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Quantitative procedures were developed to determine the effect of 

variability in the model parameters required for the estimation of microbial shelf-

life and thermal processing time.  Monte Carlo simulations combined with these 

predictive models were implemented in Microsoft ExcelTM. In the first study, 

predictive models were used for shelf-life predictions based on the growth of 

Lactobacillus sakei in meat.  The shelf-life values predicted when parameter 

variability was not considered were 3.6, 115.9, 4.1 and 144.8 h for cases 1 (T = 

4oC), 2 (T = 4oC, aw = 0.98), 3 (T = 4oC, CO2 = 2,650 ppm), 4.1 (T = 4oC, aw = 0.98, 

CO2 = 2,650 ppm), respectively, whereas 3.9±1.7, 119.4±20.3, 4.6±1.4 and 

160.4±0.3 h, respectively, were the values estimated considering parameter 

variability.  The definition of a shelf life with 95% confidence that the product will 

not fail before the stated expiration date lead to a recommended microbial shelf-life 

of 2.5, 100, 3, and 110 h, respectively, When the reported standard deviation of all 

microbial model parameters describing the effect of the three factors in Case 4 (T = 



 

 

 

4oC, aw = 0.98, CO2 = 2,650 ppm) was reduced by 10%, 50% and 90% without 

changing mean values, the recommended shelf-life time increased from 110 to 115, 

125 and 130 h, respectively.  This relatively small increase in the recommended 

shelf-life, i.e., an increase from 110 to 130 h after a 90% reduction in the variability 

of all model parameters, showed that reducing the standard deviation of microbial 

shelf-life time appeared difficult when assessing the effect of multiple factors. 

In a second study, the estimation of a thermal process time at a constant 

reference temperature (T = 110oC) for the inactivation of Clostridium botulinum 

spores in commercially produced mushrooms, and based on the reported mean 

values for thermal inactivation time (DT) and initial microbial load (No), yielded a 

recommended value of 5.96 min.  Unique combinations of generated No
* and DT

* 

datasets were used to obtain a distribution of the spore survival probability and the 

associated percentage of under processing. Next, the coefficient of variation (CV) 

for the percentage of under processing when using 2 to 500 generated datasets was 

calculated to determine that 100 was an acceptable minimum number of datasets to 

estimate 9.6 min as a recommended thermal processing time considering the 

experimental variability of the parameters DT and No and yielding a 10-9 failure 

probability with a 95% confidence. The predictive procedures were used also to 

assess the impact of reducing the standard deviation (SD) of both No and D110ºC by 

10%, 50%, and 90% yielding 8.6, 7.8 and 6.4 min, respectively, as a recommended 

thermal process time at 110oC with 95% confidence. 



 

 

 

In both applications of the procedures here developed, i.e., prediction or 

microbial shelf-life and design of a thermal process, the user reached a 

recommendation with 95% confidence using procedures that could be implemented 

in Microsoft Excel and based on concepts suitable for inclusion in an undergraduate 

food science program. 
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Introduction 

All food processors face uncertainties when making process, formulation 

and storage decisions because all calculation parameters values have intrinsic and 

measurement variability. In this study, the focus is the development of calculation 

strategies considering this variability and thus producing calculation outputs to 

reach decisions with known confidence levels. A constraint in all procedures to be 

developed was that they must be possible to implement using only Microsoft 

ExcelTM spreadsheets and of an adequate complexity level for incorporation in 

undergraduate programs in food science and technology. The cases covered in this 

study focused on the development of such procedures for the estimation of the 

microbial shelf-life of refrigerated foods and the design of a heat food sterilization 

process for a low-acid food. Although thermal processing is the most commonly 

used food preservation technology, a review of textbooks presenting this subject 

showed that the impact of parameter variability on the selection of the time-

temperature conditions eliminating pathogens and spoilage microorganisms has not 

been covered. 

Shelf-life refers to the period of time during which a product still meets the 

quality and safety expectations of the consumer. During this time the product will 

be in storage, transportation, commercial distribution and then subjected to highly 

variable consumer handling conditions. The change in the quality and safety of 

food products during this time depends on numerous intrinsic and extrinsic factors. 

The intrinsic factors include ingredient composition and food formulation, water 
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activity, pH, and the load and type of microorganisms present in raw ingredients or 

coming from the food production or storage and distribution environment. Among 

many others, the extrinsic factors include food processing conditions, storage 

temperature, packaging, relative humidity, handling during retail operations and 

food preparation and consumption steps (Gudmundsson and Kristbergsson, 2008). 

Predictive models describe mathematically the effect of extrinsic and intrinsic 

parameters on microbial growth and are used to estimate the microbial shelf-life of 

foods (Ross, 1996; Ross, 1999; Peleg, 2006a; McDonald and Sun, 1999; 

Almonacid-Merino and Torres, 1991a; Almonacid-Merino and Torres, 1991b; 

Almonacid-Merino and others 1993b; Almonacid-Merino and Torres, 1993; 

Almonacid-Merino and Torres, 2009; Li and others 2007; Li and Torres, 1993a; Li 

and Torres, 1993b; Li and Torres, 1993c; McMeekin and others 1993a). The 

mathematical descriptions used in predictive microbiology quantify microbial 

growth and survival in foods. These mathematical models are classified as primary 

or secondary. Primary models describe growth, survival or inactivation of 

microorganisms under constant conditions. Secondary models describe how 

parameters from primary models behave under a range of conditions defined by 

intrinsic and extrinsic factors (Gudmundsson and Kristbergsson, 2008). Predictive 

microbiology was developed as a rapid and cost-effective tool to reduce the risk of 

reaching consumers with unsafe or spoiled food products. If a predicted model is 

used to estimate microbial shelf-life, the cost of bringing a food product to market 
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is reduced and the product development phase can be shortened.  

Monte Carlo procedures were developed during World War II by physicists 

working on nuclear weapon projects in the Los Alamos National Laboratory 

(Metropolis, 1987). These procedures are used when it is not possible to compute 

an exact result using a deterministic algorithm. An example of a deterministic 

algorithm is a mathematical function because a function always produces the same 

output given a certain input (Figure 1). An application where you would want to 

use a Monte Carlo procedure is in the generation of the distribution frequency of all 

possible values for a given outcome. In this study, such procedures were developed 

to predict the probability that fresh meat may fail before its stated microbial shelf-

life, and also to estimate quantitatively the risk of under processing when applying 

a certain thermal treatment for the preservation of mushrooms. These procedures 

required knowing the statistical distribution of all calculation parameters which was 

obtained from published data.  

The use of predictive models for the assessment of microbial shelf-life 

depends not only on the initial microbial load, processing steps, post processing 

contamination risk, storage conditions and food properties but also on the statistical 

variability of the parameters used in the predictive model. In the evaluation of 

microbial shelf-life covered in this study, the procedures developed considered the 

reported variability in the predict microbiology models and in the initial microbial 

load but not in the value of other extrinsic and intrinsic food parameters (e.g., 
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storage temperature). The effect of the latter had been covered in previous studies 

(Almonacid-Merino and Torres, 1991a; Almonacid-Merino and Torres, 1991b; 

Almonacid-Merino et al., 1993b; Almonacid-Merino and Torres, 1993; Almonacid-

Merino and Torres, 2009). In the case of the thermal processing application, the 

procedures considered the reported variability in the initial microbial load and in 

the value of the decimal reduction time. Particularly important was considering that 

regulatory agencies require now specifying the confidence level that a pathogen 

risk specified by current food safety regulations (e.g., 5 decimal reductions in the 

pasteurization of juices) will be met. 

Microsoft Excel was used to generate random numbers with a given 

probability distribution for all parameters involved to develop a procedure that 

generated a distribution of the predicted shelf-life values. This distribution was 

used to generate a recommended shelf-life such that products subjected to similar 

conditions will not fail before this stated time period with a 95% certainty. The 

predictive microbiology models used in the first study of this thesis considered the 

effect of temperature (T), water activity (aw), and dissolved carbon dioxide 

concentration (CO2) on the growth of Lactobacillus sakei in refrigerated meat 

products. In the case of the thermal processing application described in the second 

study of this thesis, the objective was to determine a processing time at a reference 

temperature (FT value) to achieve the thermal inactivation of Clostridium botulinum 

spores in mushroom. The process safety objective was to ensure that only one in a 



 

 

 

5

billion containers would fail. In both applications, i.e., prediction or microbial 

shelf-life and design of a thermal process, the user reached a recommendation with 

95% confidence. In both studies, the impact of the probability distribution of the 

parameters in the thermal processing model calculations was assessed by additional 

Monte Carlo-type computer experiments. To assess the potential benefit of reducing 

parameter variability, the calculation procedures were repeated using the same 

mean values reported in the literature but with the reported standard deviation of 

the parameters involved reduced by 10, 50, and 90%. This information can be used 

to evaluate the cost of improving data acquisition or segregating products according 

to the value of critical parameters such as initial microbial load.  

In summary, the objectives of the first study of this thesis research were: 

(1) To estimate quantitatively the predicted shelf-life of a specific food product 

handled under a specific set of environmental conditions; and, 

(2) To use a shelf-life frequency distribution instead of a single point value when 

recommending a microbial shelf-life meeting the quality expectation of the 

consumer with a specified degree of confidence.  

In the second study, the objectives were: 

(3) To generate a frequency distribution of the thermal processing time required to 

meet a specified microbial safety target; and, 

(4)  To use the thermal processing time distribution to recommend a process 

eliminating a microbial risk with a specified degree of confidence. 



 

 

 

6

An objective common to both studies was: 

(5) To assess the benefits of improving data acquisition or segregating products 

according to the value of critical parameters such as initial microbial load. 
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Figure 1. Schematic representation of the difference between Monte Carlo and 
conventional deterministic calculation procedures. 
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Literature Review 

Food is essential for survival, growth, physical ability and good health. 

Therefore, its study has become a scientific discipline, “Food Science,” and a 

critical endeavor for modern society. Although the evidence is still unclear, early 

reports indicate that humans were able to preserve a variety of foods in vinegar, 

brine, honey or pitch as recorded in the history of many societies. Other foods were 

salted or dried in the sun while cheese, wine, beer and other alcoholic beverages 

were obtained by microbial fermentations. Food preservation evolved as part of 

culinary arts from generation to generation but its development was slow until the 

later part of the eighteenth century when the improvement of existing and the 

development of new preservation methods accelerated greatly. The discovery of 

new technologies based on the application of science has resulted in great gains to 

human health by making available a varied, safe, nutritious and economical food 

supply (Vieira, 1996). 

Modern Food Science covers the scientific principles to produce and 

maintain a high quality food supply in fresh and various preserved forms including 

canned and frozen products, refrigerated and shelf-stable ready-to-eat meals, 

beverages and snacks. A food scientist applies a wide range of scientific disciplines 

to make available to consumers a wholesome food supply including now improving 

the use of natural resources and minimizing waste generation during processing. 

The objective of food science education is to prepare professionals with the 
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knowledge required to process raw materials and other ingredients into foods. In 

addition to the application of chemistry and other science principles required for the 

design of food formulations, equally important are the applications of microbiology 

and engineering concepts for the design of the processing, packaging, storage and 

distribution conditions required for each food product. An additional constraint is 

the need to retain nutritional values and deliver foods that are a pleasure to eat 

(Anonymous, 2003). 

The education of a food scientist can be defined as the one needed to apply 

science and engineering principles to study the physical, chemical and biochemical 

nature of foods and the principles of food processing (Potter and Hotchkiss, 1995). 

