodium - sulfate to the water does not affect'the calculations of K 2 i f

the final, saturation concentration is measured ., In any case, the lo w

concentrations of sodium sulfate used in this study produced no obs e lvabl e

differences in oxygen solubility .

Additions of sodium sulfate to water may, however, change the value o f

K2 because both diffusivity (Dm ) and area of atmospheric-liquid interface

(A) can be affected by changes in the . viscosity and surface tension . I

Ratcliff ' and Holdcroft (1963) report that the decrease in diffusivit y

resulting from the addition of an electrolyte ' can be predicted from th e

depression of viscosity . They use the equation :

log10 ( Dmo) = 0 .637 log
1 0 ( u )Dm

	

o

where Dm and uo are the diffusivity and viscosity of pure water .
0

Ti Q
I

(18)
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Tsivoglou, in his development of a reaeration model, proposed tha t

molecular diffusivity could be predicted using the equation :

	

D =
RT K

m

	

No3'rp d

where R is the universal gas constant (0 .08205 1 • atm/ mole • °K), TK
is the temperature in °K, No is Avagadro's number (6 .023 x 1 023 molecules /

mole), p is the viscosity of the liquid, and d is the diameter of the ga s

molecule . From equation 19, the ratio of the molecular diffusivity fo r

a liquid with and without an electrolyte in solution can be shown to be :

(20 )

Although equations 18 and 20 are different, they both show that molecula r

diffusivity can be influenced by changes in viscosity .

Most researchers recognize that Dm is an important parameter i n

determining the gas exchange coefficient . Both Tsivoglou and Dobbin s

compared gas species and found that the ratio of gas diffusivities wa s

directly proportional to the ratio of exchange coefficients :

D

	

Ka

	

ma

	

Kb

	

Dmb

where Ka and Kb are the gas exchange coefficients for gas species a and b

in m/s . Any change in the molecular diffusivity will therefore change th e

oxygen exchange coefficient (KL ) .

Dobbins theorizes that the renewal rate (r) is another factor influence d

by surface tension and viscosity . A change in r would, in turn, affect the

value of KL .

No measurable change in Dm , r, or KL would be predicted for th e

concentrations of solute used in this study .

(19 )

(21)
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Interface area is theoretically increased with the addition o f

solutes because of increases in both surface tension and viscosity .

Increased surface tension is reported to prevent coalescence of bubble s

and could possibly prevent surface films from uniting . Calderbank foun d

that bubble surface area increased in fluids with greater viscosity .

This may represent the tendency of viscous liquids to maintain deforme d

shapes .

From tests of different concentrations of sodium sulfite, Benede k

reports that "the error resulting from the addition of 100 mg/1 of N a2SO3 ,

in a non-steady state reaeration test, would be negligible ." The maximum

concentration of sodium sulfite used in this study was less than 90 mg/l .

Environmental Considerations of Test Chemical s

Sodium Sulfit e

An important consideration in any study that releases chemicals int o

the environment is the impact of those chemicals . The use of larg e

quantitites of the salt sodium sulfite as a reducing agent for dissolve d

oxygen was of particular concern despite its accepted use in severa l

reaeration studies .

Under test conditions, sodium sulfite was released into streams i n

the presence of the catalyst Co . Streams usually contain some trac e

metal ions capable of acting as catalysts, and Chen and Morris (1972 )

report that under natural conditions sodium sulfite is rapidly oxidize d

to sodium sulfate .

The hydrated form of sodium sulfate, sodium sulfate decahydrate ,

is a naturally occurring salt . Pure deposits are found in Horseshow

Lake, Saskatchewan, and mixed deposits are found in Searles Lake ,

California . Sodium sulfate decahydrate is commonly known as Glauber' s

salt after Rudolf Glauber who produced it from sulphuric acid and sodiu m

chloride . Glauber's salt was first used as a laxative and is now

commercially used in pulp and textile processes . It is a normal salt ,

exhibiting the characteristics of neither a base nor an acid . Sodium

sulfite and sodium sulfate are both highly soluble and quickly flus h

through the stream system . Physical absorption and biological uptak e

of these salts have not been studied .
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Cobaltous Chloride

The cobaltous chloride injected with the sodium sulfite as a

catalyst is added only in minute concentrations ; but because cobal t

is reported to be potentially toxic to sheep and cattle, carefu l

evaluation and monitoring of cobalt levels is desirable .

Cobaltous chloride is used industrially in the preparation o f

paints and as an indicator of humidity . Soluble forms of cobalt suc h

as cobaltous chloride have been reported to produce both therapeuti c

and toxic effects on sheep and cattle depending on the concentration o f

cobalt . In low concentrations cobalt, which is a component of vitami n

B-12, serves as an antianemic . Cobalt is non-accumulative ; it is rapidl y

eliminated from the body .

Church and Pond (1974) reported that sheep can tolerate 3 mg of Co
++

per kg body weight for a period of 8 weeks with no toxic reaction . Clark-.
Hewley (1974) claims that doses of 50 mg of Co+ per day cause no toxi c

reaction in livestock . At very high levels cobalt can cause excessiv e

formation of hemoglobin with resulting hyperplasma . Doses of 300 mg

Co++ per kg body weight are reported to be fatal in sheep .

Concentrations of cobaltous chloride in test streams were raised a

maximum of 1 mg/l during testing periods . That concentration of cobal t

corresponds to about 0 .42 mg/1 . A 1000 lb cow, heat stressed at 100°C ,

could consume up to 55 .5 1 of water (an amount equivalent to 12% of it s

body weight) . The resultant dose of Co ++ from the stream would be 23 . 3

mg,, assuming that the cow drank from test water all day .

The longest injection period used in . this study was 4 hr . At mos t

sites the test stream was rapidly diluted with water from other stream s

joining it below the test site . Where possible, the Co++ concentration s

used were well below the 1 mg/l maximum .

Field Measurements

Hydraulic parameters measured for the selected stream segment s

included discharge, width, depth, length, travel time, and change i n

elevation .
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Discharge was measured near the study sites . Needle Branch, Deer

Creek, and Watershed 3 are equipped with experimental weirs . Culverts

are located on Berry Creek, Andrews I, and Andrews II . When discharg e

was low, flow could be collected and timed . Splitting of flow wa s

necessary at larger discharges . An experimental vortex weir and bypas s

flume are located downstream from the Oak Creek site . Discharge wa s

measured by determining the flume cross section and velocity of flow .

At each stream, discharge could be confirmed by measuring the injectio n

rate and artificial oxygen deficit created by the addition of sodiu m

sulfite . From equation 16 :

=	 !CI	

1 .335 x 10' T

The value of Q, calculated from the oxygen def i

on the upper limit of discharge .

At the study site, stream segments with u n

isolated and marked with stakes . The segment 1

measured along the centerline of the stream . S

at the stations and at 10 ft (3 .05 m) interval s

unusually irregular cross sections were located within a segment, th e

interval .-was altered to obtain a more represent lative measurement . At

each measurement point, the depth of the stream at 1 ft intervals acros s

the channel was recorded . Where the cross-channel line intersected roc k

and organic debris above the surface of the watrr, the length of thes e

intersections was noted .

Time of travel within a segment was calculated by dropping Rhodamin e

B dye into the stream at an upper station and measuring the time require d

for the leading edge of the dye cloud to reach the next station .

The elevational change occurring within a segment was measured wit h

a transit or level and a surveyor's rod . The elevational change wa s

measured as the difference between the water surface at , the upper and

lower stations .

(22)

cit, .provided a good chec k

iform charactistics_were

ength between stations wa s

tream width was measured

between stations . Where
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Figure 3 . Dissolved oxygen sampler for idometri c
determination .
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The dissolved oxygen concentration was measured with a membran e

electrode probe . The probe was standardized according to an idometri c

determination of dissolved oxygen concentrations . Stream water wa s

collected for the idometric determination with a sampler similar t o

the APHA type design shown in "Standard Methods ." The sampler was , con-

structed of 1/4 inch (0 .006 m) plexiglass and is diagrammed in Figure 3 .

The upper gasket was made of 1/8 inch (0 .003 m) neoprene and the ai r

outlet and water inlet tubes were pieces of 3/8 inch (0 .010 m) plexiglas s

tubing . An elastic cord held the cap and cylinder together during sampling .

This design allows overflow of the bottles with minimum air contact .

Two 300 ml BOD bottles were filled and allowed to overflow for 1 0

seconds . Hach Chemical Company Reagents R conveniently packaged in pre -

measured "pillows," were used to determine dissolved oxygen concentratio n

according to the azide modification of the Winkler Method . The contents

of a manganous sulfate pillow and an alkaline iodide-azide power pillo w

were added to each BOD bottle . The manganous sulfate added to the sampl e

releases Mn++. The alkaline iodide-azide pillow adds sodium hydroxid e

(NaOH), potassium iodide (KI), and sodium azide (Nay . The Mn++ i. s

oxidized in the reaction :

Mn(OH) 2 + 202

	

MnO2 + H2O

	

2 3

When sulfamic .acid is added to the bottles, the iodide ion .(I .) . is oxidized

MnO2 + 2 I + 4H+

	

Mn ++ + I 2 9 + 21120

	

(24 )

The sodium azide, added earlier with the potassium iodide and sodiu m

hydroxide, combines with nitrite (NO 2 ) under acid conditions to stop i t

from oxidizing I to I 20 .

Titration was made with phenylarsine oxide (PAO) solution rather tha n

the usual sodium thiosulfate (Na 2S203 ) . PAO solution is reported to f be more

stable than sodium thiosulfate . The addition of PAO solution results in th e

reduction of I 2 0 to I - . The presence of I 20 can be determined using a

to free iodine ( I 2 0 ) in reaction :
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starch indicator . When
I20

has been removed, the titration is complete .

Because the full 300 ml sample was used in determining the oxygen concen-

tration, the mg/1 of oxygen in the sample was calculated as two-third s

of the ml of titrant used .

This determination of dissolved oxygen concentration was used t o

calibrate a Yellow Springs Instruments-Model 54 Oxygen Meter (YSI-54) .

The YSI-54 is a Clark-type, membrane-covered, polarographic probe . A

membrane permeable to gases allows oxygen to enter the sensor chamber .

