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THE NONLINEAR WAVEMAKER PROBLEM

INTRODUCTION

The numerical solution to the two dimensional nonlinear wavemaker

problem is needed to determine the waveform on a finite length tank

throughout time. No analytical solution exists, due to the nonlinear surface

boundary conditions. The method of lines is applied first to a test problem

where numerical results are already known, so results from the program used

in this paper can be compared with the previously known results to insure

accuracy in the program. The nonlinear surface pressure distribution problem

is the test problem. The method of lines is then applied to the nonlinear full-

flap wavemaker problem.

The method of lines involves discretizing the partial differential

equations (PDE's) governing the system, except in one dependent variable,

chosen here to be the y variable. To save computer time, the method of lines

is applied only to a narrow grid covering the free surface. Successive over-

relaxation (SOR) is used to solve Laplace's equation on a coarser grid below

and slightly overlapping the surface grid.

The method of lines involves two main parts: the solution of a

nonlinear ordinary differential equation (ODE) and the solution of a nonlinear

2x2 system of simultaneous equations. Both have a high arithmetic operation

count, and require a large amount of computer memory for data storage. The

SOR method has the same drawbacks; however, both of these methods have

the advantage that they are easily extended to three dimensions compared to

other methods.

In Section 1 the nonlinear equations governing the fluid in an arbitrary
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wave tank are derived, based on the three assumptions that the fluid is

incompressible, irrotational, and inviscid. The classical linear equations are

derived as well. The sample problems used are defined in Sections 2 and 3.

The numerical method applied is that used by Samuel Ohring in his solution

to the first problem; this method is described in Section 4. A discussion of the

difficulties encountered in the numerical method follows in Section 5. The

results and conclusion follow.
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1. THE EQUATIONS

I. Basic Assumptions

To predict a real life phenomena through mathematics, a mathematical

model must first be made. The accuracy of the computed results depend on

how accurately the assumptions made in the model correspond to what

happens in the real situation. In this section the basic model for a generic

wavemaker is derived. For the general wave theory used in this paper, the

following assumptions are made: the fluid is 1. incompressible, 2. inviscid,

and 3. irrotational. The first assumption, that the fluid is incompressible,

means the density, p, remains constant throughout the fluid.

Draw a closed surface S, fixed in space, and let the fluid flow through it.

The total flow over S must vanish, the inflow balanced by outflow. If we let 4

be the fluid velocity and fi be the unit outward normal to S, then q n is the

component of velocity normal to S.

Over a small piece of the surface, dS, the outflow of fluid in time dt is

(1) (area)(time)(velocity) = dS dt

For inflow, the velocity changes sign. If we completely cover S by small pieces

dS, and then added up the flow through each one, we would get

(2) E dt dSi = 0 ,

i=0

since the total flow must vanish over S. This has to hold for all time, so

(3) (4.11.) dS = 0.
i=0

Letting dS 0 and passing to the limit, we have

(4) Eifi dS = 0.

Applying the divergence theorem we get f div(q) dV = 0, where V is the
v
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volume enclosed by S. This is true for all V, so we get the equation of

continuity:

(5) div(4) = 0 .

The second assumption, the fluid is inviscid, indicates that any force acting

on the fluid inside the surface S and caused by the fluid outside S is entirely

pressure forces acting normal to S. Let fi be the pressure acting on S by the

fluid on the outside of S. Then the force caused by p on dS is pildS. We

assume the only other force, gpdV, is due to gravity for an element of volume

dV, where g is the acceleration due to gravity times a unit vector in the

vertical downwards direction.

Recall Newton's 2nd Law of Motion : F = ma. The total force (pressure)

on S due to fluid outside is f p( Lai) dS. The total force on V due to

gravity is f p( i.g ) dV. In each element dV the mass is pdV, and the

acceleration is Dq/Dt, where D/Dt is the standard notation for total differ-

entiation when following a particular particle. Thus the total force due to

mass times acceleration is Dq/Dt) dV, where 1 is a unit vector in an

arbitrary direction. Putting these into Newton's equation we get:

(6) dS p(l.g) dV = f Dq/Dt) dV

By the divergence theorem, we can rewrite the first integral as

(7) f pa fi) dS = f div( pi ) dV = f (1 Op) dV .

s v v
Rewriting equation (6) we now have:

(8) 0 = f 1 Op dV f p( I g) dV + i p(I D--A ) dVDt
v v v

Equivalently,

(9) I pi [ JO) g + Tp.D ] dV = 0.

v
Again, since this holds for any volume V and any direction 1, we get Euler's

equation of motion:



(10)
iT °P g rt- = 0 ,

(1A) Or
D4

6
, PopDDt4

P

Let (u1, u2, v) be the velocities corresponding to the space directions

(x1, x2, y) . Then the component form of (11) is:

(12a) Du ap
P Dtl axi

pDu2 Op

Dt ax2

,Dv + .22 +
"Dt = (),

5

where g = (0, 0, -g) and g is the usual gravitational constant. Expanding the

total derivatives D/Dt, we get:

o

( 1 3 a )
au,P (--R- + 1117Z + u-2ax2

'.2aX2

ay

(13b) au2
ay ux,

(13c) p uigxv u +20x2 vayoz. ) + '2-
133r

+ pg

Rewriting (5) using the (u1, u2, v) notation and multiplying through by p

yields:

