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NOMENCLATURE

[A1] = Constant matrix for boundary conditions of annular plate

A =Area

=Constantofmodei

= Constant

a,b = Outer and inner radii of plate

c = Damping coefficient

c1, c2 , c3 , c4 = Mode shape parameters

c5 , c6 , c7 , c8 = Mode shape parameters

D = Flexural rigidity

E = Modulus of elasticity

E = Error constant

F0 = Force amplitude per unit area

G = Modulus of elasticity in shear

= Modal constant

h = Thickness

I, K, = Modified Bessel function of order n

I, J = Unit vectors in X-Y planes

i, N,n = Integers, numerical factor

= Bessel function of order n

M, M = Bending moments per unit distance on X and Y planes

M = Twisting moment per unit distance on X plane

Mr. = Radial and tangential moments per unit distance

Mr9 = Twisting moment per unit distance on radial plane

N = Bending tensile forces per unit distance on X and Y planes

N = Twisting tensile force per unit distance on X plane

Q , = Shear force per unit distance on X and Y planes



Qr , Q0 = Radial and tangential shear forces per unit distance

P = Distributed force

r,6 = Distance polar coordinate

= Time

u, v, w = Displacements in x, y and z directions

= Approximate Displacements in z directions

x, y, z = Distance rectangular coordinate

= Error correction constant

/1 = Eigenfrequency

= Normal strains in X, Y and Z directions

= Shear strains in XY, YZ and ZX planes

p = Density

WI1 = Natural frequency

= Damping natural frequency

v = Poisson's ratio

= Damping ratio

= Constant of mode i and j

= Orthogonalized constant of mode i

0 = Airy stress function

= Constant of interval integration result of Othogonalization



SOLUTIONS OF PLATE EQUATION FOR

THE PREDICTION OF INK DROPLETS IN INKJET

CARTRIDGES

CHAPTER 1

INTRODUCTION

The inkjet printer is one of the most popular types of printers at

present. One of the significant parts in this type of printer is the cartridge,

which determines the efficiency and quality of printing. The main purpose of

the cartridge is to generate ink droplets and transfer them onto the printing

area. The size of the microdroplet is fixed by the size of the hole at the nozzle

plate. Normally, a microdroplet is generated by creating high pressure in the

ink chamber to break surface tension and viscous force. There are many

methods to generate a droplet, but most of these methods are based on the

principle of a pressure difference to eject a droplet from the nozzle. This

process is called "actuation." Actuation is a basic concept of creating a

pressure difference between the inside and outside of the nozzle.

This thesis emphasizes the effect of nozzle plate flexibility to an

droplet formation. The flexibility behavior of a nozzle plate is studied to

determine its relation to surface defection and velocity. In turn, the surface

velocity is significant to the droplet formation for a moving nozzle. In the

process of research, thin plate theory is applied to an annular plate model to

find surface deflection and velocity. Then, the thin plate equation is

integrated with a one dimensional droplet formation equation to predict the

formation of a droplet.

This research can be divided into two work elements: nozzle plate

vibration and droplet formation for moving nozzle plates. These two models

are integrated together to predict droplet formation. As mentioned before, the

study of flexible nozzle plate vibration is performed in this research research

under the guidance of Dr Costello of the Mechanical Engineering



Department, Oregon State University. On the other hand, the research of

droplet formation is conducted by Mr. Yang, a fellow graduate student in this

project group, under the guidance of Dr. Liburdy of the Mechanical

Engineering Department, Oregon State University.

The thesis is organized as follows. Chapter 2 presents a literature

review for pertinent topics. The development of the large deflection plate

vibration equations, the mathematical model of a nozzle plate, and the model

of droplet formation are described in Chapter 3. Chapter 4 demonstrates the

use of analytical and numerical approaches to solve linear and nonlinear

equation appropriately. The simulation results of plate vibration and droplet

formation are presented in Chapter 5. Chapter 6 consists of research

conclusions and recommendations for future research.



CHAPTER 2

LITERATURE REVIEW

At the beginning of this research, the fundamental approaches and

previous solutions are reviewed as a resource and reference for solving the

problem in this project. The project can be divided into three categories; plate

vibration equations and their solutions, numerical methods, and droplet

formation.

2.1 Plate Vibration Equation

The study of plate vibration has its origin with the experimental work

of Chladni [6] in the early nineteenth century who demonstrated the nodal

patterns of a square plate in lateral bending. The theoretical background of the

theory of plates was laid by Germain and Lagrange around 1816. However,

there was considerable discussion on boundary conditions produced in this

work and it was left to Kirchoff and Kelvin around 1850 to settle this matter.

Since then a great many cases of plate-bending problem have been solved

analytically by Navier (1864), Kirchoff (1882), Von Karman (1910) and Levy

(1942), and numerically by Galkerin (1930), Wahl (1963), and others.

There are also a few books on thin plate theory. The classical text on

The Theory of Plates and Shells by S.P. Timochenko (1959) is still a good

reference book, even though it is written nearly more than five decades ago.

2.2 Solutions of Plate eEuation

The solutions of plate equation can be determined by both analytical

method and numerical method. The monograph Vibration of Plates, 1969,

written by Professor A.W. Leissa and published by NASA is useful for

finding analytical solutions of plate equations. Many other analytical

treatments exist, including solutions for a 2-D plate (Turcotte and

Schubert, 1982), for the point-load response of a semi-infinite plate (Wessel,

1996), and a more complete treatment of the axis ymmetric case (Lambeck



and Makiboglu, 1980), as well as for stress-dependent flexural rigidity

(Wessel, 1993). Southwell (1922) derived equations for annular plate clamped

around the inner boundary and free at the outside edge. Vogel and Skinner

(1965) studied nine combinations of boundary conditions: simply supported,

clamped and free edges at the inner and outer boundaries. Data references are

also available from Leissa (1969).

