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Coordinating multiple robots to achieve a complex task requires solving two

distinct control problems: the high-level control problem of ensuring that each

robot aims to perform a useful task (e.g., coordination) and the low-level control

problem of ensuring that each robot actually performs the correct actions to

achieve its task (e.g., navigation and locomotion). Though addressing both

problems simultaneously with one algorithm is appealing, this is often difficult to

impossible in domains requiring a combination of complex actions (goal selection,

navigation, obstacle avoidance). This thesis establishes a hierarchical control

structure, presents an adaptive navigation method, compares it to reactive

navigation, and applies established adaptive coordination techniques under severe

restrictions.

The development and experimentation process produced results showing the

following:



1. Hierarchical control structure proves effective and useful for use on resource

limited robotic platforms allowing the subsequent navigation and

coordination analyses to be addressed individually.

2. Adaptive navigation is an effective approach for dense environments with

limited and noisy sensing, providing improvement over reactive navigation

by up to 75%.

3. The application of an abstract difference objective function to training for

coordination remains effective under limited information and physical robot

motion restrictions, outperforming traditional system or local objectives by

up to 50%.

Specifically, this work establishes that neuro-evolutionary methods are applicable

and beneficial both for the discovery of successful navigation techniques, as well

as for the generation of coordination behavior in realistic multi-robot teams

where individuals are strongly limited in sensing, communication, and

computational ability. Possible extensions include increased levels of

communication among individuals as well as configuring individual sensing

abilities for heterogeneous teams.
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Chapter 1 – Introduction

In many applications, exploration of an unknown environment is a prerequisite

for the completion of complex robotic exploration tasks. For example, planetary

and lunar surface exploration, as well as search and rescue operations require

that a generally unknown environment is explored with the intent of gathering

information or locating a specific target. This environment may be dangerous,

uninhabitable to humans all together, or at such great distances from a central

location, that directed exploration is difficult or impossible. Utilizing robots for

exploration in these environments not only provides the benefit of safety, but cost-

effectiveness in most situations as well.

In general these environments are cluttered with obstacles or contain difficult

terrain making successful navigation a complex problem. Robots intended for use

at great distances from Earth, or in dangerous search operations, must have the

capability to articulate in challenging terrain, avoid time consuming or potentially

damaging collisions with obstacles, as well as maintain successful progress toward

their original intended purpose.

Specifically, in addition to locomotion, robotic exploration has two main re-

quirements: decision making for low level tasks such as navigation, and for high

level tasks such as destination selection. Challenges in addressing these require-

ments range from command flow to maximization of information gathering [39, 48].
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Organizing robots into teams provides benefits to information gathering, as well

as to robustness to failures, but in general adds complications to command flow.

Therefore, addressing how the robot moves, how it selects potential paths in re-

sponse to emergent environmental information, and its coordination with other

team members to maximize the amount of information gathered presents a com-

plex control problem.

From a design perspective, incrementally separating the above requirements

into categorical groups during the design process is beneficial to reduce the tasks

and the command complexity involved, as well as to provide the system designer

with discrete levels to be addressed. Specific to large mobile robot teams, a hi-

erarchical control structure on each robot allows for heterogeneous teams to be

designed without the need for significantly different individual control procedures.

Additionally, it is beneficial to maintain simple robotic platforms with limited

resources to further reduce the team complexity and decrease the overall system

impact of individual robot failures. A simple, effective robotic platform is chosen

and sensors are provided for each level of a hierarchical control structure pertinent

to the coordination and information gathering domain.

Mobile robot navigation in unknown environments has been widely addressed

with a variety of techniques. Specific to the domain of large teams of mobile robots,

it is desirable for the robots to examine the environment and make subsequent

decisions as simply as possible to reduce computational needs while isolating the

requirements of navigation from goal selection mechanisms. A neuro-evolutionary

adaptive algorithm is presented and compared against a predefined, probabilistic
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reactive algorithm under a similar state/action space structure. This will address

navigation control requirements, and is shown to be successful and outperform

reactive navigation in cluttered environments.

The goal selection mechanism when operating in multiple robot teams is vital

in producing effective coordination. For example, an individual robot must not

re-examine areas of the environment already discovered and examined by other

members of the team, unless it is directly beneficial to do so. Utilizing learning

techniques in this domain have proven successful in other work (Chapter 2) for es-

tablishing good coordination behavior, and effective reward structures for training

the team have also been established. These techniques and reward structures are

applied under restrictions of physical robot motion in addition to control group

isolation. Specifically, applying a difference objective function to coordination and

information gathering with a neuro-evolutionary learning technique is shown to be

successful when operating under these restrictions.

Chapter 2 addresses previous work done in the areas of robot navigation and

multi-robot teams as it pertains to support of the work done in this thesis. It covers

both model-based and model-free approaches to navigation as well as static and

adaptive approaches to building and controlling multi-robot teams for application

in domains where coordination among members is necessary.

Chapter 3 first presents a hierarchical control structure for use in the design

of the individuals and teams within the exploration domain. It then presents a

resource limited robotic platform and sensor structure is chosen and discussed as

the model on which the simulations are based. Finally, the simulation technology
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itself is presented as it pertains to the experimental structure for this work.

In Chapter 4, two general navigation techniques are presented: reactive and

adaptive. Specific algorithms are chosen for each and their function is described

in detail. In addition, a navigation problem structure is presented to provide

for progressive analysis of algorithm behavior as it relates to the requirements

of complex environment robotic navigation. Then, the experimental results and

specific conclusions are provided throughout, along with a summary and discussion

suggesting the next steps.

Chapter 5 presents the details of the robot team coordination problem chosen

for this work, including objectives and the properties of the functions used for

coordination training. Experiments are addressed to evaluate the functionality of

the objective structure under the constraints of physical robot motion as well as

hierarchical command flow. As above, the experimental results and conclusions

are provided, followed by a summary and discussion.

Finally, Chapter 6 provides a summary of the intentions of this work, the

contributions of the results obtained and conclusions drawn, and discusses the

potential avenues for further research in this area.
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Chapter 2 – Background

Two significant applications of techniques developed for robotic exploration of un-

known domains are the areas of planetary or lunar surfaces and robotic search and

rescue missions. Using robots for these tasks offers both safe and cost-effective so-

lutions to challenging problems. For robots to accomplish such tasks with success

however, two major challenges must be addressed: low level control (i.e., localiza-

tion and navigation) and high level control (i.e., planning and decision making).

Both are critical to the control of individual robots as well as teams of robots

operating in complex environments with the objective of maximizing information

gain safely.

2.1 Low Level Control

Establishing successful low level control policies (e.g., navigation) for continuous

and complex environments is an important challenge. This can be done using phys-

ical models of the robot and the environment in which it operates to determine

the limits of functionality and interaction [7]. In general, planning techniques have

also proven successful for navigation in unknown environments [23], including a

heuristic algorithm Dynamic A* [32], D* heuristic planning [31], and a modified

D* replanning algorithm [22], which all utilize heuristic mechanisms for path plan-



6

ning. The utilization of Markov models and adaptive techniques for use in sensor

interpretation have been shown to improve navigation performance as well [16, 52].

However, generating good models of an environment, either offline or online, can

prove quite difficult. Therefore, low level control policies must effectively retain the

ability to react to inaccurately generated or nonexistent environment models [47,

46]. Specifically, adaptive techniques for tasks including rocket and helicopter

control, walking robots, pole balancing, and robot navigation have produced good

results [6, 14, 17, 33, 41]. Model-free learning algorithms such as reinforcement

learning can also be used for path planning applications [10, 45]. Though good

solutions exist for decision making for single robots, the control problem becomes

more complicated in multi-robot settings [15, 26].

2.2 High Level Control

Extending adaptive techniques to the high level control requirements in a multi-

robot domain suggests significant benefits to exploration applications when the

complexity and scope of many current domains exceed the capabilities of a single

robot [25, 49]. The root design goal in such a complex domain is to create a

cooperative team of multiple robots where the behavior of each single robot furthers

a system-wide objective. When the cooperative team is small or the space of actions

is limited, both navigation and goal selection (i.e. low and high level control) can

be achieved with a single learning algorithm [49]. By contrast, problems requiring

the robots to each perform complex, multiple time step actions as a consequence
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of the tasking at hand present large amounts of sensor information in furtherance

of the system objective and therefore make it an intractable control problem for

a single adaptive algorithm. For example, robotic exploration domains would

require the algorithm to not only determine where to go to help the “team” but

also select safe and efficient paths to avoid obstacles and reach that destination

quickly. Reinforcement learning has been applied for action selection [5, 45], as

has neuro-control [49, 52] and behavior based policies [16, 27]. However, breaking

the requirements into categorical tasks reduces the computational burden for both

types of application.

The majority of non-adaptive approaches to coordination in multi-robot teams

are based on planning, swarms, auctions, and domain specific algorithms based

on detailed models. Role allocation and plan instantiation have proven success-

ful for large teams of robots [38] and nondeterministic planning has been applied

to adjust for uncontrollable robots with goals differing from the majority of the

team [8]. The application of swarm algorithms have been successful for the coor-

dination problem [12, 28], and utilizing auction techniques in the domain of robot

coordination for exploration [29] and generating bidding rules for multi-robot rout-

ing [24] has shown to provide coordination as well. Several successful applications

of robot coordination include search and rescue [51, 54], robotic soccer [28, 43],

mobile sensor networks [19], and mine collection [16].

