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STABILIZING CONTROL STRATEGIES FOR THE

DOUBLY - EXCITED MACHINE

PART I : INTRODUCTION

The doubly-excited machine is basically a wound-rotor

induction machine. In induction machine operation, rotor

windings are either short-circuited or connected to each

other by variable resistors that allow to change the slip-

torque characteristic of the induction machine.

In the doubly-excited machine, the rotor windings are sup-

plied with an excitation current of a fixed frequency. In

steady operation, stator and rotor fields must rotate at

the same speed. Hence, the frequency of the stator current

must be equal to the sum of the rotor mechanical speed,

expressed in electrical degrees, and the frequency of the

rotor excitation current, when stator and rotor phase

sequences are identical. If these phase sequences are opposite,

the stator frequency must equal the difference of rotor

mechanical speed and rotor excitation current frequency.

Usually, the stator windings of the machine are directly

connected to the utility grid, which can be considered to

supply three-phase source voltages with constant amplitude

and frequency, the so-called "infinite bus". By varying

rotor excitation frequency between zero and grid frequency,
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the doubly-fed machine can rotate at speeds between zero and

synchronous speed. Moreover, for reversed rotor phase sequence,

it can also operate between synchronous and twice synchro-

nous speed. In terms of slip, defined as the relative devia-

tion from synchronous speed, the doubly-fed machine can

operate at slips between one and minus one.

This possibility of operation at various speeds makes the

doubly-excited machine a highly suitable device for appli-

cation to sophisticated electro-mechanical energy conversion

systems. It can be used as a variable speed driving motor

or as a variable speed generator. The generator should be

particularly useful for the generation of electric power

from erratic energy sources such as water or wind. In such

a case, the power input to the prime mover will vary; so will

the speed of the turbine at which maximum efficiency could

occur. With a doubly-excited generator, it would be possible

to electrically control the turbine speed for maintaining

maximum efficiency operation.

The basic reason for the doubly-fed machine not to have found

widespread application in hydroelectric and wind power

plants is the fact that,until quite recently, it was not

possible to make use of power electronic converters capable

of supplying adequate excitation power at varying frequency

to the rotor windings. Another hurdle to overcome was the

observation that with excitation as supplied by a voltage
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source, such as a synchronous generator or a conventional

power electronic converter, the doubly-fed machine is dyna-

mically unstable for all but very small slips.

Recent developments in solid state technology, however,

have shown the design of a suitable power converter to be

quite feasible. The promising potential of the Schwarz

converter in this respect is worth to be mentioned

(Ref. 5). This converter type has the capability to provide

fast controllable current sources, which can be used to

directly exploit the magnetic coupling effect of the machine.

Part II of this thesis presents the mathematical models

used to investigate the steady state and dynamic properties

of the doubly-fed machine.

In Part III, the properties of the machine with rotor

excitation provided by a voltage source are derived.

A recent publication on a strategy to stabilize the machine

over its entire speed range is presented and discussed.

With the mentioned possibility and anticipated benefits

of current source excitation of the rotor windings in view,

a rigorous analysis of this mode of operation is presented

in Part IV. Machine properties with this kind of
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excitation are shown to be much more favorable. For opera-

ting conditions where the machine will not operate stably,

two convenient ways of stabilizing it by feedback control

are presented and analysed.
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PART II : MATHEMATICAL MODEL OF THE DOUBLY-FED MACHINE

II.1 The Machine Configuration

In its construction, the doubly-fed machine is a three-

phase induction machine with wound rotor. Thus it has three

phase windings on its stator as well as its rotor. The

rotor windings are provided with terminals which can be

connected to external circuits through slip rings. The

schematic configuration is shown in Fig. II.1.

Fig. II.1 Configuration of windings on stator & rotor

11.2 System Configuration

The stator windings are connected to a power grid with three-

phase symmetrical voltages of constant frequency GJ14 and

constant amplitude, or equivalently, rms value V1. Such

a power grid is called an "infinite bus" and is a



6

reasonable representation of a power grid connecting a great

number of generators and consumers. To the single machine,

its voltage and frequency will appear constant since they

cannot be significantly effected by the characteristics

of one consumer or generator.

The doubly-fed machine, like any other type of electro-

mechanical power converter for that matter, can work either

as a motor, drawing power from the grid and producing mecha-

nical torque, or as a generator, converting mechanical

power that is supplied to it by a prime mover to electrical

power which is fed into the grid.

On the rotor side, the doubly-fed machine is supplied with

excitation power from a power electronic converter. The

converter produces a set of symmetric three-phase source

voltages of variable rms value V2 and frequency Wz.

Certain converter types can also operate as current sources

rather than voltage sources. Converter output frequency is

taken to be smaller or equal to grid frequency.

Under certain operating conditions, power flow on the rotor

side of the doubly-fed machine is inverted: power is generated

by the machine and supplied to the converter. Thus, in order

to have an efficient system, the converter needs to have the

capability of passing power from its secondary, low-frequency

side back into the grid.



Fig. 11.2 shows the system configuration with the infinite

bus, the power converter and the doubly-fed machine.

Fig. 11.2 System configuration

7
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11.3 Stable Operating Conditions

The currents in the three-phase windings of stator and rotor

each produce a magnetic field rotating with the frequency

of these currents. Thus,the stator field rotates with WI

(or in the actual machine, with (iA/P , as we would have

P pole pairs rather than one). The rotor field rotates

within the machine air gap with the sum of rotor current

frequency th and the rotational speed of the rotor body

(,4, measured in electrical degrees. To produce a steady

torque, both field waves must travel at the same speed.

In steady operating conditions,

6)1 = cjmn t

must hold if phase sequences of stator and rotor are identical.

If the phase sequence of the rotor voltages (or currents)

is reversed,

(A)1 = (,t)%44 (4)2

holds instead.
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11.4 Park's Transformation

For expediency of the analysis, all stator and rotor quanti-

ties (voltages, currents, flux linkages) are transformed into

the so-called Park domain: a reference frame of two ortho-

gonal axes rotating with stator frequency.

Fig. 11.3 d,q-reference frame and angles definitions

Fig. 11.3 shows the definition of the angles used in Park's

transformation:

- Eknis the position angle (in electrical degrees) of the

rotor a-axis with respect to the stator a-axis

- 0 is the angle between the stator a-axis and the direct

axis of the reference frame rotating with

- Otis the difference between these two: ez = ©i
44



Without loss of generality it can be assumed that stator and

rotor a-axes are aligned at t=0 and the following set of

equations can be written:

(A)t

O, cd, t t,, (11.3)

In steady state,

e,A4
t.

The transformation matrix for stator quantities is given by

ref. 1 as

cos 0,
Lsio 0,

and for rotor quantities as

T2

cos C)1

Gz

10

cos (0y- ) cos (e2+

-Sit/1(e2 -Si tA (ezt )



The quantities in the Park domain are now

Tq

(44

1. 154

Lc 4

Lb 2.

c2.

VoR

[ 4) V

According to Kirchhoff's law, the

obtained by

Va

[ T4

Ve 4

=

42,
V C 2

(II.5)
voltage across every

one of the actual machine windings is

v(t) = R i(t) + <7it L(t ) i(t). (11.6)

All the voltages and currents can be combined to vectors,

and all the resistances and inductances to matrices to

obtain

where

go.

V T=

1MM =111,

Lai

Lb

Lc)

Lea

L

c 2
ANA

(11.7)

(II.8a,b)

I

11
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ri

I (II.8c)
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1,1 V1il4 AN vii coS elm 1440X(444-21) VACCSAmil)

e4 444 144COSkutt ) MGM Ow MCC444-1)

e4 ilde"44 4-V144 %Pim* 2{) I'M
cos

eui
- tlx a

X Q2 _ 4142

e2
6.-.

( L is symmetric.) (II.8d)

The machine parameters are defined in Appendix 1.

