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Chapter 1 – Introduction

Realism in interactive applications is largely dependent upon how effectively the

movements of human characters are conveyed. Since we are all inherently famil-

iar with the properties of human motion, irregularities in human movement in an

interactive application are easy to identify. Generating realistic human motion is

a difficult problem however. Motion capture is a relatively simple way to record

and “play back” human movements, but the system fails when the character must

interact with its environment or perform a task unanticipated by the motion cap-

ture data. Physical simulation of a character allows it to interact realistically with

its environment, but controlling physically simulated characters is difficult. The

problem of generating human motion for collisions with an environment is particu-

larly challenging, such as the problem of a character getting hit in the head with a

fast-moving object. Motion capture is not a suitable technique due to the variety

of possible interactions, the ethical ramifications of potentially injuring a motion

capture actor, and the ability of motion capture to record an “authentic” motion

given an actor’s anticipation—knowing a priori that an object will be thrown at

their head. Physical simulation is an attractive means of solving this problem be-

cause it would allow the character to respond in a dynamic and realistic manner

without the need of motion capture (and potentially hurting a motion capture

actor), but what preparatory pose should the character make before it is hit?
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In this thesis we present a technique for developing a controller for a physically

simulated character that prepares itself for collision with a fast-moving object—

an element that is often missing from video games and interactive applications.

We have developed a system for measuring pain perceived by a virtual character

and use this as the basis for a genetic algorithm optimization of a pose controller.

Applying our technique we develop collision preparatory controllers that defend a

virtual character in several different styles from a variety of threats.

1.1 Problem Statement

The goal of this work is to develop a collision preparatory controller that can

protect a virtual character from a variety of impacts with fast-moving objects.

To develop this controller we focus our approach on using genetic algorithms to

optimize a physically simulated pose controller. Automated optimization requires

a fitness function to evaluate a controllers effectiveness; for this we explore the

development of a pain measurement system that judges controllers based on the

amount of pain the character perceives at the point of impact. We also explore

redundant protection mechanisms in order to achieve more natural responses.

The main technical challenges of this work are:

• Evaluating a controller’s ability to protect a virtual character. When a con-

troller places the character in a protective pose and is then hit by an object,

we need an automated method to judge how well the controller defended the

character.
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• Developing controllers that protect the character in different and natural

ways. People protect themselves from collisions in many different ways. For

our work we wish to develop controllers that protect the character using dif-

ferent objectives for defense, such as blocking using the hands or far away

from the face.

1.2 Techniques

Developing a character controller requires first a simulation environment for the

character to reside in. We use a physical simulation package to aid us in building

a robust character model that interacts with its environment in a physically real-

istic manner. On top of this system we have designed a higher-level joint control

mechanism utilizing PD-servos.

Evolution of the character controller is accomplished using genetic algorithms.

Expressing a solution as a set of desired joint angles, genetic algorithms optimize

these joint angles according to a fitness function we have developed. The fitness

function measures the ability of the control solution to protect the character by

observing the amount of pain perceived by the character upon impact with the

object (among other measures).

Measuring the pain perceived by a virtual character is a technique we have de-

veloped and present in this work. Our technique is rooted in observations of human

dodging and protective poses when under the threat of a projectile object. Humans

protect certain parts of the body more than others, and also produce generalized,
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reflexive motions when threatened—our technique attempts to encapsulate these

attributes.

1.3 Contributions

The contributions of this work are summarized as follows:

• Ball and socket joint control system. We have developed a robust ball and

socket joint control system suitable for controlling a physically simulated

character model. We use this system for controlling our character’s head,

torso and shoulders.

• Collision preparatory pose evaluation. Our work utilizes a pain measurement

system we have developed that measures how effectively a pose prepares a

virtual character for an impending collision with an object. The system

evaluates poses on the basis of how much pain the character perceives upon

impact.

• Testing environment for collision preparation. We have developed a system

for repeated testing and simulation of a physically simulated character un-

dergoing evolution in search of a collision preparatory pose. The system

performs repeated testing on controllers under various modes of joint failure

according to a threat grid (described in Chapter 4).
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1.4 Thesis Overview

Following a discussion of background and related work in Chapter 2, we introduce

our human model and control system in Chapter 3. In Chapter 4 we present our

system for evolving character controllers for collision preparation, including how

we test, evaluate, and generate controllers. Chapter 5 assesses the performance of

our system, and we conclude in Chapter 6 with a discussion of our findings and

opportunities for future work.
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Chapter 2 – Background

2.1 Physically Simulated Humans

Physical simulation became a popular area of interest to computer graphics re-

searchers in the mid 1980’s. At the time, the state of the art method for animat-

ing computer graphics was by keyframing, a technique where scenes are generated

by interpolating between the “key frames” as set by an animator1. As computer

animation scenes became more complex however, the job of the animator became

more difficult. Scenes where objects were intended to collide and interact with each

other in a physically realistic manner were cumbersome or impossible to keyframe.

It was recognized at the time that if the computer could physically simulate these

aspects of a scene then this would relieve the animator of an unwieldily task and

yield more realistic looking animation.

Although physical simulation systems had been in use for research in mechan-

ics, the goals of a mechanics researcher and a computer animation researcher were

quite different. In computer animation, performance was valued over simulation

accuracy—so long as the results looked realistic. Early physical simulation sys-

tems for computer animation focused on optimizing impact dynamics and collision

detection in ways that were not necessarily accurate, but looked convincing [10].

1The term “keyframing” is borrowed from traditional hand animation, where “keyframe
artists” draw the main poses of a character and “tweeners” draw the in-between frames [29].
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(Today the goals are very much the same: performance and believability are more

important than correctness).

As physical simulation systems progressed the desire to animate more complex

scenes increased. If one could animate realistically a few falling boxes, why not

simulate an entire human? Several researchers developed models for a set of objects

connected by joints—known as articulated characters—that attempt to model the

human body (and other creatures) inside a physical simulation [2, 30]. These types

of human models have found a home in video games as “ragdoll” characters—

uncontrolled models that simulate a lifeless character. While these models look

realistic at a glance, their inability to control their own behavior causes them to

fail to appear life-like under careful observation. Dynamic control of physically

simulated characters that looks natural is the holy grail of video games and other

interactive applications.

2.2 Controlling Physically Simulated Humans

Physically simulating a human body presents a control challenge. In keyframing,

a human character is animated by specifying key joint angles over time, but in a

purely physical simulation context the character is animated by specifying torques

(at the joints) over time. A system must be devised to provide these torques for

the character so as to make it perform the desired action.

Borrowing from control work done in the field of robotics [22], early control sys-

tems focused on developing algorithms that generated torques that, when applied
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to the character model, resulted in human-like motion. Bruderlin et al., Raibert et

al. and Laszlo et al. developed systems for controlling walking gaits in physically

simulated humans [4, 23, 14]. Takashima presented a technique for controlling a

gymnast on a high bar [28]. Later, Hogins et al. developed a complete system

for animating human athletics including running, cycling, and launching from a

vaulting horse [11].

A disadvantage of these control systems were that the parameters used to

influence their behavior were developed in an ad hoc manner. Once the function

used to perform the control was determined, it was up to the researcher to come

up with values for the function that worked optimally with the given character

model. If it were possible to automatically generate controllers to perform given

tasks then this would free the researcher from an incredibly time consuming task—

and possibly result in more robust controllers.

In this work we focus on the problem of automatically generating a controller to

perform a single task. Automatically generating systems that combine controllers

has also been researched: De Garis presented a system that uses Neural Networks

to switch between controllers, the weights of which are learned using Genetic Algo-

rithms [5]. More recently, Faloutsos et al. created a framework that uses Support

Vector Machines to learn how to switch between controllers with amazing results

[6]. Both approaches are appealing because they develop the high-order control

mechanism automatically, rather than being hand-tuned by the designer. We focus

our efforts on similar learning-based approaches, but only for a single controller.
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2.3 Genetic Optimization of Human Character Controllers

Learning a character controller is appealing because it relieves the burden of de-

veloping the controller from the researcher. In this section we look at approaches

for learning a controller using genetic algorithms and genetic programming.