However, that is not enough and food scientist must also be able to communicate to 

consumers the role and benefits of each food ingredient and processing step in an 

understandable and precise manner. This is a difficult task which requires much 

thought, lots of efforts and excellent communication skills. However, if processor 

can achieve it, the rewards to society and even to the processor will be significant 

(Morton and Lenges, 1992). In his book entitled “Key Guide Food Science and 

Technology,” Magnus Pyke defined the goal of food scientists and technologists as 

the capacity to process huge quantities of food required by an ever-growing 

population, making these foods acceptable to consumers (i.e., one that provides 

them with the type and quality of the foods they demand at all times), and to 

maintain and improve the nutritional value of the total food supply to protect the 
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health of the community (Green, 1985). A food scientist should not neglect the 

consumer perspective, i.e., establishing a constant dialogue between producers and 

consumer is important 

Food science education has been considerably influenced by the 

recommendations developed by the Institute of Food Technologists (IFT), a 

professional society with membership from industry, academia and government 

organizations (Morton and Lenges, 1992). The recommendations regarding food 

science education are being followed by many academic institutions offering a food 

science program. Food scientists need to demonstrate educational outcomes in 

chemistry, microbiology, biochemistry, mathematics, physics, engineering, statistics, 

and in specialized courses such as food packaging. Current trends in food and drink 

consumption patterns requires the development of more elaborate and complex 

products with a higher use of technology to deliver closer to fresh-prepared 

products and delivering a higher retention of desirable functional components such 

as antioxidants (Morton and Lenges, 1992). The three dominant forces driving food 

demand are: 

 Higher quality, or perceived higher quality, products (natural foods, light 

products such as low fat foods, high fiber products, products with fewer 

additives, environmentally friendly products, etc.). 

 Products of greater convenience (ready-to-eat meals, microwavable products, 

chilled instead of frozen products, products to eat and drink on-the-go, etc.). 
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 Greater variety of products (sophisticated cuisine foods, ethnic foods, fresh 

foods, organic products, etc.). 

The goal of food scientists is not only to develop and process foods but also 

to consider quality and safety criteria in the entire food chain from production, 

processing, distribution, storage and finally its consumption. The process is being 

influenced by the implementation of national (e.g., implementation of Good 

Manufacturing Practices, Hazard Analysis and Critical Control Points, etc.) and 

international (e.g., the World Trade Organization (WTO) Sanitary and 

Phytosanitary (SPS) Agreement) standards (Henson and Caswell, 1999). An 

important consideration is the determination of product shelf-life which requires 

the prediction of how quality and safety of foods changes with time, and the 

selection of processing conditions eliminating food spoilage and safety risks. 

 

Shelf-life 

Considerable research has been conducted on the quality evaluation of 

foods with an aim to determine shelf-life (Man and Jones, 2000). Shelf-life is the 

period of time before a food product reaches an unsatisfactory or unacceptable state 

under specific processing, packaging and storage conditions. In other words, it is 

the period of time during which it will retain an acceptable level of eating quality, 

from a safety, nutritional and sensory point of view. The four critical factors 

affecting this evaluation are composition, processing, packaging and storage 
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conditions (Steele, 2004). Shelf-life considerations should include also the 

currently increasing consumer demand for fresh, convenient, safe and superior 

quality foods. Food processor should approach the shelf-life determination methods 

with the necessary care to ensure that consumers will receive a high product quality 

with the added convenience of extended shelf-life (Steele, 2004). Also, food quality 

is a consumer-based perceptual construct which is relative to person, place and time 

(Cardello, 1995). 

The Institute of Food Science & Technology in the United Kingdom states 

that during its shelf-life, foods stored as recommended by the producer should 

retain their desired sensory, chemical, physical, functional and microbiological 

characteristics (Man, 2002). Furthermore, their composition should comply with 

any label declaration of nutrition information. The estimation of shelf-life is today 

an important food development requirement to meet safety regulations and to 

deliver the consistency in quality required to meet consumer expectations. Ensuring 

that products do not exceed its shelf-life before consumption is an important 

responsibility for everyone in the food chain including the suppliers of ingredients, 

food processors, warehouse managers, supermarket operators, and even the final 

consumer. A consumer should know the length of time that a product can be kept at 

home before it can no longer be used. A retailer should know the length of time that 

a product can stay on store shelves while a manufacturer should know when a 

product is no longer marketable. Every food product should be described as having 
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a specific maximum microbiological, chemical and sensory shelf-life because every 

food will deteriorate at a different rate (Man, 2002). Although, shelf-life defined by 

the processor refers only to the unopened package, once a package is opened and its 

contents is not consumed in a single event, the rest should be stored under the 

conditions, particularly time and temperature, recommended by the manufacturer. 

In 1997, FDA determined that the labeling of potentially hazardous foods that need 

refrigeration should be more specific about the types of hazards present and the 

necessary storage conditions after the food is opened by consumers and issued 

labeling guidance to food manufacturers (Anonymous, 1997; Marth, 1998). 

The evaluation of food spoilage required to estimate shelf-life can be 

classified into physical, chemical and microbiological changes (Man and Jones, 

2000; Singh and Cadwallader, 2004; Perchonok, 2002): 

 Physical changes are caused by mishandling of foods during harvesting, 

processing and distribution. Examples of common physical changes include 

freeze burn, textural and flavor changes of bakery products due to freezing, and 

growth of ice crystals due to temperature fluctuation during storage of frozen 

food products. This type of damage can be prevented by food formulation, 

careful handling, proper packaging and control of storage temperature. 

 Chemical changes during food processing and storage depend on food 

composition, type of packaging and environmental factors. Chemical changes 
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causing food deterioration include enzymatic reactions, non-enzymatic 

browning, oxidative reactions and cross-linking of proteins. 

 Microbiological changes depend on the type and level of microbial load and on 

food, packaging and environmental factors. Shelf-life may end because 

microbial growth causes undesirable sensory changes in flavor, appearance 

including color, odor, and texture, or because the food is unsafe for 

consumption.  

A careful combination of microbiology, sensory analyses and chemistry 

tests is required to determine which microorganisms are the specific spoilage 

organisms of a particular food product (van Impe and others 2005; Gram and others 

2002). Microbial shelf-life can be estimated directly by microbiological tests or by 

the use of predictive models based on the combination of microbiology, statistics 

and engineering science.  

Microbial shelf-life can be based on the growth of a spoilage-causing 

organism reaching a level considered unacceptable to consumers. If the concern is 

the presence of a microbial pathogen, including those for which a zero-tolerance 

has been established, this level could represent the number of a microorganism that 

would be detected during a food safety inspection (Figure 2). In the case of a 

spoilage microorganism, the final load would be relatively high (log Ns) and would 

be reached after completion of the lag phase and subsequent exponential rate 

growth. In the case of a pathogen, the initial load would be extremely low, 
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particularly if there is a zero tolerance regulation in place, and that load would 

remain low for a long time thanks to food formulation factors controlling this 

pathogen. If the pathogen completes its lag phase, one can expect a very slow 

exponential growth rate but eventually it could reach a number that would be 

detectable by microbial test methods (log Nd) which could be used to define a 

microbial shelf-life. 

Shelf life analysis depends on the examination of batches of samples until 

the shelf life becomes unacceptable. The use of appropriate and validated analytical 

methods and sampling plans are essential when performing shelf life analysis using 

standardized protocol (Donnelly and Mitchell, 2002).  The rational for the 

microbial testing of foods falls into four general categories: (1) to determine safety; 

(2) to determine adherence to Good Manufacturing Practices (GMPs); (3) to 

determine the utility of a food or ingredient for a particular purpose; and, (4) to 

predict product stability.  Food of acceptable and unacceptable quality can be 

distinguished by the application of microbiological criteria. One approach is a 

sampling plan which is a systematic way to assess the microbiological quality of 

food lots.  A lot refers to a batch of products manufactured under the same 

conditions at the same time. For the product to be acceptable, the results from the 

microbial analysis must conform with limits appropriate to the product and the 

number of samples taken from the lot randomly.  As the severity of the hazard 

being tested for increases, the stringency of the sampling plan will increase. For 
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example, spoilage can be regarded as more of a risk to the product than to the 

consumer and so tests for indicators of shelf-life such as aerobic plate counts will 

have the most indulgent sampling plans. When looking for pathogens, more 

stringent sampling plans are appropriate and these become more demanding as the 

severity of the illness that the pathogen causes increases. The plan stringency 

should also take into account whether the food is to be consumed by a particularly 

vulnerable population groups such as infants, the very old, or the very sick (Adams 

and Moss, 2008c).   

Food spoilage means that the original nutritional value, texture, of flavor of 

the food has been damaged and is unsuitable to eat.  Different conditions can 

accelerate spoilage including inappropriate temperature and moisture control. 

Product spoilage may be visually detected, e.g., loss of bright red color on meat 

products or appearance of mold colonies on cheese.  The rejection may be related 

to the senses of taste and smell detecting levels of metabolites associated with 

spoilage. Traditional microbiological methods to determine the extent of 

deterioration are limited by the time required to obtain results and generally do not 

give a response until a large numbers of cells are present.  Formation of detectable 

amounts of spoilage metabolites may require 107 cells/g or ml of the product, i.e. 

the state of incipient spoilage is only a few further generations from overt spoilage 

(McMeekin and Ross, 1996).  

The application of sampling plans for microbiological criteria was 
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innovated by the International Commission on Microbiological Specifications for 

Foods (ICMSF) by the introduction of two- and three-class sampling plans (Dahms, 

2004).  In the case of the two-class sampling plan, the parameters are (Figure 3a): 

(1) n = number of samples drawn from the lot individually analyzed for the defect; 

(2) c = maximum allowable number of sample units yielding unsatisfactory results; 

and, (3) m = limit for defect acceptability. For example if m = 105cfu/g, samples 

resulting in counts of 103 and 106 cfu/g , would be considered acceptable and 

defective, respectively. The lot will be accepted if the number of defective samples 

is less than c. A lower c value will reduce the consumer’s risk of receiving a 

defective product but increase the producer’s risk of rejecting a lot of acceptable 

quality. In the case of a zero-tolerance pathogen for a ready-to-eat product, m and c 

are set to 0 but the values can be different from 0 for foods that will receive a heat 

treatment before consumption. That is why the sampling plans Salmonella in raw 

and cooked shellfish are different (Table 1). 

In the case of a three-class sampling plan (Figure 3b), the definition of a 

fourth parameter (M) allows the grouping of lots into three categories: acceptable, 

marginal, and rejected.  To enhance food safety and improve food quality, more 

stringent microbiological limits can be set by reducing value of m and M. The  

The International Commission on Microbiological Specifications for Foods 

has developed a set of recommendations to classify foods according to their risk 

level (Adams and Moss, 2008c; Man, 2002; Swanson, 2009): 
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1) No direct health hazard concern but the product can spoil. The recommended 

sampling plan is 3-class with n = 5 and c = 1. 

2) Low concern of health hazard based on an indicator of good manufacturing 

practices (GMP) such as coliform and Enterobacteriaceae counts. Again, the 

recommended sampling plan is 3-class with n = 5 and c = 1 but the m and the M 

values will be lower than in the previous case. 

3) Moderate hazard of health concern and there is a need to limit the spread of the 

pathogen such as in the case of Staphylococcus aureus, Bacillus cereus and 

Clostridium perfringens. The recommendation plan is a 3-class plan with n = 10 

and c =1). 

4) Serious hazard of health concern as in the case of Samonella and Yersinia, 

enterocolitica. To reduce this hazard concern during lot acceptance testing, the 

recommendation is a 2-class sampling plan with n = 20 and c = 0. 

5) Severe hazard of health concern as in the case of life threatening or serious 

pathological consequences to the consumer.  Examples of microorganisms in 

this group are Clostridium botulinum toxin and Escherichia coli O157:H7. In 

this case, the recommended sampling plan is a 2-class with n = 60 and c = 0. 

 

Predictive microbiology 

A predictive model describes mathematically the response of a 

microorganism to a given set of environmental conditions (van Impe et al., 2005; 
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McMeekin et al., 1993a). Predictive models can be used to evaluate the effect of 

processing, distribution and storage operations on the microbial safety and quality 

of foods. Mathematical models are used to estimate microbial risk as a function of 

one or more inputs. Particularly useful are those approaches that rely on the 

statistical description of experimental data (e.g., mean and standard deviation) to 

generate data with the same statistical distribution. In this case, the predictive 

models generate descriptions of the variability and uncertainty of the estimated 

shelf-life. The complexity of the model is primarily due to the inclusion of 

probability distributions that describe the variability and uncertainty in the many 

parameters required by the model. 

Poschet and others (2003) defined uncertainty as the lack of perfect 

knowledge of a quantity which may be reduced by additional measurements and by 

improvements of the measurement method. On the contrary, variability refers to the 

true heterogeneity of population which is irreducible by additional measurements. 

