

AN ABSTRACT OF THE DISSERTATION OF

Todd Kulesza for the degree of Doctor of Philosophy in Computer Science presented on

December 1, 2014.

Title: Personalizing Machine Learning Systems with Explanatory Debugging

Abstract approved:

Margaret M. Burnett

How can end users efficiently influence the predictions that machine learning systems

make on their behalf? Traditional systems rely on users to provide examples of how they

want the learning system to behave, but this is not always practical for the user, nor

efficient for the learning system. This dissertation explores a different personalization

approach: a two-way cycle of explanations, in which the learning system explains

the reasons for its predictions to the end user, who can then explain any necessary

corrections back to the system. In formative work, we study the feasibility of explaining

a machine learning system’s reasoning to end users and whether this might help users

explain corrections back to the learning system. We then conduct a detailed study of how

learning systems should explain their reasoning to end users. We use the results of this

formative work to inform Explanatory Debugging, our explanation-centric approach

for personalizing machine learning systems, and present an example of how this novel

approach can be instantiated in a text classification system. Finally, we evaluate the

effectiveness of Explanatory Debugging versus a traditional learning system, finding

that explanations of the learning system’s reasoning improved study participants’

understanding by over 50% (compared with participants who used the traditional

system) and participants’ corrections to this reasoning were up to twice as efficient as

providing examples to the learning system.

©Copyright by Todd Kulesza

December 1, 2014

All Rights Reserved

Personalizing Machine Learning Systems

with Explanatory Debugging

by

Todd Kulesza

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented December 1, 2014

Commencement June 2015

Doctor of Philosophy dissertation of Todd Kulesza presented on December 1, 2014.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Todd Kulesza, Author

ACKNOWLEDGEMENTS

I was fortunate to earn a master’s degree under the mentorship of a professor who be­

lieved I could go further and encouraged me to pursue a Ph.D., and this work is the result

of that confidence. Thank you, Margaret Burnett—your mentorship, encouragement,

and patience have helped me grow into a more precise writer, a more critical thinker,

and a more capable researcher.

During my time in graduate school I have collaborated with many wonderful

researchers. I would especially like to thank Simone Stumpf, Saleema Amershi, Scott

Fleming, Irwin Kwan, Chris Bogart, and Eric Walkingshaw for the pleasure of working

with and learning from each of you, as well as my Ph.D. committee for your feedback

and insights: Weng-Keen Wong, Carlos Jensen, Alex Groce, and Maggie Niess.

Finally, none of this work would have been possible without the support of family

and friends. I’d particularly like to acknowledge Bill and Iris McCanless, at whose cafe

many of these chapters were written; Koa Tom, for three years worth of understanding

and encouragement, plus an uncanny ability to get me out of the lab and into the wider

world when I’ve most needed it; and my parents and grandparents, for instilling a love

of learning from an early age, and the sacrifices they made to improve their children’s

educations. Thank you.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis statement . 2

1.3 Terminology . 3

1.4 Potential use cases . 5

1.5 Proposed contributions . 7

2 Background and literature review 8

2.1 Mental models . 8

2.2 Explaining machine learning . 10

2.3 Personalizing machine learning systems . 13

2.4 Machine learning and end user programming 15

3 Exploring the effects of mental model fidelity 19

3.1 Introduction . 19

3.2 Empirical study . 20

3.2.1 AuPair Radio . 21

3.2.2 Participants . 24

3.2.3 Experiment design and procedure 25

3.2.4 Data analysis . 26

3.3 Results . 28

3.3.1 Feasibility (RQ3.1) . 28

3.3.2 Personalization (RQ3.2) . 31

3.3.3 Confidence (RQ3.3) . 36

3.3.4 User experience (RQ3.4) . 38

3.4 Conclusion . 40

4 How explanations can impact mental model fidelity 42

4.1 Introduction . 42

4.2 Explanation soundness and completeness 43

4.3 Methodology . 44

4.3.1 Prototype recommender system . 44

4.3.2 Treatments and explanations . 46

TABLE OF CONTENTS (Continued)

Page

4.3.3 Participants and study task . 48

4.3.4 Data analysis . 48

4.4 Results . 51

4.4.1 Soundness, completeness, and intelligibility types (RQ4.1 and

RQ4.2) . 51

4.4.2 Barriers to developing high-fidelity mental models (RQ4.3) 56

4.4.3 Is it worth it? (RQ4.4) . 59

4.4.4 In explanations we trust? (RQ4.5) 60

4.5 Discussion . 60

4.6 Conclusion . 63

5 Explanatory Debugging and EluciDebug 65

5.1 The principles of Explanatory Debugging 65

5.2 EluciDebug: A prototype instantiating Explanatory Debugging 70

5.2.1 The multinomial naive Bayes classifier: A brief review 71

5.2.2 The Explanatory Debugging principles in EluciDebug 74

5.3 Conclusion . 82

6 Evaluation 84

6.1 Methodology . 84

6.1.1 Experiment design . 84

6.1.2 Participants and procedure . 86

6.1.3 Data analysis . 88

6.2 Results . 91

6.2.1 Explaining corrections to EluciDebug (RQ6.1 and RQ6.2) 91

6.2.2 EluciDebug’s explanations to end users (RQ6.3) 96

6.3 Discussion . 98

6.3.1 Efficient and accurate personalization 98

6.3.2 Mental models . 98

6.4 Conclusion . 99

7 Conclusion 100

Bibliography 102

TABLE OF CONTENTS (Continued)
Page

Appendices 111

A EluciDebug study materials . 112

LIST OF FIGURES

Figure Page

1.1 Explanatory Debugging overview . 3

3.1 AuPair seed artist . 22

3.2 AuPair feedback menu . 22

3.3 AuPair steering limits . 23

3.4 Impact of AuPair scaffolding on mental models 29

3.5 Impact of mental models on personalization performance 34

3.6 Negative responses to AuPair . 39

3.7 Positive responses to AuPair . 40

4.1 Mental model problem space . 43

4.2 Recommender system overview . 46

4.3 Excerpts from Why this Song explanation 49

4.4 Excerpt from Why this Artist explanation 50

4.5 Excerpt from What the Computer Knows explanation 50

4.6 Excerpt from How it All Works explanation 51

4.7 Mental model scores . 53

4.8 Mental model results by intelligibility type 54

4.9 Interaction between soundness and completeness 55

4.10 Obstacles to building mental models . 58

4.11 Participants references to each intelligibility type 58

4.12 Cost/benefit trade-off . 61

4.13 Participant trust in explanations . 61

4.14 Design implications . 62

LIST OF FIGURES (Continued)

Figure Page

5.1 Paper prototype of EluciDebug . 72

5.2 Overview of EluciDebug . 73

5.3 EluciDebug’s Why explanation . 77

5.4 EluciDebug’s Feature overview explanation 79

5.5 Accuracy of an MNB classifier across different feature set sizes 79

5.6 EluciDebug’s Important words explanation 82

5.7 Revealing incremental changes in EluciDebug 83

6.1 Control prototype variant . 85

6.2 Mental model test instrument excerpt . 88

6.3 Classifier F1 change per user action . 92

6.4 Classifier F1 scores . 93

6.5 Cumulative classifier F1 scores per action 93

LIST OF TABLES

Table Page

3.1 Evaluation metric definitions . 28

3.2 Mental model effects . 33

3.3 Self-efficacy changes . 37

4.1 How we varied soundness, completeness, and intelligibility types 47

4.2 Mental model evaluation code set . 52

6.1 Mental model grading criteria . 89

6.2 EluciDebug feature usage . 92

6.3 Classifier accuracy . 95

6.4 Mental model fidelity . 96

Chapter 1: Introduction

1.1 Motivation

Machine learning systems have become a part of everyday life for hundreds of millions

of people. Netflix, for example, uses machine learning techniques to recommend movies

to its 50 million1 subscribers. Pandora uses machine learning to create custom playlists

for its 76 million2 listeners. Google employs machine learning to organize and filter

junk mail from the inboxes of its 425 million3 Gmail users, and Facebook uses machine

learning to personalize content for its 1.3 billion4 users.

Advances in machine learning have made these new types of applications possible,

but the widespread use of programs that respond differently to each user also brings a

novel challenge: how can end users effectively control the predictions or recommenda­

tions that these learning systems make on their behalf?

For example, if end user Alice notices that many of the email messages she receives

each day are junk mail, she typically has but one option: mark each one as junk mail
in her email software. The software likely gives her no feedback about what happened

after she marks each message as junk, but behind the scenes it has adjusted its reasoning

for detecting messages that Alice will think are junk mail. Ideally this reasoning will

perfectly match Alice’s concept of junk mail, but in reality it almost certainly will

not—the computer does not know why Alice decided to label some messages as junk

mail and other messages as legitimate mail, so it must infer her reasoning based on

her labeled messages. Indeed, this reliance on machine inference of human reasoning

means that Alice will need to keep telling the software about each of its mistakes and

hoping that it performs better in the future. No professional software developer would

be satisfied with such a slow and imprecise approach to fixing software that is not

1Shareholder report, Q2’14: http://bit.ly/1vWUIXM

2Financial results, Q2’14: http://bit.ly/1DtkhAF

3Google I/O 2012: http://bit.ly/1zi95Iu

4Shareholder report, Q2’14: http://bit.ly/1FrVuz9

http://bit.ly/1vWUIXM
http://bit.ly/1DtkhAF
http://bit.ly/1zi95Iu
http://bit.ly/1FrVuz9

2

operating as desired, so why do we assume end users will be able to use it to effectively

and efficiently control the myriad machine learning systems they interact with each day?

Instead of this guess-and-check approach to controlling machine learning systems,

what if end users could directly view and adjust the learning system’s reasoning, similar

to how professional software developers would debug a program’s source code? If

successful, users would gain new power over their machine learning systems—users

could personalize each system to match their idiosyncratic tastes, and perhaps even

apply them to situations the original developers had never intended.

This dissertation presents just such an approach: Explanatory Debugging. In Explana­

tory Debugging, the learning system explains the reasons for its predictions to its end

user, who in turn explains corrections back to the system. We hypothesize that this cycle

of explanations will help users build useful mental models—internal representations that

allow people to predict how a system will behave (Johnson-Laird, 1983)—that in turn

will allow users to explain any necessary corrections back to the learning system better

and faster than they could with a traditional black box instance-labeling system.

1.2 Thesis statement

Two-way explanations will allow people to better personalize machine learning

systems by helping them build better mental models of the learning system and

allowing them to directly correct mistakes in the learning system’s reasoning.

Just as professional software developers need a useful mental model of the software

they work on, end users attempting to personalize a machine learning system will need

to develop a useful mental model of the learning system. This mental model will help

the user understand why the system is behaving in a given manner and allow the user to

predict how the system will respond if certain changes are made to it.

Mental models by themselves, however, are insufficient—users also need to be able to

act upon their knowledge. Thus, learning systems need to both explain their reasoning

and allow the user to directly adjust this reasoning. We hypothesize that by being able

to accurately predict how the system will respond to specific adjustments, the user will

be able to explain corrections to the system more successfully than a user whose mental

model is flawed.

3

1
2

3

4

Figure 1.1: The Explanatory Debugging approach for users to (1) learn about the system’s
current reasoning and (2) interactively adjust it as needed. In the process, the user is
building a better mental model of how the learning system operates, allowing the
now-smarter user to more effectively personalize the system (3), with the eventual
outcome of a “smarter” machine learning system (4).

Further, because interactive machine learning involves a continuous cycle of input

from the user and output from the learning system, there is a ready-made opportunity

to teach users about the learning system’s reasoning in the context of each output. If the

user disagrees with any of these outputs, she can correct the system and immediately

see the results of her effort, further refining her mental model and, hopefully, improving

the effectiveness of any future explanations she provides to the learning system. This

cycle is illustrated in Figure 1.1.

1.3 Terminology

The work presented in this dissertation lies at the intersection of two fields of computer

science: human-computer interaction (HCI) and machine learning (ML). As readers from

one discipline may be unfamiliar with terminology from the other, the following list

defines several common terms used throughout this dissertation.

Machine learning system A computer program (or part of a computer program) that

uses one or more algorithms to “learn” reasoning based on user-supplied inputs.

Different types of machine learning systems are referred to by a variety of different

4

names; this dissertation will focus on classifiers (learning systems that attempt to

group items into categories) and recommenders (learning systems that attempt to

rank items by certain criteria, such as desirability).

Interactive machine learning A machine learning system that rapidly updates its out­

puts (e.g., its predictions or recommendations) in response to new user-provided

inputs (e.g., ratings or labels). As discussed in Amershi et al. (in press), interac­

tivity is best viewed as a continuum; highly interactive machine learning systems

may update their predictions in real-time after each user interaction, while less

interactive systems update their predictions less frequently.

Personalization The act of providing feedback to an interactive machine learning

system with the intent of changing its predictions to more closely align with

a particular end user’s reasoning.

Instance labeling A traditional method for personalizing interactive machine learning

systems. An instance refers to the input that the learning system makes predictions

about; a label is the output classification the user wants associated with the input.

Examples include marking email messages (instances) as junk mail (label); telling

an Internet radio station that you liked (label) the song (instance) it just played;

and telling photo-tagging software that the face (instance) it tagged as you is

actually someone else (label).

Feature An aspect or measurement of an instance that a machine learning system

uses when making predictions or recommendations. For example, text classifiers

often use the presence or absence of specific words as features, while a music

recommender’s features might include the number of times a group of users have

played each song.

Mental model A mental representation of a real-world system that governs how the

person holding the mental model will interact with the system (Johnson-Laird,

1983). Famous examples include peoples’ decisions of whether to first try pushing

or pulling to open a specific door (Norman, 2002) and dialing a thermostat higher

in the hope of heating a home faster rather than making it hotter (Kempton, 1986).

5

1.4 Potential use cases

We believe that giving users the option to learn why a machine learning system made a

given prediction—and correct it if necessary—would be beneficial under any circum­

stances. Whether users then choose to attend to the system’s explanations and provide

corrective feedback to the learning system would depend on each user’s perception of

the benefits (e.g., a more useful machine learning system) versus the costs (e.g., time

spent attending to explanations) and risks (e.g., the possibility they will not make their

learning system more useful, or worse, make it less useful). If, for example, explanations

were only shown on-demand, the user experience for people satisfied with the learning

system’s predictions would not be harmed. Unsatisfied users, however, would have the

possibility of viewing the explanations to help them personalize the system. Further,

there are specific cases where empowering users with two-way explanations may be

especially helpful:

1. When personalization must happen quickly.

There are circumstances where users need to personalize a machine learning system

quickly, such as someone preparing a personalized Internet radio station for a

party she is hosting that evening. Training the system by rating each song it plays

would be impractical during the party and time-consuming before it. However,

researchers have found that directly specifying the features a text classifier should

pay attention to is five times more efficient (in terms of time spent) than labeling

instances (Raghavan et al., 2006); if this efficiency holds in other domains, it could

allow the host to quickly personalize an Internet radio station by feeding it precise

instructions about the types of songs to play, rather than feeding it numerous

examples and hoping the learning system correctly identifies song aspects the user

feels will be appropriate for her event.

2. When sufficient training data does not exist.

Sometimes the user of a machine learning system wants to begin using the system

before it has seen a sufficient amount of instances to learn from, but the accuracy of

such systems is highly erratic (Brain and Webb, 1999). For example, a parent who

has recently joined the PTA at his child’s school may want all PTA-related emails

automatically filed to a specific folder, but he doesn’t yet have examples of such

6

emails. However, if the parent knew the email classifier worked by examining each

message’s words, he could prime the classifier with words like “PTA”, the name

of his child’s teacher, and the name of the school. A similar problem often exists

in anomaly detection systems, where examples of anomalies are too infrequent to

provide sufficient training data (Chandola et al., 2009).

3. When the user’s concept has evolved.

Even machine learning system with sufficient training data can run into problems

when the user’s concept of how items should be classified changes (Kulesza et al.,

2014). Consider a user who has spent months personalizing a news aggregator

by continually giving it positive feedback when it recommended news articles

about local politics. What happens when she moves to a new city? She could spend

months providing additional examples of local political articles to counter-balance

the existing information the classifier has learned from, but even so, the classifier

may “learn” that she’s interested in political news in both regions. Telling the

classifier—via instance labeling—that political stories from her prior city are no

longer desired is also risky, as it may make the learning system stop recommending

political stories entirely. A much simpler approach would be to view the classifier’s

reasoning, identify any parts of this reasoning related to her prior city, and update

them to match her new home.

4. When a better understanding of the learning system matters.

When machine learning systems assist with important tasks, users need to un­

derstand what the learning system can do reliably versus when its predictions

are likely to need manual verification (Groce et al., 2014). For example, consider

an aging-in-place system that uses machine learning techniques to determine

if everything looks normal, or whether a caretaker should be notified to check

in. If the system uses motion sensors to identify activity but the elderly person

has a pet, the motion sensor data may not be as meaningful as in other homes.

By understanding such aspects of the system, the user (here, a caretaker or

family member) can then explain to the system that it should ignore or place

less importance on motion sensor data.

7

1.5 Proposed contributions

This dissertation makes the following contributions:

•	 An understanding of the potential impact that a good mental model may have

on an end user’s ability to personalize a machine learning system that supports

two-way explanations.

•	 An understanding of how attributes of explanations and their intelligibility types

(as defined in Lim and Dey, 2009) impact the development of end users’ mental

models.

•	 Explanatory Debugging: A novel approach, grounded in theory and our empirical

data, to help end users build useful mental models of a machine learning system

and allow them to personalize its outputs via two-way explanations.

•	 An empirical evaluation of Explanatory Debugging in the domain of text classifi­

cation.

8

Chapter 2: Background and literature review

2.1 Mental models

The feasibility of Explanatory Debugging rests on explanations—explanations to help

the user understand the machine learning system, and explanations from the user to

correct the learning system’s mistakes. Thus, if users were unable to understand the

learning system, our entire approach would fail. Machine learning systems are complex,

but psychologists have developed a theory describing how people reason about complex

systems: the mental model theory of thinking and reasoning (Johnson-Laird, 1983).
Mental models are internal representations that people generate based on their

experiences in the real world. These models allow people to understand, explain, and

predict phenomena, with an end result of being able to then act accordingly (Johnson-

Laird, 1983). Understanding how end users build mental models of learning systems—

and how these models evolve over time—may allow researchers to design more effective

explanations of a system’s reasoning than an ad hoc approach.

The contents of mental models can be concepts, relationships between concepts or

events (e.g., causal, spatial, or temporal relationships), and associated procedures. For

example, an end user’s mental model of how a computer works may be as simple as a

screen that displays everything typed on a keyboard, and the sense that it “remembers”

these things somewhere inside the computer’s casing. Mental models can vary in their

richness—an IT professional, for instance, likely has a much richer mental model

representing how a computer works than the above example. According to Norman,

these models do not have to be entirely complete (i.e., encompass all relevant details) to

be useful, but they must be sound (i.e., accurate) enough to support effective interactions

(Norman, 1987).
The varying richness of mental models results in a useful distinction: functional

(shallow) models imply that the end user knows how to use the system, but not how

it works in detail, whereas structural (deep) models provide a detailed understanding

of how the system works (Rogers et al., 2011). In this dissertation we are primarily

9

concerned with structural models because these enable users to predict how changes to

the system will alter its outputs. Theoretically, a structural mental model that accurately

reflects a system will help the user to predict how his or her actions will alter the system’s

outputs, thus allowing the user to precisely control the system. Conversely, users with

flawed structural models are likely to experience difficulty predicting how their actions

influence the system’s outputs, which in turn will lead to difficulty controlling the

system’s behavior. Many instances of inaccurate mental models (both functional and

structural) guiding erroneous behavior have been observed in tasks as varied as opening

doors to controlling thermostats (Jonassen and Henning, 1996; Norman, 1987; Kempton,

1986).
Mental models develop “naturally” due to repeated use of or exposure to a system

over time, but models that develop through use may be highly inaccurate. For example,

Kempton estimates that as many as 50% of Americans erroneously believe their home

furnace operates similar to a valve or faucet—that turning the thermostat higher causes

more hot air to come out of the furnace, thus heating up a room faster than a lower

thermostat setting (Kempton, 1986). The source of this misunderstanding, he contends,

is the abundance of devices that do operate using valves in our daily environments

(e.g., water faucets, gas burners, automobile pedals), and the scarcity of familiar devices

that behave similarly to thermostats. Providing explanations of how such unfamiliar or

complex systems operate can avoid this problem, but introduces a new challenge: how

can a complex system convince end users to pay attention to its explanations?

Theory suggests that the challenge of engaging user attention can be overcome by

communicating the benefits of learning more about the complex system. Blackwell’s

Attention Investment model hypothesizes that people decide the level of effort to

expend on a given task based on their perceptions of cost, risk, and eventual benefit

(Blackwell, 2002). According to this model, users will be more likely to invest time

toward understanding a system when they believe the benefits (e.g., an improved system)

will outweigh the expected costs (e.g., time and effort spent) and possible risks (e.g.,

being unable to improve the system, or potentially breaking it).

To verify that our approach does attract user attention and succeeds in helping users

build better structural mental models, we will need a method for quantifying mental

models. However, capturing in-the-head representations—such as mental models—

without simultaneously influencing them is a research problem without a simple solution.

10

The very act of measuring users’ mental models is likely to influence those models

(Doyle et al., 2008), thus reducing their validity. For example, asking study participants

to draw a flowchart of a system may encourage them to think of how information “flows”

through a system more than they otherwise would. Norman discusses how verbal or

written elicitations may be incongruous with participants’ observed actions and will be

necessarily incomplete (Norman, 1987). One method for remedying this incompleteness

is to provide participants with the various components of a system and ask them to

properly arrange or interconnect them, but this transforms the problem from having a

bias toward recall to one with a bias toward recognition (Otter and Johnson, 2000). Carley

and Palmquist developed a partially automated technique for defining mental models

based on textual analysis, but this approach is time consuming and still suffers from

problems of incompleteness (Carley and Palmquist, 1992). Thus, capturing incomplete

or influenced mental models is always a threat to validity when studying mental models.

In Section 3.2.4 we explain how we attempt to work around this issue.

2.2 Explaining machine learning

One method for helping users learn about machine learning systems is to increase the

system’s transparency, as in the “white box” model proposed by Herlocker et al. (2000).
To help people build mental models of a system, it has been argued that the system

should be transparent and intuitive, and users should be provided with appropriate

instructions of how it works (Rogers et al., 2011). Our own preliminary research has

found that users will refine their mental models of a learning system when the system

makes its reasoning transparent (Kulesza et al., 2010), but some explanations may lead

to only shallow mental models (Stumpf et al., 2007). Alternatively, a system’s reasoning

can be made transparent via human-to-human instruction, and this can help with the

construction of mental models of how it operates (McNee et al., 2003). A different

approach, scaffolded instruction, has been shown to contribute positively to learning

to use a new static system (Rosson et al., 1990); however, scaffolding instruction for a

dynamic system poses challenges because the changing nature of the system means the

scaffolding cannot be pre-planned by a human—it must be generated in real-time by the

system itself.

11

Scaffolding is but one example of applying the Minimalist model of instruction,

which is designed to help active users (users who are interested in accomplishing a goal

with a system and only want to learn enough about it to accomplish this goal (Carroll

and Rosson, 1987)) learn about a system while performing real work (van der Meij and

Carroll, 1998). Because we doubt many users have the primary goal of learning how

their classifiers and recommenders operate—as opposed to how to make them behave in

a more useful manner—our audience also fits into this active user category. Thus, the

principles of Minimalist instruction (e.g., interleave instruction with real work, leverage

existing knowledge, tightly couple explanations to the system’s current state) may also

be appropriate for teaching users about their machine learning systems.

However a learning system explains its reasoning to end users, these explanations

will somehow impact users’ mental model of the system. Very little work, however,

has explored how explanations impact the development of user’s mental models of

machine learning systems. One such study found that prolonged use of a learning

system induced plausible (though imperfect) models of its reasoning, and that these

models were surprisingly hard to shift, even when people were aware of contradictory

evidence (Tullio et al., 2007). In another study, Lim et al. found that explanations of why

a learning system made a given prediction (or, why it did not make a different prediction)

helped users better understand the learning system (Lim et al., 2009), while explanations

of what might happen if the user performed a given action did not help improve

participants’ understanding. Many researchers have studied the impacts of learning

system transparency on factors such as satisfaction (Cramer et al., 2008; Bostandjiev

et al., 2012; Tintarev and Masthoff, 2012; Sinha and Swearingen, 2002; Herlocker et al.,

2000; Billsus et al., 2005), system performance (Thomaz and Breazeal, 2006), and trust

(Dzindolet et al., 2003; Glass et al., 2008), but these works did not explore a link between

transparency and the quality of users mental models.

Researchers have explored numerous methods to explain common machine learning

algorithms, but the impact of these methods on end users’ mental models has rarely been

evaluated. Much of the work in explaining probabilistic machine learning algorithms has

focused on the naive Bayes classifier, often employing visualizations such as pie charts

(where each pie slice describes the weight of evidence for a particular feature) (Becker

et al., 2001) or bar charts (where each bar’s position describes a feature’s information

gain) (Kulesza et al., 2011). Nomograms, a visualization technique that uses linear scales

12

to represent variables in an equation, have been proposed for explaining both naive

Bayes (Možina et al., 2004) and SVM (Jakulin et al., 2005) classifiers, but again, we

do not know what impact these explanations may have on end users’ mental models.

Poulin et al. employed a stacked bar chart visualization to support the more general

class of linear additive classifiers, and used a prototype to successfully help biologists

identify errant training samples in their data (Poulin et al., 2006). Lacave and Díez

present several approaches, both textual and graphical, for describing general Bayesian

networks, but these techniques are too computationally expensive to result in a real-time

cycle of explanations with the end user (Lacave and Díez, 2002).
While researchers currently have a limited understanding of the impact that expla­

nations of learning system have on users’ mental models, researchers have developed

taxonomies we can use in our exploration of explanations. For example, Lacave and

Díez enumerated the types of information that learning systems can provide to end

users: explanations of evidence (e.g., “The size, shape, and color of this fruit suggest it

is an apple”), explanations of the machine learning model (i.e., the learning algorithm

itself, devoid of training data), and explanations of the system’s reasoning (e.g., precisely

how an object’s size, shape, and color contributed to its classification as apple). Lim

and Dey provide a more nuanced view of a learning system’s potential explanations

via intelligibility types (Lim and Dey, 2009). For example, three intelligibility types

cover Lacave and Díez’s “explanation of the learning model” category: explanation of the

model itself, explanation of the inputs it may use, and explanation of the outputs it could

produce (Lim and Dey, 2009). We will return to these intelligibility types in our study

of explanations (Chapter 4) and the design of our explanation-centric personalization

approach (Chapter 5).
A machine learning system’s mistakes—by virtue of being unexpected—may nat­

urally attract user attention and inspire curiosity, causing users to attend to its expla­

nations. For example, Hastie’s investigations of causal reasoning found that “when

unexpected behaviors are attributed to a person, the perceiver is relatively likely

to engage in causal reasoning to understand why these behaviors occurred” (Hastie,

1984). This finding also appears to hold when the unexpected behavior is attributed

to a machine: Wilson et al. designed an approach—surprise-explain-reward—that

successfully leveraged participants’ curiosity about unexplained software behaviors

to engage their attention (Wilson et al., 2003). In this study, participants had the choice

13

to view explanations describing an unfamiliar software testing tool (assertions) and the

potential benefits of employing it; nearly all of their participants went on to make use

of this tool in response to surprising software behavior (Wilson et al., 2003). Because

users are likely to wonder why a machine learning system made a given mistake, such

mistakes provide an opportunity to engage the user’s attention by explaining why the

learning system erred.