Applying adaptive algorithms, over such non-adaptive approaches, seeks to en-

sure that the coordination achieved within the team of robots is robust in contin-

uous, dynamic, and stochastic environments. Specifically, methods that augment
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traditional methods with learning features are ideal for addressing complex coordi-

nation problems. For example, using Markov Decision Processes for online mecha-

nism design [35], or developing new reinforcement learning based algorithms [5, 44]

have produced successful coordinated systems.

Finally, evolutionary algorithms have been explored where individual robots

are selected based on their behavior contributions in promotion of particular sys-

tem behavior [3, 49]. Additionally this work provides quantitative measures (i.e.,

factoredness and learnability) by which the objective functions used for the search

can be evaluated. The majority of the coordination work in this thesis is based on

these coordination problems and behavior analysis.
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Chapter 3 – Simulation

The process of exploring an unknown environment includes identifying important

features of the environment to facilitate navigation, in addition to determining

what features indicate potential targets for investigation. These requirements can

be applied directly to robotic exploration. Assuming a robot has the ability to

efficiently move through its environment, a robot must have the ability to localize

and determine a safe and effective path. Second, to gather information, a robot

must have a method of identifying and prioritizing targets for exploration.

If these abilities are present, they must be exploited in a manner to minimize

the cost of the exploration, while maximizing the amount of information gathered.

Vital for an accurate robotic exploration solution is the effective control of robot

locomotion to quickly and safely navigate, while seeking and exploring targets of

interest.

One effective approach to providing these abilities is to segment the require-

ments into a hierarchical control structure. In this way, each requirement can

be designed and evaluated independently of the others. In this work, the entire

robot control environment is segmented in a manner directly related to the above

requirement structure.

As shown in Figure 3.1, the three basic robot requirements are categorically

segmented. At the base level the control tasks for robot locomotion are placed,
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Figure 3.1: Control Grouping: Abstract representation of robot control group task
segmentation.

including motor control for translational and rotational movement. The mid-level

contains the control tasks for navigation through an environment, including path

selection and obstacle avoidance. Finally, at the top level, the control tasks for

global robot purpose are placed, including target acquisition and goal selection.

This thesis presents the details of each from the platform level to the task level.

3.1 Robot Architecture

Beginning with the platform control level, a robotic platform was selected to base

the simulation environment upon. The target of such a choice included (but was not
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limited to) articulation, simplicity, power consumption, and resource availability.

The robot platform chosen to fit these needs was the TekBotTMrobot platform

developed at Oregon State University.

The TekBotTMis a simple, scalable robotic platform. It utilizes two wheels for

translational and lateral actuation with a ball drag bearing to provide the third

point of ground contact. This robot [40]:

Has Small Footprint: The robot is approximately 20x20cm.

Is Lightweight: The entire package weighs less than 2kg.

Uses Low Power: The robot contains six NiCd 700mAh AA batteries and under

normal operating conditions consumes less than 10 Watts.

Has Long Range: At maximum speed, 25 cm/s, and full processing load, the

robot can operate for up to 2 hours providing a range of approximately 1.8

km.

Is Inexpensive: The platform with microcontroller costs less than three hundred

dollars.

The TekBotTM(shown in Figure 3.2) is an ideal robot for the multi-robot coor-

dination domain because it is small, readily available, and relatively inexpensive

to build. Furthermore, it lends itself well to the development of limited resource

algorithms due to its simple but powerful Xilinx Spartan3 FPGA microprocessor.

For investigating autonomous multi-robot coordination and navigation, multiple
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Figure 3.2: Robot Platform: The robotic platform chosen for the basis of physical
motion within the simulator.

robots were constructed and therefore the platform allows for safe and efficient

algorithm development and evaluation.

The robot chosen does not have an active steering system. Instead, the robot

utilizes two DC motors, one for each wheel, and the difference in motor outputs

produces steering capability. This technique allows for maximum robot articula-

tion with minimal power. The robot has the ability to travel directly forward or

backward, alter heading while traveling, or rotate in place. To move directly for-

ward or backward, the motors are driven at the same speed, in the same direction.

To alter heading while traveling, one motor is driven to a lower speed than the

other and in the same direction, altering heading towards the slower motor. To

rotate in place, the motors are driven at the same speed in opposing directions.

Speed control for the robot is done utilizing feedback provided by inertial sens-
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ing, discussed in Section 3.2, as well as motor voltage detection. The speed of the

robot is scaled from maximum based on the distance to the current waypoint or

goal and the path quality provided by the navigation algorithm. The output of

this speed control is then sent to the motor controller.

Motor output is also determined utilizing feedback provided by an inertial

measurement sensor. Basic locomotion control for determining the speed of the

wheels relative to each other is done with a standard model-based proportional-

derivative controller [11]. This controller determines the signals to send to the

motor-driven wheels based on the desired speed and heading correction provided

by the path selection algorithm, presented in Chapter 4.

3.2 Sensing

Sensing requirements were separated into three sensor categories based on their

application to the respective control levels within the hierarchy. The robot is

provided with sensors for navigation, obstacle detection, and goal identification.

Detail of the sensors chosen for these applications follow.

3.2.1 Localization and Navigation

The navigation sensor for this robot is an inertial navigation sensor. This type of

sensor is low power and easy to use. The rudimentary technique for localization

is dead-reckoning, where the robot position is determined based on known robot
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dynamics. It provides accurate localization within a given time window and general

distance [48]. An advanced technique is GPS, but these devices have much larger

power requirements and cannot be used indoors. The sensor chosen contains two

accelerometers and two gyroscopes for x, y movement detection as well as yaw and

pitch deflections. The sensor also contains a magnetometer for determining Earth

relative magnetic heading. It can be actively and simply normalized to provide

noise reduction.

3.2.2 Obstacle and Robot Identification

Obstacles are identified using two simple stereo ultrasonic sensors positioned on

a rotating servo to provide information in eight regions surrounding the robot.

These sensors provide basic information about the robot environment with very

little power. Other alternatives, including infrared laser diodes, consume a great

deal more power. With this sensor, the information is provided in a distance in

centimeters under 20 degrees Celsius and sea level conditions. A rolling average is

kept for all readings performed in each of the eight regions to filter erroneous data.

Other robots within the environment also return sonar information which is

then paired with simple RF signal strength techniques to identify other robots

within the environment. This technique identifies the number of other robots

within range and returns rudimentary (and approximate) distances to each. This

makes assumptions based on distance ranges. For example, if the RF signal re-

ceived from another robot indicates it is a much greater distance than that of the
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sonar signal in that direction, the sonar signal is assumed to be a static obstacle,

not the other robot.

3.2.3 Goal Identification

The robot is equipped with two thermal sensors mounted on the same rotating

servo to provide thermal information in four regions. These sensors have very low

power requirements and allow target acquisition to proceed independently than

obstacle detection. These thermal sensors contain eight pixels each, therefore seg-

menting each region into eight sub-sections. The information is scaled to integers

inclusively between 0 and 9 representing the degree of thermal information above

the actively measured ambient temperature.

3.2.4 Combined Sensor Operation

Figure 3.3 shows a logical function and command flow for robot sensing and nav-

igation. Information from Point Of Interest (POI) thermal sensors, navigation

sensors, and obstacle sensors is split categorically and processed individually by

unique interpreters, then combined progressively to produce actuation commands.

This is done first by identifying targets (POIs) and selecting one (goal selection),

determining a safe and efficient path to the selected goal (navigation), then exe-

cuting that path (locomotion).
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Figure 3.3: Logical Command Flow: Logical function and command flow for robot
tasking. Thermal information is provided to the goal selector, which chooses a
destination to give to the navigator. The navigator uses destination, sonar, and
inertial information to choose a safe path and provides speed and heading to the
platform control which then determines actuator settings based on inertial infor-
mation.

3.3 Simulator Domain

In general, it is difficult to directly test and evaluate higher-order functionality

on a limited resource microcontroller. The lack of debugging information and

the compilation and iteration time consumption make it difficult to collect and

store the relevant information. To overcome this difficulty, a modular simulation

environment consisting of an environment simulator, a sensor simulator and a robot

simulator was created. A summary of the simulation environment follows:
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1. The environment simulator provides random or targeted environment gen-

eration (e.g., placement and geometry of goals and obstacles). Using basic

two dimensional geometry equations it computes both the robot position and

orientation, and provides realistic data to the sensor simulator.

2. The sensor simulator “scans” the environment by requesting information

from the environment simulator in a specific format for the three sensor

types - navigation, sonar, and thermal:

(i) Navigation sensor simulation is provided by using numerical integration

on the robot equations of motion, with the wheel rotation speeds as input,

which are provided by the robot simulator (see below).

(ii) Sonar sensor simulation is provided by creating two dimensional line

segments emanating from the robot at specific vehicle relative angles and

labeling those segments as requesting “echo” data in return. This is done

continuously using triangle-circle intersection geometry to prevent discretiza-

tion errors.

(iii) Thermal sensor simulation is provided in similar fashion, but by request-

ing “heat intensity” data rather than “echo” data. This data is determined

based on the distance of the sensor from the object being sensed.

3. The robot simulator models the robot actuators and provides the control

systems with the ability to transparently modify individual wheel direction

and speed. The simulator also tracks “power usage” by the simulated motors

and processor over time and modifies the actuator behavior as a result of
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diminishing battery power.