However, in actual practice it is difficult to differentiate between uncertainty and 

variability, especially when both have the same order of importance (Nauta, 2000). 

A Monte Carlo analysis can be used to illustrate the impact of uncertainty and 

variability of the experimental procedures used to generate model parameters and 

thus on the estimates generated by the predictive model (Poschet et al., 2003). 

A Monte Carlo analysis is a computational tool using random number 

generation techniques to work with models that involve probability distributions to 
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describe model parameters (Cassin and others 1998). It refers also to procedures 

where quantities of interest are approximated by generating many random values 

(Figure 1). A Monte Carlo experiment will repeat calculations many times and 

every time the outcome will be slightly different (Schmidheiny, 2008). In a 

conventional calculation model, the input parameters have a certain value and an 

output from those input values is obtained using equations. This type of model is 

deterministic because the model results will be the same no matter how many times 

they are recalculated. A Monte Carlo approach can be combined with a 

deterministic model by using sets of randomly generated values as model inputs to 

generate hundreds to thousands of model outputs. Because the input data are based 

on random number generated from probability distributions to simulate the process 

of experimental sampling, the researcher should select input distributions that most 

closely describe the model parameters. The data generated from the Monte Carlo 

simulations can be represented as probability distributions or histograms and the 

conclusion reported as confidence intervals (Wittwer, 2004). 

 

Thermal processing 

 Thermal processing is defined as a temperature and time combination 

required for the inactivation of undesirable microorganisms and enzymes while 

inducing an acceptable level of chemical changes in foods. The term commercial 

sterility refers to a thermal treatment inactivating microorganisms that cause illness, 
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and are capable of growing under non-refrigerated storage and distribution 

conditions (Toledo, 2007). Thermal processing has focused on the inactivation in 

low-acid foods of spores of Clostridium botulinum, a heat resistant organism of 

high public health risk to consumers (Clark, 2002). During the 1990-2000 period in 

the U.S., 160 foodborne botulism outbreaks affected 263 people with the highest 

incidences in Alaska, Idaho, and Washington (Sobel and others 2004). However, 

these cases reflected home canning errors due to lack of proper training. 

Although alternative models are being developed, the thermal inactivation 

of microorganisms is most commonly described as first-order reaction kinetics, i.e., 

microbial survival is a logarithmic function of time at constant temperature. The 

heat resistance of microorganisms is expressed in terms of a decimal reduction time 

at a reference temperature T (DT value) reducing the number of microorganisms by 

a tenfold (Hersom, 1975). The effect of temperature on DT values is described by a 

z value indicating the temperature increase required to decrease the death rate by a 

tenfold (Toledo, 2007). Values of DT and z are required to determine a food 

sterilization process time at the reference temperature T (FT value) and reducing the 

initial bacterial spore load (N) to an acceptable final level (No). FT values used 

commercially are most often based on a bacterial spore causing product spoilage 

and having a much higher heat resistant than spores of Clostridium botulinum 

(Hersom, 1975; Toledo, 2007; Adams and Moss, 2008b; Stumbo and others 1975).  
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Conclusions 

One of the most difficult decisions faced by a food processor is the need to 

respond to the modern consumer desire to have an estimate of the shelf-life, 

particularly when the product is as unstable as most refrigerated foods are. These 

estimations are expensive to obtain by microbiology methods and subject to large 

uncertainty when selecting storage testing conditions representing the actual 

commercialization of the product. Previous studies have covered the effect of water 

activity, packaging material, and particularly storage temperature which can rarely 

be assumed to be constant (Almonacid-Merino and Torres, 1991a; Almonacid-

Merino and Torres, 1991b; Almonacid-Merino et al., 1993b; Almonacid-Merino 

and Torres, 1993; Almonacid-Merino and Torres, 2009; Li and Torres, 1993a; Li 

and Torres, 1993b; Li and Torres, 1993c; Torres and others 1994).  

Predictive microbiology models are used in undergraduate food science 

program to expose students to the effect on microbial shelf-life of food properties 

(e.g., pH and aw) and storage conditions (e.g., temperature). As described in this 

thesis document, Monte Carlo procedures can be used to estimate a microbial shelf-

life with a known degree of confidence by considering the variability of all model 

parameters. 

Thermal processing has remained the foundation of the processed foods 

industry, allowing the production of billions of shelf-stable containers of fruits, 

vegetables, soups, beverages and meats every year (Clark, 2002). Therefore, 
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teaching of food thermal processing should inform students about new 

development in the mathematical description of microbial inactivation (e.g., Peleg, 

2006b) and in predictive models strategy for the thermal processing of food 

including considerations of the variability in model parameters using the Monte 

Carlo procedures described in this thesis document. 
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Table 1 
Examples of 2- and 3-class sampling plans for frozen crustaceans 

Product Organisms Plan class n m M c 

Raw APC   
E.coli 
S.aureus 
Salmonella 
V.parahaemolyticus 

3 
3 
3 
2 
3 

5 
5 
5 
5 
5 

106 
11 
103 
0 

102 

107 
500 
104 

- 
103 

3 
3 
2 
0 
1 

Cooked APC 
E.coli 
S.aureus 
Salmonella 
V.parahaemolyticus 

3 
3 
2 
2 
3 

5 
5 
5 
10 
5 

5x105 
11 
103 
0 

102 

107 
500 

- 
- 

103 

2 
2 
0 
0 
1 

Source: Adams and Moss (2008a) 
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List of Figures 

Figure 2. Definition of microbial shelf-life. (a) Microbial spoilage becomes 
unacceptable after completion of a lag time  and exponential growth from an 
initial load to a maximum microbial load log Ns. (b) Microbial safety becomes 
unacceptable after completion of a long lag time  and exponential growth from a 
very low initial load to a maximum microbial load log Nd a level that would be 
detected by the microbial sampling plan in place. 
 
Figure 3. Microbial sampling plans. (a) 2-class sampling plans are most strict and 
the m value selected depends on the food safety objective defined for the product. 
Further sampling parameters are the number of samples n taken randomly from a 
production lot and the maximum number of samples c that can exceed the m value. 
(b) 3-class sampling plans are less strict as they define marginal lots, i.e., lots that 
have at most c samples that exceed the microbial load level m but are under the 
unacceptable load M. If one sample exceeds the value M, the lot is rejected.
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Figure 2. Definition of microbial shelf-life. (a) Microbial spoilage becomes 
unacceptable after completion of a lag time  and exponential growth from an 
initial load to a maximum microbial load log Ns. (b) Microbial safety becomes 
unacceptable after completion of a long lag time  and exponential growth from a 
very low initial load to a maximum microbial load log Nd a level that would be 
detected by the microbial sampling plan in place. 
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Figure 3. Microbial sampling plans. (a) 2-class sampling plans are most strict and 
the m value selected depends on the food safety objective defined for the product. 
Further sampling parameters are the number of samples n taken randomly from a 
production lot and the maximum number of samples c that can exceed the m value. 
(b) 3-class sampling plans are less strict as they define marginal lots, i.e., lots that 
have at most c samples that exceed the microbial load level m but are under the 
unacceptable load M. If one sample exceeds the value M, the lot is rejected. 
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Abstract 

The assessment of product shelf-life should consider the contribution of the 

variable in all predictive model parameters. This study described the microbial 

growth of Lactobacillus sakei in meat products using Ratkowsky-type models. The 

predicted shelf-life without considering The shelf-life values predicted when 

parameter variability was not considered were 3.6, 115.9, 4.1 and 144.8 h for cases 

1 (T = 4oC), 2 (T = 4oC, aw = 0.98), 3 (T = 4oC, CO2 = 2,650 ppm), 4.1 (T = 4oC, aw 

= 0.98, CO2 = 2,650 ppm), respectively, whereas 3.9±1.7, 119.4±20.3, 4.6±1.4 and 

160.4±0.3 h, respectively, were the values estimated considering parameter 

variability.  The definition of a shelf life with 95% confidence that the product will 

not fail before the stated expiration date lead to a recommended microbial shelf-life 

of 2.5, 100, 3 and 110 h, respectively, When the reported standard deviation of all 

microbial model parameters describing the effect of the three factors in Case 4 (T = 

4oC, aw = 0.98, CO2 = 2,650 ppm) was reduced by 10%, 50% and 90% without 

changing mean values, the recommended shelf-life time increased from 110 to 115, 

125 and 130 h, respectively.  This relatively small increase in the recommended 

shelf-life, i.e., an increase from 110 to 130 h after a 90% reduction in the variability 

of all model parameters, showed that reducing the standard deviation of microbial 

shelf-life time appeared difficult when assessing the effect of multiple factors. 

KEYWORDS: Monte Carlo, experimental variability, microbial shelf-life 
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Introduction 

Shelf-life is the period of time during which a food product can be kept 

under a specified condition and still meet the quality expectations of the consumer 

group target. Food shelf-life is affected by numerous extrinsic parameters 

describing processing and storage conditions, and by intrinsic properties such as 

composition, pH and water activity. Predictive models describing mathematically 

the effect of these extrinsic and intrinsic parameters on microbial growth are now 

available to estimate the microbial shelf-life of foods (Ross, 1996; Ross, 1999; 

Peleg, 2006a; McDonald and Sun, 1999; McMeekin et al., 1993a). These models 

allow estimations of lag time, generation time and exponential growth rate 

(McDonald and Sun, 1999). Koutsoumanis and Nychas (2000) used predictive 

modeling to determine the shelf life of various fish products as affected by 

temperature and water activity. Fernandez and others (1997) developed a 

mathematical model for the combined effects of temperature (4-20°C), CO2 (0-

100% v/v, balance N2), pH (4.5-7.0) and NaCl concentration (0.5-8.0% w/v) on the 

growth of Listeria monocytogenes. The effects of 115 combinations of these factors 

were examined. Using the model proposed by Baranyi and Roberts (1995), 

predictions for doubling time, specific growth rate and time to a 1000-fold increase 

could be calculated for any combination of conditions within the experimental 

matrix. The model was successfully validated by comparing predicted growth 

values with published data for L. monocytogenes growth in a variety of foods 
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packaged under modified atmosphere. The effects of storage temperature and the 

permeability of the packaging film on microbial growth in refrigerated beef were 

mathematically modeled by Giannuzzi and others (1998).  

The use of predictive models for the assessment of microbial shelf-life 

depends not only on initial microbial load, processing steps, post-processing 

contamination risks, storage conditions, and food properties but also on the 

statistical variability of the parameters describing them. Therefore variability 

considerations should be included in all predictive model calculations (e.g., 

Almonacid-Merino and Torres, 2009; Chotyakul and others 2009). 

Recent food process engineering education reports have covered learning 

styles (Palou, 2006), comparison of knowledge gains and attitudes using computer-

based and face-to-face personal hygiene training methods (Fenton and others 2006), 

construction of Internet-assisted real-time experiments (Singh and Circelli, 2005), 

development and use of a web site with multimedia contents to assist unit 

operations courses (Tapia and others 2005), and web-based calculation tools to 

assist food engineering courses (Morales-Blancas and others 2003; Morales-

Blancas and Torres, 2004). However, the inclusion of parameter variability 

considerations was not found in food process engineering education reports. 

Variability considerations are particularly important in the case of predictive 

microbiology models due to the large number of parameters involved. 

The high relative moisture content of fresh meats and the frequency of 



 

 

 

32

temperature abuse shorten their shelf-life (Almonacid-Merino et al., 1993b; 

Almonacid-Merino and Torres, 1993; Almonacid-Merino and Torres, 2009; Torres, 

1989). In this study, product shelf life was calculated using data published for 

natural contamination levels in meats (Martín and others 2006) and dissolved 

carbon dioxide level when modified atmosphere packaging (MAP) technology is 

used (Jakobsen and Bertelsen, 2002; Jakobsen and Bertelsen, 2004). Predictive 

model calculations were applied to examine the effect of temperature (T), water 

activity (aw) and dissolved carbon dioxide concentration (CO2) on the growth of 

Lactobacillus sake (L. sake), now renamed Lactobacillus sakei (L. sakei) by the 

International Code of Nomenclature of Bacteria (Trüper and de’Clari, 1997; 

Champomier-Vergès and others 2001). These conditions can be used to predict 

shelf life and microbial safety and to identify critical points in product 

manufacturing and distribution (Zwietering and others 1990; Zwietering and others 

1991). 

