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Chapter 1: Introduction 

1.1 Motivation 

Machine learning systems have become a part of everyday life for hundreds of millions 

of people. Netflix, for example, uses machine learning techniques to recommend movies 

to its 50 million1 subscribers. Pandora uses machine learning to create custom playlists 

for its 76 million2 listeners. Google employs machine learning to organize and filter 

junk mail from the inboxes of its 425 million3 Gmail users, and Facebook uses machine 

learning to personalize content for its 1.3 billion4 users. 

Advances in machine learning have made these new types of applications possible, 

but the widespread use of programs that respond differently to each user also brings a 

novel challenge: how can end users effectively control the predictions or recommenda­

tions that these learning systems make on their behalf? 

For example, if end user Alice notices that many of the email messages she receives 

each day are junk mail, she typically has but one option: mark each one as junk mail 
in her email software. The software likely gives her no feedback about what happened 

after she marks each message as junk, but behind the scenes it has adjusted its reasoning 

for detecting messages that Alice will think are junk mail. Ideally this reasoning will 

perfectly match Alice’s concept of junk mail, but in reality it almost certainly will 

not—the computer does not know why Alice decided to label some messages as junk 

mail and other messages as legitimate mail, so it must infer her reasoning based on 

her labeled messages. Indeed, this reliance on machine inference of human reasoning 

means that Alice will need to keep telling the software about each of its mistakes and 

hoping that it performs better in the future. No professional software developer would 

be satisfied with such a slow and imprecise approach to fixing software that is not 

1Shareholder report, Q2’14: http://bit.ly/1vWUIXM
 
2Financial results, Q2’14: http://bit.ly/1DtkhAF
 
3Google I/O 2012: http://bit.ly/1zi95Iu
 
4Shareholder report, Q2’14: http://bit.ly/1FrVuz9
 

http://bit.ly/1vWUIXM
http://bit.ly/1DtkhAF
http://bit.ly/1zi95Iu
http://bit.ly/1FrVuz9
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operating as desired, so why do we assume end users will be able to use it to effectively 

and efficiently control the myriad machine learning systems they interact with each day? 

Instead of this guess-and-check approach to controlling machine learning systems, 

what if end users could directly view and adjust the learning system’s reasoning, similar 

to how professional software developers would debug a program’s source code? If 

successful, users would gain new power over their machine learning systems—users 

could personalize each system to match their idiosyncratic tastes, and perhaps even 

apply them to situations the original developers had never intended. 

This dissertation presents just such an approach: Explanatory Debugging. In Explana­

tory Debugging, the learning system explains the reasons for its predictions to its end 

user, who in turn explains corrections back to the system. We hypothesize that this cycle 

of explanations will help users build useful mental models—internal representations that 

allow people to predict how a system will behave (Johnson-Laird, 1983)—that in turn 

will allow users to explain any necessary corrections back to the learning system better 

and faster than they could with a traditional black box instance-labeling system. 

1.2 Thesis statement 

Two-way explanations will allow people to better personalize machine learning 

systems by helping them build better mental models of the learning system and 

allowing them to directly correct mistakes in the learning system’s reasoning. 

Just as professional software developers need a useful mental model of the software 

they work on, end users attempting to personalize a machine learning system will need 

to develop a useful mental model of the learning system. This mental model will help 

the user understand why the system is behaving in a given manner and allow the user to 

predict how the system will respond if certain changes are made to it. 

Mental models by themselves, however, are insufficient—users also need to be able to 

act upon their knowledge. Thus, learning systems need to both explain their reasoning 

and allow the user to directly adjust this reasoning. We hypothesize that by being able 

to accurately predict how the system will respond to specific adjustments, the user will 

be able to explain corrections to the system more successfully than a user whose mental 

model is flawed. 
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Figure 1.1: The Explanatory Debugging approach for users to (1) learn about the system’s 
current reasoning and (2) interactively adjust it as needed. In the process, the user is 
building a better mental model of how the learning system operates, allowing the 
now-smarter user to more effectively personalize the system (3), with the eventual 
outcome of a “smarter” machine learning system (4). 

Further, because interactive machine learning involves a continuous cycle of input 

from the user and output from the learning system, there is a ready-made opportunity 

to teach users about the learning system’s reasoning in the context of each output. If the 

user disagrees with any of these outputs, she can correct the system and immediately 

see the results of her effort, further refining her mental model and, hopefully, improving 

the effectiveness of any future explanations she provides to the learning system. This 

cycle is illustrated in Figure 1.1. 

1.3 Terminology 

The work presented in this dissertation lies at the intersection of two fields of computer 

science: human-computer interaction (HCI) and machine learning (ML). As readers from 

one discipline may be unfamiliar with terminology from the other, the following list 

defines several common terms used throughout this dissertation. 

Machine learning system A computer program (or part of a computer program) that 

uses one or more algorithms to “learn” reasoning based on user-supplied inputs. 

Different types of machine learning systems are referred to by a variety of different 
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names; this dissertation will focus on classifiers (learning systems that attempt to 

group items into categories) and recommenders (learning systems that attempt to 

rank items by certain criteria, such as desirability). 

Interactive machine learning A machine learning system that rapidly updates its out­

puts (e.g., its predictions or recommendations) in response to new user-provided 

inputs (e.g., ratings or labels). As discussed in Amershi et al. (in press), interac­

tivity is best viewed as a continuum; highly interactive machine learning systems 

may update their predictions in real-time after each user interaction, while less 

interactive systems update their predictions less frequently. 

Personalization The act of providing feedback to an interactive machine learning 

system with the intent of changing its predictions to more closely align with 

a particular end user’s reasoning. 

Instance labeling A traditional method for personalizing interactive machine learning 

systems. An instance refers to the input that the learning system makes predictions 

about; a label is the output classification the user wants associated with the input. 

Examples include marking email messages (instances) as junk mail (label); telling 

an Internet radio station that you liked (label) the song (instance) it just played; 

and telling photo-tagging software that the face (instance) it tagged as you is 

actually someone else (label). 

Feature An aspect or measurement of an instance that a machine learning system 

uses when making predictions or recommendations. For example, text classifiers 

often use the presence or absence of specific words as features, while a music 

recommender’s features might include the number of times a group of users have 

played each song. 

Mental model A mental representation of a real-world system that governs how the 

person holding the mental model will interact with the system (Johnson-Laird, 

1983). Famous examples include peoples’ decisions of whether to first try pushing 

or pulling to open a specific door (Norman, 2002) and dialing a thermostat higher 

in the hope of heating a home faster rather than making it hotter (Kempton, 1986). 
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1.4 Potential use cases 

We believe that giving users the option to learn why a machine learning system made a 

given prediction—and correct it if necessary—would be beneficial under any circum­

stances. Whether users then choose to attend to the system’s explanations and provide 

corrective feedback to the learning system would depend on each user’s perception of 

the benefits (e.g., a more useful machine learning system) versus the costs (e.g., time 

spent attending to explanations) and risks (e.g., the possibility they will not make their 

learning system more useful, or worse, make it less useful). If, for example, explanations 

were only shown on-demand, the user experience for people satisfied with the learning 

system’s predictions would not be harmed. Unsatisfied users, however, would have the 

possibility of viewing the explanations to help them personalize the system. Further, 

there are specific cases where empowering users with two-way explanations may be 

especially helpful: 

1. When personalization must happen quickly. 

There are circumstances where users need to personalize a machine learning system 

quickly, such as someone preparing a personalized Internet radio station for a 

party she is hosting that evening. Training the system by rating each song it plays 

would be impractical during the party and time-consuming before it. However, 

researchers have found that directly specifying the features a text classifier should 

pay attention to is five times more efficient (in terms of time spent) than labeling 

instances (Raghavan et al., 2006); if this efficiency holds in other domains, it could 

allow the host to quickly personalize an Internet radio station by feeding it precise 

instructions about the types of songs to play, rather than feeding it numerous 

examples and hoping the learning system correctly identifies song aspects the user 

feels will be appropriate for her event. 

2. When sufficient training data does not exist. 

Sometimes the user of a machine learning system wants to begin using the system 

before it has seen a sufficient amount of instances to learn from, but the accuracy of 

such systems is highly erratic (Brain and Webb, 1999). For example, a parent who 

has recently joined the PTA at his child’s school may want all PTA-related emails 

automatically filed to a specific folder, but he doesn’t yet have examples of such 
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emails. However, if the parent knew the email classifier worked by examining each 

message’s words, he could prime the classifier with words like “PTA”, the name 

of his child’s teacher, and the name of the school. A similar problem often exists 

in anomaly detection systems, where examples of anomalies are too infrequent to 

provide sufficient training data (Chandola et al., 2009). 

3. When the user’s concept has evolved. 

Even machine learning system with sufficient training data can run into problems 

when the user’s concept of how items should be classified changes (Kulesza et al., 

2014). Consider a user who has spent months personalizing a news aggregator 

by continually giving it positive feedback when it recommended news articles 

about local politics. What happens when she moves to a new city? She could spend 

months providing additional examples of local political articles to counter-balance 

the existing information the classifier has learned from, but even so, the classifier 

may “learn” that she’s interested in political news in both regions. Telling the 

classifier—via instance labeling—that political stories from her prior city are no 

longer desired is also risky, as it may make the learning system stop recommending 

political stories entirely. A much simpler approach would be to view the classifier’s 

reasoning, identify any parts of this reasoning related to her prior city, and update 

them to match her new home. 

4. When a better understanding of the learning system matters. 

When machine learning systems assist with important tasks, users need to un­

derstand what the learning system can do reliably versus when its predictions 

are likely to need manual verification (Groce et al., 2014). For example, consider 

an aging-in-place system that uses machine learning techniques to determine 

if everything looks normal, or whether a caretaker should be notified to check 

in. If the system uses motion sensors to identify activity but the elderly person 

has a pet, the motion sensor data may not be as meaningful as in other homes. 

By understanding such aspects of the system, the user (here, a caretaker or 

family member) can then explain to the system that it should ignore or place 

less importance on motion sensor data. 
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1.5 Proposed contributions 

This dissertation makes the following contributions: 

•	 An understanding of the potential impact that a good mental model may have 

on an end user’s ability to personalize a machine learning system that supports 

two-way explanations. 

•	 An understanding of how attributes of explanations and their intelligibility types 

(as defined in Lim and Dey, 2009) impact the development of end users’ mental 

models. 

•	 Explanatory Debugging: A novel approach, grounded in theory and our empirical 

data, to help end users build useful mental models of a machine learning system 

and allow them to personalize its outputs via two-way explanations. 

•	 An empirical evaluation of Explanatory Debugging in the domain of text classifi­

cation. 
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Chapter 2: Background and literature review 

2.1 Mental models 

The feasibility of Explanatory Debugging rests on explanations—explanations to help 

the user understand the machine learning system, and explanations from the user to 

correct the learning system’s mistakes. Thus, if users were unable to understand the 

learning system, our entire approach would fail. Machine learning systems are complex, 

but psychologists have developed a theory describing how people reason about complex 

systems: the mental model theory of thinking and reasoning (Johnson-Laird, 1983). 
Mental models are internal representations that people generate based on their 

experiences in the real world. These models allow people to understand, explain, and 

predict phenomena, with an end result of being able to then act accordingly (Johnson-

Laird, 1983). Understanding how end users build mental models of learning systems— 

and how these models evolve over time—may allow researchers to design more effective 

explanations of a system’s reasoning than an ad hoc approach. 

The contents of mental models can be concepts, relationships between concepts or 

events (e.g., causal, spatial, or temporal relationships), and associated procedures. For 

example, an end user’s mental model of how a computer works may be as simple as a 

screen that displays everything typed on a keyboard, and the sense that it “remembers” 

these things somewhere inside the computer’s casing. Mental models can vary in their 

richness—an IT professional, for instance, likely has a much richer mental model 

representing how a computer works than the above example. According to Norman, 

these models do not have to be entirely complete (i.e., encompass all relevant details) to 

be useful, but they must be sound (i.e., accurate) enough to support effective interactions 

(Norman, 1987). 
The varying richness of mental models results in a useful distinction: functional 

(shallow) models imply that the end user knows how to use the system, but not how 

it works in detail, whereas structural (deep) models provide a detailed understanding 

of how the system works (Rogers et al., 2011). In this dissertation we are primarily 
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concerned with structural models because these enable users to predict how changes to 

the system will alter its outputs. Theoretically, a structural mental model that accurately 

reflects a system will help the user to predict how his or her actions will alter the system’s 

outputs, thus allowing the user to precisely control the system. Conversely, users with 

flawed structural models are likely to experience difficulty predicting how their actions 

influence the system’s outputs, which in turn will lead to difficulty controlling the 

system’s behavior. Many instances of inaccurate mental models (both functional and 

structural) guiding erroneous behavior have been observed in tasks as varied as opening 

doors to controlling thermostats (Jonassen and Henning, 1996; Norman, 1987; Kempton, 

1986). 
Mental models develop “naturally” due to repeated use of or exposure to a system 

over time, but models that develop through use may be highly inaccurate. For example, 

Kempton estimates that as many as 50% of Americans erroneously believe their home 

furnace operates similar to a valve or faucet—that turning the thermostat higher causes 

more hot air to come out of the furnace, thus heating up a room faster than a lower 

thermostat setting (Kempton, 1986). The source of this misunderstanding, he contends, 

is the abundance of devices that do operate using valves in our daily environments 

(e.g., water faucets, gas burners, automobile pedals), and the scarcity of familiar devices 

that behave similarly to thermostats. Providing explanations of how such unfamiliar or 

complex systems operate can avoid this problem, but introduces a new challenge: how 

can a complex system convince end users to pay attention to its explanations? 

Theory suggests that the challenge of engaging user attention can be overcome by 

communicating the benefits of learning more about the complex system. Blackwell’s 

Attention Investment model hypothesizes that people decide the level of effort to 

expend on a given task based on their perceptions of cost, risk, and eventual benefit 

(Blackwell, 2002). According to this model, users will be more likely to invest time 

toward understanding a system when they believe the benefits (e.g., an improved system) 

will outweigh the expected costs (e.g., time and effort spent) and possible risks (e.g., 

being unable to improve the system, or potentially breaking it). 

To verify that our approach does attract user attention and succeeds in helping users 

build better structural mental models, we will need a method for quantifying mental 

models. However, capturing in-the-head representations—such as mental models— 

without simultaneously influencing them is a research problem without a simple solution. 



10 

The very act of measuring users’ mental models is likely to influence those models 

(Doyle et al., 2008), thus reducing their validity. For example, asking study participants 

to draw a flowchart of a system may encourage them to think of how information “flows” 

through a system more than they otherwise would. Norman discusses how verbal or 

written elicitations may be incongruous with participants’ observed actions and will be 

necessarily incomplete (Norman, 1987). One method for remedying this incompleteness 

is to provide participants with the various components of a system and ask them to 

properly arrange or interconnect them, but this transforms the problem from having a 

bias toward recall to one with a bias toward recognition (Otter and Johnson, 2000). Carley 

and Palmquist developed a partially automated technique for defining mental models 

based on textual analysis, but this approach is time consuming and still suffers from 

problems of incompleteness (Carley and Palmquist, 1992). Thus, capturing incomplete 

or influenced mental models is always a threat to validity when studying mental models. 

In Section 3.2.4 we explain how we attempt to work around this issue. 

2.2 Explaining machine learning 

One method for helping users learn about machine learning systems is to increase the 

system’s transparency, as in the “white box” model proposed by Herlocker et al. (2000). 
To help people build mental models of a system, it has been argued that the system 

should be transparent and intuitive, and users should be provided with appropriate 

instructions of how it works (Rogers et al., 2011). Our own preliminary research has 

found that users will refine their mental models of a learning system when the system 

makes its reasoning transparent (Kulesza et al., 2010), but some explanations may lead 

to only shallow mental models (Stumpf et al., 2007). Alternatively, a system’s reasoning 

can be made transparent via human-to-human instruction, and this can help with the 

construction of mental models of how it operates (McNee et al., 2003). A different 

approach, scaffolded instruction, has been shown to contribute positively to learning 

to use a new static system (Rosson et al., 1990); however, scaffolding instruction for a 

dynamic system poses challenges because the changing nature of the system means the 

scaffolding cannot be pre-planned by a human—it must be generated in real-time by the 

system itself. 
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Scaffolding is but one example of applying the Minimalist model of instruction, 

which is designed to help active users (users who are interested in accomplishing a goal 

with a system and only want to learn enough about it to accomplish this goal (Carroll 

and Rosson, 1987)) learn about a system while performing real work (van der Meij and 

Carroll, 1998). Because we doubt many users have the primary goal of learning how 

their classifiers and recommenders operate—as opposed to how to make them behave in 

a more useful manner—our audience also fits into this active user category. Thus, the 

principles of Minimalist instruction (e.g., interleave instruction with real work, leverage 

existing knowledge, tightly couple explanations to the system’s current state) may also 

be appropriate for teaching users about their machine learning systems. 

However a learning system explains its reasoning to end users, these explanations 

will somehow impact users’ mental model of the system. Very little work, however, 

has explored how explanations impact the development of user’s mental models of 

machine learning systems. One such study found that prolonged use of a learning 

system induced plausible (though imperfect) models of its reasoning, and that these 

models were surprisingly hard to shift, even when people were aware of contradictory 

evidence (Tullio et al., 2007). In another study, Lim et al. found that explanations of why 

a learning system made a given prediction (or, why it did not make a different prediction) 

helped users better understand the learning system (Lim et al., 2009), while explanations 

of what might happen if the user performed a given action did not help improve 

participants’ understanding. Many researchers have studied the impacts of learning 

system transparency on factors such as satisfaction (Cramer et al., 2008; Bostandjiev 

et al., 2012; Tintarev and Masthoff, 2012; Sinha and Swearingen, 2002; Herlocker et al., 

2000; Billsus et al., 2005), system performance (Thomaz and Breazeal, 2006), and trust 

(Dzindolet et al., 2003; Glass et al., 2008), but these works did not explore a link between 

transparency and the quality of users mental models. 

Researchers have explored numerous methods to explain common machine learning 

algorithms, but the impact of these methods on end users’ mental models has rarely been 

evaluated. Much of the work in explaining probabilistic machine learning algorithms has 

focused on the naive Bayes classifier, often employing visualizations such as pie charts 

(where each pie slice describes the weight of evidence for a particular feature) (Becker 

et al., 2001) or bar charts (where each bar’s position describes a feature’s information 

gain) (Kulesza et al., 2011). Nomograms, a visualization technique that uses linear scales 
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to represent variables in an equation, have been proposed for explaining both naive 

Bayes (Možina et al., 2004) and SVM (Jakulin et al., 2005) classifiers, but again, we 

do not know what impact these explanations may have on end users’ mental models. 

Poulin et al. employed a stacked bar chart visualization to support the more general 

class of linear additive classifiers, and used a prototype to successfully help biologists 

identify errant training samples in their data (Poulin et al., 2006). Lacave and Díez 

present several approaches, both textual and graphical, for describing general Bayesian 

networks, but these techniques are too computationally expensive to result in a real-time 

cycle of explanations with the end user (Lacave and Díez, 2002). 
While researchers currently have a limited understanding of the impact that expla­

nations of learning system have on users’ mental models, researchers have developed 

taxonomies we can use in our exploration of explanations. For example, Lacave and 

Díez enumerated the types of information that learning systems can provide to end 

users: explanations of evidence (e.g., “The size, shape, and color of this fruit suggest it 

is an apple”), explanations of the machine learning model (i.e., the learning algorithm 

itself, devoid of training data), and explanations of the system’s reasoning (e.g., precisely 

how an object’s size, shape, and color contributed to its classification as apple). Lim 

and Dey provide a more nuanced view of a learning system’s potential explanations 

via intelligibility types (Lim and Dey, 2009). For example, three intelligibility types 

cover Lacave and Díez’s “explanation of the learning model” category: explanation of the 

model itself, explanation of the inputs it may use, and explanation of the outputs it could 

produce (Lim and Dey, 2009). We will return to these intelligibility types in our study 

of explanations (Chapter 4) and the design of our explanation-centric personalization 

approach (Chapter 5). 
A machine learning system’s mistakes—by virtue of being unexpected—may nat­

urally attract user attention and inspire curiosity, causing users to attend to its expla­

nations. For example, Hastie’s investigations of causal reasoning found that “when 

unexpected behaviors are attributed to a person, the perceiver is relatively likely 

to engage in causal reasoning to understand why these behaviors occurred” (Hastie, 

1984). This finding also appears to hold when the unexpected behavior is attributed 

to a machine: Wilson et al. designed an approach—surprise-explain-reward—that 

successfully leveraged participants’ curiosity about unexplained software behaviors 

to engage their attention (Wilson et al., 2003). In this study, participants had the choice 
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to view explanations describing an unfamiliar software testing tool (assertions) and the 

potential benefits of employing it; nearly all of their participants went on to make use 

of this tool in response to surprising software behavior (Wilson et al., 2003). Because 

users are likely to wonder why a machine learning system made a given mistake, such 

mistakes provide an opportunity to engage the user’s attention by explaining why the 

learning system erred. 

2.3 Personalizing machine learning systems 

The traditional method for personalizing a machine learning system is to label instances, 

thus providing it with new training data to “learn” from. In this approach, users label 

a large number of instances all at once, then “retrain” the learning system using this 

new data (Amershi et al., in press). By processing data in large batches, however, users 

are unable to receive feedback indicating how their labels have influenced the learning 

system’s reasoning. For example, if half of their labels improved the system’s performance 

while the other half harmed it, the user may look at the resulting system and conclude 

that labeling did nothing. 

A more interactive personalization approach also exists. Fails and Olsen Jr. first 

popularized the phrase interactive machine learning in a paper describing how an iterative 

train-feedback-correct cycle allowed users to quickly correct the mistakes made by an 

image segmentation system (Fails and Olsen Jr., 2003). Since then, researchers have 

explored using this cycle of quick interactions to train instance-based classifiers (Fogarty 

et al., 2008; Bryan et al., 2014), enable better model selection by end users (Amershi 

et al., 2010; Talbot et al., 2009; Fiebrink et al., 2011), elicit labels for the most important 

instances (e.g., active learning) (Settles, 2010; Cakmak et al., 2010), and to improve 

reinforcement learning for automated agents (Knox and Stone, 2012). A similar approach 

has been used by Programming by Demonstration (PBD) systems to learn programs 

interactively from sequences of user actions (see (Lieberman, 2001) for a collection 

of such systems). For example, if a user sees the Gamut PBD system make a mistake, 

they can “nudge” the system in the right direction, which has the impact of adding or 

removing a training example and showing the user the revised system’s output (McDaniel 

and Myers, 1997). These use cases, however, largely treat the machine learning system 

as a “black box”—users can try to personalize the system by providing it with different 
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inputs (e.g., labeled instances), but are unable to see why different inputs may cause the 

system’s outputs to change. 

Some researchers have sought to expand the types of inputs interactive machine 

learning systems can process, and in so doing have also increased system transparency. 