(14)
P0Xi PY2 7 P5a-V7

= o

Now multiply (14) by u1 and add it to (13a) to get:

(15a) 4-1t1 + A-i(pui2 + p) + 8t(puiu2) + #3,-(puiv) = 0

Similarly, multiplying (14) by u2 and v, and then adding to (13b) and (13c)

respectively, we get:

(15b) Pate + Taxi(pulu2) +
8x2(pu22+ p) + 4(pu2v) = 0

(15c) pg- + -t-c,(pvui) DIc2(pvu2) -4.(Pv2 + gY) = 0
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These are the components for Euler's equation in a more symmetrical form .

The third assumption, the fluid is irrotational, means the individual

particles of the fluid don't rotate. Mathematically, this means

(16)

Expanding eq. (16),

curl 4

(17)
8acx13

aci2 aq1 aq3 aq2 aq1 =)ax3 ax3 ax, ax, axe

For (17) to hold, we must have 4 = vo , for some scalar 0 . From (5) we

have div( 0c ) = 0, and so we get Laplace's equation: ,L0 = 0 .

The system of coordinates is set up with y in the vertical upwards

direction and x1, x2 horizontal in mutually perpendicular directions. With

these axes, Laplace's equation becomes:

(18)
820 820 820

axi ax22 0y2
= 0 .

Bernoulli's equation can be derived using the equations above. Recall that

for any function f = f(xi, x2, y, t), the chain rule for partial differentiation is:

(19) Df = +of of Dxi of Dx2 + of Dy
Dt at Oxi Dt ax2 Dt ay Dt

Note that (Dt
Dx2 Dy , so we get Elltf-di (4 vf).

atDt Dt Dt )

Replacing f by 4 = V0, we get :

(20) Del ( v0 ) + (4 v)4Dt

After some work, we can rewrite eq. (20) as:

(21) Dg
Dt A(vo) + 0(21 1412 ) (q x curl el. )

where' 412 = speed. Since we assumed curl 4 = 0 , and assuming we can



interchange the order in which we take the partial derivative and the gradient

of 0, we have:

(22)
Dt 2 )

Substituting Euler's equation in for 1/4/Dt yields:

(23) -17P + at + 12 )

Since g is only in the negative y direction , g = g(0, 0, 1) = goy, eq. (23)

becomes:

(24) 21412 P + gY)
Integrating (24) , we get Bernoulli's equation:

(25) act)
+ 11412 + + gY = f(t),2

of(t) = 0.

II. Boundary Conditions

In the previous section, the domain of the fluid was considered

arbitrary, but in a wavemaker problem, at least part of the boundary is held

fixed and certain boundary conditions are imposed there. There are two kinds

of boundary conditions: kinematic and dynamic. Kinematic describes the

motion of the fluid, and dynamic relates the motion to the forces associated

with it and to the properties of the moving objects.

The kinematic boundary condition comes from the basic idea of a con-

tinuum. Suppose a surface S is drawn in the fluid, and let S move with the

fluid. If each particle on the surface S is followed, the same particles always

make up S, and the particles originally inside S always remain inside S. Let

the equation S(x1, x2, y, t) = 0 describe the surface. Then as long as x1, x2, y

and t satisfy S = 0, the particle (x1, x2, y) remains on the surface for time t.

Equivalently, for any surface S,
(26) DS 0DS

Expanding the total derivative yields:
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(27) aS
x,

OS + = 0
ia 2ax2

Suppose a part of S is chosen to be part of the "free surface"

between the water and the air. Any motion of the air affecting the water is

neglected. Define this free surface by y = 71( x1, x2, t). Then for S the

following holds

(28) S = 1/( x1, x2, t ) y = 0.
Note that i doesn't depend on y, so in applying (27) we get:

(29) 191/ u al/Ft 1 axi u 2 ax2 v = 0 on y = 77(x,t).

This is called the kinematic surface boundary condition (KSBC). Similarly,

if S is part of the bottom of the tank or river bed, then:

_6rah + a_rciah + ii202 + v(30)

If it is a rigid bed, so that y = h(x), then:

(31) ah V = 0-r 112
u11 u.A2

0 on y = h(x,t).

on y = h(x).

If it is a rigid, flat bed, then h is constant and (31) simplifies to:

(32a) v = 0

as the boundary condition.

Similarly, the boundary condition at a vertical wall would be

(32b) u = 0 ,

so there would be no flow through the wall. Equations (29) and (31) can be

rewritten in terms of the velocity potential, where U1 and U2 represent

uniform horizontal currents in the x1 and x2 directions respectively:

(33) u2, v) = ( Ui + 152 + (42a g)

001 anal an +LU2
a-T2i OX2

(34) U1 -I- axi ax,

(35) [ Ul + +

ao
0 on y =

U2 + i9(2'91 0---,--,2 +
ay

= 0 on y = h
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The dynamic boundary condition applies only on the free surface.