Annular and perforated plates are often in contact with a fluid on one

or both sides. It is well known that natural frequencies of a thin-walled

structure are strongly affected by the presence of a heavy fluid. Therefore, the

study of annular plates in contact with a fluid has practical interest. Works in

the literature on this topic include De Santo (1981), Kubota and Suzuki

(1984), Amabili and Frosali (1994) and Amabili (1994). The contribution

from De Santo (1981) is an experimental investigation of perforated plates

used in nuclear reactors. In the work of Kubota and Suzuki (1984), annular

plates vibrating in an annular cylindrical cavity filled with a fluid were

theoretically and experimentally studied. In the paper by Amabili and Frosali

(1994), free vibrations of annular plates placed on a free surface were

theoretically investigated. Experimental coefficients useful to compute natural

frequencies of annular plates placed on a free fluid surface or completely

immersed in water were given in the work of Amabili (1994).

In the design of thin plates that bend under lateral and edge loading,

formulas based on the Kirchoff's theory, which neglects stretching and

shearing in middle surface, are quite satisfactory in providing small deflection

comparing to the thickness. In the case where deflection is equal or greater

than the plate, Kirchoff' s theory yields results that are considerably in error.

Then, Von Karman theory is employed. Von Karman's equation is a

nonlinear equation, which can be solved by approximate solutions. A number

of approximate solutions have been developed for the cases of rectangular and

circular plates that reported S. Levy (1942), Wah T (1963), Srinivasan (1965)

and etc.



5

2.3 Galerkin Method

A common step in many structural, acoustic and fluid applications

involves the solution of a partial differential equation (PDE) modeling the

physics of a system. Due to the complexity of many problems, however,

analytic solutions usually cannot be obtained and one must numerically

approximate the governing equations. From separation of variables and

truncation of the resulting infinite series, approximations in the form of modal

expansions involving Bessel components can occasionally be used to

approximate PDE dynamics. In the category of spectral methods for circular

geometries, Galerkin, collocation and tau methods have been studied with the

choice of method depending upon the problem being considered.

To date, much of this research has centered around the simulation of

fluid flow and boundary layer growth and in these cases, emphasis has usually

been placed on collocation due its success in handling complex boundary

conditions, variable coefficients, and strong nonhinearities (Orszag (1983) and

Patera (1981)). Galerkin methods for flows on spheres are discussed by

Orszag (1974), but this is done primarily in the context of Fourier expansions

involving the strong form of the modeling flow equations with only a brief

discussion concerning Legendre bases being included. This reference also

includes a general comparison between the results obtained with surface

harmonics (eigenfunctions of the Laplacian), modified Robert functions and

Fourier series using collocation and Galerkin methods in the presence of the

coordinate singularity. The use of the modified Robert functions and

techniques for improving their conditioning and employing fast transforms is

further addressed by Bouaoudia (1991).

The paper of Bank and Smith (1993) presents a Galerkin method for

linear or weakly nonlinear problems having circular or cylindrical domains

using piecewise spline and spectral bases. Two areas from which they draw

examples are structural dynamics and acoustics.



2.4 Droplet Formation

The phenomenon of droplet formation in a liquid jet has been studied

by many authors. The earliest analysis appears to be that of Rayleigh, who

made a linearized stability analysis of a nonviscous liquid jet. Later on, both

linear and nonlinear studies have been performed. Linearization makes

closed-form solutions possible including solutions for stability of the stream

and for drop breakup time under a given initial perturbation and external

excitation. Such closed-form solutions have been described by Sweet (1965)

and Kamphoefner (1972). Also, for one-dimensional numerical Model of

droplet, Adams and Roy (1986) present a Macormack predictor-corrector

algorithm to solve one-dimensional model equations of drop development

from a drop-on-demand ink jet
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CHAPTER 3

MATHEMATICAL MODEL

This chapter emphasizes the mathematical models which consist of

small deflection and large deflection plate equations. To better understand

each model, this chapter also explains in depth the process involving the

development of both linear and nonlinear models. The topics are listed as

follow: Coordinate System, Plate Dynamic Equation of Motion, Plate

Equation in Polar Coordinate, Axis Symmetrical Stress Distribution, Damping

Coefficient of Plate, Plate Equation under the Combined Lateral and In-Plane

Loads, and Droplet Formation Model.

3.1 Coordinate System

The derivation of classical plate equations is based on Cartesian

coordinates (x, y, z). Plate dimensions are defined in XY plane called the

midplane. Transverse deflection of each element is in Z-axis, perpendicular to

the midplane. The thin plate equation in Cartesian coordinate is converted to

polar coordinates (r,O, z) for circular geometry. The polar coordinate set

(r,O) and the rectangular set (x, y) and related by equation (3.1).

y

Figure 3.1 Plate element in polar coordinate



x=r.cos(0) y=r.sin(0) (3.1)

r2=x2+y2 O=tan1()

3.2 Small Deflection Plate Dynamic Efluation of Motion

In order to develop the equation of motion for a vibration disk,

classical plate theory is employed. The stress resultant produces bending and

twisting moments in terms of the curvatures and deflection.

In derivation of the dynamic equation of motion for a thin plate, the

force and acceleration method is employed .For the equilibrium of dynamic

system, the free body diagram on an element subjected to a vertical pressure

is shown in Figure 3.2, neglecting gravity force.

_/

'irz

pdxdydz.')

(P)

Q I 4M
A +

aMM+ dy + M+aMXd.lX

Q +--2-dy

dx

ax

M+ 'dx
ax

Figure 3.2 Free body diagram of dynamic system of plate element

The sum of forces in vertical direction leads to equation (3.2).

aQ aQ a2w
+P=Ph

at2
(3.2)

where P is the distribute load applied to the whole membrane and the moment

equilibrium about the mass center is shown as equations (3.3).



aM M
xy y

+
+Q=O (3.3a)

aM aMxy+ x

ay ax
(3.3b)

The expressions of vertical shear forces, Q and Q, can be expressed in terms

of deflection, w, by substituting equations of moment components of cut

plane edge into equation (3.3). Then, the simplified expressions are shown in

equation (3.4).