For example, user feedback may take the form of model constraints (Kapoor et al., 2010), 
critiques to the model’s search space (Vig et al., 2011), or adjustments to the model’s 

weights of evidence (Kulesza et al., 2011). In addition to supporting novel user feedback 

mechanisms, these approaches increase transparency by enabling users to view such 

facets as the existing model constraints (Kapoor et al., 2010), the model’s feature set 

(Vig et al., 2011; Verbert et al., 2013), or the weights of evidence responsible for each 

prediction (Kulesza et al., 2011; Bostandjiev et al., 2013). In a similar vein, Amershi 

et al. bridged active learning (Settles, 2010) with interactive concept learning, creating 

a mixed-initiative approach that guides users toward identifying helpful training data 

for learning concepts not directly represented by a classifier’s features (Amershi et al., 

2009). 
Even when novel types of feedback mechanisms do not increase transparency, there 

are additional reasons to support multiple types of feedback. For example, some problem 

domains lack sufficient training data for traditional labeling approaches to be effective; 

in these circumstances, allowing end users to directly specify the features a learning 

system should use for classification can be more efficient than instance labeling (Das 

et al., 2013; Raghavan et al., 2006). Instance labeling approaches are also at the mercy 

of external forces—they require appropriate training examples to be available when 

the user needs them and suffer from class imbalance problems in “bursty” (e.g., email 

classification). Further, in domains such as recommendation, there is no single correct 

answer for the learning system to predict. In such cases, it can be beneficial to allow 

users to explore the search space via critique-based feedback (Glowacka et al., 2013; Vig 

et al., 2011; Parra et al., 2014) 
A user-centric perspective on machine learning would not require that a sufficient 

number of appropriate instances exist in order for the user to make their learning 

systems behave as desired—the instance-based approach takes power away from end 

users and makes them reliant on the population of extant instances. Instead, Stumpf 

et al. have argued that if an end user wants to tell the computer how to behave, he or she 

should have the choice of explaining the desired behavior rather than being forced to find 
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an example of it (Stumpf et al., 2009). EnsembleMatrix (Talbot et al., 2009) is one system 

that supports such direct manipulations, providing users with both a visualization of a 

classifier’s accuracy and the means to adjust its reasoning; however, EnsembleMatrix is 

targeted at machine-learning experts developing complex ensemble classifiers, rather 

than end users working with the deployed classifiers. 

Regardless of the feedback mechanism, successfully personalizing a machine learning 

system can be challenging for end users. Some explorations of novel feedback mecha­

nisms have found that users’ attempts to adjust their learning systems’ reasoning caused 

their performance to decrease or fluctuate wildly (Stumpf et al., 2008; Kulesza et al., 

2010). Part of the problem is the complexity of learning systems; our own prior work has 

explored the barriers end users encounter when trying to personalize a learning system, 

finding that the two most common problems involve identifying which of a learning 

system’s many features should be altered in order to change a specific prediction, and 

coordinating how such a change will impact other predictions (Kulesza et al., 2011). 
Even when user feedback is restricted to the traditional instance-labeling approach, 

users often struggle to label similar items in a similar manner (Kulesza et al., 2014), thus 

providing conflicting evidence for the learning system to “learn” from. Research into 

how end users attempt to understand and control complex computer systems, however, 

already exists in the field of end-user programming, and we next look to it for inspiration 

in helping end users better personalize machine learning systems. 

2.4 Machine learning and end user programming 

Because personalizing a machine learning system involves adjusting the system’s rea­

soning, it is very similar to traditional software debugging: if the learned behavior is 

incorrect, the user needs to identify why and provide a fix. Thus, we view personalizing 

a machine learning system as an end-user debugging problem, and this view suggests that 

approaches to support personalization should build upon existing end-user program­

ming research. 

Machine learning systems are formally tested prior to deployment by machine 

learning specialists using statistical methods (Hastie et al., 2009), but such methods do 

not guarantee the system will continue to work satisfactorily as it continues to “learn” 

from its user’s behavior. Indeed, as argued in Groce et al. (2014), after a learning system 
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has been deployed, only the end user is in a position to test it—once its reasoning has 

been updated (e.g., by the user labeling additional training instances), the original 

developers no longer have a testable variant that matches the end user’s. Systematic 

testing for end users was pioneered by the What You See Is What You Test approach 

(WYSIWYT) for spreadsheet users (Rothermel et al., 2001). To alleviate the need for 

users to conjure values for testing spreadsheet data, “Help Me Test” capabilities were 

added; these either dynamically generate suitable test values (Fisher II et al., 2006) 
or back-propagate constraints on cell values (Abraham and Erwig, 2006). Statistical 

outlier finding has been used in end-user programming settings for assessment, such 

as detecting errors in text editing macros (Miller and Myers, 2001), inferring formats 

from a set of unlabeled examples (Scaffidi, 2007), and to monitor on-line data feeds in 

web-based applications for erroneous inputs (Raz et al., 2002). These approaches use 

statistical analysis and interactive techniques to direct end-user programmers’ attention 

to potentially problematic values, helping them find places in their programs to fix. Our 

preliminary work has explored the utility of such approaches when testing machine 

learning systems, finding they helped participants discover more of a system’s failures 

and test more of the system’s logic than regular ad hoc assessment alone (Groce et al., 

2014). 
A number of debugging approaches leverage systematic testing to help end users 

find and understand the causes of faulty behavior. For example, in the spreadsheet 

domain, WYSIWYT allows users to test spreadsheet formulas by placing checkmarks 

beside correct outputs and X-marks beside incorrect outputs (Rothermel et al., 2001). A 

fault localization device then traces the data “flowing” into these cells, helping users 

locate cells whose formulas are likely to be faulty. Woodstein serves a similar purpose in 

the e-commerce domain: this approach helps users to debug problems by explaining 

events and transactions between e-commerce services (Wagner and Lieberman, 2004). 
These approaches exemplify successful attempts to help end users first identify, and then 

understand the cause of, program failures. To facilitate such understanding, they work 

to draw a user’s attention to the faulty regions of a program’s logic. The Whyline (Ko and 

Myers, 2008) performs a similar function for more traditional programming languages, 

and also dynamically generates explanations of a program’s behavior. Because of the 

similarity between what the Whyline does for traditional programming languages and 
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what we hope Explanatory Debugging will do for machine learning systems, we next 

discuss the Whyline in some detail. 

The Whyline pioneered a method to debug certain types of programs in an explanation-

centric way (Ko and Myers, 2008). The Whyline was explored in three contexts, encom­

passing both end user programmers and professional developers: (1) event-based virtual 

worlds written in the Alice programming system (Ko, 2006), (2) Java programs (Ko and 

Myers, 2008), and (3) the Crystal system for debugging unexpected behaviors in complex 

interfaces (Myers et al., 2006). In each case, these tools help programmers understand 

the causes of program output by allowing them to select an element of the program 

and receive a list of why and why not questions and answers in response. These “Why?” 

questions and answers are extracted automatically from a program execution history, 

and “Why not” answers derive from a reachability analysis to identify decision points in 

the program that could have led to the desired output. In the Crystal prototype, rather 

than presenting answers as sequences of statement executions, answers are presented in 

terms of the user-modifiable input that influenced code execution. In all of these Whyline 

tools, the key design idea is that users select some output they want to understand, and 

the system explains the underlying program logic that caused it. 

Part of our preliminary research involved translating the Whyline’s design concept to 

the domain of machine learning systems (Kulesza et al., 2011). This built upon the work 

of Stumpf et al., who explored end-user debugging techniques for text classification 

systems. Their research began by investigating different types of explanations, as well as 

user reactions to these explanations (Stumpf et al., 2007); user studies later confirmed 

that even simple corrections from end users have the potential to increase the accuracy 

of a learning system’s predictions (Stumpf et al., 2008, 2009). For some participants, 

however, the quality of the system’s predictions actually decreased as a result of their 

corrections—there were barriers preventing these users from successfully personalizing 

the learning system’s reasoning. We later conducted a study building upon this work, 

identifying and categorizing the barriers end users encountered and the information 

they requested to overcome them (Kulesza et al., 2011). This exploration taught us that 

a direct translation of the Whyline to the machine learning domain was impractical, but 

it did suggest that a different explanation-centric approach may work—if, that is, we 

can help users overcome the high number of barriers they encounter while attempting 

to personalize a machine learning system. The rest of this dissertation explores the 
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development of just such an approach by studying how explanations and feature-based 

feedback can help users overcome barriers and successfully personalize machine learning 

systems. 
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Chapter 3: Exploring the effects of mental model fidelity 

3.1 Introduction 

At one time or another, most everyone has tried to open a door by pushing it outward 

when they actually needed to pull it inward, or vice versa. This is the canonical example 

of a mental model failure in Norman’s The Design of Everyday Things, in which Norman 

argues that the design of objects provide hints to users about how to interact with them. 

For example, seeing a vertical handle on a door suggests it should be pulled, while a 

plate or horizontal bar suggests pushing (Norman, 2002). These designs gives users clues 

as they (often unconsciously) build a mental model of what will happen if they pull 

or push on the door, and if the design is successful, then users’ mental models will be 

correct—they will push doors that open outward and pull doors that open inward. The 

key point is that even in everyday situations, mental models matter—they inform all of 

our actions by allowing us to predict the results of those actions. 

Our explanation-centric approach for personalizing machine learning is predicated 

upon this same idea: that a user with an accurate mental model of the learning system 

will be able to better predict how the system will respond to his or her actions than 

a user with a poor mental model of the system. As discussed in Section 2.2, however, 

researchers have not yet studied how a user’s mental model impacts their ability to 

personalize a machine learning system—perhaps the amount of time or effort it takes to 

build a useful mental model of a learning system is impractically high, or the benefit 

is relatively modest. Thus, we begin by studying the feasibility of helping end users 

build accurate structural mental models (i.e., how it works) of a learning system and the 

impact that these models have on end users, as compared with a basic functional mental 

model (i.e., how to use it). 
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When discussing how accurately a structural mental model reflects a machine 

learning system, we use the term fidelity. A high-fidelity mental model is a more accurate 

reflection of the real-world system than a low-fidelity mental model.1 

The complexity of machine learning systems presents an important question: can 

users without a computer science background quickly grasp the complexities of a 

learning system? In the (limited) prior work in this area, users created plausible models 

of how the learning system may work, but these mental models did not necessarily 

reflect the actual learning system used in the study (Tullio et al., 2007). If it is feasible to 

help end users build high-fidelity mental models of a learning system, we are interested 

not only in whether these mental models help users personalize a learning system better 

than participants who lack such models, but also the potential costs that acquiring these 

mental models may entail. In particular, we are concerned that the complexity of the 

system may prove discouraging or anxiety-inducing to some end users, thus resulting in 

an poor overall user experience. Taken together, these concerns yield the following four 

research questions: 

RQ3.1:	 Feasibility: Can end users quickly build and recall a high-fidelity structural 

mental model of a learning system’s operation? 

RQ3.2:	 Personalization: Do end users’ mental models have a positive effect on their 

ability to personalize a machine learning system? 

RQ3.3:	 Confidence: Does building a high-fidelity mental model of a machine learning 

system improve end users’ computer self-efficacy and reduce computer anxiety? 

RQ3.4:	 User Experience: Do end users with high-fidelity mental models of a machine 

learning system experience interactions with it differently than users with 

low-fidelity models? 

3.2 Empirical study 

To explore the effects of mental model fidelity on end-user personalization of machine 

learning systems, we needed a domain that participants would be motivated to both 
1We say fidelity instead of accuracy for consistency with our analysis of explanations in Chapter 4, in 

which we show that fidelity is impacted by (1) the presence of information (referred to as completeness in 
Chapter 4) and (2) whether said information is accurate (referred to as soundness in Chapter 4). 
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use and personalize. Music recommendations, in the form of an adaptable Internet 

radio station, meet these requirements, so we created an Internet radio platform (named 

AuPair) that users could personalize to play music fitting their particular tastes. 

Mental models may continue to evolve while users interact with a system, and this 

evolution would be difficult to capture in a brief laboratory experiment. Thus, to reflect 

the fact that many machine learning systems are used over periods of days, weeks, 

or months, rather than minutes or hours, we designed our experiment to combine a 

controlled tutorial session in a laboratory with an uncontrolled period of field use. The 

study lasted five days, consisting of a tutorial session and pre-study questionnaires on 

Day 1, then three days during which participants could use the AuPair prototype as they 

wished, and an exit session on Day 5. 

3.2.1 AuPair Radio 

AuPair allows the user to create custom stations and personalize them to play a desired 

type of music. Users start a new station by seeding it with a single artist name (e.g., 

“Play music by artists similar to Patti Smith”, Figure 3.1). Users can then personalize the 

system by giving feedback about individual songs, or by adding general guidelines to 

the station. Feedback about an individual song can be provided using the 5-point rating 

scale common to many media recommenders, as well as by talking about the song’s 

attributes (e.g., “This song is too mellow, play something more energetic”, Figure 3.2). To 

add general guidelines about the station, the user can tell it to prefer or avoid descriptive 

words or phrases (e.g., “Strongly prefer garage rock artists”, Figure 3.3, top). Users can 

also limit the station’s search space (e.g., “Never play songs from the 1980’s”, Figure 3.3, 
bottom). 

AuPair was implemented as an interactive web application, using jQuery and AJAX 

techniques for real-time feedback in response to user interactions and control over audio 

playback. We supported recent releases of all major web browsers. A remote web server 

provided recommendations based on the user’s feedback and unobtrusively logged each 

user interaction via an AJAX call. 

AuPair’s recommendations were based on data provided by The Echo Nest2, allowing 

access to a database of cultural characteristics (e.g., genre, mood, etc.) and acoustic 

2http://the.echonest.com 

http://the.echonest.com
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Figure 3.1: Users start a station by specifying an artist they’d like to hear music similar 
to. 

Figure 3.2: Users can personalize their station by saying why the current song was a good 
or bad choice. 
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Figure 3.3: Users can place guidelines on the type of music the station should or should 
not play, via a wide range of criteria. 
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characteristics (e.g., tempo, loudness, energy, etc.) of the music files in our library. We 

built AuPair’s music library by combining the research team’s personal music collections, 

resulting in a database of more than 36,000 songs from over 5,300 different artists. 

The core of our recommendation engine was built upon The Echo Nest API’s dynamic 

playlist feature. Dynamic playlists are put together using machine learning approaches 

and are “steerable” by end users. This is achieved via an adaptive search algorithm that 

builds a path (i.e., a playlist) through a collection of similar artists. Artist similarity 

in AuPair was based on cultural characteristics, such as the terms used to describe the 

artist’s music. The algorithm uses a clustering approach based on a distance metric 

to group similar artists, and then retrieves appropriate songs. The user can adjust the 

distance metric (and hence the clustering algorithm) by changing weights on specific 

terms, causing the search to prefer artists matching these terms. The opposite is also 

possible—the algorithm can be told to completely avoid undesirable terms. Users can 

impose a set of limits to exclude particular songs or artists from the search space. User 

can also query each song or artist to reveal the computer’s understanding of its acoustic 

and cultural characteristics, such as its tempo, genre, “energy”, or “danceability”. 

3.2.2 Participants 

Our study was completed by 62 participants, (29 females and 33 males), ranging in age 

from 18 to 35. Only one of the 62 participants reported prior familiarity with computer 

science. These participants were recruited from Oregon State University and the local 

community via email to university students and staff, and fliers posted in public spaces 

around the city (coffee shops, bulletin boards, etc.). Participants were paid $40 for their 

time upon completion of the study. Potential participants applied via a website that 

automatically checked for an HTML5-compliant web browser (applicants using older 

browsers were shown instructions for upgrading to a more recent browser) to reduce the 

chance of recruiting participants who lacked reliable Internet access or whose preferred 

web browser would not be compatible with our AuPair Radio prototype. 
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3.2.3 Experiment design and procedure 

We randomly assigned participants to one of two groups—a With-scaffolding treatment 

group, in which participants received special training about AuPair’s recommendation 

engine, and a Without-scaffolding control group. Upon arrival, participants answered 

a widely used, validated self-efficacy questionnaire (Compeau and Higgins, 1995) to 

measure their confidence in problem solving with a hypothetical (and unfamiliar) 

software application. 

Both groups then received training about AuPair. The same researcher provided 

the tutorial to every participant, reading from a script for consistency. To account 

for differences in participant learning styles, the researcher presented the tutorial 

interactively, via a digital slideshow interleaved with demonstrations and hands-on 

participation. For both groups this tutorial included about 15 minutes of instruction 

about the functionality of AuPair, such as how to create a station, how to stop and restart 

playback, and other basic usage information. This tutorial was designed to help all 

participants build a functional mental model of the system. 

Following the basic usage tutorial, the With-scaffolding group received an addi­

tional 15-minute tutorial about AuPair to help induce a structural mental model of 

the recommendation engine. This “behind the scenes” training included illustrated 

examples of how AuPair determines artist similarity, the types of acoustic features the 

recommender “knows” about, and how it extracts this information from audio files. 

Researchers systematically selected content for the scaffolding training by examining 

each possible user interaction with AuPair; for each interaction, the tutorial included an 

explanation of how the recommender would respond. For instance, every participant 

was told that the computer will attempt to “play music by similar artists”, but the 

With-scaffolding participants were then taught how TF-IDF (term frequency-inverse 

document frequency, a common measure of word importance in information retrieval 

(Ramos, 2003)) measurements were used by the system to identify “similar” artists. In 

another instance, every participant was shown a control for using descriptive words 

or phrases to steer the system, but only With-scaffolding participants were told where 

these descriptions came from (traditional sources, like music charts, as well as Internet 

sources, such as Facebook pages). 
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After this introduction, each participant answered a set of six multiple-choice 

comprehension questions in order to establish the fidelity of their mental models. Each 

question presented a scenario (e.g., “Suppose you want your station to play more music 

by artists similar to The Beatles”), and then asked which action, from a choice of four, 

would best align the station’s recommendations with the stated goal. Because mental 

models are inherently “messy, sloppy. . . and indistinct” (Norman, 1987), we needed to 

determine if participants were guessing, or if their mental models were sound enough 

to eliminate some of the incorrect responses. Thus, as a measure of confidence, each 

question also asked how many of the choices could be eliminated before deciding on a 

final answer. A seventh question asked participants to rate their overall confidence in 

understanding the recommender on a 7-point scale. 

The entire introductory session (including questionnaires) lasted 30 minutes for 

Without-scaffolding participants and 45 minutes for With-scaffolding participants. Both 

groups received the same amount of hands-on interaction with the recommender. 

Over the next five days, participants were free to access the web-based system as 

they pleased. We asked them to use AuPair for at least two hours during this period, and 

to create at least three different stations. Whenever a participant listened to music via 

AuPair, it logged usage statistics such as the amount of time they spent personalizing 

the system, which personalization controls they used, and how frequently these controls 

were employed. 

After five days, participants returned to answer a second set of questions. These 

included the same self-efficacy and comprehension questionnaires as on Day 1 (partici­

pants were not told whether their prior comprehension responses were correct), plus 

the NASA-TLX survey to measure perceived task load (Hart and Staveland, 1988). We 

also asked three Likert-scale questions about user’s satisfaction with AuPair’s recom­

mendations (using a 21-point scale for consistency with the NASA-TLX survey) and 

the standard Microsoft Desirability Toolkit (Benedek and Miner, 2002) to measure user 

attitudes toward AuPair. 

3.2.4 Data analysis 

We used participants’ answers to the comprehension questions described earlier to 

measure mental model fidelity. Each question measured the depth of understanding 
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for a specific type of end user debugging interaction, and their combination serves as a 

reasonable proxy for participants’ understanding of the entire system. We calculated the 
66 

fidelity of participant’s mental models using the formula (correctnessi · confidencei ), 
i=1 

where correctness is either 1 for a correct response or -1 for an incorrect response, 

and confidence is a value between 1 and 4 (representing the number of answers the 

participant was able to eliminate). These values were summed for each question i to 

create a participant’s comprehension score, ranging from -24 (indicating a participant 

who was completely confident about each response, but always wrong) to +24 (indicating 

someone who was completely confident about each response and always correct). 

As discussed in Section 2.1, measuring in-the-head constructs such as mental models 

is challenging—participants may give incomplete answers that do not reflect the entirety 

of their mental model, and the very act of reflecting on their mental models may cause 

them to change. Thus, a participant with a perfect mental model score (as described 

above) does not necessarily hold a perfect mental model—even if several participants all 

held similar models, we would expect to see some variance in their mental model scores 

because of the challenges inherent to capturing mental models. However, statistical tests 

account for variance, so we can perform between-subject tests to determine if one group 

of subjects tended to hold better mental models than the other, and this is the approach 

we take throughout this dissertation. While such tests provide evidence that the mental 

model scores between two groups differed (e.g., a high-fidelity group and a low-fidelity 

group), we must still refrain from claiming that these scores reveal the exact fidelity of 

participants’ mental models. 

Mental models evolve as people integrate new observations into their reasoning 

(Norman, 1987), and previous studies have suggested that participants may adjust 

their mental models while working with a learning system that is transparent about 

its decision-making process (Kulesza et al., 2010). Furthermore, constructivist learning 

theory (Kolb, 1984) places emphasis on knowledge transformation rather than the overall 

state of knowledge. Hence, we also calculated mental model transformation by taking 

the difference of participants’ two comprehension scores (day_5_score − day_1_score). 
This measures how much each participant’s knowledge shifted during the study, with 

a positive value indicating increasing fidelity, and a negative value suggesting the 

replacement of high-fidelity models with low-fidelity models. 
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Metric Definition 

Responses to comprehension questions (sum of 
Mental model fidelity 

correct responses, weighted by confidence). 

Response to Likert question “Are you confident all 
Perceived mental model of your statements are accurate?” after participants 

fidelity were asked to enumerate how they think the 
recommender made decisions. 

Difference between post-task mental model fidelity 
Mental model transformation 

and pre-task mental model fidelity. 

Number of actions a participant used to personalize 
each playlist (e.g., providing feedback, getting the 

Personalization interactions 
next recommendation, or viewing a song’s features), 
from the automated log files. 

Length of time a participant spent on the task, i.e. 
Interaction time 

listening to and interacting with AuPair. 

Response to Likert question “Do you feel the effort 
Cost/benefit you put into adjusting the computer was worth the 

result?” 

Response to Likert question “How satisfied are you 
Satisfaction 

with the computer’s playlists?” 

Table 3.1: Definitions for each metric used in our data analysis. 

Table 3.1 lists all of our metrics and their definitions. 

3.3 Results 

3.3.1 Feasibility (RQ3.1) 

3.3.1.1 Effectiveness of scaffolding 

Understanding how machine learning systems work is not trivial—even designers and 

builders of intelligent systems may have considerable difficulty (Kapoor et al., 2010). 
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Figure 3.4: With-scaffolding participants (dark) held sounder mental models than 
without-scaffolding participants (light), both immediately following the tutorial, and 
five days later. 

Our first research question (RQ3.1) considers the feasibility of inducing a high-fidelity 

mental model of an algorithm’s reasoning process in end users—if participants fail to 

learn how the recommender works given a human tutor in a focused environment, it 

seems unreasonable to expect them to easily learn it on their own. 

We tested for a difference in mental model fidelity (as measured by comprehension 

scores weighted by confidence) between the With-scaffolding group and the Without-

scaffolding group. The With-scaffolding group had significantly higher scores than the 

Without-scaffolding group, both before and after the experiment task (Day 1: Welch’s 

t-test, t(54) = −3.03, p = .004) (Day 5: Welch’s t-test, t(60) = −3.77, p < .001). To ensure 

these differences were not primarily the result of differing levels of confidence, we 

performed the same test without weighting the comprehension scores by confidence, 

finding nearly identical results (Day 1: Welch’s t-test, t(55) = −3.09, p = .003) (Day 

5: Welch’s t-test, t(59) = −3.55, p < .001). Neither group’s mean comprehension score 

changed significantly during the 5-day study (Figure 3.4). 
Participants also showed differences in their perceived mental model fidelity, at least 

at first. On Day 1, the Without-scaffolding group was significantly less certain that 

they accurately understood how the system selected songs and responded to feedback 

(mean score of 4.5 out of 7) than the With-scaffolding group (mean score of 5.6 out of 

7) (Welch’s t-test, t(58) = −2.51, p = .015). By Day 5, however, the Without-scaffolding 

group’s perceived mental model fidelity responses had risen to a mean of 5.25, with no 

evidence of statistical difference against the With-scaffolding group (with a mean of 5.3). 



30 

3.3.1.2 Discussion 

These results provide insights into four aspects of the practicality of end users compre­

hending and debugging the reasoning of a machine learning system. 