A polarizing voltage is applied which causes the oxygen to be reduced a t

the cathode and a current to flow across the sensor cell . The curren t

is a function of the rate oxygen enters the sensor . Automatic adjustment s

are made for changes In the pressure of the dissolved oxygen due to change s

in temperature . The YSI-54 can also be used to measure temperatur e

directly .

Temperature and disso
a
ved oxygen concentration were measured at al l

stations prior to deaerati
lI
n . After deaeration was begun, the YSI-54 .wa s

monitored until the dissoltred .oxygen concentration had stabilized . Temp-

erature and dissolved oxygen concentration were then remeasured at al l

stations .
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PRELIMINARY DEVELOPMENT OF AN EQUATION FOR

PREDICTING THE REAERATION COEFFICIENT I N

SMALL TURBULENT CHANNEL S

The reaeration coefficient ( K2 ) has been previously defined in the

equation :

dD =

	

dt

	

-K2 D

where dD/dt is the change in the oxygen deficit with time . The value o f

K2 is determined by the rate at which gas is exchanged between the atmos-

phere and liquid for a unit area of interface (K L ), the total area o f

surface exposed (A), and the volume of water being reaerated (V) . Hydrauli c

parameters determine the intensity of turbulent mixing, which controls th e

gas transfer coefficient (K L ) . The mean hydraulic depth (H) can be used to

characterize the area and volume . These relationships can be expressed as :

	

K = A

	

= K4
2

	

V KL

	

H

Equation 25 shows that A, V, and KL must be determined in order to accuratel y

predict K2 .

Volume

The volume of flow in a stream segment undergoing reaeration can b e

closely approximated using the segment length and average cross-section .

Errors are introduced by nonuniform channel characteristics, entrainmen t

of bubbles, and the presence of non-mixing "dead zones ." Numerou s

measurements of stream depth will minimize errors caused by bottom an d

surface irregularities . (See the Discussion) . Inception of bubbles can

occur where the velocity of turbulence normal to the surface create s

enough kinetic energy to overcome surface tension . Gangadharaiah et al .

(1970) report that the concentration of bubbles entrained can be calcu-

lated with the equation :

(1 )

(25)
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1 -C=

	

1

1 + C'nF
3'2 '

where

	

is the mean concentration of entrained air (by volume), n i s

Manning's roughness coefficient, F is the Froude number, and C' is a

channel shape constant . Using data from Straub and Anderson, Gangadharaia h

found that C' ranged from 1 .35 in rectangular channels to 2 .16 in trape-

zoidal channels . Using this relationship, the true volume of water can b e

calculated from the formula :

V = V
o o

1 + C'nF
3' 2

where V o is the observed stream volume . The change in volume can become a

very significant factor in artificial spillways . In natural channel s

bubbles are entrained but are usually a very minor component of the volume .

This is particularly true in less turbulent conditions .

The presence of non-mixing "dead zones" has been reported in studie s

dealing with both stream temperature and reaeration . Thackston and Krenkel

(1969) placed bricks in an artificial channel to create vertical eddie s

which were somewhat isolated from the main flow . No dffference was foun d

between the predicted K2 values (based on average hydraulic characteristics )

and observed K2 values . In contrast, Brown (1972) found that predictio n

of maximum stream temperatures was greatly improved when isolated eddie s

could be eliminated from the calculations :

All pools are not fully mixed . Only the
flowing portion of the pool should be in-
cluded in the calculation of surface area .
The average width of a reach can best b e
estimated by following a dye cloud throug h
the reach taking frequent measurements o f
its width .

The different conclusions drawn from these two studied can be explaine d

by the nature and degree of isolation . In the Thackston and 1 renkel•study ,

the "dead zones and flow discontinuities " were probably still . mi•xaing and

(27)
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and influencing the stream . Small discontinuities in the streambe d

probably do not cause complete isolation . This is particularly tru e

of an artificial channel where the flow is confined . Dye observation s

made during Brown's study indicated that the portions of the strea m

eliminated from calculations were definitely isolated . When a pool can

become thermally or hydraulically isolated it is appropriate to eliminat e

the unmixed portion from the calculations .

Interface Area

The liquid-atmosphere interface of a stream segment with lamina r

flow can -be defined as the product of the average width and length .

Dobbins (1964), Thackston and Krenkel, and Parkhurst and Pomeroy (1972 )

have shown that in turbulent flow it is necessary to account for an in -

crease in the surface area caused by rippling and deformation . The

relationships developed by these authors used the Froude Number t o

calculate the proportional increase in surface area .

Parkhurst and Pomeroy (1972) developed equations for turbulent flo w

without bubble entrainment . It seems reasonable to assume that the force s

which cause bubbles to be entrained in flow are the same as those causin g

surface distortion . If this is the case, the total increase in surfac e

area due to both surface distortion and entrainment of bubbles may b e

predicted from one equation . Gangadharaiah's equationcan be used for

this purpose if the following assumptions are made : the bubble concentra-

tion (C) is inversely proportional to depth ; a characteristic or averag e

radius (Rb ) for the bubbles can be used to describe the relationshi p

between entrained bubble volume and entrained bubble surface area ; the

average bubble size always remains constant for different conditions ;

and surface distortion can be related to the same physical propertie s

that cause bubble entrainment .

The ratio of the volume of flow containing entrained bubbles .to flow

without bubbles can be expresseI using Gangadharaiah's equation :

= C'nF3/2 + 1 .
(28)
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From this equation and the assumptions made above, it is possible t o

develop an equation for the coefficient CA which accounts for the increas e

in surface area resulting from turbulence and bubble entrainment . Thi s

equation is :

CA = cl (l + c2nF 312 )

	

( 2 9 )

where c l and c2 are constants . If a stream or experimental channel were

evaluated under conditions where n remained nearly constant and c l wa s

included with other constants, then C A could be expressed as :

CA = (1 + c3F3/2 )

	

(30 )

which is very similar to the equations of Parkhurst and Pomeroy (1972) ,

but now includes bubble entrainment as a component .

Gas Transfer Coefficien t

A model of reaeration must account for the roles of both molecula r

diffusion and turbulent mixing . An increase in either process has bee n

shown to increase the rate of reaeration . It is through the gas transfer

coefficient (KL ) that molecular diffusion and turbulent mixing influenc e

the reaeration rate constant (K 2 ) .

Molecular diffusion results from the inherent kinetic energy of ga s

molecules . The average kinetic energy of a perfect gas molecule i s

represented by the equation :

KE = 3/2 KT

	

(31 )

where K is Boltzmann's constant (1 .38042 x 10-16 ergs/°K) and T is in °K .

The average relative speed of molecular movement can be determined from th e

equation :
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KE = ½Mv2

	

(32 )

where M is the mass of the gas molecule and v is its velocity .

From equations 31 and 32 it can be seen that as temperature increases ,

there is a corresponding increase in molecular velocity . With elevated

molecular velocities, moecular diffusivity (D m ) increases . Other variables ,

including surface tension and viscosity, are temperature dependent ,

influencing both molecular diffusivity and hydraulic characteristics o f

water . However, the change in reaeration rate with a temperature change

has been mode'ed using Dm- as the temperature-dependent variable .

The mole ular diffusivity of a solute in a given solvent is dependen t

on properties of both . Each gas species will have a unique D m in water .

Reaeration rates of different gases in water are related to their molecula r

diffusivities, which further supports the importance of D m in determining

KL

In formulating the equation to predict KL , it becomes necessary t o

consider whether a laminar film developes at the gas-liquid interface .

Any change in the concentration of dissolved oxygen in a fluid which result s

from physical reaeration must occur due to a flux of gas molecular acros s

a gradient at the air-liquid interface . Several of the studies discussed

in the Literature Review section assume that a film exists at the surfac e

of the water . Film theories suggest that adhesion, cohesion, and surface

tension hold a film of water in isolation from the bulk flow . If the fil m

can be considered deep relative to the distance a molecule can penetrat e

into it, if
I
ihe rate of gas transfer at the surface is rapid, and if th e

diffusivity bf the gas in water is slow, then a gradient will form in th e

film. Diffusion will occur across this gradient .according~to Fick's firs t

law of diffusion :

	

J= -Dmdl

	

(33 )

where
dl is the concentration gradient and J is the flux of molecules pe r

unit area and time . In the film penetration model, volume elements ar e

exchanged between the film and bulk flow . This results in fresh element s

being presented at the surface, promoting gas exchange .
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Tsivoglou notes that the existence of a film has never been confirmed .

He proposed that the dependence of the gas exchange coefficients on D m

is explained because gas concentrations in volume elements of the bul k

flow must equalize simultaneously with the influx of molecules through th e

surface . Equalizing the gas concentrations in the bulk flow does not pro -

vide a mechanism by which Dm can control the rate that molecules move int o

the liquid . For the film penetration model to successfully account fo r

the role of Dm , it must be assumed that the volume elements are withdraw n

from the surface before they are fully reaerated . Under this assumption ,

Dm would control the mean concentration in the volume elements withdraw n

from the surface .

O'Connor and Dobbins developed an equation for the gas exchange co -

efficient which accounts for the influence of D m without the existenc e

of a film :

2 1

D~ =

	

tanh
(rH

)2 (8 )T
Dm

Using the film penetration model, they showed that :

2 ,
KL =

	

(DX )2
coth (9)

m

renewal rate in day s -l (or s -1 ), H is the stream depth in ft (or m), x i s

the film thickness in ft (or m), and D. is molecular diffusivity i n

ft2/s (or m2/s) . For a small turbulent stream, r would be very lar g

Xg • 2When
rx2

or rH2 is large relative to D
m
, then the functions coth ( r )

rH2

	

D
and tanh (•~) 2 approach 1 and equations 8 and 9 can be simplified mto :

m

K =L T

where KL is the gas exchange coefficient in ft/day (or m/s), r is th e

(10)

~ I1
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It is apparent from this equation that turbulent mixing acts to contro l

the gas transfer coefficient through the renewal rate . Turbulence has

been previously described as the sum of instantaneous divergences from th e

mean motion of flow . Turbulence is a process, internal to the stream-

flow system, that dissipates energy . From these relationships it follow s

that the renewal rate is related to the rate at which energy is dissipated .

During laminar flow, the internal motion of water is a sliding o f

water layers across or between adjacent layers . Energy is efficientl y

converted from potential to kinetic energy in the form of stream velocity .

