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Large Sample Efficiencies of

Invariant Quadratic Unbiased Estimators

Chapter I

Introduction

This dissertation discusses properties of limiting

efficiencies for estimators of variance in the two

variance component mixed model. Results given herein

apply to a fairly general class of limiting conditions,

and the estimators considered are those characterized by

Olsen, Seely, Birkes (1976). As shown in Olsen et al.,

these estimators contain the minimal complete class of

all invariant quadratic unbiased estimators. After

describing this class in detail and expressing the

efficiency in a useful form, a result is presented which

simplifies examination of limiting efficiencies. This

result is applied to generalize results originally

presented in Seely (1979). This dissertation then

concludes with several examples of computed limiting

efficiencies, and based on these examples, plus other

results given in the text, makes some recommendations as

to which estimators to use under various conditions.

In Chapter I is discussed the class of estimators to

which results given in this dissertation will apply.

Chapter I also enumerates the limiting conditions on

which computation of the limiting efficiencies are
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based. Chapter II presents results relating to the

general behavior of limiting efficiencies. Chapter III

generalizes results given in Seely (1979) and Chapter IV

contains examples of calculated limiting efficiencies

and recommendations for specific estimators.
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that

SECTION I.1: Model

Let the random vector Y consist of n elements such

Y = XS + Aa + e

where X and A are matrices such that XeM(n,p)1 and

AcM(n,t), and where a is an unrestricted parametric

vector in R. The random vectors a and e are taken to

be mutually independent, each following a multivariate

normal distribution with mean vector zero, and having

covariance structures Cov(a) = 621 and Cov(e) = eli

respectively, where 6 = (01,02)6'2 with SZ = ID : e>O12.

The parameters el and 02 are unknown. Stated more

concisely, the family of distributions Soy associated

with Y is

.1°Y = INn(X6,01I+82AA') : 13ERP and 06'0.

All limiting processes considered will be sequences

of families of distributions of Y where n tends to

1. M(a,b) represents the set of all matrices with a rows
and b columns.
2. 01,02 > 0 and el + 62 0.
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infinity.
3
Within any sequence, the components of the

distribution which will change are the matrices X and A

and the dimension n. In this regard, n and the contents

of X and A will change, while p, t, and the ranks of X

and A may or may not change. The parameters 61 and 62

will remain fixed. Therefore, any limiting process

considered can be represented as a sequence of ordered

triplets (Xk,Ak,nk) for k = 1,2,... where nk is an un-

bounded sequence of positive integers. We will express

all limits as lim(). This notation will be taken to

mean the limit of the argument () as k tends to

infinity.

For a matrix M, the notation R(M), N(M), r(M), n(M),

M', det(M), and tr(M) denote the range, null space, rank,

nullity, transpose, determinant and trace respectively of

the matrix M. Further, PM represents the orthogonal

projection operator on the range of M, M- represents

any generalized inverse4 of M, and M+ represents the

Moore-Penrose inverse of M.5 In addition, for any

subset of a k-dimensional Euclidian space Rk, lets

3. That n tends to infinity follows from assumptions made
later in Section 1.3.

4. Any matrix M- such that MM-M = M.
5. The unique matrix Pi+ such that MM+M = M and M+MM+ = M+

with MM+ and 11411 symmetric.
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represent the orthogonal complement of 36 in

a subspace, define dim{g} as its dimension.

Pertaining to the above model, define

f = r(X,A) r(X)

ro = n - r(X,A).

Considering the partitioned fixed linear model

Y = Xa + Aa + e

If g is

with a and a unknown, one can see that f equals the

degrees of freedom of the sum of squares for a adjusted

for a, and ro equals the error degrees of freedom.
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SECTION 1.2: Estimators of ce

This section describes the specific class of

estimators 4 )6'0 to which results given in this thesis

apply. Generally speaking, these estimators are unbiased

estimators of (S'e for some 60i2, and they have

highly desirable variance characteristics. The re-

marks below are drawn chiefly from Olsen, Seely and

Birkes (1976) in which the class 's'e has been character-

ized in thorough detail. Note that differences exist

between the notation used here and that found in Olsen

et al. (1976). For this section assume that f,r0 > 0.

Define ,At as the set of all symmetric quadratic

forms invariant under the group of transformations

W= IgxixeR(X)1 where gx:y y+x. That is, Y'MYEAfif and

only if Y'MY = (Y+u)'11(Y+u) for all urR(X). We wish to

estimate the parametric function 6'e for some known 6E112.

We will restrict attention to 4/. the set of unbiased

estimators of 6'6 contained in .A

To avoid the nuisance parameter (3, consider the

transformed random vectors of Y, U = A'(I-P
X
)Y and

Z = (I-P
X A

)Y where PXA is the orthogonal projection
, -

operator on the range of (X,A), the matrix formed by con-

catenating X and A. The family of distributions associ-



7

ated with U is SP = IN
t
(0 eio e2D2) : eEc2} with D =

'

V(I-P0A, and the family associated with Z is Joz =

INn[0,131(I-Px,A)]:061. D is a n.n.d.6 matrix and thus

has non-negative eigenvalues. Let AI,...,Am be the

ordered distinct positive eigenvalues of D such that

0 < AI < A2 < <
m

and define F. for j=1,2,...,m as

the orthogonal projection operator on the span of eigen-

vectors associated with A..7 From the Spectral

Theorem we can decompose D in the following manner:

D = AIFI + A2F2 + + AmFm.

Finally, define rj = r(Fj) for j=1,2,...,m. The ranks

ri,...,rm are the multiplicities of the eigenvalues

Al,...,Am respectively.

We now define the following important quadratic

forms in Z and U:

To = POI.°

T. = U'F .U/r .X for j = 1,2,...,m

6. non-negative definite.
7. The span of vectors e such that De = A e.
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As Z'Z = H(I-P XA )YD2, To is recognized to be the error

mean square and, as described previously, ro is the

corresponding error degrees of freedom from an analysis

of variance in which the full model is E(Y) = XS Aa

with a and (3 fixed and unknown. Let Jr be the set of all

linear combinations of To,T1,...,Tm. The importance of

Jris that for any estimator in A,A9,8 there exists an

estimator in jrwith the same expectation and uniformly

smaller variance. Therefore, in looking for estimators

of 6'8 in A' we need only consider estimators in Jr the
8'0'

unbiased estimators for V0 in Jr. It is convenient to

examine the estimators in arby way of a linear model. To

this end, let T = (T0,71,...,Tm)1 and define

1, 1,...,1,,
B=

0, A,...,Arn

V(y) = (1-y)2D1 + 21(1-y)D2 + 12D3

where y = 02/(81+02) and a2 = 01 + 02 for 062 and where

DI = diag (1/ro,1 ir1,...,1/rm)

D2 = diag (0,A1 /r1,...,Amirm)

D3 = diag

8. All estimators in A' not contained in Sr.
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Let Ao = 0. Then the following statements can he made

concerning T:

a) E(T) = B6

b) Cov(T) = 2c V(y)

Oriy(61+62X1)ChiSquare(r.)for j = 0,1,...,m

d) To,T1,...,Tm are mutually independent quad-

ratic forms.

The quadratic forms T make it possible to charac-

terize eve. Let S = {wee : wi+w2+w3 = 1 and w > 0},

and for weS, let e(w) be the Gauss-Markov estimator for

6 computed from the artificial model E(T) = B6 with

Cov(T) = V
w

where V
w

= w1D1 4- w2D2 + w303. Since xi > 0,

r(B) = 2 which implies d'e is estimable for all SER2.

We define e
(5 '6

as the set of estimators

e = {ace(w) : wes}.

The artificial model described above has use only in so

far as it helps to define eVO. Previous comments show

It to be the actual model for T only for the case in

which a2 = 1 and w = ((1-y)2,2y(1-y),y2P.
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Olsen et al. (1976) have shown that g contains the6'9

minimal complete class of all estimators in A/6,e. Indeed

if..11d,e denotes the minimal complete class,9 then

aics,e = fa,'6(w):wEsel

with S
c

= fweS : 4w1w3 > w22} and where 8(w) has been

previously defined.

In regard to estimators in gve, we will subscribe

to the following notation. Let DwetiPpe denote the esti-

mator 8'0(w). For convenience, let Di denote the

estimator D
w

when wl = 1, let D2 denote the estimator

D when w2 = 1, and let D3 denote the D estimator when

w3 = 1. This notation, while convenient, might appear

somewhat incomplete since Dw fails to specify the expec-

tation of the estimator. As an example, D1 could refer

to an estimator in 4'
6,

or in A' . To avoid this problem,02

we will adopt the following convention: unless stated

specifically to the contrary, any estimator denoted Ow

will have expectation Ve. In all other cases, the ex-

pectation of D
w will be clear from the context of dis-

cussion.

9. See Appendix for a brief discussion of minimal
complete classes.
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SECTION 1.3: Assumptions

Almost all propositions, theorems, and corollaries

given in this dissertation will require one or more of

the assumptions enumerated below. Each result will

clearly state which of these assumptions hold, and only

those stated will be required for the proof. Indeed, the

following assumptions may be regarded as limiting

conditions on the sequence of models (Xk,A ,nk):

Al: r(X) < r(A,X) < n

A2: lim f/ro = 0

A3: lim tr(D'D+)/f = O.

Assumption Al is included to prevent expressions

discussed from becoming undefined. All results involving

efficiencies will require this assumption. As an

example, from the definitions of f and r0, Assumption Al

immediately implies that f and ro are positive. The

requirement r(X,A) > r(X) ensures that R(A) Cr R(X) and

thus Al(I-Px) * O. This implies that U = Al(I-Px)Y

cannot identically equal zero. Further, A1(I-Px) * 0

also implies that m > 1 since R[A'(I-Px)] = R[A'(I-Px)A].

The following proposition summarizes these findings.
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Proposition I.1: Assume Al. The following state-

ments hold:

a) m > 1 b) A'(I-Px) * 0 c) f > 1

d) ro > 1

Indeed, one can easily show that f > 1 and ro > 1 if and

only if Assumption Al holds.