2.3.1 Genetic Algorithms

Genetic algorithms are an optimization technique inspired by evolution that oper-

ate on chromosomes, string encodings of solutions to the problem being optimized

[7]. Pools of chromosomes are tested against a fitness function and then each is as-

signed a fitness value. Once each has a fitness value the chromosomes are “mated”

and then “mutated” to generate a new pool of chromosomes. This process repeats

until a satisfactory minima has been reached.

Genetic algorithms have been used to develop controllers for physically sim-

ulated characters by pairing them with neural networks [21]. In this approach,

the chromosome is used to store the weights of the neural network. The neural

network is then run and the outputs are applied as torques to the simulated char-

acter. During the simulation the character’s ability to perform the given task is

rated using a fitness function, and the resulting fitness is used during the selection

process to create the next generation. Optimizing the weights of a neural network

using genetic algorithms was applied successfully by de Garis to optimize control

of a 2D walking stick figure [5]. Smith applied the technique to a fully articulated

3D humanoid model and developed controllers that could walk and balance [27].
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Genetic algorithms have also been applied in other ways to develop control sys-

tems for physically simulated characters. Sims used genetic algorithms to optimize

not only the control system of a virtual creature, but also creature morphology [26].

Roberts et al. and Wyeth et al. have used genetic algorithms not to develop a

complete controller, but rather to optimize existing ones [24, 32]. In our work we

use genetic algorithms to optimize a control system that produces desired joint

angles.

2.3.2 Genetic Programming

A related technique for developing character controllers is genetic programming,

which deals with the optimization of a computer program [13]. Programs are

generated at random, tested individually, and then combined and mutated to create

a new generation of programs. The process is similar to genetic algorithms, except

the basis for optimization is the program itself rather than parameters to one. An

advantage of genetic programming over genetic algorithms is that the search space

is not necessarily fixed in size—a program may grow to any length necessary, but

a chromosome remains at fixed length.

Gritz et al. used genetic programming to evolve Lisp programs that control

3D articulated characters [8, 9]. They successfully developed a hopping/walking

controller for a 4 segment, 3 degree of freedom character. They were also able to

develop a pointing and gesturing controller for a 28 degree of freedom humanoid

character. Wolff has developed a virtual register machine language for genetic
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programming, and has used it to develop walking and balance controllers for a 14

degree of freedom humanoid character [31].

2.4 Collision Response

A challenge with controlling a virtual character in a physical simulation is that

contact with its environment can lead to unexpected or undesirable outcomes.

For instance, when a character is struck by an object and is knocked off balance,

this may place the controller into a state that it was not intended to handle.

Managing these unanticipated collisions so that the controller can transition back

to a desirable state in a realistic manner enhances the utility of physically simulated

control.

Zordan et al. developed a dynamics control system that interacts with its

environment by tracking motion capture data [33]. Using motion capture examples,

the control mechanism applies torques to the character’s joints so that it follows the

motion capture. This allows a physically simulated character to perform complex

tasks without the need of training or a complex controller.

In Zordan’s work, reactions to contact with the environment (such as being hit

by an object), were handled by relaxing the parameters that controlled how closely

the character tracked the motion capture data. After a certain time interval had

passed, the parameters were tightened back to their original values so that the

character’s movement matched more closely the motion capture example. With

the addition of a balance controller, the character was able to be struck by an
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object, absorb the impact of the object briefly while remaining balanced and then

resume normal operation. This system worked as long as the force of impact was

not so great as to exceed the capabilities of the balance controller.

For situations where an excessive force would knock a character off balance,

Mandel developed biomechanically inspired fall controllers that ease the character

into transitional rest states [17]. When the character is struck by a force, the

controller takes protective measures to brace the character for impact with the

ground. After the character is resting on the ground the system places the character

back under kinematic motion capture control.

A shortcoming of Mandel’s approach was its inability to transition the character

into a motion capture example that gracefully handled falling. For example, the

character would merely brace itself for hitting the ground rather than trying to

roll out of it. Zordan et al. later revisited this problem area and introduced a

technique that blended the physical simulation control of the character falling into

a nearby motion capture example of the character absorbing a fall [34]. This system

worked by physically simulating the character falling after impact, but before the

character’s physical simulation was allowed to run its course the character was

transitioned to the nearest motion capture example. This allows the character to

handle any number of collisions in a stylistic manner controlled by an animator

rather than by a controller developed by a researcher.

Natural Motion has developed a commercial product Endorphin that unifies

dynamic response controllers under a single framework [20]. Their system combines

custom reaction controllers with a multiple-pass simulation technique to generate
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responses to dynamic interactions. While they are aiming for real-time response

controllers in the near future, their current approach is purely offline and targets

motion capture data generation.

None of these systems attempt to take into account what happens to the char-

acter moments before the collision; they all take over the instant after the character

has been impacted. We as humans do not always behave in this way however—we

usually duck or attempt to shield ourselves. In this work we explore a technique

to develop poses that protect the virtual character in a realistic manner.
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Chapter 3 – Dynamics Model

Evolving collision preparatory controllers requires a physically simulated character.

This chapter describes the character model we have designed and the low-level

control system we use to move the character.

3.1 Human Model

Our character models a human from the waist up. It is made up of 9 segments

connected by 8 joints with 18 degrees of freedom (DOF) total between the joints.

Each body segment is simulated as a box with uniform density. The same density

is used for each body segment. A diagram of our physically simulated human

model is given in Figure 3.1.

Our testing environment builds the character model at runtime as specified by

a character description file. The character description file format was developed

for this work to aid in quickly prototyping character models and character model

attributes. The final character description file that was used for this work and a

specification of the file format is provided in Appendix A.

The character model is physically simulated using the NovodeX Physics SDK

[1], a commercially available physical simulation package for the Microsoft Win-

dows platform. We use NovodeX to simulate the dynamics of our character model
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Shoulder (3)
Neck (3)

Wrist (3)Elbow (1)

Waist (3)

Shoulder (3)

Elbow (1)Wrist (3)

Figure 3.1: Physically simulated character model

and how it (physically) interacts with objects placed in our virtual world. NovodeX

ensures that collisions behave appropriately and that the integrity of our joints are

maintained by making sure two bodies connected at a joint do not drift outside

the plausible bounds of the joint.

Although NovodeX provides an API for controlling one and two DOF joints, it

does not provide a mechanism to control a three DOF ball and socket joint. For

this work we have developed our own ball and socket joint controller, which we

describe in the following section.

3.2 Ball and Socket Joint Control

At the neck, hips and shoulders our human character model’s body segments are

connected by a joint that allows rotation about three axis with no translational

freedom. This type of joint, known as a ball and socket joint, is diagrammed in

Figure 3.2. Although these joints in real humans are not as simple as ball and
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x
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Figure 3.2: Ball and Socket Joint

socket joints1, for the purposes of this work (and most computer animation tasks)

simulating them as ideal ball and sockets suffices; we are more concerned with

visual plausibility and computational efficiency than accuracy.

3.2.1 One DOF PD-Servo

To simulate muscles moving the joints of our virtual character we use a proportional-

derivative servo (PD-servo). The PD-servo is a popular mechanism used to control

physically simulated humanoid characters in computer animation [11, 14, 33, 17,

34]. A PD-servo for a one DOF joint takes the joint’s angle (θ) and angular ve-

locity (θ̇) and applies a torque (τ) to it to move the joint to a desired angle (θdes)

with a desired angular velocity ( ˙θdes) according to the equation:

τ = k(θdes − θ) + kd( ˙θdes − θ̇) (3.1)

1For example, the human shoulder is made up of four joints connecting the sternum, clavicle,
scapula humerus and rib cage, each with three rotational DOF and three slight translation DOF
[16]. Accurately simulating a single human shoulder would require a 24 DOF joint model with
an enormous number of constraints!
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where k and kd are tunable stiffness and damping gains (respectively). Typically

we desire no angular velocity at the end of the joint movement process ( ˙θdes = 0),

so we rewrite the PD-servo equation as:

τ = k(θdes − θ)− kd(θ̇) (3.2)

While the PD-servo is a poor approximation of the human skeletomuscular system,

its computational simplicity makes it attractive as a means to control a virtual

human.