First, even a short 15-minute scaffolding tutorial effectively taught participants 

how the recommender reasoned. With-scaffolding participants were significantly more 

likely to correctly and confidently answer the comprehension questions. This in turn 

suggests that the With-scaffolding participants should be better equipped to debug 

the recommender’s reasoning than the Without-scaffolding participants, a point we 

investigate in RQ3.2. 
Second, mental model fidelity did not significantly improve during the five days 

participants interacted with AuPair on their own—simply using the system did not 

significantly help participants develop more accurate mental models about its reasoning. 

This is in contrast to recent work in interactive machine learning, which has found that 

for some systems (e.g., gesture recognition frameworks), repeated use taught people the 

most salient aspects of how the system worked (Fiebrink et al., 2011). 
Third, the fidelity of participants’ mental models largely persisted for the duration 

of the study. This appeared to be the case for both the Without-scaffolding and With-

scaffolding groups, with neither groups’ comprehension scores significantly changing 

between Day 1 and Day 5. This bodes well for end users retaining and recalling sound 

models initially learned about a machine learning system. 

Fourth, however, is the issue of initially building inaccurate, low-fidelity models: 

once low-fidelity models were built, they were unlikely to improve. Even though the 

Without-scaffolding group formed low-fidelity mental models, their confidence in these 

mental models increased during the course of the experiment, suggesting that they had 

convinced themselves they were, in fact, correct. Making in situ explanations available 

on an ongoing basis, such as in (Kulesza et al., 2010; Talbot et al., 2009; Herlocker et al., 

2000), may be a way to address this issue. 

Together, these findings provide evidence that furnishing end users with a brief 

explanation on the structure of a machine learning system’s reasoning, such as the 

attributes used, how such attributes are collected, and the decision-making procedure 

employed, can significantly improve their mental model’s fidelity. 
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3.3.2 Personalization (RQ3.2) 

A recommender’s effectiveness is in the eye of the beholder. Personalized recommenda­

tions cannot have a “gold standard” to measure accuracy—only the end users themselves 

can judge how well an system’s recommendations match their personal expectations. 

Hence, for our second research question (RQ3.2), we turned to a pair of more appropriate 

measures to explore the effects of mental model fidelity on personalization—cost/benefit 

and participant satisfaction. 

3.3.2.1 Cost/Benefit 

In theory, a high-fidelity mental model enables a person to reason effectively about their 

best course of action in a given situation (Johnson-Laird, 1983). Thus, we expected par­

ticipants with high-fidelity mental models (the With-scaffolding participants, according 

to the RQ3.1 results) to personalize AuPair more effectively than those with low-fidelity 

mental models. For example, knowing that the recommender could be steered more 

effectively by using unique, highly specific words (e.g., “Merseybeat”) rather than broad, 

common descriptors (e.g., “oldies”) should have helped such participants personalize 

the recommender’s reasoning more effectively than participants who did not understand 

this. 

Surprisingly, when using participants’ perceptions of cost/benefit as a surrogate for 

effectiveness, the soundness of participants’ mental models showed little impact on 

this measure of personalization effectiveness. Mental model transformation, however, 

was tied with cost/benefit: participants who most improved the fidelity of their mental 

models reported that the effort of personalizing their radio station was significantly 

more worthwhile than participants whose mental models improved less, or not at all 

(Table 3.2, row 1 and Figure 3.5, top left). 

Participants’ opinions of effectiveness were confirmed by their interactions to adjust 

or assess AuPair’s recommendations (e.g., providing feedback, getting the next recom­

mendation, or viewing a song’s features). The count of these personalization interactions 

was significantly correlated with the improvement in mental model fidelity for With-

scaffolding participants, while no such correlation existed among Without-scaffolding 

participants (Table 3.2, rows 2 and 3, and Figure 3.5, top right). Improvements to a 
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participant’s mental model, then, may have had a positive impact on their ability to 

personalize the system, whereas small changes to an initially incorrect model did not 

serve the Without-scaffolding participants as well. 

Further, participants who most improved the fidelity of their mental models spent 

significantly less time on their interactions than other participants (Table 3.2, row 4, 
and Figure 3.5, bottom left). In light of the increases in perceived cost/benefit and 

personalization interactions, this suggests positive mental model transformations were 

linked to more efficient personalization. 

An alternative explanation of the above results is that personalization interactions 

were responsible for participants’ mental model transformations, rather than the other 

way around. Recall, however, that the Without-scaffolding group showed no correlation 

between the number of personalization interactions and their mental model scores 

(Table 3.2, row 3). Thus, the evidence suggests that it was the in situ enhancement of 

already relatively high-fidelity models that was linked to improved attitudes toward 

personalization. 

3.3.2.2 Satisfaction 

Our second measure of personalization effectiveness was participants’ satisfaction with 

AuPair’s resulting recommendations. To measure this, we asked participants (via a Likert 

scale) “How satisfied are you with the computer’s playlists?” at the end of the study. 

As with the cost/benefit results, neither treatment nor mental model fidelity was 

predictive of participant satisfaction (Table 3.2, rows 5 and 6). However, here again, 

transformation of mental models appeared to matter—mental model transformation was 

marginally predictive of how satisfied participants felt with AuPair’s playlists (Table 3.2, 
row 7). For example, the participant whose mental model’s fidelity decreased the most 

expressed dissatisfaction and a feeling of being unable to control the computer: 

“The idea is great to be able to ‘set my preferences’, but if the computer continues 
to play what I would call BAD musical choices—I’d prefer the predictability of 
using Pandora.” 

Conversely, one of the participants whose mental model most increased in fidelity 

expressed a feeling of being more in control: 



33 

Statistical Metric Result Figure test 

Mental model transformation 
1 

vs. cost/benefit 

Mental model transformation 
2 (With-scaffolding) vs. 

personalization interactions 

Mental model transformation 
3 (Without-scaffolding) vs. 

personalization interactions 

Mental model transformation 
4 

vs. interaction time 

Satisfaction between 
5 With-scaffolding/ 

Without-scaffolding groups 

Satisfaction vs. mental model 
6 

fidelity 

Satisfaction vs. mental model 
7 

transformation 

8 Satisfaction vs. cost/benefit 

Satisfaction vs. 
9 

personalization interactions 

Linear 
regression 

Pearson 
correlation 

Pearson 
correlation 

Pearson 
correlation 

Welch’s 
t-test 

Linear 
regression 

Linear 
regression 

Pearson 
correlation 

Pearson 
correlation 

R2 = .07,
 
F(1,60) = 4.37,
 
p = .041
 

r(28) = .39,
 
p = .031,
 

r(30) = .01,
 
p = .952
 

r(60) = −.27,
 
p = .032
 

t(60) = 1.53,
 
p = .129
 

R2 = .02,
 
F(1,60) = 1.23,
 
p = .272
 

F(1,60) = 3.89,
 
R2 = .06, p = .053
 

r(60) = .73,
 
p < .001
 

r(60) = −.13,
 
p = .293
 

Figure 3.5 
(top left) 

Figure 3.5 
(top right) 

Figure 3.5 
(bottom left) 

Figure 3.5 
(bottom 
right) 

Table 3.2: Positive mental model transformations were consistently associated with better 
benefits, lower costs, and improved satisfaction (significant results shaded). Definitions 
for each metric are listed in Table 3.1. 
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Figure 3.5: Scatterplots of raw data for each significant result from Table 3.2. Definitions 
for axis measurements are listed in Table 3.1. 
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“I like the idea of having more control to shape the station. Controls made sense 
and were easy to use. The user has a lot of options to tune the station.” 

Perceived cost/benefit from personalizing the recommender was also significantly 

correlated with participant satisfaction (Table 3.2, row 8, and Figure 3.5, bottom right)— 

further evidence that satisfaction was indicative of an increased ability to personalize 

the learning system’s reasoning. To ensure that participant satisfaction was not simply 

a result of time and effort invested, we tested for a relationship between reported 

satisfaction and the number of personalization interactions each participant performed, 

but found no evidence of a correlation (Table 3.2, row 9). 

3.3.2.3 Discussion 

An additional factor may have affected participant satisfaction: whether or not AuPair 

Radio could play the music they were hoping to hear. Our music database held songs by 

just over 5,300 artists—pandora.com, by comparison, has over 80,000 different artists.3 

Participant satisfaction may have been confounded by the fact that some participants 

hoped their stations would play music that was unavailable to AuPair. As one participant 

commented: 

“The songs played weren’t what I was looking for, the selection was poor. The 
system itself was excellent, but I need more music.” 

Despite this potential factor, the confluence of several metrics (cost/benefit, person­

alization interactions, interaction time, and satisfaction) suggests that transformations in 

mental model fidelity translated to an improved ability to personalize the recommender’s 

reasoning, resulting in more satisfaction with AuPair’s recommendations. Because our 

evidence suggests mental model transformations (which occurred during the study) 

helped participants personalize the system more efficiently and effectively, continuing 

to provide explanations of a learning system’s reasoning while end users interact with 

it may help to increase their ultimate satisfaction with the system’s predictions or 

recommendations. Such on-line explanations, however, were not investigated by the 

3Pandora Media, Inc. Initial Public Offering Form S-1 (2011). 

http:artists�pandora.com
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current study; we focused our exploration on the impact of explanations prior to (rather 

than during) user interaction with a machine learning system. 

One potential explanation of why we found no evidence that end-of-study mental 

model fidelity was predictive of personalization ability could be that the information 

presented to the With-scaffolding tutorial participants was not helpful for personalizing 

the recommender’s reasoning; it may have only been helpful for understanding the 

recommender. Instead, the most effective participants may have built upon this initial 

understanding to quickly learn how to efficiently personalize AuPair while interacting 

with the system. However, this alternative explanation is weakened by the fact that the 

prototype was not transparent about how it made its decisions; the only time when 

participants were presented with explanations of AuPair’s reasoning occurred during 

the With-scaffolding tutorial. 

3.3.3 Confidence (RQ3.3) 

Presenting a complex system to unsuspecting users could overwhelm them. We are 

particularly concerned with peoples’ willingness to personalize (or otherwise adjust) 

the reasoning of machine learning systems—some people (especially those with low 

computer self-efficacy) may perceive a risk that their debugging is more likely to harm 

the system’s reasoning than to improve it. Similarly, computer anxiety (a “degree of fear 

and apprehension felt by individuals when they consider the utilisation, or actual use, of 

computer technology” (Bozionelos, 2001)) is known to negatively impact how (and how 

well) people use technology, and is negatively correlated with computer self-efficacy 

(Wilfong, 2006). 
Surprisingly, we found the opposite to be true—teaching participants about AuPair’s 

reasoning may have helped increase their computer self-efficacy. As Table 3.3 shows, 

almost three-quarters of the With-scaffolding participants experienced an increase in 

their computer self-efficacy between Day 1 and Day 5. Without-scaffolding participants, 

conversely, were as likely to see their computer self-efficacy decrease as to increase. A χ2 

comparison showed that With-scaffolding participants were significantly more likely 

than a uniform distribution (in which only half would increase their self-efficacy) to 

increase their computer self-efficacy (χ2(1, N = 62) = 6.53, p = .011). This suggests that 

exposure to the internal workings of machine learning systems may have helped to 
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Did improve 

Self-efficacy. . . 

Did not improve Average change 

Without-scaffolding 

With-scaffolding 

16 

22 

16 

8 

3.29% 

5.90% 

Table 3.3: Participants in the With-scaffolding group were likely to end the experiment 
with higher computer self-efficacy than when they began. 

allay, rather than to increase, participants’ perceived risk of making their personalized 

learning system worse. 

As further evidence that it was understanding how the system worked (rather than 

simply a byproduct of using it) that influenced participants’ computer self-efficacy, 

participants’ perceived mental model fidelity was significantly correlated with their 

computer self-efficacy at the end of the study (Pearson correlation, r(60) = .44, p < 

.001). Additionally, there was no evidence of a correlation between the number of 

personalization interactions participants made and their self-efficacy at the end of 

the study (Pearson correlation, r(60) = .13, p = .286); participants did not appear to 

grow more confident by simply interacting with the system. Thus, participants who at 

least thought they understood the nuances of AuPair’s reasoning scored higher on the 

computer self-efficacy questionnaire than those who expressed little confidence in their 

knowledge of the recommender’s logic. 

3.3.3.1 Discussion 

We hope further research will shed additional light on this preliminary link between 

learning how a machine learning system reasons, and increasing levels of computer self-

efficacy (and, by association, decreasing levels of computer anxiety). Challenging tasks, 

when successfully accomplished, have been found to have a significantly larger impact on 

self-efficacy than overcoming small obstacles (Bandura, 1977). Personalizing a machine 

learning system seems exactly the sort of difficult computer task that, successfully 

carried out, may make people say, “If I could do that, surely I can do this other thing. . . ”, 

thereby reducing the obstacles of risk and anxiety toward future computer interactions. 
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3.3.4 User experience (RQ3.4) 

For our final research question, we looked at the potential effects of mental model fidelity 

on perceptions of experience, such as cognitive demands and emotional responses. 

3.3.4.1 Cognitive demands 

Prior work has found that explaining concrete decisions of a learning system’s reasoning 

to end users in situ created an increase in participants’ frustration with, and mental 

demand of, correcting the system’s mistakes (measured via the NASA-TLX questionnaire) 

(Kulesza et al., 2010). We suspected that end users might experience similar effects when 

presented with prior structural knowledge. However, the With-scaffolding participants 

showed no significant difference to Without-scaffolding participants’ TLX scores. While 

acquiring a high-fidelity mental model undoubtedly requires mental effort on the part of 

end users, we encouragingly found no evidence that this was any greater than the mental 

effort required to interact with the learning system while lacking a clear understanding 

of its underpinnings. This suggests that end users’ experience with learning systems 

does not necessarily suffer when they are exposed to more knowledge of how the system 

works. 

3.3.4.2 Emotional responses 

We used the Microsoft Desirability Toolkit (Benedek and Miner, 2002) to investigate 

participants’ user experience with the AuPair music recommender. Participants were 

given a list of 118 adjectives and asked to underline each one they felt was applicable to 

their interactions with AuPair. 

The Internet General Inquirer (a tool that associates participants’ words with either 

positive or negative connotations, based on the content analysis framework proposed 

in (Stone, 1968)) revealed that With-scaffolding participants employed slightly more 

positive descriptions of AuPair than the Without-scaffolding group (54.9% vs. 49.6%) 

and fewer negative descriptions (9.9% vs. 12.0%). While not statistically significant 

between groups, these numbers suggest that the With-scaffolding participants (with their 

higher-fidelity mental models) may have viewed the overall experience of interacting 

with AuPair in a more positive light than Without-scaffolding participants. 
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Figure 3.6: Tag cloud of negative descriptive terms for AuPair. Without-scaffolding 
participants found the system “overwhelming” and “complex” (top), whereas the With-
scaffolding group (bottom) viewed it as “simplistic”. 

Participants’ descriptions revealed a subtler picture of the difficulties they faced. 

Word clouds—in which a word’s frequency is indicated by its size—of the negative 

descriptions show that the With-scaffolding group’s complaints may have stemmed 

more from difficulties using the system than difficulties understanding it; these partici­

pants were apt to complain the system was “simplistic”, “annoying”, and “frustrating” 

(Figure 3.6, bottom), while the Without-scaffolding group appeared to have trouble 

even understanding the impact of their debugging interactions, citing the system as 

“confusing”, “complex”, “overwhelming”, and “ineffective” (Figure 3.6, top). 

Participants’ choices of positive descriptions provide further evidence the With-

scaffolding participants’ mental models contributed positively to interacting with the 

system (Figure 3.7). The phrase “easy to use” dominated their responses, alongside 

“innovative” and “accessible”. In contrast, the Without-scaffolding participants focused 

on the visual appearance of the system, with words like “clean” and “appealing”. 

Participants with a deeper understanding of the system may have placed more emphasis 

on the interaction experience than aesthetics. 

3.3.4.3 Discussion 

Numerous benefits are associated with high-fidelity structural mental models, and in the 

case of this machine learning system, it appears possible to gain these without impairing 
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Figure 3.7: Tag cloud of positive descriptive terms for AuPair. Without-scaffolding 
participants (top) focused on visual appearance more than With-scaffolding participants 
(bottom). 

the user experience. This is encouraging for the feasibility of end-user personalization 

of recommendation systems (and other types of learning systems), especially when the 

user associates a benefit with personalizing the system’s reasoning. 

3.4 Conclusion 

This chapter provides the first empirical exploration of how mental models impact 

end users’ attempts to personalize a machine learning system. By scaffolding structural 

mental models for half of our study’s participants, we learned that: 

•	 Despite the complexity inherent with machine learning, With-scaffolding partici­

pants quickly built high-fidelity mental models of how one such system (a music 

recommender) operates “behind the scenes”—something the Without-scaffolding 

participants failed to accomplish over five days of system usage. 



41 

•	 The participants’ mental model transformations—from lower to higher fidelity— 

was predictive of their ultimate satisfaction with the learning system’s output. 

Participants with the largest transformations were able to efficiently personalize 

their recommenders’ reasoning, aligning it with their own reasoning better and 

faster than other participants. These same participants were also likely to perceive 

a greater benefit from their personalization efforts. 

•	 Participants presented with structural knowledge of the learning system’s reason­

ing were significantly more likely to increase their computer self-efficacy, which 

is known to correlate with reduced computer anxiety and increased persistence 

when tackling complex computer tasks. 

•	 Participants who were presented with structural knowledge showed no evidence of 

feeling overwhelmed by this additional information and viewed interacting with 

the learning system in a positive light, while participants holding only functional 

mental models more frequently described their personalization experience in 

negative terms, such as “confusing” and “complex”. 

This work demonstrates the value and practicality of providing end users with 

structural knowledge of their machine learning systems’ reasoning. Our results suggest 

that if users acquire better mental models of a learning system (particularly while 

interacting with it), they will be better able to personalize that system. However, the 

if may be a stumbling block. In this study, human-led instruction helped our With-

scaffolding participants to build higher-fidelity mental models than Without-scaffolding 

participants, but this is not a viable solution for users of machine learning systems. 

Instead, the learning system itself will need to help users build high-fidelity mental 

models, and it is this challenge we turn to in the next chapter. 
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Chapter 4: How explanations can impact mental model fidelity 

4.1 Introduction 

The previous chapter found that it is feasible to help end users acquire high-fidelity men­

tal models of a machine learning system, but because it relied upon human instruction to 

induce these models, an important question was left unanswered: how should machine 

learning systems explain themselves to users? The predominant approach in commercial 

systems is to “keep it simple” (e.g., the music recommender Pandora.com currently 

describes its song recommendations via a single sentence; the junk mail classifier in 

Gmail explains each spam classification using a set of just eight high-level reasons1). 

Such simplicity, however, may prevent users from understanding how the system makes 

decisions, and as we saw in Chapter 3, this may in turn prevent users from successfully 

personalizing their learning systems. 

In this chapter we raise the question of whether simplicity is the right attribute 

to prioritize when designing a machine learning system’s explanations. A different 

possibility is to prioritize explanation fidelity—how closely the explanation matches the 

underlying system—as this may then help end users build high-fidelity mental models 

of the learning system. However, information comes at the price of attention—a user’s 

time (and interest) is finite, so high-fidelity explanations may discourage users from 

attending to their contents. 

To investigate how machine learning systems should explain themselves to their 

users, we performed a qualitative study to separately consider two dimensions of explana­

tion fidelity: soundness (how truthful each element in an explanation is with respect to the 

underlying system) and completeness (the extent to which an explanation describes all of 

the underlying system). We then investigated how varying soundness and completeness 

(as in Figure 4.1) impacted users’ mental models of a music-recommending machine 

learning system, what types of information (based on Lim and Dey’s classification of 

intelligibility types) were most helpful in the explanations, how explanation fidelity 

1Reasons for Gmail’s spam classifications: http://bit.ly/13ODtwl 

http://bit.ly/13ODtwl
http:Pandora.com
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Figure 4.1: Our problem space: How sound and complete do explanations need to be to 
help end users build high-fidelity mental models? 

impacted users’ perceptions of the costs and benefits of attending to these explanations, 

and users’ trust in the explanations’ veracity. Our research questions were: 

RQ4.1:	 How do the soundness and completeness of explanations impact end users’ mental 

models? 

RQ4.2:	 Which machine learning intelligibility types are most helpful for the development 

of users’ mental models? 

RQ4.3:	 What obstacles do end users encounter when building mental models of a 

learning system’s reasoning? 

RQ4.4:	 How do users’ perceived costs and benefits of attending to explanations change 

as explanation fidelity increases? 

RQ4.5:	 How does user trust change as explanation fidelity increases? 

4.2 Explanation soundness and completeness 

We tease apart soundness and completeness because machine learning system designers 

can make choices independently in each as to the fidelity of their learning systems’ 

explanations. The terms soundness and completeness are borrowed from the field of 

formal logic, in which a deductive system is sound if all of the statements it can create 
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evaluate to true, and complete if its compositional rules allow it to generate every true 

statement. We apply these terms to explanations in an analogous manner: 

Soundness (“nothing but the truth”): the extent to which each component of an expla­
nation’s content is truthful in describing the underlying system. 

Completeness (“the whole truth”): the extent to which all of the underlying system is 

described by the explanation. 

For example, a learning system that explains its reasoning with a simpler model 

than it actually uses (e.g., a set of rules instead of additive feature weights) is reducing 

soundness, whereas a system that explains only some of its reasoning (e.g., only a subset 

of a user neighborhood) is reducing completeness. 

Together, soundness and completeness let us systematically explore explanation 

fidelity by varying both dimensions independently of one another. One hypothesis is 

that more information in an explanation will help users build better mental models. 

However, very complete or complex explanations require more attention to process, 

which disincentivizes users to build accurate mental models. Rosson et al., for example, 

found that the Minimalist explanation model (Carroll and Rosson, 1987)—which mini­

mizes passive learning tasks, such as reading long explanations, favoring instead short 

explanations coupled with try-it-out exploration—helped programmers understand 

Smalltalk programs up to two orders of magnitude faster than traditional instruction 

techniques (Rosson et al., 1990). 

4.3 Methodology 

To investigate our research questions, we presented 17 participants with up to 8 music 

recommendations made by a functional prototype. For each recommendation, the 

participant was given several types of explanations for why the system choose that 

song and was then asked why they thought the system made the recommendation. 

4.3.1 Prototype recommender system 

We developed a prototype music recommender to make personalized song recommen­

dations for each participant. Our prototype used a hybrid recommendation approach, 
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as such approaches have been shown to out-perform more traditional types of recom­

menders (Su and Khoshgoftaar, 2009) and also provide more “moving parts” to explain. 

Specifically, our prototype employed user-based collaborative filtering to find artists and 

a content-based approach for selecting songs by those artists. 

To train our recommender, we collected the listening habits of about 200,000 Last.fm 

listeners between July 2011 and July 2012 via the Last.fm API2. We identified the 50 
most-played artists for each of these listeners during this time period, and then used the 

Mahout framework3 to build a k-nearest-neighborhood (with k = 15), where distance 

between Last.fm users was based on overlap in the artists they listened to (calculated via 

the log-likelihood metric (Dunning, 1993)). 
Prior to the study, we asked each participant to imagine a situation where they 

would want a playlist of music, and to tell us five artists representative of the type 

of music they would like the playlist to include. Our prototype took these artists and, 

using the technique described above, recommended 20 artists for the given participant 

(Figure 4.2, top). To select specific songs, our prototype used a bagged decision tree based 

on Weka’s J48 implementation (Hall et al., 2009) (the bagging ensemble consisted of 100 
decision trees). This classifier was independently trained for each participant using a 

set of positive training instances (the top 1,500 songs played by Last.fm listeners in the 

participant’s user neighborhood) and a set of negative training instances (the top 1,500 
songs played by Last.fm listeners who did not listen to any artists that neighborhood 

members listened to). This resulted in a classifier able to predict whether a given 

user would or would not like a particular song, along with a certainty score (Figure 4.2, 
bottom). The song features (recall that a machine learning feature is a piece of information 

a classifier can use to discriminate between output classes) came from The Echonest’s4 

database, which includes information such as a song’s tempo, energy, and key. 