Assumption A2 is the most dominant of the three

assumptions. All results involving limits will require

this assumption. Together, Assumptions Al and A2 drive n

to infinity. To see this, recall that Assumption Al

implies that f > 1. Thus, if lim f/ro = 0, then n -

r(X,A) 00; so n oc,. As an example, suppose (Xk,Ak,nk)

represents a sequence of balanced two-way additive mixed

models where the number of levels in both the fixed and

random factors remain constant. If r equals the number

of replications within each cell, then r co implies

Assumption A2. Clearly, Assumption Al is satisfied in

this example since f,r0 > 1 for each k. Note that, by

itself, Assumption A2 places no bounds on the size of f

or r0 other than those imposed by Assumption Al.

Assumption A3 is necessary to the development of

results in Chapter III. It is equivalent to the

condition that

1 1 2 1
2 2

lira f( --) r1 r2 + + (
1
_) rmj = 0.

t Al A2 Am
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To see this, recall that D = AIFI + A2F2 + A F
m

is
m

the spectral decomposition of D. Therefore, one has

1
D+ (--)F1 + (--1 )F2 + + (

1)F
Al A2 m

which implies

1 2 2 2

D+D+ (--) Fl (--) F2 ... (--) F .

AI X2 A m
m

As the F. are orthogonal projection operators, tr(F.)=r.

for j = 1,...,m and so

tr(D4T+) (- -)
2
r1 + ( ) 2

r2 + + ) 2
r
mAI A2 Am

In fact,
1

tr(D+D+
f

(1/Am)2 since

is a weighted average of (1/A1)2 . .

f = r(X,A) - r(X)

= r(D)

= rI + r2 + + rm.
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Section 1.4: Uniqueness Property

Through computation of Gauss-Markov estimators, the

set S generates all estimators in eve. Olsen et al,

(1976) have shown that, in fact, each weS generates a

unique estimator Dwee610, a property which is useful

in deriving the variance of Dw. A formal statement and

proof of this result follows.

Proposition 1.2: Assume Al. Each element weS

generates a unique estimator in the set eve.

Proof: PART1. Show that N(Vw) n N(B') = 101. Suppose

wl * O. As defined, Vw = diag[w1 /r0,(w1+w2A1+w3X12)/ri,

.....,(wl+w2Am+w3Am)/rm]. Since each diagonal element is

positive, and since off-diagonal elements are zero, N(Vw)

101 implying N(Vw) n N(B') = 10j. Suppose wl = O. Let

a = (ao,a1,...,am)' be an element in N(Vw) n N(B'). That

aell(V
w

) implies al(w2+w3A1) = = a
m
(w2+w3A

m
= 0

and thus, al = a2 = am = O. Since aeN(B'), then

a0 al am = 0 which implies a0 = O. Hence

N(Vw) n N(B') = {o}. PART2: Let t;T and t2T be two

estimators in e
6'0 having the same expectation and

generated from the same weS. This gives tine = t;.B0

for all 0032, which implies B'(t1 -t2) = O. From
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Zyskind's Theorem (see Zyskind (1967)), it also implies

VwtieR(B) for j = 1,2 and so there exists a v such that

Vw(ti-t2)=Bv. This implies (ti-t2)'Vw(ti-t2) = 0. Since

(ti-t2)'Vw(ti-t2) = 0 if and only if (ti-t2)cN(Vw), and

since (t1-t2)eN(R1), then tl-t2 = 0 by PART1. QED
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CHAPTER it

Limiting Efficiencies

In this chapter we will discuss limiting

efficiencies of the estimator Dw under Assumptions Al

and A2. When expanded, the efficiency function consists

of a long and complicated expression. After a develop-

ment of the efficiency to a useful form, a theorem will

be presented which shows this efficiency to have the same

limit as that of a much simpler expression. Practical as

well as theoretical advantages derive from such a

result. The complexity of the efficiency, as we will see

later, makes it extremely difficult to examine the

limiting efficiency from a theoretical point of view.

the simpler expression provides a much more manageable

base from which to predict the behavior of limiting

efficiencies. On the practical side, this result

simplifies the calculation of limiting efficiencies, in

some cases to the extent that the limiting efficiency can

be determined by inspection.
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Section II.1: Efficiency

Let Y'MY be a symmetric quadratic form in the set

4,e. The efficiency of Y'MY is defined as the ratio of

the minimum attainable variance 10 of all estimators in

6'0 to the variance of Y'MY itself. For the case in

which the variance of Y'MY is zero, define the efficiency

to be one. Since Y'MYEA/
,e' the efficiency of Y'MY lies

in the interval [0,1]. This efficiency has intuitive

appeal in that among all unbiased estimators of the

parameter, the estimator with the most desirable

properties has the smallest variance. In this regard,

the effectiveness of an estimator increases as its

efficiency increases and attains its maximum

effectiveness when the efficiency equals one. As

mentioned in Section 1.2, we will consider only the

efficiencies of estimators in eVe . Denote the

efficiency of an estimator Dw as Eve(wly) where 6'6

identifies the expectation of Dw. Note that the

efficiency will later be computed in terms of 6 and not

in terms of ve. While the minimum attainable variance

and the variance of Dw both depend upon o2 and y, later

development will show that the efficiency depends only

upon y.

10. Olsen et al. (1976) shows this minimum can be
obtained within the sett*

are'



We introduce the following notation. Define

< PI < P2 < of as the non-distinct ordered

18

positive eigenvalues of D = Av(i_px)A.11 That f of

these eigenvalues exist follows from the fact that

f = ri+r2+...+rm which was shown in Section 1.3. For all

x > 0, for ye[0,1], and for weS, define the functions 4

and * as follows:

*(xli) = [1-y+yx]2

*(X1W) = WI+W2X+W3X2.

As a function of these quantities define the summations

given below:

f kck(Y) = / P/01-1.1Y)
J =1

f

hk(w) 11.4(11.1W)
j=1 J

for k = 0,1,2

for k = 0,1,2

f

g k (I
'
w) I/ 11)(11 Y)/[011 lw)]2 for k = 0,1,2

J.1 J j

f kb
k
(w) p./[*(p.1w)]2

1=1 J J
for k = 0,1,2,3,4

In terms of these summations, construct the matrices

C(y), H(w) and G(y,w) in the following manner:

11. Recall that 0 < AI < A2 < < Am are the non-zero
distinct ordered eigenvalues of D.



C(Y) = ro/(1-Y)2 + co(y), c1(Y)

c1(Y) , c2(i)

(

H(w) = ro/wi + ho(w), h1(w)

h1 (w) h2(w)

(

C(y,w) = (1-y)2r0 /w12 + go(y,w), gi(y,w)

gi(y,w)
, 92(Y,w)

In proofs it will be convenient to let

co(y) = ro/(1-y)2 + co(y)

h0 (w) = r0 /w1 + h0 (w)

go(l,w) = (1-y)2r0 /iq + go(y,w)

19

for ye[0,1)

for wl > 0

for wi > 0

When lack of space requires, the arguments of the above

will be dropped leaving c0,h0,g0,b0,c1,... etc. Each

will still retain the same meaning. Finally, define the

vectors t1,t201(m+1,1) as follows:

ti = (1,0,...0)1

t2 = (-hi,r1X1/4)(Xilw),...,rmAm4(Xmlw))' /h2

To obtain the efficiency of the Dw estimator will

require determining individually an expression for the
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minimum attainable variance of all estimators in -4/-
(Ye

and one for the variance of Dw itself. A derivation of

the variance will follow later. Denote ..9.9
(5'6

(y,a
2

) as the

minimum attainable variance of all estimators in ,f .

Finding an expression for 926,19(y,a2) involves less

trouble than one might expect. As J75,0 contains the

minimal complete class, then J75,8 itself constitutes a

complete class. Thus, finding the minimum variance of

all estimators in ir
'e

is equivalent to finding the ex-

pression for y
,0

(y,a
2

), and this may be accomplished by

applying linear model theory to the random vector T.

Proposition II.1: Assume Al. The minimum attainable

variance of all estimators in ,f is given by the

following equation:

204VC(i)-16 /c[0,1)

(-y cr2) =

20.4 a2 /f y = 1.

Proof: CASE1: Suppose y = 1. From Section 1.2, E(T) =

Be and Cov(T) = 264V(1) = 204

Define e1,e201(m+1,1) as

el = (1,0,...,0)'

e2 = (-c1(1),r141,...,rmAm)' /f.
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It is straightforward to show that E(el'T) = el and

E(qT) = 82. In addition, one can show

V(1)eleR(B)

V(1)e2eR(B).

From Zyskind's Theorem, we can conclude that elT and eg

are blue (best linear unbiased estimator) for 01 and 82.

Linear combinations of blues are themselves blue, and

so the estimator (S1e1+62e2)'T is blue for 6'8. Since

Var[(diell-S2e2)'T] = 2a4(61e1+62e2)'V(1)(61e1+62e2)

= 2c 4 622 /f,

the expression for y = 1 is established. CASE2: Suppose

yc[0,1). For this case, V(y) is non-singular. Since B

is of full column rank, 8 = Nivt,0-1Bi1efv(i)-1T is

blue for the estimable parameter 8. As Cov(e) =

2c4[13'V(1)-1B]-19 and B'V(y)-16 = C(1), the validity of

the proposition is established. QED

While Proposition II.1 proves that .Sets (6 ,a
2) is the

minimum attainable variance of all estimators in AT
s'e'

Seely (1972) has shown that indeed, Y5 (a ,a2 ) is the



minimum attainable variance of all estimators invariant

under the class of transformations W and having

expectation 6'0.

