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STABILIZING CONTROL STRATEGIES FOR THE

DOUBLY-EXCITED MACHINE

PART I : INTRODUCTION

The doubly-excited machine is basically a wound-rotor
induction machine. In induction machine operation, rotor
windings are either short-circuited or connected to each
other by variable resistors that allow to change the slip-

torque characteristic of the induction machine.

In the doubly-excited machine, the rotor windings are sup-
plied with an excitation current of a fixed frequency. In
steady operation, stator and rotor fields must rotate at

the same speed. Hence, the frequency of the stator current
must be equal to the sum of the rotor mechanical speed,
expressed in electrical degrees, and the frequency of the
rotor excitation current, when stator and rotor phase
sequences are identical, If these phase sequences are opposite,
the stator frequency must equal the difference of rotor

mechanical speed and rotor excitation current frequency.

Usually, the stator windings of the machine are directly
cﬁnnected to the utility grid, which can be considered to
supply three-phase source voltages with constant amplitude
and frequency, the so-called "infinite bus". By varying

rotor excitation frequency between zero and grid frequency,
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the doubly-fed machine can rotate at speeds between zero and
synchronous speed. Moreover, for reversed rotor phase sequence,
it can also operate between synchronous and twice synchro-
nous speed. In terms of slip, defined as the relative devia-
tion from synchronous speed, the doubly-fed machine can

operate at slips between one and minus one.

This possibility of operation at various speeds makes the
doubly-excited machine a highly suitable device for appli-
catlon to sophisticated electro-mechanical energy conversion
systems., It can be used as a variable speed driving motor
or as a variable speed generator. The generator should be
particularly useful for the generation of electric power
from erratic energy sources such as water or wind. In such

a case, the power input to the prime mover will vary; so will
the speed of the turbine at which maximum efficiency could
occur. With a doubly-excited generator, it would be possible
to electrically control the turbine speed for maintaining

maximum efficiency operation.

The basic reason for the doubly-fed machine not to have found
widespread application in hydroelectric and wind power

plants is the fact that,until quite recently, it was not
possible to make use of'power electronic converters capable
of supplying adequate excitation power at varying frequency
to the rotor windings. Another hurdle to overcome was the

observation that with excitation as supplied by a voltage



source, such as a synchronous generator or a conventional
power electronic converter, the doubly-fed machine is dyna-

mically unstable for all but very small slips.

Recent developments in solid state technology, however,
have shown the design of a suitable power converter to be
quite feasible. The promising potential of the Schwarz
converter in this respect is worth to be mentioned

(Ref. 5). This converter type has the capability to provide
fast controllable current sources, which can be used to

directly exploit the magnetic coupling effect of the machine.

Part II of this thesis presents the mathematical models
used to investigate the steady state and dynamic properties

of the doubly-fed machine.

In Part III, the properties of the machine with rotor
excitation provided by a voltage source are derived.
A recent publication on a strategy to stabilize the machine

over its entire speed range is presented and discussed.

With the mentioned possibility and anticipated benefits
of current source excitation of the rotor windings in view,
a rigorous analysis of this mode of operation is presented

in Part IV. Machine properties with this kind of



excitation are shown to be much more favorable. For opera-
ting conditions where the machine will not operate stably,
two convenient ways of stabilizing it by feedback control

are presented and analysed.



PART II : MATHEMATICAL MODEL CF THE DOUBLY-FED MACHINE
II.1 The Machine Configuration

In its construction, the doubly-fed machine'is a three-
phase induction machine with wound rotor. Thus it has three
phase windings on its stator as well as its rotor. The
rotor windings are provided with terminals which can be
connected to external circuits through slip rings. The

schematic configuration is shown in Fig. II.1.
aA

“r

cA
b4

Fig. II.1 Configuration of windings on stator & rotor
II.2 System Configuration

The stator windings are connected to a power grid with three-
phase symmetrical voltages of constant frequency Wy and
constant amplitude, or equivalently, rms value Vl' Such

a power grid is called an "infinite bus" and is a
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reasonable representation of a power grid connecting a great
number of generators and consumers. To the single machine,
its voltage and frequency will appear constant since they
cannot be significantly effected by the characteristics

of one consumer or generator.

The doubly-fed machine, like any other type of electro-
mechanical power converter for that matter, can work either
as a motor, drawing power from the grid and producing mecha-
nical torque, or as a generator, converting mechanical
power that is supplied to it by a prime mover to electrical

power which 1s fed into the grid.

On the rotor side, the doubly-fed machine is supplied with
excitation power from a power electronic converter. The
converter produces a set of symmetric three-phase source
voltages of variable rms value V, and frequency (4)2 .

Certain converter types can also operate as current sources
rather than voltage sources. Converter output frequency is
taken to be smaller or equal to grid frequency.

Under certain operating conditions, power flow on the rotor
side of the doubly-fed machine is inverted: power is generated
by the machine and supplied to the converter. Thus, in order
to have an efficient system, the converter needs to have the
capabllity of passing power from its secondary, low-frequency

side back into the grid.



Fig. II.2 shows the system configuration with the infinite

bus, the power converter and the doubly-fed machine.
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Fig. II.2 System configuration



II.3 Stable Operating Conditions

The currents in the three-phase windings of stator and rotor
each produce a magnetic field rotating with the frequency

of these currents. Thus,the stator field rotates with (J,
(or in the actual machine, with W)/P , as we would have

P pole pairs rather than one). The rotor field rotates
within the machine air gap with the sum of rotor current
frequency (Jy and the rotational speed of the rotor body
W Mmeasured in electrical degrees. To produce a steady
torque, both field waves must travel at the same speed.

In steady operating conditions,

W = Wy t Wo (I1.1)
must hold if phase sequences of stator and rotor are identical.
If the phase sequence of the rotor voltages (or currents)
is reversed,

W, = Wm - Wy (11.2)

holds instead.



I1.4 Park's Transformation

For expediency of the analysis, all stator and rotor quanti-
ties (voltages, currents, flux linkages) are transformed into
the so-called Park domain: a reference frame of two ortho-

gonal axes rotating with stator frequency.

a4

Fig. II.3 d,q-reference frame and angles definitions

Fig. II.3 shows the definition of the angles used in Park's

transformation:

- @mis the position angle (in electrical degrees) of the
rotor a-axis with respect to the stator a-axis

- @, is the angle between the stator a-axis and the direct
axis of the reference frame rotating with

- e?.is the difference between these two: Gzz G" @W\ .



10

Without loss of generality it can be assumed that stator and
rotor a-axes are aligned at t=0 and the following set of

equations can be written:

AOm

L - “m,

@l = wlt)

©, = wt - O, (11.3)

In steady state,
Ou = Wit .

The transformation matrix for stator quantities is given by

ref. 1 as
[2 cos @, cos(6y- FF) cos(@y + 3F)
T:‘ = K -5tn @4 "Si"<@4' 273" )-S‘.M(@"f %‘—)

(II.4a)

and for rotor quantities as

T cos O, cos.(@z-%T ) cos(0p %)
2 3 [-4in 62'3('1/\(@2-%3_?) 'Sim(ezfz_;j)

(II.4b)
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The quantities in the Park domain are now obtained by

.YM -
g 7L
)]
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(1I1.5)

According to Kirchhoff's law, the voltage across every

one of the actual machine windings is

v(t) = R 1(t) + S, L(t) 1(1).

(I1.6)

All the voltages and currents can be combined to vectors,

and all the resistances and inductances to matrices to

obtain

VIRIT - A[L@lT) o

where

I

(II.8,b)
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r
[R] = ! ri ) (I1.8c)

I M |
Pz4 -wm, -wm, mcos Oy, MWS(B,- mcos(ewf )
¢ -w, W@, f..) wtwsGu,, weos(6, -2"')
e% qupgezd-zf)“dcosas) +2ﬁ. WGCOSJQ
l - A - Wy
L_]: . 2 A
[ / Cz -y
¢,
.
( L is symmetric.) (11.84)

The machine parameters are defined in Appendix 1.

