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We examine the interactions and feedbacks between bathymetry, waves, currents, and

sediment transport. The first two projects focus on the use of remote sensing techniques

to expand our knowledge of the nearshore. Due to the plethora of snap-shot data that is

available from satellites and their distribution via Google Earth, having a method that

can determine bathymetry from spatial wave patterns would be very valuable. Utilizing

remotely-sensed wave refraction patterns of nearshore waves, we estimate bathymetry

gradients in the nearshore through the 2D irrotationality of the wave number equation.

The model, discussed in Chapter 2, uses an augmented form of the refraction equation

that relates gradients in bathymetry to gradients in wavenumber and wave angle through

the chain rule. The equations are cast in a form that is independent of wave period,

so can be solved using wavenumber and direction data from a single snapshot rather

than the normally-required time series of images. Synthetic testing of the model using

monochromatic waves on three bathymetries of increasing complexity, showed that the

model accurately estimated 2D bathymetry gradients, hence bathymetry, with a mean

bias of 0.01 m and mean root mean square error over the three beaches of 0.17 m for



depths less than 5 m. While the model is not useful for cases of complex seas or small

refraction signals, the simplified data requirement of only a single snapshot is attractive.

The model is perhaps best suited for shorter period swell conditions (wave periods of 8-10

seconds), for example, where strong refraction patterns are visible and wave number, k,

and wave angle, θ, are easily extracted from a single frame image.

Secondly, remotely sensed images of wave breaking over complex bathymetry are used

to study the nonlinear feedbacks between two-dimensional (horizontal), 2DH, morphol-

ogy and cross-shore migration rates of the alongshore averaged bar. We first test a linear

model on a subset of 4 years of data at Palm Beach, Australia. The results are discussed

in Chapter 3. The model requires eight free parameters, solved for using linear regression

of the data to model the relationship between alongshore averaged bar position, x, along-

shore sinuosity of the bar, a, and wave forcing, F = H2
o . The linear model suggests that

2DH bathymetry is linked to cross-shore bar migration rates. Nevertheless, the primary

limitation is that variations in bar position and variability are required to be temporally

uncorrelated with forcing in order to achieve meaningful results. For large storms, this is

indeed the case. However, many smaller storms seen at Palm Beach show that changes

in bar position and variability are correlated with forcing and bar interaction dynamics

are not separable from bar - forcing dynamics.

In Chapter 4 a nonlinear model is subsequently developed and tested on the same data

set. Initial equations for cross-shore sediment transport are formulated from commonly

accepted theory using energetics-type equations. Cross-shore transport is based on the

deviations around an equilibrium amount of roller contribution with the nonlinearity

of the model forcing sediment transport to zero in the absence of wave breaking. The

extension to 2DH is based on parameterizations of bar variability and the associated 2DH

circulation. The model has five free parameters used to describe the relation between

alongshore averaged bar position, x, 2DH bar variability, a, and wave characteristics

(wave height, H, wave period, T , and wave angle, θ). The model is able to span multiple

storms, accurately predicting bar migration for both onshore and offshore events. The



longest individual data set tested is approximately 6 months. Using manually determined

values for the coefficients, bar position is predicted with an R2 value of 0.42 over this

time period. The effect of including a 2D dependency both increased rates of onshore

migration and prevented highly 2D systems from migrating offshore under moderate

wave heights. The model is also compared against a 1DH version by setting the 2D

dependency term to unity and using the same values for the five free parameters. The

1DH model showed limited skill at predicting onshore migration rates, suggesting again

that the inclusion of 2DH terms is important.

The last project (Chapter 5) explored the utilization of changes in bathymetry,

∆h/∆t, to gain further understanding of the feedbacks between 2D sediment transport

patterns, Qx and Qy, with respect to existing bathymetry in the nearshore. The model

is based on the 2D continuity equation that relates changes in bathymetry to gradients

in the cross-shore, ∂Qx/∂x, and the alongshore, ∂Qy/∂y, directions. The problem is

under-determined, having two unknowns (Qy and Qx) and only one known (∆h/∆t)

such that a series of constraints must be applied in order to solve for transport. We as-

sume that that the cross-shore integral of Qx is closed, such that no sand enters or exits

the system in this direction. By conservation of mass, this requires changes in volume

of the cross-shore transect to be due to longshore gradients in Qy. We test six rules

for distributing Qy: three rules describing the initial longshore transport (Qr
y) and three

describing the cross-shore distribution of the excess volume component (Qe
y). Initial re-

sults suggest that requiring sediment to travel down slope (Qr
y = f(βy)) is an intuitive

choice for describing transport of distinct perturbations. However, in one example field

test this method did not perform well and the approach may need further refinements.

Alternatively, having Qr
x and Qr

y depend on spatial correlation lags between two sur-

veys showed good results for identifying transport associated with alongshore migrating

features. This method, however, did not do well under strict onshore migration of 2D

features, where alongshore transport was not predicted. A hybrid approach, using both

the down-slope constraint and spatial correlation lags may provide more robust predic-



tions of sediment transport patterns in complex environments. Due to the lack of closed

boundaries in the alongshore, knowledge of Qy(x, y0) is required to obtain sensible net

sediment transport patterns. Alternatively, spatial patterns of the transport gradients

(∂Qy/∂y, ∂Qx/∂x), which ultimately determine bar migrations provide useful insight

into the system behavior without requiring Qy(x, y0).
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4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Field Site Description . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Wave and Tide Characterization . . . . . . . . . . . . . . . . . . . 73

4.4.3 Fraction of Breaking (b) . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Beach Characterization . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1 Initial Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Regression Analysis on Individual Data Sets . . . . . . . . . . . . . 85

4.5.3 Model Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.1 The Effect of 2DH Variability on ẋ . . . . . . . . . . . . . . . . . . 91
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4.12 Results for forward testing of ȧ for April - May 1996 storm. . . . . . . . . 85
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DEVELOPMENT OF 2D MODELS TO ESTIMATE BATHYMETRY

AND SEDIMENT TRANSPORT IN THE NEARSHORE

1. INTRODUCTION

1.1 The Nearshore Environment

1.1.1 Definition of the Nearshore

The nearshore region is a highly dynamic system where waves, currents, and bathymetry

interact through complex feedback mechanisms in response to changing wave climates and

sediment budgets. While few sandy beaches exhibit a featureless cross-shore structure,

most contain features, such as sand bars (e.g. Keulegan (1948); Davis and Fox (1972);

Plant et al. (1999); Wijnberg and Kroon (2002); Ruessink et al. (2003); Alexander and

Holman (2004)). Observations show the morphology can rarely be considered alongshore

uniform (e.g. Zenkovich (1967); Sonu (1973); Wright and Short (1984); Lippmann and

Holman (1990); Alexander and Holman (2004); van Enckevort et al. (2004)), such that

a full description of the bathymetry (h(x, y, t)) requires specification of cross-shore (x),

alongshore (y), and temporal (t) dependencies:

h(x, y, t) = h̄(x, y) + h̃(x, y, t), (1.1)

where h̄(x, y) and h̃(x, y, t) represent a background (long term mean) and a time-varying

profile, respectively.

Several works, including Wright and Short (1984) and Lippmann and Holman (1990),

formed detailed classification schemes to describe the morphology of sand bars. The

classification scheme is summarized in Table 1.1.1 and Fig. 1.1. The varying states

can be separated by a non-dimensional fall velocity term, Ω = Hb/TW , (e.g. Shepard
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(1950); Bascom (1954); Dean (1973); Wright and Short (1984)) where Hb is the breaking

wave height, T is wave period, and W is the fall velocity, that relates beach response

to varying wave conditions. Reflective conditions (Ω < 2) exist under very mild waves,

where sand bars, if present, are very close to shore or form low-tide terraces (e.g. Fig. 1.1

(b)). Intermediate wave conditions (2 < Ω < 5) coincide with the development of more

complex bathymetry, such as 2DH sand bars or transverse bar and rip systems (e.g. Fig.

1.1 (c-f)). Under energetic wave conditions (Ω > 5), the most common morphological

state is a longshore linear sand bar (e.g. Fig. 1.1 (g)).

Fig. 1.1: Example images of the morphological state classification scheme proposed by
Lippmann and Holman (1990). All images from Duck, NC. (a) Bar Type A;
not observed, (b) Bar Type B; August 9, 1987, (c) Bar Type C; January 10,
1988, (d) Bar Type D; October 17, 1987, (e) Bar Type E; January 25, 1987,
(f) Bar Type F; March 6, 1987, (g) Bar Type G; December 25, 1996, (h) Bar
Type H; not observed. Figure originally published in Lippmann and Holman
(1990).
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Wright and Short (1984) Lippmann and Holman (1990)

Beach State 6
DISSIPATIVE
(unbarred; flat beach face)

Bar Type H
DISSIPATIVE
(unbarred; infragravity scaled surf
zone)

Beach State 5
LONGSHORE BAR AND
TROUGH
(quasi-straight bar; may have some
longshore variability)

Bar Type G
INFRAGRAVITY SCALED 2-D
BAR
(no longshore variability; infragrav-
ity scaling)
Bar Type F
NON-RHYTHMIC, 3-D BAR
(longshore variable, non-rhythmic;
continuous trough; infragravity
scaled)

Beach State 4
RHYTHMIC BAR AND BEACH
(crescentic; normal or skewed)

Bar Type E
OFFSHORE RHYTHMIC BAR
(longshore rhythmicity; continuous
trough; infragravity scaling)

Beach State 3
TRANSVERSE BAR AND RIP
(attached; may be rhythmic; nor-
mal or skewed)

Bar Type D
ATTACHED RHYTHMIC BAR
(longshore rhythmicity, discontinu-
ous trough; infragravity scaling)
Bar Type C
NON-RHYTHMIC, ATTACHED
BAR
(no coherent longshore rhythmicity;
discontinuous trough; infragravity
scaling)

Beach State 2
RIDGE-RUNNEL/LOW TIDE
TERRACE
(may be attached)

Bar Type B
INCIDENT SCALED BAR
(little or no alongshore variability;
maybe attached; incident scaling)

Beach State 1
REFLECTIVE
(unbarred; steep beach face)

Bar Type A
REFLECTIVE
(unbarred; incident scaled surfzone)

Table 1.1: Comparison of Morphological Beach State Classification Scheme by Wright
and Short (1984) (left) and Lippmann and Holman (1990) (right).
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For the purposes of this dissertation, we will limit our definition of the nearshore

region to the sub-aqueous part; spanning from the shoreline to a depth (h) of roughly

10 m. However, this seaward boundary is dependent on the wave climate, such that

relative depths (h/L), where L is the wave length of the incident waves, is a more robust

definition of the seaward limit. We will define the seaward boundary of the nearshore at

h/L = 0.5. In relative water depths less than 0.5, waves begin to feel the presence of the

bottom and undergo transformations such as shoaling and refraction as they approach

the beach. At some point, the relative wave height (γ = H/h) exceeds a stable limit and

we observe depth-limited wave breaking. Because the waves react to changes in depth,

this also indicates that they influence the bottom in such a way that this region is also

characterized by active sediment transport.

1.1.2 Properties of Nearshore Wave Propagation

As waves enter the nearshore, they begin to feel the presence of the bottom and react to

changes in depth by shoaling and refracting. The first principle we must introduce is the

linear dispersion relationship (Dean and Dalrymple, 1991) that relates changes in wave

frequency to changes in wave length and depth. If we assume currents to be negligible,

then the linear dispersion relationship can be written as

σ2 = gk tanh kh, (1.2)

where σ = 2π/T is the radial frequency, related to the wave period (T ), g is the accel-

eration due to gravity, and k = 2π/L is the wave number. If we assume σ is constant

for a single wave, then by equation (1.2), changes in depth correspond to changes in

wave length. Since wave celerity (C = L/T ) is a function of wave length, as waves enter

shallower water, they both reduce their length and slow down based on equation (1.2).

Prior to wave breaking, energy flux (F = ECg) is conserved between two points,

(ECg)1 cos θ1 = (ECg)2 cos θ2, (1.3)
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where E = 1/8ρgH2 is the wave energy, ρ is the density of water, H is the wave height,

and Cg is the group velocity. Since a wave slows down as it enters shallower water, the

ratio Cg1/Cg2 > 1. Therefore, according to equation (1.3), wave height must increase

through the process known as linear shoaling:

H2 =

√

H2
1

Cg1

Cg2

cos θ1

cos θ2
. (1.4)

The refraction of waves is also related to wave celerity. If a wave is traveling at

some angle to depth contours there exists a celerity differentiation along the wave crest,

where the portion of the wave in deeper water is traveling faster and the wave appears

to bend towards the shallower water as it propagates. This is explained through the

irrotationality of wave number:

∇× ~k = 0, (1.5)

∂ky

∂x
− ∂kx

∂y
= 0.

where directional components of wave number are

kx = k cos θ, (1.6)

ky = k sin θ, (1.7)

and θ is the local wave angle with respect to shore normal. For a simplified case of

straight and parallel contours, ∂()/∂y = 0, therefore equation (1.5) reduces to

∂k sin θ

∂x
= 0, (1.8)

k sin θ = constant. (1.9)
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Dividing through by σ, we are left with the relationship known as Snell’s law that de-

scribes the refraction of waves between two points due to variations in depth:

sin θ2

C2
=

sin θ1

C1
. (1.10)

1.1.3 Feedback Systems

Both refraction and shoaling of waves due to changes in bathymetry cause convergences

and divergences of wave energy. As the wave shoals, the wave height increases until the

relative wave height (γ = H/h) exceeds the stable limit and the wave breaks, transferring

its momentum into the water column and driving nearshore flows. Thornton and Guza

(1982) suggest Hrms < 0.42h as the region for stable waves. Strong feedbacks exist

between the location and patterns of wave breaking and the resulting mean flows and

sediment transport (e.g. Stive and Battjes (1984); Roelvink and Stive (1989); Thornton

et al. (1996); Gallagher et al. (1998); Hoefel and Elgar (2003)). One well-known example

is the breakpoint model (e.g. King and Williams (1949); Greenwood and Davidson-Arnott

(1979); Roelvink and Stive (1989); Marino-Tapia et al. (2007)) that suggests sand bars

exist at the location of wave breaking due to convergences in flow and sediment transport.

Once a bar begins to develop, this reinforces the location of wave breaking by providing

a local reduction in water depth and a locally unstable relative wave height, γ, due to the

decreased water depth at the bar. Nearshore morphodynamics are dominated by sand

bar migration (e.g. Birkemeier (1985); Thornton et al. (1996); Gallagher et al. (1998);

Plant et al. (1999, 2001); Ruessink et al. (2003)), suggesting strong feedbacks between

existing morphology, sediment transport and wave breaking also exist.

Instability models are another example of feedback systems. Small perturbations to

an initially longshore uniform shoreline or sand bar may excite the fluid forcing at a vari-

ety of length scales. The fastest growing of these modes produces rhythmic bathymetry

through positive feedback mechanisms between morphology and the fluid forcing (e.g.

Deigaard et al. (1999); Falques et al. (1999); Coco et al. (2000); Falques et al. (2000);
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Caballeria et al. (2002); Calvete et al. (2005); Garnier et al. (2006)). The simpler, linear

models explain the initial formations of these features, while the fully nonlinear models

(e.g. Reniers et al. (2004); Dronen and Deigaard (2007)) can be run to finite amplitude,

giving a more complete description of the instability. These models describe the evolu-

tion of the nearshore morphology with time and the feedbacks that drive the fluids and

sediments.

1.2 Motivation and Goals of Work

One of the driving motivations of this work is the increasing interaction between human

populations and the nearshore system. Gaining a greater understanding of the com-

plexities between waves, currents, bathymetry, and sediment transport, will help with

navigational efforts (e.g. Mouth of the Columbia River), understanding coastal ecology

(e.g. McLachlan et al. (1993)), pollutant fate (e.g. Feddersen (2007)), and user safety

(e.g. The United States Lifesaving Association reported 32,428 rescues and 36 deaths

due to rip currents and surf for 2008). Chaos seemingly abounds around us, but can it

be explained by simple patterns or rules based on observations, such that the system is

ultimately predictable. The following quote inspired me several years ago when I started

looking at feedback systems between sand bars and the resulting sediment transport. I

thought it timely as I stared at a seemingly chaotic movie of beach morphology.

By the law of periodical repetition, everything which has happened once must
happen again, and again, and again - and not just capriciously, but at regular
periods, and each thing in its own period, not another’s, and each obeying
it’s own law ... The same nature which delights in periodical repetition in the
skies is the nature which orders the affairs of the Earth. Let us not underrate
the value of that hint. ∼ Mark Twain

The goal of this work is to gain a greater understanding of the complex world in which

we live through the use of simple models.
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1.2.1 Bathymetry Estimation from Refraction Patterns of Surface Waves

Accurate and quick estimation of bathymetry from remotely sensed images has two main

motivations: navigation of unfamiliar waters and as required input of the bottom bound-

ary condition for numerical modeling of the full wave-current system. Existing meth-

ods for determining bathymetry from remotely-sensed images of nearshore waves exploit

only information on the magnitude of wave number, k = 2π/L, ignoring spatial changes

in wave direction, θ, that can provide information about bathymetry gradients in the

nearshore. These methods also require wave period information, so are limited to peri-

ods when time series data are available. Based on the irrotationality of the wavenumber

condition (equation 1.5) and the dispersion relationship (equation 1.2), surface patterns

of refracting waves are mathematically related to the underlying 2D bathymetry. The

first goal is to develop a method for determining bathymetry gradients in the nearshore

from spatial patterns of refracting waves based on irrotationality of wave number such

that time series data is not required.

1.2.2 Feedbacks between 2DH Morphology and Cross-shore Sand Bar

Migration

Understanding the influence of 2DH circulation on cross-shore sand bar migration has

two main consequences: increased accuracy in modeling sand bar migration rates and

increasing our predictive capability for the potential threats to beach users in response

to changing wave conditions (Table 1.1.1). Observations show that 2DH morphology is

quite common (e.g. Wright and Short (1984); Lippmann and Holman (1990); Ranasinghe

et al. (2004)), especially during onshore bar migration periods. For example, Lippmann

and Holman (1990) found that the most common morphological state observed at Duck,

North Carolina was longshore-periodic bars (Fig. 1.1(e)) (68% of the data), while Ranas-

inghe et al. (2004) found that the transverse-bar-rip system (Fig. 1.1(c-d)) was the most

common state (55% of the data) at Palm Beach, Australia. Both of these beach states

are associated with rip-current systems and can pose threats to swimmers.
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Continuous, long term predictions of nearshore morphology are currently unavailable.

The majority of sand bar migration models assume that 2DH circulation is a negligible

contributor such that a 1DH approach is sufficient. However, these models have limited

accuracy in predicting both onshore and offshore transport under a variety of wave con-

ditions (e.g. Gallagher et al. (1998); Henderson et al. (2004); van Maanen et al. (2008)).

Recently, Plant et al. (2006) proposed that the presence of 2DH morphology (and thus

2DH currents) could be dynamically linked to sand bar migration. This linear model

had limited skill when tested on a variety of wave conditions, such that a nonlinear ver-

sion is required to predict the cross-shore migration - morphology feedbacks in complex

systems. The second goal is to develop a nonlinear dynamic model that includes 2DH

processes in order to increase our understanding of the driving forces of cross-shore sand

bar migration and the feedbacks between existing morphology and sediment transport.

This will ultimately lead to models that are capable of predicting long-term sand bar

evolution patterns based on external forcing.

1.2.3 Feedbacks between 2DH Morphology and 2D Sediment Transport

Patterns

This work was motivated by the effect of 2DH morphology on cross-shore sand bar mi-

gration and by previous 1DH work by Plant et al. (2001). Using a parametric form, Plant

et al. (2001) modeled the beach profile using a sum of Gaussian curves and mean slope.

Requiring conservation of mass, they showed that the resulting sediment transport pat-

terns due to sand bar migration were similar in form to the existing bedform profile. Sed-

iment transport patterns associated with migrations of the alongshore-averaged bar were

separated into two components: one describing the migration of a constant Gaussian-

shaped bed form whose amplitude was fixed and the other describing the transport associ-

ated with the growth or decay of the Gaussian bed form. These strong feedbacks between

the bar profile and sediment transport patterns in 1DH likely exist when we consider 2D

sediment transport as well. Both Lippmann and Holman (1990) and Ranasinghe et al.
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(2004) found that down-state transitions (i.e. progression from energetic wave conditions

(e.g. Fig. 1.1(d)) to more mild conditions (e.g. Fig. 1.1(c)) were based on the previous

morphological state, suggesting a positive feedback system in which 2DH processes influ-

ence the time-varying response of sand bars to changing wave conditions. The third goal

is to gain a greater understanding of 2DH sediment transport patterns through the use of

bathymetry inversions. In 1D, cross-shore integration of the changes in bathymetry led

to sediment transport patterns that resembled the underlying bathymetry. We assume

the same can be said for 2D systems, but understanding how to uniquely constrain the

2D problem is unknown.

1.3 Approach

The variability of any system is daunting when you search for patterns, but ultimately,

patterns do exist in their own specific form. First, we identify certain rules or patterns

that can help describe the nearshore using simple models. Second, we expand our think-

ing to include 2DH processes, such as directional wave information and bar variability.

Much of the work presented here has been based on similar 1DH approaches, and the

expansion into 2DH is not trivial. The inclusion of 2DH morphology affects how waves

propagate towards shore, their spatial breaking patterns, the resulting fluid forcing and

currents, and ultimately sediment transport.

This dissertation is separated into 4 research projects encompassing nearshore sys-

tems. Chapter 2 introduces a refraction-based method for determining bathymetry gra-

dients in the nearshore. Chapter 3 and 4 look at the use of parametric dynamical models

to study feedbacks between 2DH morphology and sand bar migration. Chapter 3 details

the linear model initially used, while Chapter 4 details the development of a new nonlin-

ear model. Chapter 5 discusses preliminary work on 2DH sediment transport patterns

in relation to existing bathymetry. Chapter 6 summarizes the general conclusions of the

research presented.
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2. BATHYMETRY ESTIMATION FROM SINGLE FRAME IMAGES

OF NEARSHORE WAVES

2.1 Abstract

Existing methods for determining bathymetry from remotely-sensed images of nearshore

waves exploit only information on the magnitude of wavenumber, k = 2π/L, ignoring

spatial changes in wave direction, θ, that can provide information about bathymetry

gradients. These methods also require wave period information, so they can only be used

when time series imagery is available. We present an algorithm where changes in direction

of refracting waves are used to determine underlying bathymetry gradients based on the

irrotationality of wavenumber condition. Depth dependencies are explicitly introduced

through the linear dispersion relationship. The final form of the model is independent of

wave period so that all necessary input measurements can be derived from a single aerial

snapshot taken from a plane, UAV, or satellite.

Three different methods were tested for extracting wavenumber and angle from im-

ages, two based on spatial gradients of wave phase and one based on integrated travel

times between sample locations (a tomographic approach). Synthetic testing using

monochromatic and bi-chromatic waves, with and without noise, showed that while all

three methods work well under ideal wave conditions, gradient methods were overly sensi-

tive to data imperfections. The tomographic approach yielded robust wave measurements

and provided confidence limits to objectively identify unusable areas. Further tests of

this method using monochromatic waves on three synthetic bathymetries of increasing

complexity showed a mean bathymetry bias of 0.01 m and a mean root mean square

(rms) error of 0.17 m. While not always applicable, the model provides an alternative

form of bathymetry estimation when celerity information is not available.
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2.2 Introduction

The nearshore region is a highly dynamic system where waves, currents, and bathymetry

interact through complex feedback mechanisms. For most practical applications, these

physical processes must be represented by numerical models that yield predictions of

nearshore hydrodynamics when provided with input wave forcing conditions and bathymetry.

Typically, wave forcing can be estimated using a number of approaches, but bathymetry,

the bottom boundary condition for the models, is more difficult to obtain and changes

rapidly in response to waves and storms. Thus, predictive capability is often limited by

poor knowledge of bathymetry rather than of physics.

The most accurate nearshore bathymetries are collected using traditional survey tech-

niques in which land and water based vehicles drive along a suite of survey lines while

their position is measured either using optical methods or, more recently, high resolu-

tion kinematic global positioning system (GPS) equipment (e.g. Birkemeier and Mason

(1984); MacMahan (2001)). Although these methods provide an accurate (error O(cm))

and dense data set (O(cm-m) resolution in the cross-shore and O(25 m) in the along-

shore), they are typically very costly and time consuming and are usually restricted to

fair weather conditions. They are obviously impractical for denied-access beaches of

potential military interest (e.g. Williams (1946); Seiwell (1947)).