Based on Proposition 11.1, we choose to express

Y
6 ' 8 '

(1 2) in a slightly more useful, although more

lengthy, form. Define

L(6,y)

6
2

1-102C2-26162(1-1)2C1+62[ro+(ii)2C0

r0 c2+(1.-y)2[c0c2-c]

22

One obtains this expression by computing C(y)-1, pre- and

post-multiplying the result by 6, and by multiplying both

the numerator and the denominator of the resulting ratio

by (1--02. Clearly for yc[0,1), L(6,Y) = 6'C(Y) I . It

is also true for y = 1 that L(6,1) = 6/f, since c2(1) =

f. Thus, we can express y (y a2) as y
6'8 '

(y 02) =

204 L(S,Y) for all ye[0,11.

Ideally, one is in a position to derive an

expression for the efficiency of a Dw estimator. If

Dw = t'T, then

Eve(wly) = L(S,Y)/t'V(y)t. 11.1.2

While technically correct, this expression falls short of

addressing the case at hand, since given Dw, one must
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first find a t which depends on w. An expression of the

variance of Dw as a function of w yields a much more

useful means of determining efficiencies. Define

Vs,e(wiy,a2) as the variance of the Dw estimator having

expectation (S'O.

Proposition 11.2: Assume Al. If ye[0,1] and WES,

then the variance of the estimator Dw is given by the

following equation:

2c4 d'H(w)-1 G(y,w) H(w)-Id wi * 0

Vve(wly,a2) =

2a4(S1ti+62t2)'V(Y)(61t1+62t2) wi = 0.

Proof: Proposition 1.2 states that there exists a unique

estimator Dw for each weS. As Dw = S'8(w) where 8(w) is

the Gauss-Markov estimator for e in the artificial model

E(T) = Be, for OcR2, and Cov(T) = Vw, finding the

variance of (5'8(w) determines the variance of Dw.

CASE1: Suppose wl * O. Then Vw is non-singular so

that 8(w) = [B'V;113]-1B'V;v1T implying

Vve(wil,02) = 2046' [B'V-113]-1B'VIV(y)V-1B[BIV-1B]-ld.

Through straightforward although tedious matrix

1operations and algebra, one can show that H(w) = B'Vw B
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and that G(i,w) = B'V;IV(T)V;IB which gives the result.

CASE2: Suppose wl = 0. For this case Vw = diag

(0,cp(A1lw)/r1, .,(1)(Amiw)/rm). If one defines

el,e2cM(m+1,1) as

el =

e2 = (0,r1A1/4,(Xilw),...,rmXm4(Xmlw))'

then it's easily shown VweleR(B) and Vwe2cR(B), implying

el'T and e are blue with respect to the artificial

model. Algebraically, it can be shown that

tl = el

t2 = (e2 h1 (w)el)/h2(w)

and that E(t'T) = t'Be = 01 and E(t'T) = t'Be = 02. As
1 2 2

t1 and t2 are linear combinations of el and e2, tn. and

t'2 T must be blue for el and 82 with respect to the arti-

ficial model. Therefore, by Proposition 1.3 we have

Dw = (dIti-4-62t2)'T which implies Vve(wly,o2) =

2a4 kO 1 E1+0 2,2It vk iN(p lL1+0 2t 2). QED

Combining equation II.1.1 with the results of

Proposition 11.2, one arrives at the following useful

and applicable expression for the efficiency:
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Eve(wly) = 11.1.3

L(d,y)/VH(w)-1G(y,w)H(w)-16 w1 # 0

25

L(.5, 1)/(s1t1 +,52t2)'v(y)(61t1+62t2) w1 = 0

Proposition 11.3 below expands this expression into a

workable form. Because of the length of this expansion,

it will need to be broken down into components. In this

regard, define the ratio R as

= q(vv)/c2(y)g2(y,w)

and define P. for j = 1,2,...,7 as follows: (These bear

no relationship to the orthogonal projection operators

discussed in Section 1.2.)

%2 2
2 e2 f

P1 =
2 (1-y) -26162 (1-Y, el f 2 (1-y, co f+62[1+

f r0 r0 ro

2 c0 c 2
f

P2 = 1 + (1-1) (1 -

co c2 ro

h
2 g* f 2 2 2

P3
c2 2 0 2 hi gih2 (f_ hi f

+ (

T
-) ( --)

f c2g2 ht ht- f f 92 II h*
0

P4
91112 f hl gihi
f g2 h*0 f f g2

0

2 h2h1 gt f h1 f
-

f g2 ha f h*
0 0 0



h2 n*5= I - 2 -
h 1 91 f 1 f
f g2 h* f g2 h* h*

0 0 0

h/ 2 h 2 h2
Yt

P6 = (
2

( ) - 2
1

f h2 92C2 h*0 f h2 g2c2
ho

hP7 = q(1-y)
h2

--2- -f

26182(1-y) 2 hi2 f--
f g2 ro f g2 r0

h2
+ 2 (1-y) 2 f

2 + 622
f g2 r0

Proposition 11.3: Assume Al. For all ic[0,1] and

all wES, the efficiency of Dw is given by the following

equation:

Eve(wly)
P 1 (R +P 6 )1[P2 ( 621P 3 +26 1 6 2P4 +6 22P 5 1

PIRIP2 P 7
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vo * 0

wl = 0

Proof: The proof is primarily by substitution. Only an

outline of the proof is provided. Those steps left out

Involve simple matrix operations and algebra. CASE1:

Suppose wl t O. From equation 11.1.3, the efficiency is

given by

P1c2g2(h*)2W+P6]Eve(wly) =

P2C2g2(hV2[621133+26162134+622P5]
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since it can be shown that L(5 ,y) = PI/c2P2 and since

g2(t92[62P3+2616,2134+62P5]
VH(w)-1G(S,w)H(w)-16 2

c2g2 (hi )2[ +P6

This establishes the result. CASE2: Let wi = O. For

this case the expression given for the efficiency by the

proposition is Eve(wly) =6WP1c2/P2c2P7. One can show

that L(S,y) = PI/c2P2 and P70c2 = (d1t1+62t2)°V(Y)

(61t1+62t2). QED

We conclude this section with some observations and

a proposition. To begin, it should be remarked that,

strictly speaking, equations 11.1.2, 11.1.3 and

Proposition 11.3 are not correct for the case in which

the variance of Dw equals zero. While the expressions

given in 11.1.2, 11.1.3 and in Proposition 11.3 are

actually undefined, the efficiency was defined to be one

when the variance equals zero. The reader is requested

to take the efficiency as being one when indeed these

expressions are undefined. It is not difficult to show

that the only case for which the variance is zero is that

in which SI * 0, d2 = 0, y = 1 and wl = O.

It is remarked also that for a wide variety of

cases, the efficiency is a continuous function of w given

that y, d, and the eigenvalues 111,112,...,4f remain fixed.
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The advantage of continuity is that "small" changes in an

estimator (i.e. w) do not provoke "large" changes in the

efficiency; that is, one can rely on a certain degree of

stability when choosing an estimator. Consider the

following proposition.

Proposition 11.4: Assume Al. If weS is such that

wi > 0, then the efficiency Eve(wly) is a continuous

function of w.

Proof: The minimum attainable variance obviously cannot

be a function of w. Thus, since wi > 0, by equation

11.1.3 if one can show that the expression

VH(w)-1 G(Y,w) H(w)-1d 11.1.4

is positive and is a continuous function of w for wl>0,

the proposition is proved. Since 4)(1131w) = wi+w2pi+w3p

is a linear combination of wi, w2, and w3, it is a

continuous function of weS. As 011.1w) > 0 for all weS,

go,gi,g2,ho,h1 and h2 are all continuous functions of

weS, and since w >0, hi)* and g-0* are also continuous

functions of weS such that w/>0. We know that

det[H(w)] = roh2/wi + h2h0 -h12 > roh2/wl > 0

as 11.2.1 implies that hj. < hoh2. Since det[H(w)] is a
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continuous function of w for wi>0, H(w)-1 is a continuous

function of w. Clearly, G(/,w) is also continuous in w

for wi>0 and therefore expression 11.1.4 is continuous in

w for w1>0. Previous remarks have indicated that the

variance of an estimator is positive except possibly at

wl = 0, so expression 11.1.4 must also be positive. QED

While it is convenient to know that the efficiency

is continuous in w for w1>0, one might ask when is the

limiting efficiency continuous in w. To partially answer

this question, note that over the models (Xk,Ak,nk), one

has a sequence of efficiencies which are a function of

w. Since each of these efficiencies is a continuous

function of weS for wl>0, It is a well known result that

when these efficiencies converge uniformly to a limiting

efficiency which is a function of w, then this limiting

efficiency is continuous in weS for wl>0. Thus, when

this uniform convergence occurs, one not only has a

stability in the efficiency when choosing an estimator,

one also has a stability in the limiting efficiency.

Practically speaking, showing uniform convergence of

efficiencies to a limiting efficiency might be extremely

difficult.



30

Section 11.2: Main Result

The Cauchy-Schwarz Inequality is one of the most

useful of mathematical inequalities. Define E and n as

two vectors E,neRk. Let (,n) be the usual Euclidean

inner product, and define PO as the Euclidean norm where

P02 = (E,O. The Cauchy-Schwarz Inequality states that

(E,02 < pEn2p02

and that equality occurs if and only if the vectors E and

ri are proportional.12 Applying this inequality to the

case at hand, one can draw the following conclusion:

Result: Define a
u

= / P4 a4 with urR1 and where
J=1

f are non-negative constant. If v,r,seR1

then inequality 11.2.1 holds.

a
2 < a a
v r s

for 2v = r + s 11.2.1

Asarlexample,ifa.=[ 1-y-i-yp ] -2 for j=1,...,f, then

inequality 11.2.1 implies that c21(y) < co(y)c2(y). The

Cauchy-Schwarz Inequality also establishes inequality

----------
12. Two vectors are proportional when one is a
scalar multiple of the other.



1I.2.2 and inequality 11.2.3.

h2(w)

h2(w)
v

In particular,

that the ratio JP. q(w)/c2(y)92(Y,w) < 1.