D---( = _D(V2w) (3.4a)
3x ax2ay2) ax

a2w aW = _D._(V2w) (3.4b)
a

Manipulation of equation (3.3) for shear forces leads to plate dynamic

equation of motion as shown in equation (3.5).

a4w a4w a4w
(3.5)

Eh3
where D =

12(lv2)

Introducing the Laplacian operator, equation (3.5) can be shown in

concise form as in equation (3.6).

a2wD(V4w)+P=ph--- (3.6)

a2 a2
and (3.7)

a4 a"
V4 =(V2)2 =---+222 +-- (3.8)

ax
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3.3 Plate Equation in Polar Coordinates

The classical plate equation of motion in rectangular coordinates can

be transformed into poiar coordinate by using equation (3.1) accompanied

with the chain-rule derivative formula. Referring to figure 3.1 together with

equation (3.1)

ar r ar==cos(0) ==sin
ax x ay y

(0)

}

(3.9)

ao sin(0) 0 cos(0)axr ayr
To fmd the deflection as a function of r and 0, the chain rule associated with

equation (3.9) leads to equation (3.10).

dw awarawao
ax arax a6ax

=
(3.10)

ar a6

The evaluation of can be performed by taking the derivative of equation
ax

(3.10) with respect to x and manipulating.

a2w a(a 1 . a(aw= cos(0) i--sin(0)i
ax arax) r aoax

a2 w a2 w sin(0) cos(0) aw sin2 (0) aw sin(0) cos(0)+2=_jcos2(0)_2aa6 r ar r a r2ar

a2w sin2(0)
+ (3.11)

62 r2
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Similarly

2(0) a2w sin(0)cos(0)awcos2(0)2awsin(0)cos(0)+2
ay2 ar draG r r dO r2

+
a2w cos2(0)

r
(3.12)

d 2 d 2w cos(20) dw cos2 (0) dw sin(0) cos(0)=sin(0)cos(0)+ --______ --__________
dxdy dr2 drd0 r dO r2

d2w sin(0) cos(0)

'C

(3.13)

Figure 3.3 Free body diagram of plate element in polar coordinate

As shown in figure 3.3, the free body diagram of a plate in polar

coordinates is similar to figure 3.1, but all derivative terms are converted in

polar coordinates by applying equation (3.11) through (3.13) into moment

equation of the cut plane. The resulting expressions are presented by the

following equations

(ldw 1 d2w1
(3.14)



And

(law 1 a2w
M9 =D' --+

rar
(3.15)

Ii a2 1 aw
Mr9 (3.16)

Qr
=_D-(V2w) (3.17)

Q0 =_D(V2w)=_D.(V2w).

=_D____(V2w) (3.18)
r

12

The Laplacian operator of surface deflection, w, in rectangular coordinate, it

is converted to polar coordinate by solving equation (3.11) and (3.12) for

a2w a2w
+ as shown in following equation.

2 aw w aw 1 aw 1 awVw=+ + +
ax2 a2 ar2 rar r2

a2 a2 a2 ia 1 a2
so, (3.19)

From equation (3.19), the Bilaplacian operator of rectangular

coordinate can be converted to polar coordinate as shown in equation (3.20).

V4 =V2 .V2

V4w(x, y) = V4w(r,O)

I a2 1 a 1 a2 Ya2w 1 aw 1 a2w
V4w(r,O) (3.20)



In conclusion, the plate dynamic equation of motion in polar coordinate is

(aw 2d3w

at2 I 2 a3w

rarao +

la2w 2a2w
I (3.21)
1+ P

4d2w law 1wI

13

3.4 Axis Symmetrical Stress Distribution

From the previous section, development of the plate vibration equation

is given in general polar coordinates. In this section, the assumption of axis

symmetrical bending is employed to yield the deflection of plate only in terms

of radial position when the load is symmetrically distributed with respect to

center of the plate. For this reason, surface deflection is a function of radius

and time, w(r, t), and the moment and shear force expressions of

symmetrically loaded plate reduce to equation (3.22) through (3.24).

(a2w yaw"Mr =D1 +
ar2 rJ (3.22)

(law a2w
M9 --1)1 ---+v

ar
(3.23)

a(a2w law'\
Qr =_D-__-+_--J (3.24)

Also, the differential equation of the deflection surface becomes

2a3w 1 a2w 1 aw

which can be written in the Bilaplacian operator form as equation (3.25).

DV4w+P=ph' (3.25)

4 '3uW _.i,jW ivWwhere V w=+---------+---
ar rar r

The plate equation in (3.25) is thus reduced to one spatial variable

accompanied with one time variable, so the resulting plate vibration model is

simpler and more convenient.
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3.5 Damping Coefficient of Plate

Vibration damping is observed in plate dynamics. It is known that the

damping force is proportional to the velocity of plate surface subjected to

harmonic excitation, so the damping force term is added to equation (3.25) to

create a damped model as shown in equation (3.26).

DV4wci+Pphii' (3.26)

3.6 Plate EQuation under Combined Lateral and In-Plane Loads

In previous discussion, it is assumed that the plate is bent by lateral

load only. In conclusion of forces acting in the midplane of the plate has a

significant effect on plate bending particularly when large plate bending

occurs. Initially, it is assumed that the midsurface is strained by the combined

load, so assumption of unstrained midplane is no longer valid. On the other

hand, the deflection of plate element is still regarded as small so that the other

assumptions are still held. Considering a plate element, strain in figure 3.4,

the element is under the action of direct force acting on the niidplane.

