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FIRST PASSAGE TIME DISTRIBUTIONS

IN ELECTRONIC RECEIVERS

INTRODUCTION

The description of the behavior of physical systems

in terms of probability distributions and the associated

statistical parameters is necessary whenever noise is pres-

ent. Especially is this true when a system is required to

operate with inputs whose energy (or power) is of the same

order of magnitude as that of the noise, that is, when a

system is required to be very sensitive. The general prob-

lem considered is that of recognizing the presence of a

weak signal when it is submerged in a background of noise.

Considerable attention has been given to this problem and

a brief description of the conventional means for such

detection is given in the sequel.
The familiar way of accomplishing the detection of

signals in noise is with a system comprising an IF filter,

a quadratic envelope detector, and a low-pass postdetection

filter. The first filter introduces spectral selectivity

and enhances the signal relative to the noise. The quad-

ratic detector (rectifier) squares the output of the first

filter and extracts the envelope of the combined signal and
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noise thus generating a dc component. The postdetection

filter transmits the dc component while rejecting as much

fluctuation as possible consistent with the required system

transient time, resulting in a smoothed output. The output

of such a system is then presented to a threshold device

whose function is to announce the presence of a signal if

a certain pre-set threshold level is exceeded. Since the

spectral composition of the signal is generally not known

in advance, similar parallel channels are used for simul-

taneous search at different frequencies.

The output of such a threshold detector depends on the

character of the random process introduced as input and on

the response characteristic of the system itself. In prin-

ciple, knowledge of these permits one to describe the out-

put in terms of a distribution function. Let this function

be F(x;A) where
xo

is the threshold level and A is the

signal-to-noise ratio at the IF stage. Let X be the output

of system. Then

(1.1) F(x ;A)Im Pr(X<x ;Al,

that is, F is the probability that an instantaneous sam-

pling of X is less than
xo

for a given signal-to-noise

ratio. For the processes discussed here F will be differ-

entiable and the probability density function, f(x;A) will

be used. The threshold level is determined by preassigning

an allowable false signal probability. This is the
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probability that noise alone exceeds the threshold and is

given by

(1.2) Pr[X>x0;A:=01 = f(X;0)dx.

o

Solution of (1.2)f or
xo

then determines the threshold level

and the probability of detection is given by

(1.3) PD a f(X;A)dX

for given signal-to-noise ratio, A.

This skeletal description of a threshold detection

system serves to introduce an allied problem, viz., the

passage time problem. Since time is a prominent factor in

many automatic control systems, it is important to know how

long it takes for the output of a system to cross the

threshold, given some initial condition at tig0. Conse-

quently, the distribution function for the time to first

passage of a threshold is worthy of study and several such

distributions are derived in the sequel, corresponding to

different physical processes.

Such problems are not new in the physical sciences.

Chandrasekhar (3, p. 264) studied the rate of escape of

stars from clusters by finding the probability that a star

with a known initial velocity would reach an escape veloc-

ity in a time interval (t, t + dt). Schrodinger (9, p.

and Smoluchowski (11, P. 320) found the probability that a

particle in Brownian motion rePches an absorbing barrier in
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a similar time interval. Stumpers (15, pp. 270-281) exam-

ined a passage time distribution for a simple R-C circuit,

assuming a completely random output process. These are but

a few examples of the classical absorbing barrier problem.

The particular system to be investigated here is the

threshold detector described above. Sufficient generality

obtains so that the results may be altered and used for

other systems.



DISTRIBUTION FUNCTIONS

F (x Ix ) = Pr(X(t )x ,X(t )0( 3
a 1 2 1 1 2 2

F (x ,x px ) PriX(t )x ,X(t )<x ,X(t )<x I
8 1 28 1 1 2 2 8

and so on. X(tk) is the value of the output of the system

at time, tk. Lower case letters f f ,... will be used
1 2

for the associated probability density functions.

This section leans heavily on papers by Kac and

Seigert (6, pp. 383-397), Emerson (5, pp. 1168-1176), and

Stone and Brock (14, pp. 65-69) for determining Fi or fl.

The methods as well as pertinent results will be discussed

below. Methods for obtaining higher order distribution

functions are taken from papers by Krishnamoorthy and

Parthasarathy (7, pp. 549-557) and Stone (12, pp.

For these also, the methods will be discussed and useful

Before deriving expressions for the several first

passage time probability density functions, it is expedient

to introduce the hierarchy of joint probability densities

and distribution functions of the output of the system

described earlier. Also, it will be necessary to use the

correlation function, which will be discussed in the next

chapter.

The following notation will be used throughout:

= PrfX(t)<x]



Figure 1. Block diagram of receiver.

The IF filter is characterized by its voltage-frequency

transfer function, Yif(m) or its Fourier transform,)if(t);

similarly, the postdetection filter is characterized by

Ya(St) or ya(t). The voltage, E(t), applied to the quad-

ratic detector is given by the convolution integral.

(2.1) E(t) = y ftt-x)Ei(x)dx,

where E (t) is the input voltage. The quadratic detector

squares E(t), so that the input to the postdetection fil-

ter is OW, given by

(2.2) OW mk.ij yif(t-)) Bi(x)Ei(Y)Yif(t-y)dxdy.