The gains used for a PD-servo determine how the joint will behave and how re-

alistic the motion generated will look. The stiffness gain will determine the power

of the controller while the damping gain will adjust the controller’s smoothness.

Selecting gains that work well together and that are appropriate for the bodies con-

nected to the joint can be a tricky endeavor. Over-powered, under-damped gains

will create controllers that oscillate; under-powered, over-damped gains will create

controllers that slowly (or never) reach their desired joint angle. Selecting gains

for this work was done ad hoc, but others have reported success using heuristic

methods for generating gains [33].

3.2.2 Three DOF PD-Servo

To control a ball and socket joint we require a PD-servo that can operate on a

three DOF joint. We wish to take the desired joint orientation (a combination
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of the desired angles in each DOF) and use this to compute a three dimensional

torque to apply to the joint that will move the joint to its desired orientation. If

we rewrite the PD-servo equation as the difference between the desired and current

joint orientation (∆~Θ) and the difference between the desired angular velocity and

current angular velocity (∆~̇Θ):

~τ = k(∆~Θ) + kd(∆~̇Θ) (3.3)

then we can extend the PD-servo’s behavior to support control in any number of

rotational DOF, not just one. As before, we typically desire no angular velocity

at the end of the joint movement process, so the difference between the desired

and current angular velocity of the joint will be the inverse of the current angular

velocity yielding:

~τ = k(∆~Θ)− kd(~̇Θ) (3.4)

The vector ∆~Θ is a three dimensional vector encoding the difference between

the desired orientation of the joint and the current orientation of the joint as Euler

angles. Deriving this value by taking the difference between the desired orientation

and the current orientation angles as Euler angles directly would be inappropriate

because vector subtraction of Euler angles would not always yield the shortest path

between the two orientations (due to redundancies in Euler angle representations).

Instead, ∆~Θ can be found by taking the difference of the two orientations encoded

as quaternions and then converting the result to Euler angles.
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Take the desired orientation of the joint as a quaternion2 qd and the current

orientation of the joint as a quaternion qc. The inverse of qd is written as q′d and

the inverse of qc as q′c. The orientation difference between these two quaternions

is:

q = qcq
′
dq

′
c (3.5)

This operation will yield the shortest orientation between the two quaternions when

the rotations they represent are in the same hemisphere. If the two quaternions

are in opposite hemispheres (when their dot product is negative), we must invert

qc. If the orientations are in opposite hemispheres and we fail to invert qc then

the orientation difference will find the “long route” which results in an unstable

controller.

To convert the resulting quaternion to a vector representing its orientation as

Euler angles we find the “axis-angle” representation of the quaternion and then

multiply the axis by the angle. Representing a quaternion as (~v, w), the Euler

angle representation of the quaternion (~r) is:

~r = 2 · cos−1(w) · ~v

~|v|
(3.6)

This operation is also referred to as finding the “moment” of a quaternion. The

moment is used as a unit torque to rotate an object into the orientation expressed

by the quaternion.

2An excellent introduction to quaternions and their application in computer graphics can be
found in [25].
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Finding the current angular velocity of the joint as Euler angles is achieved

through a similar process. If we take the difference of the current joint orientation

as a quaternion and the orientation of the joint at a previous time interval as a

quaternion we will have a quaternion that represents the orientation change of the

joint over the last time interval. We take this value, convert it to Euler angles,

and then divide by the amount of time transpired over the time interval to find

the joint’s angular velocity as Euler angles.

3.2.3 Controller Stability

In theory, the controll system described above should make a perfect joint con-

troller. In practice however, it is far from perfect. Inaccuracies and minute preci-

sion loss in the physical simulation cause instabilities that must be addressed.

A primary source of controller instability is due to precision loss in very low-

torque situations. As the joint zeros in on its desired orientation, the controller

has to apply less torque to move the joint. Unfortunately, due to precision loss, a

torque that may ideally be the “final” torque to move the joint into position may

actually move the joint slightly beyond its target orientation. At this point the

controller reverses direction and applies an opposite torque to attempt to move

the joint to the target orientation. Again, precision loss may cause the joint to

slide slightly past its target. This situation causes low magnitude, high frequency

oscillations in the joint controller.

Low magnitude, high frequency oscillations are dealt with by smoothing the
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value given to the PD-servo for the joint’s angular velocity. This is accomplished

by keeping a running average of the angular velocity over a small time window

rather than using an instantaneous snapshot of the angular velocity between the

current time step and the previous. Keeping a running average of the angular

velocity over just the last two frames significantly reduces oscillations, at the cost

of slightly stalling the joint’s initial movement. Care must be taken when selecting

the size of the window however; too large a window can cause the controller to be

under-damped and introduce low frequency oscillations.

Another source of instability stems from the physics of rotating a body con-

nected to a joint about its twist axis, which, depending upon the inertial properties

of the body, may require substantially less torque than rotating the body about

one of its other axis. Recall that our PD-servo equation we use to control a 3 DOF

ball and socket joint uses the same k and kd parameters regardless of the axis we

are desiring to rotate the joint about. For certain joints, this may cause rotation

about the twist axis to be significantly more powerful than rotations about other

axis.

To address the power imbalance brought on by using a single set of k and kd

parameters for each joint a torque damping step was introduced. After we have

derived the torque (τ) from the PD-servo equation we reduce the torque in the

direction of the twist axis (~t). This is accomplished by the following:

d = dr · |~τ · ~t| (3.7)

τx = τx · (1− d · tx) (3.8)



22

τy = τy · (1− d · ty) (3.9)

τz = τz · (1− d · tz) (3.10)

where dr is a fraction between 0 and 1 specifying how much we should diminish

control about the joint’s twist axis. Like other tunable parameters we use, care

must be taken when selecting dr as too high a value can cause the control system

to be under-damped and introduce low frequency oscillations. For most joints we

typically use a dr of 0.9.

A “catch all” method that can be employed to improve controller stability is to

simply disable the controller once the desired orientation has been reached. When

the magnitude of the difference between the desired and current joint orientations

has gone below a threshold and the joint’s angular velocity has also gone below a

threshold the PD-servo control system can be disabled and the joint can be locked

in place (by either the physical simulation software or otherwise). A problem with

this approach is that it may not look visually pleasing for joints that have other

joints connected to them—the solution is to make the threshold for when the PD-

servo is shut off very small. This approach also requires another system outside the

PD-servo controller that decides when to turn the controller back on (e.g., when a

force is acted upon the body, etc.).
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A

B

Figure 3.3: Example: Ball and socket joint initial orientation

3.2.4 Joint Orientations

Up until now, we have only talked about the orientation of a joint. But what

does that mean exactly? The orientation of a joint is the difference between the

orientation of the bodies connected by the joint and their initial orientation. This

concept is best illustrated by example.

Take the bodies connected by a ball and socket joint in Figure 3.3. Say that

when these bodies were both created they were oriented down the x axis (z facing

outward), so body A has an initial orientation of (0, 0, 0) and B of (0, 0, π
2
). If

we call these orientations of the bodies the initial orientation of the joint then the

joint’s orientation in this configuration would be (0, 0, 0).