The potential energy change can be calculated as :

PE = mgiHt

	

(34 )

where m is the mass of the fluid, g is the gravitational constant, an d

at is the change in head . The change in kinetic energy of the strea m

can be calculated as :

KE = ½m(u 2
2

- U 12 )

	

(35 )

where U 1 and U2 are the velocities at stations 1 and 2 . For this idealized

case the potential energy change should be equal , to the change in kinetic

	

'

energy, assuming there is no loss of energy_thrbugh friction .

Laminar flow is very rare and does not occur naturally in fores t

streams . As the viscous forces of water become small compared to the

inertial forces, the flow becomes turbulent . The Reynolds number i s

defined as :

IR .= UR
h

	

(36 )

where U is the velocity of flow in ft/s (or m/s), R h is the hydrauli c

radius in ft (or m), and v is the kinematic viscosity in ft 2 /s (or m2 /s) .

When It is large, the flow is turbulent . No definite upper limit i s

defined for the change from laminar to transitional flow, or from transi-

tional to turbulent flow . This suggests that 1R is an incomplete
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parameter for describing the state of the flow .

Dobbins (1964), Krenkel and Orlob (1962), and Holtje (1971 )

computed the rate of energy dissipation (E) using the equation :

E=U' S' g

	

(37 )

where U is the mean velocity in ft/s (or m/s), g is the gravitationa l

constant in ft/s 2 (or m /s 2 ), and S is slope . The product of velocity

and slope is the change in head per unit time in ft/s (or m/s) . E i s

the rate of the change in potential energy per unit mass of water .

Dobbins states :

The energy is withdrawn from the main flo w
to create the kinetic energy of turbulenc e
that finally is dissipated by viscous actio n
into heat . For the flow as a whole, the
rates of withdrawal, creation of turbulen t
energy, and dissipation are equal .

One of the assumptions implicit in using the energy dissipatio n

(E) is that flow in the stream section being studies is steady and uniform .

It is important that the incoming and outgoing velocities be equal, o r

the change in the potential energy will have to account for both th e

kinetic energy of turbulence and the kinetic energy of velocity . Over a

long stream section, the difference in the kinetic energy of velocit y

	

would become small relative to the potential energy drop and U ' S

	

g

would become an increasingly good measure of the energy available fo r

turbulent mixing .

Temperature Dependenc e

Although the solubility of oxygen decreases as temperature increases ,

the reaeration rate has been shown to increase with temperature, due prim-

arily to the greater kinetic energy of the oxygen molecules . Tsivoglou ,

using his model of the reaeration process, suggested that the theoretica l

temperature correction can be calculated using the equation :
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K2(T2) CS(T1) T2-T1

=

T

(38 )

K2 (T1)
CS

( T2)

With this relationship, 4T is 1 .022 + 0 .004 . Several of Tsivoglou' s

assumptions have been criticized (Bennett and Rathbun 1972) .

Measured values for (PT commonly used to convert reaeration rate s

to the equivalent rate at 20 0 C are :

(p
T

= 1 .016 Streeter, Wright and Kehr (1936 )

(pT = 1 .0241 Churchill, et al . (1962 )

Both these measured values have been widely used in reaeration studies .

The Streeter et al . value is used in this study because it is supporte d

by Krenkel and Orlob (1963), Metzger and Dobbins (1967), and Metzger (1968) .

The validity of using a single equation to measure the responses o f

stream reaeration to temperature has been questioned . It has been suggested ,

through stirring-tank experiments, that q)
T

is affected by turbulence . No

theoretical basis seems evident for this conclusion . It seems more probabl e

that these studies have failed to completely account for surface distortion ,

molecular diffusivity, film depth, and surface renewal .

In this study, the equation from Streeter et al . will be used for

temperature corrections :

K2(T) = 1 .016
(T-20)

K2(20)

	

(39 )

where K2(T) and K2(20) are the reaeration rates in day s -1 (or s-1 ) for

stream temperatures T and 20°C .

Complete Mode l

When the factors of molecular diffusivity, energy dissipation, tru e

active volume, surface area increase, and temperature are all considered ,

the following formula can be used to predict the reaeration rate of a stream :

2

K2 = 1
.016(T-20)c1(l + c2nF3/2 ) (Dm2OE)

	

( 40 )
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According to Tsivoglou's development of ,T , the expression 1 .016
(T-20 )

is dimensionless . The term for increased surface area (1 + c2 nF) is als o

dimensionless if n is treated as a dimensionless variable . 3 This i s

reasonable since it expresses the ratio of actual surface area to th e

product of measured width and length . F is the Froude number for th e

segment . The molecular diffusivity in ft/day (or m/s) and energ y

dissipation rate in ft 2/s 3 (or m2 /s 3 ) are used to determine the ga s

exchange coefficient component stream (H) is in ft (or m) . Therefore, c l

is expressed in units of days/ft (or s/m) .

3Manning's n is usually treated as having the dimension of either TL
-1/ 3

or L- 1/ 6 . Chow (1959) notes that n can be treated as a dimensioglgssl

	

Tvariable if the constant 1 .49 is assumed to have the dimension L

	

h e
value for n is therefore the same in both English and metric units .
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DATA ANALYSIS

The basic parameters measured in the field tests were manipulate d

into composite parameters . Predictive equations for the reaeratio n

coefficient ( K2 ), using stream hydraulic parameters, were then compare d

to measured values for K 2 using linear and nonlinear techniques .

Measured Stream Parameter s

The length, elevational change, discharge, and dye travel time wer e

measured for each stream segment . Measurements of the width and dept h

were also made at intervals along the length of the segment . From the

field data for each segment, weighted averages were calculated for th e

width, depth, wetted perimeter, and cross-sectional area . The weightin g

was based on the proportion of the segment bracketed by measurement points .

The active stream width was defined as the stream width observed to b e

discolored by dye .

The average hydraulic radius ( Rh ) in ft (or m) was calculated fro m

the averaged wetted perimeter ( Wp ) in ft (or m) and the cross-sectiona l

area (Aw ) in ft2 (or m2 ) :

Rh = Aw
Wp

The stream slope (s) was calculated as the elevational change (oHt )

in ft (or m) divided by the stream segment length (X) in ft (or m) :

(41 )

s = aHt
(42 )

X

The average stream velocity (U) in ft/s (or m/s) was calculated usin g

the equation :

(43)
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where Q is the discharge in ft 3 /s (or m 3 /s) .

The velocity (U D ) in ft/s (or m/s) of a florescent dye introduce d

into the stream was also calculated :

UD
X
tD

(44 )

where X is the length of the segment in ft (or m) and tp is the trave l

time in s-1 required for the leading edge of the dye to travel through th e

segment . Brown (1972) and Holtje (1971) both used dye to characteriz e

velocities in small streams . This method measures the maximum velocity i n

the stream segment .

When cross-sectional area is calculated from the width and dept h

measurements it is assumed that all the water is actively mixing . Whe n

this is not the case, dye velocity can be used to obtain a more realisti c

estimate of active cross-sectional area . If it is assumed that the activ e

portion of the stream is moving at the velocity of the dye (near maximum) ,

then the depth of active water (H D ) in ft (or m) can be calculated usin g

the equation :

Q/ U D

HD = WD

where Q is the discharge in ft 3 /s (or m 3 /s), UD is the dye velocity i n

ft/s (or m/s), and WD is the active width of the stream in ft (or m) .

The parameter H D is a simple way of correcting for the presence of stag -

nant water that contributes very little to the net oxygen exchange .

Several other important composite parameters were computed for th e

average field measurement values . These parameters include the Froud e

number, the Reynolds number, the rate of energy dissipation, Manning's n ,

and Chezy's C . Additional stream parameters were generated by substi-

tuting the dye velocity ( UD ) for the average cross-sectional velocity (U) .

(45)
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The Froude number (F) is a dimensionless parameter that is the rati o

of inertial forces to gravitational forces . The Froude number was cal-

culated using the equation :

F =	 U	 	 (46 )

( gH)
0 .5'

where U is velocity in ft/s (or m/s), g is the gravitational constan t

in ft/s2 (or m/s2 ), and H is the average depth in ft (or m) . The maximum

Froude number (F D ) was calculated using the equation :

FD =	 UD
(gHD) 0 . 5

where UD is the dye velocity in ft/s (or m/s), g is the gravitationa l

constant, and HD is the active stream depth in ft (or m) . When F i s

greater than 1 .0, the flow is supercritical and .inertial forces are greate r

than'graviltational forces . Chow (1959) describes supercritical flow as

"rapid; shooting, and torrential . "

The Reynolds number (JR) is the dimensionless ratio of viscous t o

inertial forces . The Reynolds number .was calculated using equation 36 .

In order to calculate It, the kinematic viscosity (v) in ft2/s must be

determined . It was approximated using the empirical equation cited b y

Dean (1973) :

v

	

=

	

0 .0010076391042

	

(48 )

2 .1482 (T) - 8 .435 + 38078 .4 + (T-8 .435) 2 - 12 0

where T is temperature in °C .

The rate of energy .dissipation (E) in ft2/ s 3 (or m2/ s 3 ) was determined

using equation 37 . The maximum .energy dissipation rate for a segment wa s

calculated as :

(47 )

(40)
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where s is the slope in ft/ft (or m/m), UD is dye velocity, and g i s

the gravitational constant . E has been used by several researcher s

as a parameter for predicting K 2 values .

Manning's and Chezy's formulas are both used to predict strea m

velocities . Manning's formula is sometimes considered to be a specia l

case of Chezy's equation . Manning's n and Chezy's ( are coefficient s

which indicate stream resistance to flow .

Manning's roughness coefficient (n) is calculated using the equation :

n =
1 .49

R
0 .67 s0 . 5

.. U

	

h

where U is velocity in ft/s, R h is the hydraulic radius in ft, and s i s

the slope in ft/ft . As n increases, the resistance to flow becomes greater .

Manning's formula is commonly used for natural streams .

'Chezy's equation is another commonly used predictive formula . Chezy' s

resistance factor (() in ft°'5/s (or m 0 ' S /s) is calculated using the

equation :

=	 u	 	 ,1 )
(Rhs) 0 . 5

as ( increases, the resistance to flow decreases .

Reaeration Coefficients

Reaeration rate constants were calculated for each stream segmen t

from observed oxygen deficits below the sodium sulfite injection stations .

The reaeration rate constant (K 2 ) in days -1 for a segment is calculated

using the equation :

K2 = 86400(ln D 0 - In Dt )/t

	

(52 )

where DO and Dt are the upstream and downstream deficits in mg/1 (or kg/ m3 )

and t is the time of flow in seconds between the upstream and downstrea m

stations .