In modularizing the simulation package, code for the operating system on the

robot presented in Section 3.1 is generated during the development process pre-

cisely as if it were already in operation on the physical robot. The other simula-

tors become transparent to the control systems being designed and evaluated, and

therefore a transition to the physical robot environment is as seamless as possible.
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Chapter 4 – Navigation

Under the hierarchical control structure presented in the previous chapter, the

specifics of robot navigation through unknown, complex environments need to

be addressed. The robot must have the ability to choose safe and efficient paths

through an environment to reach a specific destination. This includes the ability to

avoid obstacles and maximize robot speed, while maintaining a level of robustness

to inaccuracies (noise) in sensor and actuator signals.

In addressing these requirements, it is important to determine the benefits and

drawbacks of a reactive algorithm (i.e., does not modify behavior) as it compares

to an algorithm with the ability to learn and change behavior as it operates within

an environment. This adaptive ability is important when the exact solution to

effective navigation is unknown to the system designer as well as for situations

where the algorithm can not be easily shut down and redesigned.

For this work, navigation through the environment was achieved using three

algorithms for controlling the robot based on environment information obtained

from the sonar and inertial sensors. A random technique is used to produce a

baseline, where the action taken at each time step is random. The three algorithms

investigated for the control requirements in the mid level of the hierarchical control

grouping are:

1. Reactive Navigation: A probabilistic navigation algorithm begins by ex-
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ecuting a predefined waypoint list, or randomly generating a list. The al-

gorithm assigns a path quality to each possible robot heading, based on a

predefined probabilistic interpretation of environment detection information,

then creates a path at the heading of greatest path quality.

2. Adaptive Navigation I: This is a Multi Layer Perceptron (MLP) [1, 9,

36, 13] based controller designed under the same premise as the probabilistic

driver in that it interprets environment detection information and assigns a

path quality to each potential path. However, it deviates in the interpretation

method where the sensor information for that potential path is fed directly

to an MLP and the output of the MLP is used as the path quality.

3. Adaptive Navigation II: This is a Reinforcement Learning path selector

that chooses the right actions based on a Markov Decision Process (MDP) [21,

45, 36]. The robot associates a “value” to each action based on its current

state and updates that value based on the final outcome of a trial run.

These unique algorithms are evaluated with the goal of determining which

provides the best individual control of the robot, the most flexibility in terms of

fitting within a hierarchical control flow, and which provides a computationally

realistic procedure for navigation technique on a resource limited platform.
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4.1 Reactive Navigation

Reactive navigation is achieved through a probabilistic path selection algorithm.

It is termed “reactive” because the algorithm does not contain any mechanism

for modifying behavior based on knowledge gained during operation. Given a

“desired location” (e.g., through the goal selection algorithm or waypoint list) the

path selector needs to compute the speed and heading corrections to reach that

location.

In this approach, each path is assigned a probability of leading to the desired

location based on the distance to that location and current heading of the robot.

Then, each path is assigned a probability of safety, which is based on the presence

of obstacles along a given path. The product of these two probabilities provides

a prediction of success for a given path and is labeled the path quality. The path

with greatest quality (greatest “probability of success”) is then chosen as the,

potentially new, desired robot heading.

In the absence of prior information, this is a likelihood based approach, where

each path is evaluated solely based on collected data. However, including prior

information and updating the path quality posterior probabilities would provide

a true Bayesian navigation method. Figure 4.1 shows the algorithm itself and

Figure 4.2 shows sample probabilities of certain paths as a function of distance to

nearest obstacle and angle to desired location. The heading with the highest path

quality is selected, and the speed is linearly scaled based on that quality (e.g., 90%

or greater path quality equates to maximum speed, whereas a 50% path quality
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Gather desired location, current state

For θi ≤ 360 Loop:

1. Calculate Pdirect given αv and αdes

2. Calculate Psafe given dθi

3. Q(θi)⇐ Pdirect × Psafe

αu ⇐ argmaxQ(θi)

Vu ⇐ F (Q(αu))

Figure 4.1: Probabilistic Navigation Algorithm: Algorithm to determine the qual-
ity of potential robot paths. Pdirect and Psafe are the probabilities of the path
being direct to the desired location and safe respectively, θi is the potential path,
αv, αdes, and αu are the current, desired, and commanded robot headings respec-
tively, dθi

is the obstacle distance reported at the potential path, Q(θi) is the
quality assignment (probability of success) to the potential path, and finally Vu is
the commanded robot speed (given by a linear function F (Q)).

results in half speed). This scaling is one component of the speed control discussed

in Section 3.1.

The path quality determination for each potential path (Figure 4.2) is engi-

neered offline based on known robotic articulation capabilities (e.g., speed and

turning ability) and on experimental observations made during the initial design.

As shown, the potential path quality falls away from 1.0 as either the potential path

is further away from the desired location angle or the sonar distance reduces to

“dangerous” levels. By assigning a quality to each potential path and choosing the

best (Figure 4.1), a smooth transition is made between discrete path choices as the
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Figure 4.2: Probabilistic Output: A demonstration of the path quality output
for varying angular distance of the potential path from the desired location and
nearest obstacle distance.

robot navigates through the environment, even for dynamically changing desired

locations. For example, the goal selection control level may deliver a dramatically

different desired location at the next time step, however since the navigation al-

gorithm is executed (and a simple path recalculated) at every time step, rather

than complex multiple time step paths being designed for new destinations, the

navigation control level is minimally affected by the sudden change in destination.

4.2 Adaptive Navigation

A significant drawback of reactive navigation is the engineered quality of its deci-

sion process. The entire state to action mapping is created by the system designer
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either prior to operation entirely, or based on observations made during testing.

However, rarely is that testing process capable of exploiting the entire range of

states and the responsive actions a robot may experience in a continuous multi-

robot navigation domain. In addition, interpretation of the sensor information

available to the robot to maximize the performance may prove overly difficult or

impossible in some situations.

The environment itself in which the robot is to navigate may also present a

complex set of issues. For example, when the robot is operating in an environ-

ment where a system designer may observe and make corrections to the navigation

technique quickly, it can be trivial to identify and repair a problem. On the other

hand, if the robot is operating in an environment where direct communication with

the system designed can take hours or days (e.g., extra-planetary exploration), it

is impractical or impossible to make major adjustments to robot behavior after it

has been tasked.

Adaptive navigation techniques present a potential solution to these problems.

By creating a structure whereby the robot may modify its own interpretation

of sensor information and act on its own based on environments it encounters

after it has been tasked, the robot may adapt to situations it has never before

encountered, and even adapt online to sensor or actuator failures. In this work,

two adaptive navigation methods are examined in a contrasting context to the

reactive navigation method presented above. These methods include:

Neuro-Evolution: A multi-layer perceptron (MLP) is used to interpret sensor

information and determine what quality to assign to potential paths. An
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evolutionary search technique is used to locate skilled MLPs (hereafter re-

ferred to as neural networks) in a population.

Reinforcement Learning: Several general RL techniques are implemented to

evaluate robot state information and produce appropriate actions. This is

done with state-action pairing either with direct estimation of value or with

function approximation.

There are two distinct steps in implementing an adaptive control technique for

a specific domain: constructing the learner (algorithm) and training the learner.

Construction of the learner involves: a) determining an effective way of represent-

ing sensor information as the state, b) the way in which the algorithm interprets

the state and stores knowledge, and c) interpreting the hypothesis for the optimal

action the algorithm makes. Training the learner generally involves determining

the best way to classify the actions taken by the algorithm as “good” or “bad”

reflected by the next state the algorithm achieves. This classification is generally

domain specific and does not include the method of presentation to the algorithm,

which also must be addressed, and is discussed for this work in Section 4.3.

4.2.1 Neuro-Evolution

The first of the two steps as it applies to the neuro-evolutionary method of con-

trol involves determining the state and action space available to the baseline neural

network. The state/action structure of the reactive navigation control presented in
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Section 4.1 contains a beneficial approach to path selection. It is simple, which re-

duces computational complexity as well as the number of potentially unpredictable

behaviors, and applies well to a hierarchical control structure.

To capture those benefits while injecting the benefits of adaptability into nav-

igation control, the state and action spaces are maintained. Specifically, one state

variable represents the angular distance of a potential path from the desired head-

ing, and one represents the distance to the nearest impassable object in that path.

The action space then contains a single state variable representing the quality of

the path given that information. Therefore, for this work, the baseline network

structure created is a two layer, sigmoid activated, artificial neural network, shown

in Figure 4.3.

This network is run at each time step, for each potential path, generating a

path quality function in a similar fashion to that presented in Figure 4.1. The

difference is in the replacement of static predefined probability distributions by an

adaptive artificial neural network.

The second step in implementing an adaptive control technique as it applies to

this work involves application of an evolutionary search algorithm for ranking and

subsequently locating successful networks within a population [34, 30, 49]. The

algorithm maintains a population of ten networks, utilizes mutation to modify

individuals, and ranks them based on a performance metric specific to the domain.

The search algorithm used is shown in Figure 4.4 which displays the ranking and

mutation steps.

In this domain, mutation (Step 2) involves adding a randomly generated num-



27

Figure 4.3: Baseline Network Structure: The baseline network structure for the
neuro-evolutionary adaptive navigation technique. Two inputs describe the angu-
lar distance from the desired heading and the nearest obstacle distance, it contains
a single layer of eight hidden units, and a single output represents the path quality.

ber to every weight within the network. This can be done in a large variety of

ways, however it is done here by sampling from a random Cauchy distribution [4]

where the samples are limited to the continuous range [-10.0,10.0]. Ranking of the

network performance (Step 4) is done using a domain specific objective function,

and is discussed in detail in Section 4.3.

