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ABSTRACT

>

Wind-generated inertial currents can radiate from the mixed layer as horizontally and vertically propagating
near-inertial internal gravity waves. To study the timescale of the decay of mixed layer energy and the magnitude
of the energy transfer to the ocean below, the authors developed a numerical, linear model on a 3 plane, using
baroclinic modes to describe the velocity field. The model is unforced—wave propagation is initiated by spec-
ifying the mixed layer currents that would be generated by a moving atmospheric front, The numerical results
are interpreted using concepts of modal interference and modal departure that can be evaluated analytically,
thereby permitting predictions of some features of wave field evolution without the need to run the numerical
model. The energy exchange with the pycnocline and deep ocean is explored as a function of the propagation
speed and direction of the front, the horizontal extent of the storm, and the background stratification.

The timescale of energy transfer from the mixed layer to the pycnocline due to modal interference is greatly
affected by the B effect, causing much faster energy transfer for currents generated by southward propagating
fronts. The timescale is typically not a strong function of mixed layer depth; however, the magnitude of the
energy transfer is. Besides modal interference, vertical energy propagation occurs when low modes leave the
area—a possibility for storms of finite horizontal extent. The deep stratification and f also affect the timescale;

climatological examples indicate faster wave evolution at low latitudes.

1. Introduction

Near-inertial oscillations are a commonly observed
feature in the world’s oceans. Nearly circular motions
in a horizontal plane with a frequency near f (the local
Coriolis parameter) are often excited by the passage of
atmospheric fronts. In the mixed layer, wind generation
of near-inertial oscillations has been quite successfully
explained by simple models based on treating the
mixed layer as a solid slab (e.g., Pollard and Millard
1970; Kundu 1976; D’Asaro 1985; Paduan et al.
1989). However, the decay of near-inertial energy in
the mixed layer is not understood as well as the gen-
eration. Possible mechanisms responsible for the de-
crease in mixed layer energy include radiation of linear
internal gravity waves, nonlinear transfer of energy to
other frequency bands, and local turbulent dissipation.

This paper focuses on the decay of mixed layer near-
inertial energy due to the radiation of linear, near-in-
ertial waves. These internal waves are generated by
horizontal convergences and divergences in the mixed
layer that force the fluid below—a process known as
inertial pumping.
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Theoretical considerations show that on an f planc
the horizontal gradients in the mixed layer are created
by the nature of the wind stress forcing. Gill (1982)
showed that a moving atmospheric front will generate
near-inertial oscillations in its wake. The imposed hor-
izontal scale is a function of the speed of the front and
its alongfront structure. A one-dimensional front mov-
ing at a speed C forces the mixed layer currents at a
horizontal wavenumber « = f/C. Linear models de-
veloped by Pollard (1970) and Kundu and Thomson
(1985) used analytical forms of the wind stress and
examined the internal waves created in the wake of the
front. Gill (1984) modeled the waves after the storm
had passed by initializing the mixed layer with hori-
zontally varying currents-—the model then tracks the
subsequent wave propagation.

Other modeling efforts include models by Price
(1983: multilayered in the vertical, hurricane scales),
Rubenstein (1983: multilayered, eddy diffusivity and
bottom porosity ), Greatbatch (1983, 1984: multilevel
ocean, including nonlinearities and entrainment),
Kundu (1986: vertical modes with eddy diffusivity), -
and Shay and Elsberry (1987: hurricane scales, use of
vertical modes on a level or sloping bottom). In these
cases, the models were two-dimensional and run on an
[ plane. One common characteristic of the models is
that the predicted timescale for mixed layer current de-
cay agrees with observations at small horizontal scales
(hurricanes), but not at large scales (atmospheric
fronts and propagating storms ). For large-scale forcing



NoOVEMBER 1995

events the predicted decay timescale is larger than ob-
served.

D’Asaro (1989) demonstrated that the g3 effect
causes a reduction of horizontal scales in time, thus
accelerating the rate of inertial pumping of energy out
of the mixed layer. The meridional wavenumber of the
currents will vary as a function of time as / = [, — ft,
where [, is the initial wavenumber, g the rate of change
of Coriolis parameter with latitude, and ! < 0 denotes
propagation to the south. As a result the radiation of
energy from the mixed layer increases the pycnocline
horizontal kinetic energy (HKE) as ¢® compared with
t? on an f plane. Although some of the numerical ex-
periments performed by Gill (1984) were on a § plane,
more attention was paid to the southward wave prop-
agation than the significance of the effect of the waves
on inertial pumping.