6

results cited.

First, the electronic receiver will be discussed in

more detail than that given in the introductory sketch.

Figure 2.1 is a block diagram of the receiver considered.

Square
E (t)- Filter Law --Es(t)' Filteri

Detector

f (t) f (t)
a

F (w) F (w)



The output voltage of the system is then

(2.3)

Substituting from equation (2.2) yields the following for-

mula for the output voltage in terms of the input voltage:

(2.4)

where,

k*
(2.5) g(119v) mlyif(u-z)ya(z)yif(v-z)dz.

Emerson (5, p. 1169) points out that the next step in the

development is to expand the function g(u,v) into the uni-

formly convergent bilinear series,

(2.6) g(upv) 0 X h (u)h (v),

Jmi

where the
hi

(x) and the X are respectively the jth ortho-

normal function and the corresponding eigenvalue of the

integral equation

(2.7)

pc*
E (t) (t-x)E*(x)dx.

100 00

E (t) I E4(t-u)g(u1v)E (t-v)dudv.
..ex) -oo

7

xh(x) =1,9 x,y)h(y)dy.

For the receiver system studied here, Stone and Brock

have derived an expression for the system kernel, g(u,v).



The salient features of that development are reproduced

here for continuity.

Consider a receiver with simple RC (first order)

filters as in Figure 2.2

IC

Figure 2.2. Filter diagram.

For the steady state situation

(2.8) E (GO 1/163C
-A---

1 Y(m)

8

(2.10) = Imm1Mmli
1+ i to/cos

E R+1/i0C 1+iteRC

In the interest of symmetry, the concept of negative fre-

quency is introduced and the IF and audio (postdetection)

transfer functions then become

(2.9) Yif(co) m 1 + 1

1+i(ca-00)/m1 1+i(03+%)/mi



(2.12)

(2.13)

t 0

yif(t) {
t < 0.

For the postdetection filter, which is low-pass,

0)t
m e- 1

ye(t) *

Lo

t

t< 0.

Substituting these into equation (2.5), g(upv) becomes

(2.14)g(u,v)=20co coup (u-01 eetwi(u..z)""°22"11)1(v- oz)A z.u/v.120

9

where co st 1/R C f co = 1/R C , and co is the center fre-
t 11 2 22 o

quency of the IF filter. co and co are proportional to
1

the IF and audio filter band widths respectively. The

Fourier transform of Yif(m) is

yif(t) reicYtY (co)dco

(2.11) = 2, [oitc0)2+m) 0it(03 z-co )J d;
I ° lfiz

Zr -00

00
co cosm t cosm zt + isinm zt)1 i; dz.

o 1
I 1. z2

After some reduction, yff(t) is given by

2m e-cotcosmt,
1 o



Finally,

2ce0) -co (u+v) (2m -co )u
(2.15)

--Lacosme(u-v)e
1

2m -m
[e 1 2 -110o/u/v.

1 2

g(u,v)

2m2co -m (u+v) (2m -co )v
--1-1--cosm(u-v)e 1
2 co -co

[e 1 2 -1],o/v/u.
1

By noting particular identities among Bessel functions,

Stone and Brock (14, p. 5) have succeeded in expressing

g(u,v) as in equation (2.6) without actually solving the

integral equation (2.7). The series is

2m2 -w (u+ v) (2m -m )u
g(u,v) = cosm(u-v)e 1 [e 1 2 -1]

2y-1

oc,

(2.16) si]k [hC( )hC(v) + hS(u)0(v)1 o u/v
j=1

40)y
XM mwmawl.m.

r2
co

y J (r ) = 0.
ay-1 J

The orthonormal functions h(u) and h(u) are

(2.17)

-ea u

./270 e 2 JhC,S(u). 4
J (r4pY-1
ay

U

'cos
wou

lsin mu.

10



(2.21)

00

f3(t) = S(t-u)0(u) du,

pc*
tj(t) j N(t-u)hC(u) du,

11

Having established a representation for output in

terms of input, now consider a particular type of input,

namely an additive mixture of signal and noise,

(2.18) E(t) = S(t) + N(t),

where N(t) is purely random noise, normally distributed

about zero. Now both the signal and noise are expanded in

a series of eigenfunctions of the system operator. These

functions are given by equation (2.17) and the series

expansions are

oo

(2.19) S(t-u) = Eajh (u) + Pjhl (u))

j311

for the signal, and

ou

(2.20) N(t-u) =(tjh.? (u) + (u)]

for the noise.

The coefficients of the two series are given by

aj(t) f s(t-u)1.1 (u) du,
0



0.
ni(t) = N(t-u)hl(u) du.

Finally, E0(t) may now be written in terms of these

C
coefficients and the hS..'

00

12

0000
E(t) 314 f[S(t-u)+N(t-u)] r. Cr

00

X[S(t-v) N(t-v) dudv

(2.22)
0.

= E xj(ti + 9)2 + (nj +

J-1

From the representation of the output in terms of the

coefficients, Ci, ai, and pi, the characteristic

function associated with the output is then determined.

Since the distribution function associated with the noise

coefficients is Gaussian, the characteristic function may

be written immediately. This is carried out in both

Emerson's paper (5, p. 1170) and Stone and Brockts paper

(14, p. 10). The details of this as well as the inversion

of the transform in order to obtain output probability

density functions are omitted here but results useful to

the first passage time distribution are cited below.