4.2.2 Reinforcement Learning

The reinforcement learning technique of adaptive control is a structure of algorithm

that must be formed such that it can be “rewarded” directly based on a predefined
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Initialize N networks at T=0

For T < Tmax Loop:

1. Pick a random network Ni from population

With probability ε: Ncurrent ⇐ Ni

With probability 1− ε: Ncurrent ⇐ Nbest

2. Mutate Ncurrent to produce N ′

3. Control robot with N ′ for next episode

4. Rank N ′ based on performance
(objective function)

5. Replace Nworst with N ′

Figure 4.4: Evolutionary Algorithm: An ε-greedy evolutionary algorithm to deter-
mine the weights of the neural networks. Nbest and Nworst are the best and worst
networks in the population, Tmax is the number of episodes, Ncurrent is the network
that is chosen at step T, N ′ is the modified Ncurrent that controls the robot at step
T and ε is the probability of exploration.

objective function of the next state of the robot or the next state and action

taken. In this work, the algorithm is rewarded based on a set of actions taken

during a training episode. There are a great many reinforcement learning algorithm

structures, however two general and commonly used structures were chosen for this

work:

Direct Q Learning: This involves maintaining a table representing a discretized

Q function that is based on state-action pairs, Q(s, a). The intention is

to produce a global maximum value for each specific state such that an

appropriate action to take as a result of that state can be determined [36].
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Function Approximation Q Learning: This method involves utilizing a func-

tion approximator rather than a table for representation of the Q(s, a) func-

tion. There are several choices for function approximation including gener-

alized linear structures or artificial neural networks. For this work, a neural

network was chosen [42, 36].

The state and action spaces here are very important as well. In order to

maintain comparability, the spaces are identical to that used in the probabilis-

tic and neuro-evolutionary techniques utilized above and described in Sections 4.1

and 4.2.1. This structure, where path quality is assigned to potential paths, lends

itself to reinforcement learning, as the maximum value of the action-value function

corresponds proportionally to the maximum path quality and therefore automati-

cally “chooses” the best path (action) based on current knowledge.

For the second step in implementing an adaptive navigation technique, updat-

ing the algorithm, two techniques were utilized [36, 20]:

Q-Learning: The temporal difference Q-learning approach requires no model,

therefore does not require a known probability distribution from current to

next states based on action taken. The action-value function Q(s, a) is up-

dated using the following equation:

Q(s, a)← Q(s, a) + α
(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)

where R(s) is the reward for the current state s, with s′ and a′ as the next
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state and action respectively. The learning parameters α and γ dictate the

learning rate and current knowledge discounting respectively.

SARSA: This learning method is quite similar to the temporal difference Q-

learning method. It is different in that it is less aggressive by not maximizing

over possible actions, resulting in the following update equation:

Q(s, a)← Q(s, a) + α (R(s) + γQ(s′, a′)−Q(s, a))

where all parameters are described as above.

Both learning techniques were paired with the two algorithm structures result-

ing in four unique adaptive navigation control techniques. For function approxi-

mation the action-value Q(s, a) function cannot be directly updated, however the

update is similar in structure to the update equations given above. The parameters

of the function approximator in this case are the weights of the neural network.

Referring to a general network structure such as that shown in Figure 4.3, the

weight updates are done using the following equation [36]:

wij = wij + α
(
R(s) + γmax

a′
Q̂w(s′, a′)− Q̂w(s, a)

)
∂Q̂w(s,a)
∂wij

where wij is an individual weight, Q̂w(s, a) is the output of the function ap-

proximator given state s and action a, and s′ and a′ are the next state and action

respectively. The above is for the temporal difference Q learning update; the
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SARSA parameter update equation is similar, removing the next action maxi-

mization function.

It is important here as well to employ an explore/exploit technique to provide

additional states and actions that may not have been observed and therefore are

not included in current knowledge. An ε-greedy method similar to that used in the

neuro-evolutionary algorithm is used in this application, as shown in Figure 4.5.

Initialize Q(s, a)

For T < Tmax Loop:

1. Capture current state s′

2. r′ ⇐ R(s)

3. Update action-value function
(or FA parameters)

With probability ε: a′ ⇐ arandom

With probability 1− ε: a′ ⇐ afunction

4. s, a, r ⇐ s′, a′, r′

5. Execute a′

Figure 4.5: Reinforcement Learning Algorithm: An (ε-greedy) reinforcement learn-
ing algorithm. s, a, and r are the current state, action, and reward respectively.
Next state, action, and reward are denoted with ′. arandom is a randomly selected
action where afunction is the action given by the current Q(s, a) and R(s) is the
reward assignment for being in state s.
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4.2.3 Reinforcement Learning Difficulties in this Domain

Unfortunately, the reinforcement learning techniques described above did not pro-

vide desirable results when compared to the neuro-evolution technique. Though

all of the above discussed methods learned and began to produce coherent be-

havior, the learning rate was approximately 150 times slower than that of the

neuro-evolutionary algorithm and by the complex nature of the simulations it was

intractable to further evaluate performance. This is likely a result of the con-

tinuous and stochastic nature of the domain for which there are reinforcement

learning modifications that can be made to improve learning performance, which

are discussed briefly in Chapter 6.

4.3 Problem Definition

For the simulations of the robot as described in Chapter 3, an arena of 5 meters

square was created with a varying number of obstacles specific to the experiment

and a specific destination was chosen in order to ensure that the desired behavior

is the same for all evaluated algorithms. Various environments were generated to

evaluate algorithm performance and are discussed further in the next section.

The training method is episodic in that the robot is allowed to operate for

a fixed maximum amount of time (60 seconds in this work), is evaluated, then

the environment is reset. When the robot reached the destination, the episode

was considered complete and terminated. To prevent the adaptive algorithm from

memorizing specific situations, the starting position is selected at random at the
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beginning of an episode as is the initial robot heading. The range of positions

from which the starting locations are selected varies for each experiment and is

presented with the experiment results. The training is executed for 2000 episodes

and each experiment is repeated 20 times for each algorithm. The results are then

averaged for analysis.

The objective function for behavior ranking was designed to capture three

important aspects of mobile robot navigation in unknown environments; 1) total

path length the robot uses to reach the destination, 2) time the robot consumes

reaching the destination, and 3) time the robot consumes recovering from a collision

with an obstacle. These incorporate choosing the shortest path, executing it with

greatest speed, and doing so in a safe manner. In order to convert the above to

maximization rather than minimization, and support the constantly shifting initial

conditions, the best possible behavior is incorporated, generating the following

objective function:

G(s) = α (dbest − dactual) + β (tbest − tactual)− γτcollision (4.1)

where d is the path length (best possible and episode actual), t is the time

consumed, and τcollision is the total amount of time spent recovering from colli-

sions. α, β and γ are constants used to increase or decrease the respective terms’

contribution to the overall function. For all subsequent navigation experiments

these constants were found to give good behavior when set to 1.0, 10.0, and 10.0

respectively. The best path length and time vary by experiment and episode, there-
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fore are calculated at the beginning of each episode using a Manhattan Distance

concept [37] whereby the best length is a straight path from starting position to

destination and the best time is that path executed at maximum robot speed. The

best possible τcollision is of course 0, resulting in the negative sign of that term. As

a result, G(s) is then always less than, or in very limited situations equal to, zero.

4.4 Experiments

Several experiments were designed to evaluate the navigation algorithms for a

specific set of behaviors discussed in the problem definition. These progressively

increased in difficulty and scope from basic navigation to a destination, through

advanced navigation in cluttered environments with other robots. Following is a

list of navigation experiments with their intentions:

Situational Environment: The robot must navigate to a destination with pro-

gressively more difficult, predefined, obstacle placement.

Dense Environment: The robot must navigate to a destination through an en-

vironment dense with obstacles.

Multiple Robot Environment: Multiple robots must navigate simultaneously

to similar destinations within an environment dense with obstacles.

In addition to the above, in some situations sensor and actuator noise was

injected to the simulation by randomly modifying readings or commands with a

given scale percentage. The noise added is discussed in detail with the experimental
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results. These experiments evaluate not only the navigation algorithm’s ability

to seek a destination, but safely and intricately navigate around obstacles in an

unknown environment even in the face of dynamically moving obstacles (other

robots) and sensor/actuator inaccuracies.

4.4.1 Situational Environment

In these experiments the algorithms are evaluated for simple to intricate navigation

techniques. The first of these determines ability to relocate to a destination and

the initial conditions are shown in Figure 4.6. The structure of this figure is utilized

throughout the results presentation. It shows the to-scale experiment arena with

sample robot (green square) and destination (blue circle). The yellow area shows

the possible starting locations for each episode, the number of which is listed at

the base of the arena.

Figure 4.7 shows the training results for the Total Clearance situation. The

objective function shown in Equation 4.1 is plotted over training episodes as an

average over the 20 iterations for each algorithm. The random driver, probabilistic

driver, and the neuro-evolutionary algorithm are provided with error bars indicat-

ing the standard deviation of the data. As shown, the random driver sets a good

baseline by taking random actions. The probabilistic driver does very well as all

starting positions produce direct paths without the need for obstacle avoidance.