To find the orientation of the joint in other positions we will need to store a

rotation transform for each body that will put it into the rotational space of its

initial pose with the joint. For A there’s nothing to do, its initial orientation in

“joint space” is its initial orientation. For B, the rotational transform will be the

inverse of its initial orientation with the joint: (0, 0,−π
2
). We store these inverse

transforms as quaternions qAinv and qBinv.
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A B

Figure 3.4: Example: Ball and socket joint second orientation

Now the objective is to determine the orientation of the joint when its in the

configuration shown in Figure 3.4. Both bodies A and B are now in their initial

orientations of (0, 0, 0). To find the orientation of the joint we take the difference

of the orientations of the bodies relative to their initial orientations with the joint:

qA = qAinvqAcurrentq
′
Ainv (3.11)

qB = qBinvqBcurrentq
′
Binv (3.12)

qjoint = qAqBq′A (3.13)

where qAcurrent and qBcurrent are the current orientations of the bodies A and B

respectively. Since B’s current orientation is (0, 0, 0) and its inverse transform

qBinv is (0, 0,−π
2
) (as Euler angles, see above) this puts the orientation of the joint

(qjoint) at (0, 0,−π
2
).

As stated earlier, we wish to control our ball and socket joints by specifying

desired joint angles for each DOF (Section 3.2.2). Let’s say the joint from the

previous example is a three DOF ball and socket joint; the first DOF being along

the x axis, the second along the y axis, and the third along the z axis. To convert

desired angles in each DOF to a desired joint orientation we express each desired
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angle as a quaternion and multiply them together:

q = qz(qyqxq
′
y)q

′
z (3.14)

The order in which the desired angles for each DOF are multiplied together shown

here is completely arbitrary, the operation can be done in any order, as long is it

remains consistent for each joint3. Also note that we do not have to specify the

DOF axis orthogonally, and that we can have any number of rotational DOF.

3.2.5 Joint Limits

If we wish to impose joint limits in a particular DOF we may do so when we encode

the quaternion representing the rotation along that DOF axis. If the angle given

for the desired rotation exceeds the specified bounds, it can be truncated to fit

within them:

θ = max(θmin, min(θmax, θ)) (3.15)

where θ is the angle of rotation about the DOF axis. We call this setting a “soft

limit” on the joint’s rotational freedom.

While soft limits will prevent a desired joint angle from exceeding the thresh-

olds, it still may not prevent the PD-servo from applying a torque to the joint

that would place it outside the limits. (For example, a k/kd pair may generate a

subtle oscillation around the desired orientation, exceeding a soft limit before it

3For human readability, we prefer to use the conventional x, y, z order.
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stabilizes). To solve this we impose “hard limits” on the PD-servo. When the joint

orientation exceeds the boundaries set by the soft limits, we increase the k and kd

constants used for the joint so that it strengthens the joint around the boundaries.

This gives the joint a bit less “play” around the boundaries and a more life-like

appearance. This concept was inspired by human joints, where one could imagine

cartilage in a joint as setting a soft limit, and bone sockets as setting a hard limit.

3.2.6 Joint Torque

The function of a joint in a physical simulation is to enforce a set of constraints.

The joint ensures that the bodies connected to it will not drift outside of the

boundaries set by the joints constraints. A ball and socket joint enforces a spheri-

cally connected relationship between two bodies at a fixed point on each. We have

spoken previously of “applying a torque” to a joint, but a joint can’t really apply

a torque to itself—it applies torque to the bodies connected to it.

To apply a torque to a joint we apply the torque to the first body connected to

the joint and the inverse of the torque to the second body connected to the joint.

In a multi-threaded physical simulation like NovodeX it’s critical that the torque

only be applied once per simulation time step—applying the torque multiple times

per time step results in over-torquing the joint, which leads to instabilities.

Unfortunately we can’t always apply equal and opposite torques to each body.

As described previously, the initial orientation of the body in the rotational space

of the joint may not be the initial orientation of the body in the rotational space
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of the simulation. Each torque must be put into the rotational space of the joint

for each body:

~τA = qAinv(~τ)q′Ainv (3.16)

~τB = qBinv(−~τ)q′Binv (3.17)

where qAinv and qBinv are the inverse transforms from the previous section that

put the current orientation of each body into the rotational space of the joint.

3.3 Mesh Contact

During our evolutionary process we use the physical simulation to throw an object

at our virtual character. When the character is impacted by the object, we need

to determine the closest triangle on the character’s triangle mesh to the collision

(the motivation for this is discussed in the next chapter). However, because the

character is physically simulated as a set of connected boxes, the contact point in

the physical simulation is on a box.

Each box that comprises the virtual character has associated with it a triangle

mesh (for simplicity, it was decided that these meshes would not be interconnected).

When the object thrown comes in contact with one of the boxes belonging to the

character we receive a callback from the physical simulation software. We then

find the closest triangle in the character’s triangle mesh belonging to the box using

a point-triangle distance algorithm.
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A shortcoming of this system is that we do not test all triangles in all triangle

meshes against the point of contact to see which is closest—we assume that the box

hit will contain the triangle that was closest—when it may actually be possible for

a triangle on another mesh to be closer. Testing all triangles in all meshes would

substantially increase processing time however, so we feel the tradeoff is acceptable.
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Chapter 4 – Evolution of Controllers for Collision Preparation

Our evolutionary process generates controllers that attempt to defend our virtual

character from an incoming projectile by placing the character into a pose that

prepares it for collision. This chapter describes the process by which we test,

evaluate, and evolve controllers.

4.1 Testing Controllers

Before describing how controllers are evaluated and evolved, it’s first important to

understand the process used to test a controller. Every controller generated must

go through the same rigorous testing process before it is scored and handed to the

evolutionary process for optimization.

Each test performed takes as input a projectile threat and the parameters

necessary for the controller to attempt to defend the character from the threat. In

this section we describe the process by which a controller is tested.

4.1.1 Testing Overview

The evolutionary process generates a large set of controllers. A controller’s task

is to defend our virtual character from the projectile. Each controller is tested in

several stages according to a joint failure system (described later). During each
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stage the controller is tested multiple times using a threat grid (also described

later). The performance of the controller during each test is evaluated by a fitness

function that measures the amount of pain perceived by the virtual character.

After every controller has been evaluated in the current set, (we refer to a set

of controllers as a generation), the evolutionary process takes the best controllers

of the set and uses them as the basis to generate a new set. This cycle repeats

until the evolutionary process decides it has found the best possible controller.

Figure 4.1 describes the algorithm Controller-Test used to test an indi-

vidual controller. There are 4 stages to the testing process. Each stage tests the

controller 9 times according to the threat grid, for a total of 36 tests per controller.

The output of the testing algorithm is the fitness of the controller, a scalar value

used by the genetic algorithm as the basis for optimization.

4.1.2 Test Configuration

The input to the testing process is a controller and a projectile. The controller is

specified by desired joint angles (s), and the projectile is specified by a direction

vector (~d) and a speed (v). We assume all projectiles are aimed at the character’s

head and that all projectiles originate the same distance away from the charac-

ter. For simplicity’s sake, we also make the projectile immune to gravity. This

configuration is diagramed in Figure 4.2.

For each test, we begin with the character in a neutral position (see Figure 4.3).

When the simulation begins, the projectile is launched towards the character. The
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inputs: ~d, direction of projectile
v, speed of projectile
s, a solution (desired joint angles)
Fitness-FN, function to evaluate performance of a solution
Controller, takes a solution and applies it to the character

initialize fitness to 0
for all joint failure scenarios do

for all threat grid scenarios do
initialize Controller with s
modify ~d according to threat grid
launch projectile from ~d at speed v
while simulation is running do

at time tdelay start Controller
evaluate Fitness-FN, add result to fitness

end while
end for

end for

Figure 4.1: The Controller-Test Algorithm
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Figure 4.2: Projectile setup

controller is not allowed to begin operating until a specified time delay (tdelay) has

elapsed. After tdelay the controller is applied to the physical simulation and the

joints begin to move towards their desired joint angles. The controller uses a ball

and socket joint control system that was described in Chapter 3.