Alternatively, remote sensing techniques can cover large areas and time spans at a

much-reduced cost over traditional beach surveys. Light Detection And Ranging (Li-

DAR) is an active laser-based pulsed sensor that derives depth estimates from time-of-

flight data of the optical bottom echo (e.g. Hickman and Hogg (1969); Guenther (1985);

Irish and Lillycrop (1999)). Current Airborne LiDAR Bathymetry (ALB) techniques

can provide accurate and dense datasets with penetration depths reaching 2-3 times the

Secchi Disk depth. New techniques using the red-channel waveforms produce accurate

bathymetry measurements in the extreme nearshore (< 2 m) Pe’eri and Philpot (2007).

However, ALB still has only limited use in many areas, particularly in mid-latitudes, due

to turbidity or surf zone bubbles, and the majority of LiDAR data for the US Coastline
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have been limited to the sub-aerial beach on sandy coastlines. In all cases, the use of

ALB requires short standoff ranges and is still not sufficiently covert for most military

applications.

Hyper-spectral imaging techniques exploit the wavelength dependence of optical at-

tenuation in water to infer water depth from the color content of light reflected from the

bottom (e.g. Sandidge and Holyer (1998); Adler-Golden et al. (2005)). This method is

also limited by water clarity (seeing the bottom) and by variability in the optical prop-

erties of both the water column and the reflecting bottom material (e.g. Adler-Golden

et al. (2005)).

Because optical penetration to the bottom is often so limiting, a series of methods have

been developed that exploit observable characteristics of the sea surface to derive depth

data. Plant and Holman (1997) developed a shoreline finding algorithm based on the wave

dissipation maximum at the shorebreak measured from time-exposure images of wave

breaking patterns. With knowledge of the tide level and local wave conditions the inter-

tidal beach is mapped by defining shoreline contours as the tide level changes, creating

a three-dimensional map of the intertidal area. Within the surf zone, Aarninkhof and

Ruessink (2004) found a direct relationship between modeled wave dissipation patterns

and pixel intensity patterns seen in time-exposure optical images. Using this proxy,

model - data assimilation techniques are used to update the model bathymetry until

modeled dissipation and observed dissipation proxies match within a specified range of

acceptance.

Of direct relevance to this manuscript are a series of papers that exploit the relation-

ship between wave frequency, σ, wavelength, L = 2π/k, where k is the magnitude of the

wavenumber, and depth, h, represented by the linear dispersion relationship:

σ =
√

gk tanh kh + ~k · U, (2.1)

where g is the acceleration due to gravity, ~k are the vector components of the wavenum-

ber, and U is the local current vector (which we will assume to be negligible outside the
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surf zone). Wave propagation is visible in many sensors (visible, infrared, radar) so that

time-space remote sensing observations can be used to measure frequency and wavenum-

ber content for a small patch of the nearshore ocean. Depth is then estimated using

equation (2.1) and a spatial map of bathymetry is built up (e.g.Williams (1946); Bell

(1999); Stockdon and Holman (2000); Dugan et al. (2001); Piotrowski and Dugan (2002);

Misra et al. (2003); Senet et al. (2008)). Linear dispersion-based methods of bathymetry

estimation are moderately accurate, with rms errors O(10−1 - 100 m) (e.g. Stockdon and

Holman (2000); Senet et al. (2008); Flampouris et al. (2008)) and work best outside the

surf zone where linear wave theory is valid (e.g. Stockdon and Holman (2000); Holland

(2001); Senet et al. (2008); Flampouris et al. (2008)).

While celerity- or linear dispersion-based remote sensing methods can provide bathy-

metric measurements of reasonable accuracy, they suffer from two problems. First, they

require time series data of sea-surface elevations or a proxy thereof. While snapshot data

are commonly available (e.g. publicly available Google Earth Images), time series in a

format amenable to analysis are much more rare. Second, the linear dispersion relation-

ship (2.1) exploits only the magnitude of wavenumber, not the directional variations of

the vector wavenumber. Under certain conditions, wave curvature can be a very strong

visual signal that can, in principle, be exploited (e.g. Williams (1946); Munk and Traylor

(1947); Seiwell (1947)) . So instead of relying on the changes in just the magnitude of the

wavenumber (k = |~k|), to invert for depth, in this paper we wish to test the hypothesis

that gradients in directional wave information kx, ky can be used to determine gradients

in local bathymetry in the absence of significant current shear, where x and y are the

cross-shore and alongshore axes. kx and ky are defined as:

kx = k cos θ, (2.2)

ky = k sin θ,

and θ is the local wave angle measured with respect to the cross-shore axis. Of special
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interest, we investigate whether refractive turning can yield bathymetry estimates based

simply on a single snapshot without requiring time series imagery.

The remainder of the paper is organized as follows. Section 2 outlines the theory and

numerical implementation of the algorithm, including tests based on idealized wavenum-

ber and wave direction data. Model sensitivity to noisy data is also discussed. Section 3

describes and tests three candidate methods for estimating wavenumber and wave direc-

tion data from synthetic images and further discusses algorithm sensitivity to errors in

these estimates. Section 4 discusses the wave period dependence of the model. Section

5 points out some of the complications of using real world imagery. Finally, there are

discussion and conclusion sections.

2.3 Estimating Depth Gradients from Directional Wave Information

2.3.1 Model Formulation

The algorithm is based on the wave refraction equation (2.3) (Dean and Dalrymple, 1991)

that relates gradients in wavenumber k and wave curvature to depth:

∇× ~k = 0, (2.3)

∂ky

∂x
− ∂kx

∂y
= 0.

Expanding (2.3) using (2.2) yields:

k cos θ
∂θ

∂x
+ k sin θ

∂θ

∂y
= cos θ

∂k

∂y
− sin θ

∂k

∂x
. (2.4)

Depth dependence is only implicitly part of this relationship and can be made explicit

by using the chain rule to substitute for spatial gradients of wavenumber:
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∂k

∂x
=

∂k

∂h

∂h

∂x
, (2.5)

∂k

∂y
=

∂k

∂h

∂h

∂y
,

so that the depth-dependent refraction equation becomes:

k cos θ
∂θ

∂x
+ k sin θ

∂θ

∂y
= cos θ

∂k

∂h

∂h

∂y
− sin θ

∂k

∂h

∂h

∂x
. (2.6)

Equation (2.6) is rearranged so that the unknown bathymetry gradients (∂h/∂x and

∂h/∂y) are a function of wave curvature (the curl of the directional component of

wavenumber) and wavenumber:

∂h

∂x
sin θ − ∂h

∂y
cos θ = −κ

(

∂sin θ

∂x
− ∂cos θ

∂y

)

, (2.7)

where

κ =
k

∂k/∂h
. (2.8)

With the exception of κ, all terms in (2.7) are directly observable from a single

image. However, the term ∂k/∂h would seem to depend on wave period T so requires

temporal sampling or alternate estimation means. In the following, the performance of

the algorithm will be examined based on the assumption that wave period information

is available. However, in section 2.5, it will be demonstrated that a universal form for

κ can be found that is independent of wave period. Thus, bathymetry can be estimated

from snapshot images, albeit by solving a much more complex form of the equation.

Equation (2.7) was originally implemented in finite difference form as a tri-diagonal

matrix and inverted to estimate depth on a row-by-row basis since there were still two

unknowns. Knowing the wave period, κ was approximated numerically using a first-order

finite difference implementation of the linear dispersion relationship (2.1) based on the
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variations in depth h for small deviations (+/- ǫ) of k. Several limitations were found

with using (2.7). The first was that an initial depth was required at some offshore location

in order to use the finite difference technique. As well, under locally normal (θ = 0) wave

incidence, the inversion was poorly conditioned and solutions were unstable. The first of

these problems was inherent to the differential equation. To remedy the second problem,

the model was rearranged, using (2.5) to replace ∂h/∂y with:

∂h

∂y
=

(

∂k/∂y

∂k/∂x

)

∂h

∂x
. (2.9)

Solving for cross-shore gradients in depth independently as a function of local gradients

in directional wave information:

βx =
∂h

∂x
=

κ(∂cosθ
∂y − ∂sinθ

∂x )

sinθ − cosθ ∂k
∂y/∂k

∂x

. (2.10)

This form of the model is numerically more stable for low wave angles provided the

denominator is nonzero. Another advantage of (2.10) is that the solutions at different

alongshore locations are independent of each other and the calculated cross-shore gra-

dients can be filtered using a 3σ median filter to remove anomalies, discussed further

below. Depths are then estimated by integrating (2.10) in the cross-shore from a loca-

tion of known depth, such as the shoreline. We chose to integrate depths from an interior

point to minimize errors associated with end points. Since integration proceeds away

from an initial value, any error early in the integral is carried throughout the domain

and total errors will be large. Thus, different choices of initial values (offshore or onshore)

could yield completely different error estimates. Nevertheless, comparisons are included

since bathymetry is the ultimate desired product and since error maps provide insight

into the nature of the errors. The remainder of the paper will focus on the performance

of the algorithm based on (2.10).
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2.3.2 Algorithm Performance for Idealized Data

We first tested the accuracy of the model using idealized directional wave information.

Tests were carried out on three synthetic bathymetries: a planar beach; a planar beach

with a superimposed Gaussian shoal to add 2D variable bathymetry; and a pocket beach

with headlands at either end, (See Figs. 2.7 and 2.8 for reference). Beach parameters

are summarized in Table 2.1.

Table 2.1: Summary of synthetic beach parameters used in testing the refraction-based
bathymetry estimation model.

Case Grid size dx, dy βx Period) θ0

[nx,ny] (m) (s) degrees

Planar 250 x 250 2 1:100 8 30

Shoal 250 x 250 2 1:100 8 30

Pocket 250 x 500 2 1:100 8 0

Wavenumbers for each domain were determined from the linear dispersion relation-

ship (2.1) based on known bathymetry. Wave angle was solved for using (2.4) by stepping

shoreward from the known offshore wave angle, θ0, using the spatial changes in wavenum-

ber to determine changes in wave angle. The resulting data were then used in (2.10) and

the process inverted to solve for bathymetry gradients, βx, and, by integration, the esti-

mated bathymetry, h. Model performance is summarized in Table 2.2. Since the solution

was just the inverse of the equations used to generate the idealized data, it was not sur-

prising that the model performed exceptionally well for all cases tested. rms errors in

βx were < 1% of the true gradients and rms errors in bathymetry were typically a few

millimeters.

Table 2.2: rms error of βx and h for idealized data.
Beach

Planar Shoal Pocket

βx 8.8 × 10−6 8.8 × 10−6 9.6 × 10−5

h(m) 2.9 × 10−3 1.4 × 10−3 3.7 × 10−3
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2.3.3 Algorithm Performance for Noisy Data

We performed two different tests using the planar beach case in which Gaussian white

noise was added to k and θ in order to test the model’s sensitivity to data errors. To

start, true k and true θ were calculated as described in Section 2.3.2. In test 1, we tested

the model’s sensitivity to errors in θ or wave curvature with ideal wavenumber data by

applying Gaussian white noise of 1% of the median θ value to the true θ. True k values

were used with the noisy θ estimates to solve for βx. In test 2, we tested the model

sensitivity to errors in k, thus testing that if our estimates in wavenumber were off but

curvature could be measured more robustly, could the model still converge to the correct

solution. This was done by applying Gaussian white noise of 1% of the median k value to

true k and using the noisy k values with true θ values in (2.10) to solve for βx. Algorithm

performance is summarized in Table 2.3.

Table 2.3: rms error of k, θ, βx, and h for noise sensitivity tests.
Test # k(m−1) θ (◦) βx h (m)

1 N/A 0.2 0.02 0.15

2 0.002 N/A 0.03 2.0

Examination of the sensitivity results leads to several conclusions. First, results in

Table 2.3 show a high sensitivity to even this low level of noise. The primary reason

for this is that noise introduced in the data (k, θ) affect the algorithm through their

spatial gradients (∂k/∂x, etc), so that for the 2 m grid spacing of the tests, even the

small rms noise levels used produced gradients that were of order 200% (k) and 150%

(θ) the true gradient signals. Second, the model sensitivity to gradients implies that the

method eventually selected for estimating these input variables from images will need

to be spatially smooth, either through an explicit smoothing or implicitly due to the

method. Third, even extreme noise in the beach slope estimates (rms error in βx > true

βx) yielded substantially smaller errors in bathymetry since the slope gradient errors

were Gaussian and were partially averaged out by integration.
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2.4 Bathymetry Estimation From Synthetic Images

Results in the previous section were based on idealized k, θ information that were given

a priori. Typically these variables will have to be estimated from images of shoaling and

refracting waves. In this section we describe and test three candidate methods using

synthetic idealized data.

2.4.1 Methods for Extracting Directional Wave Information from Images

In general, a wave field, η(x, y), can be represented in terms of spatially-variable ampli-

tude and phase functions, A(x, y) and φ(x, y), respectively as:

η(x, y) = ℜ(A(x, y)eiφ(x,y)) (2.11)

where the enclosed function is called the analytical signal and ℜ() represents the real-

valued component thereof. The phase function φ(x, y) is related to the components of

wavenumber, (kx, ky) by:

φ(x, y) =

∫ x

0
kxdx +

∫ y

0
kydy. (2.12)

If the spatial map of phase is given or can be found from image data, this relationship

can be inverted to find kx and ky as the x and y spatial derivatives of phase.

Sea surface elevations (Fig. 2.1), or proxies such as changes in image intensity caused

by sloping wave surfaces are real valued, and the phase function cannot be directly

extracted from the signal. Instead, phase function estimates are found by taking the

Hilbert transforms in the cross-shore direction of the observed data to get the analytic

signal, η̂, (Bendat and Piersol , 1986; Havlicek et al., 1997). To reduce spectral leakage,

the input data is windowed using a 20% cosine taper with the tapered points removed

from later analysis. The phase function φ(x, y) is then determined by:

φ(x, y) = tan−1

(ℑ(η̂(x, y))

ℜ(η̂(x, y))

)

, (2.13)
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Fig. 2.1: Example shoaling wave field for a planar bathymetry. Cross-shore distance
is along the vertical axis and the shoreline is at the bottom. Wave period
and offshore wave angle were 8 seconds and 30 degrees, respectively. Surface
elevation measured in meters.

where ℑ() and ℜ() indicate the imaginary and real components, respectively, and the

phase function φ(x, y) is measured in radians. The resulting two-dimensional phase map

has values between −π and π (Fig. 2.2(left)), with discontinuities each time phase jumps

from +π to −π. By unwrapping the phase function in both directions, a global phase

map φG(x, y) (Fig. 2.2(right)) is produced in which simple gradient methods can be

directly applied to estimate the two wavenumber components.
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Fig. 2.2: 2D spatial maps of phase estimates for monochromatic waves. (left) Phase
estimate (radians) of the input wave field (Fig. 2.1). (right) Unwrapped
phase (radians) starting at the top left corner of the image and integrating in
both directions.
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Gradient methods for determining directional wave information

Two different methods for determining wavenumber through phase gradients are tested.

Eventually both are abandoned in favor of a method that implicitly smoothes estimates

across the domain. Discussion is nevertheless included, both for completeness and to

illustrate the importance of smooth input data. In the first method, wavenumber com-

ponents are computed by taking the spatial gradients of the globally unwrapped phase

φG(x, y) (Fig. 2.2(right)) through finite differencing:

[kx, ky ] = ∇φG(x, y). (2.14)

For the case of a monochromatic wave field (Fig. 2.1), gradients of the globally - un-

wrapped phase provide accurate directional wavenumber information (Table 2.4).

For more complicated seas, however, the performance of the global gradient method

degrades substantially. Fig. 2.3 illustrates the group structure of waves due to a bi-

chromatic wave field. The wrapped phase (Fig. 2.4(left)) includes anomalies at the nodal

points that cause two problems. First, attempts to unwrap the phase in two dimensions

(Fig. 2.4(right)) are non-unique and include jumps in phase that cause anomalies in esti-

mated wavenumber. Second, since waves on either side of nodal points are in anti-phase,

the wavelength of the waves that are split across the group nodes are correspondingly

split and appear as short waves (Fig. 2.4(left)).

The former problem can be solved by removing the requirement for phase unwrapping.

Therefore, the second method we test is a local gradient method that computes gradients

in the complex domain space of the analytic signal (Havlicek et al., 1996, 1998):

[kx, ky] = ∇φ(x, y) = ℜ
[∇η̂(x, y)

iη̂(x, y)

]

. (2.15)

This method produces accurate estimates of k for most of the image. In areas of wave

group nodes, wavenumber components are higher than expected due to the extra phase

shift of π. Wavenumbers that lie outside 3σ from the mean k are replaced with the local
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Fig. 2.3: Example of a narrow-banded wave field, with two waves, T1 = 8 seconds, T2 =
10 seconds. Offshore wave angle is 30 degrees for both cases. Surface elevation
measured in meters.
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Fig. 2.4: 2D phase maps of narrow-banded wave field. (left) Phase estimate (radians)
of the finite-bandwidth wave field. (right) 2D unwrapped phase (radians)
starting from the top left of the image. Jumps in phase that are less than 2π
are not unwrapped and cause the streaks in the unwrapped phase image.

mean wavenumber. Estimating k from local gradients is an improvement over the global

phase unwrapping technique when applied to finite-bandwidth waves because it isolates

the areas (wave group nodes) where wavenumber estimates are not consistent with the

expected values.

From the wavenumber estimates, wave angle is calculated from the arctangent of the

directional wave components:

θ = tan−1

(

ky

kx

)

. (2.16)
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Nonlinear Inversion Technique

A third technique for estimating k, θ from images uses a nonlinear inversion method

Plant et al. (2008), hereafter referred to as PHH08. The method, essentially a tomo-

graphic approach based on wave propagation time delays across many spatial lags, uses a

nonlinear search to find the single values of wavenumber and direction that best explain

the complex analytical signal, found by Hilbert transform of the imagery, over each of

a suite of sub-regions of the domain. Because time delays for all possible pixel pairs

(close and widely-spaced) in each sub-region are incorporated in the estimate, extreme

contamination by short gradient noise is avoided. The shortest resolvable features that

can be estimated from variations in k are equal to about 10 times the local water depth

(Plant et al., 2008), so the spatial resolution of the model domain is such that it will not

attempt to estimate variations in k and θ shorter than these scales. For the cases tested,

estimates for wavenumber and wave angle are done on a coarse tomographic domain with

spatial resolution of 30 m, utilizing input data ± 60 m in the cross-shore and ± 100 m

in the alongshore direction to estimate k and θ. The data are then interpolated onto a

finer grid with spatial resolution of 2 m. This both speeds up the inversion technique and

removes high-frequency noise that may be in the initial data signal. The coarse domain,

however, is not well suited to the extreme nearshore where rapid variations in wavenum-

ber and angle may occur that are unresolved by the spatial scale of the tile. Note also

that since the resulting data will be used in gradient calculations, linear interpolation will

yield step-wise changes in gradients, hence patchy bathymetry gradients, so higher-order

interpolations must be used. The reader is referred to Plant et al. (2008) for a detailed

description of the method.

2.4.2 Synthetic Test Results

Comparison of Data-Extraction Techniques

The three methods of data extraction were tested using synthetic waves approaching the

planar beach. Three tests were carried out: a monochromatic case (M) of 8 second waves
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approaching with a 30 degree offshore angle of incidence (Figs. 2.1, 2.2), a noiseless bi-

chromatic sea (B) with 8 and 10 second waves approaching from 30 degrees, (Figs. 2.3,

2.4), and a noisy case (N) of the same waves with superimposed Gaussian white noise

with standard deviation equal to 10 % of the maximum wave height (Figs. 2.5, 2.6). For

each case, maps of k, θ, βx, and h were computed by each of the three data extraction

methods and compared to known values through both mean and rms statistics. Results

are summarized in Table 2.4.

Table 2.4: Mean (rms) error of k, θ, βx, and h estimation for monochromatic (M),
noise sensitivity (N), and bi-chromatic (B) wave conditions, using the three
data extraction techniques. While wavenumber varies across the domain, a
representative magnitude for comparison is 0.1 - 0.4 m−1. True βx is 0.01.

Case k (m−1) θ(◦) βx h (m)

∇φG(x, y) 5.1 × 10−4 -0.03 5.6 × 10−6 0.03
(1.3 × 10−3) (0.2) (3.5 × 10−3) (0.06)

M ∇φ(x, y) -3.8 × 10−3 0.3 8.7 × 10−5 0.03
(5.9 × 10−3) (0.3) (4.4 × 10−3) (0.06)

PHH08 4.3 × 10−4 -0.1 6.0 × 10−4 -0.02
(5.0 × 10−3) (0.2) (1.7 × 10−3) (0.10)

∇φG(x, y) 3.9 × 10−3 -0.3 3.5 × 10−3 1.33
( 3.4 × 10−2) (12.2) (1.64) (26.02)

N ∇φ(x, y) -2.2 × 10−4 -0.3 6.2 × 10−4 -0.66
(2.3 × 10−2) (11.8) (2.33) (41.23)

PHH08 2.8 × 10−4 -0.1 5.5 ×10−4 -0.01
(5.4 × 10−3) (0.2) (1.3 × 10−3) (0.06)

∇φG(x, y) 4.1 × 10−1 6.9 4.1 × 10−3 -0.30
(4.3 × 10−1) (40) (0.44) (4.37)

B ∇φ(x, y) -4.8 × 10−4 0.3 2.1 × 10−3 -0.03
(1.3 × 10−2) (0.7) (0.01) (0.48)

PHH08 2.5 × 10−3 -0.1 6.0 × 10−4 -0.09
(4.6 × 10−3) (0.2) (0.01) (0.49)

All methods performed very well for the monochromatic wave field. The Hilbert

transform introduced slight ringing into the analytic signal that carried through into the

phase estimates. The gradient methods for determining k, θ emphasized this ringing,

with rms errors in k on the order of a few percent. βx oscillated around the true mean,

causing larger rms errors in βx for the gradient methods, but reasonable estimates for

integrated bathymetry, h (Fig. 2.7 (left)). However, performance of the gradient methods
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Fig. 2.5: Example of a monochromatic wave field with 10% noise superimposed. T =
8 seconds. Offshore wave angle is 30 degrees. Surface elevation measured in
meters.
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Fig. 2.6: 2D phase estimates for noisy wave field. (left) Phase estimate (radians) of the
noisy wave field. (right) 2D unwrapped phase (radians) starting from the top
left of the image.

declined rapidly with data imperfections. Phase jumps in the bi-chromatic case yielded

unacceptable results of k, θ for the global phase unwrapping method, although they were

better handled by the local gradient method. rms errors in h were at least an order of

magnitude greater in the bi-chromatic case using the gradient methods. As expected,

the addition of white noise to the data led to performance statistics for the gradient

methods that were completely unusable. Early attempts at spatial filtering improved

results somewhat, but a general robust methodology was never found. Thus, gradient

methods are not recommended for the purpose of wave characteristic estimation.
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The PHH08 approach performed well for all three tests. Since this method uses a

constant depth assumption over each analysis sub-array, slight biases in k, θ on the order

of 1% were expected for the bathymetry and model domain used. For the monochromatic

case, the PHH08 approach had error results similar to the gradient methods, with rms

errors in k of a few percent. rms error in βx was on the order of 1% and rms errors

in integrated bathymetry of 10 cm (Fig. 2.7(right)). The small amount of ringing as-

sociated with computing the Hilbert transform that led to oscillations in βx estimates

using gradient methods was smoothed over with the PHH08 approach. Errors using this

method were concentrated near the shoreline, where rapid changes in k were likely not

well resolved on the coarse tomographic domain, and at the lateral boundaries, where a

reduced number of points used in the estimation led to less accurate results. The latter

issue can be resolved by over-lapping images in the alongshore and/or removing the edge

points.

In contrast to gradient methods, the performance of the PHH08 method was ro-

bust to noise, as expected, with rms statistics for all parameters similar to those of the

monochromatic case. For the bi-chromatic case, the method was still troubled at the

wave node locations, but since this approach provided a skill estimate, values with skill

< 0.5 were objectively identified, removed and interpolated over for a more accurate so-

lution. No such skill estimate was available for the gradient methods. rms errors in βx for

the bi-chromatic case were on the order of the true beach slope, producing larger errors

in integrated bathymetry (rms error in h ∼ 0.5 m). As a whole, the PHH08 method

produced the most consistent results, with skill estimates to objectively identify areas of

concern. Thus, the PHH08 method is preferred for k, θ extraction and will be used for

the remainder of the paper and for recommended future work.