Before presenting the resulting distribution function,

it should be pointed out that the interesting problem from

a physical viewpoint includes a randomly modulated signal.
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The distribution from which the signal amplitude arises is

the well-known Rayleigh distribution given by the density

function

(2.23)

where

-u2/2zf(u)altle 1.1 2 0.

f(u) = 0 u < 0,

z = E (u2/21

and 'El is the expectation operator. Furthermore, the

bandwidth ratio, y, defined in equation (2.16) is usually

very large in order to incorporate as much smoothing of

the output as the allowable transient time of the system

will allow. y is taken to be of the order 100-1000. With

these additional requirements the distribution function of

the output is

(2.24) F(X) = 1 e
X 7 1,

as defined in equation (2.23) is the average signal-to-

noise ratio. Then the probability of the output exceed-

ing a threshold level,
xo

is

(2.25) prix X01 1 F(X0)

X -1
" Z



This defines the first distribution function, F.

The higher order distribution functions necessary in

the development of first passage time distributions must

now be developed. Again only the salient features of the

methods and the pertinent results are cited.

The joint probability density function of two

correlated Gaussian variates is

(2.27)

Now let

(2.29)

where p is the correlation coefficient

pc co
p fxxf(x px ) dx dx .

2 1 1 1

x2 x2 - 2px x
2

2 11 - ps

14

and as is the variance of Xi
and Xi is the random

variable with marginal distribution function, Fi(x).

For two variates t and
ts,

the moment generating function

(Laplace transform) of f(ti, tit) is defined as

-(s + s )

(2.28) G(s Is ) aa E te 1 1 2 2 J.
1 2

(2.26) f(x $x 1
1

21ilr:
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where x have the joint density function given by (2.26).

G(s Is ) may be evaluated immediately yielding
a

x2+x2-2px x s x2 $ x2
fe_I ....A.J.7 2 2

2( 1 - psis) 2 2 xdx12

.1
2

If the marginal density functions of the xi are Gaussian

with zero means and unit variances, then the probability

density function associated with ti is

(2.31)

(2.32) cp(s) =

The characteristic function (or Laplace transform since

f() is truncated at zero) of the distribution is

The characteristic function associated with the sum of m

G(s

(2.30)

,s ) =
1 2

1

27r V1 p

1+2

s p
2
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such random variables, independent and identically dis-

tributed, is

(2.33) ¶m(t) = Tin(t) (t+i) -

Inverting then yields

(2.34) i(Ei)

r(m/2)

where

(2.35) 4i= i244

Now specify that m = 2p, p an integer, so the probability

density function associated with each of the composite

Gamma distributed variables is

(2.36) fhi) m XT./ 04eXi
(p-1)

Noting equation (2.28), it is seen that raising G(sioss)

to the 2p power is equivalent to defining each xi to be

the sum of 2p such variates.

(2.37)

G (s ps ) =GP(s ,s ) n E[41,(S_X +s X )1
1 1 2 2 3P t 2 1 X

(To= I f(x ,x ) e-(sixi + s x )2 2 dx dx .
100 * 1 *



G (s ,s )

P 1 a (1" )11(1+521

The f(x px ) appearing in equation (2.37) is the joint
a

density function of two correlated Gamma variables.

W. M. Stone (12, p. 5) has extracted the form of f(x10(31).

It is, for p * 1, (which is the interesting case for the

output of first order filter systems)

acd

(2.38) f(X px ) = e
1 2

xl x2
p2nn(x )Ln(x2)

no

where

(2.39)
L (x) ex (xne-x).

n! dxn

The infinite series in (2.38) may be written in terms of

Bessel functions of imaginary arguments (16, p. 169),

(2.40)

(2.41) f(x ,x )

a

1

oo

p2nL (x )L (x )n n 2
n=o

so that equation (2.38) becomes

1

I
[ 2 sfirr

m -
(1-pa)

-Ps s p
1 1

(1+s )(1+s )

1

17

[2 477 p ( x +x )1/11-if )
s0

(1'1)2) j 1..1)111

'"4): _AC )/(10/)e 1T 2
1-ps
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This is the joint probability density function, f in the
2

hierarchy.

The generalization to n Gamma distributed variables
is carried out in both the Stone (12, p. 6) and
Krishnamoorthy and Parthasarathy (7, p. 554) papers. For

the threshold detection problem, it is necessary to have
only the first two distribution or density functions.



CORRELATION FUNCTIONS

The most important parameter in the second probabil-

ity density function presented in the last chapter is the

correlation coefficient, p. Since this parameter will

depend in some way on time, it is natural to expect that

it will have an important role in the development of

first passage time distributions. Such, indeed, is the

case and the correlation function is examined more closely

in this chapter.

The correlation function is one of the average values

or moments associated with a distribution. Specifically,

it is the average of the product of two random variables.

For the process described by the output of an electronic

receiver, it is the autocorrelation function which is of

interest. This function is a measure of the degree of

dependence between a sample of the output and another

sample at some other time. Only one process is involved

but we shall be interested in the relation between the

behavior of the output at different times.