In preface to the main result, we introduce

Proposition 11.5 and Lemmas 11.7 and 11.8. With the aid

of Proposition 11.5 and its corollary, Lemma 11.7

establishes boundedness for several functions involving

co,c1,c2,...,g2. Lemma 11.8 gives conditions under which

particular functions of these quantities and of r0

converge to zero. These lemmas will be essential to the

proofs of the main results which are Theorem 11.9 and

Proposition 11.10. In following the proofs of these

lemmas, the reader is reminded that yc[0,1] and weS

remain constant within their respective sets.
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<

<

if

g
r
(y,w)c

s
(y)

f b
2v

(w) for

v = r = s =

for 2v = r +

all veR1

2, inequality

s

11.2.2

11.2.2

11.2.3

shows

Proposition 11.5: Consider the polynomial q(X) = a0

aiX + + auXu with (a0,a1,...,au) > 0, X > 0, and

u > 1, and define n(X) = X k /q(X) for all X such that

q(X) > 0 where k > 0. Then the statements below hold.

1. If a0 > 0 and k = 0, then ¶(X) is a decreasing

function of X and 0 < ¶(X) < a0
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If ao,a
u

> 0 and 1 < k < u, there exists an X > 0

such that 7(X) is strictly increasing on [0,X],

strictly decreasing on [X- ,00), and 0 < 7(X) < 7(X)

for Xe[0,00. Moreover, X is the unique solution to

13
the equation f(X) = 0 where f(X) = kg(X) Xq'(X).

3. If a
u
> 0 and k = u, then w(X) is an increasing

function of X and 0 < 7(X) < a1.

Proof: The first derivative of 7(X) with respect to

Xe(0,c0) is given by 71-'(X) = f(X) Xk-1/[q(X)]2. If

u = k + v, then f(X) is equal to

f(X) = ka0+(k-1)alX+(k-2)a2

k+1
-(a

k+1
X + a

k+2
X
k+2

+...+ya k+vX
k+v

).

To avoid confusion, notice that no term can appear in

which the a coefficient subscript is negative, nor can

the subscript exceed u. One can establish that for all

three cases mentioned in the proposition, 7(X) is

continuous on Xe(0,0). Since Xk- 1/[q(X)]2 > 0 for

Xe(0,c0), the function f(X) has the same sign as l'(X).

To prove part 1, observe that for k = 0, f(X) < 0 on

Xe(0,c0) which, together with continuity of 7(X), implies

13. Take q'(X) as the first derivative of q(X) with
respect to X.
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7(X) is decreasing on XE[0,00). Since 7(0) = a-61,

and since for ao > 0 7(X) is continuous on [0,..0)

0 < 7(X) < a0 1 The proof of part 3 follows in a similar

fashion. Since k = u, f(X) > 0 for Xe(0,00 and there-

fore n(X) must be increasing on Xe(0,00. Since a
u

> 0,

lim n(X) = a-I which implies 0 < 7(X) < a'u l To prove

part 2, consider the following argument. Since 1 < k < u

and ao,au > 0, the polynomial f(X) has exactly one vari-

ation in sign -- it changes from positive to negative

after the k th
term. By Descartes' rule of signs, this

means f(X) = 0 has exactly one positive real root

RE(0,00). Since lim f(X) = ka0 > 0, this implies
X+0

f(X) > 0 for Xe(0,i) and f(X) < 0 for Xe();,c0). As

ao,au > 0, and since 7(X) is continuous, one has 7(X)

strictly increasing on (0,X] and strictly decreasing

on [X, °). This implies 0 < 7(X) < 7(X) for Xe(0,.0). QED

Corollary 11.6: Consider the polynomial q(X) =

ao + a1X + + auXu with a0,a1,..,,a
u
> 0, ao,a

u
0

and u > 1. Let
k
(X) = X k

/q(X) for XE(0,...) and

0 < k < u and define

71-(X)

k 0
r3

k k
(X)
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where 0031,. .,f3u>0. Then there exists an M such that

0 < 7r(X) < M for all X > 0. Moreover, for each k = 0,1,

...,u one can find an X
k

such that 0 < TT

k
(X) < Tr

k
(X

k
)

for X > 0 and one choice for M is e.171(X1)+.+OuTru(Xu).

Proof: From Proposition 11.5.2, there exists an Xk such

that 0 <
k
(X) < 7

k
(5(

k
) for k = 0,1, As a041,

u
0, then 0 < ¶(X) < M = ky

0
ak7k (X

k
). QED

=

Lemma 11.7: Assume Al. For any mi,...,pf > 0,

the expressions below are bounded. The bounds are

dependant only upon the value of yE[0,1] and the value

of wES.

For yE(0,11 and wES:

a.) (1-y)2c1(y)/f

c.) hDw)/fg2(Y,w)

For ye[0,1) and wcS:

d.) co(y)/f

b.) c2(y)/f

e.) hi(w)/fg2(i,w)

For ye[0,1] and weS such that 0 < wl < 1:

f.) hi(w)/f g.) go(y,w)lf

For ye[0,1] and weS such that wi,w3 *

h.) g2(Y9w)/h2(w)
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For ye(0,1] and weS such 0 < wi < 1:

i.) g1(y,w)h2(w)/fg2(Y,w)

For ye[0,1] and weS such that w1 0:

j.) ho(w)/f k.) q(w)/fh2(w)

1.) h1(w)g1(y,w)/fg2(y,w) m.) hi2.(w)913(1,w)/f2g2(Y9w)

Proof: Because of repetitive application, Proposition

11.5 and Corollary 11.6 will be abbreviated as PI1.5 and

CII.6 respectively. In the same fashion, abbreviate

Inequalities 11.2.1, 11.2.2 and 11.2.3 as InegII.2.1,

InegII.2.2 and InegII.2.3. The following argument will

be implicit in proving boundedness for some of the

expressions in this proposition: If one can bound each

fterm p.a for j = 1,2,...,f, then clearly 1.11a
J

.

f t=1

must also be bounded. CASE1: Let ye(0,1] and weS. If

q(X) = [1-1 +1X]2, P11.5 implies c1 /f is bounded for

ye(0,1) and c2/f is bounded for ye(0,1]. This proves

a. and b. as (1-y)2c1 /f = 0 for y = 1. To prove c.,

note that

g2(Y,w) = (1-y)2b2+2y(1-y)b3+y213,4

2From Ineq11.2.3, fb4 and thus h2 < fy _2 g2(y,w).

CASE2: Suppose ye[0,1) and weS. If q(X) = (1-y+1X)2,

then P11.5.1 proves d. To prove e. one sees that by
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Ineg11.2.3, hi < fb2. From the above expression for 92,

fb2(1-/)2 < g2 and thus (1-y)2hi < fg2. CASE3: Let

ye[0,1] and weS such that 0 < wl < 1. If q(X) =

[w1 +w2X+w3X2], then PI1.5 proves f. and if q(X) =

[vil+w2X+w3X2]2, C11.6 proves g. This applies whether

or not w3 = 0. If w3 t 0, the results follow directly

from PI1.5 and CII.6. If w3 = 0, as wii-w2+w3 . 1,

0 < wi < 1 implies that w2 t 0 and f. and g. still

follow from PI1.5 and CII.6. To prove h., CII.6 states

that one can find an M such that 0 < [1-y+yp ]2/

[111+W2-1.+W311
21

< M for w3 *0 and all j. Thus, g2 < h2M.

CASE4: Let ye(0,1] and weS such that 0 < wi < 1.

From IneciII.2.1, gi < gog2 and so g?/f92 < go/f. There-

fore, g. implies boundedness for gi/fg2. This result

2plus c. proves i. since h2g1 /fg2 = (h/fg2) 1/2

(gi/fg2)1/2.
CASES: Let ye[0,1] and weS such that

wl t 0. If q(X) = w1 +w2X+w3X2, then PI1.5 proves j.

Part k. follows from J. since InegII.2.1 implies

h
2

< hoh2 and so hi2 /fh2 < ho/f. Now prove m. If

ye[0,1) and wi < 1, e. and g. prove m. For the case

wi = 1 and ye[0,1], define d
k j

=
1
p. for k = 0,1,2,3,4.

= j



As wi = 1, hi = d1 and

go = (1-02f + 2Y(1 -Y)di + Y2 d2

g2 = (1-y)2d2 + 2y(1-y)d3 + y2d4

Equations 11.2.4 and 11.2.5 yield the following

inequalities,

d
3

d2 id2hi go d
2
f

(1-y)2 + 2y(1-y) y2
,2 r2g2 f

2
g2 f2g2

f2g2

d2 if d3i di d2

f 2 d2 f
2
d3 f

2
d4

d22 2
u2 d2

+

fd2 f24 did-3 fd2 fd4

37

As do = f, IneqII.2.1 gives 4. < fd2, d2 < did3 and

4 < fd4. Thus, hfgo/f2g2 is bounded for wi = 1 and

y [0,1]. The case y = 1 and wi * 0 remains to be shown

to prove m. One can show that for y = 1, go = b2 and

g2 = b4. Thus, one has

2 2 2higo hib2 hi

-

f
2
g2 f

2
b4 fb2 fb4

IneqII.2.1 and Ineq11.2.3 show this is bounded. This

proves m. The proof of 1. follows directly from m. and
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IneglI.2.1 since (higi/fg2)2 = (11'.200/f2g2)(g21/9092). QED

Proposition 11.5 and Corollary 11.6 provide the

means to determine numerical bounds for some of the

expressions in Lemma 11.7. As an example,

0 < co(y)/f < (1-y

0 < h2(w)/f < wil

-2 for ye[0,1)

for weS such that w3 * 0

and so on. Because later proofs do not require these

bounds, they were not included in Lemma 11.7 to avoid

adding unnecessary arguments to the proof. The next

lemma and later results will make extensive use of Lemma

11.7. In most cases Lemma 11.7 and Lemma 11.8 will he

abbreviated as L11.7 and LII.8 respectively.