N

Ny

x

N
y

aN

)X ax

_ft
aN,

N,+---dy

aNN+dy
(a) Top view

x

(b) Front view

Figure 3.4 Force on the midplane of plate element

aN
N+---fr

From Figure 3.4, the top and front views of an element are shown

along with the magnitude of the midplane forces per unit length by N,
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N and N = Projecting these forces on the X and Y-axis, and assuming

that there are no body forces yield.

aNXaNXY
= (3.27a)

ax ay

aN aN
=0 (3.27b)

In considering of the projection of the force on the Z-axis in figure

3.4b, it is necessary to consider the Z components of the in-plane force

exerted at each edge of element. The Z component of the normal forces acting

on the X-axis is equal to

Ndy .sinO/)+(N +dx].sin(7)=O (3.28)

Assuming small angles for and y

aw

ax

sin )=y
ax ax dx2

Substituting these approximations into equation (3.28), the resulting

expression is shown in equation (3.29) as the normal force N

N = 0 (3.29)
ax axax

Similarly, the Z component of the normal force N is obtained as equation

(3.30)

Ndxdy+dxdy =0 (3.30)
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Regarding the shear forces N on the Z-axis, it can be observed that

the slope of deflection surface on the Y direction on two opposite sides of the

.a awa2w
element on the X edge is and + dx. Hence, the projection of the

ay aa
shear force on Z-axis is then,

N dxdy
a;c

dxdy = 0 (3.31a)

An expression identical to the above is found for the Z projection of shear

forces acting on the Y edge

NYXW aN aw
dxdy+ dxdy=O (3.31b)

xay ayax
As mentioned before, the projections of shear forces acting on X and Y

edges are equal to each other, and then the final expression for the projection

of all shear forces on Z-axis can be written as equation (3.3 ic).

2N
aw

dxdy+ -cixdy+ aN
-dxdy = 0 (3.31c)

axay axay aya
Adding all of equations (3.31) into equation (3.2), the Dynamic equation of

plate becomes

a2w (aN aNa
aay ) ax

(aNy aNaW a2w+I+ i=ph--
taY ax)ay at2

Manipulating the above expression with equation (3.4) and (3.27), the

simplified form of dynamic plate equation under the combined action of

lateral loads and forces in the midplane can be shown by equation (3.32).

D (aw a4w a' 1 ( a2w a2w P 2w
ä2ax2ay2 +TJ+4Nx_+2NxY axay

PV4w+!1'N a2w a2w a2w P a2w+= (3.32)
ph ph

+2NXYaay+NYTJ
ph at2
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In next step, the midplane strain is considered as a source of applied

forces acting to midplane element. Referring to total strain on the midplane, it

provides relation of the total strain and surface deflection as following.

a2ea2ey a2y(a2w\ a2wa2w
2 ax2 axay aa) ax2

According to Hooke's law, the strain components can be replaced by

the equivalent expressions as following

:xEh

=-J----(NvN)

}

(3.33)
Eh

7 =-1-N
Gh

Upon introduction of equations (3.33) into the expressions of strain

components on the midplane, the third equation in terms of N , N and N,

is obtained. The solution of these three equations is simplified by the Airy

stress function(x, y), related to in-plane forces as following

N=h--

(3.34)

N --h aa
Substituting equations (3.34) into (3.33), the strain components become

6X Eay2 ax2

6
Y EJx2 ay2

2(1+v) a2
T:ty

E axay



Then, applying above expressions into differential equation of strain

component on the midplane, the resulting expression can be shown in

equation (3.35).

-+2 a4 a4 (t'a2w'2 a2wa2w'\

ax4 ax2ax2
+7=EIayj (3.35)

Substituting equation (3.34) into (3.36)

D l(a2Øa2w a2 a2w a2Øa2w P--V w+i --+2 -+-- i+-=--- (3.36)
ph pI\ay2 ax2 axay axay ax2 ay2) ph at2

The two above equations are for the general equations for the large deflection

of thin plates.

Like the small deflection plate equation, a damping term is appended

to these equations.

a4Ø((a2w'l2 a2wa2w
ax4 ax2ax2 ay4 axay) ax2 ay2

D 1(aØaw a2Ø a2w a2Øa2w" .V

(3.37)

The transformation of equation (3.37) from X-Y coordinate to

axissymmetric polar coordinate is conducted with equation 3.1, and the

resulting expressions of large deflection equation becomes

V4Ø = (WrW) (3.38a)

1 (w) +--=' (3.38b)
ph ph ph.r r rr ph
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3.7 Droplet Formation Model

In this project, the droplet prediction is considered as the goal of the

work. A one-dimensional numerical model of a droplet is employed. The

droplet formation is a function nozzle velocity and chamber pressure.

Referring to figure 3.5, a liquid column emerges from a nozzle to form a

single droplet. The fundamental derivations of the continuity and momentum

equations are based on Adam and Roy [3] for a one-dimensional model of a

drop-on-demand inkjet. The model of droplet prediction, developed by Yang

[34] is adapted for Adam and Roy.
L

a

Figure 3.5 Geometry of the liquid column from orifice

Following the derivation in [3] and [34], the continuity and z-direction

moment equations are expressed as

au ai a 1 1 a2u+u .---(o.(+--)+3.1u (3.39)
at

z
a aZRN RT

dr
2 au ar:__+ro____+u ---=0

dt az
Z (3.40)

where Uris R-direction absolute velocity, a is surface tension of water-air,

p is density of water, p is the dynamic viscosity of water, and RN ,

principle radii of curvature of the liquid column.
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The nondimensional equations of momentum and z-direction

continuity for non-moving nozzle become

JD2 TT

I (3.41)
dT az az

1 1 Wea2U+(U)----(-----+)+3.----+Bo
Z Z RN RT Re JZ2

where u =/--- ;u t=t .t ;z=a'

r=aR0; RN aRN;RT=aRT; p ;0Pza2
Re,Jp.a.o- 0

And, the non-dimensional equations of momentum and z-direction

continuity for moving nozzle can be expressed by

DR RU -'

I (3.42)
DT 2 ii

DU JU 1 1 Wea2U
+Bo

DT JT 7j RN RT Re a2

where i-Z-O0 Tand O =O O
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CHAPTER 4

SOLUTIONS OF PLATE EQUATION

In chapter 3, the development of a mathematic model of a thin plate is

provided. Since a solution to the differential equations can be generated by

either analytical or numerical methods, both methods are implemented in this

thesis to verify the solutions. In solving the differential equation with both

spatial and temporal variables, initial and boundary conditions must be

specified. The initial conditions are assumed that the system is initially at rest

as stated below

w(r,0)=0 (4.la)

aw(r,t) =0 (4.lb)
at

Generally, the solution of the differential equation, embodied with

spatial terms, needs to satisfy the boundary conditions with respect to

designated forces or displacement. In this thesis, there are two types of

boundary conditions to be satisfied; clamped and free edges.