Lactobacillus sakei is a gram-positive anaerobic bacterium commonly 

found in fresh meat and fish products. Some strains of this lactic acid bacteria 

(LAB) group are used as a microbial starter in fermented foods such as sausages, 

producing lactic acid to inhibit spoilage and pathogenic bacteria (Borch and others 

1996). However, other strains produce exopolysaccharides yielding a slimy 

appearance that cause meat spoilage (Champomier-Vergès et al., 2001).  

To achieve longer microbial shelf-life time and to improve the safety of 
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fresh meats, carbon dioxide is used as modified atmosphere packaging (MAP) gas 

(Devlieghere and others 1998; McMillin, 2008; Devlieghere and Debevere, 2000).  

Carbon dioxide dissolved in the meat lowers its pH and inhibits oxidation processes. 

Both factors decrease the rate of chemical and biochemical deterioration reactions 

and thus product shelf-life is extended (Jakobsen and Bertelsen, 2002; Aymerich 

and others 2006).  

The purpose of using predictive models is to estimate quantitatively the 

expected shelf-life of a specific food product stored and distributed under a 

particular set of environmental conditions (Soboleva and others 2000). However, 

food processors and distributors face uncertainties when they use these predictive 

models because of the statistical variability of the many parameters involved. 

Variability sources include processing temperature control, characterization of the 

raw material source including initial microbial load, and the determination of the 

intrinsic properties of foods. Variability in these parameters cannot be avoided and 

must be considered in shelf-life estimations. In addition, one must consider also the 

variability of the parameters in the predictive model equation used which is the 

objective of this study.  

Modified Ratkowsky predictive microbiology models (McMeekin and 

others 2002; McMeekin and others 1993b) and Monte Carlo simulation methods 

(Floschet and others 2003) were combined to assess the impact on product shelf-

life of the variability of the model parameters involved. The goal was to obtain 
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frequency distributions of shelf-life instead of single point values based on mean 

values for the parameters involved. To assess the impact of parameter variability, 

meat shelf-life was estimated using the same mean values but with a 0, 10, 50 and 

90% reduction of the reported standard deviation of the parameters involved in the 

predictive model. The values obtained were compared with the shelf-life 

determined on the basis of the reported mean parameter values for all parameters. 

All these food process engineering and statistical methods were combined into MS 

Excel spreadsheets suitable for an undergraduate food process engineering course. 

 

Material and methods 

Predictive model 

In this study, storage temperature T was assumed constant at 4ºC. Water 

activity (aw) for meat has been reported to be no less than 0.98 (Rödel, 2001). This 

value was assumed constant too and can be measured with a small error of ±0.003 

(Anonymous, 2006). The concentration of dissolved carbon dioxide (CO2) used 

was the value reported by Jakobsen and Bertelsen (2002; 2004) for chopped pork 

(2650 ppm).  

The primary model used in this study to describe microbial growth 

mathematically was a first-order growth model (Eq. 1) quantifying the number of 

microorganisms N as a function of time t. After a certain lag phase () elapses 

during which cell numbers remain relatively constant, the number of 
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microorganisms increase rapidly at an exponential growth rate (max) (Zwietering et 

al., 1990; Adams and Moss, 2008b; Brocklehurst, 2004; McKellar and Lu, 2004; 

van Impe et al., 2005). This approach defined a two-phase microbial growth model 

to estimate shelf-life (Figure 4) (Buchanan and others 1997; Zwietering et al., 1991; 

Zwietering et al., 1990). Shelf-life was defined as the time ts required to reach a 

certain microbial load Ns at a growth rate max from an initial contamination level 

No plus the lag phase time  (Eqs 2-3). 

  

Shelf-life calculations  

Secondary model expressions for the lag phase () and the exponential 

growth rate (max) were proposed by Ratkowsky et al. (1982) who used a simple 

square root model considering only the effect of temperature. The secondary 

predictive models used in this study were modifications of these equations (Table 1, 

Koutsoumanis and Nychas, 2000) to estimate microbial shelf-life as a function of 

temperature only (Case 1); temperature and water activity (Case 2); dissolved 

carbon dioxide concentration and temperature (Case 3); and, temperature, water 
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activity and dissolved carbon dioxide concentration (Case 4.1). The initial 

Lactobacillus sakei contamination level (log No) used to generate 300 static random 

microbial load numbers with a lognormal distribution was the value reported for 

naturally contaminated meat, 3.40 ± 0.34 log CFU/g (Martín et al., 2006). The 

mean and standard deviation values for each parameter in the predictive 

microbiology models (Table 3) were used to generate 300 static random numbers 

with a normal distribution. With no repetition, each of the 300 generated initial load 

and parameter values were used to obtain 300 values for  and max. Finally, a 

shelf-value was calculated for each  and max using log Ns = 6 as the end point for 

L. sakei based on the recommended range of 106-107 CFU/g for lactic acid bacteria 

as the value causing microbial spoilage of meat (Gram et al., 2002). The 300 shelf-

life values obtained for each case analyzed in this study by this Monte Carlo 

simulation procedure generated histograms describing the probability distribution 

of the expected shelf-life for meat. A recommended shelf-life was defined as a time 

equal or shorter than 95% of the values in this histogram. 

 

Effect of reducing model parameter variability  

 The Monte Carlo simulations previously described, and using the same 

mean values, were repeated but assuming a 10%, 50% and 90% reduction in the 

predictive microbiology model parameters (Cases 4.2-4.6) and also for the initial 

microbial load (Case 4.7). 
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Results and discussion 

Microbial shelf-life estimation 

 The first step in the evaluation of microbial shelf-life is to determine the 

initial microbial load on the product under consideration. In this study, the value 

used was the L. sakei load reported for meat by Martin and others (2006). The 

reported logmean and standard deviation values were used to generate random 

microbial load numbers following a lognormal distribution. The comparison of the 

reported logmean and standard deviation values with the ones calculated for the 

generated lognormal distribution (n = 300) showed an excellent agreement (Table 4) 

confirming the assumption of lognormal distribution for the microbial load. Similar 

good agreement was found for all other generated model parameters (data not 

reported). 

The estimation of microbial shelf-life based on the four predictive 

microbiology models (Cases 1-4.1, Table 2) illustrated the importance of 

considering the variability of the parameters required (Figure 5). The shift to longer 

shelf-life when including aw and CO2 in the microbial model was expected. These 

factors extended the lag phase and reduced the growth rate. However, the 

variability of the predicted shelf-life values was not possible to predict a priori. The 

behavior observed highlights the advantages of the Monte Carlo procedures used in 

this study. Finally, the short shelf-life predicted by Case 1 suggests that it is not 

reasonable to ignore the effect of the meat aw. In this study, the predictive model 
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calculations were based on the lower value in the 0.99-0.98 range reported by 

Rödel (2001). 

The variability of the predicted shelf-life values was minor when the model 

considered only one factor (Case 1: T = 4oC, Figure 5a) but increased significantly 

when the model included two factors (Case 2: T = 4oC and aw = 0.98, Figure 5b; 

Case 3: T = 4oC and CO2 = 2650 ppm, Figure 5c) or three factors (Case 4.1: T = 

4oC, aw = 0.98, and CO2 = 2650 ppm, Figure 5d). Significant differences can also 

be observed between the mean shelf-life values estimated when considering only 

the mean values of the model parameters and those obtained considering their 

variability (3.6 versus 3.9 ± 1.7 h, 115.9 versus 119.3 ± 17.4 h, 4.1 versus 4.6 ± 1.4 

h, and 144.8 versus 160.4 ± 40.3 h for Cases 1-4.1 respectively, Table 5).  

Considering the large variability observed in the estimation of microbial 

shelf-life, particularly when more than one preservation factor is considered, the 

recommendation to food processors would be to use a shelf-life value equal or 

shorter than 95% of the predicted values (n = 300 used in this study). Following 

this recommendation, the estimated shelf-life to use in product distribution would 

be 2.5, 100, 3 and 110 h for Cases 1-4.1, respectively (Table 5). 

 

Effect of 10%, 50% and 90% reduction in the standard deviation of the 

predictive microbiology model parameters 

The influence on the predicted shelf-life of the experimental variability of 
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the parameters in the Case 4 model was studied systematically. The reported 

standard deviation of one or more parameters was reduced by 10%, 50% and 90% 

(Case 4.2-4.6, Table 2) without changing their mean values to determine if the 

variability of the predicted microbial shelf-life could be reduced significantly by 

improving the experimental determination of these parameters or segregating 

products according to initial microbial load (Figures 6 and 7). 

The estimated shelf-life based on the original parameter variability was 

160.4 ± 40.3 h. Reducing the variability of the parameter aw min (Figure 6a) by 10%, 

50% and 90% resulted in estimated shelf-life time of 160.4 ± 40.0 h, 160.4 ± 40.2 h 

and 160.3 ± 40.0 h, respectively (Case 4.2, Table 5) while reducing the variability 

in Tmin (Figure 6b) the equivalent vales were 158.3 ± 38.8 h, 158.6 ± 38.9 h and 

157.6 ± 37.4 h (Case 4.3, Table 5). In these two cases, the effect was negligible 

(Case 4.3) or minor (Case 4.3). The effect of reducing the variability in the 

parameters b4 and b5 by 10%, 50% and 90% (Figure 6c) reduced more significantly 

the variability of the predicted shelf-life yielding 160.7 ± 39.0 h, 157.3 ± 32.4 h and 

154.6 ± 29.7 h (Case 4.4, Table 5), respectively. A similar effect was observed when 

reducing the variability of the CO2 max parameter (Figure 6d) by 10%, 50% and 

90% yielding as estimated shelf-life values 159.4 ± 38.3 h, 155.4 ± 29.4 h and 

153.6 ± 27.3 h (Case 4.5, Table 5), respectively. The impact of reducing at the same 

time the variability of b4 and b5, aw min Tmin, CO2 max  by 10, 50 and 90% yielded 

shelf-life of 157.1 ± 33.6 h, 149.2 ± 17.9 h and 146.1 ± 10.5 h (Case 4.6, Table 5), 
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respectively, i.e., a significantly larger reduction in the variability of the predicted 

shelf-life. 

 

Effect of the variability of the model parameters on the recommended 

microbial shelf-life 

The motivation to reduce the variability of the shelf-life estimated using 

predicted microbiology models is to yield a longer value without increasing the risk 

of offering the consumer a product that has suffered microbial spoilage. Using the 

recommendation of a 95% confidence (n = 300) that such event will not occur, no 

increases could be recommended above the 110 h value estimated for Case 4.1 (i.e., 

original SD values for all parameters) when the variability of the parameters a w min 

and Tmin was reduced by 10, 50, and 90% (Table 5, Case 4.2 and 4.3). An increase 

to 115 and 120 h was estimated when the variability of the parameters b4, b5 or 

CO2 max was reduced by 50 and 90%, respectively, but not when the reduction was 

only 10 % (Table 5, Cases 4.4 and 4.5). A larger effect was observed when the 

variability of all parameters was reduced by 10 (Figure 7a), 50 (Figure 7b) and 90% 

(Figure 7c). In this case, the recommended shelf life would be 115, 125 and 130 h 

(Table 5, Case 4.6) when the variability of all parameters was reduced by 10, 50 

and 90%, respectively. 
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The effect of the variability of the initial microbial load on shelf-life 

The low variability in the predicted shelf-life for Case 1, i.e., temperature as 

the only one storage factor affecting the lag phase and exponential growth rate of L. 

sakei, suggested that the larger variability of Case 2-4.6 was not due to the 

variability in the initial microbial load. This was confirmed by examining the effect 

of reducing the variability of the microbial load by 10 (Figure 8a), 50 (Figure 8b) 

and 90% (Figure 8c) yielding a small change from 110 to 115 h in the 

recommended shelf-life only when the reduction was 90% (Table 5, Case 4.7). 

 

Conclusions 

 Predictive microbiology has been developed as a rapid and cost-effective 

tool to reduce the risk of reaching consumers with unsafe or spoiled food products. 