Varying tdelay may result in different solutions as some defensive poses take

more time to reach than others. This delay was inspired by observations of human

blocking; depending upon how much time we have to respond to a threat, we may

choose a different kind of preparatory pose.

4.1.3 Joint Failure

As humans we rarely block an incoming projectile aimed at our face using only

one arm. Unless we are bursting with confidence we typically protect our face us-

ing both arms. If the projectile is especially menacing we usually take additional

measures to protect our face, such as turning or ducking our head [12, 15]. Intu-
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Figure 4.3: Character model mesh. The model is color-coded to show each pain
multiplier area.

itively, humans and animals tend to take multiple protective measures as part of a

defensive “backup strategy” in case one or more limbs failed to perform their task.

Inspired by this we introduced joint failure into our evolutionary process so that

a controller is rewarded for using both arms and moving the head.

To simulate joint failure, we test a controller in multiple stages. During the first

stage, the controller is allowed to behave normally. In the second stage we cause

the character’s right shoulder joint to fail–any input given to the right shoulder’s

joint controller is ignored. In the third stage we cause the left joint shoulder to

fail. In the final stage, both shoulder joints fail.

4.1.4 Threat Grid

When we encounter a fast projectile threat aimed at our head, we typically do

not take any chances. As described in the previous section, we use every means

necessary to block the threat from hitting our sensitive areas: we use both hands,
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and we turn or duck our heads. We also tend to be very general in our approach to

blocking the projectile: it’s unusual for us to treat the threat as if we know exactly

where it is going to hit us on our face. For example, we would never block only

the very tips of our noses from a baseball, we would attempt to shield as much of

our face as possible.

To prevent the evolutionary process from optimizing for a very specific point of

impact, each solution is tested according to a threat grid. The threat grid modifies

the direction of the projectile slightly so that the controllers are rewarded for taking

a more general approach to blocking the projectile. Rather than optimizing on a

specific threat case, it’s encouraged to optimize on a set of cases.

The threat grid is a 3x3 grid that slightly alters the direction of the projectile;

this results in 9 tests. During each test a different square is used in the threat grid

to rotate the direction vector by the amount specified by the square. For example,

the top-left corner of the threat grid rotates the direction vector up and to the

left, whereas the bottom-right corner rotates the direction vector down and to the

right. This concept is illustrated in Figure 4.4. In addition to the rotation given

by the square, we also add a small amount of noise, or jitter. The combination

of the threat grid and jitter causes the optimization process to find more general

solutions because it never anticipates the precise direction of the threat. Without

the threat grid the controller is rewarded for developing solutions that reflect the

projectile at an oblique angle1.

1While these solutions are technically possible as a means of defending oneself, the specificity
of their application makes them unrealistic as a means of blocking a projectile.
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Figure 4.4: Threat grid, from the point-of-view of the projectile. (Exaggerated for
demonstration purposes—the actual threat grid is much smaller).

4.1.5 Early-out Condition

A test concludes after a specified amount of time has elapsed or an early-out

condition has been reached, such as the ball hitting the ground or the fitness

exceeding a tuned threshold. Early-outs significantly improve the rate at which

we converge on a solution.

4.2 Evaluating Controllers

Our evolutionary process generates controllers that attempt to defend our virtual

character from an incoming projectile. In order for the evolutionary process to op-

timize these controllers, we need a mechanism to gauge a controller’s performance.

This section describes how we evaluate a controller’s fitness, the metric by which
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we measure how well a controller defends our virtual character.

A controller’s fitness is determined by simulating the controller several times

and measuring each test using our fitness function, Fitness-Fn. The fitness func-

tion measures the controller’s ability to defend our virtual character during a test.

(The testing process was described in the Section 4.1). The results of each test are

combined to make up the overall fitness for the controller.

The goal of our controller is to defend our virtual character from an impending

collision with a projectile. To score how well the controller performs its task, we

rate the controller’s performance by three metrics:

1. Pain: How effectively did the controller minimize the amount of pain per-

ceived by the virtual character?

2. Energy: How much energy did the controller use to defend the character?

3. Distance: How far away did the controller block the projectile from the

character’s head?

The fitness function continuously evaluates the controller on these metrics while

it is being tested. Each metric contributes a score; every time step these scores are

summed to determine the overall fitness of the controller:

fitness = pain + energy + distance (4.1)

The fitness value is used by the genetic algorithm to optimize the controller as

described later in Section 4.3. In this section we explain the derivations of the
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pain, energy, and distance metrics.

4.2.1 Pain Metric

The goal of a controller is to defend our virtual character from an impending

collision. Defending the character means to find a pose that causes the least

amount of harm to come to the character. We measure harm using the pain metric,

a scalar value that quantifies the amount of pain the virtual character perceived

after it was hit.

Measuring pain in humans is a tricky problem—the recognized tools in the

field of medicine for evaluating pain are purely subjective [19, 18]. It has even

been suggested that accurate measurement of pain will never be possible [3]. Since

no system exists in the real world for quantifying the pain perceived as the result

of a collision with an object2, we were faced with no choice other than to invent

one for our virtual character.

Our system for measuring the pain perceived by the virtual character is based

on the simple premise that getting hit in some parts of your body hurts more than

others. Getting hit in your eyes would hurt more than your nose, which would

hurt more than your face, etc. We encode areas of the character’s body based on

these relative sensitivities to pain. We call these areas pain regions.

Pain regions are implemented by colorizing areas of the character’s triangle

mesh with different color codes. When the projectile impacts the character model,

2The creation of such a system would be quite sadistic!
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Point of Impact (~pi) Multiplier (cp)
Hands 1.0
Chest 2.0

Upper Arm 2.0
Lower Arm 3.0
Stomach 4.0

Head 5.0
Face 10.0
Nose 14.0
Eyes 15.0

Figure 4.5: Pain Multipliers

we find the nearest triangle in the mesh and use this color to look up the pain

multiplier (cp) for the region. Figure 4.3 shows the pain region colorization on the

character model. The table of pain multipliers we use is given in Figure 4.5.

When the character model is hit by the projectile, we take the point of impact

(pi) and pass this to the pain multiplier mapping function (P ). P returns the pain

multiplier for the region that was nearest to the impact. After we have the pain

multiplier cp we apply this to the force of impact ~fi to determine the pain metric:

pain =
∑

i

P (~pi) · |~fi| (4.2)

The pain metric is the primary means by which we evaluate a controller’s ability

to protect the virtual character.
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4.2.2 Energy Metric

We reward a controller for discovering efficient solutions by using the energy metric.

The energy metric observes the amount of energy being used by the controller while

it is bringing the character model into its defensive position.

We calculate the energy metric by accumulating the torque the controller ap-

plies at each of the character’s joints every simulation time step:

energy =
∑
j

ct · |~τj| (4.3)

where ~τj is a torque vector applied at joint j and ct is the multiplier that we use

to scale the relative importance of the energy metric.

By picking a large value for ct we encourage the evolutionary process to converge

on solutions that use a low amount of energy—this prevents solutions where the

controller grossly over-compensates its preparatory pose. However, picking too

large a value for ct has undesirable consequences—the energy metric overtakes the

pain metric, and then the optimizer converges on solutions that only minimize

energy. We used a value of 0.001 for ct.

4.2.3 Distance Metric

It is desirable for us to obtain different styles of defensive postures, so we have

introduced the distance metric to aid us in this task. The distance metric scores

the controller based on how far away from the character’s head it blocked the
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projectile. It is derived by taking the distance between the first point of impact

(~p0) and the center of the character’s head (~h) and scaling this by the distance

multiplier cd:

distance = cd ·Round(|~p0 − ~h|) (4.4)

We only consider the first point of impact due to precision errors in the phys-

ical simulator. When the projectile impacts the character the physical simulator

may generate multiple points of impact during the process of resolving the colli-

sion. Accumulating the distance metric by handling multiple impacts would create

inconsistencies between two impacts that appear identical.