Complex Bathymetry Results

The PHH08 method was utilized to extract k, θ data for monochromatic wave conditions

on more complex bathymetry. The results are summarized in Table 2.5. For the planar
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Fig. 2.7: Comparison of bathymetry estimated from global phase and non-linear least
squares extraction of data. True bathymetry (solid) and estimated bathymetry
(dash) measured in m. (left) k, θ extracted from image using global phase
unwrap methods. Mean error in estimated bathymetry was 3 cm. (right) k,
θ extracted from image using PHH08 techniques. Mean error in estimated
bathymetry was -2 cm.

beach with a Gaussian shoal, bathymetry gradients over the shoal were well-predicted

(Fig. 2.8(a)) with mean (rms) errors in bathymetry of order 1 cm (10 cm). For the

pocket beach, normal wave incidence, combined with ∂k/∂y = 0 produced an unstable

solution for βx at some locations in the cross-shore around y = 500 m. Since this is

a known limitation of the refraction model, a standard deviation filter was applied to

remove anomalies and smooth over these areas. Integrated bathymetry had slight offsets

at the center of the image and close to shore where changes in wavenumber and angle

were not well resolved due to the tiling method of the PHH08 model (Fig. 2.8(b)). Even

with these known limitations, mean (rms) errors in bathymetry were of order 1 cm (30

cm). Overall, the results were very encouraging that the proposed model could predict

complex bathymetry based on refraction signatures.

Table 2.5: Mean (rms) error for the PHH08 method over complex bathymetry.
Case k (m−1) θ (◦) βx h (m)

Shoal 3.6 × 10−4 -0.13 6.55 × 10−4 -0.01
(5.3 × 10−3) (0.43) (2.0 × 10−3) (0.13)

Pocket 3.2 × 10−4 -0.01 6.5 × 10−4 -0.01
(8.9 × 10−3) (0.06) (8.6 × 10−3) (0.28)
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Fig. 2.8: Bathymetry estimates for complex bathymetry using PHH08 method. True
bathymetry (solid) and estimated bathymetry (dash) using (2.10). (left)
Beach with shoal: mean error in bathymetry was -0.01 m. (right) Pocket
beach: mean error in estimated bathymetry of -0.01 m.

2.5 Wave Period Dependence

The above analysis was based on the use of equation (2.10). All terms in this equation

are directly observable from a single image with the exception of κ. Wave period cannot

be estimated from a snapshot unless it spans into deep water, where T =
√

2πLo/g. It

would appear that motion imagery (a sequence of images) is required and that single

snapshots are not helpful. In fact, κ is independent of wave period. For example, in the

shallow water limit (kh < π/10), κ simplifies to eliminate the wave period dependence

as follows:

k =
σ√
gh

,

∂k

∂h
= − σ√

gh

1

2h
, (2.17)

κ =
k

∂k/∂h
= −2h.

Fig. 2.9 shows the deviation from κ = −2h as a function of non-dimensional depth (kh).

At the small kh values associated with shallow water, the value of −κ/2h is just 1.0, as

expected above. But even for larger values of kh the curve is independent of wave period
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so the algorithm can be applied to a single snapshot.

The form of the curve in Fig. 2.9 can be well approximated by a polynomial, such

that:

κ = −2h
[

0.55(kh)3 − 0.61(kh)2 + 0.55(kh) + 0.91
]

. (2.18)

Substituting (2.18) in (2.10) yields a somewhat complicated form that must be solved

numerically, but is based solely on wavenumber and wave angle estimates that can be

extracted from a single snapshot.
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Fig. 2.9: Expected error associated with the assumption of shallow water κ = −2h vs.
non-dimensional depth (kh).

2.6 Application to Field Data

This research was motivated by the need for remote sensing methods to measure bathymetry,

and the common availability of remotely-sensed snapshots in which strong wave refrac-

tion signals must be related to underlying bathymetry gradients. While our eyes are

good at picking out the desired pattern, a variety of problems complicate the computer

automation of this process.

Optically, images contain contamination at many scales. At low wavenumber, lighting

varies both in the skydome and due to the general variation of water surface reflectivity

with vertical viewing angle. There are also complications in the region between non-

breaking and breaking waves where the optical signature of a wave crest shifts from

being dark (non-breaking) to light (breaking). Since the optical signature of a wave

depends on its local wave steepness (Walker , 1994), short but steep features, such as
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wind chop, are exaggerated compared to the slowly varying swell.

Filtering techniques, such as weighted standard deviation and band-pass filters, can be

used to isolate and enhance the swell band to a reasonable degree (Splinter and Holman,

2006). Better yet, the PHH08 method does a good job estimating a dominant k, θ over

a user-selected analysis window, averaging out both short and long-scale contamination

and smoothing through anomalies. The PHH08 model also returns skill estimates for

each k, θ estimate, so questionable results are easily identified and possibly eliminated.

But it should be recognized that the refraction-based algorithm proposed in this paper

is useful only in cases of narrow-banded swell with strong refraction patterns.

2.7 Discussion

The motivations for this work were to develop a bathymetry estimation technique that

could be based on single-image snapshots rather than time series imagery and that also

exploited both the magnitude and varying directions of wavenumber. Thus, it was re-

warding to see that the equations could be formulated without reference to wave period.

However, the method does not work under all conditions. For example, the solution blows

up under the joint circumstances of normal incidence, relative to bathymetry contours,

and no longshore gradients in wavenumber, when the denominator of equation (2.10)

approaches zero. In this case there is simply no refractive signal to exploit.

The method is also based on an underlying assumption of a monochromatic or very

narrow-banded wave field that can be represented adequately by a single wavenumber

and direction. For time series imagery data, more complicated seas could be handled

spectrally by isolating individual coherent components of the wave field both by frequency

and direction. However, for single snapshots such a partitioning is not possible and the

method will yield noisy results. Fortunately, the PHH08 method flags the quality of

results through a skill statistic that can be used to objectively identify where bathymetry

estimates can and cannot be trusted.

The primary products of the refraction method are estimates of bathymetry gradi-
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ents, in contrast to linear dispersion-based methods that directly estimate depth. Con-

sequently, depth estimates must be found by integration from some known value, for

example the shoreline. In some parts of the region of interest, bathymetry gradient es-

timates may be poor, perhaps due to locally low wave contrast or the above-mentioned

problem of normal incidence with no alongshore gradients. Cross-shore integration can-

not continue through regions such as this that are flagged as bad, so knowledge of the

full profile can be limited. However, these regions are usually spatially patchy and can

be bypassed using surrounding information. The details of such an algorithm are beyond

the scope of this paper.

The effect of currents on the dispersion relation has been neglected in the current

model. The implications of this simplification are discussed here. Uniform currents that

are perpendicular to the direction of wave propagation have no effect on the frequency and

wave number estimates determined from equation (2.1). Alternatively, currents which are

parallel or at an angle to the direction of wave propagation will affect the estimated wave

phase speed, c, and frequency, σ, as seen by a stationary observer, but have no effect on

the estimated wavenumber provided the current can be considered uniform over the area

in question (Svendsen, 2006). Thus, it is the spatial variation (shear) in the current that

can contaminate the bathymetric refraction patterns of incident waves. The magnitude

of this error can be found by considering the simplified case of a wave propagating in the

x-direction against an opposing current in shallow water. The equation governing wave

angle (Dean and Dalrymple (1991), p.106) can be written as:

∂θ

∂x
=

−1

ca

∂ca

∂y
, (2.19)

where:

ca =
√

gh − U. (2.20)

Therefore, changes in wave angle are related to the combined contributions of bathymetric
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changes and currents:

∂θ

∂x
=

−1√
gh − U

(

1

2

(g

h

)1/2 ∂h

∂y
− ∂U

∂y

)

(2.21)

For an example of a 1 m/s rip current with a half-width of 50 m in 1 m of water

(∂U/∂y = −1/50), the terms on the right hand side become:

−1√
gh − U

=
−1√

9.81 − 1
(2.22)

1

2

(g

h

)1/2 ∂h

∂y
− ∂U

∂y
=

√
g

2

∂h

∂y
− 1

50
(2.23)

The first term suggests strong opposing currents reduce ∂θ/∂x by 30%, while the second

term suggests that the shears of a strong rip current can produce refractive turning that

is equivalent to bathymetry gradients of ∼ 1/80. The sense of the error would be to

reduce estimated depths in a rip channel.

In the nearshore, the currents with the strongest shears are either longshore currents

or rip currents. In the former case, the direction of flow will be nearly orthogonal to the

usual near-normal angles of wave approach, so contamination will be minimal. As shown

above, rip currents can cause a refractive turning that is equivalent to a ∼ 1/80 slope,

but the error will be predominantly in longshore slope, smoothing out rip channels as

opposed to cross-shore beach slope. Areas of strong shear around tidal inlets should, of

course, be avoided with this method.

With the assumption that all changes in wavenumber are due to bathymetric varia-

tion, the presence of a current, such as a rip current or flow from an inlet, will change

the wavenumber and wave angle characteristics and yield errors in bathymetry gradient

estimates. In the most extreme cases, such as strong rip currents exiting the surf zone

in a rip channel, the proposed method will predict a shoal in the location of the current,

while the bathymetry is most likely a trench. Since this method is most applicable out-

side the surf zone, these situations should be limited. In tidally influenced areas, images
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taken at the peaks of the tidal cycle (high tide/low tide) when tidal currents are reduced

should be used to limit error in bathymetry gradient estimation.

Initial tests of the refractive method were based on gradient approaches for estimating

the required wavenumber and direction inputs. While successful for perfect (synthetic)

data, they were sensitive to noise, especially the high wavenumber noise due to short,

wind-blown chop that is typical of real world images. Extensive filtering was required

to produce stable results. Thus, it was not until the introduction of the tomographic

method of PHH08 that smooth and reliable values of wave quantities could be derived

for imperfect data. Because time delays for all possible pixel pairs (close and widely-

spaced) in the sub-region are incorporated in the estimate, extreme contamination by

short gradient noise is avoided. Areas of known wave anomalies such as the edge of the

surf zone where the optical signatures of wave fronts change from dark to white breakers

can be reasonably smoothed through. For waves with a finite bandwidth spectrum, a

single best-fit set of wave characteristics can be found. A requirement of this approach

is computation of a corresponding confidence interval or skill for the solution. For some

cases, waves will simply be too broad-banded for representation by a single direction

and wavelength. These can be identified objectively by low skill values and the data

disregarded.

As with other remote sensing methods of determining bathymetry, the refraction-

based method has limitations in its application. Most importantly, the model requires

there to be measurable gradients in both wavenumber and angle. Although longer waves

feel the bottom at greater depth, (kh for any given depth is always less for longer waves),

shorter period waves have their advantage in the nearshore because they undergo rapid

changes in wave angle and wavenumber at shallower depths (e.g. Dean and Dalrymple

(1991) p.108). This suggests the method is best suited for shorter period swell conditions

in intermediate (π/10 < kh < π) water depths.



35

2.8 Conclusions

An algorithm has been developed to estimate nearshore bathymetry based on the chang-

ing directions of refracting waves. The model uses an augmented form of the refraction

equation that relates gradients in bathymetry to gradients in k, θ through the chain

rule. The equations can be cast in a form that is independent of wave period, so can

be solved using wavenumber and direction data from a single snapshot rather than the

normally-required time series of images.

Three methods for extracting k, θ data from images were tested. Under monochro-

matic conditions, all methods performed well. However, for cases with high-frequency

noise or a non-ideal wave field, the two gradient methods for determining k, θ were found

to be unusable. The tomographic approach of the PHH08 method was robust to these

complications and had the added advantage of providing skill estimates that allowed

objective identification of unacceptable results. Synthetic testing of the model using

monochromatic waves on three bathymetries of increasing complexity, showed that the

model accurately estimated 2D bathymetry gradients, hence bathymetry, with a mean

bias of 0.01 m and mean rms error over the three beaches of 0.17 m. While the model

is not useful for cases of complex seas or small refraction signals, the simplified data

requirement of only a single snapshot is attractive. The model is perhaps best suited

for shorter period swell conditions, for example from a semi-enclosed sea, where strong

refraction patterns are visible and k, θ easily extracted from a single frame image.
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3. A LINEAR MODEL TO PREDICT BAR DYNAMICS

3.1 Abstract

Nearshore systems are highly dynamic in both space and time. The majority of this

variability can be attributed to the migration and morphological evolution of sandbars.

Models of bar dynamics typically involve moments of the cross-shore flow, with offshore

movement associated with the strong offshore directed undertow and onshore migration

related to wave asymmetry and skewness (e.g. Gallagher et al. (1998); Hoefel and El-

gar (2003)). Based on these hypotheses, models and laboratory studies have used the

alongshore-mean bar position and alongshore-uniform wave conditions (a 1DH approach)

to study bar response to varying wave conditions. Commonly, cases of offshore migration

were reproduced with reasonable accuracy, but predictions of onshore migration were less

successful. However, examination of time-exposure images of waves show that during pe-

riods of offshore migration, bars tend to be alongshore uniform and move rapidly offshore,

but during onshore migration, sand bars are rarely straight, instead becoming very sin-

uous, violating the 1DH approach. We hypothesize that under milder wave conditions,

the 2DH circulation associated with this alongshore-variable morphology is responsible

for increased onshore net sand transport and the resulting onshore bar movement.

We extend the work of Plant et al. (2006) that relates bar position, sinuosity, and

wave forcing within a linear dynamical feedback model. The model consists of coupled

differential equations that govern the rates of change of cross-shore position and horizon-

tal sinuosity as a function of the current cross-shore position and sinuosity and a proxy

for wave forcing. We apply this model, relating bar position, sinuosity, and incident wave

conditions, over a four-year period of time-exposure images of Palm Beach, Australia.

The resulting analysis produces clear links between bar sinuosity and the rate of change

of mean bar position, suggesting a 2DH approach should be used when modeling cross-
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shore sand bar migration. However, limitations for the use of a linear model to study

complex systems are also apparent, suggesting a more detailed model is required to study

the role of sinuosity on highly dynamic beaches.

3.2 Introduction

The nearshore environment, which we will define as the ocean environment that is visible

from the shoreline, is highly dynamic in both space and time (e.g. Keulegan (1948);

Davis and Fox (1972); Wright and Short (1984); Plant et al. (1999); Ruessink et al.

(2003); Alexander and Holman (2004)). As waves break, they transfer their momentum

into the water column, generating nearshore currents and moving sand around. One

of the most visible signatures related to changing wave conditions is the evolution of

sand bars that often develop at, or migrate towards, the location of wave breaking (e.g.

King and Williams (1949); Greenwood and Davidson-Arnott (1979); Roelvink and Stive

(1989); Plant et al. (1999)). Examination of time-exposure images of waves have shown

that during periods of high waves, sand bar evolution is rapid as the bar moves offshore

and becomes alongshore uniform (e.g. Wright and Short (1984); Lippmann and Holman

(1990) (Fig. 3.1 (May 8, 1996)). This is in stark contrast to sand bar evolution during

milder wave conditions, which is marked by slower onshore migration and development

of 2DH morphology (e.g. Wright and Short (1984); Lippmann and Holman (1990)) (Fig.

3.1).

Many of the processed-based models describing sediment transport related to sand

bar migration utilize an energetics approach (e.g. Bagnold (1963); Bowen (1980); Bailard

(1981)) (referred to herein as BBB) and assume cross-shore processes, such as undertow

and velocity skewness, dominate the forcing terms (e.g. Gallagher et al. (1998)). Offshore

migrations are well predicted, but the models fail to accurately predict the proper rates

of onshore sand bar migration during more quiescent times. Model predictions improved

with the inclusion of pressure gradients and the related wave acceleration skewness (e.g.

Drake and Calantoni (2001); Hoefel and Elgar (2003)), and various boundary layer ef-
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Fig. 3.1: Storm sequence at Palm Beach, AU depicting various stages of morphological
evolution. (top) April 26, 1996 shows a transverse bar/terrace and rip system;
(middle) May 8, 1996 shows an offshore linear bar system just after a storm;
(bottom) May 18, 1996 shows the development of 2DH variability of the bar
as it migrates onshore.

fects (Henderson et al., 2004). However, sand bars can rarely be considered alongshore

uniform (e.g. Zenkovich (1967); Sonu (1973); Wright and Short (1984); Lippmann and

Holman (1990); Alexander and Holman (2004)), thus suggesting other processes, such

as 2DH currents, also influence the time-varying response of sand bars to changing wave

conditions. We hypothesize that under milder wave conditions, the 2DH circulation as-

sociated with this alongshore-variable morphology is largely responsible for increased

onshore net sand transport and cannot be neglected in sediment transport models.

A recent paper by Plant et al. (2006) showed that for an onshore sand bar migra-

tion period following Hurricane Bonnie, mean sand bar position and bar sinuosity were

dynamically linked through a simple linear model. This was the first attempt at quan-

tifying the influence of 2DH morphology with respect to the onshore migration of the

alongshore-averaged sand bar, showing rates of sand bar change and bar sinuosity were

strongly coupled. We extend the work of Plant et al. (2006) to a second beach under

a variety of wave conditions to test if such a model can link bar sinuosity to onshore

migration events in more complex systems.
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3.3 Model

The model uses a linear approach, with alongshore mean sand bar migration rates, ẋ,

related to the alongshore mean sand bar position, x, bar sinuosity, a, and the forcing, F ,

which is chosen as the square of the offshore root mean square (rms) wave height, H2.

The dynamical equations relating mean sand bar position, x, and sinuosity, a, are:







ẋ

ȧ






= A







x

a






+ B







1

F






, (3.1)

where A and B are [2 x 2] matrices solved for by linear regression. The nature of the

system is determined by the values obtained for A and B. A is the internal interaction

matrix, where the diagonal terms represent self-interaction (e.g. how x influences ẋ). The

sign of these terms indicate the stability of the system, where negative values indicate a

stabilizing tendency. The off-diagonal terms of A represent cross-interaction (e.g. how a

influences ẋ). These terms do not affect the systems stability if they are oppositely signed

and the diagonal terms are negative. The B matrix describes how external parameters

influence ẋ and ȧ. The first column in B accounts for non-zero mean values in the

absence of coupling. The second column describes the effect of varying wave height on

bar response.

3.4 Study site

Palm Beach, Australia is a nearly east facing, 2-km long pocket beach located about 30

km north of Sydney (Fig. 4.1). Wave forcing is swell dominated, propagating from the

SSE, with some energy from the E and NE (Short and Trenaman, 1992). The nearshore

bed slope is 0.03 and has a median grain size of 0.30 mm (Wright et al., 1980). The mean

significant offshore wave height is 1.5 m with no significant seasonal variability in the

wave conditions (Short and Trenaman, 1992). The beach morphology is highly variable,

experiencing bar reset events (return to an offshore linear bar form) during higher wave

forcing, followed by onshore bar migration and transverse bar rip development during
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milder waves (Holman et al., 2006). Bar position is significantly correlated to offshore

wave height for timescales less than 8 days (Alexander and Holman, 2004). State changes

occur quite rapidly, with rhythmic sandbars and rip channels developing usually within

a week of a major storm. The most observed state is the transverse bar rip (TBR),

occurring roughly 55% of the time (Ranasinghe et al., 2004). Although no preferential

rip locations were found in a study by Holman et al. (2006), Alexander and Holman

(2004) found a significant correlation between offshore significant wave height and inverse

rip spacing at short lags (∼ day) indicating that morphology responds very rapidly to

changing wave conditions.

Fig. 3.2: Map of the Sydney area, Australia with a close up of Palm Beach, Australia.
Offshore wave data is collect at the wave rider offshore of Long Reef (south of
Palm Beach). Tide information is collected at Patonga (north of Palm Beach).
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3.5 Data

In January 1996, a 2-camera Argus video-imaging station (Holman et al., 1993) was

installed in Barranjoey lighthouse, 115 m above sea level. The oblique images from

camera C1 are rectified according to Holland et al. (1997) using known ground control

point (GCP) and world camera locations (Fig. 3.3 (top)). The curved beach is then

straightened using a circular best fit to the shoreline (Alexander and Holman, 2004)(Fig.

3.3 (bottom)) in order to improve our estimates of the alongshore-averaged bar position

with respect to the shoreline.

Fig. 3.3: Rectification of Images and Bar Identification. (top) Rectified image for Palm
Beach, AU. (bottom) Straightened image with shoreline and bar position iden-
tified.

Bar locations are estimated by fitting the cross-shore intensity to a series of Gaussian

curves. Bar position, xb(y), is defined as the center of the best-fit Gaussian curve depict-

ing the inner-most sandbar (Alexander and Holman, 2004). Bar locations are identified

at 5 m intervals in the alongshore at low and high tide and then linearly transformed to

mean sea level. Bar positions are then interpolated in space to remove variations smaller

than 50 m. Shoreline positions, xs(y), are identified using the maximum in intensity

difference between the low and high tide images (Alexander and Holman, 2004). The

mean daily bar position, x, is then calculated as the alongshore mean of the bar position,

xb(y), minus the shoreline, xs(y). Sinuosity, a, is defined as the root mean variance in
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the band 100 m < L < 400 m, obtained from an alongshore Fourier decomposition of

the bar position. Forcing for the model is given as F = H2. Due to the orientation of

the beach with respect to the dominant wave direction, daily significant wave heights,

Hs, from an offshore wave rider (Fig. 4.1) are shoaled in to 10 m contour using the

HISWA wave refraction model described by Holthuijsen et al. (1989). Wave data is then

interpolated in time to 0.5 day intervals and low pass filtered using a 3 - day Hanning

window to smooth the data and fill in missing data points.

3.6 Results

Four years of bar position data (1996 - 2000) were collected by Alexander and Holman

(2004) as part of a multi-beach study. Sub-data sets spanning 1-2 months surrounding

storm events (Holman et al., 2006) were used to test the model and examine the rela-

tionship between bar position and sinuosity. Two of the data sets are presented here

for discussion. The first data set (April - May, 1996) (Fig. 3.4) shows a clear example

of a large storm passing, resulting in a linear bar beach state, followed by a slow and

gradual onshore migration of the bar as sinuosity grows (Fig. 3.4). The data set spans

∼ 40 days before the wave gauge went offline, limiting the amount of onshore migration

we are able to model. The second data set (March - April, 1998) (Fig. 3.5), also ∼ 40

days, contains two sequential minor storms with bar position, variability and forcing all

varying on similar time scales (Fig. 3.5). One observation to note for this data set is that

a actually decreases as the bar gets very close to shore, possibly suggesting a threshold

relationship between bar position and sinuosity, similar to the evolution of rhythmic (or

non-rhythmic) shore-attached bars into low-tide terraces under mild waves (e.g. Wright

and Short (1984); Lippmann and Holman (1990)).

The predictive capability of the model is tested by initializing the model with the

initial values of x(t = 0) and a(t = 0) and then driving the model with the given forcing

(H2) (Figs. 3.4, 3.5). For both data sets, the model skill is significant at the 95% level,

predicting both onshore and offshore bar migration rates in the presence of variable
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forcing and sinuoisty.

Fig. 3.4: Results for April - May 1996. Blue dots are measured data and red lines are
predicted values based on forward prediction using regression results. (top)
Wave forcing. (middle) Bar position. (bottom) Sinuosity.

3.6.1 Interaction Matrices

The interaction matrices (A,B) are determined using linear regression of equation (3.1)

from known bar position, sinuosity, forcing, and the respective derivatives. We also

supply the 95% confidence interval to indicate the accuracy of the regression analysis.

April - May 1996.

[

A

]

=







−0.146 ± 0.066 −2.08 ± 2.808

0.004 ± 0.002 0.020 ± 0.090







(

d−1
)

(3.2)

[

B

]

=







11.750 ± 9.159 3.764 ± 2.808

−0.302 ± 0.294 −0.066 ± 0.034







(

md−1
)

(3.3)

The positive value of A22, suggests a positive feedback between a and ȧ. This seems
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Fig. 3.5: Results for March - April 1998. Blue dots are measured data and red lines are
predicted values based on forward prediction using regression results. (top)
Wave forcing. (middle) Bar position. (bottom) Sinuosity.

sensible based on field observations of growing sinuosity under low wave conditions. How-

ever, the confidence intervals for the second column of A allow both these terms to change

signs, therefore affecting the dynamical relationship and stability of the system. These

terms suggest the influence of a on either x or itself may be weak, since both terms

are not statistically different from zero. Little can be said about the off-diagonal terms,

except that being non-zero indicates a dynamical relationship between x and a. The

forcing matrix (B) is consistent with observations for increasing wave heights driving

bars offshore and decreasing sinuosity (equation 3.3).

March - April, 1998.

[

A

]

=







−0.2968 ± 0.082 2.950 ± 2.004

0.009 ± 0.003 −0.131 ± 0.063







(

d−1
)

(3.4)
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[

B

]

=







5.459 ± 3.427 7.356 ± 1.327

−0.366 ± 0.108 −0.001 ± 0.042







(

md−1
)

(3.5)

The results of this data set differ slightly from the previous in several ways. First, the

diagonal terms of A (equation 3.4) are both negative, suggesting a stable system. The

off-diagonal terms of A are not oppositely signed and therefore may also play a role in

the overall stability of the system. The signs of all the terms in A do not change based

on their confidence intervals, suggesting stronger links between individual parameters.