Combining transformation matrices T
1
and T

2
to

I

14

TZ

0

the voltage equations for all six windings can be transformed

into Park's domain:

TV = T(R)T-1TI + T LT-1TI)

d d
TV = T(R)T 1TI + TLT

-1
Tft(TI) + T

-1
) TI



which is subsequently written as

V
dq

= (R
dq

) I
dq

+ (Ldq) ) I
dq

+ (G) I
dq

.

The term Ldq Ich, results from changes in the d and q
dt

currents. The term (G) I
dq

, also known as the speed

voltage, results from the relative motion of stator and

rotor windings.

The matrices R
dq '

L
dq

and G are evaluated as

geti r2,

rt

LI 0 Ai 0

{ Lai z o L' 0 /I
0 LL 0

0 /1 0 L. 2,

cx]
0 -wILI 0 -401

(4)11-1 0 14,//4 0
o -6w1/1 0 -swit.2

swlii 0 s wiLz 0

13
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where s denotes the slip

S tt.) 4)V.1

and the modified machine parameters are given in appendix 1.

Letting p denote the time derivative operator, terms can

be combined to obtain the complete voltage equations in terms

of direct and quadrature axis components:

ilp -01M
r,+ Lip w,M Mp

m rz +LZp -s(4), L2

Mr s(A), L2 rz+ 12p.,
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11.5 Generated Mechanical Power and Torque

Fig. 11.4 Power flow

From Fig. 11.4, the equation for the external power balance

of the doubly-fed machine can be written:

=
P1

+
P2 Pldiss

+ p
2diss

+ P
m

in stable operation.

The constant factor F3 in Park's transformation matrix

was chosen for power invariance (Ref. 1). Thus, electrical

power input can be written in terms of d,q-voltages and

-currents:

P
1
= v

dql
i
dql

(11.16)
P2 vdq2 idq2.
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Stator and rotor voltages are substituted from equ. (11.14)

to obtain:

2, 1 ot T Cij (.314 I
1P4 = (4( t 1-qt I t oct -2:04 Ai 0 t:

M 14

t Tda 0
. )

o tti
44414 0

?2r rz 0:0(22

+ 1{4(21 -swill 0 Loa]
gf -61 LL 0 (.12. -7 0 tailL2,

0 L2, -wily 0
(11.17)

The first terms in these two power equations represent the

power dissipated in stator and rotor windings, respectively.

The second terms correspond (Ref. 1) to the time rate of

change of the magnetic field energyg for steady operating

conditions with constant currents these terms vanish.



Comparing (II.17) with (II.15) one can conclude that the

mechanical power generated must equal the sum of the last

terms in equs. (II.17a,b).

? = (wr s w,m ) o(2 0o eel 2

and as

4.) wi A 4 ( 2 Co )

WM

r Pt4 4

the produced torque expressed in terms of d,q-currents is

= ?fr (41 doll c'af c:92 ) (II.20)

17
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11.6 Thevenin Equivalent and Phasor Diagrams for Stator

For steady operating conditions, the time derivative terms

in equ. (II.14) vanish.

Let complex phasors be defined as

vdl j vql

1
= i

dl
+

1ql

I =i +ji
2 d2

1q2

and define the voltage induced on the stator as

j47IM

Then, equ. (II.14) can be written as

Vi = E2 (jw,L1 r1 ) Il

T4
11111Nm....

(11.22)

(11.23)

Fig. 11.5 Thevenin equivalent circuit for the stator
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From this equation, the single-phase equivalent circuit

for the stator of the doubly-fed machine can be drawn.

Shown in Fig. 11.5, it consists of three elements:

- stator winding resistance ri

- stator self inductance L1

- a voltage source representing the voltage induced

by the rotating rotor field.

From equ. (11.23), one can also draw phasor diagrams for the

voltages and the currents. These phasor diagrams will be

useful to have a better insight into the physically reali-

zable steady state conditions. They also provide, to some

extent, an understanding of the dynamical stability limits

of the machine, as will be discussed in Part IV.

Fig. 11.6 is a representation of equ. (11.23). From this

equation, we also have

- (P.-!1L.1-

(-4 LA r t j W41-4
o

(11.24)

for which a phasor diagram is given in Fig. 11.7. In both

phasor diagrams, (..),Li>> ri is assumed, which holds for all

practical machines. The load angle Cf , defined as the

angle by which the emf phasor induced by rotor current is

lagging with respect to stator voltage Vi, is shown in

both diagrams.
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"4

Fig. 11.6 Phasor diagram for the voltages

-1100

Fig. 11.7 Phasor diagram for the currents
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PART III : ROTOR EXCITATION BY VOLTAGE SOURCE

III.1 Voltage Equations

If a power electronic converter is used for rotor excitation

of the doubly-fed machine, it will provide a set of symmetric

three-phase voltages with variable frequency. An investi-

gation of the properties of such a voltage source-excited

machine has been conducted by Ohi and Kassakian of the

Electric Power Systems Engineering Laboratory at the

Massachusetts Institute of Technology (Ref. 6). Part III

of this thesis relies heavily on their publication.

With stator and rotor quantities of the doubly-fed machine

transformed to a reference frame rotating with synchronous

speed WI , the equations for direct and quadrature axis

quantities were found in chapter 11.4 to be

ritLIF -Liu), kip -Mw,
Liu), ri t Lir Atwi mr

-frtsw, -L2s,
Asw, M p Lssw,, re 1.2 e

where p denotes the time derivative operator.

Note that in both the equations for the rotor voltages,

the coefficients depend on the slip s,and thus on the

actual rotational speed of the rotor.
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Slip s was defined in part II as the relative deviation

from synchronous speed:

1.00/ GOIA4

WI
(III.2)

The stator of the doubly-fed machine is connected directly

to an infinite bus that provides symmetric three-phase

voltages with constant amplitude a andand frequency (404 .

This results in the following direct and quadrature axis

stator voltages:

V0(, ri
{V q 4

Rotor excitation voltages as provided by a power converter

are assumed to be

- symmetric

, of constant rms value V
2

- of constant frequency (40

- the emf wave produced by the rotor lags the one produced

by the stator by an electrical angle

- higher harmonics of the converter output voltages are

neglected.

Under these assumptions, the following expressions for

direct and quadrature axis rotor voltages are obtained:

I
vg
Val 1TE V2 rcd
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111.2 Torque-Speed Characteristics

From chapter 11.5 it is known that the electromechanical

torque produced by the doubly-fed machine can be expressed

in terms of the d- and q-currents as

Te I= PPS Ulf ((41 4:92 ).

In References 6, 7 and 8 the steady-state torque-slip

characteristic in terms of stator and rotor applied voltages

is calculated by inverting equation (III.1). The result

is givenby Ref. 8 as

Te: [ s Vi
2

r4 Vz2

+ 112' f[ r2 t (4)12 (LtL2 M21 )]4<id
(.404

(sw,r, tt), L1) ccricji

where

V (s
3Pco,

rr, scolz(L,Lz-Atz)114 w2(ral,fsr,11)(m.7)



The important result of these calculations, in which

all three sources agree, is that the steady state torque

consists of three major parts.

4 = 14(S) sr2 Viz

is called the primary induction torque and is caused by the

relative motion between the rotor and the rotating electro-

magnetic field induced by the stator currents for nonsyn-

chronous operation, that is, at slip different from zero.

Trz c -VCs) r,v22

is called the secondary induction torque. Its source is

the difference in speed between the rotor body and that

part of the rotating electromagnetic wave that is induced

by the currents in the rotor windings.

Ws) .1
IS = vz {[ f-sco,2 (1.1L2 -,422)

Aiot r2 C,) cos ci
(III.10)

forms the synchronous part of the total torque generated.

This part of the torque stems from the phase difference

between the electromagnetic waves, both rotating at synchro-

nous speed, created by stator and rotor currents, respectively.