(50)
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The time between stations (t) was calculated from the mean velocit y

(U) in ft/s (or m/s) and the length of the segment (X) in ft (or m) :

t = X

	

(53 )

U

(The travel time of dye between stations ( t D ) could also be used to

calculate K2 . This method was used by Holtje . )

The deficit (D) in mg/1 (or kg/ m3 ) is calculated from the observe d

oxygen concentration (C) and the saturation concentration (C s ) in mg/ 1

(or kg/m3 ) :

D = Cs - C

The concentration of oxygen in each stream was measured prior t o

deaeration using the Winkler method (described under "Procedures") .

These streams were assumed to be at saturation . In order to test tha t

assumption, measured oxygen concentrations were compared to value s

calculated using equation 55 :

C = C ' P - P
s

	

s P st

	

p

where Cs ' is the solubility of oxygen at a given temperature and a standar d

pressure (Pst ), P is the observedipressure, and p is the vapor pressure

of water in mm Hg .

Churchill's equation was used to predict the solubility of oxyge n

in water at standard pressure :

Cs ' = 14 .632 - 0 .41022(T) + 1 0 .007991(T2 ) - 0 .000077774(T3 )

	

(56 )

where T is the stream temperature in °C .

Barometric pressures near the study areas were obtained from th e

National Weather Service and the O .S .U . Marine Science Center . Correction s

for differences in pressure due to differences in elevation between measure-

ment stations and study sites were made using an equation cited by Trewarth a

(1954) :

(54 )

(55)
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P Ht

	

Po - (0 .02667hHt)

	

(57 )

1

where PHt is thelbarometric pressure in mm Hg at the study site, P o i s

the barometric pressure in mm Hg at the measurement station, and oHt i s

the difference in elevation in ft between the study site and the measure-

ment station .

The calculated saturation values agreed very closely with the observe d

values . Th6refore, the initial• oxygen concentrations measured befor e

deaeration were 'seafor C
s

.

Data Modifications

Several early experiments were conducted with insufficient cobaltou s

chloride catalyst . This resulted in a sustained oxygen demand throug h

all or part of the test reach . In segments with low reaeration rates, a

reduction in the dissolved oxygen concentration was observed from upstrea m

to downstream stations . In segments with low reaeration rates, the reaeratio n

rate coefficients calculated from observed deficits were depressed . Al l

data sets collected on streams injected with insufficient cobaltous chlorid e

were eliminated from analysis .

In two of the 51 test segments, no change was observed in the dissolve d

oxygen concentration . In both cases, the segments were short and positione d

at the lower end of the test reach . Deficits and changes in oxygen concentra-

tions would be expected to be small for segments in this position . Rather

than bias the total stream response by eliminating these segments, the y

were combined wiiyh the segment immediately upstream .

For four segments, the observed reaeration rates seem unusually high .

All of these segments are short pools or quiescent reaches below riffles .

It appears that .energy is advected into the pools from upstream drops i n

the form of velocity and turbulence . The dissipation of energy and

subsequent increased renewal rate appears to be higher in these segment s

than would be predicted from their slopes . For this reason, these four

segments were combined with the segments immediately upstream . Although

these segments were originally thought to'be hydraulically distinct, the y

must be combined with the riffles above to fully account for the effect s

of energy dissipation on the reaeration rate .
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Model Testing

K2 values measured in the field tests were compared with value s

estimated by reaeration models using least squares regression techniques .

Linear Regressio n

At Oregon State University, the Statistical Interactive Progra m

System (SIPS) is available for multiple linear regression . Regression

analysis is used to fit a mathematical model to the relationship betwee n

a dependent variable and independent variables . The general model fo r

a linear regression is :

Y . = a+ Rxi +yzi
+ei

	

(58 )

where Y . is the observed value for the dependent variable ; a, s, and y

are regression coefficients ; xi and z i are the observed independen t

variables ; and e
1 is the difference between the observed value (Y .) and

the predicted value (Y i ) of the dependent variable . The error term e i

is the result of errors in measuring the variables and stochastic error s

inherent in trying to model physical phenomena .

The regression coefficients are selected so that the squared deviatio n

between the vectors of the observed and predicted dependent variables ar e

minimized . This procedure is supported by the Gauss-Markov Theorem (a s

stated by Wonnacott and Wonnacott 1972) :

Within the class oft linear unbiased estimator s
of (the regression 'coefficients), the leas t
squares estimator has minimum variance .

Non-Linear Regression

At Oregon State University, analysis of non-linear models is possibl e

using the program CURFIT, which is based on a Gauss-Newton non-linea r

least squares method . The CURFIT program is an iterative approximatin g

procedure . The user must supply partial derivatives of the model wit h

respect to the regression coefficients . (This is done automatically for

linear models in SIPS .) Initial estimates of coefficients are necessary

to begin the computation . If the initial coefficients selected are
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sufficiently close to those which will best fit the model according t o

the least squares estimators, then the program will converge on thos e

best-fit values .

Selecting the Regression Mode l

The . SIPS program was used to conduct multiple linear regressio n

tests . In the initial tests, variables Were selected for their enterin g

F-test values . Guthrie et al . .(1973) note that this procedure " . . .

selects the single variable to enter the regression model which makes th e

greatest contribution to reducing . the residual variability below that of

the current model ." Variables were added until they no longer satisfie d

the F-test criterion at the 0 .95 level . The t statistics, entering F

values, analysis of yariance table, and multiple correlation coefficient s

for the models were evaluated .

The t statistic tests the null hypothesis that the regression coefficien t

is zero . When the t statistic is large, the hypothesis can be rejected .

The multiple correlation coefficient (R 2 ) is the ratio of the variance o f

explained by the model to the total variation . .When the explained varia -Y i

tion nearly equals the total variation, the model closely fits the observe d

variables .

For non-linear models using CURFIT, it was necessary to develop a n

accurate estimate of the regression coefficients . A non-linear model i n

the form :

Y . = ax . z . y + e .

can be linearized to the form :

1nY i = Ina+lnxi +y1nz i

in order to estimate the regression coefficients . The coefficients s and

y•can be determined directly from the linearized model using SIPS . The

coefficient a was estimated as
elna .

Because of linearization errors ,

the fit between the actual and predicted values of K 2 might not have a

slope of 1 .0 .

(59 )

(60)
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The regression coefficients developed using this SIPS procedur e

were used in the CURFIT program in selection of the final coefficien t

values . These coefficients were selected by evaluating the R 2 of the -

model and the slope of the relationship between the actual and predicte d

values of K2 . When both R2 and the slope were near 1 .0, the model

satisfactorily evaluated the observed data .
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RESULTS

The field data from 45 study reaches were used to develop equation s

predicting reaeration rate constants for small turbulent streams . The

analytical techniques described in the previous chapter were used fo r

this purpose . Several model forms were examined including linear ,

multiplicative, and non-linear . Models proposed by other workers wer e

also evaluated using data from this study . These models included functions

specifically designed to account for turbulent effects . Predictive

equations that use only the slope and width of the stream were also com-

pared to the data since these variables are more easily obtained b y

technicians in the field . Finally, oxygen sag curves were developed fo r

the study streams using field observations and were compared with thos e

predicted by the model which best described the reaeration process .

Linear Equation

Holtje (1971) proposed an equation in a simple linear form for th e

prediction of reaeration rates in small streams . This equation wa s

derived from a multiple linear regression analysis of several hydrauli c

variables . A linear equation was developed with the field data from

this study according to this same regression procedure . For all regressio n

models, the measured reaeration coefficients were adjusted to the expected

reaeration coefficient at 20°C according to equation 39 . The linear mode l

was chosen using the entering F-values as the selecting criterion . The

size of the F-value determines whether the residual of the model to th e

data is significantly reduced by the entering variable . Variables were

included if they significantly improved the model at the 0 .95 level .

Eighteen variables were tested and only four of those were selected fo r

the linear equation . This technique yielded the linear model :

K2

	

= 29 .475 - 602 .97 U + 1727 .9 F - 297 .53 E + 219 .7 E

	

(61 )
20

	

0
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where K

	

is the reaeration rate coefficient at 20°C in days -l , U i s
22 0

the mean velocity in ft/s, F is the Froude number, E is the mean energy

dissipation in ft2 / s 3 , and ED is the maximum energy dissipation in ft2/s 3 .

From the t-values listed for the coefficients in Table 1, the hypothesi s

that the regression coefficients in Table 1, the hypothesis that th e

regression coefficients are zero can be rejected at the 0 .99 probability

level . The next entering F value, for slope of the stream, fell belo w

the 0.95 F-test criterion . Slope was therefore rejected as a parameter

because it did not significantly reduce the residual : Figure 4 shows

the relationship between the reaeration coefficients measured (adjuste d

for a standard temperature of 20°C) and the values of K 2 'predicted by
2 2 0

values .) The equation provides a reasonably good fit for the large

	

20

reaeration values . In the lower range, the equation becomes less reliable .

Table 1 . Regression variables and statistical information for the linea r
model .

Coefficent

Standard
Error o f

Regression t-values fo r
Variable

	

Value Coefficients Coefficients

Constant 29 .475 8 .9273 3 .301 7

U -602 .97 72 .045 -8 .3693

F 1727 .9 161 .76 10 .682

E -297 .52 23 .465 -12 .679

ED 219 .7 9 .4115 23 .344

slope = 1 .000

R2 = 0 .99 0

equation 61 . The R2 values reported for this model and for the othe r

models developed in this section are for the measured .and predicted K2
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Figure 4 . Measured versus predicte d
equation 61 .

K220 (predicted) = 29 .475 - 602 .97 U + 1727 .9 F

- 297 .53 E + 219 .7 ED
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values of K220 from
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Multiplicative Model s

Multiplicative models were developed that are similar to the for m

suggested by Krenkel and Orlob (1963), .Owens, Edwards, and Gibbs (1964 )

and Isaacs ( i .968) . Regression techniques were again utilized to obtai n

the coefficients for the variables selected, and the F-test criterio n

was used to select the significant variables . The log transformation s

of the measured reaeration rate constants and 18 hydraulic parameter s

were analyzed for this solution . This approach was used to develo p

the model shown below :

E 0 .444 7
K2

	

= 35 .04	 D	
20

	

0 .3472

	

0 .3592
HD

	

Rh

where HD is a depth parameter in ft and Rh is the hydraulic radius of th e

stream channel in ft . The depth parameter H D is defined by the equation :

HD = Q/( WD . UD )

	

(45 )

where Q is the discharge in ft 3/s, WD is the active stream width in ft ,

and UD is the dye velocity in ft/s .