I

Figure 4.1 Annular clamped plate

At clamped edge:

w(a,t)=0 (4.2a)

aw(r,t) =0 (4.2b)
ar
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Free edge such an the inner side is free of moment along the radial axis

and vertical shear force, so the differential terms for symmetrical bending can

be derived from equation (3.22) through (3.24) with the conditions ofMr 0

and Vr Qr 0. The resulting expression is given by equations (4.3).

Mr =0; -DI$+')=0 (4.3a)
ar rr

(aw la2w 1 a
Qr° DI---+--------I=0 (4.3b)

ar rar r r)
According to the introduction of Airy stress function in equation

(3.38), the additional boundary conditions for Ø(r,t) are necessary for solving

the governing equation for large deflection. The development of boundary

conditions of the stress function originated from the total strain component.

The X-Y strain components are known from Urugal[28], so the

transformation of these terms into polar coordinates is

1aw2
E

r

EJr
2 ar

= (4.4)

where u denotes the displacement in radial axis

Denoting the corresponding tensile forces by N,. and N0, and applying

Hooke's law, the strain components and tensile forces can be related as

follows;

Err''g)
1

e9=_L(N0VN) I (4.5)

The relation between tensile forces and the stress function are needed.

The relations between tensile forces and stress function are defined as shown

in equation 4.6.

Nr=!Fr

} (4.6)

r

N9 =F
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The trivial definition for the clamped edge boundary condition is

w=0 =0
E0

u=0

Then, from equations (4.4) forE9, it's evident that is zero at clamped edge.

Applying condition =0 and manipulating the whole term with equation

(4.6), the resulting expression becomes

ørørr (4.7)

There is no stress occurred along the radial axis at the free edge, so it is

apparent that

N =0=0 (4.8)

4.1 Analytical Solutions of Clamped Annular Plate

In this section, the separated variable method is brought to tackle the

problem where the solution is in the terms of mode shape and function of

time. This part is started with free vibration solution and followed by force

vibration solution of clamped annular plate.

4.1.1 Free Vibration Solutions of Clamped Annular Plate

Consider the equation (3.26) excluding the excitation as the model.

DV4w+cw+phw=0 (4.9)

To solve this equation, the separation of variables will be employed by

assuming a solution of the form given in equation (4.10).

w(r,t) =H(r)G(t) (4.10)
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Applying the separated solution into equation (4.9) and manipulating, it gives

V4H(r)/34H(r)=O (4.11)

c /34DG(t)+G(t)+ G(t)=O (4.12)
ph ph

According to the shape of nozzle plate, it is considered as a clamped annular

plate. The inner edge is subjected to freeedge boundary condition in which

mode shape must satisfy the conditions also. The solution of spatial

differential equation is in Bessel function form as

H1(r)=A.J0(fl1r)+EY0(f31r)+B1I0(/31r)+F,K0(flr) (4.13)

From above equation, it needs to satisfy all of 4 boundary conditions as

the following terms

At outer clamped edge with radius a

H.(a)=O

H'(a) 0

At inner free edge with radius b

(2w v,w'\
Mr(b)=0

!TdrJb

(w la2w 1 aW"\
Qr(1)0

Applying above 4 equations to equation (4.13), the resulting terms are

shown by equations (4.14).

A1J0(131a) + E1Y(fla) + B.10(131a) + F1K0(131a) = 0 (4. 14a)

(4.l4b)
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4f3
(f31bJ0(/3b) (1 v)J1(f3b))+

BJ31
(fibI0(flb) (1 v)11 (f3b))

EJ31
(J31bY0(/3,b) (1 v)Y (161b))+

'
(flbK0(f3b)

(1v)K1 (fl1b))

=0 (4.14c)

(4.14d)

All above Bessel expressions can be simplified and put into the matrix form

as following equation (4.15).

40
Af E,0

B, 0

F 0

where

I J0(/31a) Y0(/3,a) I(f3a) K0(f31a)

Y(f3,a) I(f3a) K1(f3,a)

I

'01 K01
I

[ J1(/3,b) Y1(/3,b) 11(/3,b) _K1(/3,b)]

and J01 = J0 (/3,b) + J1(13,b)

YQ
=_Y(/b)+!-1y/31b)

'01 = I0(fl1b)-I1(flb)

K01 = K0(f31b)+!-K1(/3,b)

(4.15)

From equation (4.15), the roots of determinant of [Af] are the

eigenfrequencies at one specific ratio of inner edge diameter to the outer, u.

b

a
For instance, the dimension of plate are given by



b=0.00005 m

a=0.004 m

then

a =0.0125

Thus, the first five eigenfrequencies are shown in table 4.1

Nth root Eigenfrequencies

3.195818

6.304064

9.434453

f33a 12.568582

15.703831
Table 4.1 the eigenfrequencies of [Af]

The coefficients A, B, E and F, in equation (4.13) are constant to be

evaluated by using the minor of [Af] to normalize each coefficient. The norms

of all 4 parameters are shown as follows

Y(fl1a) I(/3a) -K0(131a)

= -Y1(f3a) 11(fl1a) K1(131a) (4.16a)
K01

J0(131a) Io(/31a) K0(131a)

= -J1(fl1a) 11(fl1a) -K1(/3,a) (4.l6b)

'01 K01

J0(fl,a) Y0(f31a) -K0(f31a)

B, = -J1(f3,a) -Y(fl1a) K1CS,a) (4.l6c)
K01

J0(f31a) Y0(f3a) 1'(f3a)
= -J1C8a) -Y(fia) I(/3a) (4.l6d)

Ol
1 '01
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Obviously, the normalized mode shape is derived by substituting

equations (4.16) into (4.13), but the general mode shape of annular plate

requires the orthogonality to satisfy Fourier series solution. So, the

corresponding mode shape is given by equation (4.17).