Lemma 11.8: Assume A1,A2. The following limits hold

for constant y and w in the given subsets of ye[0,1]

and weS:

a.) lim[f/h;] = 0 ye[0,1] and w1*0

b.) limCgo/hoi[f/ho] = 0 ye(0,11 and 0<wi<1

* *
c.) lim[hih2/fg2][go/ho][f/ho] = 0 ye(0,1] and 0<wi<1

d.) lim[h2i/fg2][g:/4.][f/h0] = 0 ye[0,1] and wi*0

* *
e.) lim[ro/ho][f/ho] = 0 ye[0,1] and w1 #0



Proof: Part a. is easily shown since h0 = ro/wi h0

implies that wif/ro > f/h; > 0. Assumption A2 states

lim (f /r0) = 0 which proves the result. To prove b.,

one can show that

go (1-y) 2
r0 /w1 +go (1-y)2/wl+wl(f/r0)(go/f)

=
ho r0 /w1 + h0 1 + w1(f/r0)(h0 /f)

The ratio f/ro converges to zero. Since 0 < wl < 1,

LII.7.g and LII.7.j show that go/f and ho/f are

* *
bounded. Thus, go/ho must be bounded. This result

together with a. proves b. Suppose yc(0,1) and

0 < w1 < 1. For this case, LII.7.c, LII.7.e, and b.

above prove c. If y = 1, and 0 < wl < 1, since

go = b2 and g2 = b4 , then

h1 h2 g: f

f92 ht ht

f

h1h2g0 f
2

()2
htf g2

2 1/2 b2 1/2 1/2 2h
2 b

2 bo

) (---)
fb4 bo b4 f h

o
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If q(X) = [w1 +w2X+w3X2]2, Proposition 11.5.1 implies

b0 /f is bounded as w1 * 0. The ratio h1 /f is bounded by

LII.7.f, Inequality 11.2.3 bounds q/fb4 and Inequality

11.2.1 bounds b2/b
0 b 4 These observations along with a.

above prove c. To prove d., by algebra one can estab-

lish the following inequality:



f

f g; ho*

(1-y) 2 2
hl 1 f h

2
go f f

fg2 wl h
i0E

f
2
g2 1'0 ho

40

LI1.7.e. bounds (1-Y)2h1 /fg2 and L11 .7.m bounds

1121go/f2g2 for ye[0 1] and wl * 0. Thus, Assumption A2

and part a. above prove d. Part a. also proves e. since

ro ro wl

ht ro/wi+ho 1+w1 (hoif)(f/ro)

By LII.7.j, ho/f is bounded for wi * 0 which implies

boundedness for ro/hOw. QED

Theorem 11.9: Assume A1,A2. Suppose ye(0,1], and

for weS such that wl * 1, consider the estimator Dweeve

for 6012 and 62 * 0. Then, lim Rexists if and only if

lim E
s°e (wly) exists, and if either exists the two

limits are equal. Moreover, for the special case Si = 0

and for 62 * 0, the above conclusion holds for all

estimators weS and for all ye[0,1].

Proof: In PART1 through PART4, this proof determines the

limits of P1,...,P7 for appropriate subsets of weS

and yE[0,1]. PARTS applies these limits to prove the

theorem. In PART1 through PART4, assume that in the

sequence of models (Xk,Ak,nk), k is large enough to

bound those expressions whose limits are zero in Lemma

11.8 for the given subsets of y and w.
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PART1: Let yc(0,11 and weS. From Section 1I.1, P1

equals the sum of three terms. LII.7.a and LII.7.b

bound the first two terms and from LII.7.d, (1--02co/f

is bounded for ye[0,1]. From Assumption A2, lim f/ro

= 0 and so lim P1 = If If 61 = 0, then one has

lim P1 = 622 for all ye[0,1] and weS. From InegII.2.1,

C1 lic0c2 is bounded, thus lim P2 = 1 for ye[0,1] and weS.

PART 2: Let ye(0,1] and suppose weS such that 0<w1<1.

P3 consists of three terms, the first bounded by 11.2.2

and LII.7.b, the second by LII.7.f and LII.7.i, and the

third by LII.7.f. LII.8.a and LII.8.b show that

lim P3 = 0. P4 consists of four terms. The third term

converges to zero by LII.8.c. The first term is bounded

by LII.7. l, the second by LII.7.1 and LII.7.f, and the

fourth by LII.7.f. LII.8.a then shows that lim P4 = 0.

PART3: Let ye[0,1] and weS such that wl * 0. By

LII.7.1, LII.8.a and LII.8.d, lim P5 = 1. By LII.7.k,

InegI1.2.2, and LII.8.a, lim P6 = 0. PART4: Suppose

ye(0,1]. In this case, LII.7.c and LII.7.e bound P7.

Assumption A2 then implies that lim P7 = 622 for ye(0,1].

If in addition, 61 = 0, LII.7.e bounds (1-y)2h1/fg2 so

that Assumption A2 proves that lim P7 = 622 for all

ye[0,1]. PART5: We can summarize the relevant results



from PART1 through PART4 as follows below. Unless

contrary, assume that weS and dcR2.stated

lim Pi

to the

= d2

lim Pi = 62

lim P2 = 1

lim P3 = 0

lira P4 = 0

lira P5 = 1

lim P6 = 0

lira P7 =

lim P7 = dL

for ye(0,1]

for ye[0,1]

for ye[0,1]

for ys(0,1]

for ye(0,1]

for ye[0,1]

for ye[0,1]

for ye(0,1]

for ye[0,1]
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11.2.6.a

when d1 =0 IT.2.6.b

11.2.6.c

and 0<wi<1 I1.2.6.d

and 0<wi<1 11.2.6.e

and w1 *0 II.2.6.f

and w1 *0 II.2.6.g

11.2.6.h

when 61=0 I1.2.6.1

Suppose 0 < w1 < 1 and 62 * 0. From Proposition 11.3,

one has

E (wly) = P1W+P6)/[132(62P3+26162P4+62P5)1

If ye(0,1], provided lim 9l exists, I1.2.6.a,c-g imply

lim Eve(wly) = lim R. Vice versa, by simple algebra,

one can conclude that if lim F
6'0 (wly) exists, then lim g?

also exists and the two limits are equal. If in addi-

tion di = 0, then

Eve(wli) = P1W036)/[p2,522 p5]



and II.2.6.b,c,f,g give this same result for yE[0,1]

when weS such that w1 * 0. Suppose now that wl = 0.

From Proposition 11.3,

E6,6(w1y ) = PIR/P2P7.

In the same manner as described above, if wi = 0 and

ye(0,1], II.2.6.a,c,h imply that if either limiR or lim

E (wly) exist then the other exists and the two limits

are equal. If di = 0, results II.2.6.b,c,i imply the

same is true for ye[0,1] and wi = 0. QED

Table IV.6 in Chapter IV provides counter-examples

for several cases not included in Theorem 11.9. As an

example, if y = 0, A' has a different limit14 than the

efficiency of all but one of the Dw estimators given in

the table for estimating 01+02. In addition, when

wi = 1, ye(0,1] and 6'0 = 81+82 or s'e = el, Table IV.6

shows that.? has a different limit than the true

limiting efficiency.

From Theorem 11.9, one can see that the ratio j? can

be effectively used to examine the behavior of large

sample efficiencies. For this reason, there exist

characteristics of jf which merit comment.

14. From Theorem 11.9, lim = lim Ee2(wly).
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The ratio .9T clearly serves as an approximation for

Eve(w(y) at large sample sizes for the subsets 6eR2,

ye[0,1] and weS indicated in Theorem 11.9. It is com-

forting, as mentioned previously in this section, that

0 < < 1. Naturally, if 5Y identically equals one for

cases considered in Theorem 11.9 and for all models

(Xlc,Ak,nk), then lim Eve(wly) = 1. This leads one to

wonder whether 5C = 1 if and only if Eve(wly) = 1.

Algebraically, one can show that in general this does not

hold.

It is interesting that c2(y), h2(w), and g2(y,w) need

not have limits, nor even to be bounded, for JC to have a

limit which exists. To see this, consider the case when

y = w2 = 1, lim f and pj = j for j = 1,2,...,f.

For this case,

c2 (y) = f

h2(w) = 1+2+3+...+f = f(f+1)/2

g2(Y,w) = 1+4+9+...+f2 = f(f+1)(2f+1)/6,

and so g? = 3(f+1)/2(2f+1). This implies lim 5P = 3/4.

Indeed, even h2(w)/f and g2(y,w)/f are unbounded for

this case. However, from Hardy, Littlewood and Polya

(1934), if c2(y)/f and g2(y,w)/f converge, then h2(w)2/f

converges which implies JP converges. In the same sense,

if c2 (Y) and g2(y,w) converge, then so must 1-1(w) and gP.
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It would be informative if one could show that 6e

consistently over-estimates or under-estimates the

efficiency for those cases considered in Theorem 11.9.

Unfortunately, this is not the case. Examples can be

found in which for one case g? F
8'0

My) and in which

for another case Eve(wly) <

Theorem 11.9 concentrates on the behavior of the

efficiency when 82 * 0. Proposition 11.10 below

examines what happens to the efficiency when 82 = 0 and

61 * 0.

Proposition 11.10: Assume A1,A2. Let ye[0,1) and

weS where w3*0. Consider the estimator Dweeve in which

* 0 and 82 = 0. Then, lim Eve(wly) = 1.

Proof: CASE1: Let weS such that wi,w3 * 0 and

ye[0 1). From Proposition 11.3, one can show algebra-

ically that the efficiency is given by expression 11.2.7

below.