We shall abandon the notation of Chapter 11 and adopt

the more conventional notation used for continuous pro-

cesses. The correlation function is then defined

19



* (t st ) = E(E (t)E (t ))
1 2 0102

(3.1)

= ilx x f(x ox )dx dx
wv 13 1 2 1 2

where E' is the expectation operator and x = E(t ) and
oi i

x = E (t ). E (t) is, as defined earlier, the value of
a 0 11 o

the output of the system at time, t. Note that the auto-

'correlation function defined by equation (3.1) is not the

same as the correlation coefficient defined in equation

(2.27) but differs by a normalizing constant.

For most problems in electronic detection, the output

process enjoys a time-invariance which simplifies the

mathematical model considerably. The random process is
then said to be stationary. The important property of a

stationary random process for development of correlation

functions is that each probability distribution function

of the process depends on time only through time

differences. Explicitly, for each n

(3.2)F( ;Xstst2; Oilstn)=Fn( x1 sO;X2stsi ;iXn otnti ).

Furthermore, every translation in time carries the set of

functions comprising the process into itself so that all

the statistical parameters remain unchanged. The

20



autocorrelation function may then be written

(3.3) *(T) E[E0(t)E0(t+T)3.

Another property often assumed in the analysis of station-

ary random processes is the ergodic property. In general

terms, this property permits averaging over time rather than

over ensembles. The expectation of any random variable is

then equal to the average of that variable over all trans-

lations in time of a single function. The autocorrelation

function, under the assumption of ergodicity, becomes

21

(3.4) *(T) = lim 1 E (t)E (t T)dt.T-000T00

It is for a process exhibiting the properties listed

above that autocorrelation functions are developed in

this chapter.

The autocorrelation function for the receiver descriixd

earlier will be discussed in general terms, that is,

without specifying the particular filter transfer

functions. However, in order to apply the results, the

autocorrelation function for a receiver with first order

filters will be cited. Stone and Brock (13, p. 31) have

derived this function in another application.

Stationarity and ergodicity will be assumed. Then

the averaging process is with respect to time and the
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expectation operator becomes a time averaging operator.

The definition of the autocorrelation function

given in equation (3.4) was for a process with zero mean.

In general, this is not the case and the correlation

function should be

(3.5) 11,(T) * ENE (t) m)(E (t+T) m)).
0

where IE' is now taken to be a time averaging operator.

Expansion of equation (3.5) yields

(3.6) 4r(r) * EiE (t)E (t+T)) [E[E(t)112.0 0

Note that, because of stationarity,

(3.7) EfE(t)] = E[E0(t+T)] = m.

Now in order to determine *(T), it is necessary to

perform the averaging process on E0(t)E0(t+T) and %We
Recalling that E(t) may be expressed in terms of g(u,v),

the system kernel, and the input process, the method

requires that the time averaging operator operate on

expressions like equation (2.4).

It is not the purpose of this chapter to present in

detail such derivations, but rather to present the concept
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of autocorrelation and the methods for such derivations.

Consequently, the pertinent result from reference 13 will

be cited.

For an electronic detection (receiver) system

characterized by first-order IF and audio filters as

given by equations (2.9) and (2.19), the autocorrelation

function is

-co I'd -2w I'd I'd -wkI
(3.8) 114-05N2 2e * -e ' + 2z ye 2 -e 1 +0

4ys - 1 - 1

where

No = Noise power admitted to the system

w mc IF filter bandwidth

co = audio filter bandwidth
a

average signal-to-noise ratio.

The input process used in deriving (3.8) is an additive

mixture of Rayleigh distributed signal and white Gaussian

noise.



This is the joint probability that the threshold was not

exceeded at t ,t ,...t , but that it was exceeded at t
1 2 n-i n

all conditioned on the event B at
to.

This is simply

Pr{_Et Et 'Et IBt
2 n o

(4.1)

Pr

Pr{-Et
1

FIRST PASSAGE TIME DISTRIBUTIONS

Consider a time interval, t-to and a partition of

t-to by the sequence of time points, (tkok=10...n).

Further, consider a random sequence of events,

{Etipi=1,...n
where E is the event, "the output exceeds

the threshold at time tk," and t <t ...<tn. Note that
1

the events are not necessarily independent nor is the

output process necessarily stationary. Let -E4. be the
'k

complementary event, 'the output does not exceed the

threshold at time tk." Let B be a given initial event at

t <t . Then the probability that the first time the
0 1

threshold is exceeded is at time tn is

'Et 'Et 1'
n-I n 0'

18,-Et
1...PrfEtnIB/-Et 10-Et ,...1

a 1 2

24



n-i n-I n-I

Pr(E4, 1B)- E Pr(Et.,Et 1B)+ z E Pr(E4 ,E*
k "

,E4,
n1
1B)

"ni FRI n i=1

n-I n-1
z Pr(E ,E IB) +...