The purpose of this paper is to explore further how
the wind-generated energy radiates from the mixed
layer by the vertical and horizontal propagation of near-
inertial waves. Of particular interest is the timescale of
the decay of mixed layer energy and the magnitude of
the energy transfers to the ocean below. Specifically
we want to understand and quantify the energy transfer
from the mixed layer as a function of the following
initial conditions and background properties:

¢ initial horizontal wavenumber in the mixed layer
(magnitude and direction),

¢ horizontal extent of the storm,

¢ mixed layer depth (seasonal stratification ), and

¢ deep stratification.

To study the radiation of energy from the mixed layer
we use a linear, numerical model on a midlatitude 8
plane. The solution is expanded using vertical modes
in depth and Fourier transformed in x (zonal); the
problem is solved numerically in y (meridional) and
time. The results of the model are interpreted in terms
of linear wave theory. This comparison of the numer-
ical model with wave theory will permit us to use an-
alytical expressions to predict the timescale and mag-
nitude of the energy leaving the mixed layer as a func-
tion of the initial conditions and background properties.
Hence, the energy exchange between mixed layer and
pycnocline can be described without having to run the
numerical model.

We consider our analysis as revisiting the landmark
study by Gill (1984, hereafter referred to as G84). As
in G84, we distribute the wind-generated current, ini-
tially concentrated within the mixed layer, into vertical
modes, and then let the modes propagate horizontally
as free waves. Phase differences between the modes
develop as each mode oscillates at a discrete frequency.
The wave field, which is the sum of all the modes,
evolves from the initial condition and develops nonzero
velocities below the mixed layer. As a result, we have
propagation of energy with depth. The horizontal prop-
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agation of each mode is treated numerically in the me-
ridional direction and spectrally in the zonal.

The model in G84 has been modified to determine
the effect of the initial conditions and background prop-
erties on the wave propagation. We have added the
zonal dimension to the model and determined under
what conditions this dimension is important. The initial
condition of mixed layer velocity has been altered to
represent a velocity field consistent with a propagating
front; the G84 initial conditions are not compatible with
this forcing. The effect of a limited north—south extent
of the forcing is addressed explicitly.

As with all models, some potentially important phys-
ical processes have been neglected, most notably non-
linear dynamics and viscosity. Probably much of the
behavior of the near-inertial wave field can be ex-
plained with linear dynamics; it is certainly the logical
starting point. Failure of the model to explain observed
features will suggest which omitted processes may be
important.

This study is motivated by the observations made
during the Ocean Storms Experiment in the northeast
Pacific Ocean (D’Asaro et al. 1995). Several strong
storm events generated significant near-inertial oscil-
lations in the mixed layer that could be tracked for
weeks as they propagated vertically into the pycno-
cline. The analysis here provides a framework for in-
terpreting these data—the application to the Ocean
Storms data is found in the companion paper Levine
and Zervakis (1995).

The numerical model is presented in section 2. Lin-
ear wave dynamics are discussed in section 3 to provide
a basis for interpreting the model results. The model
results are shown in section 4, demonstrating the de-
pendence of the decay timescale on the initial condi-
tions and background properties; comparison is made
with the behavior of analytical wave theory. A sum-
mary and conclusions are given in section 5.

2. Model formuiation

The model of near-inertial waves is patterned after
the model developed by G84 with some important dif-
ferences. The model is based on the momentum equa-
tions for a linear, inviscid, Boussinesq ocean given by

a T T M

PR )

5 TR, (2)
a 1

0=-F-g2, (3)
Z Po

where x, y, and z denote the zonal, meridional, and
vertical axes, increasing to the east, north, and upward
from the ocean bottom respectively; u, v, w are the
components of the velocity in the x, y, z directions; f
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is the latitude-dependent Coriolis parameter; and the
density has been decomposed into a constant go, a
mean density profile p,(z), and a perturbation density
p'(x,y, z, t). The pressure p has been normalized by
po, consistent with G84. The hydrostatic approximation
has been adopted in the vertical momentum balance.
The ocean is assumed incompressible:

Ou O Ow
—+—+—=0,
ox 08y Oz : (4)
and mass continuity is given by
go'
=—-Nw=0,
po Ot it )

where N is the buoyancy frequency defined by N>
= —g/po(dp,/dz) in which g is the acceleration of
gravity.