2
4

1 - 2

hi hi

f

2
f f .1--- -- 4- k,
*

2fh2 h0 f
2
h2 h0

g0 r0 h1 g1 g2 r0 f h2 g2 r0 f
P2(1-y)-2[ - 2 __]

* * * * * *
ho ho f g2 h2 ho h0 fh2 h2 h0 h0

11.2.7

By LII.7.k and LII.8.a, the limit of the numerator of

11.2.7 is one. By II.2.6.c from the proof of Theorem



46

11.9, lim P2 = 1. To prove that lim Eve(wly) = 1 for

this case, it remains to show that the sum in the denom-

inator of 11.2.7 also has a limit of one. By L11.7.1,

LII.7.h, LII.7.k and LII.8.e, the expression

hl g1 g2 ro f hi g2 ro f

- 2
* * * *

f 92 h2 ho hp fh2 h2 ho ho

has a limit of zero. Applying simple algebra, it can be

shown that

2 go ro 1+(1--0-2w1(go/f)(f/r
* *

ho ho [1+wf(f/r0)(ho/f)12
11.2.8

By LII.7.g, go/f is bounded, and by LH-7.j, hoff is

bounded. Assumption A2 then implies that expression

11.2.8 converges to one which implies expression 11.2.7

also converges to one. CASE2: Let ye[0,1), weS

such that wl = 0 and suppose deR2 where 61 * 0 and

62=0. It can be shown that Eve(wly) = 1/P2. 11.2.6.c

from the proof of Theorem 11.9 also implies that the

lim P2 = 1 for this case as well. QED

Tables 1V.2 through IV.8 in Chapter IV show that

Proposition 11.10 fails to hold for any Dw estimator

among those given when Y = 1 and wi > 0. Tables IV.6

through IV.8 show that Proposition II.10 fails to hold
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for the estimator Dw with wl = 1 estimating 61 + 02

when > O. Note that for 61 * 0 and 62 = 0, the D2 and

D3 estimators are the same. Thus, Proposition II.10

also holds for the D2 estimator.

We conclude this chapter with the following

observation based on Theorem 11.9. It is interesting to

note that, except for cases when 61 and 62 change from

zero to a non-zero value, the limiting efficiency rarely

depends upon 6. One can see this since Je does not

depend upon 6, and yet Je has the same limit as the

efficiency. Thus, it can be shown that the limiting

efficiency for the Dw estimators (where wl * 1) estima-

ting 6'8 with 62 * 0 does not depend upon 6 when

ye (0,1] .
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CHAPTER III

Estimators of 02

With the aid of Theorem 11.9, one can draw definite

conclusions about estimators in e The results
0 2

presented in this chapter were originally given in Seely

(1979). We have only generalized these results to a

broader class of cases. In addition to Assumptions Al and

A2, we will invoke Assumption A3. Seely (1979) has

assumed conditions given by Hartley et al. (1978) as the

limiting process in connection with the one-way randomized

design. Assumptions Al, A2 and A3 comprise a weaker

collection of limiting conditions and yet still encompass

those models covered by the Hartley et al. conditions. To

simplify notation, define Dk in ee2 as the estimator such

that weS where wk = 1 for k = 1,2,3, and define E2(Dk(y)

as its efficiency. Also, recall that in Section 11.2 we

defined dk = vi + p2 + + of for k = 1,2,3,4.
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Section 111.1: The DI and 02 Estimators

Several useful results follow from making the

additional Assumption A3. Define

f

s
k

1/p
j

for k 1,2.
J =1

Since ri is the multiplicity of the distinct positive

eigenvalue fromfrom Section 1.3 it is easy to see that

Assumption A3 is equivalent to the condition that

lim s2 /f = 0.

From Inequality 11.2.1, one can conclude inequality

111.1.1.

1

s2 d1 dk
(f ) > > > > > > 0 III.1.1

d

Thus under Assumption A3 all of these ratios converge to

zero. In addition, recalling that do = f, one can also

conclude that for k > 0 and i > 1,

lim dk/dk.4.1. = 0. 111.1.2

To see this, consider the special case in which k = 1

and i = 2. Limit 111.1.2 states that lim di/d3 = 0.



This is indeed true under Assumption A3 since by

inequality 111.1.1,

2
d,

2
di

=
d2 di 0.

d2 d2 d3 d3d1

By inequality III.1.1, we can further conclude from

Assumption A3 that

50

lim sl/f = 0. 111.1.3

f

By the Schwarz Inequality applied to f = xi /xi with
. i
1=1

x. = 11./[(P(NIu.)31/2 and by Proposition 11.4, one can

show for w3 t 0 that

[w1s2/f + w2slif + w3]-1 < h2(w)/f < w3

Thus, under Assumption A3 one has

lim h2(w)/f = 111.1.4

and for the case w = [(1-y)2,2Y(1-y),y2P, if y * 0, one

has the additional result that

lim c2(/)/f = y-2. 111.1.5

Consider the following propositions.
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Proposition III 1. Assume Al, A2, A3. If

yc(0,1] then lim E2(DilY) exists if and only if

lim ci/fd4 exists, and if either exists, the two limits

are equal.

Proof: For w = (1,0,0)', one can show that

= (J/{[c2(y)/f][(1-y)2 2 2Y(1-1)d3 + Y2C14]f/.

The proof follows directly from Theorem 11.9 and from

111.1.2 and 111.1.5. QED

Proposition 111.1.2: Assume Al, A2, A3. If

(F(0,1] then lim E2(D21y) exists if and only if

lim dj./fd2 exists, and if either exists, the two limits

are equal.

Proof: For w = (0,1,0)', one can show that

= d2 / {[c2(Y)/f][(1-y)2f 2y(1-y)di 2d2]

The proof follows from Theorem 11.9, 111.1.2 and

111.1.5. QED
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Section 111.2: The estimator

In Section III.1, it has been shown that under

Assumption A3, the efficiencies of the D1 and D2

estimators converge to the same limit as that of certain

expressions provided the limits of those expressions

exist. For most estimators in eel we can show that

under Assumption A3 the efficiency actually converges

to one.

Proposition 111.3: Assume Al, A2, A3. Suppose

ye(0,11 and consider the Dw estimator such that weS and

w3 * 0. Then, lim E2(Dwty) = 1.

Proof: Since y,w3 * 0, from inequality 11.2.2 and

Proposition 11.4, one has

[112(w)/f]2 < [cz(Y)/f][g2(19w)/f] <
2

w
°

Thus, lim R. 1 by 111.1.4 and the proof follows from

Theorem 11.9. QED

Propositions III.1, 111.2 and 111.3 generalize the

results of Seely (1979) pertaining to estimators of 82.

Those results pertaining to estimators of 01 generalize

directly from Proposition 11.10. The same type of

results for estimators in eve with 601 2 can be proved

in a similar fashion to those for estimators of 62.
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CHAPTER IV

Behavior of Efficiencies - An Example

One can gain useful information from computing

limiting efficiencies over different sequences of models

and for different estimators. From such examples can be

obtained an intuitive idea of how limiting efficiencies

behave under varied situations. Computation of limiting

efficiencies can also provide a basis on which to make

recommendations about specific estimators. In

particular, we hope to make some recommendations

concerning the DI, D2 and D3 estimators, about Rao's

MINOUE estimator with equal priory weights given in Rao

(1972), and a few others. We mention that the DI

estimator is Rao's MINOUEO estimator (see Searle

(1979)), the D2 estimator is the Henderson III estimator

(see Searle (1969)) and the D3 estimator for 02 is the

ANOVA estimator for 02 based on unweighted means, (see

Henderson (1978)). The efficiencies computed in this

chapter also demonstrate some cases in which the results

of Theorem 11.9 and Proposition 11.10 fail to hold.15

15. See Section 11.2



54

Section IV.1: Tables of Limiting Efficiencies

From equation 11.1.3, one can show that, given

values for y, w and 6, the calculation of the efficiency

of an estimator D
w
cg'6'8 depends upon the eigenvalues

AI,A2,,Xm and their corresponding multiplicities r1,

r2,...,rm plus n and r(X). This follows since ro

n - r(X) - f and because f = r1 + r2 + + rm. In

this section we will calculate limiting efficiencies for

various values of y, w and 6 when n 00 and where r(X) =

5, rj = crn for j=1,2,...,9 and

Ai = 1/n

A2 = 2/n

A3 = 3/n

X4 = 4

A5 = 5

6 = 6

A7 = 7n

A8 = 8n

A9 = 9ri .

Let the constants c1,c2,...,c9e10,11. In this way, the

eigenvalues are indeed distinct, and as n tends to

infinity, some of the eigenvalues converge to zero, some

remain constant, and the remainder of the eigenvalues

tend to infinity. All of the multiplicities tend to in-

finity. By appropriate selection of c = (c1,c2,...,C9),

one has at hand a fairly wide variety of different

behaviors among the eigenvalues. For instance, if c =

(1,1,1,0,0,0,0,0), one has a case in which all eigen-

values tend to zero, and if c = (1,1,1,0,0,0,1,1,), one
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has a case in which the eigenvalues converge to zero or

to infinity, but in which none of the eigenvalues remain

constant. For the general case, we can establish that

f = in (Ci + ;2 4" ;9)

ro = n - 5 - In (CI + ;2 Jr *** ;9)*

For n > 100, f,ro > 1 and thus Assumption Al holds.

Assumption A2 also holds, and Assumption A3 holds if all

eigenvalues tend to infinity. The limiting efficiencies

were computed by calculating the efficiency directly

from equation 11.1.3 for successively larger n until the

efficiency converged to a specific value. In no case

did the efficiency fail to converge. The computed

Limiting efficiencies appear in Table IV.1 through Table

IV.8. Each table contains the value of the limiting ef-

ficiency for a different choice of c and for all poss-

ible combinations of y,S and w in the following sets.

WE 4\ , ( .5 , ,

.25) .4 / .1 / 0

(10

1

y6 {0,.001,.01,.1,.25,.5,.75,.9,.99,.999,1}
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To better understand the choices of w included in the

tables consider Figure IV.1, recall that once one has

chosen wi and w3 for wcS, then w2 is determined and

w2=1-wl-w3. Thus, all points wS can be represented as

an ordered pair (wl,w3) on the triangle in Figure IV.1.

The shaded region represents those points for which

weS
c

. Each plotted point on the graph is an estimator

included in the tables. The point at the origin is the

D2 estimator since wl = w3 = 0 implies w2 = 1. The

criteria was to choose w's to represent each different

area on the graph.

w3

Figure IV.1

WI
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In computing the limiting efficiencies of several

estimators of (s'e where 61,62 * 0, it was interesting to

note that the maximum efficiency occurred at a finite

value of n and not at n . Ordinarily, one might

think that a bigger n is a better n! At least in regard

to the limiting efficiency, this is not always the

case. Considering the estimator w = (.16,.48,.36)',

estimating 01 + 82 when y = 1, if ..(0,0,0,0,0,1,1,1,1),

then Table IV.1 shows the maximum efficiency does not

occur at n = co, but must occur at some finite value

of n.