ti tk tm tro
kmi+1 mmk+1

Pr(E4.IR+ ) is the joint probability of having
'k "r0 'o

the threshold exceeded at tiptk,.tn conditioned on B at

to,
regardless of events between ti and tk, etc. The out-

put process is continuous so the discrete times
tk

must be

replaced by a continuous time, t. Now it must be assumed

that the conditional probability of exceeding the thres-

hold in (t,t+At) is p(tito)At + o(At) where p is a proba-

bility density. Similarly, the probability of exceeding

the threshold in (t It +At ) and (t pt +At ) is
1 1 1 2 2 2

p(tistslto)Atia2 + o(Atias). Then passage to the limit

as /1.0E14:land HAtH 401 yields

Pr[X(t) xo for the first time in(t,t+dt)lat 10P(tItg

t t t

-f 5$ p4(tlyttiltsotlyd ytsidti +

t t t012

25

(4.2)
p (tit

I 0
p (t Alt )dt +521 0 1

to

t

t t01

t

p (t st
8 1 2 0

)dt dt21



where

p (tit )dt The probability of the output exceed-
0

ing the threshold in (t,t+dt), conditioned on

some event at to.

p (t 'tit )dt dt = The joint probability of the
2 1 0 1

output exceeding the threshold in (t ,t +dt ) and
1 1 1

(t,t+dt), conditioned on the same event at to.

Pk+I(tipts,...tkptIto)dtidt2...1t at The joint

probability of the output exceeding the threshold

in (t pt +dt ), (t ft +dt ),...(tk,t+dtk)(t,t+dt),
1 1 22 2

conditioned on the same event at
to.

A similar series is cited without derivation in Rice's

paper (8, p. 70) in connection with the distribution of

zeroes of a noisy process. It is equation(2.2)in one or

the other of its forms from which the distributions for

t t t
p4(tipts,t8,tito)dtldtledts

t t t000

(tit
1 0

) -fp
2

to

(t 'tit
1 0

)dt
1

+ Lffp(tt

t00

t
3 1t

pt 't)t
0

26

)dt dt
1 221
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passage times in communication systems will be derived.

Before proceeding to apply (4.2) to various physical

models, a closer scrutiny of the joint probability density

functions, p, ,...pk seems in order. Note that each of
1 2

these density functions depends on a joint distribution

function of amplitude of the output. Specifically, it is

expected that the time density functions will depend on

F (x ), F (x sx ), etc., where x is the threshold level.
1 0 2 00 o

The exact dependence of the pk's on the Fk's will be pre-

sented in the next chapter. It suffices here to note

that because of the dependence of the pk's and conse-

quently P(tito), on
xop

the first passage time density

function requires a normalization constant depending on

xo.
It is, of course, required that

It is obvious that this situation could not obtain if,

for instance,
xo

were chosen to be infinite, for then the

output voltage would never exceed
xo.

Therefore, we must

adjust P(tIto) by multiplying it by a suitable normalizing

constant for each process considered.

Equation (4.2) is cumbersome and not susceptible to

easy solution as it stands. Therefore several cases of

interest in electronic detection will be studied.

oo
(4.3) P(tIt ) dt = 1.

0 °
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The first case to be treated is that of independent

samples. In general, this situation is not very common.

In order to be useful the operation of the receiver would

have to be intermittent, with examinations separated by

a time interval greater than or equal to the so-called

Nyquist interval, 1/2w, where w is the effective spectral

bandwidth of the output process. Nyquist's Theorem

(10, p. 11) simply states that a function may be deter-

mined by its values at intervals of 1/2w. If we denote

by A dt the probability of an event occurring in dt, then,

for independent events and if A is constant, the pk's

of equation (4.2) become

(4.4)

p (tit ) = A
o

p(tAlt0)=As

p(t1otjatit) =

(4.5)
-A(t-t)

P(t) = e

for the probability density function for first passage

pk+1(tipte...pk k+1

Then equation (4.2) reduces to



across a threshold. The constant,, must have the units

of t-1 and may be interpreted as the average rate of the
output exceeding the threshold, xo. This result is cer-
tainly not new but has been included in the interest of

Completeness.

The next case to be examined is that of 'conditional

independence.' In this case, sample values of the output

depend only on the initial condition. Again there is con-

siderable simplification in (4.2). The joint probability
densities then take the form,

(4.6) Pk+i(ti ot2,...tkotit0
)1g=p1

(t Ito )p,(t.ft0)...p1(ticIto)pittito

Equation (4.2) becomes t t
P( t I t )26p ( t I t ){.1-jrtp (t t )dt +,14) (t It kit fp (t It ):Ito I 0 I 1 0 I vt I 2 0 /t1 2 0 2

to 0 0

(4.7) p (t It )dt fp (t
1 1 0 2

op(tit )e

t
0
)dt fp (t It )dt+4

I 2 I 3 0

0
t t

o o

_t 3

ap1(tit0)fl-fp (xlt )dx+.1 fp (xIt )(ix
- sp(xit)dx +.40 2. I 0 3;

to __to _to

to)dx

29
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This expression requires a normalizing constant. Inte-

grating the right side of (4.7) yields

41 P (xlt) dx
00

to '
o

p (tit ) e
o

(4.8)

(4.9)

GO

-7 p(dt ) dx p(xito)dx
to toe -e

to
p( t ) dx

If we choose to 0, then

oo

-S p(xlto) dx
to

Then the first passage time probability density for con-
ditional independence becomes

p (xlt ) dx
t 1

P(tito) = pi(tItide

to
.11:)(x jlt dx p(x1t0) dx

-e 0

-1 p.(x10) dx
(4.10) P(tIto) = pa(t10) e

44P(x10) dx

e -e
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It is interesting to note that (4.7) can be derived

in another way which has, perhaps, a little more physical

appeal. P(tito)dt, the probability of first passage time

in (tot + dt) may be expressed as the product of two

probabilities, the probability that the event does not

occur in the interval (t ,t), conditioned on the initial

condition at to, and the probability that the event does

occur in (t,t + dt), conditioned on the same initial

event. Then

(4.11) (tIto) dt =f14 NxIto) dx1 p(tIto) dt.