Eliminating o’ and w by substituting (3) and (5) into
(4), we retrieve a system of three coupled equations in
three variables, u, v, and p. Since the equations are first
order in time, the initial conditions can be written:

[u(x7 y’ 2, t)a v (X, y7 Z, t)]x=0
= [u'(x, y), v'(x, )18(2)

[p(x, y9 <, t)]:=o=Pi(x» }’)S(Z), (6)

where S(z) is defined to limit the initial currents to the
mixed layer:

l, H_Hmix<Z<H
S(z) =
0, 0<Z<H—Hmix9

where H,,;, is the mixed layer depth, z = 0 is the ocean
bottom, and z = H is the surface. The above formula-
. tion assumes that the mixed layer depth is constant and
the direct effect of the wind does not extend below the
mixed layer.
The vertical dependence of u, v, w, and p is repre-
sented by an expansion into vertical modes:

(7N

©

(u,v,p) = X 0,(ik, U, Bn) $a(2) (8)
n=0
w =23 W.(2), (9

n=1

where the wave functions ¢, and ¢, are eigenfunctions
of

(1 db) 1,
dz(Nz(Z) dz>+c,2,¢" 0 (10)
2 2
d*p, N?(2) (11)

+—¢,=0
dz? c? ¥
and c,? are the eigenvalues; a rigid-lid boundary con-
dition {,(0) = 0, ¢, (H) = 0] is assumed. We will
refer to ¢, as modal eigenspeeds, as they are not phase
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speeds. The eigenspeeds have units of velocity, are a
function of stratification and ocean depth only, and de-
fine the minimum phase speed and maximum horizon-
tal group speed of each vertical normal mode (Kundu
1993). The barotropic mode is neglected since ¢, > ¢,
(virtually instantaneous adjustment), and the baro-
tropic currents are weak (Gill 1982).

For convenience we keep the normalization as in
G84, so that

. (H) = 1, (12)
and the weights o, are defined by the modal expansion
of S(z):

=

S(z) = Y, 0.pa(2).

n=0

(13)

Then, o, denotes the contribution of each mode to the
initial velocity in the mixed layer, while the horizontal
and temporal variation of the wave field is controlled
by the modal coefficients #,, ,, p,, and w,, which are
functions of x, y, and ¢. It is convenient to represent
the zonal variations (x dependence) of #,, ¥,, W,, and
P by a Fourier transform:

+0oo
(ﬁny ﬁnywn,p‘n) = J‘ (ﬁn,ﬁn9wn’ﬁn)e_ikxdx9 (14)

where the caret identifier denotes functions of (k, y, t).
After substituting the modal expansions (8) and (9)
into (1)—(5), Fourier transforming in x (14), and
eliminating W, and p,, we retrieve two coupled equa-
tions in (u, v) that govern the horizontal propagation
of mode n:

82ﬁ” 6{)” 2124 22 aﬁ"
a2 f o cika, + tc,,kay (15)
8%, o, ,0%, ., O,
o +f o +c; ay? + icik By (16)

The system is now fourth order in time and requires
four initial conditions (of which three are independent)
that can be written in terms of ', v, and p’ (6):

[”irn i)n]x=0 =J. [ui, vi]e—ikxdx
o 0] [ [(g_ o0
[at’é?t]_o~ _w[<f” 3x),

(- -2 e

Note that the initial conditions are the same for each
mode.

It is assumed that the horizontal structure of the ini-
tial condition is determined by the speed and direction
of the atmospheric front; the model then tracks the oce-
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anic response after the wind has imparted a velocity
field into the mixed layer. The form of the initial con-
dition is based on results from previous analyses of the
mixed layer response to an infinite front moving with
a finite speed (e.g., Gill 1982; Kundu and Thomson
1985). The solution can be described for each baro-
clinic mode in terms of the advection speed C of the
storm and the eigenspeed ¢, of the mode. When C < ¢,,,
the equation governing the horizontal radiation of the
mode is elliptical, and the solution decays exponen-
tially from the center of the storm. When the storm is
fast, C > c,, the equation is hyperbolic, and the solu-
tion is a wake of near-inertial oscillations propagating
behind the forcing. In the latter case, the mixed layer
inertial oscillations develop a horizontal wavenumber
k = fol C, where f; is the local inertial frequency. The
quantity 27/« is called the ‘‘inertial wavelength’ by
Kundu and Thomson (1985), and D’Asaro (1989)
calls 1/« the ‘‘advection scale’’ of the storm. We as-
sume that the storm is fast relative to ¢,, and since c,
> c¢,, the storm is faster than all modes. Therefore, we
choose the initial mixed layer current to have the form
of a pure inertial oscillation:

[u', v'lioo = UpL(y)[cos(kox + Ly — fot),
sin(kox + Ly — fo) 1] =0

[Pl =0, (18)

where (kq, ly) is the horizontal wavenumber in the di-
rection of C and k = (k} + 13)"/?. The function L(y)
is a smooth, slowly varying function that limits the
north—south extent of the initial disturbance (Fig. 1).
This function models the weakening of a propagating
front. No limit is yet specified in the east—west direc-
tion. The amplitude U, depends on the strength of the
wind and depth of the mixed layer; the detailed analysis
of the momentum transfer from the wind to the mixed
layer can be found elsewhere (e.g., Gill 1982; Kundu
and Thompson 1985). Since the main objective of this
paper is to follow the near-inertial wave propagation
after the storm has passed, we leave U, as an arbitrary
parameter.

Note that the initial condition introduced above is
considerably different than the one used by G84:

(' (¥), v (¥) im0 = UoL(y)[sin(ly), 0]
avi

ou’
5 5] oo

In this formulation k, = 0, but the fundamental differ-
ence is that this initial condition is not consistent with
inertial currents generated by a moving front. This ve-
locity field has the structure of two waves: one propa-
gating northward and one southward, that is, a standing
wave. Also, G84 adopted two values of horizontal ex-
tent: L(y) = « and L(y) = 2xlj' (one wavelength).
In the present study L(y) is a parameter independent
of l().

(19)
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Fic. 1. (a) Example of initial conditions u’ (solid line), v' (dashed
line) as a function of latitude, with a meridional wavelength X
= 2nl;' =~ 628 km and a northern extent Ly = 1000 km. (b) The
normalized HKE of the initial condition, as a function of latitude.
Latitude scale is given in both degrees and kilometers.

Using (18), the Fourier transformed initial condi-
tions (17) for mode n become

ﬁn|r=o = _(_]%)Q
X {[6(k — ky) + 6(k + ko) cos(lyy — fot)
+ i[8(k - ko) — 6(k + ko)]
X sin(Ly = fot) } 1o
Onlimo = M
2
X {[6(k — ko) + 86(k + ko)) sin(lpy — for)
—i[6(k — ko) — 8(k + ko)]
X cos(L,y — for) }Hi=o
Od,|  _ fUL(YY)
ot |,_, 2
X {[6(k — ko) + 6Ck + ky)] sin(lpy — for)
+ i[6(k — ko) — 6(k + k)]
X cos(L,y = fot) }Hi=o
| _ —fUL(y)
ot |,_, 2

X {[6(k— ko) + 0(k+ ko)lcos(lby — fot)
—i[6(k—ko) — 6(k + ko))

X sin(Ly — fot) } =0,
where 6 (k) is the Kronecker delta.

(20)
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Equations (15) and (16) with the initial conditions
(20) are solved numerically in y and ¢ using finite dif-
ferences. The spatial resolution was 10 km and the time
step was 10 min. Typically 30 modes were used: tests
showed that using more modes made a negligible dif-
ference. The domain extended 2500 km north and south
of the central latitude (y = 0). The extent to the north
provides ample space for the initially northward prop-
agating waves to reach their turning latitude and turn
to the south (Anderson and Gill 1979); thus, no special
boundary condition was needed on the northern limit
of the domain. At the southern boundary, we incorpo-
rated a sponge layer; a body friction term was added
to (15) and (16) with a friction coefficient ro(y) in-
creasing linearly from 0 at y = —2000 km to a value
determined by trial and error, at y = 2500 km. The
slope dr,/dy was determined by minimizing the waves
reflected back from the southern boundary. Without a
sponge layer at the southern boundary Anderson and
Gill (1979) demonstrated clearly that waves are re-
flected northward and create interference patterns with
the southward propagating waves. The optimal solution
would be the adoption of an absorbing boundary con-
dition instead of a sponge layer. Such a condition has
been proposed by Higdon (1994 ) for a wave equation
similar to (15) -~ (16); however, it requires an estimate
of the phase speed of the waves. In the present case,
the phase speed is time varying and mode dependent,
so the phase speed would have to be estimated at every
time step and for each mode, which is quite compli-
cated and computationally expensive.