These mathematical models allow the exploration of multiple factors including 

microbial load of raw materials, food formulation, processing steps, packaging 

strategies including modified atmosphere packaging (MAP), as well as the 

conditions found during storage, shipping and distribution. The laboratory 

experiments to test all these microbial stability factors would be complex and 

prohibitively expensive. Although the computer implementation of these models 

reduces this cost, their effectiveness depends on the determination of the values for 

several parameters under conditions at least similar to the application of interest. 

This study examined the impact of the variability of Ratkowsky-type model 
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parameters for lag phase () and exponential growth rate (max) used to estimate the 

microbial shelf-life of meat. Random number generations for lognormal and normal 

distributed parameters combined with Monte Carlo simulations were successfully 

implemented using Microsoft Excel to determine the probability distribution of 

shelf-life calculated using these predictive models. This allowed the determination 

of a procedure to estimate a recommended shelf-life considering the variability in 

microbial load and other model parameters. This is important since regulatory 

agencies have begun to require evidence that safety targets are met with a certain 

probability considering the variability of the calculation parameters. This 

requirement is typically set at 95% confidence interval (CI) or higher (Javis, 1989; 

Fernandez and others 1999; Rieu and others 2007; Smout and others 2000b).  

The shelf-life values obtained considering the variability of the information 

required when using predictive microbiology models differed significantly from 

simpler calculations using only mean values for all parameters (Table 5). The 

strategy of implementing the generation of model parameter values following 

known statistical distributions and Monte Carlo simulations in the form of Excel 

spreadsheets should be presented in food process engineering courses covering 

estimations of microbial shelf-life. Excel implementation instructions can be 

obtained from the corresponding author. 
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Table 2 
Predictive microbiology models 

Case  (h) Eq  max (h
-1) Eq 

a. Models used with original parameter values (McKellar and Lu, 2004; Devlieghere and others 
1999) 

1 
(T) 

 

(4) 

 

(5) 

2 
(T, 
aw) 

 

(6) 

 

(7) 

3  
(T, 

CO2) 

 

(8) 

 

(9) 

b. Model used with reported and reduced standard deviation (SD) values for its parameters 

(T, aw, 

CO2) 

 

(10) 

 

(11) 

4.1 Mean and SD for all parameters as reported in the literature (Devlieghere et al., 1999) 

4.2 Reported mean and 10%, 50%, 90% SD reduction of  a w min 

4.3 Reported mean and 10%, 50%, 90% SD reduction of  Tmin 

4.4 Reported mean and 10%, 50%, 90% SD reduction of  b4, b5 

4.5 Reported mean and 10%, 50%, 90% SD reduction of  CO2 max 

4.6 Reported mean and 10%, 50%, 90% SD reduction of  all parameters 

4.7 Reported mean and 10%, 50%, 90% SD reduction of the microbial load 

 

2
minmin2 ))((

1

TTaab ww 
 2

minmin3max ))(( TTaab ww 

2
min1 )(

1

TTb 
 2

min1max )( TTb 

2
min2max24 ))((

1

TTCOCOb 
 2

min2max25max ))(( TTCOCOb 

2
min2max2min4 ))()((

1

TTCOCOaab ww 
 2

min2max2min5max ))()(( TTCOCOaab ww 
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Table 3 
Predictive microbiology parameters describing the lag phase () and maximum 

specific growth rate ( max) for Lactobacillus sakei 

Eq. Parameter Mean  ± standard deviation Source 

(4), (5) 
 
 
(6) 
 
 
 
(7) 
 
 
 
(8) 
 
 
 
(9) 
 
 
 
(10) 
 
 
 
 
(11) 
 
 
 

b1 
Tmin 
 
b2 
aw min 
Tmin 
 
b3 
aw min 
Tmin 
 
b4 
CO2 max 
Tmin 
 
b5 
CO2 max 
Tmin 
 
b4 
aw min 
CO2 max 
Tmin 
 
b5 
aw min 
CO2 max 
Tmin 
 

0.0207 ± 0.0008 
-2.93 ± 1.27 
 
0.012 ± 0.001276 
0.9469 ± 0.000867 
-2.31 ± 0.308673 
 
0.0141 ± 0.001840 
0.9561 ± 0.001071 
-8.1 ± 1.071429 
 
9.3E-07 ± 1.96E-07 
1.4E04 ± 2602.041 
-2.38 ± 0.290816 
 
2.5E-06 ± 3.57E-07 
6.1E03 ± 586.7347 
-9.0 ± 0.892857 
 
9.3E-07 ± 1.96E-07 
0.9470 ± 0.000765 
1.4E04 ± 2602.041 
-2.38 ± 0.290816 
 
2.5E-06 ± 3.57E-07 
0.9560 ± 0.000816 
6.1E03 ± 586.7347 
-9.0 ± 0.892857 
 

(McKellar and Lu, 2004) 
 
 
(Devlieghere et al., 1999) 
 
 
 
(Devlieghere et al., 1999) 
 
 
 
(Devlieghere et al., 1999) 
 
 
 
(Devlieghere et al., 1999) 
 
 
 
(Devlieghere et al., 1999) 
 
 
 
 
(Devlieghere et al., 1999) 

Other model parameter conditions: T = 4 ºC, aw = 0.98, CO2 = 2650 ppm, log No = 
3.40  0.34 (Martín et al., 2006) 
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Table 4 
Mean and standard deviation for Lactobacillus sakei (log No) in naturally 

contaminated meat1 

Reported1 Calculated from random lognormal generated values (n = 300) 

 Case 1 Case 2 Case 3 Case 4 (all) 

3.40  0.34 3.39  0.33 3.40  0.34 3.38  0.35 3.36  0.34 

1(Martín et al., 2006) 
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Table 5 
Predicted microbial meat shelf-life 

Case 
Mean-value 
calculations 

Monte Carlo simulations 
Mean ± standard deviation (h) 

[Shelf life estimate, 95% confidence] 

1 3.6 
3.9 ± 1.7 

[2.5] 

2 115.9 
119.3 ± 17.4 

[100] 

3 4.1 
4.6 ± 1.4 

[3] 

4.1 144.8 
160.4 ± 40.3 

[110] 

  

Reducing the predictive microbiology model parameters  
variability 

SD reduction 10% 50% 90% 

4.2  a w min 
160.4 ± 40.0 

 [110] 
160.4 ± 40.2 

 [110] 
160.3 ± 40.0 

 [110] 

4.3  Tmin 
158.3 ± 38.8 

 [110] 
158.6 ± 38.9 

 [110] 
157.6 ± 37.4 

 [110] 

4.4  b4, b5 
160.7 ± 39.0 

[110] 
157.3 ± 32.4 

 [115] 
154.6 ± 29.7 

 [120] 

4.5  CO2 max 
159.4 ± 38.3 

 [110] 
155.4 ± 29.4 

 [115] 
153.6 ± 27.3 

 [120] 

4.6  all parameters 
157.1 ± 33.6 

 [115] 
149.2 ± 17.9 

 [125] 
146.1 ± 10.5 

 [130] 

      

 
Reducing the initial microbial load variability 

SD reduction 10% 50% 90% 

4.7  Log No 
158.4 ± 39.0 

[110] 
159.1 ± 38.8 

[110] 
159.2 ± 38.6 

[115] 
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Figure 4. Definition of shelf-life based on a two-phase microbial growth model, i.e. 
a lag phase (, h) followed by exponential growth rate (µmax, h

-1) before reaching a 
maximum acceptable microbial load (log Ns). 
 
Figure 5. Distribution of the predicted shelf-life for meat based on the growth of 
Lactobacillus sakei and reaching 106 cfu/g as the shelf-life endpoint. The predictive 
microbiology models considered one or more storage conditions. (a) Temperature 
(T, Case 1); (b) Temperature and water activity (T and aw, Case 2); (c) Temperature 
and dissolved CO2 (T and CO2, Case 3); and, (d) All three factors (T, aw and CO2, 
Case 4.1). The values for the storage conditions used were T = 4 ºC, aw = 0.98, and 
CO2 = 2650 ppm. The shelf-life predicted by these models reflected the variability 
in the initial microbial load and the model parameters (see Table 3). 
 
Figure 6. Effect of reducing by 10%, 50% and 90% the standard deviation (SD) 
value of the predictive microbiology model parameters (see Table 3, Case 4.2-4.5) 
used to estimate meat shelf-life based on the growth of Lactobacillus sakei. The 
model used considered storage temperature (T = 4 ºC), water activity (aw = 0.98) 
and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Case 4.2: Reducing the SD for aw min; (b) Case 4.3: Reducing the SD 
for Tmin; (c) Case 4.4: Reducing the SD for b4 and b5; and, (d) Case 4.5: Reducing 
the SD for CO2 max. 
 
Figure 7. Effect of reducing the standard deviation (SD) values of the predictive 
microbiology model parameters Tmin, aw min, b4, b5, and CO2 max (see Table 3, Case 
4.6) used to predict meat shelf-life based on the growth of Lactobacillus sakei. This 
model includes the storage conditions temperature (T = 4 ºC), water activity (aw = 
0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Reducing SD values by 10%; (b) Reducing SD values by 50%; and, (c) 
Reducing SD values by 90%. 
 
Figure 8. Effect of reducing the standard deviation (SD) value of the initial 
microbial load (see Table 3, Case 4.7) used to predict meat shelf-life based on the 
growth of Lactobacillus sakei. This model includes the storage conditions 
temperature (T = 4 ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 
ppm). Variability in the shelf-life predicted reflected the variability in the initial 
microbial load and the model parameters (see Table 3). (a) Reducing SD value by 
10%; (b) Reducing SD value by 50%; and, (d) Reducing SD value by 90%. 
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Figure 4. Definition of shelf-life based on a two-phase microbial growth model, i.e. 
a lag phase (, h) followed by exponential growth rate (µmax, h