In this instance, a actually encourages offshore bar migration (A12 is positive). This is

an interesting result considering our hypothesis that the presence of sinuosity encourages

onshore migration. This result may be more a mathematical fit to the system rather than

highlighting the dynamics as the system starts out with a terrace (low sinuosity) and as

the bar moves offshore, a is allowed to grow, and the system returns to a more terrace-

like system again. As with the first data set, the terms in B indicate that increasing

wave heights are accompanied by offshore sand bar migration and decreasing sinuosity

(equation 3.5).

3.6.2 Equilibrium Values

Equilibrium values for each system are obtained by setting the left hand side of equation

(3.1) equal to zero and rearranging:







xo

ao






= −[A]−1B







1

F






= Bo







1

F






, (3.6)

where xo, ao are the equilibrium values, and Bo describes the equilibrium coefficients

in the presence of coupling, such that equilibrium values are a function of the external

forcing (H2).
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April - May, 1996.






xo

ao






=







67.86 + 10.35F

1.02 + 1.14F






(3.7)

The equilibrium values are similar to those presented in Plant et al. (2006), indicating

increasing (offshore) equilibrium bar position and sinuosity as a function of forcing. These

results agree well with observations of bar position, but provide an inaccurate view of the

system with respect to a. In nature, we observe a decreasing as the bar moves offshore

with increasing H, usually during storms. Rarely do we observe the evolution of large a

in the presence of large H and x, however this may be due to rarity in which constant

wave forcing of this magnitude is also present.

March - April, 1998.






xo

ao






=







−32.61 + 86.33F

−5.13 + 6.19F






(3.8)

These equilibrium values are quite different, predicting negative values in the absence

of forcing, but increasing xo and ao as forcing increases. It is hard to understand what

this really means, but as we will discuss later, this particular data set sheds light on the

strengths and weaknesses of the model chosen.

3.6.3 Stability Analysis

To further understand the dynamics of each system, we test the stability of each, and

therefore its predictability. If a system is stable, then it is also predictable. Using

eigenvalue analysis, we can determine the stability, response time, and the dynamic

relationship between the different variables. A perturbation analysis is done assuming

exponential growth with a timescale of λ:







x − xo

a − ao






=







ξ

α






eλt. (3.9)



47

Expanding equation (3.1) about some equilibrium values, xo, ao,

d

dt







x − xo

a − ao






= A







x − xo

a − ao






, (3.10)

and substituting equation (3.9) into equation (3.10),

λeλt







ξ

α






= A







ξ

α






eλt, (3.11)

leads to an eigenvalue problem:

λ







ξ

α






= A







ξ

α






(3.12)

where λ are eigenvalues and ξ and α are eigenvectors of the system. The sign of the real

part of λ indicates the stability of the system, where negative values indicate stability.

The magnitude of this term is an indication of the response time. The decay timescale

to return to equilibrium is given by ℜ(λ−1). The imaginary part of λ indicates an

oscillation super-imposed on the decay timescale, where the period of oscillation is given

by T = (2π)ℑ(λ−1). The complex phase shift, φ, indicates how a perturbation in one

variable drives a response in the other. The complex phase shift is calculated as:

φ = tan−1

[ℑ(α/ξ)

ℜ(α/ξ)

]

. (3.13)

A phase shift of zero indicates that the two variables are independent, while a 90◦

phase shift indicates that a perturbation in one (e.g. bar) causes a response in only the

other variable (e.g. sinuosity). Partial quadrature indicates that the system is dynami-

cally coupled.

April - May, 1996.

The two complex-valued eigenvalues are:
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λ = −0.0616 ± 0.0414i, (3.14)

The real valued component is negative, indicating the system is stable, with a decay

timescale of 16 days and a period of oscillation of 152 days. Since the decay timescale

is much shorter than the period of oscillation, the system returns almost directly to its

equilibrium value without oscillating around it. The resulting eigenvectors are:







ξ1 ξ2

α1 α2






=







1 1

−0.0405 + 0.0206i −0.0405 − 0.0206i






, (3.15)

with

φ = 153◦, (3.16)

indicating the system is in partial quadrature and therefore, dynamically coupled.

March - April, 1998.

The two eigenvalues for this data are real-valued:

λ1 = − 0.0279 + 0i, (3.17)

λ2 = − 0.400 + 0i. (3.18)

The negative values indicate the system is stable, with decay timescales of 2.5 and 36

days. The lack of an imaginary component indicates there is no oscillation around the

equilibrium and the system returns directly to its equilibrium value. This also produces

two real-valued eigenvectors,







ξ1 ξ2

α1 α2






=







1 −0.0912

1 −0.035






, (3.19)

with a phase value of
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φ = 180◦, (3.20)

indicating that an increase in one variable should cause a decrease in the other.

3.7 Discussion

A simple linear model relating bar position, sinuosity, and forcing was tested over a 4-year

data set at Palm Beach, Australia. The model shows significant skill in predicting bar

movement and changes in bar variability for all sample runs. The parameter estimates

vary with changing data sets, but show that the system is stable and that the amount of

cross-interaction is dependent on the system variables and forcing. The stability analysis

was able to highlight some of the differences between the data sets. For example, the

April - May 1996 data set showed a stable system, with decay times scales of the system

much shorter than that from the oscillation and that there is significant cross-interaction

between bar position and sinuosity. The March - April 1998 data set, however, was

a stable system with two real-valued decay timescales and no oscillations. One of the

decay timescales was much shorter in this case, indicating shorter response times and

potentially a more forced system with respect to changing wave conditions. Looking at

the coefficient matrices, we see that the self-interaction term for sinuosity is an order

of magnitude greater in the second data set, but the forcing (matrix B) has an order

of magnitude less of an influence on bar amplitude. This may be linked to the overall

magnitude of forcing which is greater in the first case, with greater offshore bar movement.

Alternatively, this may indicate that major storms cause the bar to become alongshore

uniform, but a slight increase in forcing may move the bar offshore and increase the bar

sinuosity/active surf zone width.

For the March - April 1998 data set, the three independent variables used in the

regression (x, a, F ) are all phase-lagged versions of each other (Fig. 3.5). This can

cause interpretation problems in the linear regression analysis because variability can be

assigned to a number of combinations to arrive at the same result. Particularly, this can
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affect our interpretation on the interactions between x and a as depicted through our

stability analysis of A. Although we can visually see the link between all three variables,

the regression analysis weighted the B matrix much more heavily, suggesting a more

‘forced system’. This also led to an eigenvalue analysis that suggested x and a were not

in partial quadrature. This is not the case in the first data set where x and a varied

on different timescales of wave forcing and the A matrix clearly defines the relationship

between x and a.

3.8 Conclusions

The results indicate that inclusion of 2D circulation (modeled here by sinuosity) is im-

portant in producing correct on-shore bar migration rates for the data sets tested. The

model had lower predictive skill for the Palm Beach data set compared to Duck data set

taken during a hurricane event. However, the model was able to capture the fundamental

dynamics during major storm resets (April - May 1996). Due to the nature of the bar

evolution at Palm Beach, the linear model had limited ability to robustly separate bar

evolution due to forcing and the effect of sinuosity in data sets where x, a, and F varied

at similar time scales (March - April 1998). As well, the regression analysis was limited

to short timescales (single storm events) due to the hysteresis of the natural system. Bar

position and sinuosity are linked and therefore influenced each other at varying scales.

Changes in one term drove changes in the other, however, unique values of x compared

to a and H are not required. We conclude that such simple models can be useful at

describing the nature of the dynamical feedback systems involved in bar evolution dur-

ing major storm events on a storm by storm basis. However, for more forced systems,

with variability in x and a directly linked to offshore wave conditions at short timescales,

a more in-depth (physics-based) model with fewer free parameters may be required in

order to examine the relationship between bar position and sinuosity.
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4. A BEHAVIOR-ORIENTED DYNAMIC MODEL FOR SAND BAR

MIGRATION AND 2DH EVOLUTION

4.1 Abstract

A new, nonlinear model is developed to study the influence of two-dimensional (horizon-

tal, 2DH) circulation on alongshore-averaged cross-shore sand bar migration. The model

uses an energetics-based formula to model sediment transport at the bar crest. The equa-

tions are reduced to a parametric form using the relationship between sand bar migration

of a constant bed form and the underlying sediment transport pattern. Net sand bar

migration is modeled based on an equilibrium approach in which temporal variations in

the amount of wave breaking, and therefore the roller contribution to the undertow, is a

significant contributor to sand bar migration. Due to the nonlinear form of the model,

under non-breaking conditions sediment transport, and thus bar migration, is assumed to

be negligible. The model includes the effects of 2DH currents on the alongshore-averaged

sand bar migration rate through parameterizations based on the length scales of 2DH

morphology and wave breaking. The model equations for cross-shore sand bar migration,

ẋ, and changes in 2DH morphology, ȧ, are dynamically linked, such that changes in one

term will drive changes in the other.

The model is tested on a subset of four years of data from Palm Beach, Australia. A

total of 562 days surrounding eleven major storms and subsequent recovery are included.

Model coefficients are subjectively chosen to best fit the spectral characteristics of the

entire data set. The model is able to reproduce both onshore and offshore migration

rates through multiple storm sequences with significant skill (95% level) for all data sets.

Under less energetic wave conditions, the model predicts onshore migration, with rates

influenced by the amount of 2DH variability present and the incident wave angle. The

inclusion of 2DH terms are required to accurately reproduce the onshore migration rates
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in the data. Offshore migration rates were also reproduced and attributed to dissipative

wave conditions.

4.2 Introduction

Nearshore systems are highly dynamic in both space and time. While some beaches

exhibit a monotonic cross-shore structure, most have offshore features, such as sand bars

(e.g. Keulegan (1948); Davis and Fox (1972); Plant et al. (1999); Ruessink et al. (2003);

Alexander and Holman (2004)). Observations show the morphology of these sand bars

can rarely be considered alongshore uniform (e.g. Zenkovich (1967); Sonu (1973); Wright

and Short (1984); Lippmann and Holman (1990); Alexander and Holman (2004); van

Enckevort et al. (2004)). Thus a full description of the nearshore bathymetry, h(x′, y′, t),

requires specification of the cross-shore, x′, alongshore,y′, and temporal, t, dependencies.

The prime is used to distinguish between spatial co-ordinates and measured bar crest

position, x. For any particular survey, this might require bathymetry estimates at O(104−

106) locations, a daunting number of measurements to keep track of and model.

Several approaches have been used to reduce the dimensionality of the problem. It

is often assumed that alongshore variability is negligible in the bathymetry and dynam-

ics. Thus, models can be formulated that need only represent one horizontal dimension

(1D), rather than both the alongshore and cross-shore (2DH) or all three, including the

depth variation (3D). Alternately, bathymetry can be represented as either a continu-

ous variable (although sampled at discrete survey locations) or as parametric functions

that are assumed to adequately represent the bulk of the continuous profile variability

with a few parameters such as the location, amplitude and width of Gaussian sand bar

functions. Both approaches offer a compromise between simplicity and realism. On one

hand, continuous models redistribute sand along the entire profile based on fluid-sediment

interactions. This can lead to profile evolution that is unrealistic due to errors in the

measured or modeled fluid forcing. Interpreting the skill of such models is also more

subjective as they compare entire profiles versus a single parameter, such as bar crest
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position. Alternatively, parametric models may be reduced to forms that mathemati-

cally represent the data, yet lack the necessary physical link between drivers of sediment

transport and observations.

4.2.1 1DH Models

1DH bathymetric models assume that bathymetry can be represented as:

h(x′, t) = h̄(x′) + h̃(x′, t), (4.1)

where h̄(x′) represents the time-mean beach profile, and h̃(x′, t) the time variability about

that mean. For sufficiently long data sets, h̄(x′) is usually monotonic or planar, while

h̃(x′, t) contains information on the cross-shore migration of sand bars (e.g. Birkemeier

(1985); Thornton et al. (1996); Gallagher et al. (1998); Plant et al. (1999, 2001); Ruessink

et al. (2003)), identified as the maxima in h̃(x′, t).

A number of process-based models of cross-shore transport have been proposed in

the literature. Many are based on an energetics approach (e.g. Bagnold (1963); Bowen

(1980); Bailard (1981)) and assume that cross-shore processes, such as undertow and

velocity skewness, dominate the forcing terms (e.g. Gallagher et al. (1998)). An example

of such a model is described in more detail in Section 4.3.1. Process-based models allow

the user to examine the effects of individual components, such as the contribution of

wave skewness to onshore migration or undertow to offshore migration.

Beach change in 1DH models is modeled as a continuous function of x′, but results

are often described in morphologic terms, for instance a judgment that a sand bar moved

onshore or offshore, based on differences between two consecutive profiles. Offshore mi-

grations (which occur under larger waves) are usually well predicted by energetics-based

models (e.g. Gallagher et al. (1998)). However, models historically have failed to ac-

curately predict the proper rates of onshore sand bar migration during more quiescent

times. Recent work has examined the importance of previously unconsidered 1DH pro-

cesses such as pressure gradients and the related wave acceleration skewness (e.g. Drake
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and Calantoni (2001); Hoefel and Elgar (2003)), near-bed wave skewness (Ruessink et al.,

2007), and various boundary layer effects (Henderson et al., 2004) in cross-shore sedi-

ment transport under wave driven environments. These models have shown improved

skill under certain circumstances, but the problem is not considered solved despite the

increasing complexity of the resolved processes.

Alternatively, parametric models assume that sand bars (or morphology) can be rep-

resented using a discrete set of parameters, such as bar position, whose variation with

time can be modeled. Model equations are generally behavioral; distillations of known

physics to a few essential elements that are assumed to dominate response. One well-

known example is the breakpoint model (e.g. King and Williams (1949); Greenwood and

Davidson-Arnott (1979); Roelvink and Stive (1989); Marino-Tapia et al. (2007)) that

suggests sand bars exist at the location of initial wave breaking due to unspecified con-

vergences in sediment transport. Since this model is based on an equilibrium response

of the bar to a particular fluid forcing, it is strictly valid only when bar response is much

more rapid than the rate of change of wave conditions. Under typical conditions, this

is not true. Attempts to predict the time-varying location of bars under either instan-

taneous wave forcing or some time-average wave height have not usually been successful

(Sallenger and Howd , 1989).

Plant et al. (1999) recognized the need to add a dynamic aspect to the breakpoint

concept, modeling not the actual bar position but instead its rate of change. They pro-

posed that the migration rate of the alongshore-averaged sand bar, ẋ, should depend on

the disparity between its current position, x(t), and a time-varying equilibrium location,

xeq(t):

ẋ = −α(t) [x(t) − xeq(t)] , (4.2)

where ˙(·) represents the time derivative of the bracketed variable. xeq, the time varying

equilibrium sand bar position, is assumed to vary linearly with wave height, consistent

with a breakpoint hypothesis:
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xeq(t) = a2Ho(t), (4.3)

where Ho(t) is the time varying offshore wave height and α−1(t) is the response time,

describing the rate at which bar location changes. Observations have shown response

times due to changing wave conditions are dependent on wave height (e.g. Wright and

Short (1984); Plant et al. (1999, 2001)), such that sand bars move offshore (during high

waves) much faster than onshore (during milder wave conditions), and no migration

occurs for H = 0. Plant et al. (1999) found a best-fit form for α to be dependent on the

cube of the offshore wave height, H3
o :

α(t) = a1H
3
o (t), (4.4)

Equations (4.2) - (4.4) represent a large improvement over the original breakpoint

model. The dynamic nature of the equations acknowledge that bars are in continual

pursuit of an equilibrium configuration but can only respond at a rate that depends on

the cube of the wave height. Response to storms is found to be rapid while response to

intervening quiet times is much slower. As a result, the mean bar position is weighted

toward the large waves, offshore of the mean breakpoint. Using least squares fitting,

values of parameters can be found such that model predictions reasonably match several

long data sets.

Although simple in form and a useful representation of some aspects of bar behavior,

the Plant et al. (1999) model has a number of acknowledged limitations. The model is not

based on sediment transport principles but instead is a somewhat ad-hoc representation

of reasonable behavior. For example, equation (4.2) requires a sand bar to move quickly

when far away from its equilibrium and slow down as it approaches the location of wave

breaking, similar in form to Hooke’s Law (F = −k~x), where the restoring force, F , is

related to the distance between current position and the equilibrium, ~x, and a force

constant, k. There is no obvious sediment transport basis for this assumption. Although



56

Plant et al. (1999) argued that sediment transport was related to Hp, by dimensional

arguments, the units of a1 must be m−3s−1, which is not an obvious result. Finally,

this model assumes that alongshore variability is of no consequence and can be simply

averaged out.

4.2.2 2DH Models

The assumption above of alongshore-uniformity is rarely valid. Observations show that

2DH morphology is quite common (e.g. Wright and Short (1984); Lippmann and Holman

(1990); Ranasinghe et al. (2004)), especially during periods of onshore bar migration. For

example, Lippmann and Holman (1990) found that sand bar morphology at Duck, North

Carolina, was visibly alongshore-uniform for less than 7% of a two-year dataset of daily

measurements. For periods of non-storm conditions (down-state transitions) changes

in morphology were found to be more dependent on the prior state than on the wave

forcing, suggesting a positive feedback system in which 2DH processes may influence the

time-varying response of sand bars due to changing wave conditions.

Representation of a full 2DH bathymetry roughly squares the data requirements of

modeling compared to the 1DH equivalent. 2DH or 3D models on general bathymetries

have seen increasing research and often provide reasonable performance (e.g. Reniers

et al. (2004); Dronen and Deigaard (2007)). The simulations are capable of reproducing

the bulk characteristics of 2D systems (e.g. growing 2DH variability under low wave

conditions), however, comparisons against measured bathymetric change (e.g. exact

location and magnitude of developing 2D bathymetry) show limited skill. For this reason,

and the lack of high resolution temporal and spatial bathymetry data, tests have been

limited to a few field experiments. The logistics of fielding an operational capability at

any field site would be severe.

Alternatively, a great deal of research has focused on the idea that alongshore variabil-

ity is generally rhythmic and can be characterized by a single characteristic alongshore

length scale of variability (e.g. Bowen and Inman (1971); Guza and Inman (1975); Ko-
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mar (1983); Wright and Short (1984)). For example, Bowen and Inman (1971); Guza

and Inman (1975); Holman and Bowen (1982) explained the generation of alongshore

rhythmic features as a result of the dominant presence of edge waves of very particular

frequencies. These models were subsequently shown to be inconsistent with extensive

field observations (Holland and Holman, 1996, 1999).

An alternate explanation has been proposed by a number of authors (e.g. Deigaard

et al. (1999); Falques et al. (1999); Coco et al. (2000); Falques et al. (2000); Caballeria

et al. (2002); Calvete et al. (2005); Garnier et al. (2006)) based on instability analysis of

various components of the nearshore system. For example, Falques et al. (1996) showed

that longshore currents were unstable to bottom perturbations with length scales typical

of oblique nearshore bars. Similarly, more complex two-dimensional (horizontal, 2DH) or

quasi-3D models (e.g. Reniers et al. (2004); Dronen and Deigaard (2007)) have shown in-

stabilities associated with pre-existing linear sand bars that had alongshore scales typical

of rhythmic sand bars and rip channels. However, all of these models explain the ini-

tial generation of alongshore variability from an initially alongshore-uniform bathymetry.

Holman et al. (2006) examined four years of nearshore morphology data from Australia to

show that systems rarely return to an alongshore-uniform bar condition (i.e. system vari-

ability is rarely associated with the physics of initial generation) and that length scales

of features were rarely rhythmic but instead occupied a spectral band of wavelengths.

Instead of treating alongshore variability in terms of a characteristic length scale,

Plant et al. (2006) propose an alternate, parametric approach based on the bar sinuosity,

a, the alongshore standard deviation of bar position for all alongshore length scales from

200 to 1000 m. While Plant et al. (1999) averaged out this variability on the assumption

that it made no fundamental contribution to bar dynamics, Plant et al. (2006) explicitly

explore their presence by modeling the dynamics of both x and a simultaneously as

a function of wave forcing, represented by the offshore root mean square (rms) wave

height squared, H2
o . Their dynamic equations relating mean sand bar position and 2DH

variability are:
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





ẋ

ȧ






= A







x

a






+ B







1

F






. (4.5)

The elements of the 2 x 2 matrix, A, represent the self and cross-interaction terms of

x and a. For example, A12 represents the influence of a on the bar migration rate, ẋ.

Plant et al. (2006) found this term to be significant suggesting that the presence of 2DH

morphology is indeed required to predict correct onshore migration rates, i.e. ẋ = f(a).

The elements of B represent the influence of the forcing on the two sand bar variables.

The dynamic model proposed by Plant et al. (2006) provided the first simple para-

metric model to address the links between sand bar position and 2DH variability and

allowed analysis of the stability of the system. However, it also had several weaknesses.

The governing equations are again behavioral and lack a sediment transport basis, as

with Plant et al. (1999). The linearized formulation allows bar movement even in the

absence of wave forcing and lacks the clear response time characterization of Plant et al.

(1999). The model is only valid for small perturbations about a mean, so can only be

applied for short records (e.g. two months) and cannot be applied when the bar am-

plitude becomes limited by proximity to the shoreline. Finally, a unique least squares

solution for the elements of A and B requires that the bar variables and the forcing vary

on different time scales. Under forced conditions, when bar position and sinuosity vary

on timescales of the wave forcing, the influence of sinuosity on bar migration may be

masked due to the strong coupling with wave height.

We wish to build a hybrid model similar to Plant et al. (1999, 2006) to study the

nonlinear feedbacks in 2DH sand bar migrations. We will develop a set of coupled

equations that are dynamic (expressed in terms of time derivatives) and nonlinear, and

are based on the principles of sediment transport. The model will not attempt to make

predictions about the nature of 2DH morphology, such as rip channels, or the alongshore

length scale of these features, but rather about the influence of 2DH morphology in

general on net bar migration rates. Specifically, we test the hypothesis that alongshore
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averaged sand bar migration rates, ẋ, and 2DH sand bar variability, a, are significantly

coupled such that:

ẋ = f(a). (4.6)

The paper is broken down as follows. In Section 4.3 we describe the proposed model.

Section 4.4 describes the field site and data extraction from video time exposure images.

In Section 4.5 we test the model and present results for several data sets. We conclude

with a discussion of the model, limitations and relevant findings in sections 4.6 and 4.7.

4.3 Theory

Our goal is to develop a parametric model for bar variability that can be tested using

commonly-available remote sensing data. These equations will be built from a sedi-

ment transport theory, the energetics-based equations of Bagnold (1963); Bowen (1980);

Bailard (1981) (referred to as BBB herein). We first develop the equations in 1DH, look-

ing at deviations about an equilibrium balance associated with changes in mean flows

and the fraction of waves that are breaking. Extensions to 2DH will, of necessity, not

be rigorous, but are based on observations and assumptions about the role of circulation

cells and rip currents in net cross-shore transport. Highly developed 2DH systems are

assumed to be partially self-stabilizing, so large wave heights are required to return the

morphology to more 1DH conditions.

4.3.1 Alongshore-averaged Sand Bar Migration Rates (ẋ)

Parametric models provide a simplified representation of nearshore variability. However,

prior to developing a parametric formulation, for example, for the cross-shore migration

rate of a sand bar, we need to establish a link between bar migration and the sediment

transport that caused that migration.

Connection Between Parametric and Transport-based Models
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Bagnold (1941) showed that for a bedform undergoing strictly migration with no change

in shape, the associated sediment transport pattern has the same shape as the bedform.

In general, the bedform can be represented as

h(x′, t) = h(x′ + δx′(t)), (4.7)

= h

(

x′ +

∫ t

0
ẋ′(t)dt

)

, (4.8)

where x′ is the domain of the bar shape function and δx′(t) is a time varying offset of

the basic bar form. Following Bagnold (1941), sediment transport is taken to have the

same shape,

Qx(x, t) =
Qxo(t)

∆
h(x′, t), (4.9)

where Qxo and ∆ are the cross-shore transport at the bar crest and bar crest height,

respectively. The two variables are linked by the conservation of mass equation,

∂h

∂t
=

1

µ

∂Qx

∂x
, (4.10)

where µ is the sediment packing factor of settled sediment grains (set to 0.7 (Thornton

et al., 1996)). Substituting equation (4.7) and equation (4.9) into equation (4.10) we

have

∂h

∂t
=

Qxo(t)

µ∆

∂h

∂x
. (4.11)

We see that mass is conserved if the migration rate, ẋ, is given by:

ẋ =
1

µ

Qxo

∆
, (4.12)

where Qxo is the cross-shore sediment transport at the bar crest. This provides a con-

venient relationship between the bar migration rate, a parametric representation, and
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the sediment transport at the bar crest, a geophysical variable, provided the sand bar

migrates without change of shape.