The distance between the point of impact and the character’s head is rounded to

reduce the effect the threat grid system (described previously) has on the distance

metric. The threat grid causes our test process to lose its determinism; rounding

the distance helps keeps the distance metric less effected by the indeterminism.

Altering the scale of cd will result in different styles of defensive poses being

chosen by the optimization process. A large value will select poses that block the

projectile far away from the character’s head; a small value, due to the influence of

the energy metric, will select minimal energy poses that block the projectile closer

to the character’s head. Like the energy metric, picking too large a value for cd

will overpower the other metrics and result in poses that only block the projectile

far from the character’s head (and don’t necessarily minimize pain). For our work

we set cd to 0.015.
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4.3 Generating Controllers

In the first section of this chapter we described the process by which a controller

is tested. In the second section we detailed how a controller is evaluated during

a test and deriving its fitness. In this section we reveal how these controllers are

generated.

To generate our controllers we use a genetic algorithm, an optimization pro-

cess inspired by evolution [7]. Genetic algorithms operate on sets of chromo-

somes—string encodings of solutions to the problem being optimized. Pools of

chromosomes, known as generations, are tested and evaluated according to a fit-

ness function. After every chromosome in a generation has been be given a fitness,

a selection process recombines and mutates the best candidates according to their

fitness to create the next generation. This process repeats until a suitable candi-

date has been found.

This section describes:

• Chromosome Format: How we encode our controller solutions as chromo-

somes.

• Selection Process: How we select chromosomes for creating new genera-

tions.

• Mutation and Crossover: Our mutation process we use for creating new

generations.

• Determining End Condition: How we know when to stop our optimiza-
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tion process.

4.3.1 Chromosome Format

Our chromosome encoding system interprets a chromosome as a string of unsigned

integers which we refer to as genes. A gene corresponds directly to a desired joint

angle using the following mapping:

f = 2π · i

imax

− π (4.5)

where f is the desired joint angle (in radians), i is the unsigned integer represen-

tation of the gene and imax is the maximum unsigned integer that can be stored

by the gene. Since our character model has 18 degrees of freedom, and we require

a desired joint angle for each, our chromosome consists of 18 genes.

4.3.2 Crossover and Mutation

To create new chromosomes, we recombine previous chromosomes using crossover

and mutation. Crossover takes two “parent” chromosomes and divides each at a

split point. Part of one parent is then appended to the other to create a new

chromosome (see Figure 4.6). For our implementation, we perform crossover at

the gene level. Taking only part of a gene would effectively be splitting a joint

angle at the bit level and result in unnecessary random jumps in joint angles.

After a new chromosome has been created by crossover, we perform mutation
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split point

chromosome a chromosome b

child chromosome

split point

Figure 4.6: Chromosome Crossover between Two Parents

on it. Our mutator takes as input a number of genes (n) and a distance (d) by

which to modify a gene. A random gene is then selected and its value is increased

or decreased by random amount modulo the given distance. The mutator may be

called several times with different n and d values.

4.3.3 Tournament Selection Process

After an entire generation of chromosomes has been tested and a fitness value

has been assigned to each, we use a tournament selection process to decide which

chromosomes will continue on to the next generation and which will be used for

creating new chromosomes. Our tournament process selects a group of n chro-

mosomes from the current generation and sorts them on their fitness. The top m

chromosomes are passed immediately on to the next generation unmodified (this

is called elitism). The remaining n−m chromosomes are discarded. This process

repeats until we have added enough chromosomes to the new generation to equal

the previous.

To generate new chromosomes for the next generation, we take the chromo-
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somes that were selected by elitism (the first m chromosomes), and then recombine

them by using crossover. The resulting chromosomes are then mutated and added

to the new pool. (Mutation and crossover rules were described in the previous

section). Because recombination by crossover requires a pair of chromosomes, the

size we choose for m must be an even number.

4.3.4 Determining End Condition

The genetic algorithm stops after a predetermined number of generations have been

tested or when the system believes it has found an optimal solution. To determine if

an optimal solution was found we compute the average fitness for each generation

and apply a standard deviation over a window of prior generations. When the

standard deviation falls below a tuned threshold we stop the simulation.
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Chapter 5 – Assessment

5.1 Genetic Algorithm Parameters

Before we could begin experimenting with our collision preparation system it was

important that we first develop a set of parameters for our genetic algorithm.

The parameters used for mutation, the population size of each generation, and

the tournament size used during selection all will effect the speed and outcome of

the evolutionary simulation. An ideal set of parameters would find an optimum

solution in the least time possible.

It’s important to distinguish between local optimums and global optimums.

Due to the nature of our problem domain, there is no way for us to be sure if a

particular solution is a global optimum. During the genetic algorithm’s process it

may find several different local optimums—all with similar fitness values. When

it comes time to pick a solution however, we only consider the solution with the

best fitness value.

5.1.1 Mutation Scheme

The first set of parameters that we developed were the parameters used for the

mutation system. The mutation algorithm takes as input a number of genes (n)

and a distance (d) by which to modify the gene (this may be performed any number
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Name Algorithm
A Mutate(n = 10, d = 200)

Mutate(n = 2, d = 1000)
Mutate(n = 1, d = imax)

B Mutate(n = 10, d = imax)
C Mutate(n = 5, d = 1000)

Mutate(n = 5, d = imax)
D Mutate(n = 20, d = 200)

Mutate(n = 2, d = 1000)
Mutate(n = 1, d = imax)

Figure 5.1: Mutation Schemes

of times, see Section 4.3.2). We experimented with four different schemes, given

in Figure 5.1 (lower fitness is better).

Each of the four mutation schemes were tested using a population size of 400

and a tournament size of 4. The results of these tests are given in Figure 5.2.

After observing the results of the four mutation scheme tests it was decided to use

mutation scheme A for subsequent evolutionary simulations. Mutation scheme A

appeared to converge on optimal solutions faster than the other schemes.

5.1.2 Population Size and Tournament Size

The next set of parameters that needed to be determined were the population

and tournament sizes we would use for our experiments. These parameters were

developed by running a series of simulations from a population size of 100 to 800

in increments of 100, each with a tournament size of 4 and 8. Mutation scheme A

was used throughout all simulations. The results are given in Figures 5.3 through
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Figure 5.2: Fitness vs. Time. Mutation Schemes A, B, C, D. Population Size: 400.
Tournament Size: 4.

5.6.

Comparing equal population size groups together we observed that tournament

size did not have a reliable effect on the speed of convergence. A tournament size

of 8 had an adverse affect on convergence for some population groups, but it

appeared to improve convergence in others. Gritz et al [9] has reported that the

size of the tournament seems to have little effect on the speed of convergence, so

for our simulations we arbitrarily decided to use a tournament size of 4.

Overall we observed that large population size groups converged on a solution

in a fewer number of generations than small population size groups. To evaluate

which population size was the best to use for our experiments, we decided to plot

our results over time rather than generations. While large population size groups
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Figure 5.3: Fitness vs. Time. Mutation Scheme A. Population Sizes: 100, 200.
Tournament Sizes: 4, 8.

converged in fewer generations, they took longer to simulate a generation than

smaller population size groups. For example, the groups with a population size of

800 began to converge on a solution within 7 generations, but they took roughly

4000 seconds to get to that point. Conversely, the population size 400 groups

began to converge in 11 generations, but it only took them about 3000 seconds to

do so.

Another observation of the simulation results was that although some param-

eter sets took longer to converge on an optimal solution than others, most of

them—with a few exceptions—did eventually converge. The sets that did not find

an optimal solution most often fell victim to our automated end-condition anal-

ysis (see Section 4.3.4), and we noted that if we started them back up, they did
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Figure 5.4: Fitness vs. Time. Mutation Scheme A. Population Sizes: 300, 400.
Tournament Sizes: 4, 8.

eventually converge on an optimal solution1.