-1) before reaching a 
maximum acceptable microbial load (log Ns). 
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Figure 5. Distribution of the predicted shelf-life for meat based on the growth of 
Lactobacillus sakei and reaching 106 cfu/g as the shelf-life endpoint. The predictive 
microbiology models considered one or more storage conditions. (a) Temperature 
(T, Case 1); (b) Temperature and water activity (T and aw, Case 2); (c) Temperature 
and dissolved CO2 (T and CO2, Case 3); and, (d) All three factors (T, aw and CO2, 
Case 4.1). The values for the storage conditions used were T = 4 ºC, aw = 0.98, and 
CO2 = 2650 ppm. The shelf-life predicted by these models reflected the variability 
in the initial microbial load and the model parameters (see Table 3). 
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(b) 
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Figure 5, continuation. Distribution of the predicted shelf-life for meat based on 
the growth of Lactobacillus sakei and reaching 106 cfu/g as the shelf-life endpoint. 
The predictive microbiology models considered one or more storage conditions. (a) 
Temperature (T, Case 1); (b) Temperature and water activity (T and aw, Case 2); (c) 
Temperature and dissolved CO2 (T and CO2, Case 3); and, (d) All three factors (T, 
aw and CO2, Case 4.1). The values for the storage conditions used were T = 4 ºC, aw 
= 0.98, and CO2 = 2650 ppm. The shelf-life predicted by these models reflected the 
variability in the initial microbial load and the model parameters (see Table 3). 
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(c) 
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Figure 5, continuation. Distribution of the predicted shelf-life for meat based on 
the growth of Lactobacillus sakei and reaching 106 cfu/g as the shelf-life endpoint. 
The predictive microbiology models considered one or more storage conditions. (a) 
Temperature (T, Case 1); (b) Temperature and water activity (T and aw, Case 2); (c) 
Temperature and dissolved CO2 (T and CO2, Case 3); and, (d) All three factors (T, 
aw and CO2, Case 4.1). The values for the storage conditions used were T = 4 ºC, aw 
= 0.98, and CO2 = 2650 ppm. The shelf-life predicted by these models reflected the 
variability in the initial microbial load and the model parameters (see Table 3). 
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(d) 
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Figure 5, continuation. Distribution of the predicted shelf-life for meat based on 
the growth of Lactobacillus sakei and reaching 106 cfu/g as the shelf-life endpoint. 
The predictive microbiology models considered one or more storage conditions. (a) 
Temperature (T, Case 1); (b) Temperature and water activity (T and aw, Case 2); (c) 
Temperature and dissolved CO2 (T and CO2, Case 3); and, (d) All three factors (T, 
aw and CO2, Case 4.1). The values for the storage conditions used were T = 4 ºC, aw 
= 0.98, and CO2 = 2650 ppm. The shelf-life predicted by these models reflected the 
variability in the initial microbial load and the model parameters (see Table 3). 
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Figure 6. Effect of reducing by 10%, 50% and 90% the standard deviation (SD) 
value of the predictive microbiology model parameters (see Table 3, Case 4.2-4.5) 
used to estimate meat shelf-life based on the growth of Lactobacillus sakei. The 
model used considered storage temperature (T = 4 ºC), water activity (aw = 0.98) 
and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Case 4.2: Reducing the SD for aw min; (b) Case 4.3: Reducing the SD 
for Tmin; (c) Case 4.4: Reducing the SD for b4 and b5; and, (d) Case 4.5: Reducing 
the SD for CO2 max. 
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(b) 
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Figure 6, continuation. Effect of reducing by 10%, 50% and 90% the standard 
deviation (SD) value of the predictive microbiology model parameters (see Table 3, 
Case 4.2-4.5) used to estimate meat shelf-life based on the growth of Lactobacillus 
sakei. The model used considered storage temperature (T = 4 ºC), water activity (aw 
= 0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Case 4.2: Reducing the SD for aw min; (b) Case 4.3: Reducing the SD 
for Tmin; (c) Case 4.4: Reducing the SD for b4 and b5; and, (d) Case 4.5: Reducing 
the SD for CO2 max. 
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(c) 
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Figure 6, continuation. Effect of reducing by 10%, 50% and 90% the standard 
deviation (SD) value of the predictive microbiology model parameters (see Table 3, 
Case 4.2-4.5) used to estimate meat shelf-life based on the growth of Lactobacillus 
sakei. The model used considered storage temperature (T = 4 ºC), water activity (aw 
= 0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Case 4.2: Reducing the SD for aw min; (b) Case 4.3: Reducing the SD 
for Tmin; (c) Case 4.4: Reducing the SD for b4 and b5; and, (d) Case 4.5: Reducing 
the SD for CO2 max. 
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(d) 
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Figure 6, continuation. Effect of reducing by 10%, 50% and 90% the standard 
deviation (SD) value of the predictive microbiology model parameters (see Table 3, 
Case 4.2-4.5) used to estimate meat shelf-life based on the growth of Lactobacillus 
sakei. The model used considered storage temperature (T = 4 ºC), water activity (aw 
= 0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Case 4.2: Reducing the SD for aw min; (b) Case 4.3: Reducing the SD 
for Tmin; (c) Case 4.4: Reducing the SD for b4 and b5; and, (d) Case 4.5: Reducing 
the SD for CO2 max. 
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Figure 7. Effect of reducing the standard deviation (SD) values of the predictive 
microbiology model parameters Tmin, aw min, b4, b5, and CO2 max (see Table 3, Case 
4.6) used to predict meat shelf-life based on the growth of Lactobacillus sakei. This 
model includes the storage conditions temperature (T = 4 ºC), water activity (aw = 
0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in the shelf-life predicted 
reflected the variability in the initial microbial load and the model parameters (see 
Table 3). (a) Reducing SD values by 10%; (b) Reducing SD values by 50%; and, (c) 
Reducing SD values by 90%. 
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Figure 7, continuation. Effect of reducing the standard deviation (SD) values of 
the predictive microbiology model parameters Tmin, aw min, b4, b5, and CO2 max (see 
Table 3, Case 4.6) used to predict meat shelf-life based on the growth of 
Lactobacillus sakei. This model includes the storage conditions temperature (T = 4 
ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in 
the shelf-life predicted reflected the variability in the initial microbial load and the 
model parameters (see Table 3). (a) Reducing SD values by 10%; (b) Reducing SD 
values by 50%; and, (c) Reducing SD values by 90%. 
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Figure 7, continuation. Effect of reducing the standard deviation (SD) values of 
the predictive microbiology model parameters Tmin, aw min, b4, b5, and CO2 max (see 
Table 3, Case 4.6) used to predict meat shelf-life based on the growth of 
Lactobacillus sakei. This model includes the storage conditions temperature (T = 4 
ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 ppm). Variability in 
the shelf-life predicted reflected the variability in the initial microbial load and the 
model parameters (see Table 3). (a) Reducing SD values by 10%; (b) Reducing SD 
values by 50%; and, (c) Reducing SD values by 90% (continued). 
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Figure 8. Effect of reducing the standard deviation (SD) value of the initial 
microbial load (see Table 3, Case 4.7) used to predict meat shelf-life based on the 
growth of Lactobacillus sakei. This model includes the storage conditions 
temperature (T = 4 ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 
ppm). Variability in the shelf-life predicted reflected the variability in the initial 
microbial load and the model parameters (see Table 3). (a) Reducing SD value by 
10%; (b) Reducing SD value by 50%; and, (d) Reducing SD value by 90%. 
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Figure 8, continuation. Effect of reducing the standard deviation (SD) value of the 
initial microbial load (see Table 3, Case 4.7) used to predict meat shelf-life based 
on the growth of Lactobacillus sakei. This model includes the storage conditions 
temperature (T = 4 ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 
ppm). Variability in the shelf-life predicted reflected the variability in the initial 
microbial load and the model parameters (see Table 3). (a) Reducing SD value by 
10%; (b) Reducing SD value by 50%; and, (d) Reducing SD value by 90% . 
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Figure 8, continuation. Effect of reducing the standard deviation (SD) value of the 
initial microbial load (see Table 3, Case 4.7) used to predict meat shelf-life based 
on the growth of Lactobacillus sakei. This model includes the storage conditions 
temperature (T = 4 ºC), water activity (aw = 0.98) and dissolved CO2 (CO2 = 2650 
ppm). Variability in the shelf-life predicted reflected the variability in the initial 
microbial load and the model parameters (see Table 3). (a) Reducing SD value by 
10%; (b) Reducing SD value by 50%; and, (d) Reducing SD value by 90%. 
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 Abstract  

Monte Carlo-type computer experiments can be used to evaluate the effect 

of the variability in model parameters for food safety and quality estimations. 

Procedures for inclusion in an undergraduate food process engineering course 

covering the assessment of uncertainty in thermal food processing decisions were 

developed using spreadsheets and operations found in the ExcelTM Analysis 

ToolPack. Published thermal decimal reduction time (DT, T = 110oC) and initial 

spore load (No, spores/container) level for Clostridium botulinum Type B in 

mushroom were used to estimate a thermal processing time (FT). The survival 

probability (N) was the recommended value of 1 spore in 109 containers. Using 

reported mean values for the parameters DT and No yielded FT = 5.96 min. Unique 

combinations of generated No
* and DT

* datasets were used to obtain the distribution 

for the spore survival probability and the associated percentage of under processing. 

Next, the coefficient of variation (CV) for the percentage of under processing when 

using 2 to 500 generated datasets was calculated to determine that 100 was an 

acceptable minimum number of datasets to estimate 9.6 min as a recommended 

thermal process considering the experimental variability of the parameters DT and 

No and yielding a 10-9 failure probability with a 95% confidence. The predictive 

procedures were used also to assess the impact of reducing the standard deviation 

(SD) of both No and D110ºC by 10%, 50%, and 90% yielding 8.6, 7.8 and 6.4 min, 

respectively, as a recommended thermal process at 110oC with 95% confidence. 
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Monte Carlo simulation, Excel spreadsheets 

 

Introduction 

In the area of food process engineering education, recent reports have 

covered learning styles (Palou, 2006), comparison of knowledge gains and attitude 

changes using computer-based and face-to-face personal hygiene training methods 

(Fenton et al., 2006), construction of internet-assisted real-time experiments (Singh 

and Circelli, 2005), development and use of a web site with multimedia contents to 

assist unit operations courses (Tapia et al., 2005), use of web-based calculations to 

assist food engineering courses (Morales-Blancas et al., 2003; Morales-Blancas and 

Torres, 2004) and comparisons of food engineering education programs (Welti-

Chanes and others 2002). No published studies reporting parameter variability 

considerations in food process engineering education were found. 

Before implementing a process to eliminate a food safety hazard, an 

objective must be defined. The acceptable level of a hazard is expressed as a food 

safety objective (FSO), defined by the Codex Committee on Food Hygiene as “the 

maximum frequency and/or concentration of a hazard in a food at the time of 

consumption that provides or contributes to the appropriate level of protection 

(ALOP)” (Anonymous, 2004). In order to achieve an FSO, a process must be 

applied based on a performance criterion. The initial level of a hazard will change 
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during production and processing, distribution, storage, preparation, and food use 

(Stewart and others 2002). Therefore, a performance criterion can be defined by the 

equation: 

 FSOIRH 0  (1) 

where Ho is the initial, R is the total decrease achieved by processing and I is the 

total increase in the level of the hazard occurring after processing. In the case of the 

thermal processing of low acid foods, Ho is minimized through supplier selection 

and rejection of contaminated raw materials. I is reduced to zero by preventing 

post contamination and growth of surviving spores, and R is achieved by 

destroying the hazard by heat. Equation (1) expresses in an integrated manner, the 

entire process that must be followed to produce safe foods (Stewart et al., 2002; van 

Schothorst, 2005; van Schothorst, 1998). 

Market forces are not always adequate incentives for food safety because of 

high testing costs and the wide array of risk agents and their hazard potential 

(Unnevehr and Jensen, 1999). The elimination of microbial spoilage and safety 

risks by thermal processing requires knowledge of the statistical distribution of 

those risks and the variability of the process applied (Lund, 1978; Halder and 

others 2007; Smout et al., 2000b; Lenz and Lund, 1977; Smout and others 2000a; 

Smout and others 2000c; Smout and others 2003). The same approach has been 

used when estimating the microbial shelf-life of refrigerated foods (e.g., 

Almonacid-Merino and Torres, 2009).  
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Processors face uncertainties when they use predictive models to make 

processing decisions because parameter values have variability that needs to be 

considered. Variability sources include processing temperature control, 

characterization of the raw material source such as microbial load, and the 

determination of the intrinsic properties of foods. Variability in these parameters 

cannot be avoided and must be considered in product safety and quality 

assessments. Unfortunately, parameter variability considerations are often not 

included when reaching process, storage and distribution decisions and this may 

reflect a deficiency in undergraduate food science education programs. When 

teaching the design of thermal food processes, the instructor should consider that 

engineering decisions are based on mathematical and also on statistical models 

describing the variability of thermal processing parameters. The option of using 

worst-case values is undesirable as it leads to higher processing costs and lower 

product quality (Guldas and others 2008).  

The impact of the probability distribution of the parameters in a model can 

be assessed by Monte Carlo-type computer experiments. In thermal processing, a 

minimum processing time is required to ensure a desired microbial inactivation 

level while causing a minimum effect on product quality (Peck, 2006). Generally, 

both food-poisoning and food-spoilage microorganisms are considered when 

predicting the process time and temperature required (Smith and Cash, 1997). The 

determination of a heat sterilization protocol begins with the calculation of a 
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constant temperature processing time at a reference temperature T (FT value) to 

achieve a desired thermal inactivation level (Peleg and others 2005). The concept 

of decimal reduction time at a constant temperature T (DT) is often used to estimate 

the time required for the reduction in microbial load (van Asselt and Zwietering, 

2006). Assuming first order reaction kinetics, DT is the time required for 90% 

microbial inactivation or 90% quality attribute degradation at constant temperature 

T (Morales-Blancas and Torres, 2003a; Morales-Blancas and Torres, 2003b; 

Morales-Blancas and Torres, 2003c).  

Clostridium botulinum is the most feared threat to public health in low-acid 

foods, and for this reason, the destruction of its spores has been used as the minimal 

criterion for heat processing. Initially, it was arbitrarily established that in low-acid 

foods, the minimum process should be at least as severe to reduce these spores by 

12 logarithmic cycles (Guldas et al., 2008). This approach did not consider whether 

the initial microbial load in a specific processing batch was high or low (Figure 9a). 

For example, if the inactivation of C. botulinum in a given food has a D121ºC of 0.21 

min, the process time F121ºC under the 12D concept was always the same, i.e., 2.52 

(= 12 x 0.21) min (Stumbo et al., 1975; Stumbo, 1973; Sun, 2006).  