To determine which songs to recommend to a participant, our prototype collected 

the 25 most popular songs by each recommended artist, resulting in a a 500 song set 

per participant. We used these songs’ feature vectors as input to our classifier, which 

predicted whether or not the participant would like each song. The positive results were 

2http://www.last.fm/api
 
3http://mahout.apache.org

4http://developer.echonest.com
 

http:http://developer.echonest.com
http:http://mahout.apache.org
http://www.last.fm/api
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Figure 4.2: Our prototype used a k-nearest neighbor stage to identify similar and 
dissimilar users (top), and a bagged decision tree stage to predict which songs the 
participant would most enjoy (bottom). 

sorted by decreasing certainty, with the top eight used as song recommendations for the 

participant. 

4.3.2 Treatments and explanations 

We explored four experiment conditions, which are shown in Table 4.1: HH (high-

soundness, high-completeness), MM (medium-soundness, medium-completeness), HSLC 

(high-soundness, low-completeness), and LSHC (low-soundness, high-completeness). 

Figure 4.1 visualizes this design space, with HH in the top right, HSLC in the bottom 

right, LSHC in the top left, and MM in the middle. We used multiple conditions to 

gather data on a variety of explanation configurations, but restricted ourselves to these 

four (as opposed to different combinations of soundness and completeness, such as 

low-soundness/low-completeness) because we felt the combination of three treatments 

involving extremely high or low soundness and/or completeness, plus one treatment 

with moderate soundness and completeness, would have the best chance to identify 

differences in the impact of varying levels of explanation fidelity. 



47 

Treatment HH MM HSLC LSHC 

Relative soundness 

Relative completeness 

High Medium High Low 

High Medium Low High 

In
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y 
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es

 Why (song) 

Why (artist) 

Certainty 

Model 

Input 

Bagged 
decision tree 

Nearest 
neighbor 
(k = 15) 

Yes 

Yes 

Yes 

Decision tree 

Nearest 
neighbor 
(k = 10) 

Yes 

No 

Yes 

Bagged Decision 
decision tree stump 

Nearest Nearest 
neighbor neighbor 
(k = 5) (k = 15) 

No Yes 

No Yes 

Yes Yes 

Table 4.1: The “Why (song)” intelligibility type was available in all treatments, but its 
soundness varied. The other intelligibility types were used to vary completeness. 

To objectively manipulate completeness, our treatments used a varying number of the 

intelligibility types identified by Lim and Dey (Lim and Dey, 2009): inputs (features the 

system is aware of), model (an overview of the learning system’s decision making process), 

why (the learning system’s reasons for a specific decision), and certainty (the system’s 

confidence in a specific decision). We also increased completeness by exposing more 

information in the why (artist) intelligibility type. All treatments included explanations 

of the song selection process (Figure 4.3), five members of the user’s “neighborhood” 

of similar Last.fm listeners (Figure 4.4), and the features the recommender could use 

(Figure 4.5). The treatments with more completeness (MM, HH, and LSHC) added the 

certainty intelligibility type (Figure 4.3, bottom left) and showed 10 members of the 

participant’s user neighborhood. The high-completeness treatments (HH and LSHC) also 

added a high-level description of the recommender’s algorithm (the model intelligibility 

type, Figure 4.6) and showed all 15 members of the participant’s user neighborhood. 

To objectively manipulate soundness, our treatments used a range of simplified 

models of the recommender’s reasons for each song selection. The explanation used in 

the high-soundness treatments (HH and HSLC) described the bagged decision tree (the 
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actual algorithm used to produce the playlist). For the medium-soundness treatment 

(MM), we trained a simpler model (a single J48 decision tree) using the bagged classifier’s 

predicted labels for all of the training instances, and explained this derived model 

(a variation of the technique in (Craven and Shavlik, 1997)). For the low-soundness 

treatment (LSHC), we used the same approach to train an even simpler model (a 

one-feature decision tree, or decision stump) to explain (Figure 4.3, bottom right). Because 

the low-soundness model only explained one highly discriminative feature, we consid­

ered it a functional analog for contemporary machine learning system explanations 

(e.g., a movie recommender that explains its selections by their genres, or a product 

recommender that explains it is recommending product foo because you previously 

purchased product bar). 

4.3.3 Participants and study task 

We recruited 17 participants (10 females, 7 males) from the local community via flyers 

and announcements to university mailing lists. Participants’ ages ranged from 19 to 34, 
none had a background in computer science, and each was randomly assigned to one of 

the four treatments. 

During the study, participants listened to their recommended playlist while a 

researcher provided participants with the paper explanations described in Section 4.3.2. 
After each song, a researcher asked the participant why they thought it had been 

recommended. At the end of the study we measured participants’ mental models via a 

combination of short-answer and Likert scale questions. Each session was videotaped 

and later transcribed. 

4.3.4 Data analysis 

To qualitatively analyze participants’ data, we used grounded theory methods (Corbin 

and Strauss, 1990) to develop a code set that identified which aspects of the learning 

system participants understood, and which aspects caused participants to request more 

information. The resulting code set is presented in Table 4.2. 
We transcribed participant utterances during each song and applied the codes to 

these utterances (each code could be applied, at most, once per song). Two researchers 
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In Your Light by Gotye 
 

Why this song?  
The computer looked at what the green songs tend to have in common, and what makes them 
different from the red songs. It thinks that you’ll like songs with all of these characteristics: 

Danceability  
Duration Not used for this prediction 

Energy Not used for this prediction 
Key and mode Not used for this prediction 

Loudness Not used for this prediction 
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Certainty 

The computer is 54% confident 
you’ll like this song: 
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Figure 4.3: Excerpts from the Why this Song explanation (why intelligibility type). (Top 
left): The high-soundness sheet showed a random sample of four decision trees from the 
bagging ensemble. (Top right): Each tree was represented as a set of ordered features 
with allowed ranges of values. The medium-soundness explanation was similar, but only 
showed one derived decision tree that approximated the bagging ensemble’s reasoning. 
(Bottom right): The low-soundness sheet was also similar, but only showed one derived 
decision stump (a single-featured decision tree). (Bottom left): For the HH, LSHC, and 
MM treatments, this sheet also included the certainty intelligibility type. 
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Why this artist?  
The following 15 people listened to more of the bands you listed than anyone else (out of 
200,000 different listeners). The computer used these bands as a starting point to find songs you 
might like. 

Person #1: 
 William Fitzsimmons (#1) 
 City & Colour (#2) 
 The Kooks (#3) 
 Dream Theater (#4) 
 Foo Fighters (#9) 
 Three Doors Down (#34) 

Person #6: 
 Jimmy Page & The Black Crowes 
(#1) 
 The Black Crowes (#2) 
 Vitamin String Quartet (#3) 
 Chris & Rich Robinson (#4) 
 Pearl Jam (#12) 
 Foo Fighters (#15) 

Person #11: 
 The Verve Pipe (#1) 
 Pearl Jam (#2) 
 Third Eye Blind (#3) 
 Alice in Chains (#4) 
 Foo Fighters (#18) 

Person #2: 
 Timbiriche (#1) 
 Steve Jablonsky (#2) 
 Katy Perry (#3) 
 Hans Zimmer (#4) 
 Michael Giacchino (#14) 
 Pearl Jam (#34) 

Person #7: 
 Ryan Adams & The Cardinals 
(#1) 
 Whiskeytown (#2) 
 Neal Casal (#3) 
 Ryan Adams (#4) 
 Pearl Jam (#22) 
 Foo Fighters (#23) 

Person #12: 
 Jon Foreman (#1) 
 Foo Fighters (#2) 
 The Offspring (#3) 
 Switchfoot (#4) 
 Pearl Jam (#18) 

Person #3: 
 Bush (#1) 
 Nirvana (#2) 
 Lifehouse (#3) 
 Silverchair (#4) 
 Foo Fighters (#5) 
 Pearl Jam (#16) 

Person #8: 
 Die Toten Hosen (#1) 
 Mother Love Bone (#2) 
 Chris Cornell (#3) 
 Temple of the Dog (#4) 
 PPeeaarrll  JJaamm  ((##77))  
 FFoooo  FFiigghhtteerrss  ((##1133))  

Person #13: 
 Rodrigo y Gabriela (#1) 
 Goran Bare i Majke (#2) 
 Funkadelic (#3) 
 Body Count (#4) 
 Pearl Jam (#14) 
 Foo Fighters (#17) 

Person #4: 
 Homeboy Sandman (#1) 
 The White Stripes (#2) 
 Metallica (#3) 
 Orange Goblin (#4) 
 Foo Fighters (#7) 
 Pearl Jam (#10) 

Person #9: 
 Gorillaz (#1) 
 Red Hot Chili Peppers (#2) 
 The Lonely Island (#3) 
 Skrillex (#4) 
 Foo Fighters (#10) 
 Pearl Jam (#16) 

Person #14: 
 Tenacious D (#1) 
 Reel Big Fish (#2) 
 Megadeth (#3) 
 Arctic Monkeys (#4) 
 Foo Fighters (#5) 
 Pearl Jam (#15) 

Person #5: 
 Balmorhea (#1) 
 Galaxie 500 (#2) 
 Sigur Rós (#3) 
 Red Hot Chili Peppers (#4) 
 Pearl Jam (#14) 
 Foo Fighters (#15) 

Person #10: 
 Filter (#1) 
 System of a Down (#2) 
 Coldplay (#3) 
 Filter - www.uouwww.com (#4) 
 Foo Fighters (#6) 
 Pearl Jam (#13) 

Person #15: 
 The Black Crowes (#1) 
 Soundgarden (#2) 
 Eddie Vedder (#3) 
 Queens of the Stone Age (#4) 
 Pearl Jam (#9) 
 Foo Fighters (#14) 

Figure 4.4: Excerpt from Why this Artist (why intelligibility type), which showed the 
artists selected by their user neighborhood. All participants received this explanation, 
but with different neighborhood sizes (see Table 4.1). 

 

 

What the computer knows 

The computer knows the following details about each song: 

Danceability How danceable the computer thinks this song is  
(as a percentage) 

Duration How long the song is  
(in minutes) 

Energy How energetic the song is  
(as a percentage) 

Key and mode The song’s key (e.g., A, B, C#, etc.) and its mode (major 
or minor) 

Loudness The song’s average volume 
(in decibels) 

Tempo 
How slow or fast the song is 
(in beats per minute) 

Beat grouping Approximation of the song’s rhythm  
(e.g., groups of three beats, groups of four beats, etc.) 

The computer also knows: 

 How often each person (from a group of 200,000) listened to each artist over the past 
year 

 How often each person (from a group of 200,000) listened to each song over the past year 

 

Figure 4.5: Excerpt from What the Computer Knows (input intelligibility type), which 
showed a comprehensive list of features that the recommender used. All participants 
received this explanation. 

independently coded a small portion of the transcripts and then discussed areas of 

disagreement. Once the researchers agreed on the coding of these transcripts, they 

independently coded two complete transcripts (12% of the total data)—their agreement, 

as calculated by the Jaccard index (the intersection of all applied codes over the union of 

all applied codes), was 83%. Given this acceptable level of agreement, a single researcher 

coded the remaining transcripts and post-study questionnaires. 

In this analysis, participants’ mental model scores were the number of correct 

statements, minus the number of incorrect statements, participants made during the 

experiment and on the post-study questionnaire. For convenience, we translated the 

raw score (which could be negative if participants made more incorrect than correct 
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How it all works together 

 

Your list of musicians

Get the 25 most popular 
songs by each of these 

artists

Use these relationships to predict whether each new song is like the green 
songs (good) or the red songs (bad)

Have the computer look for relationships between a song's 
details and and whether it's in the green group or red group.

Get details about all 500 
songs

Find 15 people who listen to your list of musicians
(Sorted by how many musicians you both like)

Get each person's 100 most-
played songs in the past 

year

Get the 20 other artists 
these people most often 

listen to

200,000 Last.fm listeners

Find 15 people who don't listen to 
any of the musicians you listed

Get each person's 100 most-
played songs in the past 

year

Get details about all 1,500 
songs

Get details about all 1,500 
songs

Songs that similar people listened to

Legend

Songs that dissimilar people listened to

Figure 4.6: Excerpt from How it All Works Together (model intelligibility type), which 
showed how the participants’ artists list was used to make song recommendations. 
Positive and negative training sets were color-coded throughout the flow-chart. Only 
HH and LSHC participants received this explanation. 

statements) to a 0-to-10 scale. Table 4.2 shows which types of participant verbalizations 

and questionnaire responses were considered correct vs. incorrect. Participants’ verbal­

izations during the study and post-study questionnaire responses were weighted equally 

when computing mental model scores. 

4.4 Results 

4.4.1 Soundness, completeness, and intelligibility types (RQ4.1 and 

RQ4.2) 

As Figure 4.7 shows, HH participants achieved three of the top four scores. In contrast, 

all but one of the participants in the other treatments clustered around lower scores. 

This surprised us because we had expected the HH treatment may overload participants 

to the point where they would not attend to so much complex information. Instead, we 
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Category Code Participant discussed/said. . . 

Correct: the 
participant correctly 
discussed an aspect of 
the recommender 

Valid artist process 

Valid song feature 

. . . the artist was chosen via 
collaborative filtering 

. . . specific song features used 
by the recommender 

Valid song process 
. . . a combination of features 
were responsible for the 
recommendation 

Incorrect: the Invalid feature 
participant 
incorrectly discussed 
an aspect of the 
recommender 

Invalid process 

. . . specific features not used 
by the recommender 

. . . the computer’s reasoning 
involved a single path 
through a decision tree or 
another incorrect description 
of the artist/song selection 
process. 

Knowledge gaps: the 
participant expressed 
uncertainty about 
their knowledge of 
the recommender 

Don’t know 

Uncertain 

More explanation 
details 

More recommender 
details 

. . . not knowing how the 
recommender works 

. . . uncertainty regarding 
their answer of how the 
recommender works 

. . . needing more details 
about the explanations 

. . . needing more details 
about the recommender 

Table 4.2: Code set used to assess participants’ mental models.
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Mental model score

HH
LSHC
MM

HSLC

0 105

Figure 4.7: Participants’ mental model fidelity scores. Each mark is one participant’s 
score. (Note: MM had one more participant than the others.) The highest scores were 
mostly those of HH participants. 

expected the MM treatment to be a “sweet spot” in the trade-off between informativeness 

and simplicity. Most of the MM participants, however, clustered around the lowest mental 

model scores. 

Further, HH participants’ mental model scores were consistently high across features 

and processes, as Figure 4.8’s results from the post-task questionnaire show. In fact, HH 

participants were the only ones to correctly describe the song selection process (third 

column of Figure 4.8, coded as per Table 4.2), and only one HH participant made any 

incorrect post-task observations at all (right half of Figure 4.8). (Note from Table 4.2 that 

participants in any of the treatments could potentially get credit for process descriptions 

that had correct process concepts, e.g., using combinations of features.) 

4.4.1.1 Completeness and intelligibility types 

Two of the intelligibility types, why and input, relate to features, and participants tended 

to do better at understanding features than process (Figure 4.8). However, a closer look 

at which participants did better suggests that their understanding of features aligned 

with completeness. For example, participants in the high-completeness groups (HH and 

LSHC) averaged 5.5 valid feature codes per participant, versus the other treatments’ 

average of 4.3. The invalid features added more evidence consistent with this, with 
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Valid artist
process

Valid song
features

Valid song
process

Invalid
features

Invalid
process� � ���

Figure 4.8: Post-task questionnaire results. Each mark is one participant, represented as 
in Figure 4.7. Only HH participants described all the valid aspects of the recommender 
(at least one blue diamond in the three left-most bins), and only one made an invalid 
description (only one blue diamond in the two right-most bins). 

high-completeness participants averaging 4.6 invalid features versus other participants’ 

6.3 invalid features. 

Completeness may also have helped participants understand the recommendation 

process. As Figure 4.9 shows, participants’ understanding (as per Table 4.2 codes) of the 

artist recommendation process (explained through the model and why-artist intelligibility 

types) tended to increase with the completeness of their treatment. In particular, the 

model explanation was referenced by half of the participants who correctly discussed 

the artist recommendation process (Figure 4.10). Completeness showed no evidence of 

impacting participant understanding of the song recommendation process; however, this 

was primarily explained via the Why this Song explanation, and this explanation did 

not vary in the completeness dimension across treatments. 

Recall that we also increased completeness by adding the certainty intelligibility type, 

but this type did not seem to interest participants: only two participants mentioned 

certainty at all, and each did so only once. Although research has shown that certainty 

is a useful intelligibility type to users assessing a machine learning system’s reliability 

(Groce et al., 2014), other researchers have found that certainty does not help users’ 

perceived understanding of how a recommender operates (Cramer et al., 2008). Our 

work suggests that this finding extends to actual understanding. 

These results suggest that increasing completeness was beneficial to participants’ 

mental models, and that some effective ways to increase completeness included the 
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Figure 4.9: Each dot is the percentage of participants who correctly understood the artist 
recommendation process (as per Table 4.2’s codes). More participants understood it as 
completeness (dark) increased, but fewer participants understood it as soundness (light) 
increased. 

model intelligibility type and the completeness of the why type. However, we found no 

evidence that increasing completeness via certainty improved the fidelity of participants’ 

mental models. 

4.4.1.2 Soundness and intelligibility types 

Although HH participants’ performance may at first glance suggest that high soundness 

was also helpful, looking at soundness in isolation suggests a different story. High-

soundness participants (HH and HSLC) showed almost no differences from the other 

participants in their mentions of valid vs. invalid features or processes. Instead, the 

clearest pattern was one of decreased understanding of the artist recommendation process 

as soundness increased (Figure 4.9). 
One hypothesis is that HH and HSLC participants spent most of their attention on 

their complex Why this Song explanations, causing them to ignore other explanations. 

Indeed, participants in these high soundness treatments viewed the How it All Works 

explanation only about half as often as participants in the low-soundness treatment 

(mean 0.8 vs. 1.4 views per person). Instead, they focused on their complex Why this 

Song explanations: they viewed these during more songs than participants in the low-

soundness treatment (mean of 7.6 vs. 6.3 songs) and often even reviewed prior Why this 

Song explanations (during an average of 1.9 songs vs. 0.7). One participants in the HH 

treatment explained why she kept reviewing prior explanations: 
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P9-HH: “The [high-soundness Why this Song] sheet is a little bit hard to look at 
[flips through prior Why this Song sheets], but I’m just looking for things that 
I’m seeing, from one song to the next, that are similar, and that it says it’s using 

for matching and making the predictions.” 

Further, the high-soundness explanations were associated with over twice as many 

Information Gap codes, which indicate that as participants viewed these explanations, 

they had additional questions and expressed more uncertainty as they described why 

they thought each song had been recommended (mean 7.0 codes per participant) than 

other treatments (mean 3.3 codes per participant). 

These results suggest that increasing soundness was beneficial from a mental model 

standpoint, but unlike completeness, increasing soundness also carried downsides. The 

most sound explanations appear to have required more attention from participants— 

resulting in less attention paid to other explanations—and led to more participant 

questions and information gaps. However, when soundness and completeness were both 

at our experiment’s highest levels, so were participants’ mental model scores (Figure 4.7), 
suggesting that very complete—but unsound—explanations are not enough to help end 

users understand how machine learning systems operate. 

4.4.2 Barriers to developing high-fidelity mental models (RQ4.3) 

No participant’s understanding of the recommender was perfect: the highest mental 

model score was 8.4 out of 10 (recall Figure 4.7). We found evidence of two barriers to 

building high-fidelity mental models; these barriers were shared among all participants, 

regardless of treatment. 

First was participants’ incorrect assumptions about the explanations’ completeness. 

Every participant, at some point during their task, incorrectly assumed that the recom­

mender used information that it did not have access to (e.g., the tone of the singer’s 

voice)—even though the input explanation (What the Computer Knows) was complete 

across all treatments. For example, this high-soundness low-completeness participant 

had read the What the Computer Knows explanation multiple times before asking: 

P6-HSLC: “So I guess, does a computer have access to lyrics for a song, does it take 
that into consideration?” [Facilitator refuses to answer, and participant re-reads 
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the What the Computer Knows sheet yet again.] P6-HSLC: “Oh right, so probably 

not then.” 

The counts from the post-session questionnaire results were consistent with this 

phenomenon. In responding to a question asking if the explanations included every 

important detail about why a song was recommended, the average response was only 

13.0 (21 indicating “always”, 0 indicating “never”). HH participants, however, responded 

more positively (mean of 18.0), suggesting that high soundness and high completeness 

together can help convince users that the explanations do discuss everything relevant to 

the learning system’s reasoning. 

The second barrier was lack of knowledge of the process of how recommendations 

were made. Participants rarely discussed process, focusing much more heavily on 

features, as Figure 4.10 illustrates. Some participants even described a single feature as 

the sole reason for a recommendation: 

P2-HH: “Yeah, see, it’s all the way at the bottom of the loudness [feature]. 
So. . . that’s why [it was recommended].” 

Features may have been easier for participants to understand because they were 

explained concretely (i.e., in the context of specific examples). Figure 4.11 shows that 

participants used the concrete Why this Song and Why this Artist explanations much 

more than the abstract (i.e., no specific examples) How it All Works and What the 

Computer Knows explanations. 

Note, however, that although our abstract How it All Works explanation was infre­

quently used, when participants did use it, a larger percentage (50%) correctly discussed 

the recommendation process than with any other explanation (Figure 4.10). Similarly, 

participants who used the abstract What the Computer Knows explanation discussed 

more valid features than invalid features. 

Alternatively, participants may have paid the most attention to the Why this Song 

explanations because it was the only explanation that changed during the experiment. 

The other explanation types were presented at the beginning of the study and may 

have attracted less participant attention because they were never updated. Dynamically 

updating explanations may be one presentation option to draw a user’s attention to the 

full range of explanations in a highly complete system, but this is an open question that 

requires further investigation. 
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Figure 4.10: Participants giving correct (smiles) and incorrect (frowns) descriptions upon 
referencing an explanation. Each face represents two participants. (Light): song features. 
(Medium): artist recommendation process. (Dark): song recommendation process. Both 
why explanations were the most popular, but the What the Computer Knows explanation 
resulted in the fewest invalid feature comments, while the How it All Works explanation 
had the highest percentage of participants correctly describing the process. 
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Figure 4.11: Number of times participants referenced each explanation: each music note 
represents ten references. Participants referenced the Why this Song explanation during 
almost every recommended song. 
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4.4.3 Is it worth it? (RQ4.4) 

The Attention Investment Model (Blackwell, 2002) predicts that users will use high-cost 

explanations only if they think the benefits will outweigh the costs. Thus, we investigated 

participants’ perceived benefits (given the perceived costs) using the questions “If the 

recommendations improve, do you think it is worth the time and effort you spent during 

this study to give feedback to the recommender?” and “Would you take a similar amount 

of time as this study to learn similar things about other recommenders you use?” (Each 

study session lasted less than two hours.) We used the summation of these questions 

to estimate perceived benefits, and the summation of the NASA-TLX questions about 

mental demand, effort expended, and frustration/annoyance to estimate costs (each 

question had a 21-point scale). 

As Figure 4.12 shows, the LSHC participants were surprisingly positive about the 

benefits vs. costs of referring to the explanations—more than three times as positive 

as participants viewing less complete but more sound explanations (MM and HSLC). 