Plant et al. (2001) carried out a similar analysis based on sixteen years of monthly

beach profile data from Duck, North Carolina. Alongshore-averaged beach profiles were

modeled as the superposition of a planar slope and a set of Gaussians, one for each sand

bar. From the conservation of mass equation (4.10), changes in bathymetry between

consecutive surveys could be inverted to find the associated sediment transport that

caused the change. Because only Gaussian forms were allowed, these transport patterns

could only look like Gaussians (bar movement) or bar growth and decay (Error functions).

Even with these limited forms available, the vast majority of the variance was captured.

Plant et al. (2001) then showed that the bulk of temporal changes of the profile between

consecutive surveys were due to migration of constant form bars (transport had the same

shape as the sand bar form). Thus, equation (4.12) should provide a good link between

parametric bar migration rates and wave-driven sediment transport.

For the purposes of modeling bar evolution over extended periods of time, rather than

collecting statistics from pairs of closely-spaced beach profiles as above, both the bar

height and length scale vary as a function of cross-shore location (Ruessink et al., 2003).

Offshore bars with larger volumes should migrate more slowly than smaller onshore bars

under the same magnitude of transport. The constant form transport equation (4.12) can

be simply adapted to include a cross-shore dependency without altering the underlying

assumption of constant form migration if the equation is rearranged as follows. As we

are limited to the area of active wave-breaking, we assume that the bar height and length

scale both vary linearly with cross-shore location, x′:

∆(x′) =
∆o

xo
x′, (4.13)

and

Lbar(x
′) =

Lo

xo
x′ (4.14)



62

∆o and Lo are reference values of bar height and bar length, respectively, measured at

some reference location, xo. Since these values are measured at the bar crest location,

x′ = x. Rewriting equation (4.12) as

ẋ =
1

µ

x2
o

∆oLo

Qxo

x2
, (4.15)

we see that this is similar in form to equation (4.12) if we model the transport to include

the normalization by x2 and absorb x0, ∆0, and L0 into empirical coefficients in the

sediment transport relationships. In other words, the migration rates of bars with varying

length scales can be equivalently modeled by normalizing the bar crest transport rate by

that variation.

The ratio ∆o/xo is a site-specific parameter in the model. Based on an October 1999,

survey of the field site, Palm Beach, Australia (Brander , 1999), the linear best-fit for the

ratio ∆o/xo was 0.0076. Bar length, L(x′), was not determined from the single survey,

such that the ratio Lo/xo will be subsequently absorbed into a bulk empirical coefficient.

1DH Sediment Transport

The problem of predicting sand bar migration rates was shown above to depend only

on predictions of cross-shore sediment transport rates at the bar crest, Qxo. In this

section, we develop such a formulation based on the energetics models of BBB. If we

assume that onshore and offshore transport terms balance under some wave conditions

(equilibrium), then we can model the residual transport as deviations away from those

conditions. Extending the ideas of Plant et al. (2001), we will represent deviations of

wave forcing in terms of γb = Hb/hbar, where Hb is the root mean square wave height at

the breakpoint and hbar is the depth at the bar crest.

We parameterize Qxo based on BBB-type equations, using the formulation similar to

Bowen (1980), where
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Qx =
Kb

g

[

〈

|u|2U
〉

+
〈

|u|2uw

〉

−
〈

|u|3
〉 tan β

tan φ

]

+
Ks

gW

[

〈

|u|3U
〉

+
〈

|u|3uw

〉

−
〈

|u|5
〉 tan β

W

]

, (4.16)

and 〈·〉 and |·| signify the time average and absolute value of a quantity. u, U , and

uw are the total velocity, depth-averaged cross-shore current, and wave orbital velocity,

respectively. g is the acceleration due to gravity, W is the sediment fall velocity, tan φ

is the angle of repose for sediment, and tan β is the bed slope. Kb and Ks are the

dimensionless bedload and suspended load transport coefficients:

Kb =
ρw

(ρs − ρw)
Cd

ǫb

tan φ
, (4.17)

Ks =
ρw

(ρs − ρw)
Cdǫs, (4.18)

where ρw is the density of water, ρs is the density of the sediment, Cd is the drag coeffi-

cient, and ǫb and ǫs are the bedload and suspended load efficiency factors, respectively.

Bagnold (1966) suggested ǫs = 0.01 and 0.11 < ǫb < 0.14, values commonly used (e.g.

Bowen (1980); Bailard (1981); Gallagher et al. (1998)). Cd is expected to have a range

of 10−3 − 10−2. Based on Church and Thornton (1993) we set Cd = 0.003. W is set to

0.04 m/s based on a sediment grain size of 0.3 mm (Dean and Dalrymple (2002), p.32).

Several simplifications are made to equation (4.16) in order to isolate the main con-

tributors to sand bar migration. We neglect the contribution due to bedload since its

contribution is small in the surf zone (Gallagher et al., 1998). We also neglect transport

due to gravity (tan β), since tan β is zero at the sand bar crest and the effect of this term

is to change bar shape (spread the bedform out), and we have assumed the bedform

shape to be unchanging, reducing equation (4.16) at the bar to
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Qxo =
Ks

gW

[〈

|u|3U
〉

+
〈

|u|3uw

〉]

. (4.19)

In the 1DH case, all the wave-driven shoreward mass transport must be returned by

the undertow (U). In turn, this transport is composed of two contributions: the return

flow due to Stokes drift (Us) and that due to the wave roller (Ur) (Svendsen, 1984),

U =

(

c

〈

(η

h

)2
〉

+ bc
ē

h

)

cos θ, (4.20)

where c is the local wave celerity, c =
√

gh, η is the wave form, h is the local water

depth, ē is the roller area, ē = 0.9H2/L, H is the local rms wave height, L is the local

wavelength, and cos θ is the wave angle with respect to shore normal. When only a

fraction of the waves are breaking, we have modeled the contribution of the roller as

being proportional to that fraction of breaking, b.

We assume that for some wave condition there is sufficient breaking that the terms

in equation (4.19) balance and the system is in equilibrium (Qxo = 0):

Qxo,eq =
Ks

gW

[〈

|u|3
(

Us + 0.9b
Hb

T
γeq

)〉

+
〈

|u|3uw

〉

]

= 0. (4.21)

We have expressed this equilibrium condition in terms of an equilibrium value, γeq, of

the non-dimensional breaker height, γb = Hb/hbar .

Deviations away from this equilibrium condition will determine the net transport.

A full representation of the dependencies of each term in equation (4.21) with varying

conditions will be complex. Instead, we will assume that changes in the Stokes drift

and skewness contributions stay roughly in balance leaving a residual that is related to

variations in the roller term. Thus, we will model the primary variation of transport

away from equilibrium as depending on b (γb − γeq). This term has sensible behavior

over a range of conditions.

During storms, wave breaking is saturated over the bar and much of the surf zone.

To balance the saturated roller transport, the undertow is large and predominantly 1DH,
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such that net transport is in the offshore direction (positive values). Under calm con-

ditions, no waves will be breaking. Skewness-based transport will likely dominate (e.g.

Guza and Thornton (1985); Doering and Bowen (1987); Thornton et al. (1996); Plant

et al. (2001); Ruessink et al. (2007)), but is assumed negligible compared to breaker-

driven processes. Inclusion of the fraction of breaking in our formulation will force

transport to go to zero. Under intermediate conditions, partial breaking over the bar

can drive sediment transport in either the onshore or offshore direction depending on the

wave height. Our final model for net 1DH cross-shore transport is

Qxo = 0.9Ks

〈

|u|3
〉

g−1bΩ (γb − γeq) . (4.22)

where Ω = Hb/TW is the dimensionless fall velocity term, a parameter that has been

associated with beach response by a number of authors (e.g. Shepard (1950); Bascom

(1954); Dean (1973); Wright and Short (1984)). Equation (4.22) can be separated into

a magnitude (Q̂xo) and a direction component:

Qxo = Q̂xo(γb − γeq), (4.23)

where

Q̂xo =
9

80
Ksbγ

3
barhbar

√

ghbarΩ, (4.24)

and we have replaced the local orbital velocity at the bar crest by its phase-averaged

shallow water form
(〈

|u|3
〉

= γ3
bar/8ghbar

√
ghbar

)

.

Inclusion of 2DH Terms

When morphology becomes alongshore variable, the requirement to balance wave mass

transport through undertow at each cross-shore transect is removed. Instead, horizontal

circulation may occur, with onshore-directed flow over the typically broad shoals and

offshore-directed flows concentrated in narrow rip channels (e.g. Haller et al. (2002);
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Reniers et al. (2004); Aagaard et al. (2006); Garnier et al. (2006); Falques et al. (2008);

Garnier et al. (2008)). Water mass is still balanced in the alongshore average, but not

locally.

Most sand bar models assume that the alongshore-average migration rate of bars is

unaffected by the presence of alongshore variability, or, in parametric variables, ẋ 6= f(a).

This assumption is the sediment transport analog to the requirement that fluid mass must

be balanced in the alongshore-average, independent of whether circulation is present or

not. However, sediment transport is a nonlinear function of velocity. It is quite plausible

that onshore transport over the broad shoals could dominate over the offshore transport

associated with rip channels (or visa versa, although this seems contrary to observation).

We hypothesize that the presence of alongshore variability has two consequences on

the alongshore-averaged bar migration rate. First, we suggest that the presence of hori-

zontal circulation due to alongshore bathymetric variability facilitates net onshore sedi-

ment transport, hence the rate of onshore sand bar movement (i.e. Q̂ox,2D = f(a)Q̂xo).

Second, since fluid mass transport need not be balanced at each cross-shore transect

for an alongshore-variable system, we suggest that γeq will also be a function of a (i.e.

γeq,2D = f(a)γeq), with much larger waves sustainable over a 2DH sand bar morphol-

ogy than over an alongshore-uniform equivalent system. These functionalities are im-

plemented using a modified equation for the alongshore-averaged cross-shore sediment

transport for 2DH conditions:

Qox,2D = α1Q̂xo (γb − κaγeq)κa, (4.25)

where κa represents the influence of 2DH processes on the alongshore-averaged cross-

shore bar migration,

κa = 1 + α2
a

x

bζ

(β − ∆o/xo)γ
2
b

, (4.26)

where b is the fraction of breaking at the bar crest position, ζ describes the effect of
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oblique waves on 2DH circulation, a is the 2DH variability in the morphology, x is the

alongshore-averaged bar position, β is the beach slope, ∆o/xo is the ratio of the bar crest

height to current position, γb is the non-dimensional relative breaking wave height.

The main objective of κa is to capture the effect of 2DH circulation and the relative

influences of existing morphology versus the incident fluid forcing. Deviations of κa from

unity represent the influence of a on cross-shore migration rates. The details of this

fluid-sediment system are complex, but three phenomena should be represented. First,

the effect of a is assumed to scale with a/x (i.e. the impact of alongshore variability

scales with its size, expressed as a fraction of offshore bar distance) and only has an

impact if waves are breaking over the morphology (b 6= 0) driving 2D currents. Second,

under storm conditions, when wave breaking begins well beyond the sand bar location

(large relative wave height, γb), the effect of alongshore bar variability will be severely

reduced due to the presence of more alongshore uniform breaking and the resulting 1DH

currents. Based on empirical tests of wave conditions associated with changes from 2DH

to 1DH morphology, Holman et al. (2006) suggested that the influence of wave height on

reducing alongshore bar variability should scale as wave height squared. We represent

this in equation (4.26) by dividing the a dependence by γ2
b , (i.e. using wave height

squared, but normalized by bar crest depth). Finally, the above processes occur for near

shore-normal wave incidence (ζ ∼ 1). However, as the wave angles become oblique and

drive a mean alongshore current, v0, it has been commonly observed that the effect of

alongshore-variable forcing or morphology becomes muted (e.g. Yu and Slinn (2003)),

so the dependence on a should be reduced.

Wilson et al. (in review) discuss this problem in detail. They partition the wave forc-

ing into alongshore-uniform and alongshore-variable components, F0 and F1 respectively,

and the forced longshore current into corresponding steady and variable components, v0

and v1. For the example case of a sinusoidally-varying forcing with wavenumber, ky, they

show that v1 is both reduced and alongshore-shifted by the presence of v0 as:
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v1 = ζ
F1

ρwCfuo
sin

[

kyy − sin−1(ζ)
]

, (4.27)

where Cf is the wave friction factor, taken to be 0.01. Both the attenuation and phase

shift of v1 depend only on the non-dimensional parameter, ζ, which in turn, depends

only on the shallow water Reynolds number:

ζ =
1

√

1 + Re2
s

, (4.28)

where,

Res =
kyhbarvo

Cfuo
, (4.29)

where ky = 2π/Ly is the representative length scale of alongshore variability of the bar,

hbar is the local water depth (taken at the bar crest), uo is the maximum horizontal

velocity of the waves evaluated at the breaker location, and vo is the alongshore current,

measured at mid-surf zone. Using the approximation vo = 2.7uo sin θ cos θ (Komar and

Inman, 1970), Res can be simplified to:

Res =
2.7

Cf
kyh sin θ cos θ. (4.30)

As the wave angle increases, the effect of alongshore bathymetric variability is damped

out, reducing v1 and by continuity, u1, the alongshore-variable component of the cross-

shore current. For a typical longshore length scale of L = 150 m for Palm Beach, this

formulation suggests wave angles greater than roughly 5 degrees at the breakpoint reduce

the effects of 2DH variability by 50%.

Finally, equation (4.15) can be written as

ẋ = α1M (γb − κaγeq)κa, (4.31)

where
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M =
1

µ

x2
o

∆oLo

Q̂xo

x2
, (4.32)

and κa represents the influence of 2DH variability on the alongshore-averaged bar mi-

gration rate. α1 and α2 are free parameters in the model, solved for based on a best-fit

analysis of the data.

4.3.2 Temporal Changes of 2DH Surf zone Variability (ȧ)

Using the above equations, forward prediction of bar position, given variability and forc-

ing can be obtained. We can examine the influence of 2DH morphology on onshore

transport rates, but in order to study the dynamic relationship between alongshore-

averaged bar position and 2DH variability of the bar, equations describing the changes

in 2DH variability, ȧ, are required. Similar to the development of ẋ, the magnitude of ȧ

is related to the magnitude of sediment transport, Q̂xo, as well as the bar volume and

the sediment packing factor, µ, such that large sand bars develop 2DH variability slower

than small sand bars. Using this formulation (e.g. equation (4.32) also drives sediment

transport, and thus ȧ, to zero in the absence of breaking. Although many mechanisms

have been postulated as to why sand bars develop 2DH variability (see Coco and Murray

(2007) and references therein for a complete discussion), equations detailing the time-

evolution of variability, ȧ, are not generally available. We develop a behavior-oriented

set of equations based on sediment transport and the assumption that 2DH variability

is due to self-organization processes associated with 2DH currents (e.g. Reniers et al.

(2004); Dronen and Deigaard (2007); Garnier et al. (2008)) and can be modeled as an

instability such that

ȧ = Λa. (4.33)

Equation (4.33) represents exponential growth or decay of the alongshore variability, a,

depending on the sign of Λ. The rate is expressed in terms of an e-folding time, given
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by Λ−1. The magnitude of Λ is related to the magnitude of sediment transport, Q̂xo,

through equation (4.32), such that Λ = α3MG. α3 is an empirical coefficient and G is the

unknown parameter representing the different physical processes that affect the growth

and decay of 2DH morphology of sand bars under varying wave conditions. Although

there is no simple formulation for G, we choose one based on sensible behavior, based on

several observations such as:

• The growth of 2DH variability is associated with intermediate forcing conditions

(2 < Ω = H/TW < 5) (e.g. Wright and Short (1984); Lippmann and Holman

(1990)).

• The magnitude of 2DH bar variability (a) cannot exceed the surf zone width (x),

such that when a bar has run into shore, the growth of 2DH variability tends to

subside, suggesting an upper bound to a.

• Under low wave conditions (low Ω), rip channels can be filled in with sediment (at

a rate that depends on M) and form low-tide terraces (Wright and Short , 1984),

thus decreasing the system 2DH variability under extreme low waves.

• The timescales of growth are influenced by tidal range, ∆tide (Wright et al. (1987);

Castelle (2004)), mean wave period, T (van Enckevort et al., 2004), and wave angle,

θ (Garnier et al., 2008).

• Both large waves (large γb) and oblique waves (small ζ) will cause a reduction in

the variability toward a linear bar configuration.

We combine these concepts into a single equation for G, balancing potential growth

and decay terms:

G =
T

To

(

1 − 3a

x

)

− α4
Ωγb

ζ
, (4.34)

where a reference value of To is included such that α3 and α4 are non-dimensional. For

simplicity, we set To to the approximate mean value of the data used (To = 10 s). The
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influence of tidal range has been included in the breaking parameterization, b, which

affects the total magnitude of sediment transport. The term (1 − 3a/x) represents a

reduction (and potentially reversal) of growth as the landward portions of the variable

bar become limited by the shoreline. 2D systems generally revert to linear bars when

H2/ cos θ > 2.2 (Holman et al., 2006). We use this observation as a basis for the 2DH

decay term. We choose a non-dimensional form that includes the effect of relative wave

height, γb, and non-dimensional fall velocity, Ω. As in the formulation of ẋ, we assume

that the reduction of alongshore variability due to strong longshore currents can be

represented in terms of ζ. Large wave angles (small ζ), as well as large waves (large Ω)

breaking seaward of the bar (large γb) tend to return the bar back to a 1DH configuration.

The final form of equation (4.33) is therefore

ȧ = α3M

(

T

To

(

1 − 3a

x

)

− α4
Ωγb

ζ

)

a. (4.35)

Similar to equation (4.31), α3 and α4 are free parameters solved for by best-fit methods.

The rate of ȧ is determined by the magnitude of sediment transport, M , and 2DH

morphologya. Finally, the predicted time evolution of the alongshore-averaged sand bar,

x̂, and 2DH variability, â, are solved for using simple forward integration:

x̂(t + 1) = x̂(t) + ẋ(t)dt, (4.36)

â(t + 1) = â(t) + ȧ(t)dt. (4.37)

Selection of a time step in the model that is excessively large can lead to overshooting

of both parameters. To prevent either x̂ and â becoming negative due to discretization,

limits for both ẋ and ȧ are set such that |ẋ| < 0.9x and |ȧ| < 0.9a when ẋ or ȧ are

negative. As well, x̂ and â are constrained to be greater than 1. Alternatively, higher

order finite-difference methods can be implemented to avoid such issues.
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4.4 Data

4.4.1 Field Site Description

The study site to test our hypotheses was Palm Beach, a 2 km-long, east facing, open

ocean embayment, located approximately 30 km north of Sydney, Australia (Fig. 4.1).

The beach extents are defined by the Barrenjoey headland to the north and the Little

Head headland to the south. The location is micro-tidal and swell-dominated, with

no significant seasonal variability in the wave conditions (Short and Trenaman, 1992).

The dominant wave direction is from the SSE with the occasional E and NE swell and

wave heights averaging 1.5 m but can reach 3-6 m during storm conditions (Short and

Trenaman, 1992). The nearshore beach slope is 0.03 (Wright et al., 1980) and the median

grain size is 0.30 mm (Wright et al., 1980).

Fig. 4.1: Map of Palm Beach, Australia.

Under the Wright and Short (1984) classification scheme, Palm Beach is considered

an intermediate beach. However, the beach morphology at Palm Beach is very dynamic,
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ranging from dissipative, with a longshore uniform sand bar during major storms, through

all four intermediate beach states described by Wright and Short (1984) during milder

wave conditions. The most observed state is the transverse sand bar rip occurring about

55% of the time (Ranasinghe et al., 2004). State changes occur quite rapidly, with

rhythmic sand bars and rip channels developing usually within a week of a major storm.

Although no preferential rip locations were found in a study by Holman et al. (2006),

Alexander and Holman (2004) found a significant correlation at Palm Beach between

offshore significant wave height and inverse rip spacing at short lags (∼ day) indicating

that morphology responds very rapidly to changing wave conditions.

4.4.2 Wave and Tide Characterization

Tide data was acquired from a tide gauge at Patonga, slightly NW of Palm Beach (Fig.

4.1). The offshore wave characteristics (significant wave height, Hs, wave angle, θ, and

significant wave period, Ts) were obtained from a directional wave rider buoy located at

Long Reef, 20 km south of Palm Beach, in a depth of 80 m (Fig. 4.1). Waves recorded

at this buoy can undergo considerable refraction to reach the roughly east-facing beach.

Hourly wave height, period, and direction were input into the 2D HISWA wave refraction

model (Holthuijsen et al., 1989) and propagated to the 10 m contour. Root mean square

wave heights, H10, were smoothed using a 25-point running mean and then decimated at

daily intervals. Breaking wave heights, Hb, were defined following Komar (1974), setting

the breaking parameter, γ, to 0.42 (Thornton and Guza, 1982):

Hb =

(

γ

g

)1/5
[

H2
10cg,10cosθ10

]2/5
. (4.38)

Similarly, local wave heights at the bar location were calculated using linear wave theory

and conservation of energy flux (e.g. Dean and Dalrymple (1991)):

Hbar = H10

√

cg,10

cg,bar

√

cos θ10

cos θbar
(4.39)
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where H10 (Hbar), cg,10 (cg,bar), θ10 (θbar) are the wave height, wave group velocity and

angle of incidence calculated at 10 m water depth (bar), respectively. Wave heights

defined at the location of the bar in the model were set to the minimum of the local wave

height (Hbar), the breaking wave height (Hb) or 0.5h.

4.4.3 Fraction of Breaking (b)

The fraction of wave breaking (utilized in the roller contribution) depends on the non-

dimensional wave height, γ = H/h, in a way that was parameterized using a sigmoid

curve:

b =
1

1 + e
−(γb−γo)

Γ

, (4.40)

γb = Hb/hbar is a mixed variable, comparing the wave height at one location, the break

point, to the depth at another location, the bar crest. The values of γo = 0.39, Γ = 0.055

were chosen to best fit wave breaking data from Duck94 (hourly statistics for October

11-12) and NSTS (November 1978) (Fig. 4.2).

Tidal variation affects the percent of breaking, for example allowing some breaking

at low tide even if no breaking would be predicted at mean tide. Since the subsequent

analysis will be based on daily or semi-daily estimates of wave forcing, these variations

must be parameterized. Using equation (4.40), hourly curves of breaking fraction were

computed for a wave height and tide range (∆tide) values, then integrated to yield tidally-

adjusted curves (e.g. Figure 4.3). Equation 4.40 was adjusted for tidal effect by defining

a new Γt:

Γt = Γ

[

1 + γb
∆tide

h

]

. (4.41)

At Palm Beach, the tide range is 1 m, and therefore not expected to significantly affect

the spread of Γ (Fig. 4.3).
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Fig. 4.2: Breaking curve b fit to 3 field data sets. NSTS data digitized from Thornton
and Guza (1983), Fig. 11. Duck94 data provided by T. Lippmann for Oct.
11-12.
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Fig. 4.3: Variation of breaking curve b for a tidal range of 1 m and varying wave heights.

4.4.4 Beach Characterization

Video Data

A two-camera Argus video-imaging station (Holman and Sallenger , 1993; Aarninkhof

and Holman, 1999; Holman et al., 2003) was installed in the Barranjoey lighthouse in

January, 1996 (Fig. 4.1). The cameras are located 115 m above mean sea level and

face south towards Palm Beach. Only the wide-angle lens camera, C1, was used as it

provides a view of 90% of the study area. During camera installation, the location of

the camera and several visible ground control points (GCPs) were surveyed relative to a



76

known benchmark. Calibration of the camera pointing parameters was computed based

on the image locations of these GCPs (Holland et al., 1997).

To extract sand bar locations, images were first rectified to an overhead (plan) view

using standard photogrammetric transformations. The shoreline at Palm Beach is curved

(Fig. 4.4b), therefore images were transformed to a straightened co-ordinate system

following the method and using the values of Alexander and Holman (2004).
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Fig. 4.4: Example rectification and straightening of images for Palm Beach.(a) Oblique
time exposure image for May 18, 1996. (b) Rectified time exposure image
showing the curve fit (dashed line) used to straighten out the beach. (c) Time
exposure image remapped onto straightened beach coordinates.

Shoreline Position

The intertidal zone (the part of the beach that is submerged only part of the time)

has the largest range of intensity in the images between high and low tide and can be

easily identified due to wave breaking near the shoreline at high tide (a bright intensity
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signal) and wetted sand at low tide (a darker intensity signal). The shoreline, xs(y),

was determined as the shoreward most point of the intensity difference (Ihigh − Ilow)

peak above an empirically defined threshold (Alexander and Holman, 2004). Shoreline

estimates were then filtered using a 25-pt Hanning window to remove any short scale

features or anomalous data. The estimated shoreline for May 18, 1996 is shown in Fig.

4.5 and agrees well with the imaged shoreline, depicted as the shoreward edge of the

shoreline breaker.