Table IV.1
Limiting Efficiencies of the

(.16,.48,.36) Estimator

n Ecs,e(OwlY)

10
104
105

.992623590

.992597468

.992594858
10

6
.992594597

107 .992594571
10 .992594568
10 .992594568

The limiting efficiencies given in Tables IV.2

through IV.8 were rounded to three decimal places.

Limiting efficiencies which round to 0 but do not equal

0 are expressed as "0+", and similarly, limiting
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efficiencies which round to 1 but do not equal 1 are

expressed as "1-". Note that by Theorem 11.9, for all

cases lim E82(wly) = lim Je so that the tables also give

the limit of R. In addition, except at wl = 1, the Dw

estimator has the same limiting efficiency when esti-

mating 81 + 82 as it has when estimating 6181 + 6282

provided 61,62 * 0. This result follows directly from

Theorem 11.9. Thus, except at wl = 1 or at y = 0, the

tables provide the limiting efficiencies of the given

estimators for all 6032



TABLE IV.2

Limiting Efficiencies When All Eigenvalues

Converge to Zero

=

W2 =
W3 =

= 0
01

01+02
02

I = .001

01

01+02
e2

Y = .01
01

01 +02
02

/ = .1

01

01+02
02

X = .25
el

01+02
02

I = .50
el

01+02
02

Y = .75

01

01+02
02

= (1,1,1,0,0,0,0,0,0)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

59



Limiting

wi =

W2 =
W3 =

Y = .9

61

01+02
02

I = .99
el

01+02
82

Y = .999
el

81 +82

02

Y = 1.000
el

01+02
02

TABLE IV.2 (continued)

Efficiencies When All Eigenvalues

Converge to Zero

= (1,1,1,0,0,0,0,0,0)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

1 1 1 1 1 1 1 1

1 1 1 1 1 1 .857 .472
1 1 1 1 1 1 .857 .472

0 0 0 0 0 0 1 1

.667 .667 .667 .667 .667 .667 .857 1

.667 .667 .667 .667 .667 .667 .857 1
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TABLE IV.3

Limiting Efficiencies When The Eigenvalues

Converge To Zero And To A Constant

= (1,1,1,1,1,1,0,0,0)

Wl =

W2 =
W3 =

.25

.50

.25

Y = 0
el

61+62
02

Y = .001

el

1

.928

.928

1

61+62 .929
02 .929

= .01

el 1

61+62 .936
62 .936

I = .1
el 1

61+62 .976
02 .976

Y = .25

el

01+02
62

-y = .50
el

61+62
02

= .75

1

.995

.995

1

1

1

el 1

01+02 .999
02 .999

.4 .2 .5 .5 1 0 0

.2 .7 0 .5 0 1 0

.4 .1 .5 0 0 0 1

1 1 1 1 1 1 1

.913 .951 .905 .982 1 .487 0

.913 .951 .905 .982 1 .487 0

1 1 1 1 1 1 1

.914 .952 .906 .983 1- .490 0

.914 .952 .906 .983 1- .490 0

1 1 1 1 1 1 1

.921 .958 .914 .986 1- .513 0

.921 .958 .914 .986 1- .513 0

1 1 1 1 1 1 1

.966 .988 .961 1- .988 .707 0

.966 .988 .961 1- .988 .707 0

1 1 1 1 1 1 1

.990 1- .987 .996 .963 .876 0

.990 1- .987 .996 .963 .876 0

1 1 1 1 1 1 1

.999 .998 .998 .982 .935 .962 0

.999 .998 .998 .982 .935 .962 0

1 1 1 1 1 1 1

1- .993 1- .972 .919 .976 0
1- .993 1- .972 .919 .976 0

61



TABLE IV.3 (continued)

Limiting Efficiencies When The Eigenvalues

Converge To Zero And To A Constant

wl =

w2 =

w3 =

Y = .9

01
81 +02

82

= .99

01

01+02
82

Y = .999

el

01+02
02

Y = 1.000

81
01+02

02

=

.25

.50

.25

(1,1,1,1,1,1,0,0,0)

.4 .2 .5 .5

.2 .7 0 .5

.4 0

1

0

0

0

1

0

0
0
1

1 1 1 1 1 1 1 1

.998 1- .991 1- .968 .912 .976 0

.998 1- .991 1- .968 .912 .976 0

1 1 1 1 1 1 1 1

.997 .999 .989 1- .965 .908 .974 0

.997 .999 .989 1- .965 .908 .974 0

1 1 1 1 1 1 1 1

.997 .999 .989 1- .965 .908 .974 0

.997 .999 .989 1- .965 .908 .974 0

0 0 0 0 0 0 1 1

.498 .500 .495 .500 .483 .454 .487 1

.498 .500 .495 .500 .483 .454 .487 1

62



=

W2 =

W3 =

Y = 0

TABLE IV.4

Limiting Efficiencies When All

Eigenvalues Converge to A Constant

61

61+62
02

Y = .001

61

61+62
62

Y = .01

61

61+62
02

I = .1
61

61+62
62

y = .25
el

61+62
62

Y = .50

61

61+62
02

Y = .75

61

61+62
62

= (0,0,0,1,1,1,0,0,0)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

.928 .913 .951 .905 .982 1 .974 .897

.928 .913 .951 .905 .982 1 .974 .897

1 1 1 1 1 1 1 1

.929 .914 .952 .906 .983 1- .975 .898

.929 .914 .952 .906 .983 1- .975 .898

1 1 1 1 1 1 1 1

.936 .921 .958 .914 .986 1- .979 .906

.936 .921 .958 .914 .986 1- .979 .906

1 1 1 1 1 1 1 1

.976 .966 .988 .961 1- .988 .998 .955

.976 .966 .988 .961 1- .988 .998 .955

1 1 1 1 1 1 1 1

.995 .990 1- .987 .996 .963 .998 .984

.995 .990 1- .987 .996 .963 .998 .984

1 1 1 1 1 1 1 1

1 .999 .998 .998 .982 .935 .989 .997
1 .999 .998 .998 .982 .935 .989 .997

1 1 1 1 1 1 1 1

.999 1- .993 1- .972 .919 .980 1-

.999 1- .993 1- .972 .919 .980 1-
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W1 =

W2 =
W3 =

= .9

TABLE IV.4 (continued)

Limiting Efficiencies When All

Eigenvalues Converge To A Constant

el

01+02
82

Y = .99

81

81+02
02

Y = .999

el
01+62

82

Y = 1.000
ei

81+82
02

= (0,0,0,1,1,1,0,0,0)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

.998 1- .991 1- .968 .912 .976 1-

.998 1- .991 1- .968 .912 .976 1-

1 1 1 1 1 1 1 1

.997 .999 .989 1- .965 .908 .974 1-

.997 .999 .989 1- .965 .908 .974 1-

1 1 1 1 1 1 1 1

.997 .999 .989 1- .965 .908 .974 1-

.997 .999 .989 1- .965 .908 .974 1-

0 0 0 0 0 0 1 1

.997 .999 .989 1- .965 .908 .974 1

.997 .999 .989 1- .965 .908 .974 1

64



TABLE IV.5

Limiting Efficiencies When The Eigenvalues

Converge to a Constant and to Infinity

wi =

W2 =
w3 =

Y = 0

Y = .001
el

61+62
02

I = .01

61
01+02

62

= .1

61

61+62
02

Y = .25

01+02

02

Y = .50
el

61+62
62

Y = .75
el

61+62
02

= (0,0,0,1,1,1,1,1,1)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 0
0 0 0 0 .586 1 .495 0

1 1 1 1 1 0 1 1

0+ 0+ 0+ 0+ .990 .171 .990 0+
0+ 0+ 0+ 0+ .990 .961 .990 0+

1 1 1 1 1 0 1 1

.013 .010 .027 .009 .987 .170 .987 .009

.013 .010 .027 .009 .987 .958 .987 .009

1

.525

.525

1

.433

.433

1

.765

.765

1

.400

.400

1

.878

.878

0

.151

.852

1

.878

.878

1

.385

.385

1 1 1 1 1 0 1 1

.921 .846 1- .813 .713 .123 .713 .796

.921 .846 1- .813 .713 .693 .713 .796

1 1 1 1 1 0 1 1

1 .986 .941 .972 .586 .101 .586 .964
1 .986 .941 .972 .586 .569 .586 .964

1 1 1 1 1 0 1 1

.986 1- .883 .998 .528 .091 .528 .995

.986 1- .883 .998 .528 .512 .528 .995
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TABLE IV.5 (continued)

Limiting Efficiencies When The Eigenvalues

Converge To a Constant and to Infinity

Wl =
W2 =
W3 =

Y = .9

el

el+02
e2

= .99

01

01+02
02

Y = .999

01
81+62

82

Y = 1.000
el

01+02
02

= (0,0,0,1,1,1,1,1,1)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 1

1 1 1 1 1 0 1 1

.974 .998 .857 1- .506 .087 .506 .999

.974 .998 .857 1- .506 .491 .506 .999

1 1 1 1 1 0 1 1

.967 .995 .845 1- .496 .086 .496 1-

.967 .995 .845 1- .496 .481 .496 1-

1 1 1 1 1 0 1 1

.966 .995 .844 .999 .495 .085 .495 1-

.966 .995 .844 .999 .495 .480 .495 1-

0 0 0 0 0 0 1 1

.966 .995 .844 .999 .495 .085 .495 1

.966 .995 .844 .999 .495 .480 .495 1
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TABLE TV.6