The 12D concept evolved into setting the probability for the survival of 

spores from a heat-resistant thermophile of public health importance, again 

typically C. botulinum (Figure 9b). This probability was set at 1 in 109 containers or 

less for the presence of microbial pathogens (Toledo, 2007; Pflug, 1987). This 
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strategy of setting a fixed endpoint microbial safety requirement was designed to 

reward efforts to reduce the initial contamination level (No) and thus reduce the 

required thermal processing time. In addition to cost savings, consumers benefitted 

from an improved food quality, particularly a higher retention of nutrients and 

eating quality. More recently, regulatory agencies have begun to require evidence 

that a process target be met with a certain probability considering the variability of 

the calculation parameters (Figure 9c). This requirement is typically set at 95% 

confidence interval (CI) or higher (Smout et al., 2000b; Javis, 1989; Fernandez et 

al., 1999; Rieu et al., 2007). This new regulatory strategy should be presented in 

food process engineering courses covering the calculation procedures for thermal 

processing.  

The objective of this study was to use Monte Carlo simulations to estimate a 

process time ensuring that the process target (1 bacterial spore pathogen in 109 

containers) is met with a 95% probability. To assess the impact of the variability in 

the initial spore numbers (No) and in the decimal reduction time (DT), process times 

were estimated using the same mean values but with a 0, 10, 50 and 90% reduction 

of the reported standard deviation of these two parameters. The values thus 

obtained were compared with the process time determined on the basis of mean No 

and DT values. These food process engineering and statistical methods were 

combined into an MS Excel set of calculations suitable for an undergraduate food 

process engineering course. Finally, this study focused on C. botulinum Type B 
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spores (Barker and others 2002; Sugiyama and Yang, 1975) in canned mushrooms, 

a product with high commercial importance in the USA and elsewhere. According 

to the U.S. Department of Agriculture, mushroom consumption reached 1.13 billion 

pounds in 2001 increasing by more than 21% since 1991. Most were sold as canned 

products and nearly 76% was purchased as retail products (Lucier and others 2003). 

 

Methods 

The procedures followed to analyze the effect of variability in the 

parameters No and DT on the safety of a given thermal process are summarized in 

Figure 10. Computer generated values used in the Monte Carlo simulations are 

indicated using an asterisk. Excel implementation instructions can be obtained from 

the corresponding author. 

 

Predictive model 

The process time FT for commercial food sterilization can be estimated as 

follows (Toledo, 2007): 

 )log(log
log

log
NN

N

N
SV o

o   (2) 

 TTT DNNDSVF )log(log)( 0   (3) 

 

where: 

SV  = sterilization value or number of decimal reductions 
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No  = initial spore load (spores/container) 

N  = probability of final spore load, target = 10-9 (spores/container)  

FT  = thermal process time (min) at constant temperature  

DT  = decimal reduction time at constant temperature T 

 A random number procedure was used to generate values for No (Notermans 

and others 1989) and DT (Odlaug and others 1978) assuming normal and lognormal 

statistical distributions, respectively. The size of each generated dataset was equal 

to the number of samples used to determine the No and DT values reported in the 

literature (Chu, 2009; Efron and Tibshirani, 1986). An important next step before 

accepting and using generated data is to develop a metric to identify unacceptable 

datasets (Chu, 2009). By defining an acceptable thermal process time error (0.1 min 

in this study), it was possible to define an acceptable error in the mean, minimum 

or maximum values for the initial spore load No. This was done as follows: 

 reported No = No (4) 

 generated No
* = No (5) 

 ToT
o

T
reported

T DNND
N

N
DSVF )log(log)][log(   (6) 
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T
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



 


(7) 

 min1.0 generated
T
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T FFError  (8) 

 min1.0log  TDError  (9) 
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A similar procedure was used to define an acceptable error for DT values: 

 reported DT = DT (10) 

 generated DT
*

 = DT (11) 

 1.0 TT DDError   (12) 

 

 In the next step, a metric was defined to determine if the distribution of 

generated data was approximately equivalent to the distribution of the data reported 

in the literature. The metric used and based on normalized errors in the mean, 

minimum and maximum value for No and DT values, was defined as follow: 
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  3211 fffmetric    (15) 

where: 

µo, µo
* (= µo) =  mean values for reported and generated data 

ao, ao
* (= ao) =  minimum values for the reported and generated datasets  

zo, zo
* (= zo) =  maximum values for the reported and generated datasets  

f1 , f2, f3  =  weight factors (a subjective decision) for the normalized errors 

in the mean, minimum, and maximum value, respectively 
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The fi values used in this study were 1, 0.5, and 2 for the mean, minimum, 

and maximum value, respectively. This reflected a strategy of providing relatively 

more importance to the normalized error in the maximum value of the generated 

data as compared to the mean and minimum value. Next, acceptable errors () for 

No and DT as determined by Equations (9) and (12), respectively, were used to 

determine an acceptable value for the metric using Equation (15). 

The steps described above were followed to generate 500 (= S) datasets for 

No
* and DT

* while keeping track of the number of datasets generated before finding 

one meeting the metric restriction. Only acceptable generated datasets for No
* (12 

values each) and DT
* (9 values each) were used in Monte Carlo simulations to 

obtain a distribution of the probability of C. botulinum spore survival (log N*, 12x9 

= 108 values) for a constant TF  calculated using the reported mean oNlog and 

TD values as follows: 

   ToT DNNF loglog   (17) 

 

A spore survival log mean (log N*) and a percentage of under processing 

value was estimated for each unique combination of the five hundred No
* and DT

* 

datasets. Next, coefficient of variation (CV) values were calculated for 2, 3, 4 …, s 

= 500 estimated percentage under processing values to determine a recommended 

 *
** loglog

T

T
o D

F
NN   (16) 
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sample size S (Efron and Tibshirani, 1986; Almonacid-Merino and Torres, 2009): 
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Finally, the thermal processing time was increased ( r
TF ) for each unique 

combination of the recommended number of No
* and DT

* datasets so as to meet the 

probability of final spore load target (N = 10-9 spores/container) with a 95% 

confidence. These calculations generated a distribution of r
TF values which was 

used to determine a recommended thermal processing time producing the required 

spore inactivation with 95% confidence. 

 

Application example 

An initial C. botulinum Type B spore load was referred to a typical canned 

mushroom product size (113.4 g = 4 oz). Based on the spore load information 

reported by Notermans and others (1989), the mean and standard deviation values 

for log No used in this study were -1.36 ± 0.87 with minimum -2.83 and maximum 

0.08 log spores/container. Using DT values reported by Odlaug and others (1978) 

yielded the following metric inequalities for the evaluation of generated datasets for 
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No and DT values: 

 2.3930 
oNmetric  (20) 

 45.00
110


 CTDmetric  (21) 

 

An important aspect of probability distributions is that they represent either 

uncertainty, i.e., the lack of perfect knowledge of the parameter value to be reduced 

by further measurements, or variability, i.e., the true heterogeneity of the population 

that is a consequence of the physical system and irreducible by additional 

measurements (Nauta, 2002; Nauta, 2000; Akterian and others 1999). The latter can 

be reduced by finding the sources of this heterogeneity. In the case of microbial 

load, the contamination level heterogeneity could reflect differences in the 

production conditions of suppliers, which would suggest that products with widely 

different contamination levels should be processed separately. In the case of 

decimal reduction time, this could reflect the aggregation of experimental 

determinations of microbial thermal inactivation in different media. The 

recommendation would be to determine this parameter in a single matrix, 

preferably the product to be processed. Since both recommendations would 

generate costs to the processor, it is important to evaluate the impact on the 

recommended thermal process time of reducing process uncertainty and variability. 

Therefore, in addition to determining a recommended number of generated datasets 

(sample size, S) and a thermal process time r
TF yielding a safe process with 95% 
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confidence, the impact of reducing the variability in No and DT values was assessed 

as follows. Spore survival log mean (log N*) and percentage of under processing 

values were estimated for each unique combination of the recommended number of 

No
* and DT

* datasets, i.e., S times, assuming a 10%, 50% and 90% reduction in the 

reported standard deviation for No and DT separately and for No and DT at the same 

time. The thermal processing time was then increased ( r
TF ) for each unique 

combination of the No
* and DT

* datasets with reduced variability so as to meet the 

probability of final spore load target (N = 10-9 spores/container) with a 95% 

confidence. These calculations (repeated S times) generated a distribution of 

r
TF values which was used to determine a recommended thermal processing time 

producing a safe products with 95% confidence. The objective of these calculations 

was to determine the impact of reducing the variability of these two parameters on 

the thermal process time required for a safe process. 

 

Results and Discussion 

Data transformations and verification of statistical distribution 

 A review of the literature showed that most authors report only summarized 

data, i.e., mean () and standard deviation () values, without explicitly stating the 

statistical distribution for the data reported. This required the generation of data 

assuming a certain probability distribution for the two parameters considered in this 

study. The metric used to accept or reject generated datasets provided a necessary 
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but not sufficient test to validate the assumed distribution form for each parameter. 

Although this was not case for the data on initial spore load used in this 

study (Notermans et al., 1989), most authors assume a normal instead of lognormal 

distribution for microbial counts. If that is the case, it would be necessary to 

convert the reported normal mean () and standard deviation () to lognormal 

distribution values,


 and


,  respectively, as follows (Pereira, 2009): 
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 The minimum, mean and maximum number of repetitions to generate 500 

approved datasets was 1, 1.982, and 6 for No values and 1, 1.314 and 4 for D110C 

values, respectively. These low values suggest that the assumption of lognormal 

and normal distribution for these two parameters was correct (Pereira, 2009).  

 

Impact of statistical variability on thermal processing time 

 The 500 approved datasets for No (12 values) and D110C (9 values) were 

used with no repetitions in Monte Carlo simulations to generate 500 distributions of 

spore survival (log N*) for a constant TF  applied, calculated using the reported 
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mean oNlog and TD values. Table 6a shows an example of the expected levels of 

spore survival (108 log N* values = 12 No
* x 9 DT

* values) for a constant TF  based 

on reported mean oNlog (Notermans et al., 1989) and TD values (Odlaug et al., 

1978). The distribution of these values highlights the risk of thermal process 

decisions based on mean values (Figure 11a). In this example, the probability of 

producing an unsafe product would be 55% and varied from 20.4 to 88.9% and a 

mean of 51.4% in the 500 distributions examined (Figure 12). The solution to this 

safety risk is to estimate thermal processing times considering the statistical 

variability of the reported No and DT values. This was done for the 500 Monte Carlo 

simulations generating a distribution of thermal processing times ranging from 6.5 

to 10.3 min. To comply with the current recommendation of a process time 

reaching the desired food safety target with 95% confidence (Figure 9c) resulted in 

a recommended thermal process time of 9.4 min (Figure 13). 

 

Estimation of a recommended number of generated datasets (sample size) 

 A disadvantage of a Monte Carlo analysis is that the number of repetitive 

simulations necessary to obtain an acceptable accuracy level must be large 

(Floschet et al., 2003) and thus it is important to determine a recommended number 

that will result in acceptable results. The 500 distributions generated by the Monte 

Carlo simulations were used to determine a recommended number of generated 

datasets (sample size, S) for the estimation of thermal processing time (FT). 
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Standard deviation (SD) and coefficient of variation (CV) for the percentage of 

under processing values were plotted as a function of sample size, i.e., from 2 to 

500. The CV decreased rapid until reaching 100 datasets (Figure 14). Therefore, 

this sample size was considered sufficient for the application of generated No
* and 

DT
* values to predict spores survival log mean (log N*) and the percentage of under 

processing. 

 

Determination of a process time considering parameter variability 

During industrial food production, process parameters such as microbial 

loads are highly variable (Corradini and others 2001). In addition, the benefits of 

efforts to reduce the variability of the thermal inactivation parameters obtained in 

laboratory experiments and under real production conditions must be assessed. 