We had expected the MM treatment to best balance costs vs. benefits—these partic­

ipants received explanations that seemed likely to be the easiest to understand at a 

reasonable cost. However, our results showed that instead, high completeness seemed 

to be important to our participants. To summarize Figure 4.12, participants in the 

two high-completeness treatments perceived working with the explanations to be a 

better cost/benefit proposition than the other treatments’ participants did. In contrast, 

soundness did not seem to be an asset to participants’ perception of cost-benefit. This 

may come back to the lower understanding associated with higher soundness in the 

absence of high completeness (recall Figure 4.9). One high-soundness low-completeness 

participant reinforced this point, remarking that the high-soundness explanations could 

have been useful, but she was unable to make much sense of them during the study: 

P6-HSLC: Probably should have looked at [the Why this Song sheet] more. 
Facilitator: Do you think this could have been useful? P6-HSLC: Yeah. . . I guess 
I’m still trying to grasp and understand this whole thing here (points at Why this 
Song sheet). 
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4.4.4 In explanations we trust? (RQ4.5) 

To some low-soundness participants, the decision stump in their explanations seemed 

clearly wrong. For example: 

P13-LSHC: “It says loudness again, I’m really not understanding why it keeps 
going back to that and not using energy, or like, anything else.” 

To understand participants’ perceptions of whether the explanations they viewed 

were sound and complete, we asked them “Do you think the explanations are accurate 

about why the recommender chose each song?” (perceived soundness), and “Do you 

think the explanations are including all of the important information about why the 

recommender chose each song?” (perceived completeness). We asked about soundness 

and completeness separately to determine whether participants could discern whether 

explanations were sound, complete, or both. For example, we hypothesized LSHC 

participants would rate their explanations as more complete than sound, while HSLC 

participants would consider their explanations more sound than complete. However, our 

results suggest participants did not differentiate explanations in this way: the average 

difference between the two scores was only 1.5 on a 21-point scale, and both LSHC and 

HSLC participants rated their explanations as slightly more sound than complete. 

Because the perceived soundness and completeness scores together form a holistic 

assessment of trust, we summed them to yield a single trust score. The results, plotted 

for each participant, are shown in Figure 4.13. The LSHC participants had the three 

lowest trust ratings, while most HH participants accurately gauged their explanations to 

be the most sound and most complete. This suggests there is some danger to simplifying 

explanations by reducing soundness—users may perceive that such explanations do not 

accurately represent the system’s reasoning, and so may distrust (and disregard) them. 

4.5 Discussion 

Our results suggest that the most sound and most complete explanations (HH) were the 

most successful at helping participants understand how the learning system worked, and 

did so with a surprisingly good cost/benefit ratio. Further, HH participants trusted their 

explanations more than participants in other treatments, particularly LSHC. Indeed, the 
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Figure 4.12: Perceived benefit vs. cost scores (benefit_score − cost_score), averaged by 
treatment. The high-completeness participants (top two rows) perceived relatively high 
benefits vs. costs of the explanations. 
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Figure 4.13: Trust scores for each participant. The LSHC treatment’s scores were 
relatively low: these participants accurately rated their explanations as unsound, but 
also inaccurately rated them as incomplete. 

main problem we identified with HH was that participants were at risk of focusing on a 

single complex explanation (e.g., the very detailed Why this Song explanation) to the 

exclusion of other information. 

The story was different when only soundness or completeness was at our highest 

level. High completeness alone (LSHC) provided participants with the best perceived 

cost/benefit ratio of attending to the explanations, the second-highest average mental 

model score, and the best understanding of the artist recommendation process. However, 

these participants placed the least trust in the explanations. High soundness alone 

(HSLC) did result in more trust, but was also associated with higher perceived costs, 

lower perceived benefits, and flawed mental models. 



62 

Only high completeness Only high soundness

    + best understanding
  of artist selection 
process

+ best perceived 
benefits + best understanding of 

song selection process
- risk of focusing on one  
complex explanation &
    ignoring others

- highest mental 
demand

+ best mental 
model fidelity

- highest perceived 
costs

- more requests for 
clarification+ most trust in 

   explanations

+ lowest 
perceived costs

- reduced trust
    in explanations

Figure 4.14: The benefits (bold) and costs (italics) of our highest completeness and 
highest soundness treatments. All of the benefits required high completeness (left 
and middle), but many of the costs were only observed when soundness was high but 
completeness was low (right). 

Overall, we found that presenting explanations in a sound and complete manner is a 

surprisingly good design choice, even for relatively low-benefit learning systems such as 

media and product recommenders. Indeed, we saw a slightly negative relationship be­

tween mental model fidelity and user satisfaction with the recommendations, suggesting 

that the hope of improving even such low-benefit system may be sufficient motivation for 

users to learn more about the system. However, if a designer’s user testing of a learning 

system reveals that its target audience believes such explanations are not worth attending 

to, our findings suggest that reducing soundness while preserving completeness will 

improve the cost/benefit ratio of attending to explanations. Figure 4.14 summarizes 

what tool designers may expect to see when presenting end users (like our participants) 

with explanations that are very sound, very complete, or both. 
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4.6 Conclusion 

Part of enabling end users to personalize their machine learning systems is explaining 

these systems to users well enough for them to build high-fidelity mental models. In this 

chapter we considered two dimensions of explanations—soundness and completeness— 

and explored how each impacts end users’ mental model fidelity, their perceptions 

of the cost/benefit trade-off of attending to these explanations, and their trust in the 

explanations. Among our findings were: 

RQ4.1 (Soundness and completeness): Our most complete explanations (as in HH 

and LSHC) were associated with the best mental models; reduced completeness 

was the shared feature of the two worst-performing treatments (HSLC and MM). 

Soundness was also important—three of the four participants with the best mental 

models were part of the high-soundness, high-completeness treatment. The poor 

performance of the high-soundness, low-completeness treatment, however, sug­

gests that explanations should not focus on accurately explaining only a small part 

of a complex system (soundness); they must also explain how the larger system 

operates (completeness). 

RQ4.2 and RQ4.3 (Explanations and obstacles): Participants had more difficulty un­

derstanding the learning system’s reasoning process than the features it used, 

but abstract explanations of the model intelligibility type helped overcome this 

obstacle. However, participants appeared to prefer more concrete explanations 

(recall Figure 4.11). Finding a way to present intelligibility types, especially the 

model type, in a concrete manner may help to draw user attention to them. 

RQ4.4 (Costs and benefits): Our most complete explanations were associated with the 

highest perceived benefits and lowest perceived costs of learning about the system; 

completeness even helped moderate the cost of very sound explanations (as in the 

HH condition). 

RQ4.5 (Trust): Participants correctly perceived that the LSHC explanations were un­

sound, but also refused to trust that these explanations were complete. Participants 

placed the most trust in HH explanations. Designers who intentionally reduce the 

soundness or completeness of their system’s explanations risk a user base who will 

not trust—and thus, will not attend to—these explanations. 
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These findings suggest that many popular machine learning systems offer explana­

tions that are too low in fidelity to enable users to understand how they work, and show 

how different intelligibility types (e.g., why, model, inputs, etc.) can increase explanation 

fidelity, and with it the fidelity of users’ mental models. Further, our cost/benefit results 

show that users want to learn more about these systems if their effort is rewarded with 

the ability to improve the system’s predictions or recommendations. Thus, increasing 

explanation fidelity can be a win/win for end users—motivated users can build a high-

fidelity mental model of their machine learning systems, and as Chapter 3 demonstrated, 

such users can then employ their knowledge to efficiently personalize each system’s 

reasoning. In the following chapters we shall test this hypothesis by designing and 

evaluating an explanation-centric approach based upon these findings. 



65 

Chapter 5: Explanatory Debugging and EluciDebug 

5.1 The principles of Explanatory Debugging 

This thesis has shown the potential value of helping users build high-fidelity mental 

models (Chapter 3) and studied the impact of different types and fidelities of expla­

nation content on mental model development (Chapter 4). We now build upon these 

findings to propose a new explanation-centric approach—Explanatory Debugging1—for 

personalizing interactive machine learning systems. 

The crux of Explanatory Debugging is the thesis that building a better mental model 
allows for better debugging. Thus, the first goal of our approach is to help end users build 

better mental models of a machine learning system. The second goal is to support user 

feedback that will efficiently adjust the learning system’s reasoning. We hypothesize that 

Explanatory Debugging will help users understand the underlying reason for each of the 

learning system’s mistakes, allowing users to then directly fix that incorrect reasoning. 

Explanatory Debugging is defined by two principle features: the ability of the end 

user to view a machine-generated explanation of why the learning system made each 

prediction (explainability), and the ability of the end user to correct each explanation if 

he or she disagrees with the learning system’s reasoning (correctability). These features, 

in turn, are defined by the following principles: 

1. Explainability: Accurately explain the machine learning system’s reasoning. 

Our first principle for Explanatory Debugging is Explainability: accurately explain 

the learning system’s reasons for each prediction to the end user. This principle 

builds upon our Chapter 3 finding that users who built better mental models while 

interacting with the learning system were better able to personalize its reasoning. 

In a similar vein, other research has found that including explanations of a learning 

system’s predictions helps users to better personalize the system, though these 

1We say “debugging” because we view personalization of a machine learning system as an end user 
debugging problem: the user is trying to adjust the computer’s reasoning to correct mistakes or support 
new situations. 
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works did not explore whether the explanations also helped to improve users’ 

mental models (Kulesza et al., 2010; Kapoor et al., 2010; Bostandjiev et al., 2012). 
Without explanations, however, research has shown that users struggle to build 

accurate mental models of such systems (Chapter 3; Tullio et al., 2007; Lim et al., 

2009). This suggests in situ explanations are a necessary condition to help end users 

learn how a machine learning system operates. To help users build high-fidelity 

mental models of the learning system, these explanations should observe the 

following principles: 

1.1 Be iterative. 

The results of Chapter 3 suggest that end users can best personalize a learn­

ing system if they build their mental model while interacting with it. Thus, 

explanations need to support an iterative learning process—designers should 

not expect a single explanation to suffice (e.g., a video explaining the learning 

system’s model, or a long textual description of how the system works). 

Instead, iterative explanations should be concise, easily consumable “bites” 

of information. If a user is interested in learning more about the system, 

he or she can attend to many of these explanations to iteratively build a 

higher-fidelity mental model. 

Explanations can be made iterative via layering, in which the initial 

explanation is concise but gives the user the option to view a more detailed 

explanation on-demand (Storey et al., 1999). Even without layering, however, 

explanations can fulfill this principle if they allow the user to direct his or her 

own learning in situ. For example, if each of a learning system’s predictions 

is accompanied by a brief explanation, a curious user could examine several 

explanations in order to identify common themes that may illustrate the 

system’s general decision-making process. 

1.2 Be sound. 

Recall that we define soundness as “the extent to which each component of 
an explanation’s content is truthful in describing the underlying system”, so 

a sound explanation is not simplified by explaining the model as if it were 

less complex than it actually is. In Chapter 3 we found a linear correlation 
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between the improvement of a user’s mental model and their ability to control 

the learning system as desired, suggesting that the more someone learns 

about the underlying system while interacting with it, the better they will 

be able to control it. Further, Chapter 4 details the impact of explanation 

fidelity on mental model development, finding that users did not trust—and 

thus, were less likely to attend to—the least sound explanations. Because 

reducing soundness reduces both the potential utility of the explanation 

and the likelihood that users will invest attention toward it, Explanatory 

Debugging entails designing explanations that are as sound as practically 

possible. 

One method for evaluating explanation soundness is to compare the 

explanation with the learning system’s mathematical model. How accurately 

are each of the model’s terms explained? If those terms are derived from more 

complex terms, is the user able to “drill down” to understand those additional 

terms? The more these explanations reflect the underlying model, the more 

sound the explanation is. 

1.3 Be complete. 

Recall that we define completeness as “the extent to which all of the underlying 

system is described by the explanation”, so a complete explanation does not 

omit important information about the model. In Chapter 4, we found that end 

users built the best mental models when they had access to the most complete 

explanations. These explanations informed users of all the information the 

learning system had at its disposal and how it used that information to make 

predictions or recommendations. Also pertinent is work showing that users 

often struggle to understand how different parts of the system interact with 

each other (Kulesza et al., 2011). Complete explanations that reveal how 

different parts of the system are interconnected may help users overcome this 

barrier. 

One method for evaluating completeness is via Lim and Dey’s intelligibility 

types (Lim and Dey, 2009), with more complete explanations including more 

of these intelligibility types. 
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1.4 But don’t overwhelm. 

Balanced against the soundness and completeness principles is the need 

to remain comprehensible and to engage user attention. Our findings from 

Chapter 4 suggest that one way to engage user attention is to frame explana­

tions concretely, such as referencing the predicted item and any evidence the 

learning system employed in its prediction. In some circumstances, selecting 

a more comprehensible machine learning model may also be appropriate. 

For example, a neural network can be explained as if it were a decision tree 

(Craven and Shavlik, 1997), but this reduces soundness because a different 

model is explained. Similarly, a model with 10,000 features can be explained 

as if it only used the 10 most discriminative features for each prediction, 

but this reduces completeness by omitting information that the model uses. 

Alternative approaches that embody the Explanatory Debugging principles 

include selecting a machine learning model that can be explained with little 

abstraction (e.g., Szafron et al., 2003; Lacave and Díez, 2002; Stumpf et al., 

2009) or using feature selection techniques (Yang and Pedersen, 1997) in 

high-dimensionality domains to prevent users from struggling to identify 

which features to adjust (as happened in (Kulesza et al., 2011)). 

2. Correctability: The explanation is the feedback mechanism. 

Our second top-level principle for Explanatory Debugging is Correctability: allow 

users to explain corrections back to the learning system. To enable an iterative cycle 

of explanations between the system and the user, in Explanatory Debugging the 

machine-to-user explanation should also serve as the user-to-machine explanation. 

Research suggests that to elicit corrections from users, this feedback mechanism 

should embody the following principles: 

2.1 Be actionable. 

Both theory (Blackwell, 2002) and prior empirical findings by ourselves 

(Chapter 3) and others (Bunt et al., 2012) suggest end users will ignore 

explanations when the benefits of attending to them are unclear. By making 

the explanation actionable, we hope to lower the perceived cost of attending 

to it by obviating the need to transfer knowledge from one part of the user 

interface (the explanation) to another (the feedback mechanism). Actionable 
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explanations also fulfill three aspects of Minimalist Instruction (van der 

Meij and Carroll, 1998): (1) people are learning while they perform real 

work; (2) the explanatory material is tightly coupled to the system’s current 

state; and (3) people can leverage their existing knowledge by adjusting the 

explanation to match their own mental reasoning. As Minimalist Instruction 

has been successfully applied to complex problem domains (e.g., learning a 

programming language (Rosson et al., 1990)), we hypothesize that actionable 

explanations embodying aspects of Minimalist Instruction will likewise help 

users problem solve in the domain of machine learning. 

2.2 Be reversible. 

A risk in enabling users to provide feedback to a machine learning system 

is that they may actually make its predictions worse (e.g., Stumpf et al., 

2009; Kulesza et al., 2010). Being able to easily reverse a harmful action can 

help mitigate this risk. It may also encourage self-directed tinkering, which 

can facilitate learning (Rowe, 1973). When combined with Principle 2.1 (Be 

actionable), reversibility also fulfills a fourth aspect of Minimalist Instruction 

(van der Meij and Carroll, 1998): help people identify and recover from errors. 

2.3 Always honor user feedback. 

As Yang and Newman found when studying users of learning thermostats 

(Yang and Newman, 2013), a system that appears to disregard user feed­

back deters users from continuing to provide feedback. However, methods 

for honoring user feedback are not always straightforward. Handling user 

feedback over time (e.g., what if new instance-based feedback contradicts 

old instance-based feedback?) and balancing different types of feedback 

(e.g., instance-based feedback versus feature-based feedback) requires careful 

consideration of how the user’s feedback will be integrated into the learning 

system. 

2.4 Incremental changes matter. 

In Chapter 4, participants claimed they would attend to explanations only if 
doing so would enable them to more successfully control the learning system’s 
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predictions. Thus, continued user interaction may depend upon users being 

able to see incremental changes to the learning system’s reasoning after each 

interaction (i.e., overcoming the gulf of evaluation that exists between a user’s 

mental model and a system’s actual state (Norman, 2002)). This principle is 

also related to Principle 1.1 (Be iterative) because our thesis is that users will 

develop better mental models iteratively, requiring many interactions with the 

learning system. These interactions may not always result in large, obvious 

changes, so being able to communicate the small, incremental changes a 

user’s feedback has upon a learning system may be critical to our approach’s 

feasibility. 

We next present a prototype that embodies the above principles in the domain of 

text classification. 

5.2 EluciDebug: A prototype instantiating Explanatory Debugging 

We instantiated the Explanatory Debugging principles in EluciDebug, a text classi­

fication prototype we developed to evaluate the approach’s effectiveness. We chose 

text classification because (1) many real-world systems require it (e.g., spam filtering, 

news recommendation, serving relevant ads, search result ranking, etc.) and (2) it can 

be evaluated with documents about common topics (e.g., popular sports), allowing 

a large population of participants for our evaluation. We designed EluciDebug to 

look like an email program with multiple folders, each representing a particular topic. 

The prototype’s machine learning component attempts to automatically classify new 

messages into the appropriate folder. 

By embodying the Explanatory Debugging principles set forth in Section 5.1 we 

ensured that the design of EluciDebug was grounded in theory, but we also needed 

to ensure that its design worked well in practice. Thus we employed a participatory 

design methodology (Shneiderman and Plaisant, 2010) to test our ideas for instantiating 

Explanatory Debugging. For each design iteration we ensured that the prototype em­

bodied the principles of Explanatory Debugging (Section 5.1), then we asked an end 

user to accomplish several tasks with the prototype. The initial iterations involved paper 

prototypes to encourage rich participant feedback; Figure 5.1 shows one such paper 
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prototype from early in the design process. A researcher observed participants and noted 

each of their suggestions and any misunderstandings or problems they encountered, then 

incorporated possible solutions into the next iteration. The paper prototypes successfully 

elicited major suggestions for refinement, such as allowing the user to see a message 

and the explanation for its prediction simultaneously, consolidating the three tabs of 

the Important words explanation into a single view, and adding indictors to highlight 

incremental changes. Participants’ suggestions and misunderstandings grew steadily 

less with each iteration, so after four iterations we implemented a high-fidelity prototype 

in C# and the .NET Framework. 

We conducted additional usability tests with our high-fidelity prototype, though 

as expected, the feedback about our high-fidelity prototype focused on progressively 

more minor behavioral adjustments. For each test, an end user was given a short tutorial 

on the EluciDebug user interface, then asked to make its predictions as accurate as 

possible. A researcher observed each test and took notes about how participants used 

the prototype. We revised the prototype after each test to resolve participants’ problems. 

The final prototype—following four iterations—is shown in Figure 5.2. 
While the principles of Explanatory Debugging primarily deal with the user interface, 

two principles place constraints on the machine learning model: (1) it must be able to 

honor user feedback in real-time, and (2) it must be explainable with enough soundness 

and completeness to allow users to build high-fidelity mental models of how it operates 

without overwhelming them. Our EluciDebug prototype uses a multinomial naive Bayes 

model (MNB) (Kibriya et al., 2004) with feature selection (Yang and Pedersen, 1997) to 

meet these constraints. Evaluating the suitability of—or changes necessary to—using 

Explanatory Debugging with other machine learning models remains an open question. 

5.2.1 The multinomial naive Bayes classifier: A brief review 

Before describing how we integrated MNB with Explanatory Debugging, we first summa­

rize how MNB operates. An MNB classifier computes the probability that a given input 

(e.g., the document being classified) has of belonging to each output (e.g., the possible 

labels). The output with the highest probability “wins” and becomes the predicted 

label for the input. For example, if an MNB classifier calculates that a document has a 

70% probability of being junk mail and a 30% probability of not being junk mail, the 
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Figure 5.1: An example of the paper prototype that participants used to provide feedback 
early in the design process. Over a dozen different variations were prepared for each 
session, allowing the researcher to show each participant how the software would 
respond to their different actions. 
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Figure 5.2: The final version of EluciDebug following eight rounds of revisions (four 
with low-fidelity prototypes and four with high-fidelity prototypes) to the initial paper 
prototype shown in Figure 5.1. (A) List of folders. (B) List of messages in the selected 
folder. (C) The selected message. (D) Explanation of the selected message’s predicted 
folder. (E) Overview of which messages contain the selected word. (F) Complete list of 
words the learning system uses to make predictions. 

document will be labeled as junk mail. The equations for computing probability, as 

defined in (Kibriya et al., 2004), are shown below. We use c to represent an individual 

class in the collection of potential output classes C, di to represent an individual 

document to classify, and assume that the only features the classifier uses are individual 

words in the set of known documents: 

Pr(c)Pr(di |c)Pr(c|di ) = (5.1)
Pr(di ) 

The term Pr(c) represents the probability that any given document belongs to class c 

and can be estimated by dividing the number of documents in c by the total number of 
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documents in the training set. The term Pr(di |c) represents the probability of document 

di given class c and can be estimated as: 

 
Pr(di |c) = Pr(wn|c)fni (5.2) 

n 

The term fni is the number of instances of word n in document di and the term 

Pr(wn|c) is the probability of word n given class c, estimated with the equation 

pnc + FncPr(wn|c) = (5.3)
N N6 6 

pxc + Fxc 
x=1 x=1 

where Fnc is the number of instances of word n in all of the training documents 

for class c, N is the number of unique words in the training documents for all classes, 

and pnc is a smoothing term (usually 1) to prevent the equation from yielding 0 if no 

documents from class c contain word wn. 

5.2.2 The Explanatory Debugging principles in EluciDebug 

5.2.2.1 Being iterative 

To help end users iteratively build better mental models, EluciDebug employs two 

strategies: (1) each explanation focuses on an individual component or aspect of the 

learning system, and (2) layered explanations are available if the user wants more 

details about certain components. For example, the Why explanation (discussed in 

Section 5.2.2.2) primarily tells users about the learning system’s reasons for making a 

specific prediction. Thus, each time the user is curious about why the system made a 

given prediction, he or she can view this explanation. Over time, the user may learn 

more about the system’s general operation by observing commonalities in the reasons for 

multiple predictions. Further, this Why explanation is layered. Part of the explanation 

shows users which words contributed to the learning system’s prediction—if the user 

wants to know more about why the system associated a particular word with the given 

topic, hovering over the word yields a tooltip that explains how the system determines 

which topic a word is associated with. 
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5.2.2.2 Being sound 

Soundness means that everything an explanation says is true. Our explanations aim 

to be sound by accurately disclosing all of the features the classifier used to make its 

prediction, as well as how each feature contributed to the prediction. EluciDebug’s 

Why explanation is responsible for communicating much of this information to users 

(Figure 5.3). 
Soundly explaining the MNB classifier requires explaining the Pr(c) and Pr(di |c) 

terms from Equation 5.1, as these are the only terms that impact the model’s predictions.2 

Because the Pr(di |c) term expands into Equation 5.2, we also need to explain how word 

probabilities for each class factor into the prediction. We can further increase soundness 

by explaining how these probabilities are calculated (i.e., by explaining Equation 5.3). 
In EluciDebug we explain the Pr(di |c) term by using a word cloud to visualize 

the difference between each feature’s probability for the two output classifications 

(Equation 5.3) as the ratio 

Pr(wn|c1)fni 
(5.4)

Pr(wn|c2)fni 

where c1 is the class with the larger probability for feature wn. We use the result to 

compute the feature’s font size, while its font color is based on the class with the larger 

probability. For example, in Figure 5.3 the word stanley is larger than tiger because its 

ratio of word probability is correspondingly larger, and it is blue because its probability 

of occurring in the hockey class is larger than its probability of occurring in the baseball 
class. Hovering over a word in this cloud shows a tooltip that explains the word’s size 

was determined by a combination of (1) how many times it appeared in each class, and 

(2) any adjustments the user made to the word’s importance (Equation 5.3). 
The second component of a sound explanation of the MNB classifier is the Pr(c) term 

from Equation 5.1. We explain this term via a bar graph visualization of the number of 

items in each class (Figure 5.3, middle). 