H1(r)=21(A1J0(flr)+EY0(fl1r)+BI0(fl1r)+FK0(fl1r)) (4.17)

where is the orthogonality factor to orthogonalize the normalized mode

shape to the corresponding mode shape. Therefore, the orthogonal mode

shape can be obtained by manipulating the following equation for.

a 2r

JfphQ[AJo(/3r)+EjYo(fljr)+BjIo(fljr)+FjKo(fl1r)}2rdrdO=1

then Q1 =
1

27rithJ[AJ0(/31r)+ E1Y0(f3r) + BJ0(f3r) + F1K0(fl1r)rrdrdO

4.1.2 Forced Vibration Solutions of Clamped Annular Plate

Considering time derivative terms, the differential temporal equation

for force vibration are defined in equation (4.12).

G1(t) + 2wO(t) + a2G1(t) = j(t)

Determining modal force amplitude with F(t) = F0 cos(wt)

f1(t) = F(t)ffH1(r)rdA

= H cos(0t)C,

where H1 =F0JJH1(r)rdA



As a result, the time derivative terms of annular plate can be solved in second

order differential form. The solution is shown by equation (4.18).

a)2)cos(w1t)
H .e_i01t

G1(t)=
Ci

(a)2 w2)2 +(21w1)2 + (D1
(a)1 w2) 21a)1a)2 Jsin(a)dit)J

[ dj
flj

-iø,,itHe
+

(w a)2)2 +(2w1)2
((o, _a)2)cos()a)a)sjfl())

(4.18)

Ultimately, the general solution of annular plate excited by harmonic

function, F cos(tvt), is based on equation (4.17) and (4.18) as given by

equation (4.19).

w(r,t) = (H1(r)G1(t))

2
(A1Jo(/3r)+E1Y0(flr)-i-B.J0(f3.r)+EK0(/3.r))

f
(w w2)2

=I Ie'' 2
a)2) cos(wdIt) (a) w2) sin(wdit)]

+ (a a)2) cos(wt) + 21a)1wsin(a)1t)
J

(4.19)

where c1 = 1

22rf2zf[4Jo(fl1r)+ EY0(f3r) + B110(/31r) + F,K0(f3,r)rrdrde

H1 F0JJH1(r)rdA

and A , B., E., F, are defined in equation (4.16).



4.2 Numerical Solutions of Large Deflection Plate Equation

For solution of the large deflection plate vibration equation, the

Galerkin' s method is used. This method identifies the governing differential

equation of the system subjected to boundary conditions given by various line

integrals. The usual way of obtaining the solution of the system for an

extremum condition is to solve the differential equation with corresponding

boundary conditions. So, the initial step of solving the equation is to defme

the approximate solution by

= W+ E 7)

For the differential equation,

Lw(x,y)=O

where L is a differential operator

From above approximate solution of w, it needs to satisfy all boundary

conditions (making all the line integrals zero) and obtain the error in the

differential equation.

E=L(x,y)

In order to satisfy orthogonality, it requires

$ S R [Lx, y)}7(x, y)dxdy

In Galerkin's method, the function 7)(x, y) is chosen as the assumed shape

function itself.

$5 R [Lf*(x, y)j(x, y)dxdy =

The approximate solution of annular plate is determined in this section.

The expressions of boundary conditions for free edge of annular plate are

considered as spatial boundary condition and equation (4.8) is for boundary
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condition of stress function. Then, the starting step to reach the solution in

separation variable form is shown as follows

w(r,t) = H(r)G(t)

Also, the approximate shape function is mentioned in Urugal [28]

H(r)=1+c1r2 +c2r4 +c3ln(r)+c4r2ln(r)

From above function, there are 4 unknown constants, which need to

satisfy the following boundary conditions.

w(a,t)=0

3w(r,t) =0
ar

=0
r ar

(a3w ld2w 1 awI+--------- =0
r Jr2 r2 ar

r=b

where a is outer radius and b is inner radius.

Applying all above boundary conditions into shape function and

solving for all 4 unknown constants, the value of these constants can be

solved from the following equations.

1 + c1a2 + c2a4 + c3 In(a) + c4a2 In(a) = 0

2c1a+4c2a3 +fiic4a+2c4ln(a)=0

v(2bc1 + 4b3c2 + + bc4 + 2bc4 ln(b))

=02c1 +12b2c2 .-E+3c4 +21n(b)c4
+ b



2c3 2c424bc2 +++
b3 b

2bc4ln(b)
=

2c1 12b2c2 ---+3c4 +2c41n(b) 2bc +4b3c2 _f2-+bc4

b2
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After geuing the value of c1, c2 , c3 and c4, and substituting all above constants

into shape function, the closed form solution of shape function can be

presented by

H(r) = 1+ c1r2 + c2r4 + c3 ln(r)+ c4r2 ln(r) (4.20)

Then, applying equation (4.10) and (4.20) into (3.38a), the resulting equation

is

1 ( a(i

2 (c +r2(2c1+3c4+12c2r2)_EhG(t) (3 +r2 (2c1 +c4 +4c2r2)+2c4r21n(r)).J

)+2c4r21n(r)
Integrating the above, it gives

Ø(r)=c3c4r2 +_-_(8c +16c2c3 8c1c4 +5c9-4 +±r2(_2c +4c3c4r2 +cr4)1n(r)2
128

1 2+c4r (_72c3 +18c1r2 9c4r2 +8c2r)1n(r)+c2(12ci c4)-6 +
144 216 48

+ c5 ln(r) + c6r2 (4.21)

where the constants of c5 and c6 are to be determined from boundary

conditions in equation (4.7) and (4.8). Then, the value of both constants,

c5 andc6, can be determined from both of following equations.