(4.12) P(tItn)
= 1 -J' dx.p(tito)

to

Differentiating with respect to to

(4.13)
dt p(tliD) = P(tIto) = -p(tito)

d rtit

ptETTAT

pctit )

The solution of (4.13) is

(4.14) P(tIto) = p(tito) e a

p(xlto) dx



The constant, a, is evidently
to

since

P(tIto) p(tIto) as t to,

so that (4.14) is exactly the same as (4.7). Again, to

complete the derivation, it is necessary to adjust the

passage time density function with a normalizing constant.

A striking application of the first passage time

distribution is its usage in the 'confirmation search'

problem for threshold detection. The problem is to find

the distribution in time of the first time the threshold

is exceeded, knowing that it was exceeded at time,
to.

The problem then becomes a recurrence time problem and

the initial condition is simply the condition that the

threshold was exceeded at
to.

This, of course, assumes

that secondary (confirmation) search is made with a

receiver identical to the one used for primary search.

Here we shall specify that the pk's enjoy the Markoffian

property and that the process is stationary. Specifically,

(4.15) p (t ft ,...t )
k k-1 o

*pl(tiltdpi(tsiltipto)..pi(tItk_totk_sf...to)

=10(tIt0)p1(t2It1)...p
(tit ).

1 k-i
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There is no loss of generality if to is chosen to be

zero. Then pk becomes

(4.16) pk(ti,to...tk_iptIto)

lip1(t110)p(t-t10)...p (t-tt, 10)

Using the first form of (4.2), the first passage time

(recurrence time) probability density function is then

(4.17) P(t10)=1)1(t10)-5Pl(t110)pi(t-ti10)

tt

+.15P (t 10)p (t -t 10)p (t-t 10)dt dt
1 1 1 2 1 1 2 8 1

ot

33

Note that the second term of (4.17) is the convolution

integral or it is pi convolved with itself. Similarly,

the kth term of the series is the k-fold convolution of
p. Writing (#) for the convolution operator, (4.17) may

be expressed as

(4.18) P(t10) = pl(t10)-pi(t10)*pi(t10)

+p (tlo)4ip (t10)*p
1
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Having found P(t10) in terms of convolution integrals,

the next step suggested is, of course, that of taking the

Laplace transform of both sides of (4.18).

Let 116(s10)and 61(s10) denote the Laplace transform

of P(t10) and p(t0) respectively. Taking the Laplace

transform of both sides of (4.18) yields

41;(s10)=p1(s10)4151(s10)12 + [131(s10)3....

(4.19)

= (s10)

14151(s10)

Therefore, the probability density function for the

recurrence time is

(4.20) P(tio) il1(s10)

1.1+151(s10)/

Where isis the inversion operator for the Laplace

transform operator,oe.

The recurrence time problem presented above is the

most realistic for threshold detection since the physical

problem provides an initial condition, namely that the

threshold was exceeded at time, t=0. The threshold device

is sensitive only to outputs greater than its setting; in

other words, it is a 'yes-no' device. Consequently,
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problems requiring a knowledge of an initial condition

depending on anything but the threshold setting are not

practical from a physical standpoint. One could use for

the initial condition, X(0) * mN, where mN is the mean

thermal noise level, but this is not very realistic for

there is little reason to believe that the output is

exactly equal to mN at the beginning of the operation.

The other alternative is to use for an initial condition,

X(0) x where
xo

is the threshold setting. Then, the

conditioning in (4.1) and (4.2) is that lit is just -Et .

The statement of the problem, then, is, "what is the

distribution in time to first exceeding of a threshold,

knowing that the threshold was not exceeded at time,

tm0?" The solution of the latter problem certainly does

not give very precise information but this is not

unexpected since the initial information is not very

precise.

In each of the cases treated above for which there is

sufficient information from the physical problem, P(t) de-

pends largely on pi. Recall that the things available are

the joint distribution functions for the amplitude of the

output and the autocorrelation function of the output.

From these p must be developed. The next chapter deals

with finding this dependence of pi on the amplitude dis-

tributions and the correlation function.



PROBABILITY DENSITIES OF TIME BETWEEN EVENTS

It has been noted that first passage time probability

densities and recurrence densities depend on the hierarchy,

p fp ...pk... It has also been pointed out that for casess

of physical interest, the most important of these is p.

To be sure, the elements of the hierarchy describe

successively the output process in more detail. However,

in the physical applications, there are very few examples

where it is necessary to specify the output process in

any more detail than that supplied by studying pi. The

present state of the art of threshold detection does not

incorporate sufficient sensitivity in other parts of the

system to warrant a more detailed specification of the

output process. Therefore, we are justified in concen-

trating attention on pi.