The top-to-bottom design of this entire Why explanation, along with the text that 

describes Part 1 and Part 2, is intended to teach the user that both word presence 

(the Pr(di |c) term) and folder size (the Pr(c) term) play a role in each of the classifier’s 
2The Pr(di ) term in the denominator of Equation 5.1 is only used to normalize the result to fall within 

the range 0–1; it does not impact the model’s prediction. 
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predictions. The result, shown at the bottom of Figure 5.3, explains how these two parts 

are combined to determine the classifier’s certainty in its prediction. 

5.2.2.3 Being complete 

Completeness means telling the whole truth. For the MNB classifier, this means not only 

explaining each of the terms from Equation 5.1, but also all of the information the 

classifier could potentially use (i.e., the entire feature set the classifier supports), where 

this information comes from (e.g., does a movie recommender include user-submitted 

tags of a movie’s genre, or only the studio’s genre description?), and how likely it is that 

each prediction is correct. To help ensure completeness, we turn to Lim and Dey’s schema 

of intelligibility types. The results of Chapter 4 suggest that a complete explanation 

should include Lim and Dey’s why, inputs, and model types. Our prior work on end-user 

testing of machine learning systems suggests that Lim and Dey’s certainty intelligibility 

type is critical for assessing the reliability of a machine learning system (Groce et al., 

2014), so we also included this type. Finally, Lim’s work suggests the usefulness of 

the what if type in scenarios where the user is attempting to change the behavior of a 

classifier (Lim, 2012), so we have included this intelligibility type as well. 

We thus designed our EluciDebug explanations to detail all of the information the 

classifier might use when making predictions, even if that information wasn’t relevant 

for the currently selected prediction. The Why explanation shown in Figure 5.3 tells 

users that both feature presence and folder size played a role in each prediction (the 

numerator of Equation 5.1). The Important words explanations (Figure 5.6) goes even 

further, telling the user all of the features the classifier knows about and may use in 

its predictions. Because it tells the user about the sources of information available to 

the classifier, this is also an instantiation of Lim and Dey’s inputs intelligibility type. To 

make it clear to users that these features can occur in all parts of the document—message 

body, subject line, and sender—EluciDebug highlights features in the context of each 

message (Figure 5.2, part C). 

In Chapter 4 we found that Lim and Dey’s model intelligibility type was associated 

with better mental models, but this intelligibility type was rarely attended to by most 

participants. To solve this dilemma, in EluciDebug we incorporated the model content 

into our Why explanation—it explains all of the evidence the classifier used, but it also 
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Figure 5.3: The Why explanation tells users how features and folder size were used to 
predict each message’s topic. This figure is a close-up of Figure 5.2 part D. 
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explains where that evidence came from (e.g., words or folder size) and how it was 

combined to arrive at a final prediction. This approach has the added advantage of 

making the potentially abstract model intelligibility type very concrete; it is now tailored 

to each specific prediction. 

A further aspect of completeness is evident in the Feature overview explanation 

(Figure 5.4). This explanation shows users how many messages contain a given feature 

and is intended to help users identify when a feature they think the computer should 

pay attention to may not be very useful. The explanation updates in real-time as the user 

types in a potential feature; users do not need to add the feature to view its potential 

impact on classifications, making this an instance of the what if intelligibility type. For 

example, one pilot participant remarked that he thought “AL” would be a useful feature 

for identifying American League baseball messages, but realized from this explanation 

that (1) some hockey players are named “Al”, and (2) the classifier wasn’t case-sensitive, 

causing it to consider the name “Al” as equivalent to the American League abbreviation 

“AL”, and so decided against adding “AL” to the list of important words. 

Finally, we also included the certainty intelligibility type. This is instantiated via the 

Prediction confidence column (Figure 5.2, part B), which reveals the classifier’s confidence 

in each of its predictions to the user. 

5.2.2.4 Not overwhelming 

To avoid overwhelming users, EluciDebug limits the initial set of features available to 

the classifier using information gain (Yang and Pedersen, 1997). Because Principle 1.3 
states that explanations should be as complete as possible, users should be able to see all 

of the classifier’s features. Given this constraint, we decided 50 would be the upper limit 

on feature set size. Offline tests, however, revealed that the F1 score of an MNB classifier 

operating on the 20 Newsgroup dataset did not improve while the feature set size 

increased from 10 to 50 (Figure 5.5), so we decided our classifier would automatically 

select only the 10 features with the highest information gain (until the user specifies 

otherwise by adding or removing features). 
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Figure 5.4: The Feature overview explanation shows users how prevalent each feature is 
in the dataset. Each shaded mark represents one message, and users can click on a mark 
to view the message. This figure is a close-up of Figure 5.2 part E. 
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Figure 5.5: Selecting the 10 highest information gain features resulted in similar classifier 
performance as larger feature sets. 
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5.2.2.5 Being actionable 

The Important words explanation (Figure 5.6) is the most actionable of EluciDebug’s 

explanations. Users can add words to—and remove words from—this explanation, which 

in turn will add those words to (or remove them from) the machine learning model’s 

feature set. Users are also able to adjust the importance of each word in the explanation 

by dragging the word’s bar higher (to make it more important) or lower (to make it less 

important), which then alters the corresponding feature’s weight in the learning model 

(this processes will be explained in more detail in Section 5.2.2.7). 
The Why explanation (Figure 5.3) is another likely candidate for actionability, but 

we have not yet made it actionable in EluciDebug. As this explanation includes only 

features extant in the selected message, it cannot replace the Important words explanation 

because doing so would interfere with our explanations’ completeness. It could, however, 

complement the Important words explanation by allowing users to directly adjust the 

importance of features responsible for the given prediction. For example, users could 

drag out from the center of a word to increase its importance, or drag in toward the 

center of the word to decrease its importance. Whether such additional actionability 

would help users, however, remains an open question. 

5.2.2.6 Being reversible 

EluciDebug includes an undo button for reversing changes to the Important words 
explanation. There is no limit on how many actions can be un-done because we want 

users to interact with the system without fear they will harm its predictions; regardless 

of how much they adjust its reasoning, they can always return to any prior state. 

5.2.2.7 Honoring user feedback 

EluciDebug allows users to provide two types of feedback: traditional instanced-based 

feedback, where the user applies a label3 to an entire item, and feature-based feedback, 

where the user tells the classifier an item should be labeled in a certain manner because 

of specific features it contains or feature values it matches. EluciDebug honors instance­

3Recall that a label is a potential output of the learning system, such as junk mail or normal mail. 
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based feedback in a straightforward manner: once the user labels an item, the classifier 

will use it as part of its training set, with no distinction between older versus more recent 

feedback. Honoring feature-based feedback, however, is more complicated. 

The smoothing term pnc from Equation 5.3 acts as a Bayesian prior, effectively adding 

some number of virtual occurrences (traditionally 1) to the number of actual occurrences 

of each word in the training data, and we can leverage it to integrate feature-based 

feedback. By allowing the user to set the value of pnc, we are letting the user increase 

the number of virtual occurrences of word n in class c. The result is a classifier that 

considers word n to be stronger evidence in favor of class c than it had before the user’s 

feedback. 

Using the smoothing term as a feature-based feedback mechanism, however, has a 

drawback: Fnc may increase as the training set size increases, causing the value of pnc to 

become a smaller component of Equation 5.3. Thus, a user’s feature-based feedback could 

account for less and less of the classifier’s reasoning as their instance-based feedback 

increased. 

To prevent a user’s feature-based feedback from degrading in importance over time, 

we developed a visual feedback mechanism (Figure 5.6) that allows users to specify how 

important their feedback should be relative to the model’s internal word probabilities 

(the F terms in Equation 5.3). The black lines on the blue and green bars in Figure 5.6 
show the model-computed probabilities for each feature, which serve as a starting point 

for feature-based feedback. Users can tell the system that the probability of seeing word 

wn in class c should be increased by clicking and dragging its bar higher, which will 

translate to an increased value for pnc. If the user later provides additional instance-based 

feedback (thus causing Fnc to change), pnc will be automatically recalculated such that 
N N6 6 

the ratios of pxc to Fxc and pnc to Fnc remain constant. 
x=1 x=1 

5.2.2.8 Revealing incremental changes 

There are many components of EluciDebug that may change after each user action, so 

to avoid confusing users with several different explanation paradigms, we designed a 

method that consistently reveals changes in terms of increases and decreases. Increases 

of any numeric value are identified by green “up” arrows, while decreasing numeric 

values are identified by red “down” arrows. Examples of each are shown in Figure 5.7. 
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Figure 5.6: The Important words explanation tells users all of the features the classifier 
is aware of, and also lets users add, remove, and adjust these features. Each topic is 
color-coded (here, blue for hockey and green for baseball) with the difference in bar 
heights reflecting the difference in the word’s probability with respect to each topic (e.g., 
the word canadian is roughly twice as likely to appear in a document about hockey as one 
about baseball, while the word player is about equally likely to appear in either topic). 
This figure is an excerpt from Figure 5.2 part F. 

Hovering over either of these arrow icons yields a tooltip detailing what just changed 

and how much it changed by, e.g., “Confidence increased by 9%”. These indicators reveal 

changes in the number of messages correctly classified in each folder, the total number 

of messages the machine learning model currently classified into each folder, and the 

confidence of each prediction. 

In addition to numeric change indicators, we also needed an ordinal change indicator 

to highlight when a message’s prediction flipped from one topic to the other. We used 

a grey background for these recently-changed predictions (Figure 5.7) and included a 

tooltip explaining that the user’s last action resulted in the message’s predicted topic 

changing. 

5.3 Conclusion 

The instantiation of the Explanatory Debugging principles presented above is one 

example how Explanatory Debugging can be implemented, but we do not intend to 

imply that all instances of Explanatory Debugging should look like EluciDebug. For 

example, a machine learning system that uses a decision tree model may need to replace 

the Important words explanation with a control flow diagram or series of if/then/else 
statements. To hold true to Explanatory Debugging principles, however, the revised 
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Figure 5.7: EluciDebug includes several devices to help users overcome the gulf of 
evaluation. The Folders explanation (left, top) shows users how many messages are 
correctly classified in each folder, while the Prediction totals explanation (left, bottom) 
shows how many messages in the “Unknown” folder are predicted as being about each 
topic. (Right) The Prediction confidence explanation shows users how certain the machine 
learning system is in each prediction. All three explanations tell the user whether the 
number has recently increased (a green up arrow) or decreased (a red down arrow), and 
a tooltip on the arrow tells users the exact magnitude of the change. 

explanation needs to accurately reflect the underlying machine learning model and be 

correctible by end users. What such explanations may look like for different learning 

models remains an open question. 
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Chapter 6: Evaluation 

To investigate Explanatory Debugging’s effectiveness with end users, we evaluated our 

approach—as instantiated in EluciDebug—via the following research questions: 

RQ6.1:	 Does Explanatory Debugging help end users personalize a classifier more effi­
ciently than instance labeling? 

RQ6.2:	 Does Explanatory Debugging help end users personalize a classifier more accu­
rately than instance labeling? 

RQ6.3:	 Does Explanatory Debugging help end users build better mental models than a 

traditional black-box machine learning approach? 

6.1 Methodology 

6.1.1 Experiment design 

We used a between-subject, single-factor experimental design to evaluate Explanatory 

Debugging. The factor we varied was experiment condition: one condition (control) 
used a variation of EluciDebug with all of its explanation and feature-based feedback 

capabilities removed (Figure 6.1), while the second condition (treatment) used the 

EluciDebug prototype described in Chapter 5. In both conditions EluciDebug was 

set up as a binary classifier that attempted to predict whether each newsgroup message 

belonged to one of two topics. 

To study the accuracy of a machine learning classifier, we need to know what its 

predictions should be—what is commonly called the gold standard or ground truth. Thus 

we can compare each prediction that the classifier makes to what the gold standard says 

the prediction should be. We also needed a dataset with a sufficient number of items in 

each category. To make manually sorting every item impractical, we decided that our 

dataset would need a minimum of 500 items per category. 
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Figure 6.1: Control participants used this variant of EluciDebug, which lacks 
explanations and feature-based feedback. 

We selected the 20 Newsgroups dataset1 because it provides a gold standard, includes 

concepts with a low degree of subjectivity (e.g., hockey, baseball, motorcycles, medicine, 

etc.), and includes 18,846 items approximately evenly distributed across its 20 concepts. 

This dataset has also been used extensively in machine learning research, giving us many 

examples of how different machine learning models perform on it. 

For this experiment we selected four concepts from 20 Newsgroups: medicine, outer 
space, hockey, and baseball (the sci.med, sci.space, rec.sport.hockey, and rec.sport.baseball 

newgroups, respectively). We used medicine and outer space as the topics for the tutorial, 

and hockey and baseball as the topics for the experiment task. Each task used two 

subgroups of a larger group of related concepts (e.g., the medicine and outer space 
subgroups are both part of the science group) to ensure that there would be some overlap 

1http://qwone.com/~jason/20Newsgroups/ 

http://qwone.com/~jason/20Newsgroups/
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in the terminology of each concept, such as how “player” and “team” may be equally 

representative of baseball or hockey. These shared terms help to make the classification 

task more challenging. 

The 20 Newgroups dataset is pre-split into two parts: training and testing. We used 

the training part to populate our prototype with messages and reserved the testing 

portion as a validation set, meaning that while participants never saw it, we used it in 

later, offline analyses to evaluate classifier accuracy. The purpose of a validation set is to 

ensure that a classifier has not overfit itself to the data it has seen, which would become 

evident by the classifier performing worse on the unseen validation set than on the data 

it had seen. 

To simulate a situation where personalization would be required because sufficient 

training data does not yet exist, we severely limited the size of the machine learning 

training set for this experiment. At the start of the experiment this training set consisted 

of 5 messages in the Hockey folder and 5 messages in the Baseball folder, with 1,185 
unlabeled messages in the Unknown folder. The small training set (10 messages) allowed 

us to evaluate a situation with limited training data, and the large amount of potential 
training data (1,185 messages) allowed us to contrast Explanatory Debugging against 

black-box instance labeling in a situation where instance labeling could be expected to 

eventually succeed. 

6.1.2 Participants and procedure 

We recruited 77 participants from the local community and university. To ensure that 

participants would have little or no prior experience with software debugging or machine 

learning, we did not accept participants who had more programming experience than 

an introductory-level college course. The average age of our participants was 23 years 

and included 27 females and 50 males. 

The experiment session was conducted in groups of up to 10 participants at a 

time. We assigned each participant to the first available experiment session that met 

their time constraints and then randomly assigned each session to either the control or 

treatment condition. A total of 37 participants experienced the control condition and 40 
participants took part in the treatment condition. 
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To ensure that our control and treatment samples were similar to one another, we 

collected demographic data from participants upon their arrival for the experiment 

session. This included information such as age, college GPA, and familiarity with the 

topics for the experimental task, as well as participants’ computer self-efficacy, which 

we assessed via the validated questionnaire in (Compeau and Higgins, 1995). We later 

analyzed this data using Wilcoxon signed rank tests and found no evidence of differences 

between our two participant groups. 

A researcher introduced participants to the prototype via a brief hands-on tutorial 

that explained how to use it, but did not discuss how it made predictions. Participants 

then had three minutes to explore the prototype on their own. To avoid learning effects 

about the topics, the tutorial and practice session involved messages about different 

topics (outer space and medicine) than the main experiment task. 

The main experiment task followed the practice session. Participants were asked to 

“make the computer’s predictions as accurate as possible” and given 30 minutes to work. 

The software logged all participant interactions and logged evaluations of its internal 

classifier at 30-second intervals. 

After the main task concluded, we assessed participants’ mental models via a 

questionnaire. This test instrument evaluated how well participants understood the two 

components that contribute to the MNB classifier’s predictions: feature presence and 

class ratios. Because feature presence can be easy to detect given certain words (e.g., the 

word “hockey” is obviously related to the concept of hockey), we evaluated participants’ 

understanding of feature presence using both “obvious” and “subtle” features. We define 

“subtle” features as words that are not normally associated with a topic, but appear in the 

classifier’s training set and thus will impact classification. Participants were given three 

short messages about two topics (swimming and tennis) and told that “these are the only 

messages the software has learned from”. Participants in the treatment condition were 

also given an Important words explanation similar to the one they saw in the prototype 

(Figure 6.2). A second sheet displayed 12 messages, each only one or two sentences long, 

and asked participants which topic the classifier would assign to each message, and 

why. To reduce the chance that participants’ mental models would improve as a result 

of extensively reflecting upon the contents of the test instrument, participants were 

given only 10 minutes to complete the mental model portion of the questionnaire. The 
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agreed basketball best no soccer sport think truly world 

Soccer Basketball 

Figure 6.2: Participants in the treatment condition saw this explanation during their 
mental model assessment, which is almost identical to the explanations they saw while 
working with the prototype (shown in Figure 5.6). 

messages were constructed such that only one component—either an obvious feature, a 

subtle feature, or class ratios—was entirely responsible for the classification. 

To understand participants’ reactions to EluciDebug, the post-task questionnaire also 

asked participants about various features of the prototype and their perceived task load 

during the experiment (via the validated NASA-TLX questionnaire (Hart and Staveland, 

1988)). All of the materials used in this study have been reproduced in Appendix A. 

6.1.3 Data analysis 

We used non-parametric methods for all statistical analyses. As suggested in (McCrum-

Gardner, 2008), we used Mann–Whitney U-tests for interval and ordinal data, and 

Spearman’s ρ for correlations. 

To analyze participants’ mental models, a researcher graded participant responses 

to the post-task mental model questionnaires. Because some participants may have 

randomly guessed which topic the classifier would predict for each message, we ignored 

all predicted topics and only graded the reason participants stated for the classifier’s 

prediction. Participants earned two points for correct reasons and one point for partially 

correct reasons. The researcher graded participant responses without knowing which 

condition the participant was in (i.e., blindly). Each participant’s points were summed to 
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Model 
component Answer mentions. . . Points 

. . . only correct keyword 

. . . only correct keyword and correct class 
imbalance 

2 

2 

Keywords 
. . . correct keyword plus something else 

. . . a keyword matches, but doesn’t specify 

. . . word similarity, but doesn’t specify 

. . . correct class imbalance answer without 
mentioning the keyword 

. . . correct keyword, but says the reason is 
something other than the word’s presence 

. . . none of the above 

1 

1 

1 

1 

1 

0 

Class imbalance 

. . . folder contains more messages 

. . . folder size plus something else 

. . . folder contains more words 

2 

1 

1 

. . . more predictions for the topic 

. . . none of the above 

1 

0 

Table 6.1: The criteria used to grade participants’ mental model questionnaire responses. 

yield a mental model score with a maximum possible value of 24. The complete grading 

criteria are listed in Table 6.1. 
We analyzed classifier performance via the F1 score. This combines two simpler 

measures, precision and recall, each of which can range from 0 to 1. In the context of 

a binary classification system that predicts whether each input is positive or negative, 

a precision of 0 indicates that none of its positive predictions were correct, while a 

precision of 1 indicates that all of its positive predictions were correct. For the same 

system, a recall of 0 indicates the classifier did not correctly identify any of the positive 

items, while a recall of 1 indicates that it correctly identified all of them. 
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As the harmonic mean of precision and recall, F1 also ranges from 0 (no precision and 

no recall) to 1 (perfect precision and recall). We calculate the F1 score by identifying the 

number of true positives (items that are positive and that the classifier predicted as being 

positive), false positive (items that are negative but that the classifier predicted as being 

positive), true negatives (items that are negative and that the classifier predicted as being 

negative), and false negatives (items that are positive but that the classifier predicted as 

being negative): 

true positives 
precision = (6.1)

true positives + false positives 

true positives 
recall = (6.2)

true positives + false negatives 

precision · recall 
F1 = 2 · (6.3)

precision + recall 

A known problem with the F1 score is that it ignores true negatives (Powers, 2011). 
As the above equations show, a classifier that has poor precision and recall for positive 

instances may perfectly predict negative instances, but its F1 score will still be very 

low—the true negatives are not referenced by any of the equations. We can alleviate this 

issue by computing two F1 scores: once as described above, then again after swapping the 

positive and negative instances. We then weight each score by the number of instances in 

its positive class and sum the results. For example, given two classes, hockey and baseball, 
we would compute an F1 score with hockey as the positive class and weight it by the ratio 

of hockey instances to baseball instances. We would then compute a second F1 score 

with baseball as the positive class, weighting the result by the ratio of baseball instances 

to hockey instances. Finally, we sum both scores together to yield a weighted F1 score 
that will range between 0 (very poor precision and recall for all classes) and 1 (perfect 

precision and recall for all classes). All F1 scores reported in this chapter are weighted 

scores. 

We supplemented our evaluation of classifier performance with an additional offline 

experiment using a separate feature selection method. Recall that EluciDebug limits its 

classifier to the 10 features with the highest information gain. Text classifiers, however, 

often include most—if not all—of the words in the training set as features. Thus, we 
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analyzed participants’ classifiers using both HighIG features and Comprehensive features. 

For control participants (who could not provide feature-based feedback), HighIG was 

recomputed after each message was labeled and kept the 10 highest information gain 

features. For treatment participants, HighIG was never recomputed; instead, partici­

pants needed to modify it manually by adding, removing, or adjusting features. The 

Comprehensive feature set included all words from the set of labeled messages at the end 

of the experiment. The classifiers participants interacted with used the HighIG features; 

the Comprehensive features were only used for offline analysis. 

In addition to evaluating classifiers using the data that participants saw, we also 

used a validation set to verify that participants’ classifiers were not overfit to their data. 

The seen dataset includes all of the messages that participants had the ability to view 

during the experiment; this includes messages that the participant labeled, as well as 

those that participants left unlabeled in the Unknown folder. The unseen dataset consists 

of a validation set that participants never saw (this is the test split of 20 Newsgroups). If 

the performance metrics show a difference between these two datasets, then we would 

have evidence that participants built classifiers overfitted to the data they interacted 

with during the experiment. 

6.2 Results 

6.2.1 Explaining corrections to EluciDebug (RQ6.1 and RQ6.2) 

EluciDebug includes several methods for users to explain corrections to the classifier, 

and treatment participants made frequent use of all of them. These participants added 

new features, removed existing features, and adjusted feature importance; the average 

numbers for each action are shown in Table 6.2. Control participants—who could not 

provide feature-based feedback—instead relied on instance-based feedback to adjust 

EluciDebug’s predictions, labeling nearly four times as many messages as treatment 

participants (Mann–Whitney U-test, W = 1395, p < .001) and examining nearly twice 

as many messages (Mann–Whitney U-test, W = 1306, p < .001). Treatment participants 

thus provided less feedback overall, and needed to explore less of the dataset while 

providing it. Instead, these participants leveraged EluciDebug’s abilities to target their 

feedback at features rather than instances. 



92 

Action Control mean (SD) Treatment mean (SD) p-value 

Features added – 34.5 (17.0) – 

Features removed – 8.2 (3.3) – 

Features adjusted – 18.3 (17.0) – 

Messages labeled 182.2 (91.8) 47.2 (46.4) < .001 

Message views 296.0 (111.2) 150.5 (78.0) < .001 

Table 6.2: The average usage of each of EluciDebug’s feedback mechanisms. The 
Features removed total includes 7.4 of EluciDebug’s 10 initial features. Overall, treatment 
participants targeted their feedback at features instead of instances. 
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Figure 6.3: Average classifier F1 improvement per user action for control (light) and 
treatment (dark); treatment participants controlled their classifiers up to twice as 
efficiently as control participants. 

This feature-based feedback proved efficient at improving participants’ classifiers. 

We examined the change in F1 for each participant’s classifier during the experiment 

and divided this by the number of actions the participant made that could influence 

the classifier’s predictions (instances labeled and features added, removed, or adjusted). 