The regression variables and coefficients for the model are liste d

in Table 2 . The slope and R2 values are taken directly from equation 62 .

The t-values listed were obtained using the coefficient values in th e

logarithmic form .

The hydraulic radius requires numerous measurements of the strea m

depth . The field application of equation 62 can be simplified if R h i s

not used as a variable for the predictive equation .. For smooth, shallow ,

wide streams, the value of the hydraulic radius (Rh ) approaches the

value of the hydraulic depth (H) . The denominator of equation 62, whic h

uses both HD dnd Rh , describes the stream depth in terms of both the sur-

face contact and streambed contact . The parameter H D is an expression of

(62)
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the ratio of surface area available .for oxygen transfer to the activ e

segment volume . The parameter Rh can be considered the ratio of th e

stream volume to the streambed surface available for shear stress .

For a smooth, wide, shallow stream where . the average and maximu m

velocities are equal, R h and HD become equal .

Table 2 . - Regression variables and statistical information for th e
multiplicative model .

Variable
Coefficient

Value*

Standard
Error of

Regression
Coefficients

t-values fo r
Coefficient s

Rh -3 .5921 0 .13081 -2 .7460

HD -3 .4719 0 .12214 -2 .8427

ED 4 .4468 0 .02999 14 .830

Constant 3 .5566 0 .19504 18 .236

Slope = 1 .02 6

R2 = 0 .98 5

*Values reported in logarithmic form to permit testing of coefficien t
significance .

For equation 67, Rh is the last variable to enter the equation usin g

the F-test criterion . Because of these considerations a simplified multi-

plicative model was tested where Rh was eliminated . The resulting simplified

multiplicative equation is :

E 0 .4967
K

	

36 .98	 D	
220

	

H 0 .6078
D

The R2 values for equations 62 and 63 were both 0 .985.. However, the

slope of equation 63 was 1 .249 which indicates that this equation is less

accurate in predicting the reae .ration rate. .

C63)

i
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If the multiplicative model is developed according to linea r

multiple regression techniques such as those used to develop equation s

62 and 63, the residuals of the natural logarithms become the fittin g

criteria . This procedure reduces the dominance of the larger values .

However, when the equation .is transposed back from the logarithmic form ,

the slope between the observed and predicted reaeration rates ofte n

diverges from 1 .0 .

,In order to avoid this divergence and develop an accurate equation ,

a non-linear fitting procedure was used . This non-linear iterative

estimation procedure requires that the equation form and coefficien t

values be estimated. The coefficients developed in equation 63 wer e

used as starting values for the simplified non-linear model estimate .

The resulting equation is

E 0 .4995
K

	

= 24 .91	 D

220

	

H O .781 1

D

Equation 64 is both accurate and precise (Table 3) . The standard error s

of the regression coefficients are very small, indicating that thes e

parameters are important .

Table 3 . Regression variables and statistical information for the simpli-
fied multiplicative model .

Variable
Coefficient

Value

	

I

Standard
Error of

Regression
'Coefficients

t-values fo r
Coefficients *

Constant 24 .91 4 .144 6 .01 1

ED 0 .4994 0 .0297 .

	

16 .82

HD 0 .7811 0.0602 12 .98

Slope = 1 .000

R2 = 0 .992

*The t-values are not an exact measurement for the non-linear estimatio n
procedure but are accepted as close approximations .

(64 )
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Equation 64 is similar in form to an equation derived by Krenke l

and Orlob (1963) :

K

	

= 56 .83
E0 .408

220

	

H0 .660

where E is the average unit energy dissipation rate in ft 2 /s 3 , and H

is the hydraulic depth in ft . As will be discussed later, E and H ma y

be comparable to ED and HD under some conditions .

Krenkel and Orlob used a 1 ft wide circulating flume . This config-

uration may bias predictions for larger streams due to sidewall effects ,

but it is probably appropriate for small streams . Small streams ar e

frequently dissected by rocks . This dissection of the channel ca n

influence the apparent roughness of the streambed in a manner simila r

to the sidewalls of a small flume . If the stream data from the curren t

study are expressed in the form of equation 65, using E and H rather tha n

ED and HD as used in equation 64, the resulting equation is :

K2

	

= 57 .95 E
0 .27 3

20

	

H0 .738

Equation 66 has a slope of 1 .000 and a regression coefficient of 0 .947

(Table 4) .

The velocity of flow could be expected to be more uniform in a flume

than in a natural channel . . The mean velocity in a flume would probabl y

be very near the maximum velocity . If it is assumed that the zones o f

maximum energy di'ssipation largely determine the reaeration rate, the n

the most accurate predictions should be made using the variables E D and

H p , which are derived from the maximum velocity . This is, in fact ,

illustrated by the results of this study . The regression analysis shows

that equation . 64 is a more precise estimator of the measured reaeratio n

rates than equation 66 ..

(65 )

(66)
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Table 4 . Regression variables and statistical information for multi-
plicative model using mean segment parameters .

Variable
Coefficien t

.

	

Value

Standard
Error of

Regression
Coefficients

t-values fo r
Coefficients *

Constant 57 .95 21 .48 2 .698

E 0 .2726 0 .0787 3 .464

H 0 .7381 0 .1457 5 .066

Slope = 1 .000

R2 = 0 .94 7

*The t-values are not an exact measurement for the non-linear estimatio n
procedure but are accepted as close approximations .

The fit of equation 64 to the stream data is shown in Figure 5 .

The fit of the predicted reaeration rates to those measured is reasonabl y

consistent throughout the range of values measured . Relative scatter fo r

lower reaeration rate coefficient values is comparable to that found i n
the middle reaeration range . The R2 value far the entire data set is 0 .992 .

The R2 value for the measured coefficients below 100 days -1 is 0 .792 .

The R2 value for the measured coefficients below 10 days -1 is 0 .667 .

Equations Designed to Account for Increase d
Surface Area Due to Turbulenc e

The next step in the model development was intended to include th e

additional complexity of the surface distortion that results from tur -

bulence . The internal motion of turbulent eddies can increase the liquid-

atmosphere,contact area by stimulating surface waves . Where turbulence

is extreme,, bubbles can be entrained in the flow to further increase th e

liquid-atmosphere contact area .

Several reaeration studies have attempted to account for the rol e

of increased surface area in reaeration . Examples include the model s
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proposed by Dobbins (1964), Thackston and Krenkel (1969), and Parkhurs t

and Pomeroy (1972) . The term CA is used to describe the ratio of the

actual surface area to the planar surface area . The general form o f

the equations that have been used to predict C A is :

CA = (1 + C2 FC3 )

where F is the Froude . number .

For model testing, it was assumed that surface renewal effect s

were accounted for by the energy dissipation and depth parameters .

Effects of surface area increases were assumed to be proportional t o

the form of the function shown in equation 67 . The composite form o f

the equation used to fit the data is :

C4
= C (1 + C FC3) ED

4

220

	

1

	

2

	

H C5

D

The functions proposed by the authors cited above were tested b y

holding C2 and C3 constant at the suggested values . The coefficient s

Cl, C4 9 and C5 were allowed to move to their best fit values . The

precision of all three equations is similar (Table 5) .

The standard errors for some of the coefficients in equations 69 ,

70, and 71 were large enough so that the hypothesis that some of th e

coefficients are zero could not be rejected .

When all the coefficients including C2 and C3 were allowed to float

freely and values were derived for all five coefficients, the best-fi t

equation was unrealistic (i .e ., the Froude number was raised to the

fifteenth power) . The standard errors for some of the coefficient s

were again too large to reject the hypothesis that the coefficients wer e

zero .

Thus, because the precision of the equation was not improved b y

including surface disturbance considerations and because the standar d

errors of the coefficients were statistically less sound, these equation s

were rejected for use in small forest streams .

(67 )

(68)
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Table 5 . Reaeration equations which account for increased surface area base d
on proposed equations for C A .

Equation R2
Equatio n
Numbe r

0 .346
K

	

= 19 .11 (1 + F0 .5)

	

ED

220 0 .753 0 .983 6 9H
D

2 0

	

E 0
.326

K

	

= 18 .51 (1 + 0 .3 F

	

)

	

D 0 .967 70
2 20

H 0
.869

D

2 0

	

E 0
.388

K

	

= 20 .84 (1 + 0 .15

	

F

	

'

	

)

	

D 0 .979 71
220 0 .838

H
D

Another equation for CA was developed after studies by Gangadharaia h

et al . (1970) . The form of the equation for CA is :

	

CA = C 1 (1 + C2 n FC3 )

	

(29 )

where n is the Manning n . This form would account for the role of bot h

streambed roughness and inertial energy in generating surface disturbances .

The composite test equation :

C4
K

	

= C (1 + C FC3) ED
220

	

1

	

2

	

H C5

D

can be shown to be equivalent to equation 40 when the square root o f

the molecular diffusivity at 20°C (Dm ) is accounted for by Cl , C3
2 0

After Thackston
and Krenke l

After Dobbins

After Parkhurst
and Pomeroy

(72 )
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is equal to 1 .5, C4 is equal to 0 .5, C 5 is equal to 1 .0, and the para-

meters ED and HD are equivalent to E and H . The terms E and H are th e

average unit energy dissipation rates and depth, respectively .

The values of C2 and C3 were initially fixed at the values suggeste d

by Gangadharaiah, and equation 72 was solved for C 1 , C4 and C 5 . A

solution for all five coefficients was also attempted . The RZ value s

for these models were considerably smaller than those developed i n

the previous equations acid :the= standard errors of the coefficient s

were large . For these reasons, this more complex equation was als o

rejected .

Sejecting ' the Final Mode l

The exponents for the energy dissipation and depth terms derive d

for equations 64 and 66 were similar to values suggested by other studie s

and were theoretically justifiable . Three sets of exponents were teste d

to determine if they would yield satisfactory predictive equations . Fo r

each of these sets of exponents regression techniques were used to deriv e

the value of the coefficient C .