Since we assume that with the absence of any motion in the air, the pressure

there is constant. We will take this constant to zero. Then the only pressure

on the water surface is surface tension. If we draw a line on the fluid surface,

the fluid on the left will exert a tension T per unit length of line on the fluid to

the right. 7 is the surface tension coefficient; it is different for various fluids

and depends on temperature.

C-2da

Figure 1. Surface Pressure Components on a Free Surface

For simplicity, consider a two dimensional case at a fixed time. The

surface can then be represented as y = ij(x1). Imagine a small piece of the

free surface , length ds in the x1 direction and unit length in the x2 direction.

Referring to Figure 1. , draw the segment AO perpendicular to the tangent to

the surface at the midpoint of ds. As we let ds-0 , it approaches a piece of an

arc of the circle centered at 0 with radius AO. The component of the tension

7 which is perpendicular to AO gives a net force along AO of rsin(da).

occurs on both the left and the right, so the total force will be

(36) 27-sin(da) 27-da
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when da is very small.

This force must be balanced by an increased pressure inside the fluid, since

the pressure of the air was taken to be zero, so that

(37) 27-da = pds

Let R = AO be the radius of curvature of the arc ds. Then from the arclength

formula,

(38) ds = 2daR

Substituting ds in (38) into (37) the surface pressure is:

(39) P R- k

where IC = 1/R is the curvature of the surface, and is taken to be positive if

the surface is concave down. By substituting the surface pressure p from (39)

into Bernoulli's equation (25), the result is the dynamic surface boundary

condition:

(40) DSBC:
apt + ,-1412 + = f(t) on y = 77,

where f(t) is a function of time only, and satifies of = 0.

Equations (34), (35) and (40), along with Laplace's equation are the

governing equations for a generic wavemaker problem for nonlinear waves.

The nonlinear KSBC and DSBC must be evaluated at the unknown free

surface 77. For this reason, no analytic solutions exist at this time. It is also

these nonlinear boundary conditions that make the nonlinear problem so

difficult to solve.

III. Approximations

The problem up to this point consists of solving Laplace's equation,

which is linear, along with several nonlinear boundary conditions. Generally,

to get linear solutions, we have to make some approximations. Here the
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assumption is made that the waves are small compared to the water depth.

Let E >0 be a small parameter, and suppose there exist -= 77i(x1, x2, t)

and cbi = Oi(x1, x2, y, t) such that

(41) = ej1 + C2712 +

(42) = Ulx1 + U2x2 + esbi + E202 +

Laplace's equation is then

(43) EL\01 +

which should hold for any e, so each must be harmonic. The kinematic

surface boundary condition (KSBC) becomes

(44) E
__9771 ui rru2
at axi ax2 ay

07/2 0771 al2 (9772 + 8772 U, (27-71 2'251 U2 + axe ax2at OX1 2X4 OX4 OX2 ao11+ . . . = o .

For Eqn. (44) to hold for any c, the sum of all the order e terms must be zero,

and similarly for all the order e2 terms, and so on. Similarly, the dynamic

surface boundary condition (DSBC) becomes

(45) e [ ail +uia,±x, u24 +g,,, a-pc + (1312 + U22) +

ao
.c

2 1 [ ao1)2 + (001)2 4_(001)2] u1 ____ f(t).U2 0021
2 3)(4 aX2i ay ' ax? ax2

Both equations are evaluated at y = q. These equations are still nonlinear,

and still have the difficulty that they must be evaluated at the unknown

position y =

One way to get around the difficulty is to satisfy the boundary

conditions at a mean value of 71, say at y = 0, using Taylor's theorem. For

any function F = F(x1, x2, y, t) we have

(46) F(xi, x2, 77, t) = F(x1, x2, 0, t) + if(x1, x2, 0, t) +
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Since the waves are assumed to be small, all the terms in Eqn. (46) with 77's

can be neglected. Apply this to each of the Oi in the asymptotic expansion

(42) of 0. Substituting (41) and (42) into the KSBC (34), and linearizing the

equation by keeping only terms of order E , we have:

(47) e
r a 71

6 trlz -u2qi _ (9011 n
ax2 ay'

Similarly, for the DSBC, evaluated at y = 0 :

on y 0.

(48) E aibtl u21(012 4_ ph] + T-;p + + U22) = f(t)

Often f(t) is chosen so as to cancel with the constant on the left, which is

-12-( U12 + U22) here. Since it was assumed all the E2 terms are negligible, 011

can be replaced by 77, and 601 by 0. With this change of notation, the linear

surface boundary conditions are, along with Laplace's equation:

(49) KSBC: at + U2ax712 = on y = 0,

(50) DSBC: + U2" + g771 " = 0 on y = 0,
ax2

(51) Ui ah- + u
23x2
ah

ay
= 0 on y = hi,

where h' is some mean value of h. In the case of no current, all the U1 and U2

terms are zero.
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2. THE NONLINEAR SURFACE PRESSURE DISTRIBUTION PROBLEM

The two dimensional surface pressure distribution problem is defined

on a rectangular wavetank of finite length and depth. The waves are

generated by the instantaneous acceleration, from rest to a constant speed U,

of a pressure distribution on the surface of initially calm water.

v -h
x x-

Figure 2. Domain for the Surface Pressure Distribution Problem.