The results, shown in Figure 6.3, were that treatment participants performed fewer 

actions, but each of their actions resulted in larger classifier improvements than those 

of control participants. Treatment participants’ feedback was twice as efficient as 

control participants’ using HighIG features (0.16% vs. 0.34% F1 improvement per action, 

Mann–Whitney U-test, W = 207, p < .001), and remained superior when using the 

Comprehensive feature set (0.65% vs. 0.97%, Mann–Whitney U-test, W = 367, p < .001). 
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Figure 6.4: Average classifier F1 scores per condition. Control participants needed four 
times as much data and the Comprehensive feature set (which included all words in the 
dataset as features) to create better classifiers than treatment participants. 
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Figure 6.5: Treatment participants (dark) created equivalent or better classifiers than 
control participants (light) using the same amount of feedback. This held for both the 
HighIG (solid) and Comprehensive (dotted) feature sets. 
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We thus have evidence that when users can only provide a limited amount of feedback 

to a learning system (such as when labeling instances is expensive, insufficient instances 

are available for labeling, or the user’s time is constrained), Explanatory Debugging can 

result in superior classifiers than a traditional black-box instance labeling approach. 

Indeed, Figure 6.4 shows that by the end of the 30-minute experiment, treatment 

participants had created classifiers that were roughly 10% more accurate than control 

participants, averaging F1 scores of 0.85 vs. 0.77 (Mann–Whitney U-test, W = 237, 

p < .001). 

However, our analysis with the Comprehensive feature set suggests that when the user 

can label many instances, instance labeling with a large feature set may be preferable to 

Explanatory Debugging—at least to initially train a classifier. The combination of a large 

training set and many features allowed control participants’ classifiers to edge out those 

of treatment participants by about 8% (Figure 6.4). Even though treatment participants’ 

feedback was up to twice as efficient, control participants provided almost four times 

as many labeled instances, allowing them to train classifiers with an average F1 of 0.94, 
while treatment participants averaged 0.87 (Mann–Whitney U-test, W = 1290, p < .001). 

To verify it was the amount of instance-based feedback that allowed control par­

ticipants to outperform treatment participants when Comprehensive features were con­

sidered, we analyzed the accuracy of their classifiers after the same number of actions 

had been performed. Figure 6.5 shows the F1 scores after n feedback actions using the 

HighIG (solid line) and Comprehensive (dotted line) feature sets. Given the same number 

of actions, control participants never outperformed treatment participants. This suggests 

that when treatment participants did provide instance-based feedback (which was the 

only type of feedback used for the Comprehensive analysis), it was usually more useful 

than control participants’ feedback. 

Table 6.3 presents the average F1 scores for the four combinations of feature set and 

dataset we employed in our study and offline experiments. As the table shows, we found 

no evidence that participants overfit their classifiers to the data they saw during the 

study—their classifiers performed similarly on both the seen and unseen datasets. 

We also analyzed participant reactions to the two prototype variations. Treatment 

participants liked their variant more than control participants, rating its helpfulness 

as 4.8 vs. 4.3 on a 6-point scale (Mann–Whitney U-test, W = 474, p = .006). Further, we 

did not find evidence that treatment participants felt Explanatory Debugging involved 
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Dataset Feature set Control F1 (SD) Treatment F1 (SD) p-value 

Seen HighIG 0.77 (0.07) 0.85 (0.04) < .001 

Unseen HighIG 0.76 (0.06) 0.84 (0.04) < .001 

Seen Comprehensive 0.94 (0.03) 0.87 (0.06) < .001 

Unseen Comprehensive 0.93 (0.03) 0.86 (0.06) < .001 

Table 6.3: Average classifier accuracy for different datasets and feature selection methods. 
Bold denotes the significantly highest value between conditions. 

more work than black-box instance labeling. We used the NASA-TLX survey to measure 

participants’ perceived task load while attempting to improve their classifier, but found 

no evidence of a difference between conditions. 

These classifier measures reveal three findings. First, in situations where large 

amounts of training data is unavailable or expensive to obtain, Explanatory Debugging 

(as instantiated in EluciDebug) allows users to successfully train a classifier by telling 

it about features instead of instances. Second, the mix of feature- and instance-based 

feedback provided by treatment participants was more efficient than the purely instance-

based feedback provided by control participants, suggesting that when an end user 

has a specific goal in mind (such as our Alice example from Chapter 1), Explanatory 

Debugging can help the user quickly realize his or her goal. 

Third, control participants’ success with using large amounts of instance-based 

feedback suggests that in domains where labeling instances is quick and practical, some 

combination of feature- and instance-based feedback may be best. In fact, such systems 

may need to emphasize the potential usefulness of labeling instances. In our experiment, 

the mere presence of feature-based feedback tools appears to have biased participants 

against instance-based feedback: 3 treatment participants did not provide any at all, 

while the smallest number of labeled instances from a control participant was 56—more 

than even the treatment average of 47 labeled instances. 
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Model component Max 
score 

Control 
mean (SD) 

Treatment 
mean (SD) p-value 

Obvious features 8 6.7 (2.7) 7.3 (1.8) .345 

Subtle features 8 2.8 (2.6 ) 6.8 (1.9) <.001 

Class ratios 8 0.6 (1.5) 1.8 (3.0) .099 

Total score 24 10.4 (5.3) 15.8 (4.6) <.001 

Table 6.4: Treatment participants finished the experiment with significantly higher 
mental model scores than control participants. 

6.2.2 EluciDebug’s explanations to end users (RQ6.3) 

Before users can correct a machine learning system’s explanation of its reasoning, they 

must first understand the explanation. This understanding is reflected in their mental 

model. 

Treatment participants built significantly better mental models than participants 

in the control condition. As shown in Table 6.4, treatment participants scored 52% 

higher on the mental model assessment than control participants (Mann–Whitney 

U-test, W = 259, p < .001). Much of this difference stems from treatment participants 

identifying all of the keywords the classifier used, while control participants often 

identified only the “obvious” keywords. In fact, treatment participants averaged a 

score of 14.1 out of 16 (88%) during the keyword assessment, suggesting they firmly 

understood how the classifier involved keywords—regardless of whether the words had 

any semantic association with their topics—in its reasoning. 

Table 6.4 also suggests treatment participants may have better understood that the 

classifier used class ratios as part of its prediction strategy than participants in the control 

condition (Mann–Whitney U-test, W = 619.5, p = .099), but the evidence is weak—even 

among treatment participants, the mean score was only 1.8 out of 8. Further, a majority 

of participants in both conditions failed to answer any class ratio question correctly, 

suggesting that this explanation either failed to convey relevant information about how 

class ratios were used by the classifier, or failed to attract participants’ attention. 
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In general, however, control participants wanted the same information available to 

the treatment group. As one participant stated: 

C1: “More information on how emails are sorted would help the user target emails 
to categorize, which would increase accuracy.” 

Another control participant (C15) described the software as “annoying”, but that 

working with it “would have been easier if we knew how it made predictions”, while still 

another (C4) said it was annoying to work with because he “didn’t know what it was 
basing its predictions off of”. A fourth participant (C11) even asked for a similar feedback 

mechanism as was available to treatment participants, saying the software was “time­
consuming” because there was “no way to highlight key words/terms”. A fifth control 

participant succinctly summed up the entire experience: 

C30: “That was a long 30 minutes.” 

Participants in the treatment condition, conversely, voiced appreciation for EluciDebug’s 

explanations and feedback mechanisms: 

T24: “Not difficult to understand/operate, doesn’t take a lot of effort.” 

T40: “It was really fast to get a high degree of accuracy.” 

T37: “I felt in control of all the settings.” 

T6: “It was so simple my parents could use it.” 

Overall, our principled Explanatory Debugging approach successfully helped partic­

ipants develop accurate mental models of the classifier they used, and participants bene­

fited from this additional knowledge. Spearman’s ρ confirms a significant correlation 

between participants’ mental model scores and their classifier’s F1 scores (Spearman’s 

rank correlation coefficient, ρ[75] = .282, p = .013). 
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6.3 Discussion 

6.3.1 Efficient and accurate personalization 

Our results suggest that Explanatory Debugging can be an efficient method for users to 

personalize a machine learning system, but that it may not always result in the most 

accurate classifiers. For example, we found that feature-based feedback was up to twice 

as effective as instance-based feedback, but instance labeling could still yield more 

accurate classifiers given enough labels and features (in our experiment, four times as 

many labels were needed). In situations where labeling instances is considerably easier 

or faster than providing feature-based feedback, users may be better served by labeling 

a large number of instances than a small number of features. 

However, when users need fine-grained control over a classifier, Explanatory De­

bugging has two advantages beyond efficiency. First, it does not require that training 

data exist, and thus can be used to bootstrap a learning system. Even a trained system 

that suddenly needs to support a new output type may benefit from such bootstrapping. 

Second, the quick improvements—during even the first 10 user actions—treatment 

participants made to their classifiers suggest that users will remain engaged with 

Explanatory Debugging. This matters because research has shown that if an end-user 

debugging technique is not perceived as useful after a small number of interactions, 

users are unlikely to continue using it (Prabhakararao et al., 2003). Seeing an immediate 

improvement after providing feedback suggests that users will continue to view and 

correct the Explanatory Debugging explanations, while the lack of such an improvement 

may discourage users of black-box instance labeling systems from continuing to provide 

feedback. 

6.3.2 Mental models 

Not only did Explanatory Debugging help participants build useful mental models, it 

accomplished this without a perceived increase in task load. Much as in our study of 

AuPair Radio in Chapter 3, we found no evidence that treatment participants found the 

extra information or feedback mechanisms more difficult to understand or use; instead, 

treatment participants’ responses suggest they appreciated having such information 

available. 
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Indeed, the fact that many control participants’ requested explanations remarkably 

similar to those the treatment participants saw suggests the need for machine learning 

systems to be able to explain their reasoning in accordance with Explanatory Debugging’s 

Explainability principle. Even if this information is hidden by default, users should be 

able to view such explanations on demand. Further, because machine learning systems 

are meant to classify items as their user would, the user must have some method 

to correct the system’s mistakes. Thus, we hypothesize that including Explanatory 

Debugging-style explanations without also supporting our Correctibility principle will 

frustrate users—they would be able to see what needs correcting, but without a clear 

mapping to the actions they need to take. 

6.4 Conclusion 

Overall, Explanatory Debugging’s cycle of explanations—from the learning system 

to the user, and from the user back to the system—resulted in smarter users and 

smarter learning systems. Participants using Explanatory Debugging understood how 

the learning system operated about 50% better than control participants, and this 

improvement was positively correlated with the F1 scores of participants’ classifiers. 

Each piece of feedback provided by Explanatory Debugging participants was worth 

roughly two pieces of feedback provided by control participants; even when we ex­

panded our analysis to include a comprehensive feature set, treatment participants still 

maintained a 50% efficiency edge over the control group. Further, participants liked 

Explanatory Debugging, rating this variant of EluciDebug higher than the control group 

and responding enthusiastically to the system’s explanations. 
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Chapter 7: Conclusion 

Without personalization, classifiers and recommenders are simply static tools, incapable 

of adapting to new inputs or a user’s shifting expectations of its outputs. Spam filters 

would not adapt to new types of junk mail. Netflix would not detect your shifting taste 

is movies. Banks would have difficulty identifying anomalous activity on your credit 

cards as your spending habits change. 

Even when they support personalization, however, many machine learning systems 

treat it as something that happens in the background. Users provide the system with 

new labeled instances (e.g., by moving email to the junk folder, or by rating a movie 

on Netflix), but they are not told how the system has updated itself in response to 

this new information. This dissertation has argued that users need more fine-grained 

control in situations where this traditional instance-based approach breaks down—when 

personalization must happen quickly, when an insufficient amount of training data exists, 

when the user’s concept has evolved, or when the user needs a better understanding of 

how the learning system makes its predictions. 

As this dissertation has shown, a key concept of helping end users personalize a 

machine learning system is to help them understand how it operates. Our research 

found that as users improved their mental models of a learning system, they were better 

able to personalize it to suit their needs. Moreover, we discovered that helping users 

build high-fidelity mental models is surprisingly feasible, and that end users were not 

intimidated or put-off by explanations of how the learning system operates “under the 

hood”. Instead, high-fidelity mental models were tied to increased computer self-efficacy, 

which suggests that these users will be more perseverant than users holding low-fidelity 

mental models if they encounter barriers while personalizing their learning systems. 

Helping users develop high-fidelity mental models is challenging because machine 

learning systems can use a dizzying amount of material to reach their predictions and 

recommendations. We had initially hypothesized that machine-generated explanations 

of this process would need to be somewhat abstracted—but not too much—in order to 

help end users build useful mental models. However, our qualitative investigation of 
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explanation fidelity suggested that explanations should be both as sound and complete 

as possible in order to help users build high-fidelity mental models; that very complete 

explanations can help improve the perceived cost/benefit trade-off of attending to 

explanations; and that very sound explanations were perceived as more trustworthy 

than very unsound explanations. Our research also revealed that Lim and Dey’s why, 

input, and (especially) model intelligibility types were often referenced when participants 

made correct statements about the learning system’s reasoning, while the certainty 

intelligibility type was largely ignored. These intelligibility types provide a systematic 

method for increasing the completeness of a system’s explanations. 

Given these promising results, we developed a new approach for controlling machine 

learning systems. We used the findings from our investigations of mental models and ex­

planation fidelity to inform the design of Explanatory Debugging, an explanation-centric 

approach to help end users efficiently personalize their learning systems. Explanatory 

Debugging is based upon a two-way cycle of interactive, context-sensitive explanations: 

the learning system explains the reasons underlying its predictions or recommendations 

to the user, who can then explain any necessary corrections back to the system. Our em­

pirical evaluation of Explanatory Debugging found that both halves of this cycle worked 

as intended—users of our Explanatory Debugging prototype developed significantly 

better mental models than users of a traditional black-box learning system, and they also 

personalized their learning systems’ reasoning significantly more efficiently. Further, 

users reacted more enthusiastically to Explanatory Debugging than to a traditional 

machine learning system, and we found no evidence that personalization via Explanatory 

Debugging—with its high-fidelity explanations—was perceived as more mentally taxing 

than trying to understand and personalize a black-box learning system. 

Together, the results of this dissertation show that when end users want to personalize 

a machine learning system, Explanatory Debugging is a more controllable and satisfying 

approach than black-box instance labeling. Our approach’s focus on users—in which the 

system explains its reasoning and the user explains back corrections as needed—enables 

everyday users to get the most out of the learning systems upon which they are beginning 

to depend. 
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Appendix A: EluciDebug study materials 

This appendix presents the materials used in our study of EluciDebug (Chapter 6). The 

first five pages present the tutorial we used to introduce participants to EluciDebug. 

Text highlighted in green explains what participants saw via a projector. Text highlighted 

in blue was only provided to treatment participants, while text highlighted in salmon 

was only provided to control participants. 

We next present the background, pre-task, and post-task questionnaires. Because 

treatment participants used a different variant of EluciDebug than control participants, 

there are condition-specific variants of the pre- and post-task questionnaires. For each 

questionnaire, we present the control variant before the treatment variant. 

Finally, we also include the answer keys for our mental model assessments. These 

answers list either the specific keyword responsible for the classifier’s prediction, or 

“class imbalance” if the prediction was determined by class ratios instead of keyword 

presence. 



  

Message Predictor Tutorial 
Hi, my name is [your name], and I’ll be walking you through our study. [Introduce the 
rest of the study team]. If your cell phone is on, please set it to silent mode. 

I’ll be reading from this script to be consistent in the information I provide you and the 
other people taking part in this study. Please don’t discuss this study with anyone, as we 
don’t want other participants to receive any advance information. During this tutorial, 
please follow along with my directions and don’t explore the system by yourself yet. 

This study is about working with software that makes predictions. For example, most 
email software makes predictions about whether each new message is important, or junk 
mail. The software will typically learn—based on your behavior—which types of 
messages you think are important, and which you think are junk. 

Today I’ll show you a tool that tries to predict whether new messages are about one of 
two topics. For this tutorial, the topics will be medicine and outer space. The messages 
that we’ll look at were collected from Internet forums in 1994, so they’re real messages, 
but way out of date. Let’s click “OK” to start the application. 

[Click “OK” and wait for the application to start] 

Alright, let’s go over the different parts. 

In the upper-left, there’s a list of folders [Hover mouse around folder list]. There are only 
three, and you can’t change them. The first is “Unknown”, which has over 1,000 
messages in it. Those messages are shown in the middle of the screen. The selected 
message is shown on the right side of the screen. 

The second folder is “Medicine” and has 10 messages in it. Let’s select that folder to 
view those messages [Click on Medicine folder]. Notice that this folder tells us that 
currently all 10 messages are correctly predicted as being about “medicine” [Hover 
around “10/10 correct predictions”]. 

The third folder is “Space” and also has 10 messages in it. Let’s select it [Click on Space 
folder]. This folder tells us that only 8 of the 10 messages are correctly predicted. If we 
look at the “Predicted topic” column in the message list, we can see which messages the 
computer is wrongly predicting; their predicted topic is “Medicine” instead of “Space” 
[Hover mouse around incorrect predictions]. Notice that these topics are color-coded, 
with teal for “space” and red for “medicine”. 

Now let’s go back to the “Unknown” folder [Click on Unknown folder]. These message 
all have a predicted topic as well [Hover mouse around “Predicted topic” column]. We 
can sort the messages by their predicted topic by clicking the column header, like this 
[Click “Predicted topic” header to sort messages]. Now all of the messages that the 
computer thinks are about medicine are at the top of the list. If we scroll down, we’ll see 
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that all of the messages the computer thinks are about space are at the bottom [Scroll 
down to the very bottom of the list]. 

We can also sort the messages by Subject. Let’s click on the “Subject” column header to 
do that [Click “Subject” header to sort messages]. 

There’s also a column showing how confident the computer is about its prediction [Hover 
mouse around Prediction Confidence column]. This can range from 99%, which means 
the computer is very confident in its prediction, to 50%, which means the computer is just 
guessing. Just like the other columns, we can also sort messages by confidence. Let’s do 
that now [Click “Prediction Confidence” header to sort messages]. This puts all of the 
very unconfident messages at the top of the list, and the most confident messages at the 
bottom [Scroll down to the very bottom of the list]. 

If you want to return to the original sort order, you can do that by clicking the “Original 
order” column. Let’s do that now [Click “Order” header to sort messages]. Let’s also 
scroll all the way back to the top of the list [Scroll to top of message list]. 

Now this is really important. The predictions that the computer makes may not be 
correct. In fact, the purpose of this software is to try to improve the computer’s 
predictions by giving it more information. You can do that / One way to do that is by 
moving messages to the “Medicine” or “Space” folder, which will tell the computer to 
learn from those messages. To see how that works, let’s select the “NASA Wraps” 
message [Select message]. 

With a word like “NASA” in the subject, it’s probably a safe bet that this message is 
about outer space. If you weren’t certain, you can always read as much—or as little—of 
the message as you’d like. If you think the computer should learn more about a topic 
from this message, we can move it to either the “Space” or “Medicine” folder. To do that, 
make sure the message is selected and click the “Move message to folder…” button 
[Click button and hover over “space”, but don’t select it].  

You can use this button to move a message into any folder. You’re free to move as many, 
or as few, messages into each folder as you like. You don’t need to move every message 
into a folder. For now, let’s go ahead and move this message into the “Space” folder 
[Move message to “space”]. 

Now that we’ve told the computer to learn from this message, a few things have changed. 
First, you may have noticed that the predicted topic for many messages in the Unknown 
folder changed from medicine to space, or vice versa [Hover around the “Predicted topic” 
column]. When the computer changes its prediction for a message, the predicted topic 
will have a grey background, like these. Second, the number of correct predictions for 
Medicine and Space have changed [Hover around Medicine and Space folders]. Medicine 
used to have 10 correct predictions, while Space only had 8. Now all of the Space 
predictions are correct, but one Medicine prediction is wrong / four of the Medicine 
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predictions are wrong. These green “up” arrows and red “down” arrows tell you whether 
a number just increased or decreased; you can hover over them to see the exact change 
[Mouse over the red arrow next to “Medicine” until the tooltip appears]. Below the 
Folder List you can see the total number of messages the computer predicts are about 
each topic [Hover mouse around Prediction Totals]. Here we see that the computer 
currently predicts that 179 messages are about medicine, while over 1,000 messages are 
about space. Adding that one message to the Space folder helped the computer improve 
its predictions about Space, but at the cost of its predictions about Medicine. 

So, moving messages into the Medicine or Space folders may help you improve the 
computer’s predictions, and it also allows you to see how accurate those predictions are. 
There’s no limit on how many messages may be in each folder. 

Another way for you to improve the computer’s predictions is to adjust the Important 
Words that it pays attention to. These are listed at the bottom of the screen [Hover mouse 
around Important Words section]. Each of these words will also be highlighted in blue in 
messages [Hover mouse around highlighted words in message]. You can add new words 
or phrases, remove existing words, or adjust the relative importance of words. 

For practice, let’s click on “Steve” [Click “Steve” in important words list]. When we 
select a word, we get an overview of all the messages that contain this word in the lower-
left of the screen [Hover mouse around Messages Containing Steve section]. This shows 
that “Steve” occurs in 3 of the 10 messages in our Medicine folder [Hover mouse around 
Medicine in heatmap], but none of the messages in our Space folder [Hover mouse 
around Space in heatmap], and another few dozen messages that are still in the Unknown 
folder [Hover mouse around Unknown in heatmap]. 

My first thought is that the word “Steve” probably doesn’t have much to do with 
medicine, but we can click on each message to see how the word is used. Let’s click the 
first highlighted message in Medicine [Click first message in medicine heatmap]. The 
word will be highlighted in light blue, but we may need to scroll through the message to 
find it [Scroll down to end of message]. So this message was sent by someone named 
Steve. Let’s look at the next two messages [Click on the next two messages in the 
medicine heatmap, slowly enough for participants to see that Steve is the name of the 
person who sent each message]. It looks like the computer noticed that someone named 
Steve sent three messages about Medicine, and no one named Steve sent any messages 
about Space. Let’s click “Close” to go back to the main window [Close dialog window]. 

I can’t think of a reason why Steve should be more important to Medicine than Outer 
Space, so let’s remove “Steve” as an important word [Click on “Remove Steve” button]. 
Checkout what happened to the Medicine folder—its accuracy dropped down to 5 out of 
10 messages [Hover over down arrow next to Medicine]. Let’s click on that folder to look 
at some of its messages [Click on the Medicine folder]. So this first message has the 
subject “Too many MRIs”. “MRIs” seems like it might be an important word about 
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medicine. Let’s click “Add a new word or phrase” to add it [Click “Add a new word or 
phrase” button]. 

We’ll type in “MRIs” [Slowly type “MRIs”]. Notice that we include the ‘S’ on the end, 
and that as we type it, we can see it highlight in the message. If we don’t include the ‘S’, 
it won’t highlight. The computer doesn’t know about differences in pluralization or 
spelling, so if you want it to pay attention to a certain word or phrase, you need to enter 
that word exactly as you see it in the message. Also notice that the message overview in 
the lower-left shows up, so we can preview other messages that contain this word.  

Now we need to select the topic associated with this word; we’ll pick Medicine and then 
click “Add” [Select Medicine from the menu and click the “Add” button]. 

Besides adding or removing words and phrases, you can also adjust their importance. For 
example, let’s select “Gravity” from the list of important words [Click on “Gravity”]. The 
teal bar shows how important this word is for predicting messages about Space, and the 
red bar shows how important this word is for predicting messages about Medicine. We 
can drag each bar up to make it more important, or down to make it less important. 
However, if there’s a black line on the bar, we can’t drag it any lower than that line. For 
example, if we wanted to tell the computer that “Gravity” should be more important to 
Medicine than Space, we could drag the teal bar down, but it won’t let us drag it below 
that line [Drag the teal bar as low as it will go]. Instead, we could drag the red bar up to 
tell the computer that Gravity is more important to medicine than space [Drag the red bar 
about twice as high as the teal bar]. 

The thing is, “gravity” probably should be associated with space more than medicine, so 
let’s undo our changes [Clicks “Undo importance adjustment”]. In fact, “Gravity” should 
probably be much more strongly associated with space than medicine, so let’s drag it up 
[Drag teal bar up to the level of “Moon”]. 