2.3 Personalizing machine learning systems

The traditional method for personalizing a machine learning system is to label instances,

thus providing it with new training data to “learn” from. In this approach, users label

a large number of instances all at once, then “retrain” the learning system using this

new data (Amershi et al., in press). By processing data in large batches, however, users

are unable to receive feedback indicating how their labels have influenced the learning

system’s reasoning. For example, if half of their labels improved the system’s performance

while the other half harmed it, the user may look at the resulting system and conclude

that labeling did nothing.

A more interactive personalization approach also exists. Fails and Olsen Jr. first

popularized the phrase interactive machine learning in a paper describing how an iterative

train-feedback-correct cycle allowed users to quickly correct the mistakes made by an

image segmentation system (Fails and Olsen Jr., 2003). Since then, researchers have

explored using this cycle of quick interactions to train instance-based classifiers (Fogarty

et al., 2008; Bryan et al., 2014), enable better model selection by end users (Amershi

et al., 2010; Talbot et al., 2009; Fiebrink et al., 2011), elicit labels for the most important

instances (e.g., active learning) (Settles, 2010; Cakmak et al., 2010), and to improve

reinforcement learning for automated agents (Knox and Stone, 2012). A similar approach

has been used by Programming by Demonstration (PBD) systems to learn programs

interactively from sequences of user actions (see (Lieberman, 2001) for a collection

of such systems). For example, if a user sees the Gamut PBD system make a mistake,

they can “nudge” the system in the right direction, which has the impact of adding or

removing a training example and showing the user the revised system’s output (McDaniel

and Myers, 1997). These use cases, however, largely treat the machine learning system

as a “black box”—users can try to personalize the system by providing it with different

14

inputs (e.g., labeled instances), but are unable to see why different inputs may cause the

system’s outputs to change.

Some researchers have sought to expand the types of inputs interactive machine

learning systems can process, and in so doing have also increased system transparency.

For example, user feedback may take the form of model constraints (Kapoor et al., 2010),
critiques to the model’s search space (Vig et al., 2011), or adjustments to the model’s

weights of evidence (Kulesza et al., 2011). In addition to supporting novel user feedback

mechanisms, these approaches increase transparency by enabling users to view such

facets as the existing model constraints (Kapoor et al., 2010), the model’s feature set

(Vig et al., 2011; Verbert et al., 2013), or the weights of evidence responsible for each

prediction (Kulesza et al., 2011; Bostandjiev et al., 2013). In a similar vein, Amershi

et al. bridged active learning (Settles, 2010) with interactive concept learning, creating

a mixed-initiative approach that guides users toward identifying helpful training data

for learning concepts not directly represented by a classifier’s features (Amershi et al.,

2009).
Even when novel types of feedback mechanisms do not increase transparency, there

are additional reasons to support multiple types of feedback. For example, some problem

domains lack sufficient training data for traditional labeling approaches to be effective;

in these circumstances, allowing end users to directly specify the features a learning

system should use for classification can be more efficient than instance labeling (Das

et al., 2013; Raghavan et al., 2006). Instance labeling approaches are also at the mercy

of external forces—they require appropriate training examples to be available when

the user needs them and suffer from class imbalance problems in “bursty” (e.g., email

classification). Further, in domains such as recommendation, there is no single correct

answer for the learning system to predict. In such cases, it can be beneficial to allow

users to explore the search space via critique-based feedback (Glowacka et al., 2013; Vig

et al., 2011; Parra et al., 2014)
A user-centric perspective on machine learning would not require that a sufficient

number of appropriate instances exist in order for the user to make their learning

systems behave as desired—the instance-based approach takes power away from end

users and makes them reliant on the population of extant instances. Instead, Stumpf

et al. have argued that if an end user wants to tell the computer how to behave, he or she

should have the choice of explaining the desired behavior rather than being forced to find

15

an example of it (Stumpf et al., 2009). EnsembleMatrix (Talbot et al., 2009) is one system

that supports such direct manipulations, providing users with both a visualization of a

classifier’s accuracy and the means to adjust its reasoning; however, EnsembleMatrix is

targeted at machine-learning experts developing complex ensemble classifiers, rather

than end users working with the deployed classifiers.

Regardless of the feedback mechanism, successfully personalizing a machine learning

system can be challenging for end users. Some explorations of novel feedback mecha­

nisms have found that users’ attempts to adjust their learning systems’ reasoning caused

their performance to decrease or fluctuate wildly (Stumpf et al., 2008; Kulesza et al.,

2010). Part of the problem is the complexity of learning systems; our own prior work has

explored the barriers end users encounter when trying to personalize a learning system,

finding that the two most common problems involve identifying which of a learning

system’s many features should be altered in order to change a specific prediction, and

coordinating how such a change will impact other predictions (Kulesza et al., 2011).
Even when user feedback is restricted to the traditional instance-labeling approach,

users often struggle to label similar items in a similar manner (Kulesza et al., 2014), thus

providing conflicting evidence for the learning system to “learn” from. Research into

how end users attempt to understand and control complex computer systems, however,

already exists in the field of end-user programming, and we next look to it for inspiration

in helping end users better personalize machine learning systems.

2.4 Machine learning and end user programming

Because personalizing a machine learning system involves adjusting the system’s rea­

soning, it is very similar to traditional software debugging: if the learned behavior is

incorrect, the user needs to identify why and provide a fix. Thus, we view personalizing

a machine learning system as an end-user debugging problem, and this view suggests that

approaches to support personalization should build upon existing end-user program­

ming research.

Machine learning systems are formally tested prior to deployment by machine

learning specialists using statistical methods (Hastie et al., 2009), but such methods do

not guarantee the system will continue to work satisfactorily as it continues to “learn”

from its user’s behavior. Indeed, as argued in Groce et al. (2014), after a learning system

16

has been deployed, only the end user is in a position to test it—once its reasoning has

been updated (e.g., by the user labeling additional training instances), the original

developers no longer have a testable variant that matches the end user’s. Systematic

testing for end users was pioneered by the What You See Is What You Test approach

(WYSIWYT) for spreadsheet users (Rothermel et al., 2001). To alleviate the need for

users to conjure values for testing spreadsheet data, “Help Me Test” capabilities were

added; these either dynamically generate suitable test values (Fisher II et al., 2006)
or back-propagate constraints on cell values (Abraham and Erwig, 2006). Statistical

outlier finding has been used in end-user programming settings for assessment, such

as detecting errors in text editing macros (Miller and Myers, 2001), inferring formats

from a set of unlabeled examples (Scaffidi, 2007), and to monitor on-line data feeds in

web-based applications for erroneous inputs (Raz et al., 2002). These approaches use

statistical analysis and interactive techniques to direct end-user programmers’ attention

to potentially problematic values, helping them find places in their programs to fix. Our

preliminary work has explored the utility of such approaches when testing machine

learning systems, finding they helped participants discover more of a system’s failures

and test more of the system’s logic than regular ad hoc assessment alone (Groce et al.,

2014).
A number of debugging approaches leverage systematic testing to help end users

find and understand the causes of faulty behavior. For example, in the spreadsheet

domain, WYSIWYT allows users to test spreadsheet formulas by placing checkmarks

beside correct outputs and X-marks beside incorrect outputs (Rothermel et al., 2001). A

fault localization device then traces the data “flowing” into these cells, helping users

locate cells whose formulas are likely to be faulty. Woodstein serves a similar purpose in

the e-commerce domain: this approach helps users to debug problems by explaining

events and transactions between e-commerce services (Wagner and Lieberman, 2004).
These approaches exemplify successful attempts to help end users first identify, and then

understand the cause of, program failures. To facilitate such understanding, they work

to draw a user’s attention to the faulty regions of a program’s logic. The Whyline (Ko and

Myers, 2008) performs a similar function for more traditional programming languages,

and also dynamically generates explanations of a program’s behavior. Because of the

similarity between what the Whyline does for traditional programming languages and

17

what we hope Explanatory Debugging will do for machine learning systems, we next

discuss the Whyline in some detail.

The Whyline pioneered a method to debug certain types of programs in an explanation-

centric way (Ko and Myers, 2008). The Whyline was explored in three contexts, encom­

passing both end user programmers and professional developers: (1) event-based virtual

worlds written in the Alice programming system (Ko, 2006), (2) Java programs (Ko and

Myers, 2008), and (3) the Crystal system for debugging unexpected behaviors in complex

interfaces (Myers et al., 2006). In each case, these tools help programmers understand

the causes of program output by allowing them to select an element of the program

and receive a list of why and why not questions and answers in response. These “Why?”

questions and answers are extracted automatically from a program execution history,

and “Why not” answers derive from a reachability analysis to identify decision points in

the program that could have led to the desired output. In the Crystal prototype, rather

than presenting answers as sequences of statement executions, answers are presented in

terms of the user-modifiable input that influenced code execution. In all of these Whyline

tools, the key design idea is that users select some output they want to understand, and

the system explains the underlying program logic that caused it.

Part of our preliminary research involved translating the Whyline’s design concept to

the domain of machine learning systems (Kulesza et al., 2011). This built upon the work

of Stumpf et al., who explored end-user debugging techniques for text classification

systems. Their research began by investigating different types of explanations, as well as

user reactions to these explanations (Stumpf et al., 2007); user studies later confirmed

that even simple corrections from end users have the potential to increase the accuracy

of a learning system’s predictions (Stumpf et al., 2008, 2009). For some participants,

however, the quality of the system’s predictions actually decreased as a result of their

corrections—there were barriers preventing these users from successfully personalizing

the learning system’s reasoning. We later conducted a study building upon this work,

identifying and categorizing the barriers end users encountered and the information

they requested to overcome them (Kulesza et al., 2011). This exploration taught us that

a direct translation of the Whyline to the machine learning domain was impractical, but

it did suggest that a different explanation-centric approach may work—if, that is, we

can help users overcome the high number of barriers they encounter while attempting

to personalize a machine learning system. The rest of this dissertation explores the

18

development of just such an approach by studying how explanations and feature-based

feedback can help users overcome barriers and successfully personalize machine learning

systems.

19

Chapter 3: Exploring the effects of mental model fidelity

3.1 Introduction

At one time or another, most everyone has tried to open a door by pushing it outward

when they actually needed to pull it inward, or vice versa. This is the canonical example

of a mental model failure in Norman’s The Design of Everyday Things, in which Norman

argues that the design of objects provide hints to users about how to interact with them.

For example, seeing a vertical handle on a door suggests it should be pulled, while a

plate or horizontal bar suggests pushing (Norman, 2002). These designs gives users clues

as they (often unconsciously) build a mental model of what will happen if they pull

or push on the door, and if the design is successful, then users’ mental models will be

correct—they will push doors that open outward and pull doors that open inward. The

key point is that even in everyday situations, mental models matter—they inform all of

our actions by allowing us to predict the results of those actions.

Our explanation-centric approach for personalizing machine learning is predicated

upon this same idea: that a user with an accurate mental model of the learning system

will be able to better predict how the system will respond to his or her actions than

a user with a poor mental model of the system. As discussed in Section 2.2, however,

researchers have not yet studied how a user’s mental model impacts their ability to

personalize a machine learning system—perhaps the amount of time or effort it takes to

build a useful mental model of a learning system is impractically high, or the benefit

is relatively modest. Thus, we begin by studying the feasibility of helping end users

build accurate structural mental models (i.e., how it works) of a learning system and the

impact that these models have on end users, as compared with a basic functional mental

model (i.e., how to use it).

20

When discussing how accurately a structural mental model reflects a machine

learning system, we use the term fidelity. A high-fidelity mental model is a more accurate

reflection of the real-world system than a low-fidelity mental model.1

The complexity of machine learning systems presents an important question: can

users without a computer science background quickly grasp the complexities of a

learning system? In the (limited) prior work in this area, users created plausible models

of how the learning system may work, but these mental models did not necessarily

reflect the actual learning system used in the study (Tullio et al., 2007). If it is feasible to

help end users build high-fidelity mental models of a learning system, we are interested

not only in whether these mental models help users personalize a learning system better

than participants who lack such models, but also the potential costs that acquiring these

mental models may entail. In particular, we are concerned that the complexity of the

system may prove discouraging or anxiety-inducing to some end users, thus resulting in

an poor overall user experience. Taken together, these concerns yield the following four

research questions:

RQ3.1:	 Feasibility: Can end users quickly build and recall a high-fidelity structural

mental model of a learning system’s operation?

RQ3.2:	 Personalization: Do end users’ mental models have a positive effect on their

ability to personalize a machine learning system?

RQ3.3:	 Confidence: Does building a high-fidelity mental model of a machine learning

system improve end users’ computer self-efficacy and reduce computer anxiety?

RQ3.4:	 User Experience: Do end users with high-fidelity mental models of a machine

learning system experience interactions with it differently than users with

low-fidelity models?

3.2 Empirical study

To explore the effects of mental model fidelity on end-user personalization of machine

learning systems, we needed a domain that participants would be motivated to both
1We say fidelity instead of accuracy for consistency with our analysis of explanations in Chapter 4, in

which we show that fidelity is impacted by (1) the presence of information (referred to as completeness in
Chapter 4) and (2) whether said information is accurate (referred to as soundness in Chapter 4).

21

use and personalize. Music recommendations, in the form of an adaptable Internet

radio station, meet these requirements, so we created an Internet radio platform (named

AuPair) that users could personalize to play music fitting their particular tastes.

Mental models may continue to evolve while users interact with a system, and this

evolution would be difficult to capture in a brief laboratory experiment. Thus, to reflect

the fact that many machine learning systems are used over periods of days, weeks,

or months, rather than minutes or hours, we designed our experiment to combine a

controlled tutorial session in a laboratory with an uncontrolled period of field use. The

study lasted five days, consisting of a tutorial session and pre-study questionnaires on

Day 1, then three days during which participants could use the AuPair prototype as they

wished, and an exit session on Day 5.

3.2.1 AuPair Radio

AuPair allows the user to create custom stations and personalize them to play a desired

type of music. Users start a new station by seeding it with a single artist name (e.g.,

“Play music by artists similar to Patti Smith”, Figure 3.1). Users can then personalize the

system by giving feedback about individual songs, or by adding general guidelines to

the station. Feedback about an individual song can be provided using the 5-point rating

scale common to many media recommenders, as well as by talking about the song’s

attributes (e.g., “This song is too mellow, play something more energetic”, Figure 3.2). To

add general guidelines about the station, the user can tell it to prefer or avoid descriptive

words or phrases (e.g., “Strongly prefer garage rock artists”, Figure 3.3, top). Users can

also limit the station’s search space (e.g., “Never play songs from the 1980’s”, Figure 3.3,
bottom).

AuPair was implemented as an interactive web application, using jQuery and AJAX

techniques for real-time feedback in response to user interactions and control over audio

playback. We supported recent releases of all major web browsers. A remote web server

provided recommendations based on the user’s feedback and unobtrusively logged each

user interaction via an AJAX call.

AuPair’s recommendations were based on data provided by The Echo Nest2, allowing

access to a database of cultural characteristics (e.g., genre, mood, etc.) and acoustic

2http://the.echonest.com

http://the.echonest.com

22

Figure 3.1: Users start a station by specifying an artist they’d like to hear music similar
to.

Figure 3.2: Users can personalize their station by saying why the current song was a good
or bad choice.

23

Figure 3.3: Users can place guidelines on the type of music the station should or should
not play, via a wide range of criteria.

24

characteristics (e.g., tempo, loudness, energy, etc.) of the music files in our library. We

built AuPair’s music library by combining the research team’s personal music collections,

resulting in a database of more than 36,000 songs from over 5,300 different artists.

The core of our recommendation engine was built upon The Echo Nest API’s dynamic

playlist feature. Dynamic playlists are put together using machine learning approaches

and are “steerable” by end users. This is achieved via an adaptive search algorithm that

builds a path (i.e., a playlist) through a collection of similar artists. Artist similarity

in AuPair was based on cultural characteristics, such as the terms used to describe the

artist’s music. The algorithm uses a clustering approach based on a distance metric

to group similar artists, and then retrieves appropriate songs. The user can adjust the

distance metric (and hence the clustering algorithm) by changing weights on specific

terms, causing the search to prefer artists matching these terms. The opposite is also

possible—the algorithm can be told to completely avoid undesirable terms. Users can

impose a set of limits to exclude particular songs or artists from the search space. User

can also query each song or artist to reveal the computer’s understanding of its acoustic

and cultural characteristics, such as its tempo, genre, “energy”, or “danceability”.

3.2.2 Participants

Our study was completed by 62 participants, (29 females and 33 males), ranging in age

from 18 to 35. Only one of the 62 participants reported prior familiarity with computer

science. These participants were recruited from Oregon State University and the local

community via email to university students and staff, and fliers posted in public spaces

around the city (coffee shops, bulletin boards, etc.). Participants were paid $40 for their

time upon completion of the study. Potential participants applied via a website that

automatically checked for an HTML5-compliant web browser (applicants using older

browsers were shown instructions for upgrading to a more recent browser) to reduce the

chance of recruiting participants who lacked reliable Internet access or whose preferred

web browser would not be compatible with our AuPair Radio prototype.

25

3.2.3 Experiment design and procedure

We randomly assigned participants to one of two groups—a With-scaffolding treatment

group, in which participants received special training about AuPair’s recommendation

engine, and a Without-scaffolding control group. Upon arrival, participants answered

a widely used, validated self-efficacy questionnaire (Compeau and Higgins, 1995) to

measure their confidence in problem solving with a hypothetical (and unfamiliar)

software application.

Both groups then received training about AuPair. The same researcher provided

the tutorial to every participant, reading from a script for consistency. To account

for differences in participant learning styles, the researcher presented the tutorial

interactively, via a digital slideshow interleaved with demonstrations and hands-on

participation. For both groups this tutorial included about 15 minutes of instruction

about the functionality of AuPair, such as how to create a station, how to stop and restart

playback, and other basic usage information. This tutorial was designed to help all

participants build a functional mental model of the system.

Following the basic usage tutorial, the With-scaffolding group received an addi­

tional 15-minute tutorial about AuPair to help induce a structural mental model of

the recommendation engine. This “behind the scenes” training included illustrated

examples of how AuPair determines artist similarity, the types of acoustic features the

recommender “knows” about, and how it extracts this information from audio files.

Researchers systematically selected content for the scaffolding training by examining

each possible user interaction with AuPair; for each interaction, the tutorial included an

explanation of how the recommender would respond. For instance, every participant

was told that the computer will attempt to “play music by similar artists”, but the

With-scaffolding participants were then taught how TF-IDF (term frequency-inverse

document frequency, a common measure of word importance in information retrieval

(Ramos, 2003)) measurements were used by the system to identify “similar” artists. In

another instance, every participant was shown a control for using descriptive words

or phrases to steer the system, but only With-scaffolding participants were told where

these descriptions came from (traditional sources, like music charts, as well as Internet

sources, such as Facebook pages).

26

After this introduction, each participant answered a set of six multiple-choice

comprehension questions in order to establish the fidelity of their mental models. Each

question presented a scenario (e.g., “Suppose you want your station to play more music

by artists similar to The Beatles”), and then asked which action, from a choice of four,

would best align the station’s recommendations with the stated goal. Because mental

models are inherently “messy, sloppy. . . and indistinct” (Norman, 1987), we needed to

determine if participants were guessing, or if their mental models were sound enough

to eliminate some of the incorrect responses. Thus, as a measure of confidence, each

question also asked how many of the choices could be eliminated before deciding on a

final answer. A seventh question asked participants to rate their overall confidence in

understanding the recommender on a 7-point scale.

The entire introductory session (including questionnaires) lasted 30 minutes for

Without-scaffolding participants and 45 minutes for With-scaffolding participants. Both

groups received the same amount of hands-on interaction with the recommender.

Over the next five days, participants were free to access the web-based system as

they pleased. We asked them to use AuPair for at least two hours during this period, and

to create at least three different stations. Whenever a participant listened to music via

AuPair, it logged usage statistics such as the amount of time they spent personalizing

the system, which personalization controls they used, and how frequently these controls

were employed.

After five days, participants returned to answer a second set of questions. These

included the same self-efficacy and comprehension questionnaires as on Day 1 (partici­

pants were not told whether their prior comprehension responses were correct), plus

the NASA-TLX survey to measure perceived task load (Hart and Staveland, 1988). We

also asked three Likert-scale questions about user’s satisfaction with AuPair’s recom­

mendations (using a 21-point scale for consistency with the NASA-TLX survey) and

the standard Microsoft Desirability Toolkit (Benedek and Miner, 2002) to measure user

attitudes toward AuPair.

3.2.4 Data analysis

We used participants’ answers to the comprehension questions described earlier to

measure mental model fidelity. Each question measured the depth of understanding

27

for a specific type of end user debugging interaction, and their combination serves as a

reasonable proxy for participants’ understanding of the entire system. We calculated the
66

fidelity of participant’s mental models using the formula (correctnessi · confidencei),
i=1

where correctness is either 1 for a correct response or -1 for an incorrect response,

and confidence is a value between 1 and 4 (representing the number of answers the

participant was able to eliminate). These values were summed for each question i to

create a participant’s comprehension score, ranging from -24 (indicating a participant

who was completely confident about each response, but always wrong) to +24 (indicating

someone who was completely confident about each response and always correct).

As discussed in Section 2.1, measuring in-the-head constructs such as mental models

is challenging—participants may give incomplete answers that do not reflect the entirety

of their mental model, and the very act of reflecting on their mental models may cause

them to change. Thus, a participant with a perfect mental model score (as described

above) does not necessarily hold a perfect mental model—even if several participants all

held similar models, we would expect to see some variance in their mental model scores

because of the challenges inherent to capturing mental models. However, statistical tests

account for variance, so we can perform between-subject tests to determine if one group

of subjects tended to hold better mental models than the other, and this is the approach

we take throughout this dissertation. While such tests provide evidence that the mental

model scores between two groups differed (e.g., a high-fidelity group and a low-fidelity

group), we must still refrain from claiming that these scores reveal the exact fidelity of

participants’ mental models.

Mental models evolve as people integrate new observations into their reasoning

(Norman, 1987), and previous studies have suggested that participants may adjust

their mental models while working with a learning system that is transparent about

its decision-making process (Kulesza et al., 2010). Furthermore, constructivist learning

theory (Kolb, 1984) places emphasis on knowledge transformation rather than the overall

state of knowledge. Hence, we also calculated mental model transformation by taking

the difference of participants’ two comprehension scores (day_5_score − day_1_score).
This measures how much each participant’s knowledge shifted during the study, with

a positive value indicating increasing fidelity, and a negative value suggesting the

replacement of high-fidelity models with low-fidelity models.

28

Metric Definition

Responses to comprehension questions (sum of
Mental model fidelity

correct responses, weighted by confidence).

Response to Likert question “Are you confident all
Perceived mental model of your statements are accurate?” after participants

fidelity were asked to enumerate how they think the
recommender made decisions.

Difference between post-task mental model fidelity
Mental model transformation

and pre-task mental model fidelity.

Number of actions a participant used to personalize
each playlist (e.g., providing feedback, getting the

Personalization interactions
next recommendation, or viewing a song’s features),
from the automated log files.

Length of time a participant spent on the task, i.e.
Interaction time

listening to and interacting with AuPair.

Response to Likert question “Do you feel the effort
Cost/benefit you put into adjusting the computer was worth the

result?”

Response to Likert question “How satisfied are you
Satisfaction

with the computer’s playlists?”

Table 3.1: Definitions for each metric used in our data analysis.

Table 3.1 lists all of our metrics and their definitions.

3.3 Results

3.3.1 Feasibility (RQ3.1)

3.3.1.1 Effectiveness of scaffolding

Understanding how machine learning systems work is not trivial—even designers and

builders of intelligent systems may have considerable difficulty (Kapoor et al., 2010).

29

0

7

14

Day 1 Day 5
M

e
n

ta
l
m

o
d

e
l

fi
d

e
lit

y
Figure 3.4: With-scaffolding participants (dark) held sounder mental models than
without-scaffolding participants (light), both immediately following the tutorial, and
five days later.

Our first research question (RQ3.1) considers the feasibility of inducing a high-fidelity

mental model of an algorithm’s reasoning process in end users—if participants fail to

learn how the recommender works given a human tutor in a focused environment, it

seems unreasonable to expect them to easily learn it on their own.

We tested for a difference in mental model fidelity (as measured by comprehension

scores weighted by confidence) between the With-scaffolding group and the Without-

scaffolding group. The With-scaffolding group had significantly higher scores than the

Without-scaffolding group, both before and after the experiment task (Day 1: Welch’s

t-test, t(54) = −3.03, p = .004) (Day 5: Welch’s t-test, t(60) = −3.77, p < .001). To ensure

these differences were not primarily the result of differing levels of confidence, we

performed the same test without weighting the comprehension scores by confidence,

finding nearly identical results (Day 1: Welch’s t-test, t(55) = −3.09, p = .003) (Day

5: Welch’s t-test, t(59) = −3.55, p < .001). Neither group’s mean comprehension score

changed significantly during the 5-day study (Figure 3.4).
Participants also showed differences in their perceived mental model fidelity, at least

at first. On Day 1, the Without-scaffolding group was significantly less certain that

they accurately understood how the system selected songs and responded to feedback

(mean score of 4.5 out of 7) than the With-scaffolding group (mean score of 5.6 out of

7) (Welch’s t-test, t(58) = −2.51, p = .015). By Day 5, however, the Without-scaffolding

group’s perceived mental model fidelity responses had risen to a mean of 5.25, with no

evidence of statistical difference against the With-scaffolding group (with a mean of 5.3).

30

3.3.1.2 Discussion

These results provide insights into four aspects of the practicality of end users compre­

hending and debugging the reasoning of a machine learning system.