Combining transformation matrices T, and T, to

1 2
R A
. & ; T, (11.9)

the voltage equations for all six windings can be transformed

into Park's domain:

™ = T(R)T irr + 7 & T L™ L)

TV

- - -1
o(r)T"trr + Tl %t(TI) + T %t(LT ) TI (1I1.10)

-




which is subsequently written as

- d
qu = (qu) qu + (qu) 3t qu + (G) qu. (I1.11)

The term L results from changes in the d and q

d 1
dq 4t “dq
currents. The term (G) qu , also known as the speed
voltage, results from the relative motion of stator amd

rotor windings.

The matrices R , L, and G are evaluated as
dq ’ "dq

Cr 1
- r‘ @’
[Q“‘l] | g N ‘
! F
) i Lq 0 /1 O
= oL 0 M (1I.12)
[ [‘0Q1 ] M O L, O ’
Lo M 0 ¢,

~—
(o

| US|
"

£

£

O

£

x

o
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where s denotes the slip

W

(11.13)

and the modified machine parameters are given in appendix 1.

Letting p denote the time derivative operator, terms can

be combined to obtain the complete voltage equations in terms

of direct and quadrature axis components:

[ \Qil.’ ~r3*'L|r’
Vh( _ OJ,Ly
Vo | | Mp

I Vbzd ‘- 5‘0'f4

-w bl Mp -w,M ] r-":o(l 1

i+ Lp w,M /1f> Lg1

-SW, M Nyt '—zf’ S, Ly | tofn
/4{: SW Ly M+ LzF_ i i'Q’-J

(II.14)



II.5 Generated Mechanical Power and Torque
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Fig. II.4 Power flow

From Fig. II.4, the equation for the external power balance
of the doubly-fed machine can be written:
P

+P +P (II.15)

1 2 F Pldiss + PZdiss m

in stable operation.,

The constant factor y2/3 in Park's transformation matrix
was chosen for power invariance (Ref. 1). Thus, electrical
povwer input can be written in terms of d,q-voltages and

-currents:

T _ T
Py = Vaq1 laq1 ¢ Py = Vao laqz (11.16)

15
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Stator and rotor voltages are substituted from equ. (II.14)

to obtain:
L O,
A IR ] o L
Roe (i eyl) + BT |8y [#] +
om|-4
O wir1,-
* Ty [ O ‘.°“];
0 wHM Lg4
-wMA O J
A R A
?z’ rz(‘d?—*"?l) +
0 . V) S&)H
P ° A [‘f‘z]*ITwM o |[cet2
oAt =g [, © g2 '°Gf 0 swl qu
0 L2 "5(4),‘-20
(I1.17)

The first terms in these two power equations represent the
power dissipated in stator and rotor windings, respectively.
The second terms correspond (Ref. 1) to the time rate of
change of the magnetic field energy; for steady operating

conditions with constant currents these terms vanish.



Comparing (II.17) with (II.15) one can conclude that the
mechanlical power generated must equal the sum of the last

terms in equs. (II.17a,b).

Pu - (w,M -sw,M)(fq:"c(z - Lol qu)

Wy M (('.Q‘r ‘:0(2 - (;)(I(:q;) )
(11.18)

and as

Ty = — = ) (11.19)

the produced torque expressed in terms of d,q-currents is

T ® PM ("q' Lol ™ Lol L.qz ). (II.20)

17



I1.6 Thevenin Equivalent and Phasor Diagrams for Stator

For steady operating conditions, the time derivative terms

in equ. (II.14) vanish.

Let complex phasors be defined as

Yy = Vag I vy
Iy = iqq Y iy
L =i v i,

and define the voltage induced on the stator as

E, = jwM I,

Then, equ. (II.14) can be written as

v, = E +(JUL +r )I
L4
e
SN
L4 |':1
Egz. L4
—0

(1I1.21)

(1I1.22)

(11.23)

Fig. II.5 Thevenin equivalent circuit for the stator

18



From this equation, the single-phase equivalent circuit
for the stator of the doubly-fed machine can be drawn.
Shown in Fig. II.5, it consists of three elements:

- stator winding resistance r1

- stator self inductance L1

- a voltage source representing the voltage induced

by the rotating rotor field.

From equ. (II.23), one can also draw phasor diagrams for the

voltages and the currents. These phasor diagrams will be

useful to have a better insight into the physically reali-
zable steady state conditions. They also provide, to some
extent, an understanding of the dynamical stability limits

of the machine, as will be discussed in Part IV.

Fig. I1.6 is a representation of equ. (II.23). From this

equation, we also have

I4 = _l'{l__ - M Iz (11.24)
= optjwba b
for which a phasor diagram is given in Fig. II.7. In both
phasor diagrams, Q%L">D l, 1is assumed, which holds for all
practical machines. The load angle CJ , defined as the
angle by which the emf phasor induced by rotor current is

lagging with respect to stator voltage 11, is shown in

both diagrams.

19



Fig. II.6 Phasor diagram for the voltages

—c—————— Y

Ly
N w| M I
Rtjwil, Mieguibe =%

Fig. II.7 Phasor diagram for the currents

20
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PART III : ROTOR EXCITATION BY VOLTAGE SOURCE
III.1 Voltage Equations

If a power electronic converter is used for rotor excitation
of the doubly-fed machine, it will provide a set of symmetric
three-phase voltages with variable frequency. An investi-
gation of the properties of such a voltage source-excited
machine has been conducted by Ohi and Kassakian of the
Electric Power Systems Engineering Laboratory at the
Massachusetts Institute of Tecﬁnology (Ref. 6). Part III

of this thesis relies heavily on their publicatlon.

With stator and rotor quantities of the doubly-fed machine
transformed to a reference frame rotating with synchronous
speed ), , the equations for direct and quadrature axis

quantities were found in chapter II.4 to be

PVeuT rr‘fL,P -Liw, MP - Mw, I rl:ou-
Vai | = | Liwy r.+L,f> Mw, M'b Lyl
Vaz Mp  ~Msw, fthyp -Lasw,| | a2
Lth_ I Msw, A‘P (ﬂsSLJ, rz*'LZf{l __ﬁqZJ

(I11.1)

where p denotes the time derivative opefator.
Note that in both the equations for the rotor voltages,
the coefficients depend on the slip s,and thus on the

actual rotational speed of the rotor.
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Slip s was defined in part II as the relative deviation
from synchronous speed:

w,'W\M
wh

Al

(111.2)
The stator of the doubly-fed machine is connected directly
to an infinite bus that provides symmetric three-phase
voltages with constant amplitude JE Va and frequency Wy .
This results in the following direct and quadrature axis

stator voltages:

Vol 4 l
= 3V, .
‘4q4 J_- 4 0 (111.3)

Rotor excitation voltages as provided by a power converter
are assumed to be

- symmetric

of constant rms value V2

of constant frequency W ;
- the emf wave produced by the rotor lags the one produced
by the stator by an electrical angle

higher harmonics of the converter output voltages are

neglected.
Under these assumptions, the following expressions for

direct and quadrature axis rotor voltages are obtained:

V2| = J3 m‘j.
\/42, J—-.\/i -pend

(III.4)
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III.2 Torque~Speed Characteristics

From chapter II.5 it is known that the electromechanical
torque produced by the doubly-fed machine can be expressed

in terms of the d- and gq-currents as

Te = PA (Cqi Loty ~ ol ‘g2 )- )

In References 6, 7 and 8 the steady-state torque-slip
characteristic in terms of stator and rotor applied voltages
is calculated by inverting equation (III.1). The result

is given:by Ref. 8 as

Te © K(s)[ srzv,,z - T, sz

‘/‘ {[qry_fsw, (LiLe- /42 ],,W_J

- (sw,r,L2 -w, N, L, ) mJS]
(111.6)

where

3'Pw, M?
[r,rz- sw.z(L.L{/'* ] t W, (fp,L fSFLZ)(III 7)

k(s) =
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The important result of these calculations, in which
all three sources agree, is that the steady state torque
consists of three major parts.
I, = K(s)sn V2

A (111.8)
is called the primary induction torque and is caused by the
relative motion between the rotor and the rotating electro-
magnetic field induced by the stator currents for nonsyn-
chronous operation, that is, at slip different from zero.