The same assumptions that the water is incompressible, irrotational,

and inviscid are made, so the previous equations from Section 1 apply,

although only two dimensions are used here. In particular, eq. (18), (34), (35)

and (40) are used. It is assumed that initially everything in the system is at

rest, and then accelerated impulsively to speed U. The pressure distribution

can be thought of as modelling the effects of the air cushion under a

"hovercraft" style boat.

Before solving the equations derived in Section 1, they must be non-

dimensionalized. The following change of variables is made:

= Ln
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(52) t' = Ut

LUO

p' = Pp

where L is the length of the pressure distribution, (which is 1 in this problem),

U is the constant speed of the current, and P is the max pressure in the given

pressure distribution. Primes indicate the old dimensional variables. Note that

in the new notation:

(53)
ao' 80',00 at uotu = U2Ot
at' a0-aat'

(54) and ao' ao'ao
7976E: tj°x

Applying the change of variables to eq. (18), (34), (35) and (40) yields:

(34') tint Unx Uqx0x UOy = 0 on y =

Dividing through by U ,

(55) KSBC: 77t + nx(1 + Ox) cfy = 0 on y =

Similarly, on y =

(40') Ot cbx + (P/U2) + (PP/P152) + 2(0x2 + 0y2) = 0

Define b = P/pgL and Fr2 = U2/gL. Fr represents the Froude number based

on L, and 6 is the hydrostatic surface displacement caused by the surface

pressure p, divided by L. Both are dimensionless. Substituting into (40'):

(56) DSBC: Ot+ Ox (77/Fr2) + (6p/Fr2) + 20x2 + cby2) = 0 on Y=1/

The boundary condition on the bottom and sides become 1.10y = 0 and

Uqx = 0; Laplace's equation becomes U20xx 152(hy = 0 Rewriting:

(57) 95xx + Oyy = 0 for x E [0,L1] , y e [-h,q]

(58) Oy = 0 on y = h

(59) Ox = 0 on x = 0, L1,

where L1 is the length of the wavetank.

The surface pressure distribution problem can be represented by the



15

initial boundary value problem consisting of eq. (55) (59), where

(60) p = sin2[ 1-(xx0)] for xo < x < x0+ 1

and p = 0 otherwise.

At time = 0,

(61)

(62)

= 0 everywhere, and

= 6P.
The origin of the coordinate system is in the undisturbed free surface.
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3. THE NONLINEAR FULL- FLAP WAVEMAKER PROBLEM

The two dimensional full-flap wavemaker problem is defined on the

same wavetank as the surface pressure distribution problem, except the left

end of the tank is taken to be a full-flap wavemaker. (Fig. 3) The flap can be

thought of as being hinged to the bottom of the tank and allowed to oscillate

back and forth in the horizontal direction. The waves are thus generated by

the instantaneous acceleration, from rest at time zero, of the full-flap

wavemaker.

The equations used in the surface pressure distribution problem will

also be used in this problem, except it is assumed that there is no current in

the water, and the surface pressure is negligible compared to the forces caused

by the wavemaker. With these changes the governing equations become:

(63) KSBC: 77x0x Sby on y =

(64) DSBC: = 1(x2 0y2) on Y =

(65) Laplace: q5xx qyy = 0 for x E {0 ,L 1] y [-h,77],

(66) Ox = [ (y + n + h)cos(t)] / 5 at x = 0,

Ox = 0 at x = Li,

Oy = 0 at y = h,

= 0 , 11 = 0 everywhere at t = 0.

Equation (66) represents the wavemaker function. In this paper it was chosen

to coincide with the wavemaker function used in Cooper's solution of the

same problem using the linear equations.
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Figure 3. Domain for the Full-Flap Wavemaker Problem.
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4. THE NUMERICAL METHOD: THE METHOD OF LINES

The method of lines is applied as used by Samuel Ohring. The

wavetank domain is covered by two overlapping grid systems, as shown in

Figure 4.

Y Y Y,

Lx
Y 0

Ya"

r hx-o

--111111111111111 I
IVAN 1111111111111111MIEW

1111111111 111111111=1/J1...011111/0 AM MEM =BMWmalldtoonmENNIII11 INOU HIMII Immo- ask =Mier MIIINW alMINIZIM=1=11101111111111=M
I 11111111111 1111112./1111111.

OMNI 1111111S MEMI/11111111hIlllwIIIIIMIUMW I/WA31111101111MIN11.411111/=111111.111M111&11
11111111=1111111111111111NOMINIMMIMIIIIIIIM=IIMIIMMIIIIIMMIN1111.111111111111M==.111MOIPMNIMI=Mall

1111M=MINSIB-111MIM111141111111101111=

11111111.1111=11111111TITERNINIngrailirlillirla
1111111111111111111111111111111111111111111111111111101111111IMIIIIIIIIIIIIIIIIMOM 111111111111111
11111111111111111 MOMMOM GRID FOR 020 0 MUM
1111111111111111MIMI MOM
11111111111111 111111111111
11111M1111111111111111111111111111111111111111111111111111111111111M11111111I
111111111111111111111111111111111111111111111111111111111111111111M111111111111111111111
1111111111 111111111111111111111111111111111111111111111111111111111111111111111111115

Figure 4. Grid System Used by the Method of Lines.