Finally, the neuro-evolutionary algorithm is shown to learn quickly, performing

statistically similar to the probabilistic driver within approximately 600 training
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Figure 4.6: Total Clearance Situation: The experimental arena for the Total Clear-
ance situation. The figure is to scale and shows a sample robot (green square), the
destination (blue circle) as well as the possible starting locations for an episode
(yellow area). The number of possible initial conditions as well as the approximate
percentage of those being direct paths are listed at the base of the figure.

episodes. Because the adaptive navigation technique inherently contains some ex-

ploration, the mean is below reactive navigation in very simple situations. For

example, the probabilistic navigator deterministically drives directly to the des-

tination, where the neuro-evolutionary technique chooses random policies with ε

probability.

Shown in Figure 4.8 is a sample control surface produced by the neural net-

work after training, presented in a similar fashion to the probabilistic algorithm in

Figure 4.2. What is interesting here is the different shape and structure of the sur-

face as it compares to the probabilistic algorithm, while still producing successful
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Figure 4.7: Total Clearance Training: The results of the training for the Total
Clearance situation. The objective function is plotted for the random, probabilis-
tic, and neuro-evolutionary algorithms as an average over 20 iterations.

navigation technique. The path quality remains high regardless of sonar distance

when the potential path is direct to the goal, resulting from the lack of need to

avoid obstacles in transit. The quality falls away quickly for rising angular distance

with lower sonar readings however which forces the robot to be more selective with

potential paths and slows the robot significantly for more careful navigation.

The next step was to install obstacles into the environment to reduce the num-

ber of direct path initial conditions and force the robot to avoid obstacles in transit

to the destination. Figure 4.9 shows the experiment configuration presented in a

similar fashion to Figure 4.6. The number of direct paths is reduced to approx-
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Figure 4.8: Total Clearance Output: A sample output of the neural network after
training for the Total Clearance situation. The path quality is plotted over varying
angular distance from the desired location and sonar distance.

imately 50% while the number of potential initial conditions remains the same.

Therefore the robot still may begin an episode in a position to navigate directly to

the goal, but has a 50% chance of being presented with an obstacle before reaching

the destination. As shown in the results of training (Figure 4.10), the probabilistic

algorithm still performs well and the neuro-evolutionary algorithm proves to learn

quickly and produce effective behavior statistically similar to reactive navigation.

Finally, a difficult situation was configured where there were few potential direct

paths to the destination and the robot is required to navigate carefully between

obstacles in order to reach the destination. Figure 4.11 shows the layout of the

obstacles as they relate to potential robot starting positions.

The results of training, shown in Figure 4.12, are interesting in that the neuro-



39

Figure 4.9: High Clearance Situation: The experimental arena for the High Clear-
ance situation. The figure is to scale and shows a sample robot (green square), the
destination (blue circle) as well as the possible starting locations for an episode
(yellow area). The number of possible initial conditions as well as the approximate
percentage of those being direct paths are listed at the base of the figure.

evolutionary algorithm appears to begin exceeding the performance of reactive

navigation. In addition, the learning appears to take place in two phases: initially

learning how to reach the destination then adjusting to avoid the obstacles it

encounters. A sample output of the neural network is shown in Figure 4.13 and

again is quite different from the probabilistic algorithm as well as the resulting

surface from the Total Clearance situation. Again the path quality falls away very

quickly as the robot points away from the desired location, in a more strict fashion

than that of the Total Clearance situation, and a “shelf” exists for sonar distances

greater than approximately 100cm.



40

Figure 4.10: High Clearance Training: The results of the training for the High
Clearance situation. The objective function is plotted for the random, probabilis-
tic, and neuro-evolutionary algorithms as an average over 20 iterations.

These experiments progressively determined the capability of the neuro-evolutionary

algorithm to learn how to navigate the robot in general, as well as avoid obstacles

to reach a specified destination. The adaptive method of navigation proves to per-

form equivalently to predefined reactive navigation, generating different solutions

for different environments.
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Figure 4.11: Low Clearance Situation: The experimental arena for the Low Clear-
ance situation. The figure is to scale and shows a sample robot (green square), the
destination (blue circle) as well as the possible starting locations for an episode
(yellow area). The number of possible initial conditions as well as the approximate
percentage of those being direct paths are listed at the base of the figure.

4.4.2 Dense Environment

The next step in the progression of analysis was to determine how the algorithms

perform in a complex environment dense with obstacles. It is desirable to force the

robot to navigate through the majority of the environment and reduce or eliminate

the number of potential direct paths. To provide this, the range of starting loca-

tions was limited to areas on the opposing side of the experimental arena and 15

obstacles were placed arbitrarily throughout the environment. Figure 4.14 shows

the environment configuration for these experiments. As shown, the starting po-
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Figure 4.12: Low Clearance Training: The results of the training for the Low Clear-
ance situation. The objective function is plotted for the random, probabilistic, and
neuro-evolutionary algorithms as an average over 20 iterations.

sitions are narrowed to the outer edges of the arena, but the robot initial heading

was still randomized at the beginning of each episode.

The results of training in this environment are very interesting. The neuro-

evolutionary algorithm learns more quickly than in the situational experiments

and exceeds the reduced performance of reactive navigation. This is a result of

the algorithm being presented with more information during the training process

(through richer sonar data), the reduced number of starting positions, and the

discovery of more accurate obstacle avoidance technique over reactive navigation.

The results of the training process are presented in Figure 4.15.
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Figure 4.13: Low Clearance Output: A sample output of the neural network after
training for the Low Clearance situation. The path quality is plotted over varying
angular distance from the desired location and sonar distance.

4.4.3 Dense Environment with Noise

Previously the sensors and actuators produced ideal data and robot motion. This

is not a realistic situation for physical robots, as all sensors contain stochastic

differences in readings of the environment, and actuators may not produce exactly

the intended robot motion. Therefore, random noise was injected into the sonar

and inertial sensor data as well as the output of the navigation algorithm to the

actuators. Specifically, 5% random noise was present from the beginning of the

training and to simulate potential failures, the noise level was phased up to 10%

over 200 episodes surrounding the 1000th episode (e.g., from 900 to 1100). The

results of the training are presented in Figure 4.16.
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Figure 4.14: Dense Environment: The experimental arena for the dense envi-
ronment. The figure is to scale and shows a sample robot (green square), the
destination (blue circle) as well as the possible starting locations for an episode
(yellow area). The number of possible initial conditions as well as the approximate
percentage of those being direct paths are listed at the base of the figure.

It can be seen that the learning process is dampened as a result of the noise

present at the beginning of the training process. It is important to note that as

the increased noise is phased in, there is little or no effect in the performance of

the neuro-evolutionary algorithm. Learning continues unimpeded to significantly

outperform the probabilistic navigation algorithm which is strongly affected by

the increased noise level in sensing and actuation. This is a result of the learning

occurring while noise is present in the system such that good behavior is learned

in spite of the noise and therefore an increase in the noise level during operation

(once successful behavior has been learned) does not affect the neuro-evolutionary



45

Figure 4.15: Dense Training: The result of the training in a dense environ-
ment. The objective function is plotted for the random, probabilistic, and neuro-
evolutionary algorithms as an average over 20 iterations.

algorithm performance.

A sample of the control surface learned during the dense environment with noise

experiment is shown in Figure 4.17. This surface is interesting in its aggressiveness.

For example, the path quality remains large for a much greater range of paths

facing away from the desired location, though a slight slope remains to ensure

the tendency to point towards the destination. As the sonar distance approaches

dangerously low values, the path quality falls away quickly regardless of where

the robot is pointed, which demonstrates the algorithm’s ability to avoid collisions

while still driving as quickly as possible. The fact that the path quality falls away
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Figure 4.16: Noisy Dense Training: The result of the training in a dense envi-
ronment while sensor and actuator noise was present. The objective function is
plotted for the random, probabilistic, and neuro-evolutionary algorithms as an
average over 20 iterations.

at large sonar distances (which should be safer) is explained by the lack of exposure

to that portion of the state space. For example, in this dense environment the sonar

was almost always reporting distances to obstacles and walls under 300cm.

These experiments demonstrate the ability of the neuro-evolutionary algorithm

to outperform the probabilistic navigation algorithm in environments densely pop-

ulated with obstacles and to learn effective navigation techniques when the sensors

and actuators are not operating at ideal levels.
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Figure 4.17: Noisy Dense Output: A sample output of the neural network after
training for the dense environment with noise experiment. The path quality is
plotted over varying angular distance from the desired location and sonar distance.

4.4.4 Multi-Robot Environment

The intention of the hierarchical control structure evaluation in this work was for

application to multi-robot domains. Therefore it follows that a determination of

the performance of the adaptive navigation technique in multi-robot settings was

required. For this experiment, 5 robots were placed in the same dense environment

presented in the last section. The range of initial conditions is similar, changing

only in that robots are not allowed to be placed atop one another at the beginning

of the episode. All the robots in the domain must proceed as previously discussed,

each learning how to navigate to a destination (near to but not the same as the

others) while avoiding obstacles.
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When the neuro-evolutionary algorithms operating on the robots were started

from scratch (random weights) at the beginning of the experiment, only one of the

robots was able to learn any coherent behavior above taking random actions, and

even then had a difficult time learning to avoid obstacles (and other robots). This

problem is addressed further in Chapter 5. Alternative to all robots learning at

once, one robot was run utilizing a neuro-evolutionary algorithm while the others

ran the reactive navigation technique to determine whether the problem was with

the learning algorithm itself, or with the dynamics of a multi-robot environment.

The results were similar to those presented in Section 4.4.2. However, this method

is not conducive to the multi-robot intentions of the work, where all robots are

adaptive, learning agents.