= -WK(s) r}\‘zz

-th (III.9)

is called the secondary induction torque. Its source is
the difference in speed between the rotor body and that
part of the rotating electromagnetic wave that is induced

by the currents in the rotor windings.

K(s)
= ws V‘/z(['?rzf’sw (LitymMy") ]

e i - (sw,f,Lpmwihy Ly ) cos d
(I11.10)

lg

forms the synchronous part of the total torque generated.

This part of the torque stems from the phase difference
between the electromagnetic waves, both rotating at synchro-
nous speed, created by stator and rotor currents, respectively.
This kind of torque propels the synchronous machine, which

has just a rotating permanent or electromagnet as the source
of its rotor field. The synchronous torque component depends

primarily on the load angle, that is, the phase difference
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between stator and rotor electromagnetic waves. In the
case of the doubly-fed machine, however, as can be seen from

equ. (III.10), the synchronous torque is also slip-dependent.

Of the three electromagnetic torque components, the primary
induction torque TIl turns out to be the decisive factor
for dynamic stability. As is seen in Fig. III.1 (taken

from Ref. 6), the torque-speed characteristic of this
particular torque component looks very similar to that of

an induction machine. For a small magnitude of the slip,

the characteristic shows a steep descent. In this operating
range, a speed decrease caused by an increase in load torque
will be effectively counteracted by an increase in electro-
mechanical torque. For larger slips, however, the induction
torque-speed characteristic has a positive slope. A slow-
down of the rotor in this operating range will decrease

the electromechanical torque, which in turn will slow down
the machine even further. Thus, the doubly-fed machine is
inherently unstable for all but a small slip range. This
fact has prevented its successful and economical application

so far.
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Fig. III.1 Induction torque-speed characteristic (Ref.6)

26



27

III.3 State Model

One can now proceed to develop a state model for the voltage
source excited doubly-fed machine with the goal of finding
an appropriate feedback that will stabilize the machine at
all slips. It is the possibility of operating the doubly-fed
machine at any speed between zero and twice synchronous speed

that makes its application interesting at all.

For modeling purposes, the mechanical load torque is assumed
to consist of a constant part and of a damping part proportio-

nal to rotational speed. Thus,

T o= T ¢ K Wy - (III.11)

According to Newton's law, the equation of motion for the

rotating machine is

OLWM —
——— - T .
olt .

(III.12)

For a machine with more than one pole pair, actual angular
speed and angular speed in electrical degrees are not equal.
Rather,
Win = P Wy
(I11.13)
where Wy is the actual rotor speed, Wy,is rotor speed in

electrical degrees and P is the number of pole pairs in the



machine.
Equs. (11) and (13) are substituted into equ. (12) to

obtain

?} ol Wy T Ke
- c——— = e_
P oot P

(III.14)

The load angle d was defined as the angle by which the
rotor field lags the stator field. An increase in rotor
speed above steady state speed will advance the rotor and
its field, thus decreasing the load angle. The differential
equation linking speed and load angle will then be given by

f!' cf = ~-A u]“4

olt (III.15)
where AWy, denotes the deviatlion of rotor speed from steady

state speed.

For a state model, the time derivatives of all the state
varlables have to be expressed as functions of the state
variables themselves and of inputs to the system.

To this end, equ. (III.1) is solved for the time
derivatives of all four currents involved. Together

with equations III.5, 14 and 15, the complete, nonlinear
state model for the doubly-fed machine can be written in

matrix form.

28
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r - . -r -
Cotd Fw [Vots
‘:q'f ‘-Q‘f \/q4
od |t - L
Sl F +[G] Vel
Lqu lj'z qu
Two
AWy AWy -
- - - (111.16)
where
r- e -
n % w,+wmf.; "'z'g -w, B o o
-w,fwmf—;z r,%" Wy, 142 -rz’.‘ o 0
- M
[F]- T W ’%"' R ws+wm".'3"7- 0 0
s Y YT SN 4 S B
2 2 2 a2
02 0z o o o] -1
-Pui, Pui, o o o -%
32 3 ¥
o -% o 4 o
= M t L
[G]=] § o % o o ’
o ,‘% g Sl o
3 ke Wwo .'.
o Fo) o o -(PeZ
- (Pr32) ]

with the abbreviation Z = M2 - L1L2 )

and {Jyo denoting steady state mechanical speed:
Wwo = W, - Wiy  for identical and

Wwo = W, * W3q for opposite phase sequences .
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IIT.4 Linear Model

The derived model now has to be linearized, so that the
well-known methods of analysis in the Laplace domain and

state variable feedback can be applied.

For this purpose, a setpoint must be defined at which the machine
is assumed to be operating steadily when no disturbances are
present. The setpoint values of all variables are denoted

by the subscript "0". The incremental values of all those

quantities, on the other hand, will be denoted with a prefix A .

The state equations are then expanded into Taylor series, and
only the linear parts will be considered. Taking into account
that all state equations equal zero on both sides for setpoint
values, the linearized model for the incremental quantities

is obtained. Note that this model is valid only in a small
subspace of the entire state space in the proximity of one
setpoint, and that its coefficients all depend on the chosen

setpoint.
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The linear state model consists of the following set of six

equations, which are written in matrix form:

]

] m o - -
A(_";M A"_O('( AVj4
o | & Lup =[F ] 8 L2 +[GT ] AV
oAt| A (g9 8Ly 4 Vg,
o) Ad AT,
| AWy ] |4 Wyy|
(II1.17)
with
- L M2 . .
r‘ -2-;1 0)“' ‘lem —r?-g ',‘;‘LIUM 'ﬁg V,sm Jo’e:isg.f‘z"'} qu’_
-U‘f-i Wmo rl it ’%»twm _rza}i‘ ‘ég vzasdo %L‘I‘M‘ft}i:l
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In this linearized model, Avd2 and Aqu denote the deviations
of the Park domain rotor voltages that are caused by changes
in the parameters of the applied voltages, i.e. changes in
amplitude and frequency only, but not those increments
that are due a relative position change of the rotor with
respect to the stator. These latter voltage increments
have been worked into the system matrix F', since they
depend on the state variable d and are thus linearly dependent

"on the increment AJ .
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III.5 Stability

To determine the stablility properties, one now proceeds to
numerical evaluation of the eigenvalues of this linearized
model. Ref. 6 uses machine parameters of a 1.5 hp wound

rotor induction machine which are listed in Appendix 2.

It is found that at slips between -1 and 1, the dynamic
behavior of the machine is always dominated by a pair of poles
close to zero. Unfortunately, the authors do not say under

which load conditions their results were obtained.

As is shown in Fig. III.2, taken from Ref. 6, the real parts
of the dominant system poles are negative for slips close

to zero. Qver the remainder of the speed operating range,
however, the dominant poles are found to lie in the right
half of the complex frequency plane. Analysis of the
linearized model thus leads to the result obtained earlier
by examining the torque-speed characteristic of the
doubly-fed machine with voltage-source rotor excitation:

the machine without feedback is unstable at speeds substan-

tially different from synchronous speed.
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III.6 Stabilization by Speed Feedback

In order to stabilize the doubly-fed machine throughout its
operating range, suitable feedback control must be applied.

In Ref. 6, a "speed feedback"” is used, meaning that the rotor
exciter-converter is controlled to change its output frequency
proportional to the deviation of the rotor speed from

steady state. The feedback equation is given by

Awy = ~KAWy. (111.18)

Ref. 6 claims that this feedback will lead to a modification
of just five elements in the last column of the state trans-
ition matrix F'., However, no explanation of the way towards
obtaining this result is given. Several attempts to retrace
the proceedings have led to different results, depending
upon different ways of defining the state variable J‘ in
the model with feedback. The authors give no indication on
whether in the modified model the phase difference between
stator and rotor fields due to the variation in rotor
frequency is included in the state variable A; or not. In
both cases, however, the result I obtained is different

from theirs; therefore, an error in Ref.6 is assumed.