First, even a short 15-minute scaffolding tutorial effectively taught participants

how the recommender reasoned. With-scaffolding participants were significantly more

likely to correctly and confidently answer the comprehension questions. This in turn

suggests that the With-scaffolding participants should be better equipped to debug

the recommender’s reasoning than the Without-scaffolding participants, a point we

investigate in RQ3.2.
Second, mental model fidelity did not significantly improve during the five days

participants interacted with AuPair on their own—simply using the system did not

significantly help participants develop more accurate mental models about its reasoning.

This is in contrast to recent work in interactive machine learning, which has found that

for some systems (e.g., gesture recognition frameworks), repeated use taught people the

most salient aspects of how the system worked (Fiebrink et al., 2011).
Third, the fidelity of participants’ mental models largely persisted for the duration

of the study. This appeared to be the case for both the Without-scaffolding and With-

scaffolding groups, with neither groups’ comprehension scores significantly changing

between Day 1 and Day 5. This bodes well for end users retaining and recalling sound

models initially learned about a machine learning system.

Fourth, however, is the issue of initially building inaccurate, low-fidelity models:

once low-fidelity models were built, they were unlikely to improve. Even though the

Without-scaffolding group formed low-fidelity mental models, their confidence in these

mental models increased during the course of the experiment, suggesting that they had

convinced themselves they were, in fact, correct. Making in situ explanations available

on an ongoing basis, such as in (Kulesza et al., 2010; Talbot et al., 2009; Herlocker et al.,

2000), may be a way to address this issue.

Together, these findings provide evidence that furnishing end users with a brief

explanation on the structure of a machine learning system’s reasoning, such as the

attributes used, how such attributes are collected, and the decision-making procedure

employed, can significantly improve their mental model’s fidelity.

31

3.3.2 Personalization (RQ3.2)

A recommender’s effectiveness is in the eye of the beholder. Personalized recommenda­

tions cannot have a “gold standard” to measure accuracy—only the end users themselves

can judge how well an system’s recommendations match their personal expectations.

Hence, for our second research question (RQ3.2), we turned to a pair of more appropriate

measures to explore the effects of mental model fidelity on personalization—cost/benefit

and participant satisfaction.

3.3.2.1 Cost/Benefit

In theory, a high-fidelity mental model enables a person to reason effectively about their

best course of action in a given situation (Johnson-Laird, 1983). Thus, we expected par­

ticipants with high-fidelity mental models (the With-scaffolding participants, according

to the RQ3.1 results) to personalize AuPair more effectively than those with low-fidelity

mental models. For example, knowing that the recommender could be steered more

effectively by using unique, highly specific words (e.g., “Merseybeat”) rather than broad,

common descriptors (e.g., “oldies”) should have helped such participants personalize

the recommender’s reasoning more effectively than participants who did not understand

this.

Surprisingly, when using participants’ perceptions of cost/benefit as a surrogate for

effectiveness, the soundness of participants’ mental models showed little impact on

this measure of personalization effectiveness. Mental model transformation, however,

was tied with cost/benefit: participants who most improved the fidelity of their mental

models reported that the effort of personalizing their radio station was significantly

more worthwhile than participants whose mental models improved less, or not at all

(Table 3.2, row 1 and Figure 3.5, top left).

Participants’ opinions of effectiveness were confirmed by their interactions to adjust

or assess AuPair’s recommendations (e.g., providing feedback, getting the next recom­

mendation, or viewing a song’s features). The count of these personalization interactions

was significantly correlated with the improvement in mental model fidelity for With-

scaffolding participants, while no such correlation existed among Without-scaffolding

participants (Table 3.2, rows 2 and 3, and Figure 3.5, top right). Improvements to a

32

participant’s mental model, then, may have had a positive impact on their ability to

personalize the system, whereas small changes to an initially incorrect model did not

serve the Without-scaffolding participants as well.

Further, participants who most improved the fidelity of their mental models spent

significantly less time on their interactions than other participants (Table 3.2, row 4,
and Figure 3.5, bottom left). In light of the increases in perceived cost/benefit and

personalization interactions, this suggests positive mental model transformations were

linked to more efficient personalization.

An alternative explanation of the above results is that personalization interactions

were responsible for participants’ mental model transformations, rather than the other

way around. Recall, however, that the Without-scaffolding group showed no correlation

between the number of personalization interactions and their mental model scores

(Table 3.2, row 3). Thus, the evidence suggests that it was the in situ enhancement of

already relatively high-fidelity models that was linked to improved attitudes toward

personalization.

3.3.2.2 Satisfaction

Our second measure of personalization effectiveness was participants’ satisfaction with

AuPair’s resulting recommendations. To measure this, we asked participants (via a Likert

scale) “How satisfied are you with the computer’s playlists?” at the end of the study.

As with the cost/benefit results, neither treatment nor mental model fidelity was

predictive of participant satisfaction (Table 3.2, rows 5 and 6). However, here again,

transformation of mental models appeared to matter—mental model transformation was

marginally predictive of how satisfied participants felt with AuPair’s playlists (Table 3.2,
row 7). For example, the participant whose mental model’s fidelity decreased the most

expressed dissatisfaction and a feeling of being unable to control the computer:

“The idea is great to be able to ‘set my preferences’, but if the computer continues
to play what I would call BAD musical choices—I’d prefer the predictability of
using Pandora.”

Conversely, one of the participants whose mental model most increased in fidelity

expressed a feeling of being more in control:

33

Statistical Metric Result Figure test

Mental model transformation
1

vs. cost/benefit

Mental model transformation
2 (With-scaffolding) vs.

personalization interactions

Mental model transformation
3 (Without-scaffolding) vs.

personalization interactions

Mental model transformation
4

vs. interaction time

Satisfaction between
5 With-scaffolding/

Without-scaffolding groups

Satisfaction vs. mental model
6

fidelity

Satisfaction vs. mental model
7

transformation

8 Satisfaction vs. cost/benefit

Satisfaction vs.
9

personalization interactions

Linear
regression

Pearson
correlation

Pearson
correlation

Pearson
correlation

Welch’s
t-test

Linear
regression

Linear
regression

Pearson
correlation

Pearson
correlation

R2 = .07,

F(1,60) = 4.37,

p = .041

r(28) = .39,

p = .031,

r(30) = .01,

p = .952

r(60) = −.27,

p = .032

t(60) = 1.53,

p = .129

R2 = .02,

F(1,60) = 1.23,

p = .272

F(1,60) = 3.89,

R2 = .06, p = .053

r(60) = .73,

p < .001

r(60) = −.13,

p = .293

Figure 3.5
(top left)

Figure 3.5
(top right)

Figure 3.5
(bottom left)

Figure 3.5
(bottom
right)

Table 3.2: Positive mental model transformations were consistently associated with better
benefits, lower costs, and improved satisfaction (significant results shaded). Definitions
for each metric are listed in Table 3.1.

34

0

7

14

21

-24 -12 0 12 24

C
o

s
t/

b
e

n
e

fi
t

Mental model
transformation

0

60

120

180

-24 -12 0 12 24

#
 o

f
in

te
ra

c
ti
o

n
s

Mental model
transformation

2

4

6

-24 -12 0 12 24

In
te

ra
c
ti
o
n

 t
im

e
 (

h
o

u
rs

)

Mental model
transformation

0

7

14

21

0 7 14 21

C
o

s
t/

b
e

n
e

fi
t

Satisfaction

Figure 3.5: Scatterplots of raw data for each significant result from Table 3.2. Definitions
for axis measurements are listed in Table 3.1.

35

“I like the idea of having more control to shape the station. Controls made sense
and were easy to use. The user has a lot of options to tune the station.”

Perceived cost/benefit from personalizing the recommender was also significantly

correlated with participant satisfaction (Table 3.2, row 8, and Figure 3.5, bottom right)—

further evidence that satisfaction was indicative of an increased ability to personalize

the learning system’s reasoning. To ensure that participant satisfaction was not simply

a result of time and effort invested, we tested for a relationship between reported

satisfaction and the number of personalization interactions each participant performed,

but found no evidence of a correlation (Table 3.2, row 9).

3.3.2.3 Discussion

An additional factor may have affected participant satisfaction: whether or not AuPair

Radio could play the music they were hoping to hear. Our music database held songs by

just over 5,300 artists—pandora.com, by comparison, has over 80,000 different artists.3

Participant satisfaction may have been confounded by the fact that some participants

hoped their stations would play music that was unavailable to AuPair. As one participant

commented:

“The songs played weren’t what I was looking for, the selection was poor. The
system itself was excellent, but I need more music.”

Despite this potential factor, the confluence of several metrics (cost/benefit, person­

alization interactions, interaction time, and satisfaction) suggests that transformations in

mental model fidelity translated to an improved ability to personalize the recommender’s

reasoning, resulting in more satisfaction with AuPair’s recommendations. Because our

evidence suggests mental model transformations (which occurred during the study)

helped participants personalize the system more efficiently and effectively, continuing

to provide explanations of a learning system’s reasoning while end users interact with

it may help to increase their ultimate satisfaction with the system’s predictions or

recommendations. Such on-line explanations, however, were not investigated by the

3Pandora Media, Inc. Initial Public Offering Form S-1 (2011).

http:artists�pandora.com

36

current study; we focused our exploration on the impact of explanations prior to (rather

than during) user interaction with a machine learning system.

One potential explanation of why we found no evidence that end-of-study mental

model fidelity was predictive of personalization ability could be that the information

presented to the With-scaffolding tutorial participants was not helpful for personalizing

the recommender’s reasoning; it may have only been helpful for understanding the

recommender. Instead, the most effective participants may have built upon this initial

understanding to quickly learn how to efficiently personalize AuPair while interacting

with the system. However, this alternative explanation is weakened by the fact that the

prototype was not transparent about how it made its decisions; the only time when

participants were presented with explanations of AuPair’s reasoning occurred during

the With-scaffolding tutorial.

3.3.3 Confidence (RQ3.3)

Presenting a complex system to unsuspecting users could overwhelm them. We are

particularly concerned with peoples’ willingness to personalize (or otherwise adjust)

the reasoning of machine learning systems—some people (especially those with low

computer self-efficacy) may perceive a risk that their debugging is more likely to harm

the system’s reasoning than to improve it. Similarly, computer anxiety (a “degree of fear

and apprehension felt by individuals when they consider the utilisation, or actual use, of

computer technology” (Bozionelos, 2001)) is known to negatively impact how (and how

well) people use technology, and is negatively correlated with computer self-efficacy

(Wilfong, 2006).
Surprisingly, we found the opposite to be true—teaching participants about AuPair’s

reasoning may have helped increase their computer self-efficacy. As Table 3.3 shows,

almost three-quarters of the With-scaffolding participants experienced an increase in

their computer self-efficacy between Day 1 and Day 5. Without-scaffolding participants,

conversely, were as likely to see their computer self-efficacy decrease as to increase. A χ2

comparison showed that With-scaffolding participants were significantly more likely

than a uniform distribution (in which only half would increase their self-efficacy) to

increase their computer self-efficacy (χ2(1, N = 62) = 6.53, p = .011). This suggests that

exposure to the internal workings of machine learning systems may have helped to

37

Did improve

Self-efficacy. . .

Did not improve Average change

Without-scaffolding

With-scaffolding

16

22

16

8

3.29%

5.90%

Table 3.3: Participants in the With-scaffolding group were likely to end the experiment
with higher computer self-efficacy than when they began.

allay, rather than to increase, participants’ perceived risk of making their personalized

learning system worse.

As further evidence that it was understanding how the system worked (rather than

simply a byproduct of using it) that influenced participants’ computer self-efficacy,

participants’ perceived mental model fidelity was significantly correlated with their

computer self-efficacy at the end of the study (Pearson correlation, r(60) = .44, p <

.001). Additionally, there was no evidence of a correlation between the number of

personalization interactions participants made and their self-efficacy at the end of

the study (Pearson correlation, r(60) = .13, p = .286); participants did not appear to

grow more confident by simply interacting with the system. Thus, participants who at

least thought they understood the nuances of AuPair’s reasoning scored higher on the

computer self-efficacy questionnaire than those who expressed little confidence in their

knowledge of the recommender’s logic.

3.3.3.1 Discussion

We hope further research will shed additional light on this preliminary link between

learning how a machine learning system reasons, and increasing levels of computer self-

efficacy (and, by association, decreasing levels of computer anxiety). Challenging tasks,

when successfully accomplished, have been found to have a significantly larger impact on

self-efficacy than overcoming small obstacles (Bandura, 1977). Personalizing a machine

learning system seems exactly the sort of difficult computer task that, successfully

carried out, may make people say, “If I could do that, surely I can do this other thing. . . ”,

thereby reducing the obstacles of risk and anxiety toward future computer interactions.

38

3.3.4 User experience (RQ3.4)

For our final research question, we looked at the potential effects of mental model fidelity

on perceptions of experience, such as cognitive demands and emotional responses.

3.3.4.1 Cognitive demands

Prior work has found that explaining concrete decisions of a learning system’s reasoning

to end users in situ created an increase in participants’ frustration with, and mental

demand of, correcting the system’s mistakes (measured via the NASA-TLX questionnaire)

(Kulesza et al., 2010). We suspected that end users might experience similar effects when

presented with prior structural knowledge. However, the With-scaffolding participants

showed no significant difference to Without-scaffolding participants’ TLX scores. While

acquiring a high-fidelity mental model undoubtedly requires mental effort on the part of

end users, we encouragingly found no evidence that this was any greater than the mental

effort required to interact with the learning system while lacking a clear understanding

of its underpinnings. This suggests that end users’ experience with learning systems

does not necessarily suffer when they are exposed to more knowledge of how the system

works.

3.3.4.2 Emotional responses

We used the Microsoft Desirability Toolkit (Benedek and Miner, 2002) to investigate

participants’ user experience with the AuPair music recommender. Participants were

given a list of 118 adjectives and asked to underline each one they felt was applicable to

their interactions with AuPair.

The Internet General Inquirer (a tool that associates participants’ words with either

positive or negative connotations, based on the content analysis framework proposed

in (Stone, 1968)) revealed that With-scaffolding participants employed slightly more

positive descriptions of AuPair than the Without-scaffolding group (54.9% vs. 49.6%)

and fewer negative descriptions (9.9% vs. 12.0%). While not statistically significant

between groups, these numbers suggest that the With-scaffolding participants (with their

higher-fidelity mental models) may have viewed the overall experience of interacting

with AuPair in a more positive light than Without-scaffolding participants.

39

Figure 3.6: Tag cloud of negative descriptive terms for AuPair. Without-scaffolding
participants found the system “overwhelming” and “complex” (top), whereas the With-
scaffolding group (bottom) viewed it as “simplistic”.

Participants’ descriptions revealed a subtler picture of the difficulties they faced.

Word clouds—in which a word’s frequency is indicated by its size—of the negative

descriptions show that the With-scaffolding group’s complaints may have stemmed

more from difficulties using the system than difficulties understanding it; these partici­

pants were apt to complain the system was “simplistic”, “annoying”, and “frustrating”

(Figure 3.6, bottom), while the Without-scaffolding group appeared to have trouble

even understanding the impact of their debugging interactions, citing the system as

“confusing”, “complex”, “overwhelming”, and “ineffective” (Figure 3.6, top).

Participants’ choices of positive descriptions provide further evidence the With-

scaffolding participants’ mental models contributed positively to interacting with the

system (Figure 3.7). The phrase “easy to use” dominated their responses, alongside

“innovative” and “accessible”. In contrast, the Without-scaffolding participants focused

on the visual appearance of the system, with words like “clean” and “appealing”.

Participants with a deeper understanding of the system may have placed more emphasis

on the interaction experience than aesthetics.

3.3.4.3 Discussion

Numerous benefits are associated with high-fidelity structural mental models, and in the

case of this machine learning system, it appears possible to gain these without impairing

40

Figure 3.7: Tag cloud of positive descriptive terms for AuPair. Without-scaffolding
participants (top) focused on visual appearance more than With-scaffolding participants
(bottom).

the user experience. This is encouraging for the feasibility of end-user personalization

of recommendation systems (and other types of learning systems), especially when the

user associates a benefit with personalizing the system’s reasoning.

3.4 Conclusion

This chapter provides the first empirical exploration of how mental models impact

end users’ attempts to personalize a machine learning system. By scaffolding structural

mental models for half of our study’s participants, we learned that:

•	 Despite the complexity inherent with machine learning, With-scaffolding partici­

pants quickly built high-fidelity mental models of how one such system (a music

recommender) operates “behind the scenes”—something the Without-scaffolding

participants failed to accomplish over five days of system usage.

41

•	 The participants’ mental model transformations—from lower to higher fidelity—

was predictive of their ultimate satisfaction with the learning system’s output.

Participants with the largest transformations were able to efficiently personalize

their recommenders’ reasoning, aligning it with their own reasoning better and

faster than other participants. These same participants were also likely to perceive

a greater benefit from their personalization efforts.

•	 Participants presented with structural knowledge of the learning system’s reason­

ing were significantly more likely to increase their computer self-efficacy, which

is known to correlate with reduced computer anxiety and increased persistence

when tackling complex computer tasks.

•	 Participants who were presented with structural knowledge showed no evidence of

feeling overwhelmed by this additional information and viewed interacting with

the learning system in a positive light, while participants holding only functional

mental models more frequently described their personalization experience in

negative terms, such as “confusing” and “complex”.

This work demonstrates the value and practicality of providing end users with

structural knowledge of their machine learning systems’ reasoning. Our results suggest

that if users acquire better mental models of a learning system (particularly while

interacting with it), they will be better able to personalize that system. However, the

if may be a stumbling block. In this study, human-led instruction helped our With-

scaffolding participants to build higher-fidelity mental models than Without-scaffolding

participants, but this is not a viable solution for users of machine learning systems.

Instead, the learning system itself will need to help users build high-fidelity mental

models, and it is this challenge we turn to in the next chapter.

42

Chapter 4: How explanations can impact mental model fidelity

4.1 Introduction

The previous chapter found that it is feasible to help end users acquire high-fidelity men­

tal models of a machine learning system, but because it relied upon human instruction to

induce these models, an important question was left unanswered: how should machine

learning systems explain themselves to users? The predominant approach in commercial

systems is to “keep it simple” (e.g., the music recommender Pandora.com currently

describes its song recommendations via a single sentence; the junk mail classifier in

Gmail explains each spam classification using a set of just eight high-level reasons1).

Such simplicity, however, may prevent users from understanding how the system makes

decisions, and as we saw in Chapter 3, this may in turn prevent users from successfully

personalizing their learning systems.

In this chapter we raise the question of whether simplicity is the right attribute

to prioritize when designing a machine learning system’s explanations. A different

possibility is to prioritize explanation fidelity—how closely the explanation matches the

underlying system—as this may then help end users build high-fidelity mental models

of the learning system. However, information comes at the price of attention—a user’s

time (and interest) is finite, so high-fidelity explanations may discourage users from

attending to their contents.

To investigate how machine learning systems should explain themselves to their

users, we performed a qualitative study to separately consider two dimensions of explana­

tion fidelity: soundness (how truthful each element in an explanation is with respect to the

underlying system) and completeness (the extent to which an explanation describes all of

the underlying system). We then investigated how varying soundness and completeness

(as in Figure 4.1) impacted users’ mental models of a music-recommending machine

learning system, what types of information (based on Lim and Dey’s classification of

intelligibility types) were most helpful in the explanations, how explanation fidelity

1Reasons for Gmail’s spam classifications: http://bit.ly/13ODtwl

http://bit.ly/13ODtwl
http:Pandora.com

43

Soundness

C
om

pl
et

en
es

s Too
complex?

Just
right?

Too
focused?

Too
broad?

Not
useful?

Figure 4.1: Our problem space: How sound and complete do explanations need to be to
help end users build high-fidelity mental models?

impacted users’ perceptions of the costs and benefits of attending to these explanations,

and users’ trust in the explanations’ veracity. Our research questions were:

RQ4.1:	 How do the soundness and completeness of explanations impact end users’ mental

models?

RQ4.2:	 Which machine learning intelligibility types are most helpful for the development

of users’ mental models?

RQ4.3:	 What obstacles do end users encounter when building mental models of a

learning system’s reasoning?

RQ4.4:	 How do users’ perceived costs and benefits of attending to explanations change

as explanation fidelity increases?

RQ4.5:	 How does user trust change as explanation fidelity increases?

4.2 Explanation soundness and completeness

We tease apart soundness and completeness because machine learning system designers

can make choices independently in each as to the fidelity of their learning systems’

explanations. The terms soundness and completeness are borrowed from the field of

formal logic, in which a deductive system is sound if all of the statements it can create

44

evaluate to true, and complete if its compositional rules allow it to generate every true

statement. We apply these terms to explanations in an analogous manner:

Soundness (“nothing but the truth”): the extent to which each component of an expla­
nation’s content is truthful in describing the underlying system.

Completeness (“the whole truth”): the extent to which all of the underlying system is

described by the explanation.

For example, a learning system that explains its reasoning with a simpler model

than it actually uses (e.g., a set of rules instead of additive feature weights) is reducing

soundness, whereas a system that explains only some of its reasoning (e.g., only a subset

of a user neighborhood) is reducing completeness.

Together, soundness and completeness let us systematically explore explanation

fidelity by varying both dimensions independently of one another. One hypothesis is

that more information in an explanation will help users build better mental models.

However, very complete or complex explanations require more attention to process,

which disincentivizes users to build accurate mental models. Rosson et al., for example,

found that the Minimalist explanation model (Carroll and Rosson, 1987)—which mini­

mizes passive learning tasks, such as reading long explanations, favoring instead short

explanations coupled with try-it-out exploration—helped programmers understand

Smalltalk programs up to two orders of magnitude faster than traditional instruction

techniques (Rosson et al., 1990).

4.3 Methodology

To investigate our research questions, we presented 17 participants with up to 8 music

recommendations made by a functional prototype. For each recommendation, the

participant was given several types of explanations for why the system choose that

song and was then asked why they thought the system made the recommendation.

4.3.1 Prototype recommender system

We developed a prototype music recommender to make personalized song recommen­

dations for each participant. Our prototype used a hybrid recommendation approach,

45

as such approaches have been shown to out-perform more traditional types of recom­

menders (Su and Khoshgoftaar, 2009) and also provide more “moving parts” to explain.

Specifically, our prototype employed user-based collaborative filtering to find artists and

a content-based approach for selecting songs by those artists.

To train our recommender, we collected the listening habits of about 200,000 Last.fm

listeners between July 2011 and July 2012 via the Last.fm API2. We identified the 50
most-played artists for each of these listeners during this time period, and then used the

Mahout framework3 to build a k-nearest-neighborhood (with k = 15), where distance

between Last.fm users was based on overlap in the artists they listened to (calculated via

the log-likelihood metric (Dunning, 1993)).
Prior to the study, we asked each participant to imagine a situation where they

would want a playlist of music, and to tell us five artists representative of the type

of music they would like the playlist to include. Our prototype took these artists and,

using the technique described above, recommended 20 artists for the given participant

(Figure 4.2, top). To select specific songs, our prototype used a bagged decision tree based

on Weka’s J48 implementation (Hall et al., 2009) (the bagging ensemble consisted of 100
decision trees). This classifier was independently trained for each participant using a

set of positive training instances (the top 1,500 songs played by Last.fm listeners in the

participant’s user neighborhood) and a set of negative training instances (the top 1,500
songs played by Last.fm listeners who did not listen to any artists that neighborhood

members listened to). This resulted in a classifier able to predict whether a given

user would or would not like a particular song, along with a certainty score (Figure 4.2,
bottom). The song features (recall that a machine learning feature is a piece of information

a classifier can use to discriminate between output classes) came from The Echonest’s4

database, which includes information such as a song’s tempo, energy, and key.

To determine which songs to recommend to a participant, our prototype collected

the 25 most popular songs by each recommended artist, resulting in a a 500 song set

per participant. We used these songs’ feature vectors as input to our classifier, which

predicted whether or not the participant would like each song. The positive results were

2http://www.last.fm/api

3http://mahout.apache.org

4http://developer.echonest.com

http:http://developer.echonest.com
http:http://mahout.apache.org
http://www.last.fm/api

46

200,000 Last.fm listeners

Recommended
songs

Use their favorite artists'
songs as potential
recommendations

Use their favorite
songs as positive

examples

Use their favorite
songs as negative

examples

Most-similar
users

Least-similar
users

Classifier

k-
ne

ar
es

t
ne

ig
hb

or
 s

ta
ge

ba
gg

ed
 d

ec
is

io
n

tre
e

st
ag

e

Figure 4.2: Our prototype used a k-nearest neighbor stage to identify similar and
dissimilar users (top), and a bagged decision tree stage to predict which songs the
participant would most enjoy (bottom).

sorted by decreasing certainty, with the top eight used as song recommendations for the

participant.

4.3.2 Treatments and explanations

We explored four experiment conditions, which are shown in Table 4.1: HH (high-

soundness, high-completeness), MM (medium-soundness, medium-completeness), HSLC

(high-soundness, low-completeness), and LSHC (low-soundness, high-completeness).

Figure 4.1 visualizes this design space, with HH in the top right, HSLC in the bottom

right, LSHC in the top left, and MM in the middle. We used multiple conditions to

gather data on a variety of explanation configurations, but restricted ourselves to these

four (as opposed to different combinations of soundness and completeness, such as

low-soundness/low-completeness) because we felt the combination of three treatments

involving extremely high or low soundness and/or completeness, plus one treatment

with moderate soundness and completeness, would have the best chance to identify

differences in the impact of varying levels of explanation fidelity.

47

Treatment HH MM HSLC LSHC

Relative soundness

Relative completeness

High Medium High Low

High Medium Low High

In
te

ll
ig

ib
il

it
y

ty
p

es

 Why (song)

Why (artist)

Certainty

Model

Input

Bagged
decision tree

Nearest
neighbor
(k = 15)

Yes

Yes

Yes

Decision tree

Nearest
neighbor
(k = 10)

Yes

No

Yes

Bagged Decision
decision tree stump

Nearest Nearest
neighbor neighbor
(k = 5) (k = 15)

No Yes

No Yes

Yes Yes

Table 4.1: The “Why (song)” intelligibility type was available in all treatments, but its
soundness varied. The other intelligibility types were used to vary completeness.

To objectively manipulate completeness, our treatments used a varying number of the

intelligibility types identified by Lim and Dey (Lim and Dey, 2009): inputs (features the

system is aware of), model (an overview of the learning system’s decision making process),

why (the learning system’s reasons for a specific decision), and certainty (the system’s

confidence in a specific decision). We also increased completeness by exposing more

information in the why (artist) intelligibility type. All treatments included explanations

of the song selection process (Figure 4.3), five members of the user’s “neighborhood”

of similar Last.fm listeners (Figure 4.4), and the features the recommender could use

(Figure 4.5). The treatments with more completeness (MM, HH, and LSHC) added the

certainty intelligibility type (Figure 4.3, bottom left) and showed 10 members of the

participant’s user neighborhood. The high-completeness treatments (HH and LSHC) also

added a high-level description of the recommender’s algorithm (the model intelligibility

type, Figure 4.6) and showed all 15 members of the participant’s user neighborhood.