3. Theoretical considerations

Before solving the initial value problem numerically,
it is useful to consider the basic concepts of horizontal
and vertical wave propagation expressed as a sum of
vertical modes. These ideas will be valuable in inter-
preting the numerical solutions and will provide insight
into the dependence of the evolution of the wave field
on the initial conditions (wavenumber and horizontal
extent) and the background properties (mixed layer
depth and stratification).

a. Dispersion relation

We can anticipate the numerical model results by
using ray theory to track the horizontal propagation of
vertical modes. To apply ray theory we assume that the
horizontal dependence of the amplitude of a mode can
be expressed in the form exp[i(kx + ly — wt)]; that
is, each mode can be expressed as a horizontally prop-
agating plane wave with slowly varying wavenumber
and frequency. Substitution into (15) and (16) yields
a fourth-order polynomial for the frequency w; one
root, w = 0, is artificial, introduced by the increase of
the system to fourth order; the second root describes
the vortical mode on an f plane or a Rossby planetary
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wave on a ( plane. The two remaining roots of the
characteristic polynomial are the solutions of the dis-
persion relation for each mode:

wi=fr4+cik*+ 1), (21)

which is the same relation as for internal Poincaré
waves. The near-inertial internal gravity waves follow-
ing (21) will have a much stronger response to the
initial conditions (18) than the Rossby wave solution.
It proves convenient to define at this point a dimen-
sionless parameter e by
ca(k* +17)
f? ’
It can be shown that € is equivalent to the square of the
ratio of the Rossby radius to the horizontal scale (1/«)
of the waves, where the Rossby radius is defined as the
minimum phase speed ¢, divided by f (Gill 1984).
Although ¢ is time and mode dependent, it is, in gen-
eral, less than 0.05 for typlcal midlatitude conditions.
Note that € increases toward the equator.

Using the dispersion relation (21), the ray equations
become (e.g., Lighthill 1978)

dx Bw,,

€ =

(22)

"o 5O
2
2k
f (23)
Q _ ow, oy
dt ol (=Ca)
2l
=< ) (24)
dk  Ow,
== 6“; =0 (25)
2 - —%’y—ﬂ= —B(1+ )72, (26)

where 8 = df/dy. These equations define the ray path
along which the energy in each mode propagates as
well as the wavenumber changes along that ray. Since
the dispersion relation is not a function of ¢ or x, then
w and k are invariant along a ray. Due to the 3 effect
the north—south wavenumber varies as the wave prop-
agates along the ray for small € (26) as

I(t) =1, — pr. (27)

For an initial wavenumber /, < 0 (southward propa-
gation), the magnitude of [ increases linearly in time;
for l, > 0 (northward propagation ), the magnitude in-
itially decreases, goes through zero, and finally in-
creases, linearly in time. As a result of the time depen-
dence of the meridional wavenumber, the rays are
curved (Fig. 2). A northward ray eventually reaches
its turning latitude and turns to the south (Fig. 2a),
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Fic. 2. Example of ray paths for initial wavenumber (ky, /o) of (a) a northward propagating wave
(0.01, 0.01) and (b) a southward propagating wave (0.01, —0.01). The panels on the left display
the ray paths of the lowest four modes, starting at y = 0, as a function of latitude and longitude.
Paths are plotted for no more than 30 days; a mark is plotted on the ray every two days. Note that
the very low modes travel very fast and soon leave the generation area; the higher modes effectively
remain where they were forced. The right panels display the ray paths on a latitude—time plane of
mode 1 that starts from different values of y. Note that it is always the northernmost ray that is
the last to leave the observation point y = 0 (in this case, 50°N) at 7,.

while a southward ray keeps turning more southward
until it crosses the equator (Fig. 2b).

Note that for small €, the components of the group
velocity, C3, and C},, are functions only of the wave-
number component that is in the same direction, k and
1, respectively. Hence, for small ¢ the meridional wave-
number does not have any effect on the zonal propa-
gation of the waves, and vice versa. Also, for small
values of ¢, the dispersion relation (21) can be written
approximately in simpler form:

w,,=f(1+£+'--)mf+

c2(k?+ 1?9
3 o

2 (28)

b. Modal interference (beating )

Gill (1984) explains in detail how the vertical prop-
agation of near-inertial energy is expressed as a sum of
vertical modes at a fixed location. Initially the sum of
the modes matches the function S(z), a constant value
in the mixed layer and zero below. In this problem all
modes have the same initial horizontal wavenumber
(ko, &) . In addition for all modes k = k, is constant in

time, while / changes in time as given in (27). Since
¢ > ¢y, > ¢3 > - - -, the lower the mode the higher its
frequency (21). The frequency of the high modes is
very nearly f, because c, goes to 0 as n = . Since each
mode oscillates at a slightly different frequency, their
relative phase is constantly changing in time. G84 de-
fines as ¢, the time when mode n will become out of
phase with the high modes at frequencies near f;:

T
" (wn—ﬁ)).