One then proceeds to find the root loci of the modified
system at different slips. The feedback constant k is chosen
so that the damping ratio of the resulting dominant poles,

defined as
q- Rep
(pl’ (III.19)
is between 0.4 and 0.8 , which will lead to a good damping
of oscillations in the system response. Ref. 6 finds that
the feedback gain has to be ad justed approximately propor-
tional to the operating slip.
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As a verification of this result, the slip-dependent
speed feedback is implemented on the nonlinear machine
model. This simulation glves the deslred result: for
slip -1, corresponding to twice synchronous speed, the
system model shows a stable response to a step load
increase,
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III.7 Comments on Ohi and Kassakian

The paper presented by Ohi and Kassakian shows a method of
stabilization for the voltage-source excited doubly-fed
machine, In their mathematical presentation, the authors
sometimes are not clear enough for the reader to retrace
the path of their calculations. They reach, however, the
desired result: stable operation of the doubly-fed machine
can be secured by a speed feedback through control of the
frequency of the converter-supplied rotor voltage. The
drawback of this control strategy is the fact that the feed-
back gain must be ad justed to varying conditions of load
and slip at which the machine is operating.
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PART IV : ROTCR EXCITATION BY CURRENT SOURCE

IV.1 Voltage equations

Modern power electronic converters, such as the type
developed by Schwarz (Ref. 5), allow excitation of the rotor
with a controlled current rather than a voltage. This method
proves to be beneficial for stability, as the dependence

of rotor current on the mechanical speed of the rotor is
eliminated. The Park domain rotor currents id2’ iq2

are now controlled input variables instead of state
variables. Consequently, only the voltage equations for

the stator windings of the doubly-fed machine need to

be considered: . -
Cutt |
Vet | r,fL,P ~w,L, M’a “W, M| [Clq | (1v.1)
Vy! w,ly r,fL,P wM /‘1,3 Lola|”

| (g2

Linearizing ylelds: Al;o(l
V. . 4 Lg!

AVl | / 4 C?( . (17.2)

4 Vg A an

It is to be noted that these equations do not contain
slip-dependent elements, as opposed to the case where the
doubly-fed machine is excited by voltage sources.

A system using a DC-link converter with controlled DC current
has been investigated in Ref. 7. The high smoothing inductance,
however, leads to a slow response of this converter to

any change in load conditions.

The recent Schwarz converter promises to provide fast change
of the source currents as demanded by the control system.

In this analysis, exciting currents will be assumed to

be controlled in amplitude and frequency. Changes in any

of these parameters are assumed to be instantaneous, as



39
the speed of response of the Schwarz converter is high
in comparison to events linked to the time constants of

the machine.

Rotor winding currents i 20! b2 and 1 o2 2Te thus fixed in

their amplitude (2‘ I, and frequency Wy . Deviations Ato(z ) ALq,_
of the Park domain rotor currents i 2and iqz are caused

by a deviation of the rotor angle from a certain setpoint

value J .

Converter output currents are given as

ta2 An (wyt - ‘Pz)
(%] 'V.I AM(wzt Y.~ ")
Lel ALV (Wat - it 2'—) (1v.3)

Applying Park's transformation gives the rotor currents
for a reference frame rotating with frequency W :
(T2 is taken from equ. II.4)

i lay
tq2 Led ‘ (Iv.4)

which is equivalent (Ref.3) to:

tly )= [5T.[ 5t (wat -f- it + Ous)
qu -Cos (wzf - fo- Wt t Oy ) '(IV.S)

Considering steady-state conditions, _2."'—(,‘)“1 =constant
which results in Oy Wit when 6 0120 1is

assumed. Consequently,
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sin(wpt-f-wittrwat)|
[qu ‘/-Iz[ cos (wat- 1 - Wit rwyt) (1v.5a)

The load angle J is defined as the lag angle of rotor emf

phasor with respect to stator voltage : d= wt-w,t -6+ ifz.
If phase sequence of stator and rotor windings are identical,then
W4T Wt Wy . For opposite phase sequences W, = Wy~ k}z
applies. From this follows that d= (fz

Thus, for both directions of rotor field rotation the

following result holds:

[Lo(l] J'?: Iz[ d
92 (1IV.6)

If the rotor deviates from stable-state torque angle Jo
by a small increment AJ » such that Js Jo+4J , then
Taylor series expansion yields

o R A by XA g PO

(Iv.7)
Therefore,
AL —_
- ot
4iq2 $ (1v.8)

This equation for the incremental quantities Auz ) 4,,’2
is substituted into the voltage equation (IV.2) to give

Aot _[re L p -w b T[ad MP -, M= cos
[AVQ‘I [U,L,P r,fl..r][dl.'q:].l-ﬁ wM Mr [stJAJ 9)



Considering that with the given orientation of cﬁ

dd _ oA 5. _
IZ“oaAJ‘ S W (1V.10)

where AWy, ls the deviation from steady-state speed:

QWi = Wi = Wie = W= (W, F Wy ), (1v.11)
(IV.9) can be written as

4Vl : Atdl -w,siudy wsd,]fad
: " FVRILM ,
Do KR8 o e g
(Iv.12)
For the machine connected directly to an infinite bus with

constant three-phase voltages, 4Vy = 4V = O . Equ. (IV.12)

can now be turned into state equation form:
r “ p Aol
dlacq] [-C @ BETwsiudo -EET,e00d, Jalq
. - [y .
ok A"Ql W ',:: Jg SIzw,COSJo ﬁgIzs«uJ, ad .
'Acduu

(Iv.13)



IV.2 Torque Characteristic

For the complete state model, equations for the mechanical
load angle, speed and torque must be established.
As in Part III, the equation of motion is

o« 3
a dWm 3 = Te = Tu (IV.14)

where the mechanical load torque is assumed as

= Wt
T = Toe K 3 (Iv.15)

and the electromagnetic torque as derived in Part II can be

expressed as

Te = PM (g Cly = Gy Ggg ). (1.16)

From this equation, the steady-state torque as a function
of input stator voltage and rotor current amplitude can
be derived.

Defining complex phasors as explained in chapter II.6,
stator current in steady state is written as

Vitr-qwili) = w MT, (jrorwil)
wlzlqz + ,-'?.

I:

(Iv.17a)
which by substituting (IV.6) for the rotor current results
in

U (rejw ) +fBuw, MTy (siudo +jwosdo )Ghtw, L)
Wl tnt

L=
(IV.17b)

Separating idl = Re 11 and 11 7 Im 11 we have the

Park domain currents

42
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ﬁ\/'r' + E&)'Hrz (w,L, Sc'ud,, ’r' Cofado)

Lol = ?
di w,ZL'Z + r,2 (1V.18a)

; 'EVI wi,t ﬁw.HIz(GS‘VJo*Uo‘—:Wo)
td.’l..z + ,.‘2

o~
£
-~
"

(Iv.18b)

Substitution into the torque equation (IV.16) yields

3PM
‘42h2*nz

o—

le

-
-

VI, (w, L sindo-feosd, ) -w, M1, I, } .
(1v.19)

The torque for current source excitation can be considered to
consist of two terms:

~ the first, proportional to V1 and 12 y 1s called the syn-
chronous torque and depends on the load angle.

- the second, proportional to Ig , 1s called the induction
torque and is relatively small.

Note that the produced torque is independent of the
machine slip.

For the case where stator loss is negligible (r1=0)

_ IPM .
~ L]
le ® VI, sm Cj;, . (1v.20)
U,Lg
This synchronous torque is, as in a synchronous machine,

proportional to the sine of the load angle,and independent
of speed.



In Fig. IV.1, the torque-speed characteristic for

the current excited machine is shown, with load angle d
as a parameter,

Fig. IV.2 shows the dependence of the produced torque on
the load angle. From this diagram it can be concluded
that like a synchronous machine, the doubly-fed machine -
can be operated at a load angle between -90°and +90° .
Beyond these limits, torque decreases and the machine
pulls out of synchronism. To secure stable operation
under changing load conditions, one will usually

observe a safety margin of about 30° from the limit

of + 90°,

Ale - S?A‘%Ig

+F  max® Wy
[
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IV.3 Linear model

For the linear state model, the electromechanical
torque is linearized and incremental quantitles are
considered only.