Krenkel and Orlob (1962), using dimensional analysis, suggeste d

that an equation in the form :

E 1/ 3
K

	

= C	 D
220

	

H 2/3
D

could be justified . When C is a dimensionless coefficient, both side s

of this equation are in the units of time -1 .

The reaeration rate coefficient has been theoretically described b y

Thackston and Krenkel (1969) as proportional to the renewal rate and b y

O'Connor and Dobbins (1956) as proportional to the square root of th e

renewal rate . The renewal rate is a function of surface turbulence .

The unit energy dissipation rate has been used toldescribe the scale

(73)
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of turbulence . Because of energy transfer considerations, the reaeratio n

rate has been described as proportional to a function of the unit energ y

dissipation rate within a specified range of exponents . The exponents

used in predictive equations for K2 have ranged from 0 .25 by Lamont and

Scott (1970) to 1 .0 by Holtje (1972) . Theoretical developments by

Danckwerts (1951) and O'Connor and Dobbins (1956) indicate that reaera-

tion is proportional to the square root of the surface renewal for smal l

turbulent streams . If the unit energy dissipation rate is assumed to be

proportional to stream turbulence and to renewal rate at the surface the n

the exponent for the energy function should be 0 .5 .

The predictive equation derived by Krenkel and Orlob (1962) fro m

channel tests suggests that K2 is proportional to HD-2/3 .
Field data

from the current study confirms this . If these relationships are used ,

the form of the predictive equation becomes :

E 1/2
K

	

= C	 D	
2 20

	

HD
2/ 3

The coefficient C now has units of :

	 time
l/2

length l/
3

When the square root of the molecular diffusivity is accounted for i n

the coefficient, the remaining units are :

	 time

length
4/33

If the reaeration rate is assumed to be proportional to the squar e

root of the energy dissipation, if the surface area exposed to gas exchang e

is planar, and if K2 is inversely proportional to the active depth, the n

the equation becomes :

(74)
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1/ 2
K2

	

= C E D
20

	

H D

When the square root of the molecular diffusivity is accounte d

for in the coefficient C, the remaining units are time/length .

The results of the regression analysis of these equations are show n

in Figures 6, 7, and 8 . The energy and depth functions were treated a s

a composite variable and the coefficient C was determined . A compariso n

of the fit of these three equations to the stream data is shown in Tabl e

6 .

Table 6 . Comparison of simplified theoretical equations .

Equation Number Coefficient R2 Slope

73 50 0 .945 1 . 0

74 37 0 .990 1 . 0

75 11 0 .956 1 .0

A model in the form of equation 74 was selected as the best fittin g

equation . The R2 and slope values show that this equation is a precis e

and accurate predictor for the range of reaeration coefficients measured .

The fit is particularly good for the lower K2 values where oxygen deficit s

are most likely to occur. The final form of this equation is :

E 1/2
K

	

= 37	 D
2 20

	

H 213
0

(75 )

(76 )
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Simplified Reaeration Model Based o n
Stream Width and Slope

For many timber sales, the collection of field data for harves t

planning is done by technicians who do not have extensive training i n

hydrology, fluid mechanics, and water chemistry . Furthermore, the time

and funding required to make detailed measurements of streamflow and be d

characteristics is often not available . These problems could be avoided

if the reaeration model includes only parameters which are easy to measure .

The field data from this study were therefore fit to some very simpl e

models with easily measured parameters . Regression analysis .was used t o

test the hypothesis that acceptable predictions of reaeration could b e

made using only stream slopes and the width of the stream surface a s

independent variables .

Under many conditions, slope will be the only parameter known . Since

slope is an important component of the unit energy dissipation rate ,(E )

and is also important in determining velocity, it is potentially a n

effective parameter for estimating reaeration rates . Because slope does

not provide information on surface or streambed contact area, volume, o r

roughness, the relationship between slope and reaeration rate is approximate .

If only the slope of the streambed is known, the reaeration rate coefficien t

can be predicted using the following equation which was derived using a

simple linear regression :

K

	

= 4861 s
220

where s is the slope id ft/ft . The regression coefficient for thi s

equation is 0 .79866 ; the slope between the predicted and measured value s

is 1 .000 .

If the stream width and slope are known, then the reaeration rat e

can be es;6imated with the equation :

K2

	

= 110 .7 s 0 . 5

20

	

W

(77 )

(78)



-68 -

Equation 78 is a simplified multiplicative model . Although this equation

fits the measured data quite well (R 2 = 0 .93774 ; slope = 1 .000), its

application to other streams may be inappropriate because of the influenc e

of pools in this study . For example, when stream depth and velocity ar e

included in the model, the reaeration rate coefficient is proportional t o

the width of the stream . With a simplified model, that relationship i s

influenced by the presence of pools . In the pools found in this study ,

increases in width were associated witI increases in depth and decrease s

in stream velocity . This accounts for the inverse relationship expresse d

in equation 78 . The applicability of this simplified model may be largel y

determined by the presence or absence

	

pools of this same nature . I n

a stream where increased width is due to the presence of shallow riffles ,

equation 78 would become inappropriate . Under these same conditions ,

equation 76 would still be expected to provide a meaningful estimate o f

the reaeration rate .

Dissolved Oxygen Sag Curve

Reaeration coefficients were calculated for the stream segments o n

Oak Creek, Needle Branch, and Watershed 3 from equation 76 and the fiel d

data used to derive the reaeration model . The coefficients were then used

to calculate dissolved oxygen concentr tions through the study reache s

by means of the oxygen sag method described by equation 4 . The calculated

values can be compared to the measured values at each station . Two reaera-

tion runs are shown' for each stream re Oh as a means of replicating th e

sag curve calculations . The observed and predicted concentrations for Oa k

Creek, Needle Branch, and Watershed 3 re shown in Figures 9, 10 and 11 .

Oak Creek provides a good comparison o the predicted and observed .

dissolved oxygen concentrations becaus it is a long test reach wit h

several segments that vary in their reaeration rates . Watershed 3 and

Needle Branch Creek are shown as examples of streams with rapid an d

slow reaeration rates, respectively .

The reaeration rate coefficients for Needle Branch are several order s

of magnitude smaller than those measured in the test segments of Watershed 3 .
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Despite this large difference, the change in deficit per ft is very simila r

for the two streams : The seemingly rapid reaeration noted for Needl e

Branch is the result .of slow velocities and a large initial defici t

created by the artifici:a,l deoxygenation . When an instantaneous oxygen

demand is used to deaerate a stream, as was done in this study, n o

residual demand is transported into the test segments . The source of

oxygen demand under harvest impact conditions is submerged organic debris .

An increase in the retention time within a segment will allow more leachin g

and BOD oxidation . Under.these conditions, the larger reaeration rat e

coefficients would be more evident in the higher downstream oxygen concen-

trations . Examples of what might be expected when organic debris are

deposited in a stream are presented in the discussion section .

Deviations of the predicted and observed oxygen concentrations fo r

all 7 study streams exceeded 1 mg/l at only 3 points . More often, the

divergence was less than 0 .5 mg/l . Therefore, the model provides a very

good estimate for field use and for evaluation of potential inputs fro m

timber harvesting . Fitting errors were the greatest for very long segments .

Under these conditions, a small error in the calculated reaeration rat e

was maintained over a long distance . Where several segments were evaluated ,

the random value of the errors tended to offset each other . Perhaps more

important than the fit of the individual points is the comparison of th e

recovery slopes for predicted and observed oxygen concentrations . As

can be seen from the Oak Creek example, the recovery slopes were ver y

accurately modeled .
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DISCUSSION

During normal forest harvesting activities, organic debris can b e

deposited in small streams within or bordering the cutting site . If thi s

deposited debris. consists of green vegetation and it is in large enoug h

quantitites, the oxidation of that organic debris can reduce the dissolve d

oxygen in the stream to a . level which is harmful for aquatic organisms .

The magnitude of the oxygen deficit is dependent upon the quantity an d

characteristics of the organic debris, the stream environment,,and th e

reaeration rate . ' The objective of this study has been to develop a

predictive equation for this reaeration rate coefficient from field dat a

for small Oregon streams . The applicability of this . equation was then

checked with oxygen .sag curves for these streams . Using equation 76 ,

together with estimates of organic loading and decay rate constants, a

forester can predict where logging debris accumWlations might reduc e

dissolved oxygen below acceptable levels . This approach will hel p

identify the sites where harvesting practices should be modified to reduc e

potential impacts on the oxygen concentration of a stream .

The application of any fundamental theory to the highly variabl e

conditions encountered in the field can be both difficult and inaccurate .

Inaccuracies may arise from several sources of error . These include

modeling errors used in . the physical description of the reaeratio n

process and errors in field measurements of the variables'that ar e

required by the model structure . Ultimately, the prediction of impact s

is tied not only to the physica l . system Out also to the biological changes .

which occur. This chapter addresses the possible sources of error in th e

proposed model and provides an example of model application .

Comparing Reaeration Model s

The reaeration model developed in this study has a simple structur e

and implies a simple reaeration process .' In developing the predictiv e

equation for reaeration in small streams, the roles of many factor s

' including energy dissipation, depth, bedl roughness, surface distortion,
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and bubble entrainment have been considered . The predictive equatio n

which fits the observed data best, however, is a function of the strea m

segment slope, maximum velocity, width, and discharge . More complex

models, designed to account for bubble entrainment and surface distortion ,

failed to provide as accurate a prediction as this simpler model . Some

possible reasons for this incongruence are the use of incorrect models b y

other authors to account for surface area increases, the insensitivity o f

parameters in these more complex models to the conditions encountered i n

small streams, and errors in measuring the variables required in thes e

models .

Model Errors

Many attempts have been made to develop a predictive equation for th e

reaeration rate coefficient . The approaches developed in this study see m

to be consistent with known gas exchange phenomena . For turbulent condition s

the reaeration rate should be proportional to the square root of bot h

molecular diffusivity and energy dissipation . As the width of a segmen t

increases and discharge decreases, the reaeration rate should increase .

This model can be considered simple or incomplete in that it does no t

account for increases in surface area due to turbulence .