The upper grid, for 0<x<L1 yo<y<yrn is that used by the method of lines.

The bottom grid, for 0<x<L1 h <y <y1 is that used by the SOR method.

The equations are discretized in all variables but y in the upper grid, and in all

variables in the lower grid. Finite differences replace derivatives in the

discretized directions. The points on the grid where lines intersect are called

nodes. In the upper grid, solutions will be calculated continuously in the y

direction for each vertical line x=xi , but data will only be stored for values on

the nodes. Linear interpolation is used between node values when necessary.

When computing the solution at time step t n+1
, is assumed that a

solution is known for the entire wavetank for time step t" . Sweeping through

the upper grid on the kth iteration sweep from the upstream end (x=0) to the

downstream end (x=-Li), eq. (55)-(57) and (59) are solved for each line xi,
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subject to a Dirichlet boundary condition at y = yo. When solving these

equations up each line x=xi , assuming the kth iterate solution is known at line

xi -1 , and the k-lst iterate solution at x.+1. After this pass, Laplace's equation-1

is solved on the bottom grid subject to the boundary conditions on the sides

and bottom, plus a Dirichlet boundary condition at y=yi. The convergence

criteria (67) are then checked for each i. If they are met, the kth iterate is

taken to be the solution for time step tn+1. If the criteria are not met, a k+1st

sweep is made ( and additional sweeps if necessary ) until the convergence

criteria:

(67) {77(k)(x. tn+1) ii(k-1)(x. tn-f-1)]

[0(k)(Xil l"1.7 "

tn+1) (k-1)(. 11+1)]

are met.

The following discussion applies only to the upper grid for the kth

Euler'ssweep of the time step tri+1 at the line x=x.. uler's modified

method , an implicit time differencing method, is applied to equations (55)

and (56). One gets, at the line x=xi,

(68) _q(k)(xi, tn+1) (_4ft)/Fn+1(k)
0,

(69) _0(k)(xi, n(k),
t
n+1)

7)+ 0(xi, , tn) (44)[Gn-i-1(k) Gn] = 0,

where n(k)
1(k)(xi,

.0+1), _(xi, tn) , and

(70) Fn+, (k) oy(k)(xi, q(k), 0+1)

2A1x
rn(k-1)(x1+1, tn+i) _n(k)(x tn+1)}

V.1 I] (k),
en},

"
(k)= _77(k),xi,(71) (k) tn+i)tn+1)/Fr2 6p/Fr 2 -0-(k)(x.

A \ 71

[oy(k)(xi, n(k), tn+l)12 [ox(k)(xi, n(k), tn+1)]2

oy(k)(xi, n(k), tn+i) Fn+i(k),
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(72) Ox(k)(xi, n(k), t" +1)

{0(k-1)(xi+1, 71(k), tn+l) _0(k)
(xi 7/(k),

tr1+1)]/2,6a

Fn and Gn are also given by (70) and (71) by replacing t" +1 by t" and

removing all superscripts (k) and (k-1). All dependent variables on lines other

then xi are considered known, and the solution for time step V' is known for

all lines. Recall that the values of the dependent variables are saved only at

node points. Generally, the free surface will not cross at a node point, so the
0(k- , (k)terms 1)(x q(k), tn+1A) and (k) x. t ) in eq. (72) are expressed

as
tlinearfunctions of the unknown 7)(k)(x., n+1) in terms of the known values

of 0(k-1)(xi+i, tn+i
) and 0(k)(xi_1, y,, t" +1) nearest the known free surface

. and (k)ri(k-1) (x1+1, t n-1-1 ) an 7) (xi-1, t"+i) respectively. -Using central differencing

for Laplace's equation about the node (xi, yi) gives

to -I-1)

(73) O
(k)

yy (xi, y, t )

(k-1) n tn+1t+ 1 (k)

(Ax)2

At the free surface y = ii(k), the unknowns in equations (68),(69), and

(73) are 7)(k)(xi, tn+1), cb(k)(xi, 77(k), tn+1), and oy(k)(xi, ii(k)
) This gives

three equations and three unknowns, or a 3x3 system of simultaneous

equations.

Note that in (73) the last term is known, so really it is an ODE for q5(k)

at x. for y in successive intervals [y. y. ] The values of cb(k-1)(x., Yo, t" +1)
1

oy(k-1)(x., tn+1
J'

and ) are used as the initial conditions. Thus (73) has an
-)"

analytic solution over each interval [yj, y; +1], and we could solve (73) by

starting at yo and working up. To solve (73) this way would give a solution

which was independent of the free surface conditions in (68) and (69). Solving
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(73) downwards form the unknown free surface is also impossible, so we need a

method which will 1. uncouple the free surface conditions from the integration

of the ODE representing Laplace's equation along the line x=xi; and 2. yield a

solution which satisfies both Laplace's equation and the free surface conditions.