Sand bar Position

Daily sand bar positions, xb(y), were obtained optically from daytimex images (images

showing the average of all ten-minute time-exposure images from any particular day)

based on preferred wave breaking patterns that correspond to topographical highs, such

as sand bars (Lippmann and Holman, 1989; van Enckevort and Ruessink , 2001; Alexan-

der and Holman, 2004). Bar positions were estimated at 5 m intervals in the alongshore

direction using a Bar Line Intensity Maximum (BLIM) tool that searches for the local

intensity maximum in a cross-shore intensity profile within a user defined region of inter-

est. Mean sand bar position, x, was defined as the alongshore-averaged distance between

the measured sand bar position, xb(y), and the shoreline, xs(y):

x =
1

Ny

Ny
∑

yi=1

(xb(yi) − xs(yi)). (4.42)

Surf zone Variability

Daytimex images are used to identify intensity patterns associated with breaking over the

sand bar. However, the contrast between breaking and non-breaking waves varies as a

function of distance away from the camera due to variations in grazing angle and ambient

light. To account for these lighting artifacts in the image and to enhance the contrast

between breaking and non-breaking, each daytimex image was adjusted as follows. The

intensity trend due to grazing angle was obtained by taking the intensity values at the
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most offshore location of the image (Itrend(y)), where no breaking was assumed to be

occurring.

The intensity image was remapped based on the variation in the image between the

offshore trend and the maximum intensity possible (I = 1):

Inew(x, y) =
I(x, y) − Itrend(y)

1 − Itrend(y)
. (4.43)

Fig. 4.5: Example of de-trending image to highlight bar position.(top) Day time expo-
sure image for May 18, 1996. (bottom) De-trended intensity image, May 18,
1996 with shoreline (solid) and sand bar (dash).

The surf zone variability index, a, is a proxy for 2DH currents, which in turn are a

function of the bathymetry and the incoming wave field. Plant et al. (2006) proposed a

method to estimate a based on the band-passed root mean variance of the alongshore bar

position. The method works well when sand bars are offshore and not overly 2DH, such

that the identified cross-shore location of the sand bar, xb(y), also represents the center

of breaking. As the sand bar becomes more 2DH, the cross-shore extent of breaking can

also vary in a way that bears on expected 2DH circulation but may not be represented

by a.

Ranasinghe et al. (2004) uses the Variance of the band-pass Filtered Longshore cross-

shore integrated Intensity Profile (V −FLIP ) as a proxy for alongshore variable breaking

patterns and morphology. V − FLIP measurements have slightly linear increases in
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magnitude as sand bars move onshore and then decrease again under low-tide terrace

regimes. Having both end member states (low-tide terraces and longshore-bar-trough)

with similar variance values leads to a non-unique description of the beach state. This

method also assumes that cross-shore integrated intensities will vary in the alongshore

for 2DH sand bars, which is not the case for alongshore uniform width of breaking over

a slightly 2DH sand bar. Thus, a hybrid approach of the two methods is used.

Bar positions (xb(y)) were identified as described in section 4.4.4 (Fig. 4.5, 4.6).

Landward (bm(y)) and seaward (bp(y)) limits to the region of active breaking were defined

by first exceedances of intensity above a threshold of 0.8 times the maximum intensity at

xb(y), subsequently smoothed with a 50 m Hanning filter to remove small-scale variations

(Fig. 4.6 top). Similar to Ranasinghe et al. (2004), Longshore Intensity Profile (LIP (y),

Fig. 4.6 bottom) was found by cross-shore integration of intensities between these limits:

LIP (y) =

bp(y)
∑

bm(y)

Ibreak(x, y)∂x. (4.44)

Finally, a composite Longshore Bar Breaking Profile (LBBP , Fig. 4.6 bottom) com-

bining bar crest position and width of breaking information was then defined as:

LBBP (y) = x − xb(y) + LIP (y). (4.45)

The surf zone variability index (a) was calculated once per day using the spectral

method described in Plant et al. (2006). The input signal (LBBP ) was first de-meaned

and de-trended and Fourier transformed. a was defined as the root mean variance in the

band 30 m < L <400 m.

4.5 Results

A subset of the four years of data presented in Alexander and Holman (2004) and Holman

et al. (2006) was used to test the model. Seven data sets were chosen based on reset

events described in Holman et al. (2006) and varied in length from 1 - 6 months, totaling
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Fig. 4.6: Example of isolating bar position and active breaking.(top) Daytimex image
for May 18, 1996, with sand bar position (xb(y)) (solid) and Ibreak(y) bounds
(bm(y),bp(y)) (dash) (bottom) Bar position (xb(y))(solid), Longshore Intensity
Profile (LIP )(dash), and Longshore sand Bar Breaking Profile (LBBP ) (dash-
dot).

562 days. All data sets included at least 1 major storm and in most cases, also contained

several minor storms in which full resets did not occur. General statistics are summarized

in Table 4.1.

Table 4.1: Data set statistics used in analysis, including major storm resets as defined
by Holman et al. (2006).

Date days resets H(σH) T (σT ) cos θ(σcos θ)

April 1996 20 1 1.13 (0.61) 9.67 (1.31) 0.94 (0.04)

July 1996 162 4 0.84 (0.46) 8.72 (1.38) 0.94 (0.06)

May 1997 72 1 1.18 (0.65) 9.66 (1.34) 0.96 (0.05)

October 1997 83 1 0.77 (0.40) 8.40 (1.44) 0.93 (0.07)

March 1998 38 1 0.96 (0.52) 9.88 (1.64) 0.94 (0.05)

May 1998 95 2 0.98 (0.63) 9.74 (1.36) 0.94 (0.08)

April 1999 89 1 1.27 (0.59) 10.34 (1.60) 0.96 (0.05)

4.5.1 Initial Testing

Prior to coupling equation (4.31) and equation (4.33) to form the dynamic model, each

equation was individually tested in forward prediction mode. There are 5 free parameters

(α1-α4 and γeq) for which appropriate values must be chosen. The criteria for selecting γeq
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was based on matching overall rates and magnitudes of offshore migration when κa = 1,

such that only 1DH processes were considered. Values greater than ∼ 0.42 indicate waves

breaking offshore of the bar. A value of 0.65 corresponds to ∼ 100% breaking according

to Fig. 4.2, or that for offshore bar migration to occur, all waves must be breaking

seaward of the current bar location.

α1 and α3 represent overall magnitude terms, while α2 indicates the influence of a on

ẋ, and α4 balances relative growth and decay of a. In selecting α1 and α2 we used equation

(4.31) with measured a, H, T , and θ and for α3 and α4, we used equation (4.33) with

measured x, H, T , and θ. A least-squares solution using the entire data set to solve for the

α coefficients was initially attempted. Values estimated by the least-squares method did

not represent the observed magnitude of short-scale variability when tested on individual

data sets. The α coefficients ([α1 α2 α3 α4] = [352 0.0165 50 0.035]) damped out all the

higher frequency variability, but were able to capture the low-frequency trends. This is

easily seen by comparing the frequency cross-spectra of the observed values of mean bar

position versus that modeled using the least-squares solution. Comparing data sets this

way allows us to objectively identify model skill over a wide range of frequencies. Figure

4.7 shows the least-squares solution captured the low-frequency energy of the system but

under-estimated the energy in the higher frequency range for x (Fig. 4.7). Predicted

and measured values of x were also coherent for signals longer than roughly 15 days.

Comparisons of a and predicted a showed that the energy in the low-frequency band was

again being captured by the least-squares fit. High frequency data was not well modeled

using these coefficients. As well, coherence between the two data sets dropped off quickly

(Fig. 4.8), suggesting a is not well modeled using these coefficients.

Alternatively, α coefficients were subjectively determined from a visual best-fit to

data ([α1 α2 α3 α4] = [1100 0.017 85 0.035]). Comparing the spectra of the true values

of mean bar position versus that modeled using the subjectively-defined values showed

that these matched both the low and higher-frequency components of x (Fig. 4.9) and a

(Fig. 4.10). The coherence shows good agreement for signals longer than roughly 6 days
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Fig. 4.7: Comparison of spectra between measured x values and predictions based on
least-squared fit for α values. [α1 α2] = [352 0.0165]. Frequency units are
cycles/day.
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Fig. 4.8: Comparison of spectra between measured a values and predictions based on
least-squared fit for α values. [α3 α4] = [50 0.035].

in x. Comparisons of a were again less telling with coherence similar to the least-squares

solution, again suggesting a may not be well-modeled using these coefficients. We use

the subjectively-defined coefficients in testing individual data sets because they provide

a better representation of the data variability at all scales.

Model skill, S = R2, based on the correlations between measured (e.g. x) and

predicted (e.g. x̂) values for each run were compared against a critical skill, Scrit, at the

95% level (Table 4.2). Scrit was determined from the average value based on long-lag

correlations and the pdf method. For ẋ (4.31), all data sets showed significant skill in

predicting the time evolution of x̂ (e.g. Figs. 4.11, 4.13). Results for ȧ (4.33) were

similar, but with only 3 of the 7 data sets showing significant skill at predicting â (e.g.
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Fig. 4.9: Comparison of spectra between measured x values and predictions based on
subjectively-determined α values. [α1 α2] = [1100 0.017].
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Fig. 4.10: Comparison of spectra between measured a values and predictions based on
subjectively-determined α values. [α3 α4] = [85 0.035].

Fig. 4.12).

Table 4.2: Data set skill values for individual equations using subjectively-determined
α values.

Date R2
xx̂ Scrit R2

aâ

April 1996 0.92 0.41 0.66

July 1996 0.42 0.07 0.02

May 1997 0.31 0.14 0.11

October 1997 0.28 0.12 0.33

March 1998 0.61 0.24 0.65

May 1998 0.41 0.11 0.04

April 1999 0.27 0.11 0.03

The July - December 1996 data set was the longest run tested. The model did
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Fig. 4.11: Results for forward testing of ẋ for April - May 1996 storm. The model
skill was significant at the 95% level with R2 = 0.92. Raw data (circle) and
predicted values (line).

surprisingly well (Fig. 4.13), capturing short term variability as well as the longer term

trends in bar position given correct input data of wave conditions and 2DH variability.

To our knowledge, this is the longest continuous modeling of cross-shore bar migration

to include short-term variability from multiple storm-sequences and subsequent recovery.

The predicted evolution of a was less accurate (Fig. 4.14).

Table 4.3: Data set skill values for dynamically coupled model using subjectively-
determined α values.

Date R2
xx̂ Scrit R2

aâ

April 1996 0.90 0.41 0.76

July 1996 0.18 0.07 0.05

May 1997 0.61 0.14 0.05

October 1997 0.35 0.12 0.14

March 1998 0.59 0.24 0.52

May 1998 0.40 0.11 0.04

April 1999 0.22 0.11 0.03
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Fig. 4.12: Results for forward testing of ȧ for April - May 1996 storm. The model skill
was significant at the 95% level with R2 = 0.66.

Based on the results for the individual equations, the model equations were coupled

and dynamic forward predictions (x̂, â) were computed. x̂ was predicted with significant

(95% level) (e.g. Fig. 4.15) in all cases, while â was significant for 3 of the 7 cases (Table

4.3). The subjectively-determined parameters did surprisingly well on the more complex

data sets (those spanning multiple minor storms and in some cases, multiple major

storms), suggesting that a single set of parameters can be used to model complex systems.

For example, the March 1998 data set (Fig. 4.16), had R2
xx̂ = 0.59 and R2

aâ = 0.52. In

this data set, the morphology started out as a terrace system, became linear as the bar

moved offshore, and then rapidly grew 2DH features and moved back onshore, reforming

terraces.

4.5.2 Regression Analysis on Individual Data Sets

Although the subjectively-determined α coefficients chosen in the initial testing provided

reasonable results, we would like to know if predictions could be improved by using a
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Fig. 4.13: Results for forward testing of ẋ for July - December 1996 data set. The model
skill was significant at the 95% level with R2 = 0.42. Raw data (circle) and
predicted values (line).

nonlinear least-squares fit to the data to solve for the unknown coefficients for each data

set. In this way, we may also gain insight into the variability and importance of these

terms under different scenarios. Initial guesses for the α coefficients were set to the

subjectively-determined values mentioned above. Upper and lower bounds were also set,

constraining the solution to within a reasonable range of physically accepted values (for

instance, α > 0). The nonlinear least-squares fit was based on comparisons of values (e.g.

x versus x̂) rather than gradients (e.g. ẋ versus ˆ̇x). This method was preferred since

gradients can be very noisy, while the overall temporal evolution may be much smoother.

Table 4.4 summarizes the regression results.

Using the nonlinear least-squares fit α values, 5 out of the 7 predictions had a better

combined mean ((Sx+Sa)/2) skill. In some instances, this increase in skill was substantial

(e.g. Fig. 4.17 versus Fig. 4.18), however, a number of the estimated α coefficients,

namely α1 and α3 were equal to the lower or upper bound values, suggesting the solution
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Fig. 4.14: Results for forward testing of ȧ for July - December 1996 data set. The model
skill was not significant at the 95% level with R2 = 0.02. Raw data (circle)
and predicted values (line).

Table 4.4: Regression coefficients based on nonlinear least squares regression fit to full
data set. 95% confidence intervals are also given. For the mean values (±
2σ). Initial estimates = [α1 α2 α3 α4] = [1100 0.017 85 0.035]. Lower bounds
= [800 0 50 0]. Upper bounds = [2000 1 150 1].
Date α1 α2 α3 α4

April 1996 1050 ± 116 0.03 ± 0.003 98 ± 86 0.04 ± 0.008

July 1996 800 ± 118 0.02 ± 0.007 50 ± 87 0.05 ± 0.013

May 1997 800 ± 66 0.02 ± 0.002 77 ± 25 0.04 ± 0.006

October 1997 800 ± 114 0.03 ± 0.001 150 ± 71 0.04 ± 0.007

March 1998 800 ± 76 0.05 ± 0.002 150 ± 25 0.04 ± 0.007

May 1998 800 ± 83 0.02 ± 0.007 50 ± 36 0.04 ± 0.002

April 1999 800 ± 83 0.01 ± 0.001 150 ± 29 0.06 ± 0.008

Mean 835 ± 188 0.03 ± 0.02 104 ± 92 0.04 ± 0.02

may have been artificially constrained. Using unbounded solutions produced lower skill

values as the nonlinear regression technique tended to emphasize the low-frequency trends

and not capture the high-frequency variability.
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Fig. 4.15: Results for forward testing of the coupled dynamic model for April - May
1996 storm. The model skill was significant at the 95% level with R2

xx̂ = 0.90
and R2

aâ = 0.76.

Table 4.5: Data set skill values using nonlinear least-squares α values for each data set.
Date R2

xx̂ Scrit R2
aâ

April 1996 0.91 0.41 0.86

July 1996 0.23 0.07 0.06

May 1997 0.79 0.14 0.36

October 1997 0.31 0.12 0.09

March 1998 0.53 0.24 0.52

May 1998 0.47 0.11 0.23

April 1999 0.33 0.11 0.09

4.5.3 Model Stability

Although the model was formulated based on an equilibrium approach to sand bar mi-

gration and 2DH morphology, it is convenient to know if the model coefficients are indeed

stable. To test this, the model was run in prediction mode with each set of the regression

coefficients using constant wave forcing conditions and starting at the initial (t=1) values
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Fig. 4.16: Results for forward testing of the coupled dynamic model for March - April
1998 data set. The model skill was significant at the 95% level with R2

xx̂ =
0.59 and R2

aâ = 0.52.

for x and a. In all cases, the model converged on a solution pair (xo and ao), unique to

the set of α coefficients. This analysis was repeated using the subjectively-determined α

values to determine if initial positions influenced the final equilibrium position. All data

sets converged on the same equilibrium solution, indicating that initial position had no

influence on the dynamic equilibrium and the systems were indeed predictable.

4.6 Discussion

Ideally we would like to be able to model the nearshore system using fully 3D models

that are capable of capturing all the necessary physics for driving nearshore flows and

sediment transport. However, our understanding of the physics that govern sediment

transport is still lacking, as many models are unable to predict accurate rates of onshore

and offshore sediment transport. These more complex models are also sensitive to ini-

tial and boundary conditions, requiring accurate knowledge of bathymetry and waves in
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Fig. 4.17: Results for forward testing of the coupled dynamic model for May - July
1997 data set using subjectively-determined alpha coefficients. The model
skill was significant at the 95% level with R2

xx̂ = 0.61 and R2
aâ = 0.05.

order to accurately predict morphology change. Small errors in either input can cause

solutions to diverge from the true solution. The use of fully 3D models is also com-

putationally expensive, although becoming more feasible as computer power becomes

more readily available. Alternatively, parametric models can be designed in such a way

to gain understanding of certain relationships between forcing and sediment transport.

These models are simple and efficient, requiring knowledge of bulk terms, such as bar

position or offshore wave height, rather than bathymetry and wave height variation over

the domain. These models also trade the more complex physics-based equations for

more observation-based parameterizations. Here we attempt to merge parametric and

physics-based approaches. Sediment transport is modeled using energetics-based equa-

tions (BBB-type). Equations are then transformed to a parametric form based on the

relationship between bar migration of a constant form and the resulting sediment trans-

port pattern. The model is then extended to include the effects of 2DH currents on
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Fig. 4.18: Results for forward testing of the coupled dynamic model for May - July 1997
data set with α coefficients solved for using nonlinear least squares fit to the
data. The model skill was significant at the 95% level with R2

xx̂ = 0.79 and
R2

aâ = 0.36.

alongshore-averaged sand bar migration.

4.6.1 The Effect of 2DH Variability on ẋ

One of the driving forces behind this research was the common assumption that 2DH

processes have a negligible influence on cross-shore sand bar migration rates. Plant et al.

(2006) first questioned this assumption, introducing a parametric model dynamically

linking the alongshore-averaged sand bar position and 2DH variability (sinuosity). The

modeled parameters (bar position and sinuosity) were shown to be dynamically coupled

and that the sinuosity term had a positive influence on onshore migration rates. Using

this formulation, they were able to accurately predict onshore and offshore sand bar

migration over a two month period at Duck, North Carolina.

The model presented here is an extension of this theory. Using a non-linear model,
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we test whether cross-shore sand bar migration rates are influenced by 2DH currents

through a proxy modeled as the presence of 2DH sand bar variability. We find that both

onshore migration rates increase under 2DH conditions with respect to a 1DH version of

the model and that 2DH systems can sustain higher wave conditions without resetting

due to the fact that return flow does not need to return as undertow, but rather as 2DH

currents. By including a proxy for 2DH currents through the 2DH variability influence

factor, κa, we isolated the importance of including such a term in future models.

Values of κa ranged from 1(at full breaking) to 2.5 (Fig. 4.19). Plotting κa against

γb shows the maximum influence of κa exists under mid-range γb (0.4 < γb < 0.75) with

negligible influence at low and high values of γb (i.e. κa = 1). Similar relationships are

seen for κa versus Ω. As γb approaches 0, bar migration/sediment transport ceases. As

γb increases, the magnitude of onshore transport also increases, up to a maximum around

γb ≈ 0.6. There is a sharp decline in onshore migration with a reversal in direction and

increasing magnitude of offshore migration as γb exceeds roughly 0.8.
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Fig. 4.19: Comparison of κa versus γb.

The influence of κa not only provides the increased rates of onshore transport, but also

a shift in the effective γeq for onshore/offshore transport. This is easily seen comparing

the sign of ẋ versus γb values. There is a distinct shift between onshore and offshore

migrations around γb ≈ 0.75 (Fig. 4.20). Recalling that γeq = 0.65, onshore migrations

are occurring up to values of γb ≈ 1, suggesting a strong influence of 2DH variability in
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Fig. 4.20: Comparison of modeled ẋ versus γb.

maintaining onshore migrations during higher wave conditions that could not be predicted

using a simple 1DH approach. The result is hysteresis in the bar system response to

varying wave forcing.

4.6.2 Relation to Ω

The influence of κa is most dominant at low-medium energy conditions (1 < Ω < 3) (Fig.

4.21). There are distinct changes between onshore and offshore migrations as a function

of Ω. Transitions between onshore and offshore migrations, however, happen at lower

values of Ω than expected. Onshore migrations can be linked to lower energy conditions

(Ω < 6) and therefore longer response times, while offshore migrations occur during both

intermediate (2 < Ω < 6) and dissipative conditions (Ω > 6), linked to much shorter

response times.

4.6.3 1DH Model Comparison

The model was run in 1DH mode (setting a = 0, thus κa = 1) using the same coefficient

values for α1 − α4 and γeq. The results were compared against the results of the 2DH

model. The model skill for the 1D model was significantly lower for most data sets. When

compared against incident wave angle, the largest decreases in skill coincided with low

wave angles (|θ| < 20), when 2DH currents are expected to influence onshore migration
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Fig. 4.21: Comparison of κa versus Ω.

rates (Fig. 4.22). According to Wilson et al. (in review), wave angles greater than 20◦

are equivalent to roughly a 75% decrease (ζ = 0.25) in 2DH currents, such that 1DH

dynamics dominate and we expect similar skill from both 1DH and 2DH models.

Fig. 4.22: Comparison of 1D model (dash) and 2D model (solid) for predominantly low
wave angle case. Shaded areas represent times when offshore wave angles
were greater than 20 degrees and 1DH processes should dominate.
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4.6.4 Range of α Coefficients

One of the issues with using a nonlinear least squares regression approach is that there

are multiple local minimum solutions. Also, due to the dynamic nature of the model, we

simultaneously solve for a best fit to both equation (4.36) and equation (4.37), therefore

a better fit in one data set may yield a worse fit for the other. As well, using the

least-squares fit to solve for α coefficients is sensitive to local errors in ẋ and ȧ, such

that in some instances, the model might have predicted a larger offshore migration than

measured but then mapped the rest of the variability well (appearing as an offset between

modeled and measured x) (e.g. Fig. 4.16). In these instances, the least-squares solution

chose smaller α1 and α3 values and subsequently damped out the short scale variability.

Sensible initial estimates and bounds were chosen to converge on meaningful solutions.

An alternative method for determining α coefficients may provide increased model skill,

however, the subjectively-determined values chosen seem to model a wide variety of

conditions successfully such that we are satisfied with the choices.

4.6.5 Bathymetry Representation

The full problem describing sediment transport in the nearshore region requires knowl-

edge of h(x′, y′, t), i.e. depth and its evolution everywhere. Our analysis includes a num-

ber of assumptions and potential sources of error including the reduction of bathymetry

data to two variables, x and a, and the estimation of those variables from images.

Without extensive surveys of the beach, which is prohibitive for large areas over long

timescales, proxies for the beach morphology are required. The use of Argus video data

is critical to this problem as it allows us to map out large spatial and temporal extents

of the morphology that could not be attained in any other reasonable way.

The estimation of alongshore-averaged bar position from Argus images is based on

the link between the peak in breaker intensity in an image and the sand bar location (e.g.

Lippmann and Holman (1989); Aarninkhof (1996); Aarninkhof and Holman (1999); van

Enckevort and Ruessink (2001, 2003a,b)). This method works best under typical non-
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storm wave conditions, where waves are expected to break over the sand bar. Under storm

conditions the entire surf zone is often saturated, making bar identification challenging.

Likewise, under extreme calms, when no waves are breaking, bars cannot be located.

Fortunately, bar movement is minimal in calm periods, so bar position can be interpolated

from previous and subsequent days. In several instances, errors could be attributed to

only partial exposure of a complex or double bar system due to limited wave breaking

(e.g. the 3 day period in mid June 1997 (see Fig. 4.17). The sharp onshore migration

at low wave heights is due to limited breaking over the bar. As wave heights increase

slightly, the breaking over the bar is observed to move back offshore.). A subsequent

increase in wave height could reveal the full offshore extent of the bar, thus could appear

to cause an artificial offshore migration.

The proxy for 2DH currents, measured through a, may be more difficult to capture

as the relationship between breaking patterns and the induced 2DH circulation is not

well understood. For this reason, the parametric constraints on modeling a are also

less rigorous. For instance, terrace morphologies, often incised with rip channels, were

difficult to represent. Narrow channels in an otherwise alongshore uniform system could

have small values of a, but not necessarily negligible 2DH circulation (which is what

a is attempting to represent). Under some 2DH conditions, the breaking pattern had

longshore gaps that were spatially interpolated over to provide an estimate of xb(y).

Because wave height and breaking patterns can induce a fair amount of noise into the

measurement of x and a, modeling the time evolution of x and a rather than ẋ and ȧ

provides a more stable solution.

4.6.6 Wave Data

The closest available wave data was 20 km away in 80 m depth. Due to the orientation

of the beach with respect to the dominant wave direction and the location of the beach

in relation to the wave buoy, we required a model to transform to local conditions. The

HISWA model was used to transform wave heights to the 10 m contour. The parameters
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used to shoal and refract the waves were tuned to best-fit inshore measured root mean

square wave height during RDEX, October 1999 (see Reniers et al. (2001) for data

comparisons). However, on several occasions there were obvious discrepancies between

the amount of breaking in images and that expected for the model wave heights (e.g. Fig.