Models that were tested to account for increases in the surface are a

due to turbulence proved unsuccessful . These models used the Froude

number and bed roughness to account for changes in the surface are a

exposed to gas exchange . Because film renewal and surface area distor-

tion result from turbulent eddies at the surface, both should be strongl y

correlated to turbulence . If surface turbulence can be estimated usin g

the unit energy dissipation rate, then the gas transfer coefficient (K L )

and the increase in surface area (C A ) should also be estimated by a n

energy dissipation term . However, the parameters used in these model s

were largely developed for steady, uniform flow . In contrast, the con-

ditions in this study ranged from steady, gradually varied flow t o

rapidly varied flow . The application of parameters developed for unifor m

flow to these conditions may lead to unaccountable errors . An example i s

the advection of relatively large amounts of kinetic energy betwee n

segments .
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Several other problems arise from trying to use Manning's n and th e

Froude number to predict the ratio of the actual surface area to observe d

surface area (C A ) . Two types of energy-dissipating systems are recognize d

in the streambed . The first type is the particle or skin roughness whic h

describes the roughness resulting from the irregular shapes and sizes o f

particles on the streambed surface . This corresponds to' the roughness

caused by sand particles attached to the surface of sandpaper . The second

type of roughness, called form resistance, represents the apparent roughnes s

of the regular or irregular undulation of the streambed when measure d

against an assumed flat plane . With increased form roughness, energy i s

dissipated and less energy is available for mixing . The composite o f

these two roughness components is the total bed roughness .

In Graf's (1971) review of-bedform mechanics, he notes the historica l

use of the Froude number to describe the importance of the two resistanc e

components . When F is less than 1, form roughness predominates, resulting i n

the development of some vertical eddies and surface boils . At critica l

flow, F equals 1 and transitional conditions occur . When F is greate r

than 1, flow is supercritical . With supercritical flow conditions, th e

water surface flows parallel to the bottom . Skin or particle roughnes s

predominates during supercritical flow ., For the small streams in thi s

study, the Froude'number was rarely greater than 1 .0 and therefore form

roughness dominated the energy dissipation mechanisms . This is furthe r

reflected in the very large Manning roughness coefficients developed i n

pool segments . The roughness coefficients in the rapids and riffle s

(where particle roughness contributes .greatly .to mixing) .were often much

lower than in these pools . From .a visual inspection of the streams it i s

obvious that surface area distortion . is the greatest in turbulent riffles .

In the Gangadharaiah (1970) study, form roughness was not a componen t

of the resistance to flow . The flume used in the test was a flat chute .

Because the Gangadharaiah relationship was developed with only surfac e

roughness, it appears to be an inappropriate estimator of increase d

surface area where form roughness is important .

v .
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The simple model developed in this study has a structure simila r

to the equation by Krenkel and Orlob (1962) for a recirculating flume .

Although the configuration of this testing apparatus is biased towar d

sidewall effects, it represents conditions similar to those foun d

in small, dissected streams . Krenkel and Orlob did not attempt to mode l

the role of increased surface area .

Measurement Errors

Errors in the measurement of stream characteristics and reaeratio n

rates could also influence the model results . Possible sources of erro r

in the field data include both incorrect estimations of stream hydrauli c

parameters and incorrect measurements of the oxygen concentration which i s

used to compute the reaeration rate coefficient . Composite variables suc h

as the Froude number and Manning's n may be more susceptible to error s

because of compounding inaccuracies .

Hydraulic Parameter s

The measured hydraulic characteristics which were most often subjec t

to error and had the greatest influence on the accuracy of the model wer e

the slope, depth and discharge .

Slope measurements were usually quite accurate and reproducible . Thi s

was especially true for segments with a large change in elevation . However ,

for segments with very shallow slopes, such as the upper portions of Oa k

Creek and Berry Creek, the calculation was dependent on a measured drop o f

only 0 .01 ft . Additional error was introduced from rippling on the surface .

Independent measurements of the slopes of these two segments varied by 10 0

percent . These discrepancies may be partially attributed to changes in the

surface profile at different discharges . For most segments, where the slop e

of the stream surface was moderate, the measured slopes were very consistent .

The accuracy of the depth measurements was also dependent on th e

character of the individual segment . When the streambed character change d

rapidly, it was necessary to sub-divide each segment . The relative errors

were the greatest in the shallow segments, such as the bottom of Watershe d

3 . However, comparison of the cross-sectional areas measured at differen t

discharges showed consistent relationships .
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Discharge was determined by measuring the velocity and cross-sectio n

of the stream . Discharge could also be checked by measuring the defici t

near the injection point . Where possible, the discharge was measure d

by recording the time required to fill a metal container . (See Fiel d

Measurements .) Measurements were repeated several times in order t o

establish reproducible results . The discharge estimated by using th e

collection method was usually slightly less than the results of th e

other techniques .

Discharge estimates using the artificial deficit created by a know n

injection rate are influenced by the downstream reaeration process . With

this method, as the reaeration .process continues, the estimated discharg e

becomes larger . Measurements of discharge that use the average cros s

section and mean velocity are also subject to errors . These errors ca n

result from inadequate adjustments for velocity variations in the cross ,

section of the stream and overestimates of the active cross-sectiona l

area . Velocity measurements made with a pygmy meter and drops of dy e

were compared to the collection method and found to yield similar results .

Although the discharge measured by the collection method was usuall y

less than the values calculated from the other techniques, the differenc e

was often less than 10% . In this case, the collection method value wa s

used . If'results were not within this range, the measurements were repeate d

until the disagreement could be resolved and a precise estimate of th e

discharge could be obtained .

Oxygen Concentration

The sources of error'in measuring the concentration of oxygen includ e

inaccuracies from the Winkler Test and instrument'errors from the D .O .

meter. "Standard Methods" reports that the . Azide ;nodification .of the

Winkler technique has a 'precision of 0 .1 to 0 .02 mg/1 depending on the

purity of the water . The two test samples collected prior to the additio n

of sodium sulfite to the stream always agreed within 0 .05 mg/l . The

calibrated meter was standardized to the results of the idometric determi-

nation and closely agreed with post-treatment idometric measurements .
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The manufacturers report that the meter has an accuracy of + 0 .1 mg/ 1

and precision of 0 .05 mg/1 . It was noted in field applications tha t

insufficient stream current could depress the oxygen concentratio n

measured by the meter . Where possible, the stations were establishe d

at locations that provided adequate current . If the meter had to b e

agitated by hand, the reading may not have been as accurate .

An adjustment period was required for the meter to reach equilibriu m

with the oxygen concentration at each station . This time-lag has bee n

previously reported (Holtje 1971) . The delay period was reduced by

transporting the meter probe in a container filled with deaerated wate r

taken from the last measurement station . Not allowing the meter t o

reach equilibrium could introduce errors .

Care was taken to avoid the problems involved in measuring oxyge n

concentrations . Measurements were continuously monitored for extende d

periods and also were repeated in order to insure accurate and reproducibl e

results . Repeated oxygen concentration measurements at each station agreed

within 0 .05 mg/1 .

The reaeration rate was calculated from the observed oxygen recover y

and the calculated mean velocity . The saturation concentration was assume d

to be the concentration observed prior to injection of the reducing agent .

This seemed to be appropriate because elevational and pressure variation s

made an accurate calculation of the solubility difficult . Calculated

solubilities usually agreed closely with measured dissolved oxygen con-

centrations . The low BOD concentrations measured during the tests con -

firmed the use of the initial dissolved oxygen concentration . An exception

was the first test on Needle Branch . This site had an oxygen concentratio n

which was 33% less than would have been expected from the temperature

measured and barometric pressure reported . However, the reaeration rate s

measured in this test appear to be consistent with the other data . When

the reaeration rates were calculated assuming an instrument error (i .e . ,

reading too low), the results were not significantly different . Because

this test provided data for the lowest flow conditions and had comparabl e

results with the other data, it was retained in the analysis .



-79 -

Examples of Model Application s

The capability of predicting reaeration rates allows foresters t o

estimate the position and magnitude of the oxygen deficits that will b e

created by logging slash . The reaeration rate constant can also be

used to estimate the distance required for a stream to recover from a

deficit . Berry (1975), using a finite difference model, simulated th e

oxygen demand and oxygen deficit created in streams draining a harvestin g

site . This section will present a few examples of simulated strea m

recovery under different conditions to illustrate the usefulness o f

predicted K2 values in decision making .

Predicting Stream Deficit s

Incorporating the predicted K2 values into an estimate of th e

response of a stream to organic debris would require the following steps :

Step 1 : Divide the stream into segments of uniform

hydraulic characteristics .

Step 2 : Measure the stream discharge (Q) and the depth (H) ,

width (W), slope (S), and maximum velocity (U D ) of

each segment .

Step 3 : Calculate the reaeration rate (K 2 ) using equation

76 . Calculate U using equation 43 .

Step 4 : Estimate the potential quantity of debris (in mg/ 1

of ultimate BOD) that will be deposited in th e

stream by a silvicultural procedure .

Step 5 : Estimate the BOD rate constant (K O ), and leaching

rate constant (K4 ) from values reported by

Berry (1975) .

Step 6 : Calculate the dissolved oxygen sag curve usin g

the Berry finite difference oxygen model . The

Berry oxygen model can account for longitudina l

loading variations along the stream reach an d

can also adjust for temperature changes withi n

a clearcut .

Step 7 : Evaluate the consequences of the harvesting

technique on water quality and fish populations

in the stream .
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Of these operations, step 4 will be the most difficult to quantif y

with the present state of knowledge . The weight of organic debris whic h

enters a stream channel due to logging has been shown to be highl y

variable (Dykstra and Froehlich, 1976) . The ultimate BOD of that debri s

may vary even more to differences in species, age, and season .

Some examples of stream recovery from an oxygen deficit are presente d

to demonstrate the use of the reaeration rate constant in oxygen modeling .

These examples simulate the recovery of a stream from an oxygen defici t

imposed upstream by a clearcut . It is assumed that no additional leachin g

of soluble BOD will occur through the downstream reaches . The temperature

of the stream should also remain constant if the stream flows throug h

undisturbed or revegetated sites (Brown et al ., 1971) . Under these

simplified conditions, the downstream deficits can be modeled usin g

equation 4 (rather than the Berry finite differences model) in step 6 .

D =
K
1
L
0 e

-Kit
+ [D - K1L0le

-K2t

K2-K1

	

0

	

K2-Kl

Equation 76 is used to define the reaeration rate coefficient ( K2 )

for the various stream conditions . Simplified to its basic parameter s

for field application and adjusted for temperature effects according t o

equation 39, equation-76 becomes :

KK2 = 1 .016 (1-20) 37 WD2/3
51/

2	 9112 U D 716
T

	

Q2/ 3

where K2T is the reaeration rate constant in days -1 at temperature T i n

°C, WD is the mean active stream width in ft, U D is the maximum velocity

in ft/s, g is the gravitational constant in ft/ s 2 , and Q is the discharg e

in ft 3/s .