Following Meyer's method, a Ricatti transformation that relates 0 and

Oy through the auxiliary variables R(x, y) and W(x, y) is used:

(74) 0(k)(xi, to -1-1) oy(k)(xi, tn+i)

Note that the grid ordinate yk has been replaced by the continuous variable y.

This will apply to eq. (73) as well in the following discussion. Substituting

(74) in for 0(k)(x1, y, tn+1) in (73) yields:

oyy(k)(xi, ) = (2/(x)2) R(xi, y) 0y(k)(xi, y, tn+1)

_1 0(k-1)(x to -1-1) o(k)(x to -F1) 2w(xi,

This is a first order ODE for Oy once R. and W are known.

To obtain R and W, differentiate.(74) with respect to y to get:

oy(k) Ryoy(k) Royy(k)
Wy(76)

Substitute (75) in for 0" :

(77) 0y(k) = R [2R0y(k)-0(k-1)(xi+,) o(k)(x i_j) 2W1 /(A.)2

Ry0y(k) Wy , or

(78) 0 = 0y(k)[Ry +(2/(6.)02)R2 1] + (2/(6,x)2)RW Wy

(R/(Ax>2) [ ( (x

To solve (78), assume the first term on the right is zero; then R must satisfy:

(79) Ry (xi, y) = 1 (2/(Ax)2)R2(xi, y) , R(xi, yo) = 0.

An analytical solution for R in (79) is known:

(80) R(y)

.5
21 (Y )10),exp[ J 1

Ox

exp[ 21 5 (Y 110), + 1
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The equation for W is then:

(81) Wy(xi, y) = (1/(Ax>2) R(xi, y) [0(k-1)(xi+,) cb(k)(xki)]

(2/(x)2) R(xi, y) W(xi, y) , W(xi, Yo) 0(k-1)(xi, Yo, tn+i)

The initial conditions implied on R and W arise from the known initial cond-

ition (k(k-1)(x1, yo, tn-Fi ) obtained from solving the bottom grid.

The numerical solution for W is obtained on each successive interval

[yi, yi+1] , beginning at yo and moving up to the first yk beyond the last

known iterate value of II, using a second order Runge-Kutta method. The

+
o(k)(x.term Hi)] in eq. (81) is known only at each node (thelx1+1)

endpoints of each interval), and is expressed as a linear function over the

interval [yj, yi+i] based on its values at the nodes.

At the unknown free surface y = q(k)(xi, tn+1
) eq. (74) is:

(82)
cb(k)(xi, 71(k), tn+1) 17(k))0y(k)(xi, 77(k), to -1-1) W(xi, _(k))

1/

k)(x tn+1)Similarly, we can express R and W in terms of r)( at the free

surface. (Linear interpolation is used for W).

Eq. (68),(69) and (82) now form a nonlinear 3x3 system of simultan-

eous equations with the unknowns (k) x tn+1), oy(k)(x., tn+
I) , and

0(k) (xi, ii(k), tn+1). y( k) can be expressed in terms of the other two unknowns

using eq. (68), and then substituted into eq. (69) and (82) to reduce the

system to a 2x2 system of simultaneous equations. Newton's method for

systems was used. Once ri(k)(xi, tn+1) and qs(k)(x., 77(k), tn+1) are known, they

can be substituted back into eq. (68) to get OyM(x.1 tn+1).

oy(k)(xi, Ti,(k) tn+i) is used as the initial condition for numerically

solving the ODE in eq. (75) for Oy(k) along the line x = xi. The numerical

solution starts at the free surface and advances downward to y = yo along the

node points on xi . Note that the first interval will be of a variable length
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depending on the value of 77(k)(xi, tn+1). A second order Runge-Kutta method

is used on each successive interval, with the final solution at the end of one

interval serving as the initial condition for the next interval. Linear

interpolation is used on any terms known only on the node points, such as

W(x., y),
0(k

1>(x1 +1, y, tn+1) and 0(k)(xi_1, y, tn+1).

The velocity potential 0(k)(x1, y, 0+1) is then obtained at the node

points on xi from the free surface down to y=y0 using eq. (75). This

completes the kt'' iterate solution for time step to +1 at the line xi in the upper

grid.

In the bottom grid, eq. (57)-(59) are solved for 0 subject to a Dirichlet

boundary condition at y =y1, where 0(k)(x1, y1, On is known from the

solution on the upper grid. The bottom grid is solved using successive over-

relaxation (SOR) in the following manner. Each of the node points in the

lower grid is numbered, starting at the lower left hand corner and working

upward row by row to end at the upper right hand corner. (See Fig. 5). The

actual corner points are not included because of the singularities at those

points.