T° = T° (IV.21) holds in steady state. Then,:

ATe=PA (4L, °¢z+ A'-octhn (1v.22) .
=4l qu Atqz el ).

L.(,— 8T sud,, Alay=-V3T,cosd, ad,

12" "FSI,_C%JQ; Au,z- J.I;SGMJ AJ

ATQ" E?MIQ ('M(j;; Al-?; + Cé&fjo 466(,
- (g 8 Jyad - Gy aeied], & )(1V.23)

With

is obtained.
Let Az =( iq: cosd, + ‘-a(‘; sinel, ). with (1v.18),

A = w,‘Lz f, [J-V(U|(- COS(} rSCMJo) J'SUHU!] (IV.2L)
and ATC=('PM12[,AI:QUC“J0 'él:?,SI.M(/o + Add]. (IV.25)

Writing (IV.1#4) as a state equation and substituting
(Iv.25) results in:

ad 2
of 8 = rf;ﬂ"z [Ac,ucoscf -AL?,MMJ

—

_ K
J ] 3 “ (IV.26)

where ATL is an increment of the speed-independent load
torque.

L5
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At this stage, the complete set of equations for the state
model is established as

s ] [T W BiTusiud, BT, cosdffe ]
d Al.q‘ W -{ ﬁ STzUCosJo ﬁ i‘I‘zosc'uJ 4 ‘3(
oltf 4 o o (/] (o) -4 4
| 8w [(Tacosdy-CTysiudy CAT,, - /3 AW

+[o o o -§AT,_]'

(1v.27)

2
EP A . (Iv.28)
3

Note that from now on, r, L and W will stand for
stator resistance, inductance and frequency.

where C=
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IV.4 Characteristic Equation

The dynamic properties of the system are governed by
the system matrix. To determine wether the system is stable
or not, its characteristic equation is found from

det (pI -F ) =

Development of this determinant gives a polynomial of

fourth order in p:
Ty e
P (I( L+ 23rL)
'P" (}(wzl.zfl”')-(- 2er+IP/1(/3_ALf3U'1L)
P ('PQHrIZQJ?ALfST M)+ k(Wi r?)
1 - (PHMI,(BA W) + 36 T, AL )(1V.29)

Y

+
*-
+
+



IV.5 The Routh-Hurwitz Criterion

The roots of the polynomial (IV.29) can be found
numerically when the machine values and the setpoint of a
certain system are given and can be substituted into

the equation.

It is, however, much more convenient to apply the

Routh-Hurwitz Criterion which provides the necessary

and sufficient conditions for stability in terms of the

parameters and setpoint quantities (Ref. 2).

The Hurwitz Criterion states that for a fourth order linear

system to be stable, it is necessary that

- all five coefficients in the characteristic equation
have the same sign and

- none of these coefficients vanishes.

In addition, the stronger, sufficient conditions for

stability are that the Hurwitz determinants D1 - Dh be

all positive.

The evaluation of the sufficient Hurwitz conditions can

be carried out more conveniently by the method known as

Routh Tabulation (Ref. 2).

For the fourth order polynomial,

sh + a153 + azs2 + aBS + ), = 0,

)

the sufficient conditions for stability are found to be

2,>0 a, >0 a,> 0
1
a, > 2025 g,> Ay &, .
Xy Q,&y " Qo Q 3

(1v.30)
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IV.6 Necessary Stability Conditions for the
Uncontrolled Machine

The Hurwitz criterion states that in a stable system
all the coefficients of the characteristic equation must

be positive.

JL2 > 0 is satisfied, so is

o)

2
a.1 kLL + 2JrL > 0.

The third condition calls for

=5 (W12 + %) + 2k L + P, (AL? + 3 IML)>O.

a
2
(Iv.31)

A is substituted from (IV.24) to obtain the condition
&, F(wier?) e 2k rl ¢+ .
. 'PzMIz[ WVw L3(~£Lsiwtdo +czos dp ) - 3L AT,
ris wté
¢ 3T,ML] > 0.
For all but very small machines it is reasonable to assume

that r << wl. With this assumption the above condition
can be simplified:

(1Iv.32)

2, Jullte2lrl ¢ VI P ML Leosdo . (v.3)

This sum is positive for any Jo within the operating
range '1—;, .’J; ]a.nd therefore satisfies the Hurwitz condition.
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The next coefficient to check is a.,:
Qq = 'P"MrIz(2ﬁAL+ 3I,M) + «L(sz%r‘)

r!+ wl LI

+3Iz )+ wb(szz Fz);

which, under the same assumptions on negligible stator
resistance, can be simplified to yield:

ay = 3PHr I, (Voo dmwHT, )+l |

For ag to be positive, the damping coefficient kL must

(IV.34)

satisfy a certain minimum requirement:

(wMIy-2Veos o, ) . (1v.36)

This necessary condition for stability will be examined in
detail later on, after checking the remaining coefficient

= PIMT, (BA (WiLP+r?) t 3w *TAL)
= PIMT,- 3Vwl (cos JO s‘“‘/ ) (Iv.37)

With re<ud., again, a), is positive throughout the operating
range.

So, the only one of the necessary stability conditions that
is not invariably met under any operating conditions is the

one on a., or kL respectively:
IPMrT
K> ——-E'r£ (WMIz'ZVcosJ ).
The right side of this inequality will, for ¢, € [-g , 7;
never exceed an upper bound that is a function of 12
so, if

9 o 2
3PMFT, (1V.38)

K >
L wrlt

the coefficient a3
for any load angle.

will meet the stability requirement
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The criterion (IV.38) can serve as a primary check on
stability. If kL does not meet this requirement, the machine
will become dynamically unstable at a certain load angle.

The decisive term in (IV.36) is wMIz ‘ZVCO%(/; .
For the case of very small damping, kL=0, this inequality
becomes

2V cos Jo > WM IL

(Iv.39)

and will now be interpreted in terms of operating conditions
by looking at some phasor diagrams.
For convenience, the factor 93 is left out of considerations
in these phasor diagrams.
Fig. IV.3a shows the phasors for underexcited motor operation
of the doubly-fed machine. The quantities of inequ. (IV.39)
correspond to the length of the induction emf phasor
E, = jUM12 and to the projection of the voltage phasor V

2

onto the direction of §2. Clearly, under the conditions

shown in Fig. a, the condition 2VC0SJ°>(4)/112 is met.

As, under fixed load angle, excitation current amplitude
is increased, a critical operating point will be reached
when wMI,* ZVCOQCL Fig. IV.3b shows this operating
point for overexcited moforing.

The same result holds for generating. As excitation is
increased from underexcited (Fig. IV.3c) to overexcited
(Fig. IV.3d), the critical operating point will be reached.



Fig. IV.3c Underexcited generating

4

Fig. IV.3d Overexcited generating

Fig. IV.3 Stability in terms of phasors

52
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It is now interesting to find the critical value I2max
for which, under a given load Pm for a motor or with
a given power input Pm for a generator, the machine becomes
unstable. Using the approximated formula for the torgue,
q—
e = 3P yr, sind
wL 2 (-}

we have the electromechanical power

_ m
'Pm = Wy Te = Wy =— 3 VI, sind , (Iv.40)
from which we conclude that

SL.". Ja = ?M‘WL .

Pm is defined as the electro-mechanical power output of

the doubly-fed motor and would be negative for generator

operation.

The critical condition (IV.39) is

WHT, = Was d « 2VT-siu'd  for J[-L, 1.

Squaring and solving for the positive solution for I2 yields

L [2vEe (ev- <2me SUE

L® WA (IV.41)

The inner square root will always be real; as it was derived
from (1 - sin?d ).



One might also be interested in the critical value of’
the load angle, at which - for a fixed excitation
current - stability is lost. From (IV.36),

WMIZ - wang

= cos d .
2v eP*MrI,V oA

cos C}a>

(IV.41a)

So, for fixed excitation current, the machine becomes un-
stable when the load, and with it the load angle is in-
creased beyond a certain limit J;wwhich can be
positive or negative,

For large excitation current I it can be concluded that

2v 6PMrI,V
the machine is dynamically unstable for any load angle
and even for no-load conditions.