This kind of torque propels the synchronous machine, which

has just a rotating permanent or electromagnet as the source

of its rotor field. The synchronous torque component depends

primarily on the load angle, that is, the phase difference
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between stator and rotor electromagnetic waves. In the

case of the doubly-fed machine, however, as can be seen from

equ. (III.10), the synchronous torque is also slip-dependent.

Of the three electromagnetic torque components, the primary

induction torque T11 turns out to be the decisive factor

for dynamic stability. As is seen in Fig. III.1 (taken

from Ref. 6), the torque-speed characteristic of this

particular torque component looks very similar to that of

an induction machine. For a small magnitude of the slip,

the characteristic shows a steep descent. In this operating

range, a speed decrease caused by an increase in load torque

will be effectively counteracted by an increase in electro-

mechanical torque. For larger slips, however, the induction

torque-speed characteristic has a positive slope. A slow-

down of the rotor in this operating range will decrease

the electromechanical torque, which in turn will slow down

the machine even further. Thus, the doubly-fed machine is

inherently unstable for all but a small slip range. This

fact has prevented its successful and economical application

so far.
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Fig. III.1 Induction torque-speed characteristic (Ref.6)
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111.3 State Model

One can now proceed to develop a state model for the voltage

source excited doubly-fed machine with the goal of finding

an appropriate feedback that will stabilize the machine at

all slips. It is the possibility of operating the doubly-fed

machine at any speed between zero and twice synchronous speed

that makes its application interesting at all.

For modeling purposes, the mechanical load torque is assumed

to consist of a constant part and of a damping part proportio-

nal to rotational speed. Thus,

"rix t V (m.11)

According to Newton's law, the equation of motion for the

rotating machine is

aWm Te 11.
oCE

( III . 12 )

For a machine with more than one pole pair, actual angular

speed and angular speed in electrical degrees are not equal.

Rather,

= eP

(111.13)

where (44 is the actual rotor speed, molls rotor speed in

electrical degrees and P is the number of pole pairs in the
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machine.

Equs. (11) and (13) are substituted into equ. (12) to

obtain

e5. 664)1A4 tx4.

1) oCt
1e, (4.444 T,c,

(111.14)

The load angle cF was defined as the angle by which the

rotor field lags the stator field. An increase in rotor

speed above steady state speed will advance the rotor and

its field, thus decreasing the load angle. The differential

equation linking speed and load angle will then be given by

ot. J= awe
oLE (III.15)

where 4pAudenotes the deviation of rotor speed from steady

state speed.

For a state model, the time derivatives of all the state

variables have to be expressed as functions of the state

variables themselves and of inputs to the system.

To this end, equ. (III.1) is solved for the time

derivatives of all four currents involved. Together

with equations 111.5, 14 and 15, the complete, nonlinear

state model for the doubly-fed machine can be written in

matrix form.



a a

1.14: Lea
of 42

Cr

Wat.

where

ONO
OIND.

.1

a

vou

V44

+G]va2

VI 2

(111.16)

29

14t /4 /41.2 0 0r, i Wit 44 ... rz ""' WvA ---

-14) tcRz r Et L, ALz -r 4 0 01 1 ..,104 ... 2
a_I; ti Ai Li 414 0 02 " '21 "is wVA i

Ai 414 Lt- W Li ri iii -tv -(41 ..- r 0 0
w

o
2. vA a 12o o o -1

-VA. V 2 0ii o k 62 (
3._.

GIS

Lt 0 e 0
0 L2

2
0

/4
2 0 -U 0

14 2
O

I/
0

o o 0 0

with the abbreviation Z = M2 - L1L
21

0

0

and o denoting steady state mechanical speed:
st

44; = - 602,

Wu40 (4h C4)

for identical and

for opposite phase sequences .

4,
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111.4 Linear Model

The derived model now has to be linearized, so that the

well-known methods of analysis in the Laplace domain and

state variable feedback can be applied.

For this purpose, a setpoint must be defined at which the machine

is assumed to be operating steadily when no disturbances are

present. The setpoint values of all variables are denoted

by the subscript "0". The incremental values of all those

quantities, on the other hand, will be denoted with a prefix A .

The state equations are then expanded into Taylor series, and

only the linear parts will be considered. Taking into account

that all state equations equal zero on both sides for setpoint

values, the linearized model for the incremental quantities

is obtained. Note that this model is valid only in a small

subspace of the entire state space in the proximity of one

setpoint, and that its coefficients all depend on the chosen

setpoint.



The linear state model consists of the following set of six

equations, which are written in matrix form:

eL

with

z =

F

A V0(.4

d\44
A Vot2

6 V

4 Igo

(111.17)

31

AI
(441° 4440 RI V Si Cr 42 !i,E)

LI A 12rI gWow - -,t cos dc 4:4,
2 ow() wittit41,4;rivv,si.cio 1_4

, r, yes 4, AL.4: .1.1±14- 0
"r" ti 2'4 t daft

0 0 0 a
o

N.42, A:11°, Pli:d1

Lt
C.)

/4

o
2

L2, 0
Ai LI

i o
"a

0 m
a 0

O 0 o
O 0

/4

a

0
0

0
0
0

p
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In this linearized model, Avd2 and 4vq2 denote the deviations

of the Park domain rotor voltages that are caused by changes

in the parameters of the applied voltages, i.e. changes in

amplitude and frequency only, but not those increments

that are due a relative position change of the rotor with

respect to the stator. These latter voltage increments

have been worked into the system matrix F', since they

depend on the state variable at and are thus linearly dependent

on the increment acr .
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111.5 Stability

To determine the stability properties, one now proceeds to

numerical evaluation of the eigenvalues of this linearized

model. Ref. 6 uses machine parameters of a 1.5 hp wound

rotor induction machine which are listed in Appendix 2.

It is found that at slips between -1 and 1, the dynamic

behavior of the machine is always dominated by a pair of poles

close to zero. Unfortunately, the authors do not say under

which load conditions their results were obtained.

As is shown in Fig. 111.2, taken from Ref. 6, the real parts

of the dominant system poles are negative for slips close

to zero. Over the remainder of the speed operating range,

however, the dominant poles are found to lie in the right

half of the complex frequency plane. Analysis of the

linearized model thus leads to the result obtained earlier

by examining the torque-speed characteristic of the

doubly-fed machine with voltage-source rotor excitation:

the machine without feedback is unstable at speeds substan-

tially different from synchronous speed.
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Fig. 111.2 Real parts of dominant poles over

the speed range (Ref. 6)
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111.6 Stabilization by Speed Feedback

In order to stabilize the doubly-fed machine throughout its

operating range, suitable feedback control must be applied.

In Ref. 6, a "speed feedback" is used, meaning that the rotor

exciter-converter is controlled to change its output frequency

proportional to the deviation of the rotor speed from

steady state. The feedback equation is given by

L. (4.22, = -IBC A t.4),,1 (111.18)

Ref. 6 claims that this feedback will lead to a modification

of just five elements in the last column of the state trans-

ition matrix F'. However, no explanation of the way towards

obtaining this result is given. Several attempts to retrace

the proceedings have led to different results, depending

upon different ways of defining the state variable Oe in

the model with feedback. The authors give no indication on

whether in the modified model the phase difference between

stator and rotor fields due to the variation in rotor

frequency is included in the state variable 41 or not. In

both cases, however, the result I obtained is different

from theirs; therefore, an error in Ref.6 is assumed.