To aid in determining the best population size the fitness of the simulations

over time were fit to spline curves and plotted together (see Figure 5.7). Here one

can see that, for the most part, each simulation run gradually converges towards

an optimal solution, but some converge faster and at a steadier rate than others.

In the end, we chose a population size of 400 because population sizes under 400

bounce around too much before finding a solution, and population sizes over 400

take too long to find a solution. 400 appears to be the best trade-off between

simulation time and reliability of convergence.

1Sometimes, after many more hours of simulation!
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Figure 5.5: Fitness vs. Time. Mutation Scheme A. Population Sizes: 500, 600.
Tournament Sizes: 4, 8.

5.2 Results

A variety of experiments were done to test the performance and flexibility of the

collision preparation system. For each experiment the system was tested at several

different angles varying from −60◦ to 60◦ on the transverse plane (see Figure 5.8).

We evaluate the system first as originally presented followed by modifications that

place an emphasis on using the hands for blocking.

To improve determinism and accuracy of experiments, the physical simulation

was set to run at a fixed time step of 0.0025s (400Hz). Larger time steps (greater

than 0.005s) occasionally exhibited damper instabilities in the ball joint control

system we developed. With graphic rendering disabled, the average simulation run
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Figure 5.6: Fitness vs. Time. Mutation Scheme A. Population Sizes: 700, 800.
Tournament Sizes: 4, 8.

took approximately 80 minutes to complete on an AMD Athlon 2600+ processor.

5.2.1 Collision Preparation System

The collision preparation system was able to find poses that protected the virtual

character for a variety of threat angles. During evolution we observed that the

system typically started with one arm blocking, then gradually transitioned to

using two arms and ducking the head, as is shown in Figure 5.9. Results for

various threat angles are given in Figure 5.10. (All figures are ordered left to right,

top to bottom).

At certain threat angles the collision preparation system was able to converge
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Figure 5.7: Fitness vs. Time. Spline Fit. Mutation Scheme A.

on a solution, but it did not look very convincing. For example, at a wide angle of

60◦ the system tended to converge on solutions that only used one arm. We believe

this was due to two shortcomings in our system: the inability of the character model

to twist its torso very far, and excessive inter-collision between the arms and head.

Because our arms and head were simulated as rigid body blocks, the arms were

not able to wrap around the face to opposite sides, which would allow the hands

to aid in blocking the projectile.

The joint failure system was essential in aiding the evolutionary process con-

verge quickly on a solution. Figure 5.11 shows the joint failure process at work:

first both arms are allowed to operate, than each is failed, and finally neither arms

are allowed to operate. The joint failure system forced the evolutionary process
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Character

Figure 5.8: Projectile angles used in experiments (top-down view)

to try and find solutions that used both hands and moved the head to protect the

face.

Overall, the majority of the solutions the system found looked very convincing—

the character exhibited a reflex-like behavior that used all of the models faculties

including both arms and turning the head. Solutions that failed to look convincing

were ones in which the controller had the character block using the back of the

hands or the back of the forearms. This problem could be overcome by creating

new pain regions for these areas and configuring the pain multiplier to be higher.

5.2.2 Hand Emphasis

Although our system was successful in developing poses that defend a virtual

character from an impending collision, the poses that it found may not have had

the characteristics that we were anticipating. In an effort to seek out different

types of poses we experimented with adjusting the parameters of the evolutionary

process and attributes of the character model. One such pose that we desired was

to have the controller block exclusively using its hands.
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Figure 5.9: Controller at various stages of evolution

Our first attempt at having the controller block more with its hands was to

adjust the distance metric constant cd (see Section 4.2.3) so that the fitness func-

tion would place a higher emphasis on the distance between where the projectile

was blocked and the character’s head. The success of this approach was limited.

Because the emphasis was placed on purely the distance from the head the con-

troller would converge on solutions where the fingers were pointed out towards the

projectile, which had limited applicability and looked very unrealistic.

In another approach we dropped the distance metric completely and modified

the character model so that the arms did not collide with the projectile in the

physical simulation. This approach was very successful in quickly developing con-
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Figure 5.10: Results at various angles

trollers that blocked exclusively using the hands. Figure 5.12 shows the results for

experiments where the model had hands-only collusion.

5.3 Discussion

We were successful in evolving controllers that placed a virtual character in a va-

riety of different defensive poses. The quality of our controllers was determined by

our ability to create a fitness function that evaluated the effectiveness of generated

controllers, and tuning parameters that were used by the fitness function. The pain

metric, and the pain multipliers that went with it, was central to the fitness func-
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Figure 5.11: Four stages of simulated joint failure

tion’s effectiveness. By expanding the number of pain regions and defining more

specific pain multipliers, it’s feasible that using this system any kind of collision

preparatory pose could be automatically generated.

Using our system, a content creator can develop poses for a virtual character

without the use of motion capture. By modifying the parameters to the evolu-

tionary process or the collision preparation system an animator could generate an

endless supply of convincing poses in an automated fashion. Researchers can ap-

ply the control and optimization techniques here to a variety of character control

problems.
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Figure 5.12: Results at various angles with hands-only collision



58

Chapter 6 – Conclusion

6.1 Summary

Realism in interactive applications is largely dependent upon how effectively the

movements of human characters are conveyed. Since we are all inherently famil-

iar with the properties of human motion, irregularities in human movement in

an interactive application are easy to identify. Currently motion capture is the

predominant technique for replicating human movement, but handling the infi-

nite set of possibilities for human movement is not feasible under this technique.

Physically simulating human characters and using controllers to generate dynamic

human motion presents a rich solution for handling scenarios motion capture can-

not anticipate. Recent advances in physically simulated characters handle dynamic

situations such as falling or being hit be an object. In this thesis we have presented

a technique for generating physically simulated controllers that prepare a character

for a collision in a reflexive, physically realistic manner.

Our technique for generating collision preparatory poses uses genetic algorithms

to optimize a joint angle controller based on evaluation from a pain measurement

system. The pain measurement system color-codes a character model with pain

regions corresponding to the “sensitivity” of the character model to forces resulting

from impacts in these areas. The testing process tests controllers generated by the
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genetic algorithm multiple times according to a joint failure and threat grid system

that encourage general solutions that defend the character using all of the faculties

of the character model. By using this system, defensive poses may be automatically

generated without the use of motion capture.

6.2 Future Work

6.2.1 Energy Metric Enhancements

The energy metric (Section 4.2.2) contributed to the evaluation of the controller by

penalizing it for using excessive torque to move the character into the preparatory

pose and maintain the pose after impact with the object. What the energy metric

fails to consider is the way in which torque is being used. In humans, certain poses

are chosen because they are better for “bracing” oneself for maintaining the pose

after impact.

For example, our system occasionally generated poses that blocked using the

back of the hands. This is not a common defensive pose in humans because the

forearm muscle group that pulls the back of the hand is not as strong as the

group that pulls the front of the hand. In the future, the energy metric should be

enhanced to consider not only the amount of torque that is being applied, but also

the direction it is being applied in—in this case, it should penalize the controller

for using muscle groups that pull the back of the hands.
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6.2.2 Joint Limit Penalties

Our system failed to consider solutions that placed the character into positions

where the force from impact with the object causes the character model to exceed

its joint limitations. In situations where the controller made the character block

using the back of its hands, impact with the object may have caused the hands to

rotate in such a way that brought them almost in contact with the forearms. In

humans this might cause the wrist joint to fracture.

To correct situations that in reality would cause a joint to fracture the system

should penalize controllers that cause the character to exceed its joint limits (see

Section 3.2.5). A possible solution might be to dramatically increase the energy

metric multiplier (Section 4.2.2) when the joint exceeds a soft limit. A more

sophisticated solution may be to model the amount of pain perceived when a joint

exceeds a threshold, similar to how the current pain system models pain caused

by forces external to the character model.