The mean velocity and maximum velocity are assumed to be equal fo r

this approximation of the downstream oxygen recovery . . This will resul t

in a conservative estimate of the affected stream length . If the impac t

(4 )

(79)
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on the stream is shown to be significant using this simplification, the n

a more'detailed evaluation :using the measured mean velocity and maximu m

velocities would be warranted .

The stream characteristics for the simulations are listed i n

Table 7 . In examples 1 and 2, it is assumed that there is no solubl e

BOD in the stream . This simplifies the solution of the oxygen recovery

but is not a realistic condition . Examples 3 and 4 assume a solubl e

BOD concentration of 450 mg/1 and a K 1 value of 0 .16 . The deficit i s

assumed to be 3 mg/l . K1 , L, and D are consistent with values that hav e

been simulated for the downstream end of a 1000 ft clearcut (Berry 1975) .

Table 7 . Simulated stream conditions .

s
T

Test 34 UD WD
HD K2 K 1 L0

no . ft /s ft/ft ft/s ft ft 1/day 1/day mg/1 °C

1 0 .1 0 .1 1 .0 5 0 .02 195 0 .16 0 20

2 0 .1 0 .01 0 .05 5 0 .4 40 0 .16 0 20

3 0 .1 0 .1 1 .0 5 0 .02 195 0 .16 450 2 0

4 0 .1 0 .01 0 .05 5 0 .4 40 0 .16 450 20

Figure-4 2' shows the oxygen sag curve for the four examples an d

compares-these recoveries to water quality standards .

From the simulated oxygen recovery curves, it is apparent that th e

reaeration rate constant alone cannot be used to predict the distanc e

required for a stream to recover from a deficit . The recovery distanc e

is also dependent on the size of the deficit (D)„ concentration of th e

soluble oxygen demand (L), BOD rate constant (K O ), stream velocity (V) ,

and the standard to be met . As the reaeration rate constant is reduced ,

the distance for recovery is extended . With more oxygen demand ' or larger

K1 values, the continuing removal of oxygen also extends the recovery

distance . With a rapid stream velocity, the volume elements are transporte d

downstream with less time available for changes in the oxygen concentration .

The recovery from the oxygen deficit behaves very differently for

the examples with and without soluble BOD . In the case where no oxyge n

demand is present,,the importance of the reaeration rate may be maske d



E

0

300

	

100 0
DISTANCE DOWNSTREAM OF CLEAR CUT, F T

Figure 12 . Hypothetical dissolved oxygen sag curves fo r
various streari conditions .
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by velocity differences . For example, in cases 1 and 2 the stream with th e

larger reaeration rate takes a longer distance to recover because th e

velocity is much larger . However, when a significant continuous deman d

on the oxygen results from soluble BOD, the importance of the reaeratio n

rate will become more evident as is shown in examples 3 and 4 .

Debris contributions to some class II streams should be limited du e

to water quality requirements of a downstream class I stream with spawnin g

sites . Under these conditions the dissolved oxygen at the confluence

would be estimated as :

Q1 C1 +Q2 C2 =

Q1 + Q2

where C 1 and C2 , and Q1 and Q2 are the concentrations and discharge s

respectively for streams 1 and 2 . C 3 is the oxygen concentration for th e

combined streams . Any oxygen sag routing downstream will be a functio n

of the downstream conditions . Particular care should be taken where a

class II stream discharges into a small class I stream with a relativel y

low reaeration rate .

Forest Practices to Control Dissolved Oxygen Impact s

Where the impacts of harvesting are expected to exceed the tolerabl e

limits, forest practices must be implemented to avoid or ameliorate th e

detrimental influences of harvesting on the dissolved oxygen . Severa l

forest practices can be used to either minimize solar inputs, reduc e

the sources of organic debris, or avoid detrimental modification of th e

stream channel . All of these procedures may be costly to implement .

Dykstra and Froehlich (1976) have shown that the costs of applying specia l

harvesting practices are site-specific . The economic and sociologic impact s

of these practices must be considered along with their effectiveness i n

maintaining dissolved oxygen goals .

Buffer strips are commonly used to maintain shade for temperatur e

control . They also reduce the direct input of organic debris into the

stream channels . Buffer strips can, however, sacrifice merchantabl e

C3 (80)



-84 -

and isolate valuable timber growing sites . Where a class II stream i s

flowing into a sensitive class I stream, a lengthy buffer may be require d

near the confluence to avoid additions of deaerated water with high BO D

concentrations into the class I stream .

Uphill, cable-assisted felling or full support felling can be use d

to reduce debris inputs . McGreer (1975) reports that uphill, cable -

assisted felling reduces small debris in the streambed to 39% of th e

amount found during conventional felling . These special - felling procedures

are significantly more costly than conventional techniques .

Stream cleanup is an ameliorating procedure that is often require d

as a condition of a timber sale . The rationale is to remove organi c

debris that may influence dissolved oxygen, obstruct fish migration, o r

contribute to a debris torrent . From the leaching 'and BOD equations, i t

is obvious that the highest oxygen demands occur very shortly afte r

debris enters the stream . The small debris (needles, leaves, twigs )

that contributes the most to the short term BOD concentrations in stream s

may also be the most difficult to remove . For these reasons, strea m

cleanup may not be effective in sensitive sites . Hand cleanup costs hav e

been estimated to range from $100 to $500 per 100 ft of stream (Dykstr a

and Froehlich 1976) .

Where organic debris is not detrimental to dissolved oxygen concen-

tration, it serves as a food source . Large debris can also be a stabilizin g

component in the streams and provide valuable stream habitat .

Channel-bank breakdown can fill, widen, and dam the streambed ;

resultant reduced velocities decrease the reaeration rate . Where quiescent

pools are created, the oxygen balance is disturbed by a decreased energ y

dissipation rate, an increase in the depth to width ratio, .and an increase

in the contact time available for leaching of organic debris . Yarding

and tractor activities can be excluded from the streambed in order t o

maintain the stability of the streambed . Like special felling procedures ,

these restrictions may result in an increase in the cost of harvesting du e

to decreased productivity .
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Where there is planning flexibility, cutting site boundaries ca n

be oriented to minimize the stream reaches exposed to'Uphill harvesting .

Harvesting can also be planned for periods whenthe stream is tbet least

sensitive . For example, harvesting may be scheduled for the winter when

flows are high . The cold stream temperatures would also retard the'_rat e

of oxidation and result in higher 'sturation values . HoW v?r, because

this period coincides with the development of salmonid eggs in the stream -

bed, this strategy may satisfy water quality requirements while 'sacrificin g

the real objective of protecting the fish .

Suggested Researc h

Preliminary studies have been made on the contributions of natura l

debris fall and logging activities to the accumulation of organic material s

in streams . Additional information As needed on the amount of small debri s

that is entering forest streams and the oxygen demand it creates . Thi s

kind of information would be especially helpful if it could be used t o

evaluate the relative contributions expected from different managemen t

practices and forest types .

Reaeration directly influences the oxygen concentration of surfac e

waters . In .locations where rearing habitat i•s limiting, the surfac e

oxygen concentration is one valid parameter for assessing the strea m

habitat for fish populations . Where spawning beds are .limiting, it i s

the intra-gravel oxygen concentration that must be evaluated . Intra-

gravel oxygen concentrations are indirectly influenced by reaeratio n

through exchanges with surface waters . The concentrations of oxygen i s

intragravel waters have reportedly been depressed by logging activitie s

and may be slow in recovering . This problem requires continued investi-

gation . Specifically, the reasons for the delay in recovery must b e

determined .

Additional development of the roles of bubble entrainment, surfac e

distortion, and turbulence could improve the reaeration model . These

factors are all very difficult to measure because of their transien t

nature . The use of hotwire current detectors might be one method for

estimating stream turbulence . The extreme variability of natural stream s

makes these components difficult to evaluate in reaeratioo studies .



-86 -

Finally, the predictive equation for reaeration rates and the oxyge n

models cited in this study should be validated for debris induced deficits .

The accuracy and sensitivity of K l , K2 , and K4 values must be evaluated

under natural conditions .
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SUMMARY

Reaeration is the physical process of oxygen moving into solution .

An equation based on hydraulic parameters has been developed to estimat e

the reaeration rate coefficient for small streams . The model wa s

developed from data collected in seven small Oregon streams . A tota l

of 45 test segments were used in the analysis . Oxygen was artificall y

depleted by injecting sodium sulfite into the streams . The reaeration

rates were determined by monitoring the recovery of the oxygen concentra-

tions in the stream segments .

Simplified to its basic parameters for field application, th e

reaeration rate equation is :

Q2/ 3

where K2T is the reaeration rate coefficient in day s -1 at temperature T

(in °C), WD is the mean active stream width in ft, U D is the maximum

velocity in ft/s, g is the gravitational constant in ft/s 2 , and Q i s

the discharge in ft3/s .

The maximum unit energy dissipation rate (sU Dg) was found to be an

important composite parameter . The energy dissipation rate was used t o

estimate turbulence . Turbulence promotes reaeration by maintaining a n

oxygen gradient at the surface . The width of the stream provides infor-

mation on the contact area available for molecular diffusion . The

discharge of the stream describes the volume that is receiving the flu x

of molecules . As the discharge increases, a greater flux of molecule s

is required to reaerate the stream .

The model provides a precise and accurate fit throughout the rang e

of reaeration rates measured_ Thisis particularly important for th e

low reaeration rates where oxygen problems would be expected to occur .

The overall R2 for the model was 0 .99 .

K2 = 1 .016 (T-20) 37 W02/3 s l/2 gl/2 UD7/ 6

T
(79)



-88 -

This model is relatively easy to apply and requires a minimum amoun t

of data . The measurements that are needed are uncomplicated . Thi s

simplicity may aid in the implementation of this model for predictin g

impacts on water quality .

In general, the reaeration rates for the selected forest stream s

were rapid . Most streams €ould assimilate large amounts of organi c

debris without incurring large oxygen deficits .

Future research is needed to establish the quantity and characteristic s

of debris that will result from various harvesting procedures .
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