Limiting Efficiencies When All Eigenvalues

Converge To Infinity

= (0,0,0,0,0,0,1,1,1)

wi = .25 .4 .2 .5 .5 1 0 0

W2 = .50 .2 .7 0 .5 0 1 0
W3 = .25 .4 .1 .5 0 0 0 1

y = 0

01 1 1 1 1 1 1 1 1

01+02 1 1 1 1 1 1 1 1

02 .959 .959 .959 .959 .990 1 .990 .959

Y = .001
el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

= .01

01 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

Y = .1

el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

Y = .25

el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

i = .50

el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

= .75

01 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1
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TABLE IV.6 (continued)

Limiting Efficiencies When All Eigenvalues

Converge To Infinity

c = (0,0,0,0,0,0,1,1,1)

Wl =

W2 =
W3------------

= .9

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

82 1 1 1 1 .990 .961 .990 1

= .99

el 1 1 1 1 1 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1

I = .999
el 1 1 1 1 1 0 1 1

61+62 1 1 1 1 .990 .171 .990 1

62 1 1 1 1 .990 .961 .990 1

y = 1.000
el 0 0 0 0 0 0 1 1

01+02 1 1 1 1 .990 .171 .990 1

02 1 1 1 1 .990 .961 .990 1



TABLE IV.7

Limiting Efficiencies When The Eigenvalues

Converge to Zero and to Infinity

W1 =
W2 =
W3

Y = 0
01

01+02
02

Y = .001
el

01+02
02

Y = .01

01
01+02

02

= .1

el

01+02
02

Y = .25
01

01+02
02

i = .50

01

01+02
02

Y = .75
01

e1 +02
02

= (1,1,1,0,0,0,1,1,1)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0
.003 .003 .013 .003 .990 1 .495 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0
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TABLE IV.7 (continued)

Limiting Efficiencies When The Eigenvalues

Converge to Zero and to Infinity

c = (1,1,1,0,0,0,1,1,1)

wl =

w2 =
w3 =

= .9
el

01+02
02

= .99

.25 .4

.50 .2

.25 .4

.2 .5 .5 1 0 0

.7 0 .5 0 1 0

.1 .5 0 0 0 1

70

1 1 1 1 1 0 1 1

1 1 1 1 .990 .171 .990 0
1 1 1 1 .990 .961 .990 0

01 1 1 1 1 1 0 1 1

01 +02 1 1 1 1 .990 .171 .990 0

02 1 1 1 1 .990 .961 .990 0

I = .999

el 1 1 1 1 1 0 1 1

e1 4-02 1 1 1 1 .990 .171 .990 0

02 1 1 1 1 .990 .961 .990 0

-( = 1.000
el 0 0 0 0 0 0 1 1

01+02 .5 .5 .5 .5 .495 .085 .495 1

02 .5 .5 .5 .5 .495 .480 .495 1



TABLE IV.8

Limiting Efficiencies When The Eigenvalues

Converge to Zero, to a Constant, and to Infinity

wi =

W2 =
W3 =

Y = 0

01

01+02
02

Y = .001
el

01+02
02

I = .01

01

01+02
82

= .1

01
61+82

82

Y = .25
el

81+02
e2

.50

01

81+02
82

Y = .75
el

81+02
82

= (1,1,1,1,1,1,1,1,1)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 0
0 0 0 0 .586 1 .330 0

1 1 1 1 1 0 1 1

0+ 0+ 0+ 0+ .990 .171 .990 0
0+ 0+ 0+ 0+ .990 .961 .990 0

1 1 1 1 1 0 1 1

.013 .010 .027 .009 .987 .170 .987 0

.013 .010 .027 .009 .987 .958 .987 0

1 1 1 1 1 0 1 1

.525 .433 .765 .400 .878 .151 .878 0

.525 .433 .765 .400 .878 .852 .878 0

1 1 1 1 1 0 1 1

.921 .846 1- .813 .713 .123 .713 0

.921 .846 1- .813 .713 .693 .713 0

1 1 1 1 0 1 1

1 .986 .941 .972 .586 .101 .586 0
1 .986 .941 .972 .586 .569 .586 0

1 1 1 1 1 0 1

.986 1- .883 .998 .528 .091 .528 0

.986 1- .883 .998 .528 .512 .528 0
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TABLE IV.8 (continued)

Limiting Efficiencies When The Eigenvalues

Converge to Zero, to a Constant, and to Infinity

wi =

W2 =
W3 =

I = .9

el

61+62
62

Y = .99

y = .999

61

61+62
62

y , 1.000
el

01+02

62

= (1,1,1,1,1,1,1,1,1)

.25 .4 .2 .5 .5 1 0 0

.50 .2 .7 0 .5 0 1 0

.25 .4 .1 .5 0 0 0 1

1 1 1 1 1 0 1 1

.974 .998 .857 1- .506 .087 .506 0

.974 .998 .857 1- .506 .491 .506 0

1 1 1 1 1 0 1 1

.967 .995 .845 1- .496 .086 .496 0

.967 .995 .845 1- .496 .481 .496 0

1 1 1 1 1 0 1 1

.966 .995 .844 .999 .495 .085 .495 0

.966 .995 .844 .999 .495 .480 .495 0

0 0 0 0 0 0 1

.644 .663 .563 .666 .330 .057 .330 1

.644 .663 .563 .666 .330 .320 .330 1
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Section IV.2: Recommendations

Given Tables IV.2-IV.8, one is in a position to make

some recommendations concerning the choice of estimators

for various cases. It should be remembered that, while

these tables cover many cases, they cannot hope to be

entirely representative. If any one point is clear, it

is that the best approach to choosing an estimator is to

determine how the eigenvalues A1, A2, ..., Am and their

multiplicities behave and to compute the limiting

efficiencies of the estimators under consideration over

y6[0,1].

In estimating el, the D3 estimator (the standard

ANOVA estimator) appears to be an excellent choice. For

all behaviors of the eigenvalues and for all values of

y6[0,1] given above, the limiting efficiency equals one.

This recommendation corresponds to that given by Seely

(1979). In addition, this estimator is readily computed

and has been discussed extensively in the statistical

literature. Note that for estimating el, the D3

estimator equals the D2 estimator. For cases in which

some or all of the eigenvalues tend to infinity, the D1

estimator constitutes an especially poor choice for

estimating el. This estimator is also known as Rao's

MINQUEO estimator. In all such cases given in the

tables, for y > 0, its limiting efficiency is zero.
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From Proposition II.10, all estimators other than the DI

estimator have a limiting efficiency of one for

ye[0,1). These estimators would also be acceptable

choices so long as y * 1. Among the estimators

considered, only the D3 estimator has a non-zero

limiting efficiency at y = 1.

When estimating e2, we can make the following

observations based on the tables and on the results of

this dissertation. When all eigenvalues converge to

zero or converge to a constant greater than zero, or

both, those Dw estimators for which wi > 0 appear to be

good choices. When ye(.25,1), Rao's MINQUE is also a

good choice. When the eigenvalues converge both to

infinity and to a constant greater than zero, for

yc(0,.1) the estimator where w = (.5,.5,0)' shows good

performance. For ye(.1,1], one would avoid this

estimator and benefit more by choosing the MINQUE or

possibly the D3 estimator. In fact, at y near one, the

D3 estimator would be the best choice. When all eigen-

values converge to infinity, the estimators for which

w3 > 0 seem best. Preference is again given to the D3

estimator. In studying the one-way randomized design in

which all eigenvalues converge to infinity, Seely (1979)

also gives the D3 estimator high marks. When the eigen-

values converge both to zero and to infinity, for

yc(0,1), the best choices appear to be those for which
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wi,w3 > 0. In this case, the 03 estimator is the worst

possible choice except at y = 1. At y = 0, the best

choice is the D1 estimator. When the eigenvalues con-

verge to zero, to a constant, and to infinity, at y near

zero, the estimator with w = (.5,.5,0)' is a good

choice; however, as y grows larger the estimator with w

(.5,0,.5)' improves on the (.5,.5,0)' estimator.

Provided the eigenvalues don't converge to a constant

while also converging to zero or to infinity, the 02

estimator is a decent estimator. In fact, it also shows

good performance when all eigenvalues converge to a

constant. One can show that when estimating 82, for

y = 0, the efficiency for the D1 estimator equals one,

and for y = 1, the efficiency of the 03 estimator equals

one. Thus, for y = 0 use the D1 estimator and for y = 1

use the 03 estimator.

In recommending estimators of 6'13 such that 610520,

one can refer to recommendations made for estimators of

62 unless the DI estimator provides a better choice.

This observation follows from Theorem 11.9 which shows

that, except at y = 0 or for the D1 estimator, the

limiting efficiency is independent of 6 so lone as

62>0. At y = 1, the 03 estimator is the best choice

since it necessarily must have an efficiency of one.
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APPENDIX

Complete Classes

Let zeR
m

be a random vector having covariance struc-

ture Cov(z) = E for all EeV and consider the set of

estimators {b' bEBI where B is any non-empty set of co-

efficient vectors to z. Then, one can define the fol-

lowing terms.

1. An estimator b'z is as good as an estimator a'z

when b'Eb < a'Ea for all EeV.

2. An estimator b'z is better than an estimator a'z

if b'Eb < a'Ea for all EEV and if there exists a

E0eV such that b'Eub < a'E0a.

3. An essentially complete class in B is a subset

Ce C B such that for all bEB there exists an aECe

where a'z is as good as b'z.

4. A complete class in B is a subset C C B such that

for all aeB\C there exists a beC where b'z is better

than a'z.

). A minimal complete class is a complete class which

is a subset of every other complete class.

6. Given that aeB, a'z is an admissable estimator in

{d'ztdcB} if there exists no beB such that b'z is

is better than a'z. Correspondingly, the admissable

class is the set of all aEB such that a'z is an ad-
_

missable estimator.



78

In regard to the above definitions, it is noted that

a complete class is also an essentially complete class.

One can also conclude from these definitions that an

admissable class is a subset of every complete class,

and thereby of the minimal complete class provided a

minimal complete class exists. Thus, one can show that

the admissable class is an essentially complete class if

and only if it is a complete class if and only if it is

a minimal complete class. A minimal complete class is

unique, since if there were two different minimal

complete classes, they would necessarily be a subset of

each other.