2’
> 4, (1v.41v)
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IV.7 Stabilizing by Feedback

Knowing that the doubly-fed machine will not work stably under
some possible operating conditions, a means of control has

to be found to stabilize it.

There are two parameters in the rotor excitation currents
that can be used as control inputs: current amplitude and
frequency. In the following, it will be examined how the
machine can be stabilized by varying either of these
parameters proportionally to the deviation of rotor speed
from the steady-state speed.
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IV.8 Effect of Rotor Frequency Control

If rotor frequency is increased by a small amount AW,y ,
such that Wy = Who+AWy , then the load angle of
will change with AWy as the time rate of change.

At time t, the load angle will have deviated by

= ¢ ~
Aﬁ = ,g aw, (T) oAT (IV.42)
so that (€)= o, + Aifz (¢) (Iv.43)

Applying Park's transformation to the rotor currents,

the d,gq-currents now are
Lofa }EI ain(dptad-a4,)
Can | 2| cos (otdd/ -4 ) (TV.44)
QZ
where 4d is the change in load angle due to a deviation
of rotor speed from synchronism, and A«fz is the described
deviation of the load angle due to a control variation of

the rotor frequency.

Through Taylor expansion, the current increments are
found to be

sr] . 3T, [~ % ] 45
[4542] i 31-2[ sindy | 49 (17.45)
AJ ,is defined as the combined load angle increment:

Ad'= ad -4 (Iv.462)

Its time derivative is
o(-i'Acf'= ~ AWy, - AW, (1v.46D)

In the voltage equations of the state model (i.e.,

the top two equations) ACf ! and AUm*A‘dp_ now replace
AJ and AWy, The third line is replaced by (IV.46b), which
does not alter the third matrix row.
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The linearized torque equation was given as

d 2 M . » O . .« 9 . Y . .o -
2 sua= P L8y G + 8 g Bl i el ]- EaT,
and 4(:42,4[" are now given by (IV.45). - %{(— SWw

The only term in this expression in which the old variables
cannot be replaced by the new ones is the damping term,
KL/J 4wy This is obvious, as a change in rotor frequency
does not add mechanical friction., It will, however, affect
all the electrical gquantities and the torque angle.

The state model for a machine with controlled rotor frequency
is thus given by

N [Acott [ Alus [0 ]
_Al:qc-_-[F']A'l + | ©
At ad” 4?’ o)
[ 8 W] [8Wmtaw, L'%T'-J
(IV.47)
with A
. E W fi’.EIzusim)o 37 Lws d,
[FI],_, - W -—'E \/i-gTZUMJgL::ZAMC),.
o 0 o - .
| CT,08CT sindy CAT, -5 W

¥ dwutsw,



IV.9 Effect of Rotor Current Amplitude Control

Under. this control strategy, the rms value of the rotor
currents is increased: IZ ot s I,.

This results in the following Park domain currents:

: A
[%“2] = 'E (Izo+4Iz ) cosdo]’
Lq2

so that the increments in these quantities due to the

increment in current amplitude will be

wd
(] Fon[Z o
Adding this term to equ. (IV.12) results in
AVell _[ relp -wl HAL:.U]
[AVql]- wl FH—P Atql
N M[-w,u'«do 8 Jo ][ ad ]
2w nrd, ~andy || AW

BwMwsd, -ﬁﬂmcj,][arz]

-V3wMawd, ’BMCOQC/O paT,
(1Iv.49)

In the torque equation, too, the increments in Park

domain rotor currents have to be substituted by

AL,(z rIz,Co‘SJ ad - J-AIZMJO
BT, micdy 4d- 3 8T cos o, | V040
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and the torque equation (IV.14,22) becomes

ol 2” _ . . .
6Z£¢su)u4='J§TP -3’[ TIEO‘5O¢¢CJ645Lﬁ| f:IQOCGBCJ; 4Ll
-Izo MJQAJ‘:Q‘O - Izo 4“;( C/o dfj‘—‘b(lo
. . . (1v.50)
- 8T, siede Lq.o t 8T8 ol ]
For convenience, the following abbreviations will be used:

-—(c. s, + Uy, Aidy ),
R= —"Qi Acedy * Lol @3y >

C= JEP“':.';. (1v.51)

Earlier, A was shown to be equal to
A= wz Ter [r V(U(.COSJ ~Tacid, ) ,/iw ALT,g [.(1v.24)

In the same manner, by substituting (IV.18) into (IV.51),

B—wllt [,/—V(O)LM() trand, )- ﬁerI;o]_(IV.SZ)

The linear state model for the doubly-fed machine for the case

of amplitude control of the rotor currents can now be for-

mulated as

o .A‘;.o((‘ , rA lf,u 1
olk 8lqi | = [ F ] LYY
ad A
L8 W L& Wil

f-rhwmcfo [4uid, 0141,
¢ | B Bwsid, R4wd, O £ 41,

o (o) 0] -

Al
P L
BC O —'jj

with F' as given in equ. (IV.27). (IV.53)
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IV.10 Rotor Current Frequency Control by Speed Feedback

A feedback is now built into the system that increases

or decreases rotor frequency proportionally to the deviation
of the rotor speed from steady state.
The feedback equation is given by
AW,z ~ KaWy- (IV.54)
Thus, in the state equations,

AWy + 8 Wy = (1-k)aWy (1v.55)
is substituted into (IV.47) and the system matrix becomes

-f w o Biuesid, - RAT@d, (0]

£l o - B Teomd, VB AT,such(%)

o ) o -—(l-k) .
LCIzcosJ,—CIzsiuJ, CAT, - K )
(IV.56)

By the same procedure as in chapter IV.4, the determinant
det ( pI - F' ) is evaluated to find the characteristic equation

0=
P% (e L"+2}rL)
¢ p [ Hrkwil)e 2 rLeP TH(RAL 3T AL )
+(1-k)]
p [l (rlewl?)+ PPUT,r(23AL 3T A )(1-K) ]
+ ’P"MI;[fACr +szz)+3sz‘zML](l k)

= %P t a,,: mzfa + asr t Ry - (1v.57)

For the system to be stable, k has to be chosen in a way

so that the Hurwitz conditions are met.

Clearly, coefficlents a and a, in (IV.57) are positive.



The third coefficient,
@4 = 3(r7-+w"(.1) + 2k rL
+'P"MI,_(EAL”+ ?aIz/'\L)(l'k)) (IV.58)

is approximated for small stator resistance by
a, = Juwii+lk, rl

+ PIAT, (1-k)(3 Leosd, ). (1V.59)
This leads to the following condition on the feedback
gain k

}ng + 2k i
APEAVI, 8 d

K £ | + (1V.60)

This condition will be satisfied if k, as is discussed

later on, is chosen to be smaller than 1.

The coefficient a3. with r neglected and A substituted,
yields
ng K'_szz

+ 3&,?2/1sz((’k)(va‘,o’w/"fz)(lv.éz)

or, equivalently,
wsl?

3PMT,r
In section IV.6 it has been shown that the system could

be stable for 2V cos J°>w/4']:z. Choosing We 4 will

preserve stability in this case.

K, > (k-1)(2Veosd, - WHT, ). (1v.63)

If, however, the uncontrolled system is unstable because

2V¢¢5J°4 WMT, (IV.63) can be reformulated to give

a condition on ki

K wsL?
3P MT, r (WMT,- 2Vends)

kK> [~

(IV.64)
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Stability for any Jo can be reached by adjusting k to the
worst case when ¢o$ Jo =0
K wiL?
——————
3P MT)T
The last coefficient yields, after neglecting r and substi-
tuting for A :

ay = P2MT, 3V (wl easd,)(l-k) >0

K> | - (1IV.65)

(Iv.66)

Within the operating range for Jo , wl @t da’O and the
Hurwitz condition is met by choosing k<1,

So far, only the necessary conditions for stability
have been met. Also, the sufficient conditions need to

be investigated.