Therefore a second alternative was chosen where a neural network is “boot-

strapped” from a known functional algorithm, in this case the probabilistic algo-

rithm, and distributed across the robots to determine if an improvement can be

made. Bootstrapping was done using standard neural network error backpropega-

tion [36, 13] where the error is calculated as the mean-squared difference between

current network output and the probabilistic algorithm output. The process is run

until the error drops below 20%, as the intention is not for the network to duplicate

the probabilistic algorithm behavior exactly.

The process is run five times, one for each robot, then the evolutionary search

algorithm is replaced and the experiment begins. Figure 4.18 presents the results of

the training under these conditions. Though each robot was ranked based only on

its own performance (with Equation 4.1), the sum of all performances was used for
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Figure 4.18: Multi-Robot Training: The result of the training in a dense environ-
ment while 5% sensor and actuator noise is present and 5 robots are active. The
sum of the individual objective functions is plotted for the random, probabilistic,
and neuro-evolutionary algorithms as an average over 20 iterations.

presentation purposes. It is shown that the neuro-evolutionary algorithm begins

close to the performance of the probabilistic algorithm, however quickly learns to

exceed the performance to a significant degree. Sensor and actuator noise (5%)

was present in this experiment as well, but was not increased during the training

process.

Shown in Figure 4.19 is a sample control surface from one of the robots after

training. All five surfaces were different, one is presented here for brevity. It is clear

that the roots of the surface reside with the probabilistic algorithm (Figure 4.2),

but it has been significantly modified into one similar to that produced in the Low
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Figure 4.19: Multi-Robot Output: A sample output of the neural network from
one robot after training in a dense environment. The path quality is plotted over
varying angular distance from the desired location and sonar distance.

Clearance situational experiment (Figure 4.13).

This experiment shows that the neuro-evolutionary adaptive navigation tech-

nique is successful in environments where multiple robots are in operation, improv-

ing performance over that of probabilistic path selection. However, the experiment

also reports that the learning process is complicated to the degree of disruption

if all robots begin the learning process from scratch. Bootstrapping the learning

algorithm before the learning process is begun was shown to successfully overcome

this limitation.
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4.5 Navigation Discussion

In this chapter algorithms were presented and evaluated to achieve the control

tasks required in the mid level of the hierarchical control structure. The random

driver algorithm established a good baseline by assigning random values to path

quality. The probabilistic driver used pre-engineered probability distributions to

determine the direction and safety of potential paths of travel to a destination.

Several reinforcement learning techniques were employed under the same state

and action space structures however were intractable in their learning speed.

The neuro-evolutionary adaptive navigation technique was shown to success-

fully learn to perform the tasks required including basic navigation and advanced

obstacle avoidance. In defined situations, the algorithm performed statistically sim-

ilar to that of the probabilistic algorithm and in dense environments was shown to

quickly exceed the performance. Included in the dense environment experiment was

the ability of the algorithm to overcome the affects of sensor and actuator noise,

where the neuro-evolutionary algorithm was shown to be robust.

The algorithm also demonstrated the ability to improve upon current knowl-

edge when placed in a noisy, dense environment where multiple robots were in

simultaneous operation, if prepared via bootstrapping. This lends itself well to

the coordination domain, however as shown in the forthcoming chapter, the less

stochastic probabilistic navigation method must be used while evaluating coordi-

nation behavior (to isolate the hierarchical control levels). This is the case only in

development, once all levels have been developed and trained, adaptive techniques
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may be used in both the mid and high levels.
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Chapter 5 – Coordination

Often it is beneficial to examine the potential application of multi-robot teams

in complex exploration applications. A single robot may be able to effectively

manage the task at hand, however it may consume a great deal of time or resources

in order to accomplish the goal. In designing teams of robots to coordinate with

one another, exploration of an unknown environment may be accomplished in a

much shorter time, and the resources required of individuals may be dramatically

decreased.

As an example, a single robot exploring the surface of a planet requires a great

deal of time to navigate to a destination and a great deal of resources to examine

that destination. Sequentially visiting each location, potentially large distances

apart, and spending time examining each with a myriad of sensors consumes both

travel time and power. If the task were placed to a large team of robots, each

individual would need to travel much smaller distances to contribute to the explo-

ration, and potentially each robot could be given different sensor types to further

reduce power and examination time requirements. Finally, it generally poses a

greatly reduced impact on the exploration mission if an individual of a team fails

compared to that of a single explorer.
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5.1 Problem Definition

The multi-robot information gathering problem used for this work consists of a

set of robots that must observe a set of points of interest (POIs) within a given

time window [49]. These requirements are gathered in the top level of the hier-

archical control grouping, isolated from the navigation requirements. The POIs

have different importance to the system, and each observation of a POI yields a

value inversely related to the distance the robot is from the POI. Though multiple

observations of a POI may in some instances be valuable (e.g., different spec-

tra, different angles), the case where the robots are homogeneous and hence only

the observation of the closest robot contributes to the system objective function

was investigated. First introduced in [49], the work in this thesis expands on the

problem by introducing physical constraints on robot motion (i.e., robots consume

space and time while in operation and have limited articulation) in addition to a

separate navigation structure (i.e., previously all control was performed by a single

algorithm) and limited sensing (i.e., information degradation over distance).

Given the problem specification above, the system objective function is defined

as [49]:

G(s) =
∑
j

Vj
min δ(Lj, Li)

(5.1)

where Vj and Lj are the value and location of POI j respectively, Li is the

location of robot i, and the distance metric δ is the squared Euclidean norm,

bounded by a minimum observation distance, δmin:
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δ(x, y) = max(‖x− y‖2 , δ2
min) (5.2)

where δmin represents the robot “bumping” into the POI or another robot.

It was discovered in Section 4.4.4 that without careful initialization, the neuro-

evolutionary adaptive navigation technique can produce highly stochastic behav-

ior in multiple robot domains. To isolate robot behavior, in this case down to

goal selection and coordination only, the more deterministic probabilistic naviga-

tion method is employed throughout. In this problem then, robot coordination is

achieved through the goal selection mechanism only, for each robot. Because the

system objective is based on having close observations of the POIs, only one of

many robots that aim for the same POI contributes to the system objective. The

goal selection mechanism is then critical for success in this domain.

5.2 Goal Selection for Coordination

The goal selection algorithm is responsible for determining the destination. The

selection process involves mapping the sensor inputs to an x, y translation relative

to the current position of the robot. Each robot utilizes a two layer sigmoid

activated artificial neural network to perform this mapping [18].

The inputs to this function approximator are the four POI sensors (Equa-

tion 5.3) and the four robot sensors (Equation 5.4), where xPOIq and xROBOTq pro-

vide the POI and robot “richness” of each quadrant q, respectively, Vj and Lj are

the value and location of POI j respectively, Li is the location of the current robot
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i and θj,q is the separation in radians between the POI and the center of the sensor

quadrant.

xPOIi,q =
∑
j

Vj
δ(Lj, Li)

(
1− |θj,q|

(π/4)

)
(5.3)

xROBOTi,q =
∑
k,k 6=i

1

δ(Lk, Li)

(
1− |θk,q|

(π/4)

)
(5.4)

These sensors are idealized versions of the thermal and sonar sensors discussed

in Section 3.2. The structure of the information provided to the function ap-

proximator is essentially the way proposed in [49], however the way in which the

data is gathered is more strictly dependent on the realities of the sensors chosen.

For example, sonar information becomes more vague (the “echo” spreads out) and

thermal information declines (the “intensity” spreads out) as the distances increase

from the sensor. These restrictions are placed on the above data before structuring

for input to the function approximator.

Two outputs from the function approximator indicate the distance to travel on

the axes parallel and perpendicular to the current robot heading. The distances

are translated into a “desired location” which is then given to the navigator for

execution. At that point the neural network (similar to Figure 4.3) is no longer

queried until the navigator reports that the location has been reached within a

radius equal to δmin used in Equation 5.2. This ensures that the neural network

is queried again if it chooses a desired location outside the boundaries of the

environment, or “inside” a POI or other robot.
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The weights of the neural network are adjusted through an evolutionary algo-

rithm [2, 3, 30]. The algorithm is identical to that used for the neuro-evolutionary

navigation technique in Figure 4.4, however describing instead the algorithm for the

robots’ goal selection training. One of the keys in the success of such an algorithm

is in determining the objective function that provides the selection mechanism

(step 4).

In these experiments, three different objective functions [49] to rate the per-

formance of the goal selection algorithms were evaluated: the system objective

function which rates the performance of the full system; a local objective function

that rates the performance of a “selfish” robot; and a difference objective function

that aims to capture the impact of a robot in the multi-robot team. More precisely,

these three functions are:

• The system objective given in Equation 5.1. This objective reflects the perfor-

mance of the full team. Though robots optimizing this objective guarantees

that the robots all work toward the same purpose, robots have a difficult

time discerning their impact on this function, particularly as the number of

robots in the system increases.

• The local objective given by:

Pi(s) =
∑
j

Vj
δ(Lj, Li)

(5.5)

This objective reflects the performance of the robot operating alone in the

environment. Each robot is rewarded for the sum of the POIs it alone ob-
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served. If the robots operate independently, optimizing this objective would

lead to good system behavior. However, if the robots interact frequently, then

each robot aiming to optimize its own local function may lead to competitive

rather than cooperative behavior.