As we’ve been working with this software, you’ve probably noticed the animations on 
the right side of the screen [Hover mouse around “Why medicine?” explanation]. This 
area explains why the computer is making each of its predictions; each message has its 
own explanation. When you adjust important words or move messages into different 
folders, you might change the computer’s reasons for some of its predictions. When the 
computer’s reasoning changes, this explanation will animate to let you know that it’s 
changed. 

Finally, there are a few features designed to help you work faster with this software. You 
can select words and phrases in message and right-click to either find all of the messages 
containing the word, or add it as an important word or phrase [Select some text and right-
click to show the context menu]. You can also search for any word you want using this 
Search box [hover mouse around “Search” box]. The results will show up in the lower-
left, just like when you add or select Important Words [Type “test” into the Search box, 
the hover mouse around the heatmap]. If you want to focus on predictions that were 
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altered by your last action, you can use the “Only show predictions that just changed” 
button [Hover mouse around “Only show…” button]. We can turn that on right now 
[Click “Only show…” button to enable it], but since none of the messages in this folder 
recently changed their prediction, nothing shows up. So let’s turn that option back off for 
now [Click “Only show…” button to disable it]. 

I’m going to give you a couple of minutes to practice using this software, and then we’ll 
start the study. Let one of us know if you have any questions. 

[Wait for three minutes.] 

Alright, now please close the software you’ve been working with. You should see a small 
window appear, but don’t click “OK” yet. 

Before we start the study, we have some questions we’d like you to answer. These 
questions ask you to imagine working with the same software you just saw, but instead of 
messages about medicine and outer space, the messages are about soccer and basketball. 
Answer the questions as best you can, with as much detail as possible. You’ll have about 
10 minutes. 

[Pass out pre-task questions and wait.] 

Alright, now we’ll start the main part of the study. You’ll be using the same software you 
saw during the tutorial, but instead of messages about medicine and outer space, the 
messages will be about baseball and ice hockey. The colors associated with those topics 
may also be different. Everything else about the software is still the same. 

Your task is to make the computer’s predictions as accurate as possible. You’ll have 30 
minutes, and may begin now by clicking “OK”. 

[Wait 30 minutes.] 

Alright, time’s up! Go ahead and click “Close” to close the application. Before we finish, 
we have some final questions we’d like you to answer. You’ll have up to 20 minutes. Let 
us know once you’re done and we’ll pay you for helping us with this research. Thanks for 
coming in today! 

117 



Group: ______________  Participant: ______________ 

Background questions 
 

Age  years  

Gender 
(circle one) Female        Male 

College standing 
(circle one) 

Undergraduate 

Graduate student 

Already graduated 

Not a student 

College major   

College GPA 
(approximate) 

  

  

I know the rules of  
professional baseball 

      
Strongly 
disagree 

Strongly 
agree 

 

I pay attention to 
professional baseball 

      
Strongly 
disagree 

Strongly 
agree 

 

I know the rules of  
professional ice hockey 

      
Strongly 
disagree 

Strongly 
agree 

 

I pay attention to 
 professional ice hockey 

      
Strongly 
disagree 

Strongly 
agree 
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Group: ______________  Participant: ______________ 

This part of the questionnaire asks you about your ability to use an unfamiliar piece of 
software. Often in our jobs we are told about software that is available to make our work 
easier. For the following questions, imagine that you were given a new software package 
for some aspect of your work. It doesn't matter specifically what this software does, only 
that it is intended to make your job easier and that you have never used it before. 

The following questions ask you to indicate whether you could use this unfamiliar 
software under a variety of conditions. For each of the conditions, indicate whether you 
think you would be able to complete the job using the software. Then, for each condition 
that you answered “YES”, please rate your confidence about your first judgment by 
circling a number from 1 to 10, where 1 indicates “Not at all confident”, 5 indicates 
“Moderately confident”, and 10 indicates “Totally confident”. 

I could complete my job using this software… 

  Not at all 
confident 

Moderately 
confident 

Totally 
confident 

…if there was no one around to tell me 
what to do as I go. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had never used a package like it 
before. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had only the software manuals for 
reference. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had seen someone else using it 
before trying it myself. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I could call someone for help if I got 
stuck. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if someone else had helped me get 
started. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had a lot of time to complete the 
job for which the software was provided. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had just the built-in help facility for 
assistance. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if someone showed me how to do it 
first. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 

…if I had used similar packages before 
this one to do the same job. 

YES… 1     2     3     4     5     6     7     8     9     10 

NO 
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Group: ______________  Participant: ______________ 

Pre-task questions  

Pre-task questions 
Assume you are using the same software you just worked with, but instead of Medicine 
and Space, it predicts whether each message is about Soccer or Basketball. The 
software has learned from two messages in the Soccer folder, and one message in the 
Basketball folder:  

Soccer messages: 

#1 Subject: Soccer is the best 
Soccer is truly the best sport in the world! 

#2 Subject: Soccer is the best 
Agreed! 

Basketball message: 

#1 Subject: Basketball is the best 
No, I think basketball is the best sport in the world! 

 

Assume that these are the only messages the software has learned from. The 
following page lists several messages in the Unknown folder. For each message, circle 
the topic that you think the computer will predict and explain why. Be as specific as 
possible. 
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Group: ______________  Participant: ______________ 

Pre-task questions  

Message in  
Unknown folder 

Computer’s 
predicted topic Why? (be specific) 

Subject: Rugby rules 
Truly, rugby is the best sport! Soccer Basketball  

Subject: Basketball does rule 
Right on! Soccer Basketball  

Subject: Rugby rules 
I think rugby is best. Soccer Basketball  

Subject: What?! 
Basketball beats soccer any 
day. 

Soccer Basketball 
 

Subject: Soccer does rule 
Right on! Soccer Basketball  

Subject: Soccer forever 
It’s just more fun than 
basketball. 

Soccer Basketball 
 

Subject: Yeah! 
Agreed, rugby rocks. Soccer Basketball  

Subject: Nope! 
No, rugby does not rock. Soccer Basketball  

Subject: Chess is better 
You’re all wrong. Soccer Basketball  

Subject: Eh? 
Chess is more exciting. Soccer Basketball  

Subject: Pshhhh 
But soccer is more popular. Soccer Basketball  

Subject: Not in the states 
Basketball is more popular 
here. 

Soccer Basketball 
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Group: ______________  Participant: ______________ 

Pre-task questions  

 

 

Please list all of the words you can think of that are about Hockey: 

 

 

 

 

 

 

 

Please list all of the words you can think of that are about Baseball: 

122 



Group: ______________  Participant: ______________ 

Pre-task questions   
 

Pre-task questions 
Assume you are using the same software you just worked with, but instead of Medicine 
and Space, it predicts whether each message is about Soccer or Basketball. The 
software has learned from two messages in the Soccer folder, and one message in the 
Basketball folder:  

Soccer messages: 

#1 Subject: Soccer is the best 
Soccer is truly the best sport in the world! 

#2 Subject: Soccer is the best 
Agreed! 

Basketball message: 

#1 Subject: Basketball is the best 
No, I think basketball is the best sport in the world! 

 

The Important Words section of the software shows the following: 

 

 

Assume that these are the only messages the software has learned from. The 
following page lists several messages in the Unknown folder. For each message, circle 
the topic that you think the computer will predict and explain why. Be as specific as 
possible. 

  

agreed basketball best no soccer sport think truly world 

Soccer Basketball 
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Group: ______________  Participant: ______________ 

Pre-task questions   
 

Message in 
Unknown folder 

Computer’s 
predicted topic Why? (be specific) 

Subject: Rugby rules 
Truly, rugby is the best sport! Soccer Basketball  

Subject: Basketball does rule 
Right on! Soccer Basketball  

Subject: Rugby rules 
I think rugby is best. Soccer Basketball  

Subject: What?! 
Basketball beats soccer any 
day. 

Soccer Basketball 
 

Subject: Soccer does rule 
Right on! Soccer Basketball  

Subject: Soccer forever 
It’s just more fun than 
basketball. 

Soccer Basketball 
 

Subject: Yeah! 
Agreed, rugby rocks. Soccer Basketball  

Subject: Nope! 
No, rugby does not rock. Soccer Basketball  

Subject: Chess is better 
You’re all wrong. Soccer Basketball  

Subject: Eh? 
Chess is more exciting. Soccer Basketball  

Subject: Pshhhh 
But soccer is more popular. Soccer Basketball  

Subject: Not in the states 
Basketball is more popular 
here. 

Soccer Basketball 
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Group: ______________  Participant: ______________ 

Pre-task questions   
 

 

 

Please list all of the words you can think of that are about Hockey: 

 

 

 

 

 

 

 

Please list all of the words you can think of that are about Baseball: 
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Group: ______________  Participant: ______________ 

Post-task questions  

Post-task questions 
Assume you are using the same software you just worked with, but instead of Baseball and 
Hockey, it predicts whether each message is about Swimming or Tennis. The software has 
learned from two messages in the Swimming folder, and one message in the Tennis folder: 

Swimming messages: 

#1 Subject: Swimming is the worst 
Swimming is certainly the worst sport in the world. 

#2 Subject: Swimming is the worst 
Seriously? 

Tennis message: 

#1 Subject: Tennis is the worst 
Wrong, tennis is totally the worst sport in the world. 

 

Assume that these are the only messages the software has learned from. The following 
page lists several messages in the Unknown folder. For each message, circle the topic that 
you think the computer will predict and explain why. Be as specific as possible. 
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Group: ______________  Participant: ______________ 

Post-task questions  

Message in 
Unknown folder 

Computer’s  
predicted topic Why? (be specific) 

Subject: Rugby rules! 
You’re wrong, rugby’s awesome! Swimming Tennis  

Subject: Meh 
Chess is more exciting. Swimming Tennis  

Subject: Swimming rules 
Well it does. Swimming Tennis  

Subject: Yeah! 
Rugby totally rocks. Swimming Tennis  

Subject: Pshhhh 
But tennis is more popular. Swimming Tennis  

Subject: Rugby is dull 
Rugby is certainly the worst 
sport. 

Swimming Tennis 
 

Subject: Tennis rules 
Tennis is best. Swimming Tennis  

Subject: Chess can be exciting 
If you wear a helmet. Swimming Tennis  

Subject: Nope! 
Seriously, helmets do not make 
chess exciting. 

Swimming Tennis 
 

Subject: Really? 
Swimming seems just as 
popular. 

Swimming Tennis 
 

Subject: Swimming forever 
It’s much more fun than tennis. Swimming Tennis  

Subject: What?! 
Tennis beats swimming any day. Swimming Tennis  
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Group: ______________  Participant: ______________ 

Post-task questions  

 

What was your overall impression of the software you worked with? 

      
Very 
negative 

Very 
positive 

 

How helpful (or unhelpful) did you find the following features of the software you worked 
with? 

Moving messages into folders 

 

      
Very 
unhelpful 

Very 
helpful 

 

Viewing number of correct predictions in each folder 

 

      
Very 
unhelpful 

Very 
helpful 
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Group: ______________  Participant: ______________ 

Post-task questions  

 

The following six questions refer to your task of trying to improve the software’s topic 
predictions: 
 

1. How mentally demanding was the task? 

                     

Very Low Very High 
 

2. How physically demanding was the task? 

                     

Very Low Very High 
 

3. How hurried or rushed was the pace of the task? 

                     

Very Low Very High 
 

4. How successful were you in accomplishing what you were asked to do? 

                     

Failure Perfect 
 

5. How hard did you have to work to accomplish your level of performance? 

                     

Very Low Very High 
 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? 

                     

Very Low Very High 
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Group: ______________  Participant: ______________ 

Post-task questions  

a) Underline all of the words that you feel apply to this system. 
b) Pick five underlined words that best describe your feelings toward this system and 

explain why. 

Accessible 
Advanced 
Annoying 
Appealing 
Approachable 
Attractive 
Boring 
Business-like 
Busy 
Calm 
Clean 
Clear 
Collaborative 
Comfortable 
Compatible 
Compelling 
Complex 
Comprehensive 
Confident 
Confusing 
Connected 
Consistent 
Controllable 
Convenient 

Creative 
Customizable 
Cutting edge 
Dated 
Desirable 
Difficult 
Disconnected 
Disruptive 
Distracting 
Dull 
Easy to use 
Effective 
Efficient 
Effortless 
Empowering 
Energetic 
Engaging 
Entertaining 
Enthusiastic 
Essential 
Exceptional 
Exciting 
Expected 
Familiar 

Fast 
Flexible 
Fragile 
Fresh 
Friendly 
Frustrating 
Fun 
Gets in the way 
Hard to use 
Helpful 
High quality 
Impersonal 
Impressive 
Incomprehensible 
Inconsistent 
Ineffective 
Innovative 
Inspiring 
Integrated 
Intimidating 
Intuitive 
Inviting 
Irrelevant 
Low maintenance 

Meaningful 
Motivating 
Not secure 
Not valuable 
Novel 
Old 
Optimistic 
Ordinary 
Organized 
Overbearing 
Overwhelming 
Patronizing 
Personal 
Poor quality 
Powerful 
Predictable 
Professional 
Relevant 
Reliable 
Responsive 
Rigid 
Satisfying 
Secure 
Simplistic 

Slow 
Sophisticated 
Stable 
Sterile 
Stimulating 
Straight forward 
Stressful 
Time-consuming 
Time-saving 
Too technical 
Trustworthy 
Unapproachable 
Unattractive 
Uncontrollable 
Unconventional 
Understandable 
Undesirable 
Unpredictable 
Unrefined 
Usable 
Useful 
Valuable 
 

 Word   Why? 

1.  

2.  

3.  

4.  

5.  
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Group: ______________  Participant: ______________ 

Post-task questions  

If you have any additional comments or suggestions about the software you worked with 
today, please write them down below. 

131 



Group: ______________  Participant: ______________ 

Post-task questions  

Post-task questions 
Assume you are using the same software you just worked with, but instead of Baseball and 
Hockey, it predicts whether each message is about Swimming or Tennis. The software has 
learned from two messages in the Swimming folder, and one message in the Tennis folder: 

Swimming messages: 

#1 Subject: Swimming is the worst 
Swimming is certainly the worst sport in the world. 

#2 Subject: Swimming is the worst 
Seriously? 

Tennis message: 

#1 Subject: Tennis is the worst 
Wrong, tennis is totally the worst sport in the world. 

 

The Important Words section of the software shows the following: 

  

Assume that these are the only messages the software has learned from. The following page 
lists several messages in the Unknown folder. For each message, circle the topic that you think 
the computer will predict and explain why. Be as specific as possible. 

  

certainly seriously sport swimming tennis totally world worst wrong 

Swimming Tennis 
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Group: ______________  Participant: ______________ 

Post-task questions  

Message 
Computer’s  

predicted topic Why? (be specific) 

Subject: Rugby rules! 
You’re wrong, rugby’s awesome! Swimming Tennis  

Subject: Meh 
Chess is more exciting. Swimming Tennis  

Subject: Swimming rules 
Well it does. Swimming Tennis  

Subject: Yeah! 
Rugby totally rocks. Swimming Tennis  

Subject: Pshhhh 
But tennis is more popular. Swimming Tennis  

Subject: Rugby is dull 
Rugby is certainly the worst 
sport. 

Swimming Tennis 
 

Subject: Tennis rules 
Tennis is best. Swimming Tennis  

Subject: Chess can be exciting 
If you wear a helmet. Swimming Tennis  

Subject: Nope! 
Seriously, helmets do not make 
chess exciting. 

Swimming Tennis 
 

Subject: Really? 
Swimming seems just as popular. Swimming Tennis  

Subject: Swimming forever 
It’s much more fun than tennis. Swimming Tennis  

Subject: What?! 
Tennis beats swimming any day. Swimming Tennis  
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Group: ______________  Participant: ______________ 

Post-task questions  

What was your overall impression of the software you worked with? 

      
Very 
negative 

Very 
positive 

 

How helpful (or unhelpful) did you find the following features of the software you worked with? 

Moving messages into folders 

 

      
Very 
unhelpful 

Very 
helpful 

 

Viewing number of correct predictions in each folder 

 

      
Very 
unhelpful 

Very 
helpful 

 

Adding new important words 

 

      
Very 
unhelpful 

Very 
helpful 

 

Removing important worlds 

 

      
Very 
unhelpful 

Very 
helpful 

 

Adjusting word importance 

 

      
Very 
unhelpful 

Very 
helpful 

 

Undo 

 

      
Very 
unhelpful 

Very 
helpful 

 

134 



Group: ______________  Participant: ______________ 

Post-task questions  

Searching for words 

 

      
Very 
unhelpful 

Very 
helpful 

 

Viewing which messages contain the selected word 

 

      
Very 
unhelpful 

Very 
helpful 

 

Important words explanation 

 

      
Very 
unhelpful 

Very  
helpful 

 

Folder size explanation 

 

      
Very 
unhelpful 

Very 
helpful 

 

Confidence explanation 

 

      
Very 
unhelpful 

Very 
helpful 

 

Arrows showing changes 

 

      
Very 
unhelpful 

Very 
helpful 
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Group: ______________  Participant: ______________ 

Post-task questions  

 

The following six questions refer to your task of trying to improve the software’s topic 
predictions: 
 

1. How mentally demanding was the task? 

                     

Very Low Very High 
 

2. How physically demanding was the task? 

                     

Very Low Very High 
 

3. How hurried or rushed was the pace of the task? 

                     

Very Low Very High 
 

4. How successful were you in accomplishing what you were asked to do? 

                     

Failure Perfect 
 

5. How hard did you have to work to accomplish your level of performance? 

                     

Very Low Very High 
 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? 

                     

Very Low Very High 
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Group: ______________  Participant: ______________ 

Post-task questions  

a) Underline all of the words that you feel apply to this system. 
b) Pick five underlined words that best describe your feelings toward this system and explain 

why. 

Accessible 
Advanced 
Annoying 
Appealing 
Approachable 
Attractive 
Boring 
Business-like 
Busy 
Calm 
Clean 
Clear 
Collaborative 
Comfortable 
Compatible 
Compelling 
Complex 
Comprehensive 
Confident 
Confusing 
Connected 
Consistent 
Controllable 
Convenient 

Creative 
Customizable 
Cutting edge 
Dated 
Desirable 
Difficult 
Disconnected 
Disruptive 
Distracting 
Dull 
Easy to use 
Effective 
Efficient 
Effortless 
Empowering 
Energetic 
Engaging 
Entertaining 
Enthusiastic 
Essential 
Exceptional 
Exciting 
Expected 
Familiar 

Fast 
Flexible 
Fragile 
Fresh 
Friendly 
Frustrating 
Fun 
Gets in the way 
Hard to use 
Helpful 
High quality 
Impersonal 
Impressive 
Incomprehensible 
Inconsistent 
Ineffective 
Innovative 
Inspiring 
Integrated 
Intimidating 
Intuitive 
Inviting 
Irrelevant 
Low maintenance 

Meaningful 
Motivating 
Not secure 
Not valuable 
Novel 
Old 
Optimistic 
Ordinary 
Organized 
Overbearing 
Overwhelming 
Patronizing 
Personal 
Poor quality 
Powerful 
Predictable 
Professional 
Relevant 
Reliable 
Responsive 
Rigid 
Satisfying 
Secure 
Simplistic 

Slow 
Sophisticated 
Stable 
Sterile 
Stimulating 
Straight forward 
Stressful 
Time-consuming 
Time-saving 
Too technical 
Trustworthy 
Unapproachable 
Unattractive 
Uncontrollable 
Unconventional 
Understandable 
Undesirable 
Unpredictable 
Unrefined 
Usable 
Useful 
Valuable 
 

 Word   Why? 

1.  

2.  

3.  

4.  

5.  
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Group: ______________  Participant: ______________ 

Post-task questions  

If you have any additional comments or suggestions about the software you worked with today, 
please write them down below. 
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Group: ______________  Participant: ______________ 

 
 

Message 
Computer’s 

predicted topic Why? (be specific) 

Subject: Rugby rules 
Truly, rugby is the best sport! 

Soccer Basketball Truly 

Subject: Basketball does rule 
Right on! Soccer Basketball Basketball 

Subject: Rugby rules 
I think rugby is best. Soccer Basketball Think 

Subject: What?! 
Basketball beats soccer any day. Soccer Basketball Class imbalance 

Subject: Soccer does rule 
Right on! Soccer Basketball Soccer 

Subject: Soccer forever 
It’s just more fun than basketball. Soccer Basketball Class imbalance 

Subject: Yeah! 
Agreed, rugby rocks. Soccer Basketball Agreed 

Subject: Nope! 
No, rugby does not rock. Soccer Basketball No 

Subject: Chess is better 
You’re all wrong. Soccer Basketball Class imbalance 

Subject: Eh? 
Chess is more exciting. Soccer Basketball Class imbalance 

Subject: Pshhhh 
But soccer is more popular. Soccer Basketball Soccer 

Subject: Not in the states 
Basketball is more popular here. Soccer Basketball Basketball 
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Group: ______________  Participant: ______________ 

 

Message 
Computer’s  

predicted topic Why? (be specific) 

Subject: Rugby rules! 
You’re wrong, rugby’s awesome! Swimming Tennis Wrong 

Subject: Meh 
Chess is more exciting. Swimming Tennis Class imbalance 

Subject: Swimming rules 
Well it does. Swimming Tennis Swimming 

Subject: Yeah! 
Rugby totally rocks. Swimming Tennis Totally 

Subject: Pshhhh 
But tennis is more popular. Swimming Tennis Tennis 

Subject: Rugby is dull 
Rugby is certainly the worst 
sport. 

Swimming Tennis 
Certainly 

Subject: Tennis rules 
Tennis is best. Swimming Tennis Tennis 

Subject: Chess can be exciting 
If you wear a helmet. Swimming Tennis Class imbalance 

Subject: Nope! 
Seriously, helmets do not make 
chess exciting. 

Swimming Tennis 
Seriously 

Subject: Really? 
Swimming seems just as 
popular. 

Swimming Tennis 
Swimming 

Subject: Swimming forever 
It’s much more fun than tennis. Swimming Tennis Class imbalance 

Subject: What?! 
Tennis beats swimming any day. 

Swimming Tennis Class imbalance 

140 




	Introduction
	Motivation
	Thesis statement
	Terminology
	Potential use cases
	Proposed contributions

	Background and literature review
	Mental models
	Explaining machine learning
	Personalizing machine learning systems
	Machine learning and end user programming

	Exploring the effects of mental model fidelity
	Introduction
	Empirical study
	AuPair Radio
	Participants
	Experiment design and procedure
	Data analysis

	Results
	Feasibility (RQ3.1)
	Personalization (RQ3.2)
	Confidence (RQ3.3)
	User experience (RQ3.4)

	Conclusion

	How explanations can impact mental model fidelity
	Introduction
	Explanation soundness and completeness
	Methodology
	Prototype recommender system
	Treatments and explanations
	Participants and study task
	Data analysis

	Results
	Soundness, completeness, and intelligibility types (RQ4.1 and RQ4.2)
	Barriers to developing high-fidelity mental models (RQ4.3)
	Is it worth it? (RQ4.4)
	In explanations we trust? (RQ4.5)

	Discussion
	Conclusion

	Explanatory Debugging and EluciDebug
	The principles of Explanatory Debugging
	EluciDebug: A prototype instantiating Explanatory Debugging
	The multinomial naive Bayes classifier: A brief review
	The Explanatory Debugging principles in EluciDebug

	Conclusion

	Evaluation
	Methodology
	Experiment design
	Participants and procedure
	Data analysis

	Results
	Explaining corrections to EluciDebug (RQ6.1 and RQ6.2)
	EluciDebug's explanations to end users (RQ6.3)

	Discussion
	Efficient and accurate personalization
	Mental models

	Conclusion

	Conclusion
	Bibliography
	Appendices
	EluciDebug study materials