At time t;, mode 1 will add destructively to the other
modes in the mixed layer, and the sum of the modes
below the mixed layer will no longer be zero. Thus, we
will observe vertical propagation of energy from the
mixed layer into the pycnocline. At time #,, mode 2
will be out of phase with the high modes and more
energy will have propagated into the pycnocline. How-
ever, this reasoning is oversimplified, since by time ¢,
mode 1 may again be enforcing the mixed layer cur-
rents again. Nonetheless, energy exchanges between
the mixed layer and the pycnocline, called inertial beat-

(29)
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FiG. 3. Contours in days of the timescales (a) ¢, and (b) 7° for n = 1 and 2, for the stratification
profile defined by Eq. (35), with H,;, = 150 m at 50°N. Note: ¢, is plotted as a function of initial
wavenumber (ko, lp); 7" is plotted as a function of initial wavenumber I, and northern extent Ly
for ko = 0. The shaded areas of (b) represent the parameter range where 7h° < t,; that is, mode n
will have propagated away before beating can occur.

ing, can be explained as a result of the interference of s 2, k13 2fom 0 31
vertical modes, and the timescales for these exchanges In— 73" L B2 bn = g (31)

are determined by the frequency differences between
the modes. On an f plane the timescale ¢, is easily cal-
culated since w, is constant.

Here, we incorporate 3-plane geometry into the def-
inition of ¢, (29). Using (27) and (28), w, is now a
function of time:

c2lks + (b = p1)°]
2fo )

Note that this frequency, observed at y = 0, changes in
time, while the frequency following a ray is constant.
This is because the waves observed at y = 0 continually
come from different ray paths. For an Eulerian ob-
server, f = f, (a constant) and w, varies in time; for
an observer moving along a ray, f = f(y) and w, is a
constant. In the present context we analyze the model
results from an Eulerian viewpoint, and thus we use f,
in (21) and equations derived from it. Substituting (30)
into (29), we get a cubic equation for ¢,:

w, = fy + (30)

which has three roots. The smallest, positive, real root
defines the ¢, of interest, that is, the first time at which
mode n will be out of phase with f;,. Figure 3a shows
values for ¢, and ¢, as a function of k, and [, using c,
=28ms'andc, =19 ms™! for Hy, = 150 m and
typical midlatitude deep stratification. Note that the
largest value of t, ~ 20 daysis found atky =0, = 1.5
X 1073 m™', which corresponds to a northward moving
storm. Also note that at high wavenumbers the asym-
metry between northward and southward propagating
waves due to the 3 effect tends to decrease.

¢. Modal departure due to north—south propagation

Ray theory can be used to understand the effect of a
finite north—south extent of the initial disturbance. On
a [ plane the energy of each mode propagates merid-

_ionally at the group velocity (24 ) given by

dy cail _ci(l— Br)

d f f (32)
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for small e. The group velocity can be used to compute
the time it takes for the energy in a mode to propagate
meridionally between two points. The time T it takes
for a mode to travel from y = y, to y = 0 is obtained
by integrating (32) using f = f, + Gy and solving
explicitly for 7:

g2 2o [2foxo + By
B c:p

In the case of initially southward propagating waves (/o
< 0), there is one positive root for y, > 0; there are
no real roots for y, < 0, as the wave never reaches y
= 0 (Fig. 2b). For northward propagating waves (l,
> 0) there are two positive roots when

_ cald
2fB’

(where d,; is the northward distance a ray travels be-
fore turning) representing the two times the ray crosses
y = 0 (Fig. 2a). At the first crossing the wave is prop-
agating northward and at the second it is propagating
southward after reflecting at the turning latitude. Waves
starting at yo < —d,; never reach y = 0. Based on the
above modal propagation estimates, we can determine
the duration for which a mode will be present at y = 0.
We define 7)° as the time when all the energy at mode
n initially to the north or south of y = 0 will have
propagated away and will no longer contribute to the
wave field at y = 0. Figure 2 clearly demonstrates that
it is always the ray that starts from the northernmost
point that is the last to leave the point y = 0, indepen-
dent of the propagation direction of the initial wave.
By replacing y, by Ly in (33), we can calculate the
time 7S after