• The difference objective given by:

Di(s) =
∑
j

I(j, i)

(
Vj

δ(Lj, Li)
− Vj
δ(Lj, Li′)

)
(5.6)

where I(j, i) is an indicator function equal to 1 when robot i is the closest

observer of POI j and Li′ is the location of the next closest observer of POI

j. This objective reflects the impact a robot has on the full system [2, 49].

By removing the value of the system objective where robot i is inactive, the

difference objective computes the value added by the observations of robot i

alone. Because only POIs to which robot i were closest need this difference

computed, this objective is “locally” computable in most instances.

5.2.1 Objective Function Properties

In multi-robot teams, the properties of the objective functions selected for the

individual robot training process are vital to generate effective local behaviors as

well as coordination within the team. Each objective function must therefore be

evaluated with quantitative measures to determine their respective effectiveness.

Two measures used to perform this evaluation in the coordination experiments
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were factoredness and learnability [50, 53].

The concept of factoredness is derived from the requirement of the objective

function used locally to maintain alignment with the system level objective. This

indicates that an action taken by a robot within the team to improve its own

objective also improves the system objective. Therefore an objective function that

has high-factoredness means that if a set of robot behaviors is evolved to maximize

its local objective function, it will also maximize the system level objective.

In addition, the concept of learnability is derived from the complexity, and

local availability, of information. This indicates that it is desirable for an objective

function to provide information directly pertinent to the observations available to

a robot after an action that it takes. As a result, an objective function that has

high-learnability means that it contains “clean” signals regarding the change of

state as a result of an action taken.

These concepts can be described intuitively by referring to the objective func-

tions described above. For example, if individual robots are evolved using the

system level function directly (Equation 5.1), they will be by definition highly-

factored. However, the objective function contains information dense with the

results of actions taken by the entire team, and therefore contains a highly noisy

signal regarding the individual robot’s effect on the system. Consequently, using

the system level objective for evolution provides low learnability.

Conversely, using the local objective function for training (Equation 5.5) has

high learnability. It indicates to robot i only the result of its own actions taken

within the system, none of the actions of the other members of the team. Though
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the signal is related to the system level objective, and provides a clean signal, it

has low factoredness as it does not indicate how the robot effected the team as

a whole. This objective function therefore only provides for “greedy” behavior

evolution.

Both properties have beneficial contributions to the learning process. Therefore

it is desirable to develop an objective function that has both high factoredness

and high learnability. This is done as shown in Equation 5.6 by beginning with

the original system level objective and removing the portion of the system level

objective where robot i was inactive. This provides a signal indicating how robot

i affected the system as it compares to other team members (high factoredness),

and indicating the direct result of the action taken by robot i (high learnability).

Using the difference objective therefore evolves behavior in individual robots to

maximize the system level objective while coordinating within a team.

5.3 Experiments

For all simulations, the robots start in the middle of the arena and POIs are

distributed randomly throughout the remainder of the environment with varying

value. In placing POIs for an experiment, as well as moving them for the dynamic

environment, POIs were allowed to be adjacent to one another, but not located

within the same location. In this way, discrete POI locations and values were

maintained.

As with the navigation experiments discussed in Section 4.4, in order to prevent
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the robots from memorizing specific actions and (x, y) locations in the arena, each

robots’ initial heading was randomized before the start of the episode. The robots

then operate for the length of the episode (15 seconds in the reported experiments),

as described in Section 3.1. For these experiments, the minimum observation

distance δmin is set to half the length of the robot, or 10cm.

At the end of the episode, all objective functions are calculated and the evo-

lutionary search algorithm is executed on each robot. The objective functions

are used to rate the performance of the neural network used for goal selection,

which is then added to the population of networks from which the robot selects

its next goal selector for an episode. For the analysis presented in following sec-

tions, all the POIs were fixed (except for the “dynamic environment” presented

in Section 5.3.4), and with the same value, for the entire training process. The

learning converged in approximately 1000 episodes in all cases. Each run (set of

1000 episodes) was repeated 20 times, and the average results over those 20 runs

along with the differences in the mean are reported.

In this work, the behavior of the robots in a variety of different environmental

conditions is explored. In particular focusing on the following four scenarios:

1. POI Poor Environment: There are as many POIs as there are robots, mean-

ing that each robot could concentrate on a single POI (Section 5.3.1).

2. POI Rich Environment: The POIs outnumber the robots, which forces the

robots to select paths to observe more than one POI, and concentrate on

different regions to maximize total POI observations (Section 5.3.2).
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3. POI Density: The number of POIs vary from 5 to 40 for 10 robots (Sec-

tion 5.3.3).

4. Dynamic Environment: At each episode, three POIs have a 10% probability

of moving to a random location in the environment. This produces a new

environment on average every 100 training episodes. Two situations are

addressed (Section 5.3.4):

a) A POI Poor environment (20 robots and 20 POIs), where the number

of POIs matches the number of robots.

b) A POI Rich environment (10 robots and 30 POIs), where the number

of POIs largely exceeds the number of robots.

5.3.1 POI Poor

Figure 5.1 shows the starting situation for 20 robots and 20 POIs. The robots

are clustered in the center all facing different headings. The POIs are shown as

labeled circles with a number indicating their value to the system objective. The

black circle surrounding the POI represents the δmin minimum observation distance.

Figure 5.2 displays the results for 20 robots and 20 POIs. These results are typical

of POI poor environments and are qualitatively the same from 10 to as many as

30 robots and POI combinations.

When the number of robots matches or exceeds the number of POIs, the robots

can simply move for the closest, highest value goal, and since there are more (or
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Figure 5.1: POI Poor Situation: Starting situation for 20 robots and 20 POIs.
All robots are together at the middle of the arena, POIs are represented by solid
circles. The number by each is the value of the POI, and the circle surrounding
the POI represents the δmin minimum observation distance. All objects are to scale
for the physical environment being simulated.

an equal number of) robots than POIs, all POIs are likely to be visited. Therefore,

locally greedy behavior results in satisfactory system behavior, as there is no “con-

gestion” in this setting. Robots using selfish objective functions therefore perform

slightly better than robots using the difference objective function because factored-

ness is not an issue, and though both objective functions have high learnability,

the selfish objective has slightly higher learnability. Robots using the system ob-

jective function however perform poorly because they have low learnability (i.e.,

even with as few as 10 robots, the signal is masked by the noise of the actions of

the other robots in the system).
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Figure 5.2: POI Poor Training: The number of robots matches the number of
POIs. The system objective is plotted over the number of episodes for each of
the objective functions used in training. Using the local objective produces greedy
behavior which performs well with limited goal choices.

5.3.2 POI Rich

For 10 robots and 40 POIs, the performance of robots using the selfish objective

deteriorates when compared to the previous setting. Figure 5.3 displays the results

when the number of POIs exceeds the number of robots in the environment. Here

the local objective leads the robots to act selfishly and pursue the highest value

goals. However, unlike the previous case in a POI poor environment, this behav-

ior does not produce good system level behavior. This is because robots acting

competitively instead of cooperatively causes “clustering” around high value goals,
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which in turn causes large portions of the available exploration space to be ignored.

Figure 5.3: POI Rich Training: The number of POIs exceeds the number of robots.
The system objective is plotted over the number of episodes for each of the objective
functions used in training. Using the difference objective for training produces
significantly better behavior.

The difference objective, on the other hand, performs well in this setting. In

terms of the system properties discussed in Section 5.2.1, the system evaluation

function has poor learnability and the selfish objective function has poor factored-

ness. Only the difference objective has both high learnability and high factored-

ness, which allows robots using this objective function to successfully select goals

that contribute to the system.
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5.3.3 POI Density

The results of the previous section demonstrate that the ratio of POIs to robots is

a critical parameter in determining which objective functions promote coordinated

system behavior. In this section, this issue was directly investigated by varying

the number of POIs from 5 to 40 for a 10 robot system. Figure 5.4 shows the

performance of all three objective functions at the end of 1000 episodes.

Figure 5.4: POI Density Response: The percentage of available system objective
value gathered is plotted over number of POIs for 10 robots.

Robots using the system objective yielded poor performance across the board,

where only a few robots made good decisions in any one setting. Robots using

the local objective performed well for simple problems where robot interactions
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are less important (with 10 robots and 5 POIs, selfishly aiming for the high valued

POIs is satisfactory behavior), but their performance declined when the system

required coordination.

In contrast, robots using the difference objective produces behavior similar to

the local objective in situations of lower difficulty, but the relative performance im-

proves to overtake the local objective when the difficulty of the problem increases.

This is because the behavior promoted by the difference objective balances goal

selection and goal “crowding” preventing the robots from seeking the same POIs.

Figure 5.4 demonstrates this clearly, by showing the percentage of system value

available gathered during each episode as the number of POIs increased.

5.3.4 Dynamic Environment

In addition to the static environments analyzed in the previous three experiments,

the performance of the robots in a dynamic environment was explored. In this set-

ting, there was a 10% probability that three of the POIs were relocated to a new

random spot within the test arena at each episode. In doing so, the environment

was almost entirely rearranged on average every 100 episodes. To ensure that the

overall system value available remained the same, preventing the need for normal-

ization, the POI values were not changed from the initial random generation. The

robots still began an episode in the middle of the arena, their starting headings

were still randomized at every episode, and each episode consisted of 15 seconds.
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5.3.4.1 POI Rich

Figure 5.5: Dynamic Environment, POI-Rich: At each episode, three of the POIs
had a 10% probability of moving to a random location within the environment.
The system objective for each of the training sessions is plotted against the number
of training episodes. The results are an average over 20 sessions for each training
objective. Note here that the simulation was run for 3000 training episodes in-
stead of 1000 in order to facilitate many environment changes and emphasize the
difference objective consistency.