The first one, a2a1> a.oa,3 is, with the usual approximation,
evaluated as

atrl? ¢ 3U P, MLE(I-k) Vv cosdot 2} rwdlle g FriL

> - 3FLPWMIL e (1- k) (1V.67)

ard is met for k<&1l.
The second sufficient condition,

ay (aay -2,a3) > aya,*

yields a quadratic expression in (1-k):
[olt (I-k) e[ ct (I-k)b] > a(l-k) (IV.68)

with

a= T, Vwl eosch(l L+t Frl v 4}irt) > 0
b= 3((,_9‘I',_MLV-£) csd, + 3P 2/12'_(27-3,,- >0

¢ = U trl+ 2Frwtl + b Fri>0

o= kewiLlli>o

¢ < 3LPUT, r(Weande-wMTs0)
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Note that e is negative under unstable operating conditions.

Condition (IV.68) is equivalent to
(-k)t be + (1-K)[k tec-al+ e >0,
and from this, the maximal value of (1-k) is found to be

4 1 o’
("K)m=°é('€."c 'nc.) \[ (-lo 3 b:.) :c .
(1v.69)

Since with e<0 the parabola given in the expression

(Iv.68) is opened towards negative function values,
the condition (IV.68) will only be satisfied for
(1-k)<(1-k)max

Solving for k ylelds the condition

K>,+1(S—.+£‘_36

TRY & (Iv.70)
'\[(b e be.)z"%z .

Since e<0 for unstable conditions of the uncontrolled

machine, this lower bound for k is less than one, which

agrees with the conditions obtained earlier.

Summarizing, k for speed feedback frequency control
must satisfy

K=< 4,
> 4 K w3l
K APIMT r(wMI,,—ZVcosJ,) ’
1 ol
R N R T A
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IV.11 Rotor Current Amplitude Control by Speed Feedback

A different way to stabilize the doubly-fed machine is

to vary the amplitude of rotor currents. Heuristically,

the effectiveness of this control strategy can be explained
as follows: if the rotor speed retards in motor operation,
additional electromechanical torque to maintain synchro-
nism is needed. The electromechanical torque is proportional
to rotor current amplitude IZ‘ So, increasing I2 would
result in increased torque production and rotor speed
acceleration can be expected. Likewlse, in generator
operation the electrical torque should be decreasing

with decreasing speed as for this operation, directions

of mechanical load torgue and electrical torque are

reversed in comparison to motoring.

Therefore, a feedback strategy according to

AT, = Kad (Iv.71)
with positive k for motor and negative k for generator
operation shall be investigated.

Equ. (IV.71) is substituted into (IV.53) to give:

Aty [t | [ 8 wensd, ﬂgmkd, 0
9‘ Aiﬁl :.[ F:"] ‘Acq, + JEhgﬁJSﬁaJL Jg ;cwsaL “Acin]f o
A &d o ) ~kewn] | O
4w [owul L &C o) -

where F', again, is the unaltered system matrix from ]
equ. (IV.27).

3 AT,_J
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The feedback terms are now incorporated into the system matrix
to yield:

L w BL0(T, iy ks ) V3E (4 ondl e e sicd
W -{ VB fw (T, cosd, +kadied,) 3 B (T seted,~leeoscl,

(o] © o -]
CTtosdy (T, deindd,  CLAT,,t RK] ~bef 5

. . T

(Abbreviations A, B and C were explained in (IV.51)).

The stability of this system, again, is evaluated by
means of the determinant det (sI -~ F'). This gives the
following characteristic equation for the system with
rotor current amplitude control by speed feedback:

0= P"- Ll
ep3 (L 2FrL )
¢ r‘- [ Footttert)r2igrL + BPHIM AT, 1R U]
+3PM2LT, 2
- T2
+ r - [l (wil%r?) +2J3PAL:—(AI“+8,‘)rSP'Rzl;bzr ]
+ 3PYlT, WiI, -kwr) '"\EP‘M(AIzo*B‘()(QZUHZ)

= 2ot a,pdt a,ptta,pta,.
f .!0 z,o ‘f ¢ (1v.73)
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Coefficients a, and a, clearly are positive.
a, = FU2eed) ¢ U rle R PLAM(AT,+ 8K ) + 3Py '(.5“;)

arnd can be simplified by neglecting terms with stator
resistance and by substituting for A and B to give:

@, = JWL 2 rL « 3PALVD, 2 s d, e3PMLVY, + (1y.95)
. kMd; .
In accordance to the preliminary considerations positive k
will be chosen for motor and negative k for generator operation.
Thus, k sincL will always be positive; and this leads to

positive aye

The coefficient a3 turns out to be the crucial coefficient,
as it did for the uncontrolled and the frequency-controlled

machine,

3=l (Wi r?) + 23 PAL I [ATyo + 8] +3PH T, 1
can be simplified to obtain

= W Wit + 3P
ag= K Wi + :%"_(! (VT cosdl, -wAT,, t Whtadedh]r 1, |

ol 1v.7%6)

This gives the following condition for the feedback gain
k to ensure stability:

Ksiud), > rlo [w/.c[ o~ Wemnd, ] - Uwll L (Iv.78)
Gt/P’vﬂr'

This important condition will be discussed later,

The last coefficient in the characteristic equation is

Q= 3P0 Ttk ) BPH(AT 2 )G )

and can be simplified in the same manner as before:

Ay = YUP (VT wl @3dp + kwlV ciedl, ). (1v.80)
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With k sin d% being positive for both motor and generator

operation, a, is positive.

From the necessary stability conditions, it results
that k must satisfy inequ. (IV.78):

L Izo ‘(LUSLZ )
> =20 TWAHT, -V -x_ - J.
[kl lsmo'.l(zv [wATy-2Veose), ] brriym

This condition shall now be discussed.,

The most significant feature of this inequality is that

kmin contains a factor I/chdz. This makes sense, physically:
from equ. (IV.20), the developed electromechanical torque is
proportional to the product I2 sinck . To maintain stability,
a certain additional accelerating torque must be produced

to maintain synchronism of the rotor and the rotating field
when the rotor speed retards. This is done, under this feed-
back strategy, by increasing the rotor current rms-value

by a certain amount I2. For the accelerating torque to have
the same value at different load angles, it must be

that 4Ty = KéWy is proportional to I/A4o . Then the
accelerating torque will be proportional to the deviation of
rotor speed and independent of the load angle.

One might think that due to the factor |/4uedy, the feedback
gain will have to be very high for small load angles, and
in fact, would approach infinity for operation at zero
load angle. This, however, is not necessary under some minor

constraints, as will now be shown,

From chapter IV.6 it is known that under given excitation
current amplitude, the machine becomes unstable at a certain

load angle, namely

wHM Ty _ K w32
2v 6P MrI,V (1v.41a)

cos JOM =



and that the uncontrolled machine is never stable if
2v eP*MrI,V

For unstable conditions, the feedback gain must satisfy

> 4. (IV.41b)

4 WM Tt KwiLl?
fkl> — o 2t L —IwcosJO](IV-’ZS)
[sind,!| 2V 6VPAr
which is simplified for convenience:
4
kf > =— (& - b cos Jo ) (Iv.81)

(Sl.M Jo'

If a>b>0, we have the case of (IV.41b). The machine is
unstable without control at every load angle including zero.
The machine cannot be stabilized by current amplitude control
at zero load angle, since the accelerating torque is propor-
tional to sin J. . It must therefore be secured that the un-
controlled machine is stable at J.=0, which can be done by
limiting I,,. From (IV.41b), the 1limit on the excitation

current rms value is found to be

Vv VvV 12 WKwrl®
Toowax = JM*‘\/(—; ) + 3‘;’1/12_‘_ . (Iv.82)

This upper limit is greater than twice no-load excitation

current and is not a significant restriction, as the
doubly-fed machine is usually operated at excitation current
amplitudes not greater than 1.5 times no-load amplitude.
With I,,< L, omax from (IV.82), b>a>0 and the uncontrolled
system is stable on the range f"om,"; m]as defined by (IV.i4la).
For this case, the limit for k is the product of the two
functions —S—izé'and (a - b cosd,) which are sketched in Fig. IV.L.
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The product function is shown in Fig. IV.5. The shaded

areas represent the acceptable values of the feedback constant
k which satisfy '

k >0 and k> —— (a - b cosdp) for motor operation and
sin g

k<0 and ke —i—s (a - b coselp) for generator operation.
sin dp



Fig. IV.4 Component functions for k

Fig. IV.5 Minimal feedback gain vs. load angle
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From this qualitative analysis, it can be seen that a constant
feedback gain k can be found to meet the stability condition
at any load angle:
Taking, for motoring mode,

WAIZJ _ L(L wst

> A=
o 2v 6VPIMr ’
(1v.83)
o:< s ~A = _WHIz: m:

S —— +

2V oVP*Mr
for generator operation, respectively, the stability condition
(IV.78) is satisfied for all Jo .