To objectively manipulate soundness, our treatments used a range of simplified

models of the recommender’s reasons for each song selection. The explanation used in

the high-soundness treatments (HH and HSLC) described the bagged decision tree (the

48

actual algorithm used to produce the playlist). For the medium-soundness treatment

(MM), we trained a simpler model (a single J48 decision tree) using the bagged classifier’s

predicted labels for all of the training instances, and explained this derived model

(a variation of the technique in (Craven and Shavlik, 1997)). For the low-soundness

treatment (LSHC), we used the same approach to train an even simpler model (a

one-feature decision tree, or decision stump) to explain (Figure 4.3, bottom right). Because

the low-soundness model only explained one highly discriminative feature, we consid­

ered it a functional analog for contemporary machine learning system explanations

(e.g., a movie recommender that explains its selections by their genres, or a product

recommender that explains it is recommending product foo because you previously

purchased product bar).

4.3.3 Participants and study task

We recruited 17 participants (10 females, 7 males) from the local community via flyers

and announcements to university mailing lists. Participants’ ages ranged from 19 to 34,
none had a background in computer science, and each was randomly assigned to one of

the four treatments.

During the study, participants listened to their recommended playlist while a

researcher provided participants with the paper explanations described in Section 4.3.2.
After each song, a researcher asked the participant why they thought it had been

recommended. At the end of the study we measured participants’ mental models via a

combination of short-answer and Likert scale questions. Each session was videotaped

and later transcribed.

4.3.4 Data analysis

To qualitatively analyze participants’ data, we used grounded theory methods (Corbin

and Strauss, 1990) to develop a code set that identified which aspects of the learning

system participants understood, and which aspects caused participants to request more

information. The resulting code set is presented in Table 4.2.
We transcribed participant utterances during each song and applied the codes to

these utterances (each code could be applied, at most, once per song). Two researchers

49

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them
different from the red songs.

It did this 100 times, each time randomly picking songs from the red and green groups.
In 93 of the 100 times, it predicted that you’ll like this song. Here are four of the predictions; for
each one, the computer thinks that you’ll like songs with all of these characteristics:

Prediction #1 Prediction #2

Danceability

Danceability

Key and mode

Key and mode

Loudness Loudness
Beat grouping Beat grouping Not used for this prediction

Duration Duration Not used for this prediction

Energy Energy Not used for this prediction

Tempo Tempo Not used for this prediction

 Prediction #3 Prediction #4

Danceability

Danceability

Beat grouping

Key and mode

Key and mode

Loudness
Loudness Not used for this prediction Beat grouping Not used for this prediction
Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction Energy Not used for this prediction
Tempo Not used for this prediction Tempo Not used for this prediction

Certainty

The computer is 93% confident
you’ll like this song:

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

-50 dB 10 dB
-14 dB

0:00 20:00
2:57

0% 100%
89%

60 bpm 240 bpm
159 bpm

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

93%

7%

Like
Dislike

Songs that similar people listened toLegend Songs that dissimilar people listened to

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them
different from the red songs.

It did this 100 times, each time randomly picking songs from the red and green groups.
In 93 of the 100 times, it predicted that you’ll like this song. Here are four of the predictions; for
each one, the computer thinks that you’ll like songs with all of these characteristics:

Prediction #1 Prediction #2

Danceability

Danceability

Key and mode

Key and mode

Loudness Loudness
Beat grouping Beat grouping Not used for this prediction

Duration Duration Not used for this prediction

Energy Energy Not used for this prediction

Tempo Tempo Not used for this prediction

 Prediction #3 Prediction #4

Danceability

Danceability

Beat grouping

Key and mode

Key and mode

Loudness
Loudness Not used for this prediction Beat grouping Not used for this prediction
Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction Energy Not used for this prediction
Tempo Not used for this prediction Tempo Not used for this prediction

Certainty

The computer is 93% confident
you’ll like this song:

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

-50 dB 10 dB
-14 dB

0:00 20:00
2:57

0% 100%
89%

60 bpm 240 bpm
159 bpm

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

93%

7%

Like
Dislike

Songs that similar people listened toLegend Songs that dissimilar people listened to

Breed by Nirvana

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them
different from the red songs.

It did this 100 times, each time randomly picking songs from the red and green groups.
In 93 of the 100 times, it predicted that you’ll like this song. Here are four of the predictions; for
each one, the computer thinks that you’ll like songs with all of these characteristics:

Prediction #1 Prediction #2

Danceability

Danceability

Key and mode

Key and mode

Loudness Loudness
Beat grouping Beat grouping Not used for this prediction

Duration Duration Not used for this prediction

Energy Energy Not used for this prediction

Tempo Tempo Not used for this prediction

 Prediction #3 Prediction #4

Danceability

Danceability

Beat grouping

Key and mode

Key and mode

Loudness
Loudness Not used for this prediction Beat grouping Not used for this prediction
Duration Not used for this prediction Duration Not used for this prediction

Energy Not used for this prediction Energy Not used for this prediction
Tempo Not used for this prediction Tempo Not used for this prediction

Certainty

The computer is 93% confident
you’ll like this song:

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

-50 dB 10 dB
-14 dB

0:00 20:00
2:57

0% 100%
89%

60 bpm 240 bpm
159 bpm

0% 100%
27%

0% 100%
27%

-50 dB 10 dB
-14 dB

93%

7%

Like
Dislike

Songs that similar people listened toLegend Songs that dissimilar people listened to

In Your Light by Gotye

Why this song?
The computer looked at what the green songs tend to have in common, and what makes them
different from the red songs. It thinks that you’ll like songs with all of these characteristics:

Danceability
Duration Not used for this prediction

Energy Not used for this prediction
Key and mode Not used for this prediction

Loudness Not used for this prediction
Tempo Not used for this prediction

Beat grouping Not used for this prediction

Certainty

The computer is 54% confident
you’ll like this song:

0% 100%
27%

54%

46%

Like
Dislike

Songs that similar people listened toLegend Songs that dissimilar people listened to

Figure 4.3: Excerpts from the Why this Song explanation (why intelligibility type). (Top
left): The high-soundness sheet showed a random sample of four decision trees from the
bagging ensemble. (Top right): Each tree was represented as a set of ordered features
with allowed ranges of values. The medium-soundness explanation was similar, but only
showed one derived decision tree that approximated the bagging ensemble’s reasoning.
(Bottom right): The low-soundness sheet was also similar, but only showed one derived
decision stump (a single-featured decision tree). (Bottom left): For the HH, LSHC, and
MM treatments, this sheet also included the certainty intelligibility type.

50

Why this artist?
The following 15 people listened to more of the bands you listed than anyone else (out of
200,000 different listeners). The computer used these bands as a starting point to find songs you
might like.

Person #1:
 William Fitzsimmons (#1)
 City & Colour (#2)
 The Kooks (#3)
 Dream Theater (#4)
 Foo Fighters (#9)
 Three Doors Down (#34)

Person #6:
 Jimmy Page & The Black Crowes
(#1)
 The Black Crowes (#2)
 Vitamin String Quartet (#3)
 Chris & Rich Robinson (#4)
 Pearl Jam (#12)
 Foo Fighters (#15)

Person #11:
 The Verve Pipe (#1)
 Pearl Jam (#2)
 Third Eye Blind (#3)
 Alice in Chains (#4)
 Foo Fighters (#18)

Person #2:
 Timbiriche (#1)
 Steve Jablonsky (#2)
 Katy Perry (#3)
 Hans Zimmer (#4)
 Michael Giacchino (#14)
 Pearl Jam (#34)

Person #7:
 Ryan Adams & The Cardinals
(#1)
 Whiskeytown (#2)
 Neal Casal (#3)
 Ryan Adams (#4)
 Pearl Jam (#22)
 Foo Fighters (#23)

Person #12:
 Jon Foreman (#1)
 Foo Fighters (#2)
 The Offspring (#3)
 Switchfoot (#4)
 Pearl Jam (#18)

Person #3:
 Bush (#1)
 Nirvana (#2)
 Lifehouse (#3)
 Silverchair (#4)
 Foo Fighters (#5)
 Pearl Jam (#16)

Person #8:
 Die Toten Hosen (#1)
 Mother Love Bone (#2)
 Chris Cornell (#3)
 Temple of the Dog (#4)
 PPeeaarrll JJaamm ((##77))
 FFoooo FFiigghhtteerrss ((##1133))

Person #13:
 Rodrigo y Gabriela (#1)
 Goran Bare i Majke (#2)
 Funkadelic (#3)
 Body Count (#4)
 Pearl Jam (#14)
 Foo Fighters (#17)

Person #4:
 Homeboy Sandman (#1)
 The White Stripes (#2)
 Metallica (#3)
 Orange Goblin (#4)
 Foo Fighters (#7)
 Pearl Jam (#10)

Person #9:
 Gorillaz (#1)
 Red Hot Chili Peppers (#2)
 The Lonely Island (#3)
 Skrillex (#4)
 Foo Fighters (#10)
 Pearl Jam (#16)

Person #14:
 Tenacious D (#1)
 Reel Big Fish (#2)
 Megadeth (#3)
 Arctic Monkeys (#4)
 Foo Fighters (#5)
 Pearl Jam (#15)

Person #5:
 Balmorhea (#1)
 Galaxie 500 (#2)
 Sigur Rós (#3)
 Red Hot Chili Peppers (#4)
 Pearl Jam (#14)
 Foo Fighters (#15)

Person #10:
 Filter (#1)
 System of a Down (#2)
 Coldplay (#3)
 Filter - www.uouwww.com (#4)
 Foo Fighters (#6)
 Pearl Jam (#13)

Person #15:
 The Black Crowes (#1)
 Soundgarden (#2)
 Eddie Vedder (#3)
 Queens of the Stone Age (#4)
 Pearl Jam (#9)
 Foo Fighters (#14)

Figure 4.4: Excerpt from Why this Artist (why intelligibility type), which showed the
artists selected by their user neighborhood. All participants received this explanation,
but with different neighborhood sizes (see Table 4.1).

What the computer knows

The computer knows the following details about each song:

Danceability How danceable the computer thinks this song is
(as a percentage)

Duration How long the song is
(in minutes)

Energy How energetic the song is
(as a percentage)

Key and mode The song’s key (e.g., A, B, C#, etc.) and its mode (major
or minor)

Loudness The song’s average volume
(in decibels)

Tempo
How slow or fast the song is
(in beats per minute)

Beat grouping Approximation of the song’s rhythm
(e.g., groups of three beats, groups of four beats, etc.)

The computer also knows:

 How often each person (from a group of 200,000) listened to each artist over the past
year

 How often each person (from a group of 200,000) listened to each song over the past year

Figure 4.5: Excerpt from What the Computer Knows (input intelligibility type), which
showed a comprehensive list of features that the recommender used. All participants
received this explanation.

independently coded a small portion of the transcripts and then discussed areas of

disagreement. Once the researchers agreed on the coding of these transcripts, they

independently coded two complete transcripts (12% of the total data)—their agreement,

as calculated by the Jaccard index (the intersection of all applied codes over the union of

all applied codes), was 83%. Given this acceptable level of agreement, a single researcher

coded the remaining transcripts and post-study questionnaires.

In this analysis, participants’ mental model scores were the number of correct

statements, minus the number of incorrect statements, participants made during the

experiment and on the post-study questionnaire. For convenience, we translated the

raw score (which could be negative if participants made more incorrect than correct

51

How it all works together

Your list of musicians

Get the 25 most popular
songs by each of these

artists

Use these relationships to predict whether each new song is like the green
songs (good) or the red songs (bad)

Have the computer look for relationships between a song's
details and and whether it's in the green group or red group.

Get details about all 500
songs

Find 15 people who listen to your list of musicians
(Sorted by how many musicians you both like)

Get each person's 100 most-
played songs in the past

year

Get the 20 other artists
these people most often

listen to

200,000 Last.fm listeners

Find 15 people who don't listen to
any of the musicians you listed

Get each person's 100 most-
played songs in the past

year

Get details about all 1,500
songs

Get details about all 1,500
songs

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

Figure 4.6: Excerpt from How it All Works Together (model intelligibility type), which
showed how the participants’ artists list was used to make song recommendations.
Positive and negative training sets were color-coded throughout the flow-chart. Only
HH and LSHC participants received this explanation.

statements) to a 0-to-10 scale. Table 4.2 shows which types of participant verbalizations

and questionnaire responses were considered correct vs. incorrect. Participants’ verbal­

izations during the study and post-study questionnaire responses were weighted equally

when computing mental model scores.

4.4 Results

4.4.1 Soundness, completeness, and intelligibility types (RQ4.1 and

RQ4.2)

As Figure 4.7 shows, HH participants achieved three of the top four scores. In contrast,

all but one of the participants in the other treatments clustered around lower scores.

This surprised us because we had expected the HH treatment may overload participants

to the point where they would not attend to so much complex information. Instead, we

52

Category Code Participant discussed/said. . .

Correct: the
participant correctly
discussed an aspect of
the recommender

Valid artist process

Valid song feature

. . . the artist was chosen via
collaborative filtering

. . . specific song features used
by the recommender

Valid song process
. . . a combination of features
were responsible for the
recommendation

Incorrect: the Invalid feature
participant
incorrectly discussed
an aspect of the
recommender

Invalid process

. . . specific features not used
by the recommender

. . . the computer’s reasoning
involved a single path
through a decision tree or
another incorrect description
of the artist/song selection
process.

Knowledge gaps: the
participant expressed
uncertainty about
their knowledge of
the recommender

Don’t know

Uncertain

More explanation
details

More recommender
details

. . . not knowing how the
recommender works

. . . uncertainty regarding
their answer of how the
recommender works

. . . needing more details
about the explanations

. . . needing more details
about the recommender

Table 4.2: Code set used to assess participants’ mental models.

53

Mental model score

HH
LSHC
MM

HSLC

0 105

Figure 4.7: Participants’ mental model fidelity scores. Each mark is one participant’s
score. (Note: MM had one more participant than the others.) The highest scores were
mostly those of HH participants.

expected the MM treatment to be a “sweet spot” in the trade-off between informativeness

and simplicity. Most of the MM participants, however, clustered around the lowest mental

model scores.

Further, HH participants’ mental model scores were consistently high across features

and processes, as Figure 4.8’s results from the post-task questionnaire show. In fact, HH

participants were the only ones to correctly describe the song selection process (third

column of Figure 4.8, coded as per Table 4.2), and only one HH participant made any

incorrect post-task observations at all (right half of Figure 4.8). (Note from Table 4.2 that

participants in any of the treatments could potentially get credit for process descriptions

that had correct process concepts, e.g., using combinations of features.)

4.4.1.1 Completeness and intelligibility types

Two of the intelligibility types, why and input, relate to features, and participants tended

to do better at understanding features than process (Figure 4.8). However, a closer look

at which participants did better suggests that their understanding of features aligned

with completeness. For example, participants in the high-completeness groups (HH and

LSHC) averaged 5.5 valid feature codes per participant, versus the other treatments’

average of 4.3. The invalid features added more evidence consistent with this, with

54

Valid artist
process

Valid song
features

Valid song
process

Invalid
features

Invalid
process� � ���

Figure 4.8: Post-task questionnaire results. Each mark is one participant, represented as
in Figure 4.7. Only HH participants described all the valid aspects of the recommender
(at least one blue diamond in the three left-most bins), and only one made an invalid
description (only one blue diamond in the two right-most bins).

high-completeness participants averaging 4.6 invalid features versus other participants’

6.3 invalid features.

Completeness may also have helped participants understand the recommendation

process. As Figure 4.9 shows, participants’ understanding (as per Table 4.2 codes) of the

artist recommendation process (explained through the model and why-artist intelligibility

types) tended to increase with the completeness of their treatment. In particular, the

model explanation was referenced by half of the participants who correctly discussed

the artist recommendation process (Figure 4.10). Completeness showed no evidence of

impacting participant understanding of the song recommendation process; however, this

was primarily explained via the Why this Song explanation, and this explanation did

not vary in the completeness dimension across treatments.

Recall that we also increased completeness by adding the certainty intelligibility type,

but this type did not seem to interest participants: only two participants mentioned

certainty at all, and each did so only once. Although research has shown that certainty

is a useful intelligibility type to users assessing a machine learning system’s reliability

(Groce et al., 2014), other researchers have found that certainty does not help users’

perceived understanding of how a recommender operates (Cramer et al., 2008). Our

work suggests that this finding extends to actual understanding.

These results suggest that increasing completeness was beneficial to participants’

mental models, and that some effective ways to increase completeness included the

55

0%

50%

100%

Low Medium High
P

a
rt

ic
ip

a
n

ts

Figure 4.9: Each dot is the percentage of participants who correctly understood the artist
recommendation process (as per Table 4.2’s codes). More participants understood it as
completeness (dark) increased, but fewer participants understood it as soundness (light)
increased.

model intelligibility type and the completeness of the why type. However, we found no

evidence that increasing completeness via certainty improved the fidelity of participants’

mental models.

4.4.1.2 Soundness and intelligibility types

Although HH participants’ performance may at first glance suggest that high soundness

was also helpful, looking at soundness in isolation suggests a different story. High-

soundness participants (HH and HSLC) showed almost no differences from the other

participants in their mentions of valid vs. invalid features or processes. Instead, the

clearest pattern was one of decreased understanding of the artist recommendation process

as soundness increased (Figure 4.9).
One hypothesis is that HH and HSLC participants spent most of their attention on

their complex Why this Song explanations, causing them to ignore other explanations.

Indeed, participants in these high soundness treatments viewed the How it All Works

explanation only about half as often as participants in the low-soundness treatment

(mean 0.8 vs. 1.4 views per person). Instead, they focused on their complex Why this

Song explanations: they viewed these during more songs than participants in the low-

soundness treatment (mean of 7.6 vs. 6.3 songs) and often even reviewed prior Why this

Song explanations (during an average of 1.9 songs vs. 0.7). One participants in the HH

treatment explained why she kept reviewing prior explanations:

56

P9-HH: “The [high-soundness Why this Song] sheet is a little bit hard to look at
[flips through prior Why this Song sheets], but I’m just looking for things that
I’m seeing, from one song to the next, that are similar, and that it says it’s using

for matching and making the predictions.”

Further, the high-soundness explanations were associated with over twice as many

Information Gap codes, which indicate that as participants viewed these explanations,

they had additional questions and expressed more uncertainty as they described why

they thought each song had been recommended (mean 7.0 codes per participant) than

other treatments (mean 3.3 codes per participant).

These results suggest that increasing soundness was beneficial from a mental model

standpoint, but unlike completeness, increasing soundness also carried downsides. The

most sound explanations appear to have required more attention from participants—

resulting in less attention paid to other explanations—and led to more participant

questions and information gaps. However, when soundness and completeness were both

at our experiment’s highest levels, so were participants’ mental model scores (Figure 4.7),
suggesting that very complete—but unsound—explanations are not enough to help end

users understand how machine learning systems operate.

4.4.2 Barriers to developing high-fidelity mental models (RQ4.3)

No participant’s understanding of the recommender was perfect: the highest mental

model score was 8.4 out of 10 (recall Figure 4.7). We found evidence of two barriers to

building high-fidelity mental models; these barriers were shared among all participants,

regardless of treatment.

First was participants’ incorrect assumptions about the explanations’ completeness.

Every participant, at some point during their task, incorrectly assumed that the recom­

mender used information that it did not have access to (e.g., the tone of the singer’s

voice)—even though the input explanation (What the Computer Knows) was complete

across all treatments. For example, this high-soundness low-completeness participant

had read the What the Computer Knows explanation multiple times before asking:

P6-HSLC: “So I guess, does a computer have access to lyrics for a song, does it take
that into consideration?” [Facilitator refuses to answer, and participant re-reads

57

the What the Computer Knows sheet yet again.] P6-HSLC: “Oh right, so probably

not then.”

The counts from the post-session questionnaire results were consistent with this

phenomenon. In responding to a question asking if the explanations included every

important detail about why a song was recommended, the average response was only

13.0 (21 indicating “always”, 0 indicating “never”). HH participants, however, responded

more positively (mean of 18.0), suggesting that high soundness and high completeness

together can help convince users that the explanations do discuss everything relevant to

the learning system’s reasoning.

The second barrier was lack of knowledge of the process of how recommendations

were made. Participants rarely discussed process, focusing much more heavily on

features, as Figure 4.10 illustrates. Some participants even described a single feature as

the sole reason for a recommendation:

P2-HH: “Yeah, see, it’s all the way at the bottom of the loudness [feature].
So. . . that’s why [it was recommended].”

Features may have been easier for participants to understand because they were

explained concretely (i.e., in the context of specific examples). Figure 4.11 shows that

participants used the concrete Why this Song and Why this Artist explanations much

more than the abstract (i.e., no specific examples) How it All Works and What the

Computer Knows explanations.

Note, however, that although our abstract How it All Works explanation was infre­

quently used, when participants did use it, a larger percentage (50%) correctly discussed

the recommendation process than with any other explanation (Figure 4.10). Similarly,

participants who used the abstract What the Computer Knows explanation discussed

more valid features than invalid features.

Alternatively, participants may have paid the most attention to the Why this Song

explanations because it was the only explanation that changed during the experiment.

The other explanation types were presented at the beginning of the study and may

have attracted less participant attention because they were never updated. Dynamically

updating explanations may be one presentation option to draw a user’s attention to the

full range of explanations in a highly complete system, but this is an open question that

requires further investigation.

58

Why this
song

Why this
artist

What the
computer knows

How it all
works

Only available to
 8 participants

process features process features process features process features

Figure 4.10: Participants giving correct (smiles) and incorrect (frowns) descriptions upon
referencing an explanation. Each face represents two participants. (Light): song features.
(Medium): artist recommendation process. (Dark): song recommendation process. Both
why explanations were the most popular, but the What the Computer Knows explanation
resulted in the fewest invalid feature comments, while the How it All Works explanation
had the highest percentage of participants correctly describing the process.

How it all works
What the computer knows

Why this song
Why this artist

50 1000

C
on

cr
et
e

Ab
st
ra
ct

Figure 4.11: Number of times participants referenced each explanation: each music note
represents ten references. Participants referenced the Why this Song explanation during
almost every recommended song.

59

4.4.3 Is it worth it? (RQ4.4)

The Attention Investment Model (Blackwell, 2002) predicts that users will use high-cost

explanations only if they think the benefits will outweigh the costs. Thus, we investigated

participants’ perceived benefits (given the perceived costs) using the questions “If the

recommendations improve, do you think it is worth the time and effort you spent during

this study to give feedback to the recommender?” and “Would you take a similar amount

of time as this study to learn similar things about other recommenders you use?” (Each

study session lasted less than two hours.) We used the summation of these questions

to estimate perceived benefits, and the summation of the NASA-TLX questions about

mental demand, effort expended, and frustration/annoyance to estimate costs (each

question had a 21-point scale).

As Figure 4.12 shows, the LSHC participants were surprisingly positive about the

benefits vs. costs of referring to the explanations—more than three times as positive

as participants viewing less complete but more sound explanations (MM and HSLC).

We had expected the MM treatment to best balance costs vs. benefits—these partic­

ipants received explanations that seemed likely to be the easiest to understand at a

reasonable cost. However, our results showed that instead, high completeness seemed

to be important to our participants. To summarize Figure 4.12, participants in the

two high-completeness treatments perceived working with the explanations to be a

better cost/benefit proposition than the other treatments’ participants did. In contrast,

soundness did not seem to be an asset to participants’ perception of cost-benefit. This

may come back to the lower understanding associated with higher soundness in the

absence of high completeness (recall Figure 4.9). One high-soundness low-completeness

participant reinforced this point, remarking that the high-soundness explanations could

have been useful, but she was unable to make much sense of them during the study:

P6-HSLC: Probably should have looked at [the Why this Song sheet] more.
Facilitator: Do you think this could have been useful? P6-HSLC: Yeah. . . I guess
I’m still trying to grasp and understand this whole thing here (points at Why this
Song sheet).

60

4.4.4 In explanations we trust? (RQ4.5)

To some low-soundness participants, the decision stump in their explanations seemed

clearly wrong. For example:

P13-LSHC: “It says loudness again, I’m really not understanding why it keeps
going back to that and not using energy, or like, anything else.”

To understand participants’ perceptions of whether the explanations they viewed

were sound and complete, we asked them “Do you think the explanations are accurate

about why the recommender chose each song?” (perceived soundness), and “Do you

think the explanations are including all of the important information about why the

recommender chose each song?” (perceived completeness). We asked about soundness

and completeness separately to determine whether participants could discern whether

explanations were sound, complete, or both. For example, we hypothesized LSHC

participants would rate their explanations as more complete than sound, while HSLC

participants would consider their explanations more sound than complete. However, our

results suggest participants did not differentiate explanations in this way: the average

difference between the two scores was only 1.5 on a 21-point scale, and both LSHC and

HSLC participants rated their explanations as slightly more sound than complete.

Because the perceived soundness and completeness scores together form a holistic

assessment of trust, we summed them to yield a single trust score. The results, plotted

for each participant, are shown in Figure 4.13. The LSHC participants had the three

lowest trust ratings, while most HH participants accurately gauged their explanations to

be the most sound and most complete. This suggests there is some danger to simplifying

explanations by reducing soundness—users may perceive that such explanations do not

accurately represent the system’s reasoning, and so may distrust (and disregard) them.

4.5 Discussion

Our results suggest that the most sound and most complete explanations (HH) were the

most successful at helping participants understand how the learning system worked, and

did so with a surprisingly good cost/benefit ratio. Further, HH participants trusted their

explanations more than participants in other treatments, particularly LSHC. Indeed, the

61

0 7 14 21

HSLC

MM

LSHC

HH

Perceived benefit vs. cost

Figure 4.12: Perceived benefit vs. cost scores (benefit_score − cost_score), averaged by
treatment. The high-completeness participants (top two rows) perceived relatively high
benefits vs. costs of the explanations.

Trust score

HH
LSHC
MM

HSLC

0 4221

Figure 4.13: Trust scores for each participant. The LSHC treatment’s scores were
relatively low: these participants accurately rated their explanations as unsound, but
also inaccurately rated them as incomplete.

main problem we identified with HH was that participants were at risk of focusing on a

single complex explanation (e.g., the very detailed Why this Song explanation) to the

exclusion of other information.