One then proceeds to find the root loci of the modified

system at different slips. The feedback constant k is chosen

so that the damping ratio of the resulting dominant poles,

defined as

(111.19)

is between 0.4 and 0.8 , which will lead to a good damping

of oscillations in the system response. Ref. 6 finds that

the feedback gain has to be adjusted approximately propor-

tional to the operating slip.
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As a verification of this result, the slip-dependent

speed feedback is implemented on the nonlinear machine

model. This simulation gives the desired result: for

slip -1, corresponding to twice synchronous speed, the

system model shows a stable response to a step load

increase.
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111.7 Comments on Ohi and Kassakian

The paper presented by Ohi and Kassakian shows a method of

stabilization for the voltage-source excited doubly-fed

machine. In their mathematical presentation, the authors

sometimes are not clear enough for the reader to retrace

the path of their calculations. They reach, however, the

desired result: stable operation of the doubly -fed machine

can be secured by a speed feedback through control of the

frequency of the converter-supplied rotor voltage. The

drawback of this control strategy is the fact that the feed-

back gain must be adjusted to varying conditions of load

and slip at which the machine is operating.
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PART IV : ROTOR EXCITATION BY CURRENT SOURCE

IV.1 Voltage equations

Modern power electronic converters, such as the type

developed by Schwarz (Ref. 5), allow excitation of the rotor

with a controlled current rather than a voltage. This method

proves to be beneficial for stability, as the dependence

of rotor current on the mechanical speed of the rotor is

eliminated. The Park domain rotor currents i
d2' q2

are now controlled input variables instead of state

variables. Consequently, only the voltage equations for

the stator windings of the doubly-fed machine need to

be considered:

CA1

{vLiHritLip 441 MP - (IV.1)

Vi 441 r1+1.1p k M hip L42
Lep,

Linearizing yields:

.z.d . (IV.2)

LA Vek I i ors Li 2

It is to be noted that these equations do not contain

slip-dependent elements, as opposed to the case where the

doubly-fed machine is excited by voltage sources.

A system using a DC-link converter with controlled DC current

has been investigated in Ref. 7. The high smoothing inductance,

however, leads to a slow response of this converter to

any change in load conditions.

The recent Schwarz converter promises to provide fast change

of the source currents as demanded by the control system.

In this analysis, exciting currents will be assumed to

be controlled in amplitude and frequency. Changes in any

of these parameters are assumed to be instantaneous, as
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the speed of response of the Schwarz converter is high

in comparison to events linked to the time constants of

the machine.

Rotor winding currents i
a2'

i
b2

and i
c2

are thus fixed in

their amplitude F12 and frequency c.A. . Deviations LIComigS4iit

of the Park domain rotor currents id2
and i

q2
are caused

by a deviation of the rotor angle from a certain setpoint

value cle .

Converter output currents are given as

`.it2

i
41.11 (Lott f2.)

Litz = -ilia hiA4.(C4hi- * A. - 2-f- )

Lc.2 4i.0.(4)ze-f2.+ 2Tr)
3

Applying Park's transformation gives the rotor currents

for a reference frame rotating with frequency WI :

(T2 is taken from equ. 11.4)

T2 I f
L

Li52.1 j
C.2

Gitt
1.43121 -I-17

which is equivalent (Ref.3) to:

idZi= Sim (kite -12.- wit s- eim )

(.12 v3 -c°6 (t4)2t t t Ow )1

Considering steady-state conditions,

which results in el44=444e when

assumed. Consequently,

(Iv.4)

(iv.5)

°"w =4) =constant
at I"

el4610) = 0 is



40

ly [4111 (4)tt 12- 44)11 4A4( ( IV. 5a)

1q2, 2 -cos (4)2.i- f= w, e )

The load angle j is defined as the lag angle of rotor emf

phasor with respect to stator voltage : GC= 4.,,t-wit -490. 4.
If phase sequence of stator and rotor windings are identical,then

tacr Wm+ WZ . For opposite phase sequences (A/C.: 444 144
applies. From this follows that cr=

Thus, for both directions of rotor field rotation the

following result holds:

rtizi=
412

(Iv.6)

If the rotor deviates from stable-state torque angle cre,

by a small increment 44f , such that erg cfeaci , then

Taylor series expansion yields

fiva 1 r Aim dol r- r cos cie 7
If 3 Tticos 3'21:V0c/0j 4'1(.12

(Iv.7)

Therefore,

ro&i,1. f_ cos cf. 146.
1.4 6q21

(IV.8)

This equation for the incremental quantities 640;442

is substituted into the voltage equation (IV.2) to give

14vd, 1 r t L, p -14,111{41.41+.1i4/4P
-141'14rc,cialr 4 Cr

WI M SRI v.0)w, l., ritLIP 441 ,,



Considering that with the given orientation of er

dtcr =
d 4cr =

of ott
-. 6

whereammis the deviation from steady-state speed:

4144.4 = L44.44 - Wv.40

(IV.9) can be written as

Ali

(Iv.10)

o L:d1

][1+1AI
sir-4)1541j° coscI0 4,

4 1.11
- -w, cos c f0 -Sicie, Au) .

(IV.12)

For the machine connected directly to an infinite bus with

constant three-phase voltages, 4141:: 41,411= C) . Equ. (IV.12)

can now be turned into state equation form:

4a;At

0(.14(1_1- r, ,7 Jo - ;cos do -I ALI,

dk
r

°cif fa' v6 EiTzwicoscio 14,..flisit4cfoi 4 cf

&Jim

(IV.13)



IV.2 Torque Characteristic

For the complete state model, equations for the mechanical

load angle, speed and torque must be established.

As in Part III, the equation of motion is

adtal = - Ta WI 15 c (Iv .14.)

where the mechanical load torque is assumed as

Tim
(IV.15)

and the electromagnetic torque as derived in Part II can be

expressed as

T 411 i42 )

From this equation, the steady-state torque as a function

of input stator voltage and rotor current amplitude can

be derived.

Defining complex phasors as explained in chapter 11.6,

stator current in steady state is written as

VI(rrit4),L,) (sr, r )

GAIL,2 t rit
(IV.17a)

which by substituting (IV.6) for the rotor current results

in

-jtv, ) (di mit (sit4 +icoscie )Cjrct )

(4),11,2 t rit
(IV.17b)

Separating i
d1

= Re I and i
ql

= Im I
1

we have the

Park domain currents

42
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YsVir, t ritorz(wit, siti cos )

(,),2L,2 r,1
(IV.18a)

-- rI3 V, W,i t (Lot I2( sa4 do + rat i cosdo )

ttA2L12. t ri 2
(IV.18b)

Substitution into the torque equation (IV.16) yields

3 'Pm
2 V I 64) do coscJole u1212+ri tt

The torque for current source excitation can be considered to

consist of two terms:

- the first, proportional to V1 and 12 , is called the syn-

chronous torque and depends on the load angle.

- the second, proportional to 12
2

, is called the induction

torque and is relatively small.

Note that the produced torque is independent of the

machine slip.

For the case where stator loss is negligible (r1=0)

frt
T -it= V T .

W, '

0 (IV.20)

This synchronous torque is, as in a synchronous machine,

proportional to the sine of the load angle, and independent

of speed.



In Fig. IV.1, the torque-speed characteristic for

the current excited.machine is shown, with load angle J

as a parameter.

Fig. IV.2 shows the dependence of the produced torque on

the load angle. From this diagram it can be concluded

that like a synchronous machine, the doubly-fed machine

can be operated at a load angle between -90°and +90° .

Beyond these limits, torque decreases and the machine

pulls out of synchronism. To secure stable operation

under changing load conditions, one will usually

observe a safety margin of about 30° from the limit

of + 90°.

111

;w LrtiTPA

cr

0 WI 01

0 S

1

Fig. IV.1 Torque-speed characteristic

i

Fig. IV.2 Torque-load angle characteristic

4.4
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IV.3 Linear model

For the linear state model, the electromechanical

torque is linearized and incremental quantities are

considered only.
To
e

To
m

(IV.21) holds in steady state. Then,'

Te = ( i.9, etet + a i.42. t:1° (IV.22) .

leC1 Egiet 4 i42 iofi ) -
With

Z.Let - -T1 Jr, 4t:atz - lcos cf. Aci

° -flit cos do, Qi92= J3TZSiMJo 6J)

ATe F??1I2 (-Aiktefo 441, + cos do 440
C:pf C/4 cioAd- ii,(74dc, 41g)(Iv.23)

is obtained.