The probability density of the time between events

was defined in Chapter IV. The first member of the

hierarchy, pi is defined by the equation

(5.1) pl(t10)dt=PriX(s) xopt < $ < t+dtlX(0)j

= the probability that the output exceeds

the threshold in (t,t+dt), conditioned

on some event at t = 0.

36



Here we have taken to to be zero.

First, we examine the case where the condition is

just that the threshold was exceeded at time t m 0. This

situation finds application in the 'confirmation search'

problem and reduces to a recurrence type problem. Then

p(t0) is
1

(5.2) pi(tIO)dt m PrfX(s) xo, t < s < t+dtlX(0)2x0j.

With this definition, construction of pi, is quite straight-

forward. Following the usual procedure for finding the

density at a point, consider the difference quotient

PriX(t) xjx(02x Prfx(t+A.02 xplx(02
At

(5.3)

U -PrfX(t+At)2xolX(0)2A - PrIX(t)2xAIX(0)2x01
At

where X(s) is the value of the output voltage at time S.

Taking the limit as At 0, we have

lim fl)r{X(t+At)2xn1X(0),axn} PrIX(t)2x IX(0),Z x

At40 At

(5.4)

PrfX(t) 2 xolx(0) xej

37



-(x +x )/1-*2
(5.5) f x px ,* (t)] = e 1 2

1 2 n Io
1-4111

-Prfx(t) 2 xo, X(0) 2 x41

Prix(0) 2 xol

OPQ

f Ex px ,*(t)] dx dx
L. XoX0 2 1 2 1 2at et 00

f (x ) dx
i

where f and f are the marginal and joint probability
1

density functions of the amplitude of the output defined

in Chapter II and i(t) is the correlation function of the

output' defined in Chapter III. The expression in (5.4)

is a negative partial derivative because the first term

on the right hand side of (5.3) is less than the second

term since the conditional probability is a non-increasing

function of time. Equation (5.4) is our expression for

p. We shall need some properties of the parenthetical
1

expression in (5.4).

First, consider the numerator. From (2.41) f is
a

aie:211.2!2 11(11
1 - *2

38

where *n is the normalized autocorrelation function, i.e.

*n(0)=1. From the discussion in Chapter III, it is shown
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that for Markoffian type processes here considered, the

normalized form of * is a non-increasing function of time

and that *n(0) = 1 and *n(044 = 0. It is seen immediately

that in the limit, as *n goes to 0, (5.5) factors into

f (x )f (x ) which assures us of the required independence
1 1 1 $

as the time between examinations of the output becomes

large. Furthermore, when *n al 1, the examinations are

simultaneous and since only one process is involved,

F Ex ox ,* (On F (x ) The denominator is not trouble-
* o o n 1 0

some since it is merely 1-Fi(x0). In the sequel we shall

drop the subscript In" in the normalized autocorrelation

function, but it will be understood that * is normalized.

Then the numerator may be written

0000

f Ex ,x ,*(t)]dx dx
Lc 1 2 12
00

00 OUo
U { f Ex

2
fx ,*(t)1dx f Ex ox ,*(t)dx dx

1 2 1 2 1 2 1} 2

(5.6)
00 00

Xo

xt f rx ox ,*(t)]dx dx f Ex tx ,*(tbcdx
1 1 2 1 2 1 2

xo
Xo )C0

ifsilyx2,*(t)]dxidx2+1 filExexeir(t)]dxidl.
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The first term of the last expression in (5.6) is

obviously unity, by the definition of joint distribution

functions. The second term is -F (00,x ), the third term
2 0

is -F (x '0) and the last term is F [x ox ,*(t)], also by
a o 2 0 0

the properties of distribution functions. But for the

distribution defined by (5.5) in which x and x appear
1 2

symmetrically,

(5.7) F ((x),x) = F (x ,c0) = F (x ).
o2 20 1 0

Then (5.6) may be written as

oo oc

(5.8) 1 f [x px,*(t)1dx dx =1-2F (x )+F 9*(t)l.
2 1 2 1 2 1 0 2 0 0

0 0

Note that only the last term involves Ilf(t) so that p(t0)

is, in terms of the distribution functions of the ampli-

tude of the output,

h F [x 4(t)](5.9) p(t(0)
1 F (x )

1 o

Let

(5.1o) Fno,*(t)]
1 F (x )

= G[xofir(t)].
1 0



Then (5.9) becomes

p (tfO) = - Gbco,*(t)]ot

8* 8t

From Chapter III we have ir(t), the autocorrelation

function of the output of a receiver with first order

filters and a quadratic detector for an input consisting

of an additive mixture of white Gaussian noise and a

Rayleigh-modulated signal. It is

-co t -2to t t -co t

(5.12) 4f(t)=CN2 2ye 2 -e 1 4- 2z ye 2 -e 1 4' Z2
0 4y2 -1Y2 1

where C is the normalizing constant,
No

is the noise power

admitted to the system, y is the bandwidth ratio and z is

the average signal to noise ratio at the IF stage.