The story was different when only soundness or completeness was at our highest

level. High completeness alone (LSHC) provided participants with the best perceived

cost/benefit ratio of attending to the explanations, the second-highest average mental

model score, and the best understanding of the artist recommendation process. However,

these participants placed the least trust in the explanations. High soundness alone

(HSLC) did result in more trust, but was also associated with higher perceived costs,

lower perceived benefits, and flawed mental models.

62

Only high completeness Only high soundness

 + best understanding
 of artist selection
process

+ best perceived
benefits + best understanding of

song selection process
- risk of focusing on one
complex explanation &
 ignoring others

- highest mental
demand

+ best mental
model fidelity

- highest perceived
costs

- more requests for
clarification+ most trust in

 explanations

+ lowest
perceived costs

- reduced trust
 in explanations

Figure 4.14: The benefits (bold) and costs (italics) of our highest completeness and
highest soundness treatments. All of the benefits required high completeness (left
and middle), but many of the costs were only observed when soundness was high but
completeness was low (right).

Overall, we found that presenting explanations in a sound and complete manner is a

surprisingly good design choice, even for relatively low-benefit learning systems such as

media and product recommenders. Indeed, we saw a slightly negative relationship be­

tween mental model fidelity and user satisfaction with the recommendations, suggesting

that the hope of improving even such low-benefit system may be sufficient motivation for

users to learn more about the system. However, if a designer’s user testing of a learning

system reveals that its target audience believes such explanations are not worth attending

to, our findings suggest that reducing soundness while preserving completeness will

improve the cost/benefit ratio of attending to explanations. Figure 4.14 summarizes

what tool designers may expect to see when presenting end users (like our participants)

with explanations that are very sound, very complete, or both.

63

4.6 Conclusion

Part of enabling end users to personalize their machine learning systems is explaining

these systems to users well enough for them to build high-fidelity mental models. In this

chapter we considered two dimensions of explanations—soundness and completeness—

and explored how each impacts end users’ mental model fidelity, their perceptions

of the cost/benefit trade-off of attending to these explanations, and their trust in the

explanations. Among our findings were:

RQ4.1 (Soundness and completeness): Our most complete explanations (as in HH

and LSHC) were associated with the best mental models; reduced completeness

was the shared feature of the two worst-performing treatments (HSLC and MM).

Soundness was also important—three of the four participants with the best mental

models were part of the high-soundness, high-completeness treatment. The poor

performance of the high-soundness, low-completeness treatment, however, sug­

gests that explanations should not focus on accurately explaining only a small part

of a complex system (soundness); they must also explain how the larger system

operates (completeness).

RQ4.2 and RQ4.3 (Explanations and obstacles): Participants had more difficulty un­

derstanding the learning system’s reasoning process than the features it used,

but abstract explanations of the model intelligibility type helped overcome this

obstacle. However, participants appeared to prefer more concrete explanations

(recall Figure 4.11). Finding a way to present intelligibility types, especially the

model type, in a concrete manner may help to draw user attention to them.

RQ4.4 (Costs and benefits): Our most complete explanations were associated with the

highest perceived benefits and lowest perceived costs of learning about the system;

completeness even helped moderate the cost of very sound explanations (as in the

HH condition).

RQ4.5 (Trust): Participants correctly perceived that the LSHC explanations were un­

sound, but also refused to trust that these explanations were complete. Participants

placed the most trust in HH explanations. Designers who intentionally reduce the

soundness or completeness of their system’s explanations risk a user base who will

not trust—and thus, will not attend to—these explanations.

64

These findings suggest that many popular machine learning systems offer explana­

tions that are too low in fidelity to enable users to understand how they work, and show

how different intelligibility types (e.g., why, model, inputs, etc.) can increase explanation

fidelity, and with it the fidelity of users’ mental models. Further, our cost/benefit results

show that users want to learn more about these systems if their effort is rewarded with

the ability to improve the system’s predictions or recommendations. Thus, increasing

explanation fidelity can be a win/win for end users—motivated users can build a high-

fidelity mental model of their machine learning systems, and as Chapter 3 demonstrated,

such users can then employ their knowledge to efficiently personalize each system’s

reasoning. In the following chapters we shall test this hypothesis by designing and

evaluating an explanation-centric approach based upon these findings.

65

Chapter 5: Explanatory Debugging and EluciDebug

5.1 The principles of Explanatory Debugging

This thesis has shown the potential value of helping users build high-fidelity mental

models (Chapter 3) and studied the impact of different types and fidelities of expla­

nation content on mental model development (Chapter 4). We now build upon these

findings to propose a new explanation-centric approach—Explanatory Debugging1—for

personalizing interactive machine learning systems.

The crux of Explanatory Debugging is the thesis that building a better mental model
allows for better debugging. Thus, the first goal of our approach is to help end users build

better mental models of a machine learning system. The second goal is to support user

feedback that will efficiently adjust the learning system’s reasoning. We hypothesize that

Explanatory Debugging will help users understand the underlying reason for each of the

learning system’s mistakes, allowing users to then directly fix that incorrect reasoning.

Explanatory Debugging is defined by two principle features: the ability of the end

user to view a machine-generated explanation of why the learning system made each

prediction (explainability), and the ability of the end user to correct each explanation if

he or she disagrees with the learning system’s reasoning (correctability). These features,

in turn, are defined by the following principles:

1. Explainability: Accurately explain the machine learning system’s reasoning.

Our first principle for Explanatory Debugging is Explainability: accurately explain

the learning system’s reasons for each prediction to the end user. This principle

builds upon our Chapter 3 finding that users who built better mental models while

interacting with the learning system were better able to personalize its reasoning.

In a similar vein, other research has found that including explanations of a learning

system’s predictions helps users to better personalize the system, though these

1We say “debugging” because we view personalization of a machine learning system as an end user
debugging problem: the user is trying to adjust the computer’s reasoning to correct mistakes or support
new situations.

66

works did not explore whether the explanations also helped to improve users’

mental models (Kulesza et al., 2010; Kapoor et al., 2010; Bostandjiev et al., 2012).
Without explanations, however, research has shown that users struggle to build

accurate mental models of such systems (Chapter 3; Tullio et al., 2007; Lim et al.,

2009). This suggests in situ explanations are a necessary condition to help end users

learn how a machine learning system operates. To help users build high-fidelity

mental models of the learning system, these explanations should observe the

following principles:

1.1 Be iterative.

The results of Chapter 3 suggest that end users can best personalize a learn­

ing system if they build their mental model while interacting with it. Thus,

explanations need to support an iterative learning process—designers should

not expect a single explanation to suffice (e.g., a video explaining the learning

system’s model, or a long textual description of how the system works).

Instead, iterative explanations should be concise, easily consumable “bites”

of information. If a user is interested in learning more about the system,

he or she can attend to many of these explanations to iteratively build a

higher-fidelity mental model.

Explanations can be made iterative via layering, in which the initial

explanation is concise but gives the user the option to view a more detailed

explanation on-demand (Storey et al., 1999). Even without layering, however,

explanations can fulfill this principle if they allow the user to direct his or her

own learning in situ. For example, if each of a learning system’s predictions

is accompanied by a brief explanation, a curious user could examine several

explanations in order to identify common themes that may illustrate the

system’s general decision-making process.

1.2 Be sound.

Recall that we define soundness as “the extent to which each component of
an explanation’s content is truthful in describing the underlying system”, so

a sound explanation is not simplified by explaining the model as if it were

less complex than it actually is. In Chapter 3 we found a linear correlation

67

between the improvement of a user’s mental model and their ability to control

the learning system as desired, suggesting that the more someone learns

about the underlying system while interacting with it, the better they will

be able to control it. Further, Chapter 4 details the impact of explanation

fidelity on mental model development, finding that users did not trust—and

thus, were less likely to attend to—the least sound explanations. Because

reducing soundness reduces both the potential utility of the explanation

and the likelihood that users will invest attention toward it, Explanatory

Debugging entails designing explanations that are as sound as practically

possible.

One method for evaluating explanation soundness is to compare the

explanation with the learning system’s mathematical model. How accurately

are each of the model’s terms explained? If those terms are derived from more

complex terms, is the user able to “drill down” to understand those additional

terms? The more these explanations reflect the underlying model, the more

sound the explanation is.

1.3 Be complete.

Recall that we define completeness as “the extent to which all of the underlying

system is described by the explanation”, so a complete explanation does not

omit important information about the model. In Chapter 4, we found that end

users built the best mental models when they had access to the most complete

explanations. These explanations informed users of all the information the

learning system had at its disposal and how it used that information to make

predictions or recommendations. Also pertinent is work showing that users

often struggle to understand how different parts of the system interact with

each other (Kulesza et al., 2011). Complete explanations that reveal how

different parts of the system are interconnected may help users overcome this

barrier.

One method for evaluating completeness is via Lim and Dey’s intelligibility

types (Lim and Dey, 2009), with more complete explanations including more

of these intelligibility types.

68

1.4 But don’t overwhelm.

Balanced against the soundness and completeness principles is the need

to remain comprehensible and to engage user attention. Our findings from

Chapter 4 suggest that one way to engage user attention is to frame explana­

tions concretely, such as referencing the predicted item and any evidence the

learning system employed in its prediction. In some circumstances, selecting

a more comprehensible machine learning model may also be appropriate.

For example, a neural network can be explained as if it were a decision tree

(Craven and Shavlik, 1997), but this reduces soundness because a different

model is explained. Similarly, a model with 10,000 features can be explained

as if it only used the 10 most discriminative features for each prediction,

but this reduces completeness by omitting information that the model uses.

Alternative approaches that embody the Explanatory Debugging principles

include selecting a machine learning model that can be explained with little

abstraction (e.g., Szafron et al., 2003; Lacave and Díez, 2002; Stumpf et al.,

2009) or using feature selection techniques (Yang and Pedersen, 1997) in

high-dimensionality domains to prevent users from struggling to identify

which features to adjust (as happened in (Kulesza et al., 2011)).

2. Correctability: The explanation is the feedback mechanism.

Our second top-level principle for Explanatory Debugging is Correctability: allow

users to explain corrections back to the learning system. To enable an iterative cycle

of explanations between the system and the user, in Explanatory Debugging the

machine-to-user explanation should also serve as the user-to-machine explanation.

Research suggests that to elicit corrections from users, this feedback mechanism

should embody the following principles:

2.1 Be actionable.

Both theory (Blackwell, 2002) and prior empirical findings by ourselves

(Chapter 3) and others (Bunt et al., 2012) suggest end users will ignore

explanations when the benefits of attending to them are unclear. By making

the explanation actionable, we hope to lower the perceived cost of attending

to it by obviating the need to transfer knowledge from one part of the user

interface (the explanation) to another (the feedback mechanism). Actionable

69

explanations also fulfill three aspects of Minimalist Instruction (van der

Meij and Carroll, 1998): (1) people are learning while they perform real

work; (2) the explanatory material is tightly coupled to the system’s current

state; and (3) people can leverage their existing knowledge by adjusting the

explanation to match their own mental reasoning. As Minimalist Instruction

has been successfully applied to complex problem domains (e.g., learning a

programming language (Rosson et al., 1990)), we hypothesize that actionable

explanations embodying aspects of Minimalist Instruction will likewise help

users problem solve in the domain of machine learning.

2.2 Be reversible.

A risk in enabling users to provide feedback to a machine learning system

is that they may actually make its predictions worse (e.g., Stumpf et al.,

2009; Kulesza et al., 2010). Being able to easily reverse a harmful action can

help mitigate this risk. It may also encourage self-directed tinkering, which

can facilitate learning (Rowe, 1973). When combined with Principle 2.1 (Be

actionable), reversibility also fulfills a fourth aspect of Minimalist Instruction

(van der Meij and Carroll, 1998): help people identify and recover from errors.

2.3 Always honor user feedback.

As Yang and Newman found when studying users of learning thermostats

(Yang and Newman, 2013), a system that appears to disregard user feed­

back deters users from continuing to provide feedback. However, methods

for honoring user feedback are not always straightforward. Handling user

feedback over time (e.g., what if new instance-based feedback contradicts

old instance-based feedback?) and balancing different types of feedback

(e.g., instance-based feedback versus feature-based feedback) requires careful

consideration of how the user’s feedback will be integrated into the learning

system.

2.4 Incremental changes matter.

In Chapter 4, participants claimed they would attend to explanations only if
doing so would enable them to more successfully control the learning system’s

70

predictions. Thus, continued user interaction may depend upon users being

able to see incremental changes to the learning system’s reasoning after each

interaction (i.e., overcoming the gulf of evaluation that exists between a user’s

mental model and a system’s actual state (Norman, 2002)). This principle is

also related to Principle 1.1 (Be iterative) because our thesis is that users will

develop better mental models iteratively, requiring many interactions with the

learning system. These interactions may not always result in large, obvious

changes, so being able to communicate the small, incremental changes a

user’s feedback has upon a learning system may be critical to our approach’s

feasibility.

We next present a prototype that embodies the above principles in the domain of

text classification.

5.2 EluciDebug: A prototype instantiating Explanatory Debugging

We instantiated the Explanatory Debugging principles in EluciDebug, a text classi­

fication prototype we developed to evaluate the approach’s effectiveness. We chose

text classification because (1) many real-world systems require it (e.g., spam filtering,

news recommendation, serving relevant ads, search result ranking, etc.) and (2) it can

be evaluated with documents about common topics (e.g., popular sports), allowing

a large population of participants for our evaluation. We designed EluciDebug to

look like an email program with multiple folders, each representing a particular topic.

The prototype’s machine learning component attempts to automatically classify new

messages into the appropriate folder.

By embodying the Explanatory Debugging principles set forth in Section 5.1 we

ensured that the design of EluciDebug was grounded in theory, but we also needed

to ensure that its design worked well in practice. Thus we employed a participatory

design methodology (Shneiderman and Plaisant, 2010) to test our ideas for instantiating

Explanatory Debugging. For each design iteration we ensured that the prototype em­

bodied the principles of Explanatory Debugging (Section 5.1), then we asked an end

user to accomplish several tasks with the prototype. The initial iterations involved paper

prototypes to encourage rich participant feedback; Figure 5.1 shows one such paper

71

prototype from early in the design process. A researcher observed participants and noted

each of their suggestions and any misunderstandings or problems they encountered, then

incorporated possible solutions into the next iteration. The paper prototypes successfully

elicited major suggestions for refinement, such as allowing the user to see a message

and the explanation for its prediction simultaneously, consolidating the three tabs of

the Important words explanation into a single view, and adding indictors to highlight

incremental changes. Participants’ suggestions and misunderstandings grew steadily

less with each iteration, so after four iterations we implemented a high-fidelity prototype

in C# and the .NET Framework.

We conducted additional usability tests with our high-fidelity prototype, though

as expected, the feedback about our high-fidelity prototype focused on progressively

more minor behavioral adjustments. For each test, an end user was given a short tutorial

on the EluciDebug user interface, then asked to make its predictions as accurate as

possible. A researcher observed each test and took notes about how participants used

the prototype. We revised the prototype after each test to resolve participants’ problems.

The final prototype—following four iterations—is shown in Figure 5.2.
While the principles of Explanatory Debugging primarily deal with the user interface,

two principles place constraints on the machine learning model: (1) it must be able to

honor user feedback in real-time, and (2) it must be explainable with enough soundness

and completeness to allow users to build high-fidelity mental models of how it operates

without overwhelming them. Our EluciDebug prototype uses a multinomial naive Bayes

model (MNB) (Kibriya et al., 2004) with feature selection (Yang and Pedersen, 1997) to

meet these constraints. Evaluating the suitability of—or changes necessary to—using

Explanatory Debugging with other machine learning models remains an open question.

5.2.1 The multinomial naive Bayes classifier: A brief review

Before describing how we integrated MNB with Explanatory Debugging, we first summa­

rize how MNB operates. An MNB classifier computes the probability that a given input

(e.g., the document being classified) has of belonging to each output (e.g., the possible

labels). The output with the highest probability “wins” and becomes the predicted

label for the input. For example, if an MNB classifier calculates that a document has a

70% probability of being junk mail and a 30% probability of not being junk mail, the

72

File to…

Folders Messages in “Unknown”

Unknown

Hockey

Baseball

(1,500)

8/10
correct predictions

7/10
correct predictions

highlight a word
to see which

messages it’s in
Important words

Re: NHL team leaders in +/-
From: Deepak Chabra

Roger Maynard wrote:
> The Jets use the “breakaway pass” scheme
> to create a scoring sensation in order to
> generate interest. If teams score as many
> or more goals against Winnipeg when
> Selanne is on the ice as Winnipeg scores
> when he is on the ice then I can’t see how
> his contribution can be described as impressive.

Implicitly you are assuming that goals scored against Winnipeg
with Selanne on the ice can be blamed on him… Roger, he is a
FORWARD.

Baseball graphHockey graphOverview

Hockey:

Baseball:

ice, skate, goal, period, nhl

run, pitch, hit, inning, mlb

Add a word
about “hockey”

Add a word
about “baseball”

Subject
Predicted
topic

Prediction
confidence

Re: NHL team leaders in +/- hockey 60%

Re: “Give blood” Tee Shirts hockey 65%

Re: Sparky Anderson Gets win… baseball 54%

Re: NHL Team Captains hockey 90%

Re: Yankees win home opener hockey 67%

Re: New Home for the Bosox!! baseball 55%

Re: Goalie Mask Update hockey 91%

Kings regular season schedule baseball 62%

Braves “Stoppers” baseball 59%

Possible Canadian WC Team? hockey 51%

ERA formula hockey 72%

Re: Pens Info needed hockey 54%

Re: The 1964 Phillies: deja vu? baseball 60%

Re: Candlestick Park experience… baseball 98%

Subject hockey 67%

ice
goals

goals
ice
ice

ON
Update predictions

automatically

Update
predictions

Only show
recent changes OFF search

Predictions
Hockey: 722

Baseball: 798

Recently changed: 45

Why “Hockey”?Message

Figure 5.1: An example of the paper prototype that participants used to provide feedback
early in the design process. Over a dozen different variations were prepared for each
session, allowing the researcher to show each participant how the software would
respond to their different actions.

73

Figure 5.2: The final version of EluciDebug following eight rounds of revisions (four
with low-fidelity prototypes and four with high-fidelity prototypes) to the initial paper
prototype shown in Figure 5.1. (A) List of folders. (B) List of messages in the selected
folder. (C) The selected message. (D) Explanation of the selected message’s predicted
folder. (E) Overview of which messages contain the selected word. (F) Complete list of
words the learning system uses to make predictions.

document will be labeled as junk mail. The equations for computing probability, as

defined in (Kibriya et al., 2004), are shown below. We use c to represent an individual

class in the collection of potential output classes C, di to represent an individual

document to classify, and assume that the only features the classifier uses are individual

words in the set of known documents:

Pr(c)Pr(di |c)Pr(c|di) = (5.1)
Pr(di)

The term Pr(c) represents the probability that any given document belongs to class c

and can be estimated by dividing the number of documents in c by the total number of

74

documents in the training set. The term Pr(di |c) represents the probability of document

di given class c and can be estimated as:

Pr(di |c) = Pr(wn|c)fni (5.2)

n

The term fni is the number of instances of word n in document di and the term

Pr(wn|c) is the probability of word n given class c, estimated with the equation

pnc + FncPr(wn|c) = (5.3)
N N6 6

pxc + Fxc
x=1 x=1

where Fnc is the number of instances of word n in all of the training documents

for class c, N is the number of unique words in the training documents for all classes,

and pnc is a smoothing term (usually 1) to prevent the equation from yielding 0 if no

documents from class c contain word wn.

5.2.2 The Explanatory Debugging principles in EluciDebug

5.2.2.1 Being iterative

To help end users iteratively build better mental models, EluciDebug employs two

strategies: (1) each explanation focuses on an individual component or aspect of the

learning system, and (2) layered explanations are available if the user wants more

details about certain components. For example, the Why explanation (discussed in

Section 5.2.2.2) primarily tells users about the learning system’s reasons for making a

specific prediction. Thus, each time the user is curious about why the system made a

given prediction, he or she can view this explanation. Over time, the user may learn

more about the system’s general operation by observing commonalities in the reasons for

multiple predictions. Further, this Why explanation is layered. Part of the explanation

shows users which words contributed to the learning system’s prediction—if the user

wants to know more about why the system associated a particular word with the given

topic, hovering over the word yields a tooltip that explains how the system determines

which topic a word is associated with.

75

5.2.2.2 Being sound

Soundness means that everything an explanation says is true. Our explanations aim

to be sound by accurately disclosing all of the features the classifier used to make its

prediction, as well as how each feature contributed to the prediction. EluciDebug’s

Why explanation is responsible for communicating much of this information to users

(Figure 5.3).
Soundly explaining the MNB classifier requires explaining the Pr(c) and Pr(di |c)

terms from Equation 5.1, as these are the only terms that impact the model’s predictions.2

Because the Pr(di |c) term expands into Equation 5.2, we also need to explain how word

probabilities for each class factor into the prediction. We can further increase soundness

by explaining how these probabilities are calculated (i.e., by explaining Equation 5.3).
In EluciDebug we explain the Pr(di |c) term by using a word cloud to visualize

the difference between each feature’s probability for the two output classifications

(Equation 5.3) as the ratio

Pr(wn|c1)fni
(5.4)

Pr(wn|c2)fni

where c1 is the class with the larger probability for feature wn. We use the result to

compute the feature’s font size, while its font color is based on the class with the larger

probability. For example, in Figure 5.3 the word stanley is larger than tiger because its

ratio of word probability is correspondingly larger, and it is blue because its probability

of occurring in the hockey class is larger than its probability of occurring in the baseball
class. Hovering over a word in this cloud shows a tooltip that explains the word’s size

was determined by a combination of (1) how many times it appeared in each class, and

(2) any adjustments the user made to the word’s importance (Equation 5.3).
The second component of a sound explanation of the MNB classifier is the Pr(c) term

from Equation 5.1. We explain this term via a bar graph visualization of the number of

items in each class (Figure 5.3, middle).

The top-to-bottom design of this entire Why explanation, along with the text that

describes Part 1 and Part 2, is intended to teach the user that both word presence

(the Pr(di |c) term) and folder size (the Pr(c) term) play a role in each of the classifier’s
2The Pr(di) term in the denominator of Equation 5.1 is only used to normalize the result to fall within

the range 0–1; it does not impact the model’s prediction.

76

predictions. The result, shown at the bottom of Figure 5.3, explains how these two parts

are combined to determine the classifier’s certainty in its prediction.

5.2.2.3 Being complete

Completeness means telling the whole truth. For the MNB classifier, this means not only

explaining each of the terms from Equation 5.1, but also all of the information the

classifier could potentially use (i.e., the entire feature set the classifier supports), where

this information comes from (e.g., does a movie recommender include user-submitted

tags of a movie’s genre, or only the studio’s genre description?), and how likely it is that

each prediction is correct. To help ensure completeness, we turn to Lim and Dey’s schema

of intelligibility types. The results of Chapter 4 suggest that a complete explanation

should include Lim and Dey’s why, inputs, and model types. Our prior work on end-user

testing of machine learning systems suggests that Lim and Dey’s certainty intelligibility

type is critical for assessing the reliability of a machine learning system (Groce et al.,

2014), so we also included this type. Finally, Lim’s work suggests the usefulness of

the what if type in scenarios where the user is attempting to change the behavior of a

classifier (Lim, 2012), so we have included this intelligibility type as well.

We thus designed our EluciDebug explanations to detail all of the information the

classifier might use when making predictions, even if that information wasn’t relevant

for the currently selected prediction. The Why explanation shown in Figure 5.3 tells

users that both feature presence and folder size played a role in each prediction (the

numerator of Equation 5.1). The Important words explanations (Figure 5.6) goes even

further, telling the user all of the features the classifier knows about and may use in

its predictions. Because it tells the user about the sources of information available to

the classifier, this is also an instantiation of Lim and Dey’s inputs intelligibility type. To

make it clear to users that these features can occur in all parts of the document—message

body, subject line, and sender—EluciDebug highlights features in the context of each

message (Figure 5.2, part C).

In Chapter 4 we found that Lim and Dey’s model intelligibility type was associated

with better mental models, but this intelligibility type was rarely attended to by most

participants. To solve this dilemma, in EluciDebug we incorporated the model content

into our Why explanation—it explains all of the evidence the classifier used, but it also

77

Figure 5.3: The Why explanation tells users how features and folder size were used to
predict each message’s topic. This figure is a close-up of Figure 5.2 part D.

78

explains where that evidence came from (e.g., words or folder size) and how it was

combined to arrive at a final prediction. This approach has the added advantage of

making the potentially abstract model intelligibility type very concrete; it is now tailored

to each specific prediction.

A further aspect of completeness is evident in the Feature overview explanation

(Figure 5.4). This explanation shows users how many messages contain a given feature

and is intended to help users identify when a feature they think the computer should

pay attention to may not be very useful. The explanation updates in real-time as the user

types in a potential feature; users do not need to add the feature to view its potential

impact on classifications, making this an instance of the what if intelligibility type. For

example, one pilot participant remarked that he thought “AL” would be a useful feature

for identifying American League baseball messages, but realized from this explanation

that (1) some hockey players are named “Al”, and (2) the classifier wasn’t case-sensitive,

causing it to consider the name “Al” as equivalent to the American League abbreviation

“AL”, and so decided against adding “AL” to the list of important words.

Finally, we also included the certainty intelligibility type. This is instantiated via the

Prediction confidence column (Figure 5.2, part B), which reveals the classifier’s confidence

in each of its predictions to the user.

5.2.2.4 Not overwhelming

To avoid overwhelming users, EluciDebug limits the initial set of features available to

the classifier using information gain (Yang and Pedersen, 1997). Because Principle 1.3
states that explanations should be as complete as possible, users should be able to see all

of the classifier’s features. Given this constraint, we decided 50 would be the upper limit

on feature set size. Offline tests, however, revealed that the F1 score of an MNB classifier

operating on the 20 Newsgroup dataset did not improve while the feature set size

increased from 10 to 50 (Figure 5.5), so we decided our classifier would automatically

select only the 10 features with the highest information gain (until the user specifies

otherwise by adding or removing features).

79

Figure 5.4: The Feature overview explanation shows users how prevalent each feature is
in the dataset. Each shaded mark represents one message, and users can click on a mark
to view the message. This figure is a close-up of Figure 5.2 part E.

0.0

0.5

1.0

0 10 20 30 40 50

F
1
 s

c
o
re

of features

Figure 5.5: Selecting the 10 highest information gain features resulted in similar classifier
performance as larger feature sets.