Jo .0. ri
Let Azi-(i.cesvott.ousiNc4).With(IV.18),

1

A =
L
t

112
{5V, 6,),C, case/. -r; sivdo )-54)1,X4 ( IV .24)

and ATe=. -4sitsiNde t A a ci Jr. ( Iv .25)

Writing (IV.14) as a state equation and substituting

(IV.25) results in

6(4 4E44,4=
rieptiq

+Aajj _

Coo cos d d 44;4 O

(0(

3 L 144

3 (1v.26)

where AT
L

is an increment of the speed-independent load

torque.
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At this stage, the complete set of equations for the state

model is established as

4 (4)1A4 Cl2cosdo - azsit4do C AT20 ;4/3 464)(":41

44,ilati --L.: iiiitcri221,65;t4i:

i
0

4 Cif

oik o d 0 0 4 de

.1- { 0 0 0 -P 6T` j
3

where C=
3

Note that from now on, r, L and 4) will stand for

stator resistance, inductance and frequency.

(Iv.27)

(IV.28)
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IV.4 Characteristic Equation

The dynamic properties of the system are governed by

the system matrix. To determine wether the system is stable

or not, its characteristic equation is found from

det ( pI - F ) = 0 .

Development of this determinant gives a polynomial of

fourth order in p:

tr. IC'
p3. (1.0..14-2.jrL)

C (w2l2t. rt) + 2((o-L +12P 'A ($ ALtf3.-roi.)

(?2,4a2(2,NAL+.33-0) t k,..(4)20+ r2)
4* '1 (riiItaiA(w21.2fr2)1-34.)2I2/10.( iv.29)



IV.5 The Routh-Hurwitz Criterion

The roots of the polynomial (IV.29) can be found

numerically when the machine values and the setpoint of a

certain system are given and can be substituted into

the equation.

It is, however, much more convenient to apply the

Routh-Hurwitz Criterion which provides the necessary

and sufficient conditions for stability in terms of the

parameters and setpoint quantities (Ref. 2).

The Hurwitz Criterion states that for a fourth order linear

system to be stable, it is necessary that

- all five coefficients in the characteristic equation

have the same sign and

- none of these coefficients vanishes.

In addition, the stronger, sufficient conditions for

stability are that the Hurwitz determinants D1 - D4 be

all positive.

The evaluation of the sufficient Hurwitz conditions can

be carried out more conveniently by the method known as

Routh Tabulation (Ref. 2).

For the fourth order polynomial,

a
0
s4 + als3 + a2s2 + a3s + a4 = 0,

the sufficient conditions for stability are found to be

cto > 0 > 0 4.4>
agaz > a.° a's

a., 4142: aoas

(IV.30)
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IV.6 Necessary Stability Conditions for the

Uncontrolled Machine

The Hurwitz criterion states that in a stable system

all the coefficients of the characteristic equation must

be positive.

a0 = JL
2 > 0 is satisfied, so is

a1 = kLL2 + 2JrL > 0.

The third condition calls for

a
2

= J (utL2 + r2) + 2kLrL + P2MI
2

(47AL2 + 3
2
ML),D0.

(Iv.31)

A is substituted from (IV.24) to obtain the condition

azz 3(42Lifrz) t 26t,rL +
Vw 1.1( -t5Lsiti do +cos clu)-34)tLan

rt t (4)2L2

C)> .

(IV.32)

For all but very small machines it is reasonable to assume

that r <Ank/L. With this assumption the above condition

can be simplified:

31.4104.2ksL * 3VI2V,4 L. cos . (IV.33)

This sum is positive for any CJ within the operating

r irrangevil ij and therefore satisfies the Hurwitz condition.
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The next coefficient to check is a3:

a3= Ptl-1 r (25AL + 31-2M ) + Vi.(wt1.1+ rz)

= r :r.2.(21.3v(wicoscio- rsit4 Jo) - 3 to 2/41.22
rt+ Got LI.

+ 14, ( t42L2 t r )7
(11(.34)

which, under the same assumptions on negligible stator

resistance, can be simplified to yield:

ct,g P.-- 3?2Iir XI w (2vcosdu-(4/412.)+w2LZ
(1v.35)

For a3 to be positive, the damping coefficient kL must

satisfy a certain minimum requirement:

r It ( AI1 2Vcos cf. . (IV.36)

W
This necessary condition for stability will be examined in

detail later on, after checking the remaining coefficient

6 1- 9 := VA T2 (IfiA (wall+ r ') f 3t4) 21-2AL)

1)2/11.1* 3VWL (COSCIPSLCi(44 ). (11/.37)

With rt<4., again, a4 is positive throughout the operating

range.

So, the only one of the necessary stability conditions that

is not invariably met under any operating conditions is the

one on a or kL, respectively:

4)

1-2 2. Van cio .

3 t.
The right side of this inequality will, for Jo

never exceed an upper bound that is a function of I;:

so, if

3
3 P2/441-J72

V >
4)2. 1.2"

T2
2

afp2,42r _ (IV.38)

the coefficient a
3

will meet the stability requirement

for any load angle.



The criterion (IV.38) can serve as a primary check on

stability. If kL does not meet this requirement, the machine

will become dynamically unstable at a certain load angle.

The decisive term in (IV.36) is Wirt -2Vcosch,
For the case of very small damping, kL =O, this inequality

becomes

2 V cos cI0 > W hi TL
(IV.39)

and will now be interpreted in terms of operating conditions

by looking at some phasor diagrams.

For convenience, the factarlf7 is left out of considerations

in these phasor diagrams.

Fig. IV.3a shows the phasors for underexcited motor operation

of the doubly-fed machine. The quantities of inequ. (IV.39)

correspond to the length of the induction emf phasor

2
E = NMI

2
and to the projection of the voltage phasor V

onto the direction of E2. Clearly, under the conditions

shown in Fig. a, the condition 2VCOSC4),Willz is met.

51

As, under fixed load angle, excitation current amplitude

is increased, a critical operating point will be reached

when Wire IVC054. Fig. IV.3b shows this operating

point for overexcited motoring.

The same result holds for generating. As excitation is

increased from underexcited (Fig. IV.3c) to overexcited

(Fig. IV.3d), the critical operating point will be reached.
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Vco Jo. /41N.

Fig. IV.3a Underexcited motoring

Fig. IV.3b Overexcited motoring

Fig. IV.3c Underexcited generating

E2(rtiwL)

Fig. IV.3d Overexcited generating

Fig. IV.3 Stability in terms of phasors
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It is now interesting to find the critical value I
2 x

for which, under a given load Pm for a motor or with

a given power input Pm for a generator, the machine becomes

unstable. Using the approximated formula for the torque,

T 461. croe caL
we have the electromechanical power

Te 3 VIZsitcf0
egL

(Iv .4.0)

from which we conclude that

sillcl ?,,- coL

3 4419m V12
P
m

is defined as the electro-mechanical power output of

the doubly-fed motor and would be negative for generator

operation.

The critical condition (IV.39) is

(4) ,44; = 2Vcos for clef -?, J.

Squaring and solving for the positive solution for 12 yields

6,14 { v (it l'i_=-4)2(- )2 )
w#4 ? (IV.41)

The inner square root will always be real, as it was derived

from (1 - sin2J).



One might also be interested in the critical value of

the load angle, at which - for a fixed excitation

current - stability is lost. From (IV.36),

&Mit VLOL1cos = cos
2V 6P 2/44 rI2V

(Iv.41a)

So, for fixed excitation current, the machine becomes un-

stable when the load, and with it the load angle is in-

creased beyond a certain limit cro which can be

positive or negative.

For large excitation current I
2'

it can

if W/412 Vt,t0
3U

2V 6? 1/4rIaV
the machine is dynamically unstable for

and even for no-load conditions.

be concluded that

(IV.41b)

any load angle

51+



55

IV.7 Stabilizing by Feedback

Knowing that the doubly-fed machine will not work stably under

some possible operating conditions, a means of control has

to be found to stabilize it.