b3c 1 b7c 1+b c1c2 ++b3c2c3 1bc1c4 +LbC2C4 +
bc3c4 3b3c c5

+2bc6
c ln(b)

+ +-
4 3 6 2 4 32 b 4b

+ bc1c4 In(b)+1bc2c4 1n(b)--- bc3c4 1n(b)---bc In(b) + bc3c4 ln(b)2 + ---bc In(b)2 = 0
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6
(c4(-17+v)

3 2
2(8c6(-i+v)

4
(a2c4(_3+v)'

28a c21 I + 48a c2 (-7 + v) + 72a I I + 72a c41 Iln(a)
t,+12c4(-5+v)) +c3c4(1+v)) +2c3(_1+v))

4((-3+v)(8c +16c2c3) (12a2c3c4(1+v)+a4c4(_8a2c2(_5+v)
+9a I 1-121 Iln(a)

-4c1c4(1+v)+ c(-5 + 3v)) 12c1 (-3 + v)+ 3c4(l + v))+ 6c(1 + v))

+ 72(c +4c5(1+v))=O

So far, all expressions, which are counted for the approximate

solutions, are determined. In next step, equation (4.20) and (4.21) are applied

to equation (3.38b), and then the error in the differential equation is defined

by the following terms.

= --G(t)VØ(r) + G(t)Ø(r) + -s-- G(t)Ø(r)
EhG3 (t) 1 (H

r )rph ph ph r ph

Orthogonalizing the above error with assumed shape function, it gives

G(t)f (VO(r)(r). rdr + o(t)jO2 (r) rdr + G(t)f 02(r). rdr

EhG3(t) f!(OH
)r0( rdr = -f--f0(r). rdr+

pha4 bT ph,,

Also, replacing Bilapician term with the expression in equation (4.11), the

nonlinear differential equation for time variable term is presented by

G3(t)= Q (4.22)

where

pJ02(r)d

= rdr

Q(t) f P(t) .0(r). rdr
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From (4.22), the solutions of G(t) can be determined by using phase

variable to transform this equation into state space form and numerically

integrating with Runge-Kutta fourth order numerical method.

Finally, the approximate solution of surface deflection of annular plate

can be reached by the summation of the product of equation (4.20) and (4.22)

at each eigenfrequency.

w(r,t) = (H1(r)G(t))

where i is the number of mode shape.



CHAPTER 5
RESULTS

Chapter 5 presents the solutions of small deflection and large

deflection plate equation. The annular plate model was used in the fmding of

both linear and nonlinear plate equations. In presenting solutions of the

annular plate, this chapter demonstrates the response of the inner edge in

accordance to the change in time. The chapter also presents the result of the

whole response of annular plate in 3D plotting. The simulation result of

integration between plate vibration and droplet formation is also presented in

the chapter. Trade studies between Young modulus and Droplet formation

characteristic are covered in this chapter. There are three droplet formation

characteristics consider in the performing of related simulations.

51 Surface Deflection of Small Deflection Plate Ewiation

In this section, a clamped annular plate is introduced to the simulation.

In solving thin plate equation as mentioned earlier, the analytical solutions are

available for the linear equation; on the other hand, numerical solutions are

available for nonlinear equation. On the theoretical basis, material properties

of annular plate are assumed by the following variables.

a = 0.004 m b = 0.00005 m

p=7590 k/
h=O.000016 m

v= E=102 GPa =l %

Plate equation 3.25 is the fundamental equation, which is originated

from the stress and strain components on the midplane of plate without

damping term. However the response of undamped model is not compatible

with the physical aspect of plate vibration as shown in figure 5.1.
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Figure 5.1 Comparison of damped and undamped solutions of inner node
deflection of annular plate.

For this reasoning, the modal damping is added to equation (3.25), and

the resulting expression is presented in equation (3.26). It is not possible to

determine the damping ratio of the plate directly from datasheet of material

properties; therefore, one percentage of damping ratio is approximated into

the model. Finally, the actual damping will be determined by a trial-error

method with the experimental data.

5.2 Surface deflection of Lar2e Deflection Plate EQuation

According to chapter 4, the expressions for solutions of large
deflection plate equations are determined by using Galerkin's Method. In this

session, the simulation of these solutions is presented along with the
verification which was previously conducted by another method such as the

Energy method.

For the purpose of comparing the solutions of large deflection, the

solutions of the Energy method [28] are used. Referring to [28], the Energy

method's approximate solution of maximum deflection for clamped plate can

be determined by the use of equation 5.1.

Pa4
+0488 Wm

Wmax = 64D[1
h J J

(5.1)

where P is the constant pressure acting on the plate.
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Then, the simulation of maximum surface deflection can be done by

using the constant amplitude force instead of sinusoidal function. Result of

both solutions from Energy method and Galerkin's method are presented in

figure 5.2.

1 2
1 0 Comparison between Energy meethos and Galerkin method

0.8

C-)

U)

U)0.6

E
04

E
x

0.2

25 50 75 100 125 150 175 200

Force amplitude (KPa)

Figure 5.2 Comparison of maximum deflection between Energy method and

Galerkin method.

The most appropriate model for plate vibration is expressed in this

section, which considers the nozzle plate as annular plate governed by large

deflection plate equation. The inner edge node is used to verify the solutions

of annular plate vibration. First, the simulation is performed with the small

force amplitude of 1 Pa, and then the high amplitude pressure is to be applied

to the annular plate. The resulting excitation is shown in figure 5.3.
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Figure 5.3a Comparison between Small and Large deflection at 1 Pa Force

amplitude.



38

I[J
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Figure 5.3b Comparison between Small and Large deflection at 5 KPa Force

amplitude.