80

5.2.2.5 Being actionable

The Important words explanation (Figure 5.6) is the most actionable of EluciDebug’s

explanations. Users can add words to—and remove words from—this explanation, which

in turn will add those words to (or remove them from) the machine learning model’s

feature set. Users are also able to adjust the importance of each word in the explanation

by dragging the word’s bar higher (to make it more important) or lower (to make it less

important), which then alters the corresponding feature’s weight in the learning model

(this processes will be explained in more detail in Section 5.2.2.7).
The Why explanation (Figure 5.3) is another likely candidate for actionability, but

we have not yet made it actionable in EluciDebug. As this explanation includes only

features extant in the selected message, it cannot replace the Important words explanation

because doing so would interfere with our explanations’ completeness. It could, however,

complement the Important words explanation by allowing users to directly adjust the

importance of features responsible for the given prediction. For example, users could

drag out from the center of a word to increase its importance, or drag in toward the

center of the word to decrease its importance. Whether such additional actionability

would help users, however, remains an open question.

5.2.2.6 Being reversible

EluciDebug includes an undo button for reversing changes to the Important words
explanation. There is no limit on how many actions can be un-done because we want

users to interact with the system without fear they will harm its predictions; regardless

of how much they adjust its reasoning, they can always return to any prior state.

5.2.2.7 Honoring user feedback

EluciDebug allows users to provide two types of feedback: traditional instanced-based

feedback, where the user applies a label3 to an entire item, and feature-based feedback,

where the user tells the classifier an item should be labeled in a certain manner because

of specific features it contains or feature values it matches. EluciDebug honors instance­

3Recall that a label is a potential output of the learning system, such as junk mail or normal mail.

81

based feedback in a straightforward manner: once the user labels an item, the classifier

will use it as part of its training set, with no distinction between older versus more recent

feedback. Honoring feature-based feedback, however, is more complicated.

The smoothing term pnc from Equation 5.3 acts as a Bayesian prior, effectively adding

some number of virtual occurrences (traditionally 1) to the number of actual occurrences

of each word in the training data, and we can leverage it to integrate feature-based

feedback. By allowing the user to set the value of pnc, we are letting the user increase

the number of virtual occurrences of word n in class c. The result is a classifier that

considers word n to be stronger evidence in favor of class c than it had before the user’s

feedback.

Using the smoothing term as a feature-based feedback mechanism, however, has a

drawback: Fnc may increase as the training set size increases, causing the value of pnc to

become a smaller component of Equation 5.3. Thus, a user’s feature-based feedback could

account for less and less of the classifier’s reasoning as their instance-based feedback

increased.

To prevent a user’s feature-based feedback from degrading in importance over time,

we developed a visual feedback mechanism (Figure 5.6) that allows users to specify how

important their feedback should be relative to the model’s internal word probabilities

(the F terms in Equation 5.3). The black lines on the blue and green bars in Figure 5.6
show the model-computed probabilities for each feature, which serve as a starting point

for feature-based feedback. Users can tell the system that the probability of seeing word

wn in class c should be increased by clicking and dragging its bar higher, which will

translate to an increased value for pnc. If the user later provides additional instance-based

feedback (thus causing Fnc to change), pnc will be automatically recalculated such that
N N6 6

the ratios of pxc to Fxc and pnc to Fnc remain constant.
x=1 x=1

5.2.2.8 Revealing incremental changes

There are many components of EluciDebug that may change after each user action, so

to avoid confusing users with several different explanation paradigms, we designed a

method that consistently reveals changes in terms of increases and decreases. Increases

of any numeric value are identified by green “up” arrows, while decreasing numeric

values are identified by red “down” arrows. Examples of each are shown in Figure 5.7.

82

Figure 5.6: The Important words explanation tells users all of the features the classifier
is aware of, and also lets users add, remove, and adjust these features. Each topic is
color-coded (here, blue for hockey and green for baseball) with the difference in bar
heights reflecting the difference in the word’s probability with respect to each topic (e.g.,
the word canadian is roughly twice as likely to appear in a document about hockey as one
about baseball, while the word player is about equally likely to appear in either topic).
This figure is an excerpt from Figure 5.2 part F.

Hovering over either of these arrow icons yields a tooltip detailing what just changed

and how much it changed by, e.g., “Confidence increased by 9%”. These indicators reveal

changes in the number of messages correctly classified in each folder, the total number

of messages the machine learning model currently classified into each folder, and the

confidence of each prediction.

In addition to numeric change indicators, we also needed an ordinal change indicator

to highlight when a message’s prediction flipped from one topic to the other. We used

a grey background for these recently-changed predictions (Figure 5.7) and included a

tooltip explaining that the user’s last action resulted in the message’s predicted topic

changing.

5.3 Conclusion

The instantiation of the Explanatory Debugging principles presented above is one

example how Explanatory Debugging can be implemented, but we do not intend to

imply that all instances of Explanatory Debugging should look like EluciDebug. For

example, a machine learning system that uses a decision tree model may need to replace

the Important words explanation with a control flow diagram or series of if/then/else
statements. To hold true to Explanatory Debugging principles, however, the revised

83

Figure 5.7: EluciDebug includes several devices to help users overcome the gulf of
evaluation. The Folders explanation (left, top) shows users how many messages are
correctly classified in each folder, while the Prediction totals explanation (left, bottom)
shows how many messages in the “Unknown” folder are predicted as being about each
topic. (Right) The Prediction confidence explanation shows users how certain the machine
learning system is in each prediction. All three explanations tell the user whether the
number has recently increased (a green up arrow) or decreased (a red down arrow), and
a tooltip on the arrow tells users the exact magnitude of the change.

explanation needs to accurately reflect the underlying machine learning model and be

correctible by end users. What such explanations may look like for different learning

models remains an open question.

84

Chapter 6: Evaluation

To investigate Explanatory Debugging’s effectiveness with end users, we evaluated our

approach—as instantiated in EluciDebug—via the following research questions:

RQ6.1:	 Does Explanatory Debugging help end users personalize a classifier more effi­
ciently than instance labeling?

RQ6.2:	 Does Explanatory Debugging help end users personalize a classifier more accu­
rately than instance labeling?

RQ6.3:	 Does Explanatory Debugging help end users build better mental models than a

traditional black-box machine learning approach?

6.1 Methodology

6.1.1 Experiment design

We used a between-subject, single-factor experimental design to evaluate Explanatory

Debugging. The factor we varied was experiment condition: one condition (control)
used a variation of EluciDebug with all of its explanation and feature-based feedback

capabilities removed (Figure 6.1), while the second condition (treatment) used the

EluciDebug prototype described in Chapter 5. In both conditions EluciDebug was

set up as a binary classifier that attempted to predict whether each newsgroup message

belonged to one of two topics.

To study the accuracy of a machine learning classifier, we need to know what its

predictions should be—what is commonly called the gold standard or ground truth. Thus

we can compare each prediction that the classifier makes to what the gold standard says

the prediction should be. We also needed a dataset with a sufficient number of items in

each category. To make manually sorting every item impractical, we decided that our

dataset would need a minimum of 500 items per category.

85

Figure 6.1: Control participants used this variant of EluciDebug, which lacks
explanations and feature-based feedback.

We selected the 20 Newsgroups dataset1 because it provides a gold standard, includes

concepts with a low degree of subjectivity (e.g., hockey, baseball, motorcycles, medicine,

etc.), and includes 18,846 items approximately evenly distributed across its 20 concepts.

This dataset has also been used extensively in machine learning research, giving us many

examples of how different machine learning models perform on it.

For this experiment we selected four concepts from 20 Newsgroups: medicine, outer
space, hockey, and baseball (the sci.med, sci.space, rec.sport.hockey, and rec.sport.baseball

newgroups, respectively). We used medicine and outer space as the topics for the tutorial,

and hockey and baseball as the topics for the experiment task. Each task used two

subgroups of a larger group of related concepts (e.g., the medicine and outer space
subgroups are both part of the science group) to ensure that there would be some overlap

1http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/

86

in the terminology of each concept, such as how “player” and “team” may be equally

representative of baseball or hockey. These shared terms help to make the classification

task more challenging.

The 20 Newgroups dataset is pre-split into two parts: training and testing. We used

the training part to populate our prototype with messages and reserved the testing

portion as a validation set, meaning that while participants never saw it, we used it in

later, offline analyses to evaluate classifier accuracy. The purpose of a validation set is to

ensure that a classifier has not overfit itself to the data it has seen, which would become

evident by the classifier performing worse on the unseen validation set than on the data

it had seen.

To simulate a situation where personalization would be required because sufficient

training data does not yet exist, we severely limited the size of the machine learning

training set for this experiment. At the start of the experiment this training set consisted

of 5 messages in the Hockey folder and 5 messages in the Baseball folder, with 1,185
unlabeled messages in the Unknown folder. The small training set (10 messages) allowed

us to evaluate a situation with limited training data, and the large amount of potential
training data (1,185 messages) allowed us to contrast Explanatory Debugging against

black-box instance labeling in a situation where instance labeling could be expected to

eventually succeed.

6.1.2 Participants and procedure

We recruited 77 participants from the local community and university. To ensure that

participants would have little or no prior experience with software debugging or machine

learning, we did not accept participants who had more programming experience than

an introductory-level college course. The average age of our participants was 23 years

and included 27 females and 50 males.

The experiment session was conducted in groups of up to 10 participants at a

time. We assigned each participant to the first available experiment session that met

their time constraints and then randomly assigned each session to either the control or

treatment condition. A total of 37 participants experienced the control condition and 40
participants took part in the treatment condition.

87

To ensure that our control and treatment samples were similar to one another, we

collected demographic data from participants upon their arrival for the experiment

session. This included information such as age, college GPA, and familiarity with the

topics for the experimental task, as well as participants’ computer self-efficacy, which

we assessed via the validated questionnaire in (Compeau and Higgins, 1995). We later

analyzed this data using Wilcoxon signed rank tests and found no evidence of differences

between our two participant groups.

A researcher introduced participants to the prototype via a brief hands-on tutorial

that explained how to use it, but did not discuss how it made predictions. Participants

then had three minutes to explore the prototype on their own. To avoid learning effects

about the topics, the tutorial and practice session involved messages about different

topics (outer space and medicine) than the main experiment task.

The main experiment task followed the practice session. Participants were asked to

“make the computer’s predictions as accurate as possible” and given 30 minutes to work.

The software logged all participant interactions and logged evaluations of its internal

classifier at 30-second intervals.

After the main task concluded, we assessed participants’ mental models via a

questionnaire. This test instrument evaluated how well participants understood the two

components that contribute to the MNB classifier’s predictions: feature presence and

class ratios. Because feature presence can be easy to detect given certain words (e.g., the

word “hockey” is obviously related to the concept of hockey), we evaluated participants’

understanding of feature presence using both “obvious” and “subtle” features. We define

“subtle” features as words that are not normally associated with a topic, but appear in the

classifier’s training set and thus will impact classification. Participants were given three

short messages about two topics (swimming and tennis) and told that “these are the only

messages the software has learned from”. Participants in the treatment condition were

also given an Important words explanation similar to the one they saw in the prototype

(Figure 6.2). A second sheet displayed 12 messages, each only one or two sentences long,

and asked participants which topic the classifier would assign to each message, and

why. To reduce the chance that participants’ mental models would improve as a result

of extensively reflecting upon the contents of the test instrument, participants were

given only 10 minutes to complete the mental model portion of the questionnaire. The

88

agreed basketball best no soccer sport think truly world

Soccer Basketball

Figure 6.2: Participants in the treatment condition saw this explanation during their
mental model assessment, which is almost identical to the explanations they saw while
working with the prototype (shown in Figure 5.6).

messages were constructed such that only one component—either an obvious feature, a

subtle feature, or class ratios—was entirely responsible for the classification.

To understand participants’ reactions to EluciDebug, the post-task questionnaire also

asked participants about various features of the prototype and their perceived task load

during the experiment (via the validated NASA-TLX questionnaire (Hart and Staveland,

1988)). All of the materials used in this study have been reproduced in Appendix A.

6.1.3 Data analysis

We used non-parametric methods for all statistical analyses. As suggested in (McCrum-

Gardner, 2008), we used Mann–Whitney U-tests for interval and ordinal data, and

Spearman’s ρ for correlations.

To analyze participants’ mental models, a researcher graded participant responses

to the post-task mental model questionnaires. Because some participants may have

randomly guessed which topic the classifier would predict for each message, we ignored

all predicted topics and only graded the reason participants stated for the classifier’s

prediction. Participants earned two points for correct reasons and one point for partially

correct reasons. The researcher graded participant responses without knowing which

condition the participant was in (i.e., blindly). Each participant’s points were summed to

89

Model
component Answer mentions. . . Points

. . . only correct keyword

. . . only correct keyword and correct class
imbalance

2

2

Keywords
. . . correct keyword plus something else

. . . a keyword matches, but doesn’t specify

. . . word similarity, but doesn’t specify

. . . correct class imbalance answer without
mentioning the keyword

. . . correct keyword, but says the reason is
something other than the word’s presence

. . . none of the above

1

1

1

1

1

0

Class imbalance

. . . folder contains more messages

. . . folder size plus something else

. . . folder contains more words

2

1

1

. . . more predictions for the topic

. . . none of the above

1

0

Table 6.1: The criteria used to grade participants’ mental model questionnaire responses.

yield a mental model score with a maximum possible value of 24. The complete grading

criteria are listed in Table 6.1.
We analyzed classifier performance via the F1 score. This combines two simpler

measures, precision and recall, each of which can range from 0 to 1. In the context of

a binary classification system that predicts whether each input is positive or negative,

a precision of 0 indicates that none of its positive predictions were correct, while a

precision of 1 indicates that all of its positive predictions were correct. For the same

system, a recall of 0 indicates the classifier did not correctly identify any of the positive

items, while a recall of 1 indicates that it correctly identified all of them.

90

As the harmonic mean of precision and recall, F1 also ranges from 0 (no precision and

no recall) to 1 (perfect precision and recall). We calculate the F1 score by identifying the

number of true positives (items that are positive and that the classifier predicted as being

positive), false positive (items that are negative but that the classifier predicted as being

positive), true negatives (items that are negative and that the classifier predicted as being

negative), and false negatives (items that are positive but that the classifier predicted as

being negative):

true positives
precision = (6.1)

true positives + false positives

true positives
recall = (6.2)

true positives + false negatives

precision · recall
F1 = 2 · (6.3)

precision + recall

A known problem with the F1 score is that it ignores true negatives (Powers, 2011).
As the above equations show, a classifier that has poor precision and recall for positive

instances may perfectly predict negative instances, but its F1 score will still be very

low—the true negatives are not referenced by any of the equations. We can alleviate this

issue by computing two F1 scores: once as described above, then again after swapping the

positive and negative instances. We then weight each score by the number of instances in

its positive class and sum the results. For example, given two classes, hockey and baseball,
we would compute an F1 score with hockey as the positive class and weight it by the ratio

of hockey instances to baseball instances. We would then compute a second F1 score

with baseball as the positive class, weighting the result by the ratio of baseball instances

to hockey instances. Finally, we sum both scores together to yield a weighted F1 score
that will range between 0 (very poor precision and recall for all classes) and 1 (perfect

precision and recall for all classes). All F1 scores reported in this chapter are weighted

scores.

We supplemented our evaluation of classifier performance with an additional offline

experiment using a separate feature selection method. Recall that EluciDebug limits its

classifier to the 10 features with the highest information gain. Text classifiers, however,

often include most—if not all—of the words in the training set as features. Thus, we

91

analyzed participants’ classifiers using both HighIG features and Comprehensive features.

For control participants (who could not provide feature-based feedback), HighIG was

recomputed after each message was labeled and kept the 10 highest information gain

features. For treatment participants, HighIG was never recomputed; instead, partici­

pants needed to modify it manually by adding, removing, or adjusting features. The

Comprehensive feature set included all words from the set of labeled messages at the end

of the experiment. The classifiers participants interacted with used the HighIG features;

the Comprehensive features were only used for offline analysis.

In addition to evaluating classifiers using the data that participants saw, we also

used a validation set to verify that participants’ classifiers were not overfit to their data.

The seen dataset includes all of the messages that participants had the ability to view

during the experiment; this includes messages that the participant labeled, as well as

those that participants left unlabeled in the Unknown folder. The unseen dataset consists

of a validation set that participants never saw (this is the test split of 20 Newsgroups). If

the performance metrics show a difference between these two datasets, then we would

have evidence that participants built classifiers overfitted to the data they interacted

with during the experiment.

6.2 Results

6.2.1 Explaining corrections to EluciDebug (RQ6.1 and RQ6.2)

EluciDebug includes several methods for users to explain corrections to the classifier,

and treatment participants made frequent use of all of them. These participants added

new features, removed existing features, and adjusted feature importance; the average

numbers for each action are shown in Table 6.2. Control participants—who could not

provide feature-based feedback—instead relied on instance-based feedback to adjust

EluciDebug’s predictions, labeling nearly four times as many messages as treatment

participants (Mann–Whitney U-test, W = 1395, p < .001) and examining nearly twice

as many messages (Mann–Whitney U-test, W = 1306, p < .001). Treatment participants

thus provided less feedback overall, and needed to explore less of the dataset while

providing it. Instead, these participants leveraged EluciDebug’s abilities to target their

feedback at features rather than instances.

92

Action Control mean (SD) Treatment mean (SD) p-value

Features added – 34.5 (17.0) –

Features removed – 8.2 (3.3) –

Features adjusted – 18.3 (17.0) –

Messages labeled 182.2 (91.8) 47.2 (46.4) < .001

Message views 296.0 (111.2) 150.5 (78.0) < .001

Table 6.2: The average usage of each of EluciDebug’s feedback mechanisms. The
Features removed total includes 7.4 of EluciDebug’s 10 initial features. Overall, treatment
participants targeted their feedback at features instead of instances.

0.0%

0.5%

1.0%

HighIG Comprehensive

F
1

 c
h

a
n

g
e

Figure 6.3: Average classifier F1 improvement per user action for control (light) and
treatment (dark); treatment participants controlled their classifiers up to twice as
efficiently as control participants.

This feature-based feedback proved efficient at improving participants’ classifiers.

We examined the change in F1 for each participant’s classifier during the experiment

and divided this by the number of actions the participant made that could influence

the classifier’s predictions (instances labeled and features added, removed, or adjusted).

The results, shown in Figure 6.3, were that treatment participants performed fewer

actions, but each of their actions resulted in larger classifier improvements than those

of control participants. Treatment participants’ feedback was twice as efficient as

control participants’ using HighIG features (0.16% vs. 0.34% F1 improvement per action,

Mann–Whitney U-test, W = 207, p < .001), and remained superior when using the

Comprehensive feature set (0.65% vs. 0.97%, Mann–Whitney U-test, W = 367, p < .001).

93

0.0

0.5

1.0

HighIG Comprehensive

F
1

 s
c
o

re

Figure 6.4: Average classifier F1 scores per condition. Control participants needed four
times as much data and the Comprehensive feature set (which included all words in the
dataset as features) to create better classifiers than treatment participants.

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

F
1

 s
c
o

re

of feedback actions

Figure 6.5: Treatment participants (dark) created equivalent or better classifiers than
control participants (light) using the same amount of feedback. This held for both the
HighIG (solid) and Comprehensive (dotted) feature sets.

94

We thus have evidence that when users can only provide a limited amount of feedback

to a learning system (such as when labeling instances is expensive, insufficient instances

are available for labeling, or the user’s time is constrained), Explanatory Debugging can

result in superior classifiers than a traditional black-box instance labeling approach.

Indeed, Figure 6.4 shows that by the end of the 30-minute experiment, treatment

participants had created classifiers that were roughly 10% more accurate than control

participants, averaging F1 scores of 0.85 vs. 0.77 (Mann–Whitney U-test, W = 237,

p < .001).

However, our analysis with the Comprehensive feature set suggests that when the user

can label many instances, instance labeling with a large feature set may be preferable to

Explanatory Debugging—at least to initially train a classifier. The combination of a large

training set and many features allowed control participants’ classifiers to edge out those

of treatment participants by about 8% (Figure 6.4). Even though treatment participants’

feedback was up to twice as efficient, control participants provided almost four times

as many labeled instances, allowing them to train classifiers with an average F1 of 0.94,
while treatment participants averaged 0.87 (Mann–Whitney U-test, W = 1290, p < .001).

To verify it was the amount of instance-based feedback that allowed control par­

ticipants to outperform treatment participants when Comprehensive features were con­

sidered, we analyzed the accuracy of their classifiers after the same number of actions

had been performed. Figure 6.5 shows the F1 scores after n feedback actions using the

HighIG (solid line) and Comprehensive (dotted line) feature sets. Given the same number

of actions, control participants never outperformed treatment participants. This suggests

that when treatment participants did provide instance-based feedback (which was the

only type of feedback used for the Comprehensive analysis), it was usually more useful

than control participants’ feedback.

Table 6.3 presents the average F1 scores for the four combinations of feature set and

dataset we employed in our study and offline experiments. As the table shows, we found

no evidence that participants overfit their classifiers to the data they saw during the

study—their classifiers performed similarly on both the seen and unseen datasets.

We also analyzed participant reactions to the two prototype variations. Treatment

participants liked their variant more than control participants, rating its helpfulness

as 4.8 vs. 4.3 on a 6-point scale (Mann–Whitney U-test, W = 474, p = .006). Further, we

did not find evidence that treatment participants felt Explanatory Debugging involved

95

Dataset Feature set Control F1 (SD) Treatment F1 (SD) p-value

Seen HighIG 0.77 (0.07) 0.85 (0.04) < .001

Unseen HighIG 0.76 (0.06) 0.84 (0.04) < .001

Seen Comprehensive 0.94 (0.03) 0.87 (0.06) < .001

Unseen Comprehensive 0.93 (0.03) 0.86 (0.06) < .001

Table 6.3: Average classifier accuracy for different datasets and feature selection methods.
Bold denotes the significantly highest value between conditions.

more work than black-box instance labeling. We used the NASA-TLX survey to measure

participants’ perceived task load while attempting to improve their classifier, but found

no evidence of a difference between conditions.

These classifier measures reveal three findings. First, in situations where large

amounts of training data is unavailable or expensive to obtain, Explanatory Debugging

(as instantiated in EluciDebug) allows users to successfully train a classifier by telling

it about features instead of instances. Second, the mix of feature- and instance-based

feedback provided by treatment participants was more efficient than the purely instance-

based feedback provided by control participants, suggesting that when an end user

has a specific goal in mind (such as our Alice example from Chapter 1), Explanatory

Debugging can help the user quickly realize his or her goal.

Third, control participants’ success with using large amounts of instance-based

feedback suggests that in domains where labeling instances is quick and practical, some

combination of feature- and instance-based feedback may be best. In fact, such systems

may need to emphasize the potential usefulness of labeling instances. In our experiment,

the mere presence of feature-based feedback tools appears to have biased participants

against instance-based feedback: 3 treatment participants did not provide any at all,

while the smallest number of labeled instances from a control participant was 56—more

than even the treatment average of 47 labeled instances.

96

Model component Max
score

Control
mean (SD)

Treatment
mean (SD) p-value

Obvious features 8 6.7 (2.7) 7.3 (1.8) .345

Subtle features 8 2.8 (2.6) 6.8 (1.9) <.001

Class ratios 8 0.6 (1.5) 1.8 (3.0) .099

Total score 24 10.4 (5.3) 15.8 (4.6) <.001

Table 6.4: Treatment participants finished the experiment with significantly higher
mental model scores than control participants.

6.2.2 EluciDebug’s explanations to end users (RQ6.3)

Before users can correct a machine learning system’s explanation of its reasoning, they

must first understand the explanation. This understanding is reflected in their mental

model.

Treatment participants built significantly better mental models than participants

in the control condition. As shown in Table 6.4, treatment participants scored 52%

higher on the mental model assessment than control participants (Mann–Whitney

U-test, W = 259, p < .001). Much of this difference stems from treatment participants

identifying all of the keywords the classifier used, while control participants often

identified only the “obvious” keywords. In fact, treatment participants averaged a

score of 14.1 out of 16 (88%) during the keyword assessment, suggesting they firmly

understood how the classifier involved keywords—regardless of whether the words had

any semantic association with their topics—in its reasoning.

Table 6.4 also suggests treatment participants may have better understood that the

classifier used class ratios as part of its prediction strategy than participants in the control

condition (Mann–Whitney U-test, W = 619.5, p = .099), but the evidence is weak—even

among treatment participants, the mean score was only 1.8 out of 8. Further, a majority

of participants in both conditions failed to answer any class ratio question correctly,

suggesting that this explanation either failed to convey relevant information about how

class ratios were used by the classifier, or failed to attract participants’ attention.

97

In general, however, control participants wanted the same information available to

the treatment group. As one participant stated:

C1: “More information on how emails are sorted would help the user target emails
to categorize, which would increase accuracy.”

Another control participant (C15) described the software as “annoying”, but that

working with it “would have been easier if we knew how it made predictions”, while still

another (C4) said it was annoying to work with because he “didn’t know what it was
basing its predictions off of”. A fourth participant (C11) even asked for a similar feedback

mechanism as was available to treatment participants, saying the software was “time­
consuming” because there was “no way to highlight key words/terms”. A fifth control

participant succinctly summed up the entire experience:

C30: “That was a long 30 minutes.”

Participants in the treatment condition, conversely, voiced appreciation for EluciDebug’s

explanations and feedback mechanisms:

T24: “Not difficult to understand/operate, doesn’t take a lot of effort.”

T40: “It was really fast to get a high degree of accuracy.”

T37: “I felt in control of all the settings.”

T6: “It was so simple my parents could use it.”

Overall, our principled Explanatory Debugging approach successfully helped partic­

ipants develop accurate mental models of the classifier they used, and participants bene­

fited from this additional knowledge. Spearman’s ρ confirms a significant correlation

between participants’ mental model scores and their classifier’s F1 scores (Spearman’s

rank correlation coefficient, ρ[75] = .282, p = .013).

98

6.3 Discussion

6.3.1 Efficient and accurate personalization

Our results suggest that Explanatory Debugging can be an efficient method for users to

personalize a machine learning system, but that it may not always result in the most

accurate classifiers. For example, we found that feature-based feedback was up to twice

as effective as instance-based feedback, but instance labeling could still yield more

accurate classifiers given enough labels and features (in our experiment, four times as

many labels were needed). In situations where labeling instances is considerably easier

or faster than providing feature-based feedback, users may be better served by labeling

a large number of instances than a small number of features.

However, when users need fine-grained control over a classifier, Explanatory De­

bugging has two advantages beyond efficiency. First, it does not require that training

data exist, and thus can be used to bootstrap a learning system. Even a trained system

that suddenly needs to support a new output type may benefit from such bootstrapping.

Second, the quick improvements—during even the first 10 user actions—treatment

participants made to their classifiers suggest that users will remain engaged with

Explanatory Debugging. This matters because research has shown that if an end-user

debugging technique is not perceived as useful after a small number of interactions,

users are unlikely to continue using it (Prabhakararao et al., 2003). Seeing an immediate

improvement after providing feedback suggests that users will continue to view and

correct the Explanatory Debugging explanations, while the lack of such an improvement

may discourage users of black-box instance labeling systems from continuing to provide

feedback.