There are two parameters in the rotor excitation currents

that can be used as control inputs: current amplitude and

frequency. In the following, it will be examined how the

machine can be stabilized by varying either of these

parameters proportionally to the deviation of rotor speed

from the steady-state speed.
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IV.8 Effect of Rotor Frequency Control

If rotor frequency is increased by a small amount AC4)2. ,

such that 4h= kht4GUi , then the load angle cr

will change with !ith as the time rate of change.

At time t, the load angle will have deviated by

t4t.4.22 CO at-

so that da = do + 4192 CO

(IV.42)

(IV.43)

Applying Park's transformation to the rotor currents,

the d,q-currents now are

r (Clo + 4J-4 192. )

441 18.- 12 cos CTO isc/ 4 <6 ).1
1.12

whereais the change in load angle due to a deviation

of rotor speed from synchronism, and oft is the described

deviation of the load angle due to a control variation of

the rotor frequency.

(Iv.44)

Through Taylor expansion, the current increments are

found to be

[A(:41= rTScilddi
AS 2 *At ci (IV.45)

PI
40 is defined as the combined load angle increment:

Ada' = 4cf-406 (IV.46a)

Its time derivative is

4s,c) = 6 (Aii44 Wz (Iv.46b)

In the voltage equations of the state model (i.e.,

the top two equations) act' and 4 14)44,64)2 now replace

and4141.The third line is replaced by (Iv.46b), which

does not alter the third matrix row.
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The linearized torque equation was given as

Ot
6Wim = L442 f a 442 4( neiton -442 ttit 5d I I.

0 . 4, . .

3
ami4a01,442 are now given by (IV.45). - 1S t- 4(,),,

3
The only term in this expression in which the old variables

cannot be replaced by the new ones is the damping term,

K1/J.4444This is obvious, as a change in rotor frequency

does not add mechanical friction. It will, however, affect

all the electrical quantities and the torque angle.

The state model for a machine with controlled rotor frequency

is thus given by

with

F'

40
+ [ cc),

4 Idv4 441412 -QTR
3

(111.47)

(4) 4) sim lit! lion do
tv ft, Tz4) cos4 Ati Tvsit4 (10

0 0 0
C Tende-Cl2 said° CAlz 4h4.4

4E044 4c0a
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IV.9 Effect of Rotor Current Amplitude Control

Under. this control strategy, the rms value of the rotor

currents is increased: I2: 212 4 1-2

This results in the following Park domain currents:

AWICC4
1(421 = (r2of Ar2) do

7

1.42

so that the increments in these quantities due to the

increment in current amplitude will be

{ 4 442
1-

1
6a =

-art
C63 do .
464 dO

41
Adding this term to equ. (IV.12) results in

raVeo 1_ r f Lp -(4)L 1 f <lied( I

[ 6 veil wt. rt Lp L 4 el

(4), e:41 do costly 4 d
-w cot do -464 do 4 (44A

11w I-1 cos clo 514 014:4( do

5wil 44214 -am. do p 4121

In the torque equation, too, the increments in Park

domain rotor currents have to be substituted by

(IV.48)

(11.1.49)

(A f I2 cio 4 d 4 r, 4(4.44

14 eet 21 1 i1 iT2o44":4 do 4d- tri 41.2 cos cf,
(Iv.8,48)
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and the torque equation (IV.14,22) becomes

:il l 4(4)1A4 2 1-13-1 C-T20 tsek cio 4 el t Tao cos do 4 44,

rzo ando4deit°- 120 444'4 do ddeal°
(iv.50)

4644 egp° 4a24 11d4 46° '

For convenience, the following abbreviations will be used:

A=
B

c =

( cos do

- C. ° Aidicdo

sp 2 L" a

+ eel; 464:t )
Zoe C3 do

Earlier, A was shown to be equal to

(IV.51)

A= ifi VOA coscro-r4444)- triw1/4a2.1.(iv .24)

In the same manner, by substituting (IV.18) into (IV.51),

=ori-,7friv t rand. rr,,,I( N.52)

The linear state model for the doubly-fed machine for the case

of amplitude control of the rotor currents can now be for-

mulated as

t

F

ti.coces cf0 rilisci(do

14)4c10 Icesdo
0 0 0

P

3

I2
oct 412

with F' as given in equ. (IV27). (IV.53)
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IV.10 Rotor Current Frequency Control by Speed Feedback

A feedback is now built into the system that increases

or decreases rotor frequency proportionally to the deviation

of the rotor speed from steady state.

The feedback equation is given by

Au) 2= - (44wvA
(111.54)

Thus, in the state equations,

4(4)(44 + 4 (4)2 = k ) eWiel (IV.55)

is substituted into (IV.47) and the system matrix becomes

1-1
(4) A 11.1-24)s;14do -Ira.tr2ws do 0 k )

F' = -w 1 iii t lioccap wri -4', rtsit4 4 CI -k)
0 o 0 - ( ( - t )

cleft Je-crttado CAI _ wt.

a
(Iv.56)

By the same procedure as in chapter IV.4, the determinant

det ( pI - F' ) is evaluated to find the characteristic equation

o =
, its (KL/4-23rt.)
+ Ft [3(ritoLz)+ tcrL +1112/4 CriAL1+11-214L )

t1 -k)1
1- p Etejrzt4/21.1)+rilItr(2/344+3T2/1 )(I -t4]
t 921-iItC Crz+wiLz) 3t4 Zrzi4 L] (t -k )

aort alf1+ AIL + Asr t tkit (Iv.57)

For the system to be stable, k has to be chosen in a way

so that the Hurwitz conditions are met.

Clearly, coefficients ao and al in (IV.57) are positive.
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The third coefficient,

at, 3(-24,w2-0) + 2 kLr L
?2,112 (a-ALE+ IT,AL) ), (Iv.58)

is approximated for small stator resistance by

=-' 3wh.24- 2. kt,r L
4- ?ziitz(1-14)(3LLcoscio ). (1v.59)

This leads to the following condition on the feedback

gain k :

.at.)st. 4- 2kL(4)r

4 1 4- %Pt' AV I-2, Coi Cf.
(iv.6o)

This condition will be satisfied if k, as is discussed

later on, is chosen to be smaller than 1.

The coefficient a3, with r neglected and A substituted,

yields

lt,s= 14LCO 212

+ ? 2V1 r (I-k )( 2Vcos do -14; ( IV .62)

or, equivalently,

I, WS Ll
> (14-1 )(2VancioW1itz). (IV.63)

31) 1/1; r

In section IV.6 it has been shown that the system could

be stable for 211(coS4)>4.0%. Choosing 1444. will

preserve stability in this case.

If, however, the uncontrolled system is unstable because

2VcA5404 WAT2. , (IV.63) can be reformulated to give

a condition on k:

w L2k> 1

3? 94 T2 r (wi-az- 2 VCVS ) (IV.64)
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Stability for any Jo can be reached by adjusting k to the

worst case when Co l. do= 0 :

1.(1,L4) L 2

1

31)214211T
(IV.65)

The last coefficient yields, after neglecting r and substi-

tuting for A :

cty p amr, 3V (G) L cos t- >0
(11/.66)

Within the operating range for Jo COL COO do>0 and the

Hurwitz condition is met by choosing kt 1.

So far, only the necessary conditions for stability

have been met. Also, the sufficient conditions need to

be investigated.

The first one, a2a1> a0a3 is, with the usual approximation,

evaluated as

2k2. r p trz Lz (I- ) V CoS + 23 inviLl+414,3TIL.

3ILPIAtrzir-(1-k) (11/.67)

and is met for 1[41.

The second sufficient condition,

et% (4142 404) > CtfAlt
yields a quadratic expression in (1-k):

[(At (1-k ) J[ c (1 -k)h] > a( I- k ) (Iv.68)

with

&* zAtra cos4P4.2L 1 4- (4.(ec.jrL. 1- 43-2r z ) > 0

b = 1V,PartAtivie + 3p 2/42/213.1- >0

2.(41-1* 2riott., 41.4..3rz 0
ot = G(1.63 20 >0

r(2Vondo-wAtT20)
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Note that e is negative under unstable operating conditions.