Because finite differences were used, 0(x1, yi) can be represented as a

linear combination of the values of 0 at neighboring nodes. Thus, if there are

N nodes in the lower grid, N equations in N unknowns can be written, and the

resulting NxN system of simultaneous equations solved. Let A represent the

NxN matrix corresponding to the system of equations. In this problem, the

value of 0 at each node depends on no more than the values of 0 at four other

nodes, so A is a large, sparse matrix. Let u = (u1, u2, . . . ,uN) represent the

variable 0 at each of the numbered nodes. Then solving the lower grid

amounts to solving the system

(83) Aii
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Figure 5. SOR Node Numbering System.
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where -1.7 is a constant vector. The matrix A can be split into two parts: the

diagonal elements, D, and the off-diagonal elements, B. Eq. (83) can be

rewritten as:

(84) u = Rd).
This suggests using a recursive formula, given an initial guess iro :

(85) irk = Bu-k_1) for k = 1, 2, . . .

The ith component of tik is then

(86) uk(i) = [v(i) 11 B(i,j) uk_i(j)] / D(i,i)

or equivalently, with 7=1,

(87) uk(i) = uk_1(i) +

V(1) - E B(i,j) uk_i(j) D(i,i) uk_i(i)

D(i,i)
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The SOR method involves ' over-correcting" the k-lst guess, so -y is chosen

such that 7e[1,2). The recursive formula (87) is used until the maximum

difference between two successive guesses, uk(i) and uk_1(i), is smaller than a

fixed tolerance. The values of 0 from the last iteration of the lower grid are

used as the initial guess.

If a grid point (xi, yi) is on one of the boundaries of the wave tank, the

equations must be modified. When xi=0 or L1, the centered difference method

cannot be used on the derivatives, so eq. (68), (69), and (73)-(81) must be

modified, and then solved in the same manner as before. Eq. (59) applies on

these boundaries; a forward difference method is used for xi = 0 and a

backward difference method for x.= L1. 3-point formulas were used in both

the forward and backward difference methods; for example:

(88) 77.(k) -0f/(k-1)(x0, tn-1-1) 477(k-1)(x1, tn-F1)_77(k-1)(x2,

2ix

With these changes, the following equations apply when xi= 0:
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(73I) Oyy (k)(x0 , Yk,

_0(k)(x0,
Yk,

tn+i) 20(k-1)(x1,
Yk,

tn+1)_0(k-1)(x2,
Yk, tri+1)

(AX)2

(r5
I) (k)(xo,

Yk, tn+1) 1 r R(xo, 37) Oy(k)(xo, 0+1)1
(Lx)2L

1 [ 20(k-i)(x1, tn+1) 96(k-1)(x2, tn+1)].
(6.x)2

Again, differentiate (74) with respect to y and substitute in for Oyy in (75') :

(781) Wy(xo, = OY(k)(x07 Yf 1 RY(xo, + (11(x)2)112(xo, 3)1

R( r 1) 15(k-i)t_ 0+1)1.XCh W(Xn y) 20(k-1)(X V tn+1, V.2, u

Equation (78') can be solved if R is required to satisfy:

(79') Ry(xo, y) = 1 + (1/(Lx)2)R2(xo, 3")

This has the analytic solution:

(80') R(xo, y) Lx tan[(y Yo)/Axi R(xo, yo) = 0.

The first order ODE for W is then:

(81') Wy(xo, y) =

R(xo, 2Y) [W(xo, y) 04-1) o(k-1)(x2, tn-I-1)1
(Ax)2

W(xo, yo) 0(k-i)(xo, 0+1).

These primed equations are used the same way as the unprimed

equations. When xi = L1, the equations for xi = 0 can be used after making

the change of variable:

(89)
0+ Li

XL-1

X2 + XL-2

The Cartesian grid used in this paper is defined as follows: beginning

at x = 0, which is the line x = xo ,

(90) ix.= Ax, for i= 1, , 100;
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and beginning at y = h and progressing up in the positive y-direction,

(91) = h jay, for j= 1, ... ,76 .

The values ax = 0.1, Ay = 0.02, and 6.t = 0.03 were used. With these values,

L1 = 10.0, h = 1.36, and ym = 0.16 . Note that the notation yo and yi are

special in the preceding discussion; in terms of (91) , yo = Y63 = 0.1 and

Yi = Y65 = 0.06 . Similarly, the xo used in eq. (67) and (68) is defined by

xo = X27 = 2.7; so that the surface pressure distribution is applied from xi =

27 through xi = 36. The values Fr = 0.35 and S = 0.0125 were also used.
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5. DIFFICULTIES WITH THE NUMERICAL METHOD

Many difficulties were encountered in the programming of the

numerical method. Ohring's method was followed as closely as possible so the

results of my program could be compared for accuracy before applying the

numerical method to the wavemaker problem. However, several errors found

in Ohring's paper had to be corrected.

Ohring's discretization of the wavetank domain involved using variable

step sizes in both the x and y directions. His reasoning was to use a finer grid

size in the critical areas, which are the areas immediately surrounding the

surface and directly below the pressure distribution. A coarser grid was used

in the less critical areas where the potential 0 does not change very rapidly, as

on the bottom of the wavetank. However, Ohring uses a centered difference

method to approximate derivatives at the node points, and this method

requires the step sizes to be equal. Using variable step size increases the order

of the error in the method from 0(h2) to 0(h) or possibly larger.