6.3 Towards Ultimate Realism

Since our control mechanism uses genetic algorithms to optimize desired joint

angles, and the joints are moved to those angles using a ball-and-socket joint

controller, the resulting motion does not look very human if it is slow or allowed to

control the character for too long a time. Our system however is only designed to

control the character for a brief period of time, and the gains used by the controller

are “stiff” so that the character moves too quickly to notice any irregularities. Our
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problem domain—reflexive responses to projectile threats—lends itself especially

well to such a control scheme. Reflexive responses in humans are quick, “knee-jerk”

reactions that require little higher-level brain power. Optimizing a pose controller

such as ours will probably not work as well in other higher-order control domains.

The reason our system works well is because our task environment, even though

it is a dynamic physically simulated environment, has only one episode from the

point of view of the controller. The controller is presented with a threat (a direc-

tion and a velocity), and produces only one response to that threat (desired joint

angles). The control system requires no decision making other than performing the

low-level control task of moving the character into the position specified by the de-

sired joint angles. In most control systems for physically simulated characters the

input to the controller is continuously changing (current joint angles, forces, con-

tacts, etc.), and the controller is required to perform some decision making (such

as what desired joint angles to output). In this situation using genetic algorithms

alone would not be a solution.

To achieve more realistic human motion for less reflexive situations (such as

walking or falling) the control scheme must continuously process its sensors and

produce new outputs. Here, genetic algorithms are useful for optimizing more com-

plex control systems such as neural networks that produce torque or desired joint

angle outputs. Genetic programming can also be used to generate a program that

produces desired joint angles. The performance of an automated search algorithm

becomes a question of the size of the search space. The larger the neural network

or genetic program, the more realistic a solution may be; but a larger search space
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means a smaller likelihood a solution can be found in a reasonable amount of time

(if at all).

As you increase the size of the search space, you also increase the number

of possible solutions—and just because a solution is possible doesn’t mean it’s

necessarily a desired solution. A larger search space requires a better evaluation

system (fitness function, in the case of genetic algorithms). In addition, with

human motion an animator may desire to have more artistic control over the “style”

of the motion being generated. Giving an animator the ability to intuitively specify

the types of desired solutions—and having an intelligent evaluation system help

develop those solutions—is the true goal of evolving character controllers.

In this thesis we have presented a very small contribution to the larger goal

of evolving the ultimate character controller: measuring perceived pain so that a

character may evolve reflexive collision preparatory behaviors. Integrating pain

perception with other types of evolved control systems may lead to more realistic

human motion. Hopefully one day an animator will be able to specify a motion

for a virtual character such as tackling or throwing a punch, and an evolutionary

process can automatically re-target the motion in such a way that minimizes (or

maximizes) pain for the characters involved. After all, virtual humans have feelings

too!
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Appendix A – Character Description

For this work we developed a character model file format for describing articulated

models that will undergo evolution. Our file format describes the hierarchy of body

segments within the character model, joint location between body segments, joint

limits, and parameters for our joint servos.

The file begins with the bones section. The bones section contains one or

more bone sections. Each bone describes the name of the bone (name), the bone’s

parent (parent), and the location of the joint connecting the bone to its children

(joint). Additionally, each bone may contain up to three dof sections to describe

the degrees of freedom of the bone’s joint, a dim section that gives the depth and

height of the bone, and a pd section that specifies the parameters for the PD-servo

that will drive the joint. The relationships between these sections are given in

Figure A.1.

• name - The name of the bone. If the bone name ends in ‘.mesh’ then a

triangle mesh file is used to render to render the bone and perform point

collision when evaluating the pain metric.

• parent - The name of the bone’s parent (root bone is empty).

• joint - The position of the bone’s end effector (x, y, z) and orientation of

the bone’s children (rx, ry, rz).
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bones {

numbones

bone {

name { bonename }

parent { bonename }

joint { x y z rx ry rz }

origin { x y z }

dof { x y z limits { min max } }

...

dim { height depth }

pd { k kd }

}

...

}

Figure A.1: Character Model File Format

• origin - The origin of the bone (x, y, z) relative to its parent. This is use-

ful with bones such as the upper arm, where the parent’s end effector (the

chest) would be located at the neck but the axis of rotation should be at the

shoulder.

• dof - The axis of rotation (x, y, z) for one rotational degree of freedom of the

bone’s joint. A bone may have up to three rotational degrees of freedom.

• limit - The joint limits (min, max - in radians) for one rotational degree of

freedom of a bone’s joint.

• dim - The width of the bone is given by the distance between the end effector

and the origin. This attribute gives the dimensions (height, depth) of the

bone. The box formed by the width, height and depth of the bone are used
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for collision in the physical simulation.

• pd - The k and kd parameters used for powering the joint’s PD-servo.

The character model file used for our simulations is given below.

bones {

9

bone {

name { Hips }

parent { }

joint { 0.000000 5.000000 0.000000 0.000000 0.000000 0.000000 }

}

bone {

name { chest.mesh }

parent { Hips }

joint { 0.0 5.52 0.0 0.0 0.0 0.0 }

dof { 1.0 0.0 0.0 limits { -0.05 0.05 } }

dof { 0.0 1.0 0.0 limits { -0.5 0.5 } }

dof { 0.0 0.0 1.0 limits { -0.05 0.05 } }

dim { 3.3 2.17 }

pd { 5000 100 }

}

bone {

name { head.mesh }

parent { chest.mesh }

joint { 0.0 2.45 0.0 0.0 0.0 0.0 }

dof { 1.0 0.0 0.0 limits { -0.5 0.7 } }

dof { 0.0 1.0 0.0 limits { -0.5 0.5 } }

dof { 0.0 0.0 1.0 limits { -0.4 0.4 } }

dim { 1.76 1.56 }

pd { 100 10 }

}

bone {

name { upperarmr.mesh }

parent { chest.mesh }

joint { 5.35 -1.0 -0.5 0.0 0.0 0.0 }
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origin { 2.0 -1.0 -0.5 }

dof { 1.0 0.0 0.0 limits { -1.2 1.2 } }

dof { 0.0 1.0 0.0 limits { -2.2 1.2 } }

dof { 0.0 0.0 1.0 limits { -1.2 1.2 } }

dim { 1.0 1.0 }

pd { 400 10 }

}

bone {

name { lowerarmr.mesh }

parent { upperarmr.mesh }

joint { 2.96 0.0 0.0 0.0 0.0 0.0 }

dof { 0.0 1.0 0.0 limits { -2.4 0.0 } }

dim { 0.77 0.63 }

pd { 300 5 }

}

bone {

name { handl.mesh }

parent { lowerarmr.mesh }

joint { 1.4 0.0 0.0 0.0 0.0 0.0 }

dof { 0.0 1.0 0.0 limits { -0.5 0.5 } }

dof { 0.0 0.0 1.0 limits { -1.0 1.0 } }

dim { 0.2 0.4 }

pd { 100 1 }

}

bone {

name { upperarml.mesh }

parent { chest.mesh }

joint { -5.35 -1.0 -0.5 0.0 0.0 0.0 }

origin { -2.0 -1.0 -0.5 }

dof { 1.0 0.0 0.0 limits { -1.2 1.2 } }

dof { 0.0 1.0 0.0 limits { -1.2 2.2 } }

dof { 0.0 0.0 1.0 limits { -1.2 1.2 } }

dim { 1.0 1.0 }

pd { 400 10 }

}

bone {

name { lowerarml.mesh }

parent { upperarml.mesh }
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joint { -2.96 0.0 0.0 0.0 0.0 0.0 }

dof { 0.0 1.0 0.0 limits { 0.0 2.4 } }

dim { 0.77 0.63 }

pd { 300 5 }

}

bone {

name { handr.mesh }

parent { lowerarml.mesh }

joint { -1.4 0.0 0.0 0.0 0.0 0.0 }

dof { 0.0 1.0 0.0 limits { -0.5 0.5 } }

dof { 0.0 0.0 1.0 limits { -1.0 1.0 } }

dim { 0.2 0.4 }

pd { 100 1 }

}

}
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