Condition (IV.68) is equivalent to

(t ) 10e f ( 1 - 1.4 )[(00C - ct.3 o(.c >0,
and from this, the maximal value of (1-k) is found to be

/ AL C di !. \/"._ COC

(1-(4)tMajt.: -I( Z.. Z. be +Iiiik-ro be ) be
(IV.69)

Since with e.00 the parabola given in the expression

(IV.68) is opened towards negative function values,

the condition (IV.68) will only be satisfied for

(1-k)4g(1-k)max.

Solving for k yields the condition

K> I -1( + e - )
b e ktt.

1(1 ( 4. e
oC - s2!-be be,

Since eqc0 for unstable conditions of the uncontrolled

machine, this lower bound for k is less than one, which

agrees with the conditions obtained earlier.

(IV.70)

Summarizing, k for speed feedback frequency control

must satisfy

K

Ki.c0312-

> Cwkir2-2Vcoscio
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IV.11 Rotor Current Amplitude Control by Speed Feedback

A different way to stabilize the doubly-fed machine is

to vary the amplitude of rotor currents. Heuristically,

the effectiveness of this control strategy can be explained

as follows: if the rotor speed retards in motor operation,

additional electromechanical torque to maintain synchro-

nism is needed. The electromechanical torque is proportional

to rotor current amplitude 12. So, increasing 12 would

result in increased torque production and rotor speed

acceleration can be expected. Likewise, in generator

operation the electrical torque should be decreasing

with decreasing speed as for this operation, directions

of mechanical load torque and electrical torque are

reversed in comparison to motoring.

Therefore, a feedback strategy according to

arZ= (4461 (IV.71)

with positive k for motor and negative k for generator

operation shall be investigated.

Equ. (IV.71) is substituted into (IV.53) to give:

4(A latwaisc°
4%144c4c1.

u j
4 1(.1( [ 4 I'll t triLt!cvstiao T.CAPS4

RISC/sit 0

Q 4e dd o 0 -kw 0
d 63444 -4T

where F', again, is the unaltered system matrix from

equ. (1V.27).
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The feedback terms are now incorporated into the system matrix

to yield:

0

ii
0

5411=
AD

4t31 csT
4 WvA 3 1*

- ir, to ii16)(1-2. 4cido-frcos do) -4 -1,.1 criocosdek 4(.44)
6) -f: a tit.) (r, c.s4 +k,stido) a it! (1.204,44-«.$4,

0 0 -1
cric:ando-c2-2.4ci44 cE4Iu + 4,k j _k /3

bsia, aii, od (swim] T
(111.72)

(Abbreviations A, B and C were explained in (IV.51)).

The stability of this system, again, is evaluated by

means of the determinant det (sI - F'). This gives the

following characteristic equation for the system with

rotor current amplitude control by speed feedback:

0= p4. 11.2
+ pl. (C4.11t23rL)

1 2 rL364zotr2)t2(cri.flriplehicAiz-otak3
+ 2/4 21.1262

1- p [146°42+ rz ) 21iPIAL r (okrz,, t 8k ) r P.t2r2r,z r I
t 3 Pit 11'20 64z1J20 -kwr) IiiPIM(44126+8fr)(oze#r2)

etF4 + t azr z ot.if 1- Alf
(Iv.73)
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Coefficients a
0
and a

1
clearly are positive.

a2 - 10- 3-(4+rz) f 2fre,r I.+ ?Vittorio+ 3P1A9. rm
iv.74)

and can be simplified by neglecting terms with stator

resistance and by substituting for A and B to give:

44 N 3wat2 t- /krt. 4.
1piRwrio 1.- cosdo t3P9u.Vi41-4 ( iv . 75)

k44ccie
In accordance to the preliminary considerations positive k

will be chosen for motor and negative k for generator operation.

Thus, k sine, will always be positive; and this leads to

positive a2.

The coefficient a3 turns out to be the crucial coefficient,

as it did for the uncontrolled and the frequency-controlled

machine.

4.3 = tejtak.2# r2 *2r3P2Aft.r[Alotetd*SPI'f(iv.76)

can be simplified to obtain

as= tcptil f 311"r r2AC0SCie t 2 VkAaccielz
Iv

This gives the following condition for the feedback gain

k to ensure stability:

14114 > NKr 0- 2Vcescjoi - t4.1031.1

2V 6 VP 1/4r
(IV.78)

This important condition will be discussed later.

The last coefficient in the characteristic equation is

ay= 2p2Airtoctett;0-tevr)tra-PN(Arb,tak)GA)21.2tri)

and can be simplified in the same manner as before:

ait 3/4131(V,Tuto1, caul° Laol,V 4424 ) (IV.80)
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With k sin 4 being positive for both motor and generator

operation, a4 is positive.

From the necessary stability conditions, it results

that k must satisfy inequ. (1V.78):

1 I > r
(Su d. 2.17

nib-Z vc.441 - frc. st.2

vpimr /
This condition shall now be discussed.

The most significant feature of this inequality is that

kmi
n

contains a factor it601:144. This makes sense, physically:

from equ. (IV.20), the developed electromechanical torque is

proportional to the product 12 sine/. . To maintain stability,

a certain additional accelerating torque must be produced

to maintain synchronism of the rotor and the rotating field

when the rotor speed retards. This is done, under this feed-

back strategy, by increasing the rotor current rms-value

by a certain amount 12. For the accelerating torque to have

the same value at different load angles, it must be

that 444= 1454,,,w is proportional to 1/4.44,4 . Then the

accelerating torque will be proportional to the deviation of

rotor speed and independent of the load angle.

p

One might think that due to the factor 11 Moittio, the feedback

gain will have to be very high for small load angles, and

in fact, would approach infinity for operation at zero

load angle. This, however, is not necessary under some minor

constraints, as will now be shown.

From chapter IV.6 it is known that under given excitation

current amplitude, the machine becomes unstable at a certain

load angle, namely

ovrzo c(001L2cos =
2v ("P 14 rI2V (IV.41 a)



68

and that the uncontrolled machine is never stable if

c.,)/41'w 14001-2- > .

OlfrtrI2,,V
(IV.41b)

For unstable conditions, the feedback gain must satisfy

>

1MA del 2V

[ (4)14 rzot KL.Gi'LL

6VP2Iir
which is simplified for convenience:

41

f > ( - cos cl )
sit4 do I

coscrol (IV.78)

(Iv.81)

If a:pb:o0, we have the case of (IV.41b). The machine is

unstable without control at every load angle including zero.

The machine cannot be stabilized by current amplitude control

at zero load angle, since the accelerating torque is propor-

tional to sin ere, . It must therefore be secured that the un-

controlled machine is stable at 4,=.0, which can be done by

limiting 120. From (IV.41b), the limit on the excitation

current rms value is found to be

_ v(4)
rleimAx (4),

t (Tv.82)
PLA1 r

This upper limit is greater than twice no-load excitation

current and is.not a significant restriction, as the

doubly-fed machine is usually operated at excitation current

amplitudes not greater than 1.5 times no-load amplitude.

With I
20 20max

from (IV.82), bz.aA.0 and the uncontrolled

system is stable on the range g A las defined by (IV.41a).

For this case, the limit for k is the product of the two

functions si and (a - b cos4) which are sketched in Fig. iv.4.
4
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The product function is shown in Fig. 11/.5. The shaded

areas represent the acceptable values of the feedback constant

k which satisfy

1
k >0 and k>

Jo
(a - b cos cro) for motor operation and

o

1
k <0 and k<

sin Jo
(a - b cos cio) for generator operation.

o



...
aollm.... `'..

%.