Figure 5.5 shows the results for the dynamic environment with 10 robots and 30

POIs. The increased variability in the mean is a direct result of the dynamic nature

of the environment. For example, the environment is randomized, therefore an

environment potentially differing to a great extent is encountered at corresponding

training episodes for different runs.
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Robots using either the system or the local objective functions performed poorly

for different reasons. Indeed, they performed only slightly better than using ran-

dom goal selection, increasing and decreasing as the environment changes between

benefitting learnability (local objective peaks) and factoredness (system objective

peaks). The drop in performance for the local objective in particular is interesting

in this case: Unlike in the static environment, robots do not learn to settle for low

valued POIs, and pursue the high valued POIs more stubbornly, resulting in low

system performance. After repeated failures, robots using the local objective in

static environments generally aim for low valued POIs, but such a trade-off is not

discernible in the dynamic environment.

5.3.4.2 POI Poor

Figure 5.6 shows a dynamic environment situation where the number of POIs is

equal to the number of robots. This represents a dynamic version of the situations

presented in Section 5.3.1, or a POI-poor environment. Here it is shown that while

the local objective performs well in simple, static POI poor situations, it breaks

down in a similar though dynamically changing environment. Therefore, greedy

behavior no longer benefits the overall system because not all POIs are likely to be

visited, indicating that a dynamic environment reproduces the “clustering” effect

that the local evaluation had produced in the static POI rich environment.

Robots using the difference objective however performed well and remain con-

sistent throughout the changing environment. Small fluctuations in the difference
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Figure 5.6: Dynamic Environment, POI-Poor: At each episode, two of the POIs
had a 10% probability of moving to a random location within the environment.
The system objective for each of the training sessions is plotted against the number
of training episodes. The results are an average over 20 sessions for each training
objective.

objective are explained by the environment changing significantly to a more difficult

situation (e.g., high value POIs very near the edges of the arena). This demon-

strates a key feature of using the difference objective: balancing factoredness and

learnability allows the robot to maintain overall good behavior even though it must

deal with the constraints of robot motion and navigation as well as a dynamically

changing environment.
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5.4 Coordination Discussion

By segmenting the tasks, goal selection is done independently of robot motion

and navigation constraints, and therefore is more capable of complex high level

tasking than if all control tasks were being performed by a single learner. In

this approach, the high level controller is put to “sleep” after a goal selection

decision has been made. Though this presents an injection of noise into the input

signals (e.g., the goal selector possibly “wakes up” in a slightly different location

than previously chosen), using an artificial neural network as an input/output

function approximator proves robust to this noise. As a consequence, the high level

controller is allowed to focus on learning behavior beneficial to the system, rather

than confounding high-level decisions with detailed navigational instructions.

The results show that control task separation is successful in multi-robot teams

operating in dense and POI rich environments, as well as in dynamic environments,

where the richness of the POIs within the environment has less effect. In particu-

lar, the use of the difference objective provides good performance across a variety

of environment settings. However only in the simplest case did the local objective

provide good behavior (i.e., when the number of robots matches or exceeds the

number of goals). When either the number of POIs was increased or the envi-

ronment became dynamic, the performance of the local objective dropped rapidly,

becoming counterproductive to producing coordinated behavior.

In contrast, the results show that utilizing a difference objective function that

provides a learnable signal which maintains alignment with the system objective
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produces up to 54% better behavior in static situations, as well as up to 49% better

behavior in dynamic situations over using the traditional system objective or local

objective.
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Chapter 6 – Conclusion

The work presented in this thesis addressed three primary technological appli-

cations with the intention of utilization in multiple robot coordination domains,

specific to resource limited robots. The coordination domain involved robots re-

quired to navigate a complex unknown environment with the goal of coordinating

with others for information gathering, where resources (involving power, compu-

tation, and sensing capabilities) were limited. The control flow was grouped using

a hierarchical control structure to isolate requirements for navigation and goal

selection from each other such that each level could be designed and evaluated

independently. Two primary investigations were performed under this hierarchical

structure:

1. Adaptive Control for Navigation: Adaptive learning techniques were

implemented for the navigation and goal selection control requirements in

order to establish ability as it relates to placement within a hierarchical

control structure, implementation on resource limited platforms, and within

complex coordination tasks.

2. Objective Function Evaluation for Robot Coordination: Under the

restrictions of simulated physical robot motion and hierarchical control struc-

ture, three previously established objective functions were implemented and

evaluated as they apply to robot coordination in unknown environments.
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6.1 Contributions

In segmenting the control requirements in a hierarchical structure and isolating

information and command flow, it was shown that individual aspects of mobile

robots may operate independently of one another, only coming together in very

limited fashion. As was presented, the platform level of control only received

a desired heading and speed from the navigation level and therefore was only

responsible for articulating the specific platform to achieve that heading and speed,

based on sensors relevant only to that task. The navigation level received only a

desired location within the environment and therefore needed only to determine a

safe and efficient method, independent of robot articulation capabilities, to reach

that destination through sensors relevant only to that specific task. Finally, the

robot purpose level was required only to be concerned with utilizing categorically

specific sensors in order to achieve the system level goal, in this case exploration

and coordination for information gathering.

The success of this control requirement segmentation was proven through the

application of independent analysis of control techniques for the two higher levels

while holding the others constant. For example, while holding the platform level

constant with model-based control, adaptive navigation techniques were imple-

mented and evaluated as they compared to a pre-engineered reactive navigation

technique. The neuro-evolutionary unsupervised learning technique proved to not

only perform statistically similar to reactive navigation in contrived situations, but

outperform reactive navigation in dense unknown environments even in the face
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of significant sensor and actuator signal noise. The algorithm also was shown to

improve upon current knowledge when trained offline based on known functional

algorithms.

The reinforcement learning versions of supervised learning implemented were

reported to function is this domain, but the learning rate was discovered to be

intractably slow when implemented in the complex simulation domain utilized in

this work. This was a result of the continuous nature of the domain. There are

several modifications that can be made to the techniques presented to assist in

overcoming this restriction, including domain specific discretization of the state

and action spaces as well as online objective functions. The former involves choos-

ing functional ranges of the state and action spaces that still represent the spaces

but reduce the amount of information the algorithm is required to learn. The

latter involves generating more specific reward structures leading to a global max-

imum through the episode. For example, instead of giving zero reward until the

episode is complete, the action-value function can be updated repeatedly through

the episode based on time and distance from obstacles. These modifications may

be implemented in the future to continue adaptive navigation analysis.

Finally, the platform and navigation levels were held constant at model-based

and probabilistic control respectively while the robot purpose level was examined

for effective coordination behavior. A similar neuro-evolutionary technique to the

navigation analysis was employed, with the neural network function approximator

instead performing the task of goal selection as it pertained to coordinating with

other robots in the domain. The goal selection process required that the robots
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work together to examine as many points of interest within the environment as

possible in a short amount of time. Specific to this analysis was the investigation of

three objective functions providing different qualitative properties to the system

and robot. The difference objective was shown to significantly outperform the

local and system objectives when the environment is rich in information and in

dynamically changing environments.

The results presented in this thesis prove the following:

1. Under strong information restrictions and command isolation, segmentation

of control requirements is a beneficial technique for resource limited robot

design, as well as operation within a robot coordination domain.

2. Adaptive navigation techniques (e.g., evolutionary search over artificial neu-

ral networks), are a valid and beneficial method over pre-engineered reactive

navigation, for both navigation and goal selection applications when applied

to a robot coordination domain.

3. In noisy environments, adaptive navigation is able to overcome deficiencies in

sensing and actuation to provide behaviors robust to realistically stochastic

robotic platforms.

4. Utilizing a difference objective function combining the qualities of system

objective and local objectives is a valid and beneficial training structure

for learning robots within a team of coordinating robots, specific to the

application of unknown environment exploration, while the restrictions of

realistic robot motion and task isolation are in place.
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5. In dynamic environments, the utilization of difference objectives for train-

ing provide increasing benefits over system and local objectives through the

balance of system objective alignment and locally computable information.

In addition to the above, the results prove that adaptive techniques are suc-

cessful in general for isolated control tasks under noisy, continuous domains.

6.2 Future Work

There are many avenues for further exploration in this domain. These include but

are not limited to continuing investigations into the interaction between control

levels as they pertain to multiple learning algorithms working together, behaviors

resulting from further restrictions on sensor and actuator signals, and a detailed

examination of the effects of obstacle avoidance on coordination behavior.

In addition, many aspects of the coordination technology may be investigated

to enhance information gain. A sample of aspects for further investigation follow:

Communication: Among individuals within a team such as that presented in

this thesis, communication may be added to examine the potential benefit

to the amount of information gathered and the coordination behavior.

Teams of Robots: Multiple, smaller teams may be organized to coordinate with

one-another. For example, instead of one robot visiting a goal, the system

objective may require that three visit for the investigation to be valid, there-

fore three robots must work together within the larger team to maximize the
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information gathered.

Heterogeneous Team(s): Robots within a team, or teams, may be constructed

such that individuals have differing levels of sensing capabilities. A single

team would provide singularly differing benefits to each sensor type, or as

above, it may be configured that three different types of sensors must perform

an investigation.

Coordination for robotic exploration is an intricate and challenging control

problem. As this thesis suggests, there are successful methods for addressing the

challenges as are there many areas for further research.
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