4.23). Buoy wave data were represented by only three parameters, Hs, a representation

of the total variance, Tp, and cos θp, the period and direction of the highest spectral

peak. If wave energy is instead directionally spread (for example in a bimodal spectrum)

a large portion of the expected energy may never reach the beach, so forcing will be in

error.

x(
m

)

y(m)

19−Jun−1999

−400 −200 0 200 400 600

0

100

200

300

x(
m

)

y(m)

26−Jun−1998

−400 −200 0 200 400 600

0

100

200

300

Fig. 4.23: Example images of mismatch between measured and observed wave heights.
June 19, 1999: Measured wave heights were ≈ 0.55 m, while no breaking
appears in the image, suggesting much smaller wave heights were present.
June 26, 1998: Measured wave heights were ≈ 0.25 m, while lots of breaking
existed in the image.

4.6.7 Model Limitations

Introduction of a physics-based link between parametric bar behavior (bar migration rate)

and the sediment transport that caused migration is an important part of this model.

The link is based on the assumption that the bar shape has a quasi-constant form. This

is a good parameterization for offshore features, but is violated in highly 2DH systems,

where large terraces or shoals close to shore adjacent to cuts (rips channels) dominate

the morphology. We assume that this will induce detail errors, but not seriously affect

the bulk physical processes being modeled.

Including a cross-shore dependency on the height and width of the bar agrees well

with observations at this location. Under the cross-shore extents that we examine in

the present model it is observed that as bars migrate offshore, they gain volume and
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therefore have reduced migration rates. Similarly, as they approach the shoreline, they

continue to reduce in size, increasing their migration rates (for a constant wave height)

but only up to a certain point. However, as bars run into the shoreline, they maintain a

significant volume (in the form of shoals) that will require significant transport to move.

Thus, under terrace conditions, the model over-predicts onshore migration rates (e.g.

mid-November 1997, Fig. 4.24).
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Fig. 4.24: Results for forward testing of thex̂ model for October 1997 data set, high-
lighting over-prediction of onshore migration for terrace systems. Notice in
mid-November through mid-December bar position remains fairly static (ter-
race system), while the model predictions show a continued onshore migration
and then recovery.

Cross-shore sediment transport, Qx, was formulated using energetics-type equations

(BBB), simplified to focus on contributions due to the roller term, neglecting bedload,

return flow due to Stokes drift, downslope, and skewness terms on the assumption that

their net effect is insignificant compared to breaker driven processes. The original for-

mulation looked at changes around this defined equilibrium in terms of variations in the
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fraction of breaking (b). However, for most conditions values of b at the bar crests were

close to 1.0, so that b had a very limited dynamic range. For example, large storms were

indistinguishable from average wave conditions. Alternatively, γb had a much larger dy-

namic range and is a better representation of changing wave heights and storms influence

on the direction and rate of cross-shore transport.

The extension of the BBB-based 1D sediment transport equation to 2D cannot be

similarly derived from simple heuristic arguments. Instead, assumptions of the form of a

as well as its influence on cross-shore transport processes were required. The parameter-

izations used in the model are sensible extensions, based on observations of onshore bar

migration under 2DH morphology. However, there is no direct proof that the equations

presented here offer a unique solution to the problem. Despite these simplifications, the

equations showed strong skill at modeling a wide variety of conditions and allow us to

focus our thinking on the influence of 2DH morphology on cross-shore sand bar migration.

4.7 Conclusions

A new, nonlinear behavioral model has been developed to study sand bar response to

changing wave forcing. The bar system is represented by two parameters: the along-

shore mean bar position (x) and 2DH bar variability about that mean (a). Cross-shore

bar migration is driven by a physics-based sediment transport formulation (BBB) under

the assumption of constant bar form, modified to allow increasing bar volume with off-

shore distance. The presence of alongshore variability, a, is assumed to cause horizontal

circulation with potentially important consequences to bar variability, represented by

empirical terms. The final form of the model has two coupled equations describing the

time evolution of x and a.

The model was tested using video images from Palm Beach, Australia. Seven data

sets, totaling 562 days and 11 major storms over a four-year period were used. Mea-

surements of x and a were extracted from wave breaking patterns in daily-averaged time

exposure images. Using subjectively-determined values for the model coefficients, model
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skill was significant at the 95% level for all data sets in predicting x. Spectra were well

reproduced and coherent with the data for most frequencies less than 1 in 6 days. The

model was less successful at predicting a. Model skill was improved using least-squares

solutions for the α coefficients for individual data sets although coherence of x predic-

tions was reduced at higher frequencies. To our knowledge, this is the first model to

reasonably predict bar response for multi-storm time scales.

The model was capable of reproducing onshore migration and growth of 2DH vari-

ability under mild wave conditions as well as offshore migration and straightening during

storms. The influence of a, modeled here as κa, was found to increase onshore migration

rates during moderate wave conditions, a role that has usually been assumed negligible.

In addition, alongshore variability appears to stabilize 2DH systems against larger waves

by reducing undertow in favor of circulation. This effect introduces hysteresis into the

system. When waves were highly oblique (> 20◦), these 2DH effects are highly reduced

due to the parameterized role of longshore advective terms. Migration rates were also

dependent on the amount of wave breaking, becoming insignificant during non-breaking

conditions.
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5. ESTIMATION OF NET SEDIMENT TRANSPORT FROM 2D

CHANGES IN BATHYMETRY

5.1 Abstract

In this chapter we explore the possibility of obtaining unique 2D sediment transport pat-

terns from changes in bathymetry through the 2D conservation of mass equation. The

problem is under-determined, having two unknowns and one known variable. Measure-

ments of changes in depth, ∆h/∆t can be obtained through classical survey methods.

However, the contributions of the alongshore component of sediment transport, Qy, and

the cross-shore component of sediment transport, Qx are unknown. Therefore, additional

constraints are required in order to invert transport from changes in bathymetry. We

assume that that the cross-shore integral of Qx is closed, such that no sand enters or

exists the system in this direction. By conservation of mass, this requires changes in

volume of the cross-shore transect to be due to gradients in Qy. Here we test six rules

for distributing Qy: three constraints describing one component of alongshore transport,

Qr
y, and three describing the cross-shore distribution of the excess volume component,

Qe
y. Initial results suggest that requiring sediment to travel down slope (Qr

y = f(βy)) is

a possible parameterization for describing transport of distinct perturbations. Alterna-

tively, basing the relationship of Qr
x and Qr

y on spatial lag correlations of the bar form

between two surveys showed good results for identifying transport associated with along-

shore migrating features. This method, however, did not do well under strictly onshore

migration of 2D features, where alongshore transport was not predicted. A hybrid ap-

proach, using both the down-slope constraint and spatial correlation lags may provide

more robust predictions on sediment transport patterns in complex environments. Due

to the lack of closed boundaries in the alongshore, knowledge of Qy(x, y0) is required to

obtain net sediment transport patterns. Alternatively, spatial patterns of the transport
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gradients provide useful insight into the system behavior without requiring Qy(x, y0).

5.2 Introduction

Sand bars are one of the most prominent features of nearshore morphology. Bars act as

natural buffers to the beach against storm wave action, dissipating wave energy offshore

and away from the valued beach and dune system and human activity. They are also

extremely variable, moving onshore and offshore in response to changing wave condi-

tions and changing among a suite of shapes and morphologies. The transport processes

associated with sand bar generation and migration are not well understood, making it

a challenge for scientists and planners to accurately predict the natural cycles of the

nearshore region. It is certainly true that bars develop where sediment transport pat-

terns converge. Thus, early models assumed an initial featureless profile on which sand

bars were generated by sediment transport convergence caused by any of a variety of

mechanisms (e.g. Bowen and Inman (1971); Holman and Bowen (1982)).

Another well-known example is the breakpoint model (e.g. King and Williams (1949);

Greenwood and Davidson-Arnott (1979); Roelvink and Stive (1989); Marino-Tapia et al.

(2007)) that suggests that sand bars are generated at the location of initial wave breaking

due to unspecified convergences in sediment transport. For depth limited breaking, this

location is determined by the saturation condition for breaking, γ = Hrms/h < 0.42,

where Hrms is the local root mean square (rms) wave height and h is the local water

depth (Thornton and Guza, 1982, 1983). Taken literally this model predicts that as wave

heights change, the sand bar will instantaneously move to the location along a smooth

background bathymetry profile where this condition is true.

There are two flaws in this concept. First, because sediment transport rates are finite,

bar response cannot be instantaneous and must continually lag behind the forcing. Thus,

several recent papers have attempted to model this pursuit of equilibrium in terms of

simplified dynamical equations (e.g. Plant et al. (1999, 2006); Splinter et al. (submitted)).

Second, once sand bar response to forcing becomes significant (depth at the bar changes
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appreciably), the location of initial wave breaking will also change, rendering the earlier

prediction invalid. This feedback between the transport patterns forced by waves and

the effect of the resulting bathymetry changes on those forcing patterns is fundamental

to understanding changing sand bar morphologies.

Nearshore profile (1DH) and area (2DH) models that include sediment transport

modules and allow bathymetry to respond appreciably will naturally include these feed-

backs between an existing bar and the fluid forcing. For example, Gallagher et al. (1998)

observed and described the feedbacks between undertow and the existing morphology.

Specifically, under large waves, the maximum in undertow is located over the bar crest,

causing offshore directed sediment transport and convergences on the seaward face of

the bar. This shifts the bar and therefore the breakpoint and the maximum in the un-

dertow seaward, reinforcing offshore migration until waves are no longer able to break

over the bar. Similarly, Ruessink et al. (2007) showed that feedbacks between near-bed

wave skewness, bedload transport, and the bar morphology are significant in describing

onshore migration. These models utilize a variety of sediment transport formulations,

based on wave and flow characteristics. Yet most, if not all models lack the proper physics

to model both onshore and offshore bar migrations and the associated changes in 2DH

variability of the bar form.

Parametric models, wherein the sand bar morphology is represented by a few vari-

ables, such as the bar crest position, have also been used to study the feedbacks between

existing morphology and sediment transport. For example, Plant et al. (2001) (hereafter

PFH01) provided a framework for analyzing the 1DH behavior of a natural sand bar

system that we will try to extend to 2DH in this paper. The goal of PFH01 was to

understand the relationship between any sand bar and the sediment transport induced

by the bar under varying wave forcing. This required both accurate measurements of

bathymetry and sediment transport.

Continuous cross-shore profiles of accurate sediment transport data are not generally

available. However, one of the contributions of PFH01 was their use of an accurate
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method to invert data on bathymetry change to yield transport. In general, bathymetry

changes are related to sediment transport by the equation for the conservation of mass:

µ
∂

∂t
h(x, y, t) =

∂

∂x
Qx(x, y, t) +

∂

∂y
Qy(x, y, t), (5.1)

where µ is the sediment packing factor, h(x, y, t) is the depth field, a function of cross-

shore location x measured positive from the shoreline, y the alongshore location and t,

time, and Qx and Qy are the depth integrated net cross-shore and alongshore sediment

transport, respectively. PFH01 analyzed alongshore-mean bathymetry profiles so that

the second term of equation (5.1) was identically zero and the equation reduced to:

µ
∂h(x, t)

∂t
=

∂Qx(x, t)

∂x
. (5.2)

For two profile surveys, separated in time by ∆t, the left hand side can be approximated

by the finite difference form, ∆h/∆t. Equation (5.2) can then be integrated in x starting

at some point landward of any profile change to yield the profile of cross-shore transport

that was needed to explain the observed profile change:

Qx(x) =

∫ x

0
µ

∆h

∆t
(5.3)

Equation (5.3) is a powerful tool in this analysis, providing accurate estimates of

cross-shore sediment transport everywhere without the need for any in-situ measurements

or temporal averaging. The results are, by definition, the correct transport profiles to

explain the observed profile changes. Given good data on both the evolving profile and

the accurate net sediment transport between surveys, PFH01 were then able to study

the feedbacks in the system, that is the relationship between sand bars and the sediment

transport they cause, as a function of wave conditions.

To proceed, PFH01 modeled each beach profile in terms of a set of Gaussians su-

perimposed on a background planar slope. Sediment transport profiles were then fit

using corresponding Gaussians and error functions (the orthogonal function to a Gaus-
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sian) such as any signal can be decomposed into sines and cosines by Fourier transform.

Fits were usually excellent, with R2 usually greater then 0.8. Continuing the analogy

to Fourier analysis, the relationship between the two signals could then be expressed in

terms of a magnitude and a relative phase, computed from the relative contributions of

the error function and Gaussian. A relative phase of 0 (transport looks like the Gaussian

bar) will lead to simple offshore bar movement, much like ocean waves wherein orbital

velocity and wave form are in phase. A phase of π corresponds to onshore progression

with no change in form. Phases of ±π/2 represent bar growth/decay, respectively.

Through this analysis PFH01 showed that the majority of temporal changes of the

profile were due to migration of a constant bar form (phase equal to 0 or π almost exclu-

sively). They then further related the observed phase to the non-dimensional breaking

parameter, γbar = Hbar/hbar, and found distinct jumps between onshore and offshore

transport at γbar ≈ 0.3, or the onset of wave breaking. This value is slightly lower

than the one suggested by Thornton and Guza (1982, 1983). Since experiments were

performed under different field conditions (PFH01 on a barred beach at Duck, North

Carolina and Thornton and Guza (1982, 1983) on an planar beach at Torrey Pines, CA),

it is difficult to quantify differences.

Using a simple approach that was based solely on alongshore-average bathymetry

data, PFH01 were able to demonstrate the presence and nature of the fluid-forced sed-

iment transport over a nearshore sand bar. They showed that the induced sediment

transport was coherent with the bar form (explaining most of the variance) and that

variability was mainly due to progressive motions alternating between on and offshore,

depending on the presence of wave breaking.

Observations show that sand bar morphologies are usually highly two-dimensional

(horizontal, 2DH) (e.g. Zenkovich (1967); Sonu (1973); Wright and Short (1984); Lipp-

mann and Holman (1990); Alexander and Holman (2004); van Enckevort et al. (2004)).

Analogous to the 1DH results of PFH01, we expect that strong feedbacks between the

bar profile and induced sediment transport patterns likely exist under typical 2DH condi-
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tions as well. Both Lippmann and Holman (1990) and Ranasinghe et al. (2004) examined

long records of daily morphological beach states (Wright and Short , 1984) and found that

under accretional conditions, “down-state’ transitions were more dependent on the previ-

ous morphological state than on the current wave forcing, suggesting a positive feedback

system where 2DH processes influence the time-varying response of sand bars to chang-

ing wave conditions. Recent work by Plant et al. (2006) and Splinter et al. (submitted)

have studied the dynamical link between onshore bar migration and 2DH variability,

further supporting the importance of feedbacks between 2DH morphology and sediment

transport patterns.

We hypothesize that strong feedbacks exist between existing morphology and the

resulting sediment transport patterns that determine the evolution of the system. In

order to understand these systems, we require accurate knowledge of directional sedi-

ment transport under varying wave conditions. Such data are not currently available.

Extending the work of PFH01, it is the objective of this research to develop methods

for inverting 2D bathymetry change data to obtain unique solutions of 2D sediment

transport associated with onshore bar migration. As part of this work, we examine the

consequences of different assumed constraints used to close the problem and the resulting

net sediment transport patterns. Initial testing is done on synthetic beaches and later

tested on bathymetry collected during the SandyDuck field experiment.

5.3 Approach

The fundamental equation for this work is the 2D equation for the conservation of mass

(equation 5.1) that relates the directional components of sediment transport (Qx, Qy) to

bathymetric change. Unlike the 1DH case, the 2D equation has two unknowns, Qx and

Qy, and only one known, ∆h/∆t, so is under-determined. Therefore, it is necessary to

make further assumptions in order to get a unique solution for net sediment transport.

Here we discuss several options, using information available from bathymetry surveys.

For simplicity, all terms will be considered a function of (x, y), unless otherwise stated.
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For illustration, Fig. 5.1 shows several examples of synthetic beach changes for which

associated sediment transport pathways can be imagined. The differences between two

profiles (∆h/∆t) have unique patterns based on the morphological change. For instance,

onshore migration of a linear bar appears as Fig. 5.1a. A slightly more complex pattern

exists for a linear bar that becomes 2DH variable (Fig. 5.1b). A bar that continues to

grow in 2DH variability, while moving onshore has a ∆h/∆t that looks like Fig. 5.1c. A

2DH alongshore variable bar that is both growing and migrating alongshore has a ∆h/∆t

pattern that looks like Fig. 5.1d. Understanding the relationship between patterns of 2D

bathymetry change data and the associated sediment transport will help us understand

the dynamics of coastal change.

For a closed, idealized system, the change in volume (∆V/∆t) for a given time is

zero, such that mass is conserved. In real world examples, ∆V/∆t = 0 is not required.

If our cross-shore domain is large enough, we can constrain the solution such that no

sediment enters (Qx(0) = 0) or exits (Qx(∞) = 0) at the boundaries. Therefore, any

changes in volume are due to converges or divergences in the alongshore transport (Qy).

Excess volume for a given cross-shore transect (∆V (y)/∆t) is determined by

∆V (y)

∆t
=

∫

∞

x=o

∆h(x)

∆t
dx, (5.4)

=

∫

∞

x=0

∂Qy(x)

∂y

1

µ
dx, (5.5)

where ∆h/∆t = (hf − hi)/∆t, where subscripts f , and i indicate final and initial condi-

tions and ∆h/∆t > 0 indicates erosion. µ is the sediment packing factor (set to 0.65).

Rules can be defined for Qx, Qy, or both. We begin by placing constraints on Qy,

which we will denote by Qr
y and Qe

y. Knowing that volume must be conserved, we define

the total alongshore transport to be

Qy = Qr
y + Qe

y + Qy(0), (5.6)
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Fig. 5.1: ∆h/∆t patterns for various morphological changes. ∆h/∆t < 0 indicates
accretion. (a) Purely onshore migration of a linear bar. (b) Linear bar that
transforms into a 2DH bar, with sinusoidal lengthscales 20 sin(2πy/Ly). (c)
2DH bar that both moves onshore and gains 2DH variability. Original bar
crest location xb1 = 180 + 15 sin(2πy/Ly). Final bar crest location xb2 =
165 + 20 sin(2πy/Ly). (d) 2DH bar growth plus an alongshore shift. Same
form as (c) but xb2 = 165 + 20 sin(2π(y + 20)/Ly).

where Qe
y is the excess Qy required to conserve mass for a given cross-shore transect

and Qy(0) is a constant of integration required to account for net alongshore transport.

The cross-shore distribution of Qe
y is unknown, but must be reasonable. For example,

it is unlikely for this term to be significant seaward of the limit of measurable profile

change. We will assume the excess is distributed according to some function F that we

will specify later. Thus,
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∂Qe
y

∂y
=

∆V ′(y)
∫

∞

i=1 F (i)dx
F, (5.7)

where

∆V ′(y) = ∆V (y) −
∫

∞

i=1

∂Qr
y(i)

∂y
dx. (5.8)

For any rule, r, and function, F , ∂Qy/∂y is specified, such that the remaining

bathymetry change not already specified is related to cross-shore gradients in Qx:

∂Qx

∂x
=

∆h′

∆t
, (5.9)

= µ
∆h

∆t
−

∂Qr
y

∂y
−

∂Qe
y

∂y
. (5.10)

Since we’ve specified no cross-shore transport enters from the shore boundary (Qx(0) =

0), equation (5.9) can be directly integrated to determine Qx. No similar constraint exists

for Qy(x, y0) that could serve as a constant of integration in y. Under special circum-

stances (i.e. at a jetty where Qy(x, y0) = 0 or identically rhythmic bathymetry where

Qy(x, y0) = Qy(x, y2)), net transport can be uniquely determined in 2D. In more gen-

eral cases, gradients in Qy may be the only available solution as determining Qy(x, y0)

requires extensive knowledge of the 2D flow and sediment transport along the boundary.

We examine several options for constraints, r and F . We allow r to be:

• Qr
y = K, where K is some constant form,

• Qr
y = K(βy), where βy is the alongshore slope, thus requiring Qy to go down slope,

and

• Qr
y = f(tan−1(∆y/∆x)), where ∆y, ∆x are alongshore and cross-shore distances

based on best-fit spatial lag correlations between the sand bar position in two

adjacent surveys.

We allow F to be:
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• F1 = σy(∆h/∆t), the alongshore standard deviation of the bathymetry change,

• F2 = σy(h), the alongshore standard deviation of the time mean profile, and

• F3 = ho − h, where ho is the long term equilibrium profile (planar beach) and h is

the time mean profile.

The spatial distribution of F1 and F2 are similar for the synthetic examples. The

cross-shore distribution resembles a double hump. F3 has both a longshore and a cross-

shore dependence. The cross-shore distribution is a single, Gaussian shaped hump.

We consider these rules under three different scenarios. Bathymetry, h(x, y, t), is

modeled using the formulation provided in Plant et al. (2001), based on an approximate

fit to Duck, North Carolina, assuming a single alongshore sand bar. In all instances, the

initial bar has the following form:

xbi
(y) = xbo

+ Ab sin

(

2πy

Ly

)

, (5.11)

where xbi
defines the bar crest location with respect to the shoreline, xbo

is the alongshore-

averaged bar position, set to 180 m, Ab is the cross-shore amplitude of the bar position,

set to 15 m. Ly is the length of the domain. Bar width, Lb, is set to 50 m and bar height,

hb, to 1 m. The first case is for an onshore migrating bar that grows in 2D variability,

whose bar width and bar height are unchanging. The final bar crest position is

xbf
(y) = 165 + 20 sin

(

2πy

Ly

)

. (5.12)

The second case has the same onshore migration and increase in variability but also

allows for a change in bar shape, such that

Lbf
(y) = 50 − 10 sin

(

2πy

Ly

)

, (5.13)

such that bars closer to shore are larger, attempting to mimic shoals. The third case has

the same onshore migration and increase in variability but also includes an alongshore
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shift (∆y) in the bar position,

xbf
= 165 + 20 sin

(

2π(y + ∆y)

Ly

)

. (5.14)

5.3.1 Constant Qy

The simplest form is to constrain Qr
y = K, where K is a constant, thus reverting to

the 1DH continuity equation if ∆V (y)/∆t = 0. For linear bar migration, this provides

sensible sediment transport patterns. However, if we consider an alongshore variable bar,

constant in shape, the resulting sediment transport patterns do not match the assumed

hydrodynamic patterns based on existing bathymetry (Fig. 5.2). In this scenario, we

would assume alongshore variable wave breaking would induce 2DH circulation and that

2DH currents would transport sand that was mobilized by the waves, causing rotational

sediment transport (shorewards over the shoreward maxima of the 2D bar and offshore

directed at the seaward maxima of the 2D bar). Likewise, if we allow volume to change,

we would assume similar sediment transport patterns, with enhanced transport over

the growing regions. The modeled result is onshore directed transport everywhere with

sediment converging at the shoreward maxima of the 2D bar.

5.3.2 Qy is a function of the bathymetric alongshore slope (βy)

A second option is to require Qr
y = f(∂h/∂y), such that sediment travels down slope

under gravitational effects as proposed by Bagnold (1963). Here we set Qr
y to

Qr
y = K

∂h

∂y
, (5.15)

where K = 600, is a scaling factor and h is the mean profile ((hf + hi)/2). We solve for

Qx using equation (5.9).

For an alongshore uniform bar on a planar beach, this reverts to the 1D model. For

a 2DH bar, the resulting sediment transport pattern for growing 2DH variability and

onshore migration resembles possible 2DH current patterns (Fig. 5.3) in contrast to the
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Fig. 5.2: Sediment transport patterns with the assumption of Qy = K. (left) ∆V/∆t =
0. (right) ∆V/∆t 6= 0 with F1 used to distribute excess volume.

previous assumption of Qr
y = K. However, the downslope term is a destructive contribu-

tor (this term causes the bar to flatten out), requiring Qx to compensate. The resulting
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sediment transport pattern has strong onshore directed transport over the shoreward

maxima of the 2D bar and offshore transport over the seaward maxima of the 2D bar

(Fig. 5.3). There are regions where the vector transport is required to travel along

slope, despite the assumption that alongshore transport should be down-slope directed.

These areas are near the rotation axes as the bar moves onshore and grows in cross-shore

amplitude.

This works reasonably well for growing 2DH bars. If we allow changes in volume

to occur, the distribution of Qe
y becomes more critical. Using F1 or F2, the resulting

transport no longer resembles 2DH circulation patterns (Fig. 5.4(left)). However, the

use of F3 to distribute excess volume still maintains a similar circulation pattern (Fig.

5.4(right)), suggesting an alongshore variable distribution of Qe
y may be more realistic.