Knowledge of the variability of generated No
* and DT

* values was used to estimate 

a thermal process time ( r
TF ) required to reach 10-9 spores/container with a 95% 

confidence. The same dataset selected previously was used to demonstrate that 

increasing thermal processing time from CF 110  = 5.96 min to 8.89 min increased 

the probability of meeting the spore load target from 55 to 95% (Table 6b, Figure 

11b). The same process repeated for 100 generated datasets as recommended to 

obtain reliable results, yielded a frequency distribution of thermal processing times 

meeting the desired inactivation of bacterial spores. This resulted in r
CF 110  = 9.6 

min as the recommended thermal processing time yielding safe product with 95% 
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confidence (Figure 15a), i.e., a value similar to the one obtained when using 500 

generated datasets (9.4 min, Figure 13). 

 Increasing the requirement of microbial lethality to comply with new 

public health standards will increase the degradation of nutrients and quality factors. 

In response to this new regulatory demand, processors will have to find means to 

reduce process time as much as possible. An alternative would be to use variable 

retort temperature profiles (Erdogdu and Balaban, 2003; Almonacid-Merino and 

others 1993a). An option explored in this study was to assess the impact of efforts 

to reduce the variability in No and DT values. Assuming a 10, 50, and 90% 

reduction in the standard deviation of these values (Table 7), resulted in tighter 

distributions of thermal process times to reach the desired inactivation level, i.e., 

10-9 spores/container when reducing the variability in No (Figure 15b), D110C 

(Figure 15c) and both D110C and No (Figure 15d). The recommended thermal 

process time yielding a safe process with 95% confidence was 9.6 min before 

reducing variability. The effect of reducing the variability in No (Figure 15b, Table 

7a) values by 10, 50, and 90% resulted in recommended r
CF 110  = 9.2, 8.8, and 8.6 

min, respectively, while reducing the variability in DT the recommended values 

would be 9.4, 8.6, and 8.2 min (Figure 15c, Table 7b). The impact of reducing the 

variability of both No and DT on the thermal process time yielding a safe process 

with 95% confidence the values would be 8.6, 7.8, and 6.4 min (Figure 15d, Table 

7b), respectively. The latter value (6.4 min) is not very different from the value 
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calculated based on mean values and resulting in a 55% risk of under processing 

(5.96 min). 

 

Conclusions 

 In this work, numerical computations of thermal processing times required 

to achieve a desirable surviving spore load probability were generated from Monte 

Carlo-type computer experiments incorporating the variability of two key 

parameters, initial microbial load and decimal reduction times. The high percentage 

of processes calculated based on average values for these two parameters not 

meeting the desirable surviving spore load probability supports the new 

recommendations from government agencies to incorporate statistical requirement 

that a food safety must be met with a high probability. 
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Table 6. 
Monte Carlo simulation example for one log No

* (12 values) and one D*110ºC (9 
values) dataset for C. botulinum in Mushrooms to predict number of survival spores 
(log N*, 12x9 = 108 values). Bold numbers indicate unsafe processing.  
 

a. CF 110  = 5.96 min, based on reported mean log No and D110ºC values 

log No
* 

D*110ºC

0.97 0.68 1.05 0.82 0.54 0.77 0.84 0.52 0.98 

-2.80 -8.96 -11.58 -8.49 -10.03 -13.79 -10.52 -9.92 -14.33 -8.89 

0.60 -5.56 -8.18 -5.09 -6.64 -10.39 -7.13 -6.52 -10.93 -5.49 

0.10 -6.07 -8.69 -5.60 -7.14 -10.90 -7.63 -7.03 -11.43 -6.00 

-0.92 -7.09 -9.71 -6.62 -8.16 -11.92 -8.65 -8.05 -12.46 -7.02 

-2.26 -8.42 -11.04 -7.96 -9.50 -13.25 -9.99 -9.39 -13.79 -8.36 

-1.38 -7.54 -10.16 -7.08 -8.62 -12.37 -9.11 -8.51 -12.91 -7.47 

-1.21 -7.38 -10.00 -6.91 -8.45 -12.21 -8.94 -8.34 -12.75 -7.31 

-0.67 -6.83 -9.45 -6.36 -7.90 -11.66 -8.40 -7.79 -12.20 -6.76 

-2.75 -8.92 -11.54 -8.45 -9.99 -13.75 -10.48 -9.88 -14.29 -8.85 

-2.15 -8.32 -10.93 -7.85 -9.39 -13.14 -9.88 -9.28 -13.68 -8.25 

-1.62 -7.78 -10.40 -7.31 -8.86 -12.61 -9.35 -8.74 -13.15 -7.71 

-1.55 -7.71 -10.33 -7.24 -8.79 -12.54 -9.28 -8.67 -13.08 -7.64 

b. CF 110  = 8.89 min required to meet N = 10-9 spores/container with 95% 
confidence 

log No
* 

D*110ºC 

0.97 0.68 1.05 0.82 0.54 0.77 0.84 0.52 0.98 

-2.80 -11.99 -15.90 -11.30 -13.60 -19.20 -14.33 -13.43 -20.00 -11.89 

0.60 -8.60 -12.50 -7.90 -10.20 -15.80 -10.93 -10.03 -16.61 -8.49 

0.10 -9.10 -13.01 -8.40 -10.70 -16.31 -11.44 -10.54 -17.11 -9.00 

-0.92 -10.12 -14.03 -9.43 -11.73 -17.33 -12.46 -11.56 -18.13 -10.02 

-2.26 -11.46 -15.37 -10.76 -13.06 -18.66 -13.80 -12.90 -19.47 -11.36 

-1.38 -10.58 -14.48 -9.88 -12.18 -17.78 -12.91 -12.01 -18.59 -10.47 

-1.21 -10.41 -14.32 -9.72 -12.02 -17.62 -12.75 -11.85 -18.42 -10.31 

-0.67 -9.86 -13.77 -9.17 -11.47 -17.07 -12.20 -11.30 -17.87 -9.76 

-2.75 -11.95 -15.86 -11.26 -13.56 -19.16 -14.29 -13.39 -19.96 -11.85 

-2.15 -11.35 -15.26 -10.65 -12.95 -18.56 -13.69 -12.79 -19.36 -11.25 

-1.62 -10.82 -14.72 -10.12 -12.42 -18.02 -13.15 -12.25 -18.83 -10.71 

-1.55 -10.75 -14.65 -10.05 -12.35 -17.95 -13.08 -12.18 -18.76 -10.64 
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Table 7. 
Effect of statistical variability of the prevalence of Clostridium botulinum (No) Type B 
spores and their decimal reduction time (D110ºC) on the thermal processing time for canned 
mushrooms required to reach the desired inactivation level (10-9 spores/container). 
Calculations based on the recommended number of 100 generated datasets. 
 

(a) Standard deviation reduction (mean  SD) 

Parameter 0% 10% 50% 90% 

log No -1.36  0.87(1) -1.36  0.78 -1.36  0.44 -1.36  0.09 

DT 0.78  0.17(2) 0.78  0.153 0.78  0.085 0.78  0.017 

 

(b) Processed time to produce safe food with > 95% confidence (min) 

log No 

9.6 

9.2 8.8 8.6 

DT 9.4 8.6 8.2 

Both  8.6 7.8 6.4 

(1) Notermans and others (1989) 
(2) Odlaug and others (1978) 
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Figure 9. Effect of the food safety objective on the design of thermal preservation 
processes. (a) Original objective required the same 12 decimal reduction process 
for all producers; (b) Definition of a process endpoint of 1 spore survival in 1 
billion containers rewarded efforts lowering the initial microbial load; (c) 
Consideration of the statistical variability in process parameters ensures that the 
food safety objective is met with high statistical confidence.  
 

 

 

Safety objective: N = 10-9

(1 in 1 billion containers) 

Safety objective: 12D 

12D 

12D 

Low No 

High No 

Safety objective: N = 10-9

(with 95% confidence) 

SV 

SV 

Low No 

High No 

DT distribution 

No distribution 

N = 10-9 N = 10-9  
with 95% confidence

(a) (b) (c) 



 

 

 

86

 

 
 
 
 
 
 
 
 
Figure 10. Monte Carlo methodology considering statistical variability in process 
parameters to ensure that a food safety objective is met with high statistical 
confidence. 
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Figure 11. Probability distribution for C. botulinum spore survival (log N*, 
CFU/container) for the same example of a dataset of generated N*o and D*110C 
values. (a) Spore survival values obtained for a thermal process time (= 5.96 min) 
based on the reported mean values for No and D110C; (b) Spore survival values 
obtained when the thermal process time was increased (= 8.89 min) to meet the 
process target (N = 10-9 spores/container) with 95% confidence. 
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Figure 12. A distribution of the probability of unsafe products (%) based on 500 
Monte Carlo simulations for a thermal process time (= 5.96 min) calculated using 
the reported mean values for No and D110C  
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Figure 13. Probability distribution based on 500 datasets of processing times 
meeting the process target (N = 10-9 spores/container) with 95% confidence  
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Figure 14. Determination of the recommended number of Monte Carlo simulations 
for the estimation of thermal processing time (FT) considering the variability in the 
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reported spore load (No) and decimal reduction time (DT) for Clostridium botulinum 
spores in mushrooms.  
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Figure 15. Distribution of the processing time reaching the desired inactivation 
level, i.e., 10-9 spores/container. Calculations based on the recommended number of 
generated datasets (100). (a) Original variability in No and DT values ; (b) Reducing 
No variability by 10%, 50% and 90%; (c) Reducing DT variability by 10%, 50% and 
90%; (d) Reducing variability of both No and DT by 10%, 50% and 90%.  
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Overall Conclusions 

Predictive microbiology models are used in undergraduate food science 

programs to expose students to the effect of food properties and storage conditions 

on microbial shelf-life. As presented in this thesis, a significant educational 

improvement would be to use Monte Carlo procedures to estimate a microbial 

shelf-life with a specified degree of confidence and considering the variability of all 

model parameters.  This can generate a rapid and cost-effective tool to reduce the 

risk of reaching consumers with unsafe or spoiled food products. 

The variability of Ratkowsky-type model parameters for lag phase () and 

exponential growth rate (max) was used to estimate a probability distribution for 

the microbial shelf-life of meat. Random number generations for lognormal (initial 

microbial load) and normal distributed parameters (all other parameters) combined 

with Monte Carlo simulations were implemented using Microsoft Excel to 

determine a meat shelf-life probability distribution calculated using these predictive 

models. This allowed the determination of a recommended shelf-life considering 

the variability in microbial load and model parameters. The shelf-life value 

obtained considering the variability of the information and setting a 95% 

confidence interval (CI) (Smout and others 2000d; Smout et al., 2000b; Javis, 1989; 

Fernandez et al., 1999; Rieu et al., 2007) differed significantly from simpler 

calculations using only mean values for all parameters. This strategy of 

implementing in the form of Excel spreadsheets the generation of model parameter 
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values following known statistical distributions and Monte Carlo simulations for 

the generation of a shelf-life probability distribution should be presented in food 

process engineering courses covering estimations of microbial shelf-life. Excel 

implementation instructions can be obtained from the corresponding author.  

The same Monte Carlo simulations-based approach can be used to explore 

the impact of the variability in multiple factors including microbial load of raw 

materials, food formulation, processing steps, packaging strategies including 

modified atmosphere packaging (MAP), as well as the conditions found during 

storage, shipping and distribution. Microbiology laboratory experiments to test all 

these factors and their expected variability would be complex and prohibitively 

expensive. Although the computer implementation of these models reduces this 

cost, their effectiveness depends on the determination of the values for several 

parameters under conditions at least similar to the application of interest and 

knowing the statistical distribution functions describing these experimental 

measurements. 

Thermal processing has remained the foundation of the processed foods 

industry (Clark, 2002). Therefore, teaching of food thermal processing should 

inform students about new development including considerations of the variability 

in model parameters using the Monte Carlo procedures as described in this thesis. 

Monte Carlo simulations were used to estimate a thermal process time at constant 

temperature ensuring that the process target (1 bacterial spore pathogen in 109 
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containers) is met with a 95% probability.  Numerical computations of thermal 

processing times required to achieve a desirable surviving spore load probability 

were generated from Monte Carlo-type computer experiments incorporating the 

variability of two key parameters, initial microbial load and decimal reduction 

times. The high percentage of processes calculated based on average values for 

these two parameters not meeting the desirable surviving spore load probability 

(55% in the example shown in this thesis) supports new recommendations from 

government agencies incorporating the requirement that the specified food safety 

target met is with a high probability. 
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