Is
a.- b cos 4

Fig. IV.4 Component functions for k
min

JC

Fig. IV.5 Minimal feedback gain vs. load angle

4

do

69
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From this qualitative analysis, it can be seen that a constant

feedback gain k can be found to meet the stability condition

at any load angle:

Taking, for motoring mode,

/( ;s Gib = 40 /4 j5,2 Vi.w3L2
2V 6VP1/1r

or

nr26 (A.(4)3 L14 4 " tit =
2.V 61/Pt/ir'

(IV.83)

for generator operation, respectively, the stability condition

(IV.78) is satisfied for all Jo .

The doubly-fed machine may be operated at various setpoint

excitation current amplitudes, as this allows a varying

absorption or generation of reactive power. In this case,

k either has to be adjusted to the rotor current amplitude

I
20'

or can be chosen to satisfy the stability condition for

the case of maximum excitation current, which is the worst

case that requires the highest feedback gain.

The first sufficient condition for stability,

a
2
a
1
).a

0
a
3

is evaluated with the usual approximations as

2k,,rLt wzLr4. 3V/4 P it4) frt. L. (170coscio +144144)> - 31p 2n20-22

and is satisfied with the previous assumptions on the

sign of k.

The second sufficient condition leads to a quadratic

expression:

(c + dx)(a + bx):* ex
77
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where the parameters are defined as

2(t,,2rLf23 tcokr 310/42r1.202 >0

b= svMp2wu1.L >0
c. = tc to ttz - ap 2/4 r Wiry; co
et= 6VP2/1/-1) >0

ex*Lf 21r)t31L10VwL

x = (I20 cos Jo k c/o

(IV.84) is equivalent to

V /sic< efo -1-2.0 cos Cfo

with Ktuit4 -
A

)111- (5. 4 - )2: =f(r2:
b et % 4 b 410.

This condition has to be numerically evaluated to find a

possibly stricter lower bound on k than in the necessary

conditions: no general conclusions can be made from this

expression. For the case where xmin:00 120, similar to the

considerations made for the necessary condition on k,

excitation current I
20

has to be lowered so that the machine

is stable without control at least for do= 0. (Note that

xmin depends on I2 from coefficients a and c.)

Then, k:sx will satisfy the sufficient stability condition
min

for all load angles , as can be concluded from a graph

analog to Fig. IV.4 and IV.5.

It has thus been shown that the doubly-fed machine can be

stabilized by a proportional feedback of the speed that

controls the rotor current amplitude, as long as the setpoint

rotor current does not exceed a certain limit. This feed-

back strategy is significantly easier to implement on a power

electronic converter than a frequency variation. It is

thus a valuable method of stabilizing the doubXf-fed

machine with simple means.
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PART V : CONCLUSIONS

When rotor excitation of the doubly-fed machine is

provided by a power electronic converter as operated in vol-

tage source mode, the machine has been shown to be unstable

except for a very limited slip range. Speed feedback contro-

ling the frequency of rotor voltages has been investigated. This

control strategy is able to stabilize the machine effective-

ly. A major drawback to that strategy, however, is the fact

that feedback gain needs to be adjusted with changing load

conditions and operating speed.

New types of power electronic converters, such as the

Schwarz converter, can be operated as controlled current

sources rather than voltage sources. With rotor excitation

provided by such a converter, it was found that the doubly-

fed machine has significantly more favorable stability

properties:

- The uncontrolled machine is stable as long as the

excitation current and load angle are kept within certain

limits.

- The stability properties are independent of slip.

- Stability does depend, however, on the excitation current,

the load angle, and the mechanical damping coefficient

of the machine-load or turbine-generator system.

In investigating the uncontrolled machine characteristics,

a criterion was found to determine whether the damping

coefficient is sufficient, at a given excitation current

amplitude, for the machine to operate stably under any load

condition.

For the case that the machine is operated beyond the

described stability region for the uncontrolled case,

two stabilizing control strategies have been investigated.
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Under the first strategy, rotor current frequency is control-

led by a speed feedback. The Hurwitz necessary and sufficient

stability conditions demand that the feedback gain must not

exceed unity and that it be chosen greater than a certain

lower bound depending on machine parameters and operating

conditions. A maximum value for this bound was found, such

that if the feedback gain is greater than this greatest

lower bound the machine will operate stably even under changing

load conditions.

Under the second control strategy, speed feedback controls

the rms value of the rotor currents. The Hurwitz conditions

show that the feedback gain must be positive for motor

operation and negative for generator operation of the machine.

The Hurwitz conditions give a lower bound. for the magnitude

of the feedback gain that depends on excitation current and

load angle. It has been shown that for this control strategy

to be effective, the machine must, on a small interval in

the proximity of zero load angle, be stable without control.

This can easily be achieved by keeping the excitation current

amplitude below a damping-dependent limit which is always

greater than twice no-load current. A minimal feedback gain

can then be found that will stabilize the machine under any

load condition within its rated capacity.

Thus, it has been shown that the doubly-fed machine with

current source rotor excitation can be stabilized by either

of these control strategies. The second one promises to be

easy to implement on a power electronic converter, since

it only varies the amplitude of the rotor currents. The

feedback gain in both cases is constant and thus independent

of slip and load.
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For all these qualitative investigations on stability and

bonds on the feedback gain, the state model of the machine

was linearized. This method showed to be very convenient for

obtaining the desired results. Because of the linearization,

however, these results contain inaccuracies. For a more exact

study, Liapunov's direct method can be applied to the nonlinear

machine model; linearization errors are thus avoided. :yen

these calculations, however, can only be as exact as the

measurements on the machine parameters were.

Because of the neglect of stator resistance in most of the

Hurwitz stability conditions, the results will not hold in

the proximity of cr.= + 90°. As was explained when examining

the torque-slip characteristic, load angles near 90° need to

be avoided for reasons of transient stability. The neglect of

r
1
thus does not affect the validity of the derived conditions

on the load angle range used in actual machine operation.

A limitation of the Hurwitz criterion is that no information

is given about the quality of stability if the criterion is

satisfied; i.e., nothing can be said about the real parts

of the resulting system poles or about their damping ratios.

These properties may be investigated by numerical evaluation

of the characteristic equation. If the results are not satis-

factory, the feedback gain has to be adjusted accordingly

while still satisfying the Hurwitz conditions.

For the determination of the feedback gain in an actual

machine system, the theory derived in this thesis gives

an estimate of the minimal gain. Starting from this value,

the optimal feedback gain for the system can be found

experimentally in a very convenient way: feedback gain is

increased until the systems dynamic properties are

satisfactory.
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In further studies, the theoretical results of this thesis

may be verified by simulation or by actual experiments.

The effect of certain parameters representing a sample machine

can be studied on a simulation program. Tests can then be made

by substituting different values for the damping coefficient,

excitation current, slip and load conditions.

Also, feedback of electrical quantities, especially the stator

currents, may be investigated. Preliminary studies have shown

that the analysis of such a feedback be most conveniently

carried out in the Laplace domain. A successful method of

stabilizing the machine by electrical feedback would eliminate

such sensitive instrumentation devices as the tacho-generator

from the system.
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APPENDIX 1

The machine parameters used in the equations throughout

this thesis are defined as

r
1

Stator winding resistance per phase

r
2

Rotor winding resistance per phase

. 1
1

Stator winding self-inductance

1
2

Rotor winding self-inductance

m
1

mutual inductance between two stator windings

m
2

mutual inductance between two rotor windings

m mutual inductance between a stator and a rotor winding

when the winding axes are fully aligned

The machine parameters in the Park domain are obtained from

the actual parameters by

Li = 11 + mi

L
2

= 1
2

+ m
2

M = 3/2 m
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APPENDIX 2

Machine specifications used for simulation in Ref. 6.

Rated Power: 1.5 hp

Pole pairs; 3

Rated voltage V1: 220 v

Moment of inertia: 1.4 kg m
2

Damping constant: 0.06 Nmsec.

Turns ratio: 3.6

r1 = 1.09 V/A

r2 = 0.084 V/A

L1 = 0,208 Vs/A

L2 = 0,016 Vs/A

m = 0.037 Vs/A