6.3.2 Mental models

Not only did Explanatory Debugging help participants build useful mental models, it

accomplished this without a perceived increase in task load. Much as in our study of

AuPair Radio in Chapter 3, we found no evidence that treatment participants found the

extra information or feedback mechanisms more difficult to understand or use; instead,

treatment participants’ responses suggest they appreciated having such information

available.

99

Indeed, the fact that many control participants’ requested explanations remarkably

similar to those the treatment participants saw suggests the need for machine learning

systems to be able to explain their reasoning in accordance with Explanatory Debugging’s

Explainability principle. Even if this information is hidden by default, users should be

able to view such explanations on demand. Further, because machine learning systems

are meant to classify items as their user would, the user must have some method

to correct the system’s mistakes. Thus, we hypothesize that including Explanatory

Debugging-style explanations without also supporting our Correctibility principle will

frustrate users—they would be able to see what needs correcting, but without a clear

mapping to the actions they need to take.

6.4 Conclusion

Overall, Explanatory Debugging’s cycle of explanations—from the learning system

to the user, and from the user back to the system—resulted in smarter users and

smarter learning systems. Participants using Explanatory Debugging understood how

the learning system operated about 50% better than control participants, and this

improvement was positively correlated with the F1 scores of participants’ classifiers.

Each piece of feedback provided by Explanatory Debugging participants was worth

roughly two pieces of feedback provided by control participants; even when we ex­

panded our analysis to include a comprehensive feature set, treatment participants still

maintained a 50% efficiency edge over the control group. Further, participants liked

Explanatory Debugging, rating this variant of EluciDebug higher than the control group

and responding enthusiastically to the system’s explanations.

100

Chapter 7: Conclusion

Without personalization, classifiers and recommenders are simply static tools, incapable

of adapting to new inputs or a user’s shifting expectations of its outputs. Spam filters

would not adapt to new types of junk mail. Netflix would not detect your shifting taste

is movies. Banks would have difficulty identifying anomalous activity on your credit

cards as your spending habits change.

Even when they support personalization, however, many machine learning systems

treat it as something that happens in the background. Users provide the system with

new labeled instances (e.g., by moving email to the junk folder, or by rating a movie

on Netflix), but they are not told how the system has updated itself in response to

this new information. This dissertation has argued that users need more fine-grained

control in situations where this traditional instance-based approach breaks down—when

personalization must happen quickly, when an insufficient amount of training data exists,

when the user’s concept has evolved, or when the user needs a better understanding of

how the learning system makes its predictions.

As this dissertation has shown, a key concept of helping end users personalize a

machine learning system is to help them understand how it operates. Our research

found that as users improved their mental models of a learning system, they were better

able to personalize it to suit their needs. Moreover, we discovered that helping users

build high-fidelity mental models is surprisingly feasible, and that end users were not

intimidated or put-off by explanations of how the learning system operates “under the

hood”. Instead, high-fidelity mental models were tied to increased computer self-efficacy,

which suggests that these users will be more perseverant than users holding low-fidelity

mental models if they encounter barriers while personalizing their learning systems.

Helping users develop high-fidelity mental models is challenging because machine

learning systems can use a dizzying amount of material to reach their predictions and

recommendations. We had initially hypothesized that machine-generated explanations

of this process would need to be somewhat abstracted—but not too much—in order to

help end users build useful mental models. However, our qualitative investigation of

101

explanation fidelity suggested that explanations should be both as sound and complete

as possible in order to help users build high-fidelity mental models; that very complete

explanations can help improve the perceived cost/benefit trade-off of attending to

explanations; and that very sound explanations were perceived as more trustworthy

than very unsound explanations. Our research also revealed that Lim and Dey’s why,

input, and (especially) model intelligibility types were often referenced when participants

made correct statements about the learning system’s reasoning, while the certainty

intelligibility type was largely ignored. These intelligibility types provide a systematic

method for increasing the completeness of a system’s explanations.

Given these promising results, we developed a new approach for controlling machine

learning systems. We used the findings from our investigations of mental models and ex­

planation fidelity to inform the design of Explanatory Debugging, an explanation-centric

approach to help end users efficiently personalize their learning systems. Explanatory

Debugging is based upon a two-way cycle of interactive, context-sensitive explanations:

the learning system explains the reasons underlying its predictions or recommendations

to the user, who can then explain any necessary corrections back to the system. Our em­

pirical evaluation of Explanatory Debugging found that both halves of this cycle worked

as intended—users of our Explanatory Debugging prototype developed significantly

better mental models than users of a traditional black-box learning system, and they also

personalized their learning systems’ reasoning significantly more efficiently. Further,

users reacted more enthusiastically to Explanatory Debugging than to a traditional

machine learning system, and we found no evidence that personalization via Explanatory

Debugging—with its high-fidelity explanations—was perceived as more mentally taxing

than trying to understand and personalize a black-box learning system.

Together, the results of this dissertation show that when end users want to personalize

a machine learning system, Explanatory Debugging is a more controllable and satisfying

approach than black-box instance labeling. Our approach’s focus on users—in which the

system explains its reasoning and the user explains back corrections as needed—enables

everyday users to get the most out of the learning systems upon which they are beginning

to depend.

102

Bibliography

Abraham, R. and Erwig, M. (2006). AutoTest: A tool for automatic test case generation
in spreadsheets. In Proceedings of the IEEE 2006 Symposium on Visual Languages and
Human-Centric Computing, pages 43–50.

Amershi, S., Fogarty, J., Kapoor, A., and Tan, D. (2009). Overview based example
selection in end user interactive concept learning. In Proceedings of the 22nd Annual
ACM Symposium on User Interface Software and Technology, pages 247–256.

Amershi, S., Fogarty, J., Kapoor, A., and Tan, D. (2010). Examining multiple potential
models in end-user interactive concept learning. In Proceedings of the ACM Conference
on Human Factors in Computing Systems, pages 1357–1360.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84(2):191–215.

Becker, B., Kohavi, R., and Sommerfield, D. (2001). Visualizing the simple Baysian
classifier. In Fayyad, U., Grinstein, G. G., and Wierse, A., editors, Information
Visualization in Data Mining and Knowledge Discovery, pages 237–249. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Benedek, J. and Miner, T. (2002). Measuring desirability: New methods for evaluating
desirability in a usability lab setting. In Proceedings of the Usability Professionals’
Association Conference 2002, Orlando, FL, USA.

Billsus, D., Hilbert, D. M., and Maynes-Aminzade, D. (2005). Improving proactive
information systems. In Proceedings of the 10th International Conference on Intelligent
User Interfaces, pages 159–166.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment
models. In Proceedings of the IEEE 2002 Symposia on Human Centric Computing
Languages and Environments, pages 2–10.

Bostandjiev, S., O’Donovan, J., and Höllerer, T. (2012). TasteWeights: A visual interactive
hybrid recommender system. In Proceedings of the 6th ACM Conference on Recommender
Systems, pages 35–42.

Bostandjiev, S., O’Donovan, J., and Höllerer, T. (2013). LinkedVis: Exploring social and
semantic career recommendations. In Proceedings of the 2013 International Conference
on Intelligent User Interfaces, pages 107–115.

103

Bozionelos, N. (2001). The relationship of instrumental and expressive traits with
computer anxiety. Personality and Individual Differences, 31:955–974.

Brain, D. and Webb, G. (1999). On the effect of data set size on bias and variance in
classification learning. In Proceedings of the Fourth Australian Knowledge Acquisition
Workshop, pages 117–128.

Bryan, N. J., Mysore, G. J., and Wang, G. (2014). ISSE: An interactive source separation
editor. In Proceedings of the ACM Conference on Human Factors in Computing Systems,
pages 257–266.

Bunt, A., Lount, M., and Lauzon, C. (2012). Are explanations always important? A
study of deployed, low-cost intelligent interactive systems. In Proceedings of the 2012
International Conference on Intelligent User Interfaces, pages 169–178.

Cakmak, M., Chao, C., and Thomaz, A. L. (2010). Designing interactions for robot active
learners. IEEE Transactions on Autonomous Mental Development, 2(2):108–118.

Carley, K. and Palmquist, M. (1992). Extracting, representing, and analyzing mental
models. Social Forces, 70(3):601–636.

Carroll, J. M. and Rosson, M. B. (1987). Paradox of the active user. In Carroll, J. M.,
editor, Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, pages
80–111. MIT Press, Cambridge, MA, USA.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys, 41(3).

Compeau, D. R. and Higgins, C. A. (1995). Computer self-efficacy: Development of a
measure and initial test. MIS Quarterly, 19(2):189–211.

Corbin, J. M. and Strauss, A. (1990). Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative sociology, 13(1):3–21.

Cramer, H., Evers, V., Ramlal, S., van Someren, M., Rutledge, L., Stash, N., Aroyo, L.,
and Wielinga, B. (2008). The effects of transparency on trust in and acceptance
of a content-based art recommender. User Modeling and User-Adapted Interaction,
18(5):455–496.

Craven, M. W. and Shavlik, J. W. (1997). Using neural networks for data mining. Future
Generation Computer Systems, 13:211–229.

Das, S., Moore, T., Wong, W.-K., Stumpf, S., Oberst, I., McIntosh, K., and Burnett, M. M.
(2013). End-user feature labeling: Supervised and semi-supervised approaches based
on locally-weighted logistic regression. Artificial Intelligence, 204:56–74.

104

Doyle, J. K., Radzicki, M. J., and Trees, W. S. (2008). Measuring change in mental models
of complex dynamic systems. In Complex Decision Making, pages 269–294. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1):61–74.

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., and Beck, H. P. (2003).
The role of trust in automation reliance. International Journal of Human-Computer
Studies, 58(6):697–718.

Fails, J. A. and Olsen Jr., D. R. (2003). Interactive machine learning. In Proceedings of the
8th International Conference on Intelligent User Interfaces, pages 39–45.

Fiebrink, R., Cook, P. R., and Trueman, D. (2011). Human model evaluation in interactive
supervised learning. In Proceedings of the ACM Conference on Human Factors in
Computing Systems, pages 147–156.

Fisher II, M., Rothermel, G., Brown, D., Cao, M., Cook, C., and Burnett, M. M.
(2006). Integrating automated test generation into the WYSIWYT spreadsheet testing
methodology. Transactions on Software Engineering and Methodology, 15(2):150–194.

Fogarty, J., Tan, D., Kapoor, A., and Winder, S. (2008). CueFlik: Interactive concept
learning in image search. In Proceedings of the ACM Conference on Human Factors in
Computing Systems, pages 29–38.

Glass, A., McGuinness, D. L., and Wolverton, M. (2008). Toward establishing trust in
adaptive agents. In Proceedings of the 13th International Conference on Intelligent User
Interfaces, pages 227–236.

Glowacka, D., Ruotsalo, T., Konuyshkova, K., Athukorala, k., Kaski, S., and Jacucci, G.
(2013). Directing exploratory search: Reinforcement learning from user interactions
with keywords. In Proceedings of the 2013 International Conference on Intelligent User
Interfaces, pages 117–127.

Groce, A., Kulesza, T., Zhang, C., Shamasunder, S., Burnett, M. M., Wong, W.-K., Stumpf,
S., Das, S., Shinsel, A., Bice, F., and McIntosh, K. (2014). You are the only possible
oracle: Effective test selection for end users of interactive machine learning systems.
IEEE Transactions on Software Engineering, 40(3):307–323.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., and Reutemann, P. (2009). The WEKA
data mining software: An update. SIGKDD Explorations, 11(1):10–18.

105

Hart, S. G. and Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research. Advances in Psychology, 52:139–183.

Hastie, R. (1984). Causes and effects of causal attribution. Journal of Personality and
Social Psychology, 46(1):44–56.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference and Prediction, volume 2. Springer, New York, NY, USA.

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering
recommendations. In Proceedings of the 2000 ACM Conference on Computer Supported
Cooperative Work, pages 241–250.

Jakulin, A., Možina, M., Demšar, J., Bratko, I., and Zupan, B. (2005). Nomograms for
visualizing support vector machines. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages 108–117.

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Harvard University Press.

Jonassen, D. H. and Henning, P. (1996). Mental models: Knowledge in the head and
knowledge in the world. In Proceedings of the 1996 International Conference on Learning
Sciences, pages 433–438.

Kapoor, A., Lee, B., Tan, D., and Horvitz, E. (2010). Interactive optimization for steering
machine classification. In Proceedings of the ACM Conference on Human Factors in
Computing Systems, pages 1343–1352.

Kempton, W. (1986). Two theories of home heat control. Cognitive Science, 10:75–90.

Kibriya, A. M., Frank, E., Pfahringer, B., and Holmes, G. (2004). Multinomial naive Bayes
for text categorization revisited. In AI 2004: Advances in Artificial Intelligence, pages
488–499. Springer Berlin Heidelberg, Berlin, Heidelberg.

Knox, W. B. and Stone, P. (2012). Reinforcement learning from human reward:
Discounting in episodic tasks. In Proceedings of the 21st IEEE International Symposium
on Robot and Human Interactive Communication, pages 878–885.

Ko, A. J. (2006). Debugging by asking questions about program output. In Proceeding of
the 28th International Conference on Software Engineering, pages 989–992.

Ko, A. J. and Myers, B. A. (2008). Debugging reinvented: Asking and answering why and
why not questions about program behavior. In Proceedings of the 13th International
Conference on Software Engineering, pages 301–310.

106

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and
development. Prentice Hall, Englewood Cliffs, NJ, USA.

Kulesza, T., Amershi, S., Caruana, R., Fisher, D., and Charles, D. (2014). Structured
labeling for facilitating concept evolution in machine learning. In Proceedings of the
ACM Conference on Human Factors in Computing Systems, pages 3075–3084.

Kulesza, T., Stumpf, S., Burnett, M. M., Wong, W.-K., Riche, Y., Moore, T., Oberst, I.,
Shinsel, A., and McIntosh, K. (2010). Explanatory debugging: Supporting end-user
debugging of machine-learned programs. In Proceedings of the 2010 IEEE Symposium
on Visual Languages and Human-Centric Computing, pages 41–48.

Kulesza, T., Stumpf, S., Wong, W.-K., Burnett, M. M., Perona, S., Ko, A. J., and Oberst,
I. (2011). Why-oriented end-user debugging of naive Bayes text classification. ACM
Transactions on Interactive Intelligent Systems, 1(1).

Lacave, C. and Díez, F. J. (2002). A review of explanation methods for Bayesian networks.
The Knowledge Engineering Review, 17(2):107–127.

Lieberman, H. (2001). Your Wish is My Command: Programming by Example. Morgan
Kaufmann.

Lim, B. Y. (2012). Improving understanding and trust with intelligibility in context-aware
applications. PhD thesis, Carnegie Mellon University.

Lim, B. Y. and Dey, A. K. (2009). Assessing demand for intelligibility in context-aware
applications. In Proceedings of the 11th International Conference on Ubiquitous
Computing, pages 195–204.

Lim, B. Y., Dey, A. K., and Avrahami, D. (2009). Why and why not explanations improve
the intelligibility of context-aware intelligent systems. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, pages 2119–2128.

McCrum-Gardner, E. (2008). Which is the correct statistical test to use? British Journal
of Oral and Maxillofacial Surgery, 46:38–41.

McDaniel, R. G. and Myers, B. A. (1997). Gamut: Demonstrating whole applications.
In Proceedings of the 10th Annual ACM Symposium on User Interface Software and
Technology, pages 81–82.

McNee, S. M., Lam, S. K., Guetzlaff, C., Konstan, J. A., and Riedl, J. (2003). Confidence
displays and training in recommender systems. In Proceedings of INTERACT ’03, pages
176–183.

107

Miller, R. C. and Myers, B. A. (2001). Outlier finding: Focusing user attention on possible
errors. In Proceedings of the 14th Annual ACM Symposium on User Interface Software
and Technology, pages 81–90.

Možina, M., Demšar, J., Kattan, M., and Zupan, B. (2004). Nomograms for visualization
of naive Bayesian classifier. In Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi,
D., editors, Knowledge Discovery in Databases: PKDD 2004, pages 337–348. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Myers, B. A., Weitzman, D. A., Ko, A. J., and Chau, D. H. (2006). Answering why and
why not questions in user interfaces. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, pages 397–406.

Norman, D. A. (1987). Some observations on mental models. In Baecker, R. M.
and Buxton, W. A. S., editors, Human-Computer Interaction, pages 241–244. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Norman, D. A. (2002). The Design of Everyday Things. Basic Books, New York, NY, USA.

Otter, M. and Johnson, H. (2000). Lost in hyperspace: Metrics and mental models.
Interacting with computers, 13:1–40.

Parra, D., Brusilovsky, P., and Trattner, C. (2014). See what you want to see: Visual user-
driven approach for hybrid recommendation. In Proceedings of the 19th International
Conference on Intelligent User Interfaces, pages 235–240.

Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R., Wishart, D. S., Fyshe, A., Pearcy,
B., MacDonell, C., and Anvik, J. (2006). Visual explanation of evidence with additive
classifiers. In Proceedings of the Fourth Australian Knowledge Acquisition Workshop,
pages 1822–1829.

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC,
Informedness, markedness and correlation. Journal of Machine Learning Technologies,
2(1):37–63.

Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M., and
Burnett, M. M. (2003). Strategies and behaviors of end-user programmers with
interactive fault localization. In Proceedings of the 2003 IEEE Symposium on Human
Centric Computing Languages and Environments, pages 15–22.

Raghavan, H., Madani, O., and Jones, R. (2006). Active learning with feedback on
features and instances. The Journal of Machine Learning Research, 7:1655–1686.

108

Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries. In
Proceedings of the First Instructional Conference on Machine Learning.

Raz, O., Koopman, P., and Shaw, M. (2002). Semantic anomaly detection in online data
sources. In Proceedings of the 24th International Conference on Software Engineering,
pages 302–312.

Rogers, Y., Sharp, H., and Preece, J. (2011). Interaction Design: Beyond Human - Computer
Interaction. John Wiley & Sons.

Rosson, M. B., Carrol, J. M., and Bellamy, R. K. E. (1990). Smalltalk scaffolding: A case
study of minimalist instruction. In Proceedings of the ACM Conference on Human Factors
in Computing Systems, pages 423–429.

Rothermel, G., Burnett, M. M., Li, L., Dupuis, C., and Sheretov, A. (2001). A methodology
for testing spreadsheets. ACM Transactions on Software Engineering and Methodology,
10(1):110–147.

Rowe, M. B. (1973). Teaching Science as Continuous Inquiry. McGraw-Hill.

Scaffidi, C. (2007). Unsupervised Inference of Data Formats in Human-Readable
Notation. In Proceedings of 9th International Conference on Enterprise Integration Systems,
pages 236–241.

Settles, B. (2010). Active learning literature survey. Technical Report 1648, University
of Wisconsin-Madison.

Shneiderman, B. and Plaisant, C. (2010). Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, 5th edition.

Sinha, R. and Swearingen, K. (2002). The role of transparency in recommender systems.
In Proceedings of the ACM Conference on Human Factors in Computing Systems, pages
830–831.

Stone, P. J. (1968). The General Inquirer: A Computer Approach to Content Analysis. The
MIT Press.

Storey, M., Fracchia, F. D., and Müller, H. A. (1999). Cognitive design elements to
support the construction of a mental model during software exploration. Journal of
Systems and Software, 44:171–185.

Stumpf, S., Rajaram, V., Li, L., Burnett, M. M., Dietterich, T., Sullivan, E., Drummond,
R., and Herlocker, J. (2007). Toward harnessing user feedback for machine learning.
In Proceedings of the 12th International Conference on Intelligent User Interfaces, pages
82–91.

109

Stumpf, S., Rajaram, V., Li, L., Wong, W.-K., Burnett, M. M., Dietterich, T., Sullivan, E.,
and Herlocker, J. (2009). Interacting meaningfully with machine learning systems:
Three experiments. International Journal of Human-Computer Studies, 67(8):639–662.

Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W.-K., and Burnett, M. M. (2008).
Integrating rich user feedback into intelligent user interfaces. In Proceedings of the
13th International Conference on Intelligent User Interfaces, pages 50–59.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009.

Szafron, D., Greiner, R., Lu, P., and Wishart, D. (2003). Explaining naïve Bayes
classifications. Technical Report TR03-09, University of Alberta.

Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. (2009). EnsembleMatrix: Interactive
visualization to support machine learning with multiple classifiers. In Proceedings of
the ACM Conference on Human Factors in Computing Systems, pages 1283–1292.

Thomaz, A. L. and Breazeal, C. (2006). Transparency and socially guided machine
learning. In Proceedings of the 5th International Conference on Development and Learning.

Tintarev, N. and Masthoff, J. (2012). Evaluating the effectiveness of explanations for
recommender systems. User Modeling and User-Adapted Interaction, 22(4-5):399–439.

Tullio, J., Dey, A. K., Chalecki, J., and Fogarty, J. (2007). How it works: A field study of
non-technical users interacting with an intelligent system. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, pages 31–40.

van der Meij, H. and Carroll, J. M. (1998). Principles and heuristics for designing
minimalist instruction. In Carroll, J. M., editor, Minimalism Beyond the Nurnberg
Funnel, pages 19–53. MIT Press, Cambridge, MA.

Verbert, K., Parra, D., Brusilovsky, P., and Duval, E. (2013). Visualizing recommendations
to support exploration, transparency and controllability. In Proceedings of the 2013
International Conference on Intelligent User Interfaces, pages 351–362.

Vig, J., Sen, S., and Riedl, J. (2011). Navigating the tag genome. In Proceedings of the 16th
International Conference on Intelligent User Interfaces, pages 93–102.

Wagner, E. J. and Lieberman, H. (2004). Supporting user hypotheses in problem
diagnosis. In Proceedings of the 9th International Conference on Intelligent User Interfaces,
pages 30–37.

110

Wilfong, J. D. (2006). Computer anxiety and anger: the impact of computer use,
computer experience, and self-efficacy beliefs. Computers in Human Behavior,
22:1001–1011.

Wilson, A., Burnett, M. M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham,
M., and Rothermel, G. (2003). Harnessing curiosity to increase correctness in end-user
programming. In Proceedings of the ACM Conference on Human Factors in Computing
Systems, pages 305–312.

Yang, R. and Newman, M. W. (2013). Learning from a learning thermostat: Lessons for
intelligent systems for the home. In Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 93–102.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text
categorization. In Proceedings of the Twentieth International Conference on Machine
Learning, pages 412–420.

111

APPENDICES

112

Appendix A: EluciDebug study materials

This appendix presents the materials used in our study of EluciDebug (Chapter 6). The

first five pages present the tutorial we used to introduce participants to EluciDebug.

Text highlighted in green explains what participants saw via a projector. Text highlighted

in blue was only provided to treatment participants, while text highlighted in salmon

was only provided to control participants.

We next present the background, pre-task, and post-task questionnaires. Because

treatment participants used a different variant of EluciDebug than control participants,

there are condition-specific variants of the pre- and post-task questionnaires. For each

questionnaire, we present the control variant before the treatment variant.

Finally, we also include the answer keys for our mental model assessments. These

answers list either the specific keyword responsible for the classifier’s prediction, or

“class imbalance” if the prediction was determined by class ratios instead of keyword

presence.

Message Predictor Tutorial
Hi, my name is [your name], and I’ll be walking you through our study. [Introduce the
rest of the study team]. If your cell phone is on, please set it to silent mode.

I’ll be reading from this script to be consistent in the information I provide you and the
other people taking part in this study. Please don’t discuss this study with anyone, as we
don’t want other participants to receive any advance information. During this tutorial,
please follow along with my directions and don’t explore the system by yourself yet.

This study is about working with software that makes predictions. For example, most
email software makes predictions about whether each new message is important, or junk
mail. The software will typically learn—based on your behavior—which types of
messages you think are important, and which you think are junk.

Today I’ll show you a tool that tries to predict whether new messages are about one of
two topics. For this tutorial, the topics will be medicine and outer space. The messages
that we’ll look at were collected from Internet forums in 1994, so they’re real messages,
but way out of date. Let’s click “OK” to start the application.

[Click “OK” and wait for the application to start]

Alright, let’s go over the different parts.

In the upper-left, there’s a list of folders [Hover mouse around folder list]. There are only
three, and you can’t change them. The first is “Unknown”, which has over 1,000
messages in it. Those messages are shown in the middle of the screen. The selected
message is shown on the right side of the screen.

The second folder is “Medicine” and has 10 messages in it. Let’s select that folder to
view those messages [Click on Medicine folder]. Notice that this folder tells us that
currently all 10 messages are correctly predicted as being about “medicine” [Hover
around “10/10 correct predictions”].

The third folder is “Space” and also has 10 messages in it. Let’s select it [Click on Space
folder]. This folder tells us that only 8 of the 10 messages are correctly predicted. If we
look at the “Predicted topic” column in the message list, we can see which messages the
computer is wrongly predicting; their predicted topic is “Medicine” instead of “Space”
[Hover mouse around incorrect predictions]. Notice that these topics are color-coded,
with teal for “space” and red for “medicine”.

Now let’s go back to the “Unknown” folder [Click on Unknown folder]. These message
all have a predicted topic as well [Hover mouse around “Predicted topic” column]. We
can sort the messages by their predicted topic by clicking the column header, like this
[Click “Predicted topic” header to sort messages]. Now all of the messages that the
computer thinks are about medicine are at the top of the list. If we scroll down, we’ll see

113

that all of the messages the computer thinks are about space are at the bottom [Scroll
down to the very bottom of the list].

We can also sort the messages by Subject. Let’s click on the “Subject” column header to
do that [Click “Subject” header to sort messages].

There’s also a column showing how confident the computer is about its prediction [Hover
mouse around Prediction Confidence column]. This can range from 99%, which means
the computer is very confident in its prediction, to 50%, which means the computer is just
guessing. Just like the other columns, we can also sort messages by confidence. Let’s do
that now [Click “Prediction Confidence” header to sort messages]. This puts all of the
very unconfident messages at the top of the list, and the most confident messages at the
bottom [Scroll down to the very bottom of the list].

If you want to return to the original sort order, you can do that by clicking the “Original
order” column. Let’s do that now [Click “Order” header to sort messages]. Let’s also
scroll all the way back to the top of the list [Scroll to top of message list].

Now this is really important. The predictions that the computer makes may not be
correct. In fact, the purpose of this software is to try to improve the computer’s
predictions by giving it more information. You can do that / One way to do that is by
moving messages to the “Medicine” or “Space” folder, which will tell the computer to
learn from those messages. To see how that works, let’s select the “NASA Wraps”
message [Select message].