Differentiating (5.12),

(5.13) 8*(t) = cN2
a t

-203 t -cot
2co e / -2w ye 2

42 1

-cot -cot
m e 1 -co ye+ 2z
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(5.14)

(5.15)

(slo)Nsio) = 1l+p (s10)

Writing G' for OG and dt for the Laplace transform of
8*

A2 and substituting (5.11) and (5.13) into (5.14),8)1('

K(som py,N )
P(s10) I $

1+K(s,0) ,co py,N )
1 2 0

K(s,m oy,N ) = N2 2c2sydqs+cosi) 20) 1'( )

1 2 0 4y2 - 1

4. 2z 0)2)4,( si-co) (s+0) )
2 1

1

This follows immediately from the fact that (5.13) con-

tains only terms with exponential factors and the trans-

lation theorem for Laplace transforms. As has already

been pointed out, a receiver used for threshold detection

becomes more sensitive with large y. The only restriction

is that the bandwidth of the second filter must be

compatible with the required system response time.

42

Recall that the Laplace transform of the first passage

time probability density for the recurrence type process

is given by the ratio of terms in l(s10), the Laplace

transform of ',(tO),



(5.17)
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Practical values of y are 100-1000. Since then y2>>1,

some simplification of (5.15) is possible. Remembering

also that y = # K(sow ,co tyoN) becomes approximately
1

co
a

2

K(slw ,w typN )

1 2 0

(5.16)

2N2w
Gsts+cold(i + z)d'(s+2co ) z de(s+co )1 .

4

This is still cumbersome but the number of terms in

(5.15) has at least been reduced by one.

The preceding development has led to an expression

for the Laplace transform of the first passage time

probability density in tefms of the Laplace transform of

G'. Unfortunately, little more can be done without

evaluating G' for a particular system characterized by

the parameters, w,co, and
xo.

Writing that part of the

explicit form of G which depends on *WI we find that

the Laplace transform of the following function must be

found:

-x +x
x x --i--ii.

GI(*(t)1 =
loro 1-101 1

0
1 2

i1 .- le 1 *2- -

dx c:bc12

where the dependence on t is through *(t) and it is given



-x +x
X X Itch-a

I
0 1 1-*Ii

(5.20)

2 Niii)c *
i A dx dx

142 1 a
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by (5.12) Io is the Bessel function with imaginary

argument. Equation (5.17) can be evaluated numerically

rather easily since the U. S. Bureau of Mines has pub-

lished a table of the temperature distribution function

for heat exchange between a fluid and a porous solid

(1, p. 1) which tabulates the function

(5.18) cp(xty) sg e-Y et
Io[

(2 %/Ft) ]dt.

To see how the evaluation of (5.17) may be accomplished

by use of these tables let

x1
= u(1 - le)

1

(5.19)

x u (1 - 11,2)
2 II

in the integral of (5.17). Then the integral becomes

x x

Tir 14 -(u +u )(1-e)2 fe 1 2 [ 2 VU 1U Ili ZndU du
1 2 1 2(142) o



Now we make the further substitution

(5.21) U *2 W

and drop the subscript on U. We denote the integral by

I and substituting (5.21) into (5.20),

(5.22) Isi e e0 [2 ,/51 du dw

x0/111 _w(112)

1-1!
e * 8 [w,x0,*(t)] dw

where

xolk

T4W
(5.23) 8 [Ifitxo4(0] e I[2 /) du.

Comparing (5.23) with (5.18), we see that

(5.24)
x

[w,x 440] m (A__ p W)1*0

Thus we see that evaluation of the double integral

in (5.17) can be reduced to evaluating the single

45
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integral of (5.22). One factor of the integrand of (5.22)

will be a tabular function which necessitates numerical

calculation for G(*(t)]. Recall that the expression we

seek is L. G[*(t)]. This, of course, requires further
8*

numerical calculation. Finally, we must calculate the

Laplace transform of 0 G[4r(t)],
thir

(5.25)
00 4.

a(S) 06 e"" L. G(*(t)] dt,
a*

This, too, must be done numerically. However, it is

conceivable that by a curve-fitting procedure an

approximating function may be found for 0 G(*(t))
8*

whose Laplace transform can be found in closed form.

We have shown that, in principle p(t0) can be

found for a reasonable physical model. The particular

model with first order filters was chosen since it

constitutes the most general realizable system. Exten-

sion to other filter types is immediate if the filter

transfer functions can be written in closed form. Stone

and Brock (13, pp. 40-57) have developed the system

kernel, g(u,v) for first order filters, second order

filters, and Gaussian filters. The last type of filter

is, of course, not realizable. With g(u,v) the
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distribution functions of the output as well as the auto-

correlation function of the output can be found quite

easily.

The final form for P(t) can then be found simply by

substituting p (tIO) in the proper equation, depending on

the type of output process that has been assumed and then

multiplying by a suitable normalizing constant found by

integration of P(t) over the range of t.

Finally, we consider briefly the most general case.

It is well known that the output process may be described

in more detail by specifying higher order amplitude

distribution functions. Similarly, the first passage

time probability density function may be specified in

more detail with a knowledge of higher order pk's. It is,

of course, to be expected that the higher order pk's will

depend on the Fk's described in Chapter II and on the

autocorrelation function of the output. The exact

dependence of pk on the hierarchy, Fn 1,2,... will be

through a mixed partial derivative with respect to the

various times intervals. However, there seems to be no

way of summing the series (4.2) in closed form.
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