For an alongshore migrating bar that is also increasing in 2DH variability, the re-

sulting net sediment transport patterns still resemble 2DH circulation patterns. In these

instances, we might assume oblique waves approaching the beach, driving an alongshore

variable current over the bar. The current will potentially undulate along the variable

bathymetry. However, the predicted sediment transport still resembles more 2DH circu-

lation, albeit slightly skewed down stream (Fig. 5.5).

If a constant of integration is known, such that a (potentially) cross-shore variable

alongshore transport can be superimposed onto the net sediment transport, the result

may resemble the hydrodynamics. For this reason, it may be a more sensible option

to examine the patterns of ∂Qy/∂y and ∂Qx/∂x rather than Qy and Qx in 2D. The

resulting gradients resemble an alongshore shifting bar (alongshore skewed pattern) and

slight onshore shifting (Fig. 5.6)). The results of the gradient transport seem sensible for

the cases examined. Of the three choices for distributing the excess volume, F3 appeared

to be slightly better than F1 or F2 when comparing net sediment transport patterns for

these cases.
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Fig. 5.3: Sediment transport patterns with the assumption of Qy = K∂h/∂y.
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Fig. 5.4: Sediment transport patterns with the assumption of Qy = K∂h/∂y with a
change in volume. (left) Using F2 to distribute excess sand. (right) Using F3.

5.3.3 Isolating Alongshore Variability in ∆h/∆t

Alternatively, we can examine the alongshore variation of ∆h/∆t (or h) to potentially

gain information about 2DH sediment transport patterns. For alongshore uniform sand
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Fig. 5.5: Sediment transport patterns with the assumption of Qy = K∂h/∂y with an
alongshore shift. (left) Using F2 to distribute excess sand. (right) Using F3.

bars, a cross-shore transect of the profile is equal to the alongshore mean bar (< h >y (x))

profile and we assume gradients in Qy to be negligible. Variations about the alongshore
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Fig. 5.6: Gradients in sediment transport patterns with the assumption of Qy =
K∂h/∂y with a shifting bar. (left) ∂Qx/∂x. (right) ∂Qy/∂y with F2 to dis-
tribute excess sand.

mean can indicate 2DH sediment transport. We begin by determining the alongshore

variable component of ∆h/∆t:

∆h′

∆t
(x, y) =

∆h

∆t
(x, y) − 〈∆h

∆t
〉y(x). (5.16)

In most instances, the perturbations in the long term mean profile (i.e. the sand

bars) are the most visible indication of sediment transport gradients. If sand bars can

be identified such that the use of spatial lag correlations between adjacent surveys can

provide a proxy for directional transport, the solution can be further constrained. Com-

paring bar crest position, xb(y), between two adjacent surveys, correlations are found at

distinct spatial lags in both the alongshore and cross-shore directions. For the alongshore

direction, the maximum correlation between two surveys is used to identify the along-

shore spatial lag, or shift, ∆y. In the cross-shore, there are two options: to calculate a

cross-shore shift, ∆x, based on the spatial lag correlations between alongshore mean bar

positions (< h >y (x)), or to calculate the shifts at each alongshore location and then

find a mean value. We opted for the second approach, such that the shift is defined as

the mean difference in the cross-shore bar peak (xbf (y)−xbi(y)) between the two profiles.
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The initial profile is first shifted, based on the alongshore lag (∆y) prior to finding the

cross-shore shift. Assuming that the relation between ∆y and ∆x is an indication of

the relative magnitudes of sediment transport in the alongshore and cross-shore direc-

tion, a relative angle, defining the relation between the magnitudes of the alongshore and

cross-shore shifts is defined as

θ(y) = tan−1 |∆x|
|∆y| . (5.17)

Contributions of ∂Qr
x/∂x and ∂Qr

y(x, y)/∂y are

∂Q′

x

∂x
= sin θµ∆h′, (5.18)

∂Q′

y

∂y
= cos θµ∆h′. (5.19)

We define the distribution of excess volume, ∂Qe
y/∂y by equation (5.7). The remaining

bathymetry change (equal to the alongshore-average bar change, µ < ∆h/∆t >y (x)) is

attributed to gradients in cross-shore transport,

∂Qxm

∂x
=µ

∆h

∆t
−

∂Qr
y

∂y
− ∂Qr

x

∂x
−

∂Qe
y

∂y
, (5.20)

=µ〈∆h〉y(x).

The final solutions for Qx and Qy are

Qx = Qr
x + Qxm, (5.21)

Qy = Qr
y + Qe

y. (5.22)

For a purely onshore migrating bar this method has the same solution as Qr
y = K,
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suggesting that including the slope dependent term is also necessary in these instances

to estimate net sediment transport patterns. For the case of the alongshore propagating

bar, a much different pattern of sediment transport gradients compared to Qr
y = βy exists

(Fig. 5.5 versus Fig. 5.7).
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Fig. 5.7: Gradients in sediment transport patterns with the assumption of Qy =
f(∆x/∆y) for an alongshore migrating bar. F3 is used to distribute excess
sand. (left) Cross-shore sediment transport gradients, ∂Qx/∂x. (right) Along-
shore sediment transport gradients, ∂Qy/∂y

The convergence pattern for ∂Qy/∂y indicates an alongshore migrating feature. The

convergence patterns for ∂Qx/∂x indicate a predominantly onshore migrating bar. Along-

shore variability in both terms represent the growth of the feature. Integrating ∂Qx/∂x

in x gives Qx. Since the cross-shore is a closed integration (Qx(0) = 0, Qx(∞) = 0), the

solution is unique. Integrating ∂Qy/∂y in y however, does not lead to a unique solution

since there is no requirement for Qy = 0 at either of the alongshore boundaries.

5.4 Evaluation of Constraints on Field Data

Bathymetric surveys from SandyDuck are used to test the above theories. SandyDuck

was a multi-institutional experiment undertaken at the US Army Corps Field Research

Facility (FRF), Duck, North Carolina during September - November 1997. The main

goal of the experiment was to gain a greater understanding of the processes that cause

beaches to change. Daily profile lines were sampled using the CRAB at 18 alongshore
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locations, spaced 25 m apart within the instrument area and 50 m apart everywhere

else. All lines began at the base of the dune system and extended to approximately 550

m offshore (roughly 6 m depth). At the seaward boundary ∆h/∆t was negligible that

we can consider the domain to extend out past the point of active transport, such that

Qx(∞) = 0. Measured bathymetry was interpolated onto a 2 m x 2 m grid using a linear

Loess interpolation scheme. Initial testing for the survey dates October 15-16, 1997 are

discussed here. These dates are chosen because of the clear ∆h/∆t pattern that could

allow for simple analysis of the techniques so far discussed (Fig. 5.8).
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Fig. 5.8: ∆h/∆t(m) for Oct. 15-16, 1997 at Duck, North Carolina.

We first test Qr
y = f(βy). The alongshore migrating feature does not have a significant

slope, such that this term is quite small throughout most of the domain. No significant

transport is associated with the feature (Fig. 5.9). The left side of the domain does have

some feature that has a much larger slope resulting in large localized gradients in both

cross-shore and alongshore transport. The resulting gradients in sediment transport are

shown in figures (5.9) and (5.10). The spatial patterns predicted by this approach do

not seem reasonable for the given change in bathymetry. The large amount of transport

predicted at y = 600 is obviously erroneous and is a result of an over-prediction of

alongshore transport gradients and the requirement to conserve mass. ∂Qy/∂y does not

resemble any particular pattern seen in ∆h/∆t. Particularly, the 2D feature appears to

be migrating alongshore, yet this method does not predict coherent alongshore transport.
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Alternatively, we can test the third method, seeing if we can find spatial lags in the data

in order to constrain the solution.
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Fig. 5.9: Predicted sediment transport gradients using slope constraint and distribution
of excess volume according to F2. (left) ∂Qy/∂y. (right) ∂Qx/∂x.
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Fig. 5.10: Predicted sediment transport gradients using slope constraint and distribu-
tion of excess volume according to F3. (left) ∂Qy/∂y. (right) ∂Qx/∂x.

Within the SandyDuck data set, multiple positive perturbations (bars) existed, not

always continuous in the alongshore, which forced us to refine our spatial lag correlation

scheme. In order to calculate the spatial lag correlation between the adjacent surveys,

several methods are tested. We find that regions of active transport are not necessarily

limited to the location of the largest sand bar, such that determining spatial lags of this

feature did not provide information about the direction of transport. 2D correlations
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between the two bathymetries are also not useful at identifying the direction of sediment

transport because only a small region actually exhibited noticeable ∆h/∆t. We chose to

isolate the analysis to the region of active sediment transport, defined by the cross-shore

extents where |∆h/∆t| > 0.05 m. Sand bars, or positive perturbations were identified

based on the maximum in the perturbation profile within the region of interest (Fig.

5.11).
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Fig. 5.11: Perturbation profiles with identified bar positions (solid black line) for Oct.
15 - 16, 1997 at Duck, North Carolina. Region of interest for determining
bar features was defined as 126 m< x < 200 m.

2D spatial lag correlations of the identified bar positions determined a best-fit with

a cross-shore shift of 4 m (offshore) and an alongshore shift of -66 m. The resulting

sediment transport convergence/divergence patterns (Fig. 5.12) based on equations (5.7),

(5.18), (5.20), and (5.21) describe a predominantly alongshore migrating 2D bar (checker

pattern of ∂Qy/∂y) with a slight offshore shift (alongshore uniform pattern of ∂Qx/∂x).

Integrated sediment transport requires knowledge of mean alongshore transport to give

sensible results as discussed above.

5.5 Discussion

The extension of Plant et al. (2001) to include the alongshore component of sediment

transport is complicated by the fact that the equation is under-constrained, with two

unknown parameters: the alongshore and cross-shore components of sediment transport
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Fig. 5.12: Estimated convergence/divergence patterns of sediment transport for bathy-
metric change between Oct. 15-16, 1997 at Duck, North Carolina. Positive
values indicate areas of erosion.

and only one known parameter: changes in bathymetry. Although we can often con-

sider the cross-shore system to be closed, such that no sediment enters or exits at the

cross-shore boundaries, the same cannot be said for the alongshore direction. Several

constraints are needed to obtain a unique solution. Since the original 2D equation for

conservation of mass is under-constrained, we require some knowledge of either Qy or

Qx. We can assume a closed system in the cross-shore, such that Qx can be directly

integrated if all other terms are known. However, the alongshore component has no such

constraint unless a feature, such as a jetty, exists at one end of the domain so Qy(x, y0)

can be determined. Thirdly, if we assume Qx(0) = Qx(∞), such that the cross-shore

integral is 0, we require all excess volume to be a function of ∂Qy/∂y. The cross-shore

distribution of this term is another unknown in the problem.

Initial testing of several theories for the distribution of ∂Qy/∂y provided plausible

extensions, but also highlighted limitations. We examined three methods for distribut-

ing the component of Qy due to some rule (Qr
y) and three methods for describing the

distribution of excess volume (Qe
y). The major contributor to the final spatial patterns

of Qy was Qr
y. The resulting net sediment transport differences based on the distribution

of Qe
y were not significant in most cases.

Any change in volume was attributed to convergences/divergences in Qy due to our
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constraint on Qx = 0 at the cross-shore boundaries. Although the total amount of sand

required to account for the volume change could be calculated, its cross-shore distribution

was unknown. Three options were tested. Two methods had an alongshore uniform

distribution (F1 and F2), while method three (F3) varied in both the alongshore and the

cross-shore. Under growing features, the cross-shore distribution of the excess volume

played a significant role in the final solution when Qr
y was a function of βy. Under field

conditions, F3 may contain more than just the perturbation features if a strong fit to

the background profile is not found. For this reason, methods F1 or F2 might be more

sensible. However, an alongshore uniform distribution seems unjustified for highly 2D

bathymetry. Determining the best method to distribute this volume is still unknown as

none of the methods tested seemed robust to a variety of conditions.

Requiring Qr
y = K, where K is a constant, resulted in sediment transport patterns

that seemed reasonable for 1DH systems. However, for 2DH systems, this constraint did

not predict sediment transport patterns that matched expected hydrodynamics. Con-

straining Qr
y to go down slope was an improvement. In some instances, this constraint

required net transport to follow contours, despite the down slope term. The result-

ing sediment transport pattern for growing 2DH bar systems resembled the expected

hydrodynamics. However, this method produced net sediment transport patterns that

were inconsistent with the alongshore transport of features. Under these circumstances,

we would assume that maximum Qy should exist over the mean bar position (or per-

turbation), similar to the 1DH model. Gradients in sediment transport resembled the

underlying bathymetry with a slightly skewed pattern in the direction of alongshore

transport. The inclusion of a constant of integration in solving for Qy may provide a

more reasonable net sediment transport result in these cases.

The third method tested required knowledge of correlation lags between the pertur-

bation features in adjacent surveys. Determining how much transport was due to 1D

versus 2D dynamics required some sort of separation of the 2D profile from the along-

shore uniform component. Our initial choice was to remove the alongshore mean profile.
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If the profile was an alongshore uniform bar, then no 2D transport was expected. The

remaining 2D perturbation profile was used to determine 2D transport based on lag cor-

relations, while the remaining alongshore mean profile was used solely to determine the

remaining portion of Qx. This method could not reproduce Qy transport for onshore

migrating features since there was no alongshore lag. In these instances, this method

was the same as Qr
y = K. Under alongshore migrating features, this method produced

a very different pattern for sediment transport gradients compared to Qr
y = f(βy). In

this case, the alongshore transport gradients did not resemble the existing bar form, but

more an alongshore migrating feature of roughly constant form.

The slope dependent and correlation lag methods were tested on a field example.

Due to the lack of significant longshore slope in the data in the area of active sediment

transport, the slope dependent method did not produce reasonable results. The slope

constraint was unable to identify the feature in the field data and reproduce sensible

sediment transport patterns associated with its migration. As well, a large amount of

sediment transport was required to compensate for the slope dependent term on the left

hand side of the survey. The correlation method provided a slightly better solution due

to the fact that it could be constrained to the area of noticeable ∆h/∆t. The resulting

sediment transport gradients for this method showed an alongshore propagating feature

that moved slightly offshore, consistent with data.

The field data was far less idealized than the synthetic data which was composed

of a monotonically increasing depth with a super-imposed Gaussian bar. Sand bars are

far less apparent in the field data, such that isolating sand bars on the basis of positive

perturbations requires accurate removal of the background trends. Linear regression of

the bathymetry from the approximate shoreline to the offshore boundary removed the

planar slope dependency and any offset in the data, leaving both positive (bar) and

negative (trough) perturbations. Bar positions, or features, are much more prominent in

the alongshore averaged profile, which facilitates the identification and mapping of bars

required to do correlation lags. Applying the methods to field data highlighted some
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of these limitations. The identification of features to both determine spatial lags and

cross-shore distribution of ∂Qe
y/∂y are areas of future research. Plant et al. (2001) were

able to parametrically model the alongshore average profile, thus isolating bar forms and

enabling them to relate sediment transport patterns to the mean bar profile. Utilizing

such an approach in 2D may improve the above analysis techniques.

Identification of the dominant direction of transport seems key to determining unique

solutions. This initial work focused on using lag correlations to determine the potential

contributions of Qx and Qy. This required the correct identification of features (in our

case, the bar) that were actively changing height or shape. This may not be feasible over

a wide range of conditions, such as broken or shore-parallel bars. Alternative methods

for determining direction, potentially from ∆h/∆t patterns, is another future topic of

research.

Mapping sediment transport of 2D bathymetry is far more complex than of the

alongshore-averaged profile. Small scale bumps and variability can be smoothed out

through alongshore averaging, removing a large component of complexity. For example,

the alongshore average profiles for October 15 and 16, 1997 (Fig. 5.13) clearly shows a

small perturbation feature around x = 175 m and x = 325 m. As well, there is very

little change between the two alongshore averaged profiles, suggesting minimal sediment

transport occurred between the two days. This however, is contradicted when we look

at the 2DH pattern of ∆h/∆t (Fig. 5.8) that indicates considerable transport.

This also raises the question on the validity of the assumption that if the cross-shore

mean change ((∆h)net) between two consecutive surveys is significantly less than the root

mean square changes ((∆h)rms), transport is predominately in the cross-shore direction.

Both Gallagher et al. (1998) and Ruessink et al. (2007) use this comparison to justify the

use of a 1DH sediment transport model. If we apply such a test to the October 15 - 16,

1997 surveys, the result is that cross-shore transport dominates the change in morphology.

This conclusion does not match the observed changes in morphology. If we consider a 2DH

bar, constant in volume and shape, yet migrating in the alongshore direction, the above
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Fig. 5.13: Alongshore-averaged profiles for Oct. 15-16, 1997 at Duck, North Carolina.

analysis would indicate cross-shore transport dominated, yet none actually occurred. In

the case of October 15 - 16, 1997, a 2DH bar is migrating predominately in the alongshore,

such that changes in morphology could be attributed (falsely) to cross-shore transport.

In this manner, this simple test seems valid only when the morphology is predominately

alongshore uniform and we assume gradients in cross-shore transport to dominate the

∆h/∆t signal.

5.6 Conclusions

Complex bathymetry patterns cannot be explained by simple 1D sediment transport

equations. The use of a 2D sediment transport inversion technique from changes in

bathymetry requires knowledge of the relationship between Qx, Qy, and the observed

bathymetry change. Initial tests produced non-intuitive results and sparked further anal-

ysis on the constraints chosen. Constraining Qy to be a function of the beach slope re-

sulted in sediment transport patterns that were physically plausible during shore-normal

waves. For alongshore propagating features, the knowledge of a boundary condition to

constrain Qy(x, y0) is necessary to obtain sensible net sediment transport patterns. Al-

ternatively, spatial patterns of the gradients of transport are much more easily obtained

and may provide information about the relationship between Qx, Qy and bathymetry

change in 2D environments.
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The use of spatial 2D correlations between perturbation (bar) features showed promis-

ing results in identifying the main direction of sediment transport and further constrain-

ing the solution. A combined method, including slope dependent terms and correlation-

lags may provide the necessary constraints to obtain unique solutions for gradients in

transport over a wide variety of conditions. ∆h/∆t patterns are very complex in 2D

such that unique solutions of net 2D sediment transport may be beyond the scope of

the methodology presented here without further constraints, specifically retrieving the

constant of integration for Qy. Alternatively, unique spatial gradients in Qx and Qy,

which ultimately define bar migration seem attainable with further research.
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6. CONCLUSIONS

Within this dissertation we examined the interactions and feedbacks between bathymetry,

waves, currents, and sediment transport. The first two projects focused on the use of

remote sensing techniques to expand our knowledge of the nearshore. Utilizing remotely

sensed wave refraction patterns of nearshore waves, we were able to estimate bathymetry

gradients in the nearshore through the 2D irrotationality of wave number equation. Re-

motely sensed images of wave breaking over complex bathymetry were used to study

the nonlinear feedbacks between 2DH morphology and cross-shore migration rates of

the alongshore averaged bar. The last project, while preliminary, utilized bathymetry

measurements to gain further understanding of 2D sediment transport.

The goal of the bathymetry estimation from refraction patterns of surface waves

was to provide an alternative method for providing bathymetry when time-series data

was unavailable. Due to the plethora of snap-shot data that is available from satellites

and made available through such programs as Google Earth, having a method that can

determine bathymetry from spatial wave patterns would be highly valuable. An algorithm

was developed to estimate nearshore bathymetry based on the changing direction of

refracting waves. The model used an augmented form of the refraction equation that

relates gradients in bathymetry to gradients in wavenumber and wave angle through the

chain rule. The equations are cast in a form that is independent of wave period, so can

be solved using wavenumber and direction data from a single snapshot rather than the

normally-required time series of images.

Three methods for extracting wave number, k, and wave angle, θ, from images were

tested. Under monochromatic conditions, all methods performed well. However, for

cases with high-frequency noise or a non-ideal wave field, the two gradient methods for

determining k, θ were found to be unusable. The tomographic approach of the nonlinear
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PHH08 method was robust to these complications and had the added advantage of pro-

viding skill estimates that allowed objective identification of unacceptable results. For

some cases, waves are simply too broad-banded for representation by a single direction

and wavelength. These can be identified objectively by low skill values and disregarded.

Synthetic testing of the model using monochromatic waves on three bathymetries of

increasing complexity, showed that the model accurately estimated 2D bathymetry gra-

dients, hence bathymetry, with a mean bias of 0.01 m and mean root mean square error

over the three beaches of 0.17 m. While the model is not useful for cases of complex

seas or small refraction signals, the simplified data requirement of only a single snapshot

is attractive. The model is perhaps best suited for shorter period swell conditions, for

example from a semi-enclosed sea, where strong refraction patterns are visible and k, θ

easily extracted from a single frame image.

Future work should be focused on image processing and data extraction techniques,

such that robust measurements can be obtained from a single image. Alternatively, time

series data may be required in order to provide robust estimates of complex environ-

ments. The largest limitation of this work is the requirement for smooth wavenumber

and wave angle measurements from images. For the synthetic cases, this was achieved

using the PHH08 method. However, for field data, even this method had limited success

in extracting information from raw images. This is mainly due to the high noise to signal

ratios within the data. As well, the waves in an image appear as spikes/dips, rather than

sinusoidal forms.

The goal of the second project was to determine if 2DH currents (indicated by the

presence of 2DH bathymetry) had a noticeable influence on cross-shore migration of the

alongshore-averaged sand bar. We began by testing a linear model on a four year data set

at Palm Beach, Australia. Although the linear model suggested that 2DH bathymetry

was indeed linked to cross-shore bar migration rates, the results also highlighted several

short comings of the linear model. The primary limitation was that variations in bar

position and variability had to be temporally uncorrelated with forcing in order to achieve
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meaningful results. For large storms, this is indeed the case. However, many smaller

storms seen at Palm Beach, showed that changes in bar position and variability were

correlated with forcing. This led to the development of a physics based, nonlinear model.

The nonlinear model had several advantages over the linear model. First, it included

the physics of sediment transport in the equations that the linear model did not. Initial

equations were formulated from commonly accepted sediment transport theory using

energetics-type equations. Equations were then parameterized based on the relationship

between sediment transport and bar migration of a constant form. Cross-shore transport

was based on the deviations around an equilibrium amount of breaking and the resulting

contribution due to the roller effect. The nonlinearity of the model forced sediment

transport to zero in the absence of wave breaking. The extension to 2DH was based on

parameterizations of bar variability and the associated 2DH circulation. The presence of

2DH morphology had two effects: both increasing onshore transport rates and stabilizing

the system against larger waves. The model was able to span multiple storms, accurately

predicting bar migration for both onshore and offshore events. The longest individual

data set tested was approximately 6 months. Using subjectively determined values for

the coefficients, x̂ was predicted with an R2 = 0.42 over this time period. Discrepancies

between model and measured data could usually be attributed to errors in measured

inputs (wave height, bar position, and amplitude). During onshore events, the inclusion

of 2DH variability enhanced the predicted migration rates to match the data. A 1DH

version of the model was also tested to compare against 2DH results. The 1DH model

showed limited skill at predicting onshore migration rates, suggesting again that the

inclusion of 2DH terms is key. Under highly oblique waves the 2DH model reduced to the

1DH form, predicting much slower onshore migration rates, in accordance with measured

values. The majority of work for the project was on model development and showing

the links between 2DH variability and onshore bar migration. Further work can include

more in-depth study of the key terms in the equations and under what circumstances

does 2DH variability play a key role in onshore migration.
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In the fourth paper we explore the possibility of obtaining unique 2D sediment trans-

port patterns from changes in bathymetry through the 2D conservation of mass equation.

The problem is under-determined, having two unknowns (Qy) and (Qx) and only one

known (∆h/∆t) such that a series of rules must be applied in order to invert transport.

We assume that that the cross-shore integral of Qx is closed, such that no sand enters

or exists the system in this direction. By conservation of mass, this requires changes in

volume of the cross-shore transect to be due to gradients in Qy. We explored six con-

straints for distributing Qy: three rules describing the initial longshore transport (Qr
y)

and three describing the cross-shore distribution of the excess volume component (Qe
y).

Initial results suggest that requiring sediment to travel down slope (Qr
y = f(βy)) is a

reasonable choice for describing transport of distinct perturbations. Under field tests,

this method did not perform well for the given example, however, further work refining

the problem may provide improved solutions. Alternatively, basing the relationship of

Qr
x and Qr

y as a function of spatial correlation lags between two surveys showed good

results for identifying transport associated with alongshore migrating features. This

method, however, did not do well under strictly onshore migration of 2D features, where

alongshore transport was not predicted. A hybrid approach, using both the down-slope

constraint and spatial correlation lags may provide more robust predictions on sediment

transport patterns in complex environments. Due to the lack of closed boundaries in the

alongshore, knowledge of Qy(x, y0) is required to obtain sensible net sediment transport

patterns. Alternatively, spatial patterns of the transport gradients provide useful insight

into the system behavior without requiring Qy(x, y0).
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