5.3 Droplet formation simulation

The related model of droplet formation simulation is presented in
figure 5.4, where the external force excitation is applied at the lower
diaphragm. Also, it is assumed that movement of fluid inside the chamber

causes the excitation at the upper nozzle plate. With this reasoning in mind, it

is reasonable to assume that types of forcing functions applied to diaphragm

have a great deal of effect not only to the liquid inside the chamber, but also

to the vibration of plate. According to the model, the assumptions of
incompressible fluid and uniform pressure distribution in fluid inside the

chamber are made in order to estimate the pressure directly actuated to the

plate. For the reason of simplification purposes, this thesis employed water as
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liquid material in the chamber. Hence, force amplitude of plate excitation is

determined by the fluid pressure in the chamber, which is measured by the

pressure probe on the top.

Pressure'
Plate

Diaphragm

Figure 5.4 Experimental model of Plate vibration

mber

There are 2 parts to the simulation. The first part governs over the

formation of droplet under the non-moving nozzle, and the second part

focuses on plate vibration solution to predict the droplet with the moving

nozzle. The work on the droplet formation computation code is completed

which was done to use as aid in the prediction of the first droplet formation

produced at nozzle.
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Next, the impulse input function is introduced as the excitation force as

in figure 5.5.

2

I

Pulse Input Function

V

Time(rnicrosecond)

Figure 5.5 Pulse Input Excitation
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According to the result from mentioned simulation, the prediction of

liquid colunm shape can be performed by the solving the equation 3.43 by

Yang [34]. The result of simulation is presented in figures 5.6.

time 8.22e-005 S

'10
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Figure 5.6a Liquid column shape at t 0.0000822 s
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Figure 5.6b Liquid column shape at t 0.000 16029 s

42



43
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Figure 5.6c Liquid column shape at t 0.0001619 s



The simulation is followed by the process of determining the level of

effect at each excitation component plays on the droplet formation. The

relationship between Young modulus and droplet formation is presented
figures 5.7 through 5.9.
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Figure 5.7 Relation between pressure and breakoff time
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Figure 5.8 Relation between pressure and radius of droplet after breakoff
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Figure 5.9 Pressure vs distance of droplet after break off
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Further investigation, the research then focuses on the plate material,

since it is consider as one of the affecting component. Plate's flexibility can

cause changes in plate vibration; therefore, it is appropriate to assume that this

component has a high potential for being one of the factors which affect the

formation of droplet. Figures 5.10 through 5.12 show simulation results for

different plate flexibility at each characteristic of droplet breakoff stage.

::
flSSflSSflSflflSISISIUCflI
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Figure 5.10 Young modulus vs breakup time
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CHAPTER 6

CONCLUSION

6.1 Conclusion

50

The original thin plate equation presented in equation 3.25 in this

thesis is best considered as an ideal defmition of plate vibration. However,

the equation is presented with out damping term. After running the simulation

of this equation, the result in figure 5.1 shows that the solutions are not

compatible to the physical condition of plate vibration. These results lead to

the assumption that 1% damping ratio should be applied to the system. The

application of 1% damping ratio provides only minimal change in the

amplitude response, but the vibration behavior, on the other hand, results in a

more physical manner. The experiment can be conducted later to determine

the exact value of damping ratio by the application of trial-error method. The

solution of thin plate equation can be solved by applying either analytical or

numerical method to annular plate. Analytical method provides many

limitations, and for this reason it only can be used to solve linear plate

equations.

The majority of works on plate models in this thesis emphasizes the

large deflection plate equation (3.38). Figure 5.3b show the differences that

occur between the small deflection and large deflection plate equations at

high force amplitude. High force amplitude is a major factor, which

contributes to the differences in the responses of plate vibration; therefore, the

large deflection plate equation is employed in the droplet simulation model in

order to receive more accurate surface deflection of the nozzle when it is

subjected to high force amplitude. To validate the large deflection equation

solution, it is used to compare the solution of the Energy method and Galerkin

method (figure 5.2).
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The droplet simulation of the research had focused on the first droplet

formation discharging from the nozzle. The integration ofplate vibration and

droplet formation model had been developed. The trade study of droplet

formation can be later proceded by conducting simulation cases with various

excitation characteristics and uses of different plate material. According to

conducted simulation, the responses of pulse excitation at different force

amplitude are examined (see figures 5.7-5.9). The higher amplitude force

excitation provides the faster breakoff time, the longer breakoff distance, and

the bigger droplet radius than lower force amplitude. The effects of flexibility

condition on the droplet formation are summarized in table 6.1.

High Flexibility High Rigidity

Breakup time Shorter period Longer period

Radius of droplet Slightly Bigger size Smaller size

Breakup distance Longer distance Shorter distance

Table 6.1 Characteristic of droplet formation with high elasticity and rigidity.

In summary, the nonrigid nozzle plate provides for a longer droplet

breakoff time, a slightly bigger droplet size and a longer breakup distance

away from the nozzle. According to the summarization above, the assumption

can be made that the nonrigid nozzle can result in a more efficient first droplet

formation where the droplet flows out faster and longer. However, the

decision to which characteristic to be used in the production of inkjet is

determined by the manufacturer according to their standard and market

demand.
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6.2 Recommendations for the Future Research

The research of the plate vibration and droplet formation leads to

further related fields of study that includes:

The continuous droplet formation. This thesis had only focused on the

formation of the first droplet formation at the nozzle plate; therefore,

further study of continuous droplet formation with plate vibration

should be conducted to learn more about factors which can be a great

contribution to efficiently formation of droplet. These factors include,

force amplitude, vibration frequency, plate material and so on

2. The realistic model of excitation for plate vibration with the
depletable volume of ink inside the chamber. The assumption of

uniform pressure in the chamber is not fully valid, since the ink level is

decreasing as the printer get used and it causes the changes in the

distribution of pressure applied on the printed pages. With this fact in

mind, the realistic model of excitation for plate vibration with

depleting volume of ink inside the chamber should be studied in order

to gain more efficient results of printing quality.
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