With a word like “NASA” in the subject, it’s probably a safe bet that this message is
about outer space. If you weren’t certain, you can always read as much—or as little—of
the message as you’d like. If you think the computer should learn more about a topic
from this message, we can move it to either the “Space” or “Medicine” folder. To do that,
make sure the message is selected and click the “Move message to folder…” button
[Click button and hover over “space”, but don’t select it].

You can use this button to move a message into any folder. You’re free to move as many,
or as few, messages into each folder as you like. You don’t need to move every message
into a folder. For now, let’s go ahead and move this message into the “Space” folder
[Move message to “space”].

Now that we’ve told the computer to learn from this message, a few things have changed.
First, you may have noticed that the predicted topic for many messages in the Unknown
folder changed from medicine to space, or vice versa [Hover around the “Predicted topic”
column]. When the computer changes its prediction for a message, the predicted topic
will have a grey background, like these. Second, the number of correct predictions for
Medicine and Space have changed [Hover around Medicine and Space folders]. Medicine
used to have 10 correct predictions, while Space only had 8. Now all of the Space
predictions are correct, but one Medicine prediction is wrong / four of the Medicine

114

predictions are wrong. These green “up” arrows and red “down” arrows tell you whether
a number just increased or decreased; you can hover over them to see the exact change
[Mouse over the red arrow next to “Medicine” until the tooltip appears]. Below the
Folder List you can see the total number of messages the computer predicts are about
each topic [Hover mouse around Prediction Totals]. Here we see that the computer
currently predicts that 179 messages are about medicine, while over 1,000 messages are
about space. Adding that one message to the Space folder helped the computer improve
its predictions about Space, but at the cost of its predictions about Medicine.

So, moving messages into the Medicine or Space folders may help you improve the
computer’s predictions, and it also allows you to see how accurate those predictions are.
There’s no limit on how many messages may be in each folder.

Another way for you to improve the computer’s predictions is to adjust the Important
Words that it pays attention to. These are listed at the bottom of the screen [Hover mouse
around Important Words section]. Each of these words will also be highlighted in blue in
messages [Hover mouse around highlighted words in message]. You can add new words
or phrases, remove existing words, or adjust the relative importance of words.

For practice, let’s click on “Steve” [Click “Steve” in important words list]. When we
select a word, we get an overview of all the messages that contain this word in the lower-
left of the screen [Hover mouse around Messages Containing Steve section]. This shows
that “Steve” occurs in 3 of the 10 messages in our Medicine folder [Hover mouse around
Medicine in heatmap], but none of the messages in our Space folder [Hover mouse
around Space in heatmap], and another few dozen messages that are still in the Unknown
folder [Hover mouse around Unknown in heatmap].

My first thought is that the word “Steve” probably doesn’t have much to do with
medicine, but we can click on each message to see how the word is used. Let’s click the
first highlighted message in Medicine [Click first message in medicine heatmap]. The
word will be highlighted in light blue, but we may need to scroll through the message to
find it [Scroll down to end of message]. So this message was sent by someone named
Steve. Let’s look at the next two messages [Click on the next two messages in the
medicine heatmap, slowly enough for participants to see that Steve is the name of the
person who sent each message]. It looks like the computer noticed that someone named
Steve sent three messages about Medicine, and no one named Steve sent any messages
about Space. Let’s click “Close” to go back to the main window [Close dialog window].

I can’t think of a reason why Steve should be more important to Medicine than Outer
Space, so let’s remove “Steve” as an important word [Click on “Remove Steve” button].
Checkout what happened to the Medicine folder—its accuracy dropped down to 5 out of
10 messages [Hover over down arrow next to Medicine]. Let’s click on that folder to look
at some of its messages [Click on the Medicine folder]. So this first message has the
subject “Too many MRIs”. “MRIs” seems like it might be an important word about

115

medicine. Let’s click “Add a new word or phrase” to add it [Click “Add a new word or
phrase” button].

We’ll type in “MRIs” [Slowly type “MRIs”]. Notice that we include the ‘S’ on the end,
and that as we type it, we can see it highlight in the message. If we don’t include the ‘S’,
it won’t highlight. The computer doesn’t know about differences in pluralization or
spelling, so if you want it to pay attention to a certain word or phrase, you need to enter
that word exactly as you see it in the message. Also notice that the message overview in
the lower-left shows up, so we can preview other messages that contain this word.

Now we need to select the topic associated with this word; we’ll pick Medicine and then
click “Add” [Select Medicine from the menu and click the “Add” button].

Besides adding or removing words and phrases, you can also adjust their importance. For
example, let’s select “Gravity” from the list of important words [Click on “Gravity”]. The
teal bar shows how important this word is for predicting messages about Space, and the
red bar shows how important this word is for predicting messages about Medicine. We
can drag each bar up to make it more important, or down to make it less important.
However, if there’s a black line on the bar, we can’t drag it any lower than that line. For
example, if we wanted to tell the computer that “Gravity” should be more important to
Medicine than Space, we could drag the teal bar down, but it won’t let us drag it below
that line [Drag the teal bar as low as it will go]. Instead, we could drag the red bar up to
tell the computer that Gravity is more important to medicine than space [Drag the red bar
about twice as high as the teal bar].

The thing is, “gravity” probably should be associated with space more than medicine, so
let’s undo our changes [Clicks “Undo importance adjustment”]. In fact, “Gravity” should
probably be much more strongly associated with space than medicine, so let’s drag it up
[Drag teal bar up to the level of “Moon”].

As we’ve been working with this software, you’ve probably noticed the animations on
the right side of the screen [Hover mouse around “Why medicine?” explanation]. This
area explains why the computer is making each of its predictions; each message has its
own explanation. When you adjust important words or move messages into different
folders, you might change the computer’s reasons for some of its predictions. When the
computer’s reasoning changes, this explanation will animate to let you know that it’s
changed.

Finally, there are a few features designed to help you work faster with this software. You
can select words and phrases in message and right-click to either find all of the messages
containing the word, or add it as an important word or phrase [Select some text and right-
click to show the context menu]. You can also search for any word you want using this
Search box [hover mouse around “Search” box]. The results will show up in the lower-
left, just like when you add or select Important Words [Type “test” into the Search box,
the hover mouse around the heatmap]. If you want to focus on predictions that were

116

altered by your last action, you can use the “Only show predictions that just changed”
button [Hover mouse around “Only show…” button]. We can turn that on right now
[Click “Only show…” button to enable it], but since none of the messages in this folder
recently changed their prediction, nothing shows up. So let’s turn that option back off for
now [Click “Only show…” button to disable it].

I’m going to give you a couple of minutes to practice using this software, and then we’ll
start the study. Let one of us know if you have any questions.

[Wait for three minutes.]

Alright, now please close the software you’ve been working with. You should see a small
window appear, but don’t click “OK” yet.

Before we start the study, we have some questions we’d like you to answer. These
questions ask you to imagine working with the same software you just saw, but instead of
messages about medicine and outer space, the messages are about soccer and basketball.
Answer the questions as best you can, with as much detail as possible. You’ll have about
10 minutes.

[Pass out pre-task questions and wait.]

Alright, now we’ll start the main part of the study. You’ll be using the same software you
saw during the tutorial, but instead of messages about medicine and outer space, the
messages will be about baseball and ice hockey. The colors associated with those topics
may also be different. Everything else about the software is still the same.

Your task is to make the computer’s predictions as accurate as possible. You’ll have 30
minutes, and may begin now by clicking “OK”.

[Wait 30 minutes.]

Alright, time’s up! Go ahead and click “Close” to close the application. Before we finish,
we have some final questions we’d like you to answer. You’ll have up to 20 minutes. Let
us know once you’re done and we’ll pay you for helping us with this research. Thanks for
coming in today!

117

Group: ______________ Participant: ______________

Background questions

Age years

Gender
(circle one) Female Male

College standing
(circle one)

Undergraduate

Graduate student

Already graduated

Not a student

College major

College GPA
(approximate)

I know the rules of
professional baseball

Strongly
disagree

Strongly
agree

I pay attention to
professional baseball

Strongly
disagree

Strongly
agree

I know the rules of
professional ice hockey

Strongly
disagree

Strongly
agree

I pay attention to
 professional ice hockey

Strongly
disagree

Strongly
agree

118

Group: ______________ Participant: ______________

This part of the questionnaire asks you about your ability to use an unfamiliar piece of
software. Often in our jobs we are told about software that is available to make our work
easier. For the following questions, imagine that you were given a new software package
for some aspect of your work. It doesn't matter specifically what this software does, only
that it is intended to make your job easier and that you have never used it before.

The following questions ask you to indicate whether you could use this unfamiliar
software under a variety of conditions. For each of the conditions, indicate whether you
think you would be able to complete the job using the software. Then, for each condition
that you answered “YES”, please rate your confidence about your first judgment by
circling a number from 1 to 10, where 1 indicates “Not at all confident”, 5 indicates
“Moderately confident”, and 10 indicates “Totally confident”.

I could complete my job using this software…

 Not at all
confident

Moderately
confident

Totally
confident

…if there was no one around to tell me
what to do as I go.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had never used a package like it
before.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had only the software manuals for
reference.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had seen someone else using it
before trying it myself.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I could call someone for help if I got
stuck.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if someone else had helped me get
started.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had a lot of time to complete the
job for which the software was provided.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had just the built-in help facility for
assistance.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if someone showed me how to do it
first.

YES… 1 2 3 4 5 6 7 8 9 10

NO

…if I had used similar packages before
this one to do the same job.

YES… 1 2 3 4 5 6 7 8 9 10

NO

119

Group: ______________ Participant: ______________

Pre-task questions

Pre-task questions
Assume you are using the same software you just worked with, but instead of Medicine
and Space, it predicts whether each message is about Soccer or Basketball. The
software has learned from two messages in the Soccer folder, and one message in the
Basketball folder:

Soccer messages:

#1 Subject: Soccer is the best
Soccer is truly the best sport in the world!

#2 Subject: Soccer is the best
Agreed!

Basketball message:

#1 Subject: Basketball is the best
No, I think basketball is the best sport in the world!

Assume that these are the only messages the software has learned from. The
following page lists several messages in the Unknown folder. For each message, circle
the topic that you think the computer will predict and explain why. Be as specific as
possible.

120

Group: ______________ Participant: ______________

Pre-task questions

Message in
Unknown folder

Computer’s
predicted topic Why? (be specific)

Subject: Rugby rules
Truly, rugby is the best sport! Soccer Basketball

Subject: Basketball does rule
Right on! Soccer Basketball

Subject: Rugby rules
I think rugby is best. Soccer Basketball

Subject: What?!
Basketball beats soccer any
day.

Soccer Basketball

Subject: Soccer does rule
Right on! Soccer Basketball

Subject: Soccer forever
It’s just more fun than
basketball.

Soccer Basketball

Subject: Yeah!
Agreed, rugby rocks. Soccer Basketball

Subject: Nope!
No, rugby does not rock. Soccer Basketball

Subject: Chess is better
You’re all wrong. Soccer Basketball

Subject: Eh?
Chess is more exciting. Soccer Basketball

Subject: Pshhhh
But soccer is more popular. Soccer Basketball

Subject: Not in the states
Basketball is more popular
here.

Soccer Basketball

121

Group: ______________ Participant: ______________

Pre-task questions

Please list all of the words you can think of that are about Hockey:

Please list all of the words you can think of that are about Baseball:

122

Group: ______________ Participant: ______________

Pre-task questions

Pre-task questions
Assume you are using the same software you just worked with, but instead of Medicine
and Space, it predicts whether each message is about Soccer or Basketball. The
software has learned from two messages in the Soccer folder, and one message in the
Basketball folder:

Soccer messages:

#1 Subject: Soccer is the best
Soccer is truly the best sport in the world!

#2 Subject: Soccer is the best
Agreed!

Basketball message:

#1 Subject: Basketball is the best
No, I think basketball is the best sport in the world!

The Important Words section of the software shows the following:

Assume that these are the only messages the software has learned from. The
following page lists several messages in the Unknown folder. For each message, circle
the topic that you think the computer will predict and explain why. Be as specific as
possible.

agreed basketball best no soccer sport think truly world

Soccer Basketball

123

Group: ______________ Participant: ______________

Pre-task questions

Message in
Unknown folder

Computer’s
predicted topic Why? (be specific)

Subject: Rugby rules
Truly, rugby is the best sport! Soccer Basketball

Subject: Basketball does rule
Right on! Soccer Basketball

Subject: Rugby rules
I think rugby is best. Soccer Basketball

Subject: What?!
Basketball beats soccer any
day.

Soccer Basketball

Subject: Soccer does rule
Right on! Soccer Basketball

Subject: Soccer forever
It’s just more fun than
basketball.

Soccer Basketball

Subject: Yeah!
Agreed, rugby rocks. Soccer Basketball

Subject: Nope!
No, rugby does not rock. Soccer Basketball

Subject: Chess is better
You’re all wrong. Soccer Basketball

Subject: Eh?
Chess is more exciting. Soccer Basketball

Subject: Pshhhh
But soccer is more popular. Soccer Basketball

Subject: Not in the states
Basketball is more popular
here.

Soccer Basketball

124

Group: ______________ Participant: ______________

Pre-task questions

Please list all of the words you can think of that are about Hockey:

Please list all of the words you can think of that are about Baseball:

125

Group: ______________ Participant: ______________

Post-task questions

Post-task questions
Assume you are using the same software you just worked with, but instead of Baseball and
Hockey, it predicts whether each message is about Swimming or Tennis. The software has
learned from two messages in the Swimming folder, and one message in the Tennis folder:

Swimming messages:

#1 Subject: Swimming is the worst
Swimming is certainly the worst sport in the world.

#2 Subject: Swimming is the worst
Seriously?

Tennis message:

#1 Subject: Tennis is the worst
Wrong, tennis is totally the worst sport in the world.

Assume that these are the only messages the software has learned from. The following
page lists several messages in the Unknown folder. For each message, circle the topic that
you think the computer will predict and explain why. Be as specific as possible.

126

Group: ______________ Participant: ______________

Post-task questions

Message in
Unknown folder

Computer’s
predicted topic Why? (be specific)

Subject: Rugby rules!
You’re wrong, rugby’s awesome! Swimming Tennis

Subject: Meh
Chess is more exciting. Swimming Tennis

Subject: Swimming rules
Well it does. Swimming Tennis

Subject: Yeah!
Rugby totally rocks. Swimming Tennis

Subject: Pshhhh
But tennis is more popular. Swimming Tennis

Subject: Rugby is dull
Rugby is certainly the worst
sport.

Swimming Tennis

Subject: Tennis rules
Tennis is best. Swimming Tennis

Subject: Chess can be exciting
If you wear a helmet. Swimming Tennis

Subject: Nope!
Seriously, helmets do not make
chess exciting.

Swimming Tennis

Subject: Really?
Swimming seems just as
popular.

Swimming Tennis

Subject: Swimming forever
It’s much more fun than tennis. Swimming Tennis

Subject: What?!
Tennis beats swimming any day. Swimming Tennis

127

Group: ______________ Participant: ______________

Post-task questions

What was your overall impression of the software you worked with?

Very
negative

Very
positive

How helpful (or unhelpful) did you find the following features of the software you worked
with?

Moving messages into folders

Very
unhelpful

Very
helpful

Viewing number of correct predictions in each folder

Very
unhelpful

Very
helpful

128

Group: ______________ Participant: ______________

Post-task questions

The following six questions refer to your task of trying to improve the software’s topic
predictions:

1. How mentally demanding was the task?

Very Low Very High

2. How physically demanding was the task?

Very Low Very High

3. How hurried or rushed was the pace of the task?

Very Low Very High

4. How successful were you in accomplishing what you were asked to do?

Failure Perfect

5. How hard did you have to work to accomplish your level of performance?

Very Low Very High

6. How insecure, discouraged, irritated, stressed, and annoyed were you?

Very Low Very High

129

Group: ______________ Participant: ______________

Post-task questions

a) Underline all of the words that you feel apply to this system.
b) Pick five underlined words that best describe your feelings toward this system and

explain why.

Accessible
Advanced
Annoying
Appealing
Approachable
Attractive
Boring
Business-like
Busy
Calm
Clean
Clear
Collaborative
Comfortable
Compatible
Compelling
Complex
Comprehensive
Confident
Confusing
Connected
Consistent
Controllable
Convenient

Creative
Customizable
Cutting edge
Dated
Desirable
Difficult
Disconnected
Disruptive
Distracting
Dull
Easy to use
Effective
Efficient
Effortless
Empowering
Energetic
Engaging
Entertaining
Enthusiastic
Essential
Exceptional
Exciting
Expected
Familiar

Fast
Flexible
Fragile
Fresh
Friendly
Frustrating
Fun
Gets in the way
Hard to use
Helpful
High quality
Impersonal
Impressive
Incomprehensible
Inconsistent
Ineffective
Innovative
Inspiring
Integrated
Intimidating
Intuitive
Inviting
Irrelevant
Low maintenance

Meaningful
Motivating
Not secure
Not valuable
Novel
Old
Optimistic
Ordinary
Organized
Overbearing
Overwhelming
Patronizing
Personal
Poor quality
Powerful
Predictable
Professional
Relevant
Reliable
Responsive
Rigid
Satisfying
Secure
Simplistic

Slow
Sophisticated
Stable
Sterile
Stimulating
Straight forward
Stressful
Time-consuming
Time-saving
Too technical
Trustworthy
Unapproachable
Unattractive
Uncontrollable
Unconventional
Understandable
Undesirable
Unpredictable
Unrefined
Usable
Useful
Valuable

 Word Why?

1.

2.

3.

4.

5.

130

Group: ______________ Participant: ______________

Post-task questions

If you have any additional comments or suggestions about the software you worked with
today, please write them down below.

131

Group: ______________ Participant: ______________

Post-task questions

Post-task questions
Assume you are using the same software you just worked with, but instead of Baseball and
Hockey, it predicts whether each message is about Swimming or Tennis. The software has
learned from two messages in the Swimming folder, and one message in the Tennis folder:

Swimming messages:

#1 Subject: Swimming is the worst
Swimming is certainly the worst sport in the world.

#2 Subject: Swimming is the worst
Seriously?

Tennis message:

#1 Subject: Tennis is the worst
Wrong, tennis is totally the worst sport in the world.

The Important Words section of the software shows the following:

Assume that these are the only messages the software has learned from. The following page
lists several messages in the Unknown folder. For each message, circle the topic that you think
the computer will predict and explain why. Be as specific as possible.

certainly seriously sport swimming tennis totally world worst wrong

Swimming Tennis

132

Group: ______________ Participant: ______________

Post-task questions

Message
Computer’s

predicted topic Why? (be specific)

Subject: Rugby rules!
You’re wrong, rugby’s awesome! Swimming Tennis

Subject: Meh
Chess is more exciting. Swimming Tennis

Subject: Swimming rules
Well it does. Swimming Tennis

Subject: Yeah!
Rugby totally rocks. Swimming Tennis

Subject: Pshhhh
But tennis is more popular. Swimming Tennis

Subject: Rugby is dull
Rugby is certainly the worst
sport.

Swimming Tennis

Subject: Tennis rules
Tennis is best. Swimming Tennis

Subject: Chess can be exciting
If you wear a helmet. Swimming Tennis

Subject: Nope!
Seriously, helmets do not make
chess exciting.

Swimming Tennis

Subject: Really?
Swimming seems just as popular. Swimming Tennis

Subject: Swimming forever
It’s much more fun than tennis. Swimming Tennis

Subject: What?!
Tennis beats swimming any day. Swimming Tennis

133

Group: ______________ Participant: ______________

Post-task questions

What was your overall impression of the software you worked with?

Very
negative

Very
positive

How helpful (or unhelpful) did you find the following features of the software you worked with?

Moving messages into folders

Very
unhelpful

Very
helpful

Viewing number of correct predictions in each folder

Very
unhelpful

Very
helpful

Adding new important words

Very
unhelpful

Very
helpful

Removing important worlds

Very
unhelpful

Very
helpful

Adjusting word importance

Very
unhelpful

Very
helpful

Undo

Very
unhelpful

Very
helpful

134

Group: ______________ Participant: ______________

Post-task questions

Searching for words

Very
unhelpful

Very
helpful

Viewing which messages contain the selected word

Very
unhelpful

Very
helpful

Important words explanation

Very
unhelpful

Very
helpful

Folder size explanation

Very
unhelpful

Very
helpful

Confidence explanation

Very
unhelpful

Very
helpful

Arrows showing changes

Very
unhelpful

Very
helpful

135

Group: ______________ Participant: ______________

Post-task questions

The following six questions refer to your task of trying to improve the software’s topic
predictions:

1. How mentally demanding was the task?

Very Low Very High

2. How physically demanding was the task?

Very Low Very High

3. How hurried or rushed was the pace of the task?

Very Low Very High

4. How successful were you in accomplishing what you were asked to do?

Failure Perfect

5. How hard did you have to work to accomplish your level of performance?

Very Low Very High

6. How insecure, discouraged, irritated, stressed, and annoyed were you?

Very Low Very High

136

Group: ______________ Participant: ______________

Post-task questions

a) Underline all of the words that you feel apply to this system.
b) Pick five underlined words that best describe your feelings toward this system and explain

why.

Accessible
Advanced
Annoying
Appealing
Approachable
Attractive
Boring
Business-like
Busy
Calm
Clean
Clear
Collaborative
Comfortable
Compatible
Compelling
Complex
Comprehensive
Confident
Confusing
Connected
Consistent
Controllable
Convenient

Creative
Customizable
Cutting edge
Dated
Desirable
Difficult
Disconnected
Disruptive
Distracting
Dull
Easy to use
Effective
Efficient
Effortless
Empowering
Energetic
Engaging
Entertaining
Enthusiastic
Essential
Exceptional
Exciting
Expected
Familiar

Fast
Flexible
Fragile
Fresh
Friendly
Frustrating
Fun
Gets in the way
Hard to use
Helpful
High quality
Impersonal
Impressive
Incomprehensible
Inconsistent
Ineffective
Innovative
Inspiring
Integrated
Intimidating
Intuitive
Inviting
Irrelevant
Low maintenance

Meaningful
Motivating
Not secure
Not valuable
Novel
Old
Optimistic
Ordinary
Organized
Overbearing
Overwhelming
Patronizing
Personal
Poor quality
Powerful
Predictable
Professional
Relevant
Reliable
Responsive
Rigid
Satisfying
Secure
Simplistic

Slow
Sophisticated
Stable
Sterile
Stimulating
Straight forward
Stressful
Time-consuming
Time-saving
Too technical
Trustworthy
Unapproachable
Unattractive
Uncontrollable
Unconventional
Understandable
Undesirable
Unpredictable
Unrefined
Usable
Useful
Valuable

 Word Why?

1.

2.

3.

4.

5.

137

Group: ______________ Participant: ______________

Post-task questions

If you have any additional comments or suggestions about the software you worked with today,
please write them down below.

138

Group: ______________ Participant: ______________

Message
Computer’s

predicted topic Why? (be specific)

Subject: Rugby rules
Truly, rugby is the best sport!

Soccer Basketball Truly

Subject: Basketball does rule
Right on! Soccer Basketball Basketball

Subject: Rugby rules
I think rugby is best. Soccer Basketball Think

Subject: What?!
Basketball beats soccer any day. Soccer Basketball Class imbalance

Subject: Soccer does rule
Right on! Soccer Basketball Soccer

Subject: Soccer forever
It’s just more fun than basketball. Soccer Basketball Class imbalance

Subject: Yeah!
Agreed, rugby rocks. Soccer Basketball Agreed

Subject: Nope!
No, rugby does not rock. Soccer Basketball No

Subject: Chess is better
You’re all wrong. Soccer Basketball Class imbalance

Subject: Eh?
Chess is more exciting. Soccer Basketball Class imbalance

Subject: Pshhhh
But soccer is more popular. Soccer Basketball Soccer

Subject: Not in the states
Basketball is more popular here. Soccer Basketball Basketball

139

Group: ______________ Participant: ______________

Message
Computer’s

predicted topic Why? (be specific)

Subject: Rugby rules!
You’re wrong, rugby’s awesome! Swimming Tennis Wrong

Subject: Meh
Chess is more exciting. Swimming Tennis Class imbalance

Subject: Swimming rules
Well it does. Swimming Tennis Swimming

Subject: Yeah!
Rugby totally rocks. Swimming Tennis Totally

Subject: Pshhhh
But tennis is more popular. Swimming Tennis Tennis

Subject: Rugby is dull
Rugby is certainly the worst
sport.

Swimming Tennis
Certainly

Subject: Tennis rules
Tennis is best. Swimming Tennis Tennis

Subject: Chess can be exciting
If you wear a helmet. Swimming Tennis Class imbalance

Subject: Nope!
Seriously, helmets do not make
chess exciting.

Swimming Tennis
Seriously

Subject: Really?
Swimming seems just as
popular.

Swimming Tennis
Swimming

Subject: Swimming forever
It’s much more fun than tennis. Swimming Tennis Class imbalance

Subject: What?!
Tennis beats swimming any day.

Swimming Tennis Class imbalance

140

	Introduction
	Motivation
	Thesis statement
	Terminology
	Potential use cases
	Proposed contributions

	Background and literature review
	Mental models
	Explaining machine learning
	Personalizing machine learning systems
	Machine learning and end user programming

	Exploring the effects of mental model fidelity
	Introduction
	Empirical study
	AuPair Radio
	Participants
	Experiment design and procedure
	Data analysis

	Results
	Feasibility (RQ3.1)
	Personalization (RQ3.2)
	Confidence (RQ3.3)
	User experience (RQ3.4)

	Conclusion

	How explanations can impact mental model fidelity
	Introduction
	Explanation soundness and completeness
	Methodology
	Prototype recommender system
	Treatments and explanations
	Participants and study task
	Data analysis

	Results
	Soundness, completeness, and intelligibility types (RQ4.1 and RQ4.2)
	Barriers to developing high-fidelity mental models (RQ4.3)
	Is it worth it? (RQ4.4)
	In explanations we trust? (RQ4.5)

	Discussion
	Conclusion

	Explanatory Debugging and EluciDebug
	The principles of Explanatory Debugging
	EluciDebug: A prototype instantiating Explanatory Debugging
	The multinomial naive Bayes classifier: A brief review
	The Explanatory Debugging principles in EluciDebug

	Conclusion

	Evaluation
	Methodology
	Experiment design
	Participants and procedure
	Data analysis

	Results
	Explaining corrections to EluciDebug (RQ6.1 and RQ6.2)
	EluciDebug's explanations to end users (RQ6.3)

	Discussion
	Efficient and accurate personalization
	Mental models

	Conclusion

	Conclusion
	Bibliography
	Appendices
	EluciDebug study materials