The doubly-fed machine may be operated at various setpoint
excitation current amplitudes, as this allows a varying
absorption or generation of reactive power., In this case,

k either has to be adjusted to the rotor current amplitude
120, or can be chosen to satisfy the stability condition for
the case of maximum excitation current, which is the worst
case that requires the highest feedback gain.

The first sufficient condition for stability,

a.za.1 > a.oa.3

is evaluated with the usual approximations as
2, 'rL+ 23 WrLr ¢ VAP L i L(Tyeond, tlesincl)> -3 30 M4 T

and is satisfied with the previous assumptions on the
" sign of k.

The second sufficient condition leads to a quadratic

expression:

S DN
I R

(¢ +ax)(a + bx) > ex
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where the parameters are defined as

a= 2L +23 Wi « 33P7M T2 SO
b= SVMPL i L >0

e= WU -3PUrl wAT <O

o= GVPHr. >0

e=(kl+ 23r)t-34PWuL >0

x = (Typtosdy t Kaud, ).
(IV.84) is equivalent to
Wace oy > Xuwy = Tye 08 o
-I“CC).'/t«ce?-Ac'_ 2
ith ¢ T - - —f -l - - - - s
R Xewin =26 Tt o/t q(b‘u. boc) ool (T ).

This condition has to be numerically evaluated to find a
possibly stricter lower bound on k than in the necessary

conditions: no general conclusions can be made from this
expression. For the case where xmin>'120' similar to the
considerations made for the necessary condition on Kk,
excitation current I,. has to be lowered so that the machine

20
is stable without control at least for J°= 0. (lote that

2
X, depends on I, from coefficients a and c.)
Then, k>xnin will satisfy the sufficient stability condition
for all load angles , as can be concluded from a graph

analog to Fig. IV.4 and IV.5.

It has thus been shown that the doubly-fed machine can be
stabilized by a proportional feedback of the speed that
controls the rotor current amplitude, as long as the setpoint
rotor current does not exceed a certain limit. This feed-
back strategy is significantly easier to implement on a power
electronic converter than a frequency variation. It is

thus a valuable method of stabilizing the doubly -fed

machine with simple means.
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PART V : CONCLUSIONS

When rotor excitation of the doubly-fed machine is

provided by a power electronic converter as operated in vol-
tage source mode, the machine has been shown to be unstable
except for a very limited slip range. Speed feedback contro-
ling the frequency of rotor voltages has been investigated. This
control strategy is able to stabilize the machine effective-

ly. A major drawback to that strategy, however, is the fact

that feedback gain needs to be ad justed with changing load
conditions and operating speed.

New types of power electronic converters, such as the
Schwarz converter, can be operated as controlled current
sources rather than voltage sources. With rotor excitation
provided by such a converter, it was found that the doubly-
fed machine has significantly more favorable stability
properties:

- The uncontrolled machine is stable as long as the
excitation current and load angle are kept within certain
limits.

- The stability properties are independent of slip.

- Stability does depend, however, on the excitation current,
the load angle, and the mechanical damping coefficient

of the machine-load or turbine-generator system.

In investigating the uncontrolled machine characteristics,
a criterion was found to determine whether the damping
coefficient is sufficient, at a given excitation current
amplitude, for the machine to operate stably under any load

condition.

For the case that the machine is operated beyond the
described stability region for the uncontrolled case,

two stabilizing control strategies have been investigated.
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Under the first strategy, rotor current frequency is control-
led by a speed feedback. The Hurwitz necessary and sufficient
stability conditions demand that the feedback gain must not
exceed unity and that it be chosen greater than a certain

lower bound depending on machine parameters and operating
conditions. A maximum value for this bound was found, such

that if the feedback gain is greater than this greatest

lower bound the machine will operate stably even under changing

load conditions.

Under the second control strategy, speed feedback controls
the rms value of the rotor currents. The Hurwitz conditlons
show that the feedback gain must be positive for motor
operation and negative for generator operation of the machine.
The Hurwitz conditions give a lower bound for the magnitude
of the feedback gain that depends on excitation current and
load angle. It has been shown that for this control strategy
to be effective, the machine must, on a small interval in

the proximity of zero load angle, be stable without control.
This can easily be achieved by keeping the excitation current
amplitude below a damping-dependent limit which is always
greater than twice no-load current. A minimal feedback gain
can then be found that will stabilize the machine under any
load condition within its rated capacity.

Thus, it has been shown that the doubly-fed machine with
current source rotor excitation can be stabilized by either
of these control strategies. The second one promises to be
easy to implement on a power electronic converter, since

it only varies the amplitude of the rotor currents. The

feedback gain in both cases is constant and thus independent
of slip and load.
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For all these qualitative investigations on stability and
bonds on the feedback gain, the state model of the machine
was linearized. This method showed to be very convenient for
obtaining the desired results. Because of the linearization,
however, these results contain inaccuracies. For a more exact
study, Liapunov's direct method can be applied to the nonlinear
machine model; linearization errors are thus avoided. Zven
these calculations, however, can only be as exact as the

measurements on the machine parameters were.

Because of the neglect of stator resistance in most of the
Hurwitz stability conditions, the results will not hold in

the proximity of J, =4 50°. As was explained when examining
the torque-slip characteristic, load angles near 90° need to
be avoided for reasons of transient stability. The neglect of
ry thus does not affect the validity of the derived conditions

on the load angle range used in actual machine operation.

A limitation of the Hurwitz criterion is that no information
is given about the quality of stability if the criterion is
satisfied; i.e., nothing can be sald about the real parts

of the resulting system poles or about their damping ratios.
These properties may be investigated by numerical evaluation
of the characteristic equation. If the results are not satis-
factory, the feedback gain hés to be adjusted accordingly
while still satisfying the Hurwitz conditions.

For the determination of the feedback gain in an actual
machine system, the theory derived in this thesis gives
an estimate of the minimal gain. Starting from this value,
the optimal feedback gain for the system can be found
experimentally in a very convenient way: feedback gain is
increased until the systems dynamic properties are

satisfactory.
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In further studies, the theoretical results of this thesis
may be verified by simulation or by actual experiments.
The effect of certain parameters representing a sample machine
can be studied on a simulation program. Tests can then be made
by substituting different values for the damping coefficient,
excitation current, slip and load conditlons.
Also, feedback of electrical quantities, especially the stator
currents, may be investigated. Preliminary studies have shown
that the analysis of such a feedback be most conveniently
carried out in the Laplace domain. A successful method of
stabilizing the machine by electrical feedback would eliminate
such sensitive instrumentation devices as the tacho-generator

from the system.
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APPENDIX 1
The machine parameters used in the equations throughout

this thesis are defined as

Ty Stator winding resistance per phase

r, Rotor winding resistance per phase

l1 Stator winding self-inductance

l2 Rotor winding self-inductance

my mutual inductance between two stator windings

mutual inductance between two rotor windings
m mutual inductance between a stator and a rotor winding

when the winding axes are fully aligned

The machine parameters in the Park domain are obtained from
the actual parameters by

L 1l, +m

1 1 1

L,y=1, *+nm,
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APPENDIX 2
Machine specifications used for simulation in Ref. 6.

Rated Power: 1.5 hp

Pole pairs: 3

Rated voltage Vlz 220 v
Moment of inertia: 1.4 kg m2
Damping constant: 0.06 Nmsec.

Turns ratio: 3.6

r, =1.09 V/A

r, = 0.084 V/A
L, = 0.208 Vs/A
L, = 0,016 Vs/A
m = 0,037 Vs/A
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