Additionally, Ohring states that the average number of SOR iterations

used within each cycle was 1, with up to 4 or 5 required near time zero. It is

more common for SOR, when applied to a time dependent problem such as

these, to take 100 or more iterations before it converges within a given

tolerance. This implies that Ohring's tolerance may have been comparitively

large. The computer program written for this paper used an average of 25-35

SOR iterations within each cycle, with more than 150 iterations used in some

cycles. The error in each iteration was computed by substituting the nth

iterate solution vector, fin, back into the original equation it was supposed to

solve:

(92) Au = v.
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The error is then taken to be:

(93) error = abs [maximum { [Alin] v1 }1 over all i.

The error tolerance is taken to be 0.005. Usually the error it taken to be the

maximum difference between two consecutive iterates:

(94) error = abs[maximum (un+11 uin)]

However, if the SOR method is converging very slowly, this error could

converge to zero while the error in eq. (93) is still quite large. It is likely that

Ohring used the error bound described in eq. (94).

Ohring's convergence criteria for completing each time step is that the

difference between two consecutive cycles of ij is less than 0.0002 .

Considering the maximum values of r near time zero are only 0.01, this is

probably a poor choice for the error bound. It would be better to choose an

error bound dependent on the values of 77, such as
(k+1)1,,..

7 k

tn+1)
J

ri(k)(x
(95) kA117

E.71( k)(x

The most limiting factor in the numerical method was the lack of

sufficient computer memory storage. At each node point on the grid, c6 and y

had to be stored in two large matrix structures in the computer memory.

Although full use was made of the available storage, the step sizes in the x and

y directions were more than twice the step sizes used by Ohring. These

differences in step size make comparisons between the two programs difficult,

especially since my computations break down before t = 0.6 seconds, which is

the first time step Ohring gives data for.
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6. RESULTS

The results were not as accurate as hoped for when the project was

first started. Computer speed and memory size limitations were the main

cause for the lack of accuracy. Figures 6 -9 show the calculated waveforms for

various times for each of the problems solved. Figure 10 shows one of Ohring's

results. Note the instability that occurs at x = 2.8 in Ohring's graph.

Ohring applies a filtering function, due to Longuet-Higgins, on the

upstream end of the domain (from i=0 to i=28) to smooth instabilities which

develop at the upstream end of the pressure distribution on the surface. These

instabilities are inherent in the problem because of the current running into

the pressure distribution. This smoothing function is justified in' a physical

sense, but it has no meaning mathematically, and it would be better to use a

finer grid and smaller time steps to smooth results. Even after applying the

filtering function Ohring's results still show instabilities in this region. (See

Figure 10.) The results from my program have instabilities at precisely the

same places as Ohrings', although they are more pronounced due to a coarser

grid size than that used by Ohring.

Ohring briefly mentions in the back of his paper that for some cases

the calculations break down at the first downstream crest before the second

crest has fully developed, but he essentially only emphasizes his successes. He

only computes two cases out to 6.3 seconds; the other five cases break down

earlier.

The instabilities at the upstream end of the pressure distribution

indirectly cause my program to fail. The resulting steep slopes of cause the

first few guesses of 77(i), calculated by Newton's method, to be 2-3 times larger

than the actual value 77(i). Although the value r7(i) quickly converges, an error
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occurs if one of the first guesses is higher than the top of the grid, where y is

0.24 . Outside of the grid, none of the variables used in approximating 11(i) are

known, and the computer arbitrary assigns values. The grid needs to be

computed further up in the y direction, but the grid used in my program was

already the largest allowed by the computer. This would not be a problem on

a larger computer.

The grid size also causes poor resolution of the waveform in the areas

of instability. This accounts for the ragged appearance of the waves. Note

that the instabilities in the pressure distribution problem were inherent in the

problem. Problems using flap or piston type wavemakers do not have these

instabilities. The full-flap wavemaker problem solved in this paper worked

correctly until the calculated waves were large enough to cause the problem

with Newton's method described above. For this method to be useful in the

future for predicting information about nonlinear waves, a finer grid should be

used, and perhaps even a smaller time step. The method should be checked to

see if it converges to a solution as the step sizes get smaller, and the results

should be analyzed to see how closely the model. represents real waves.
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Figure 7. Surface Elevation for the Surface Pressure Distribution
Problem Without Application of the Filtering Function.
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Figure 9. Surface Elevation for the Wavemaker Problem.
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7. CONCLUSION

The governing equations for a generic wavemaker model for nonlinear

waves are derived and then applied to two cases:- the surface pressure

distribution problem and the full-flap wavemaker problem. These problems

are then solved numerically using the method of lines.

The method of lines is shown to simulate the problem given, but

accuracy is limited by the speed and memory storage of the computer used.

The method should be checked to see if it converges as Ax, 6.y, and Lt

decrease to zero. Since this method does not rely on the existence of analytic

solutions, once convergence has been shown the method of lines can be applied

to the wavemaker problem with almost any wavemaker configuration. The

method of lines has the additional advantage that it is easily extended to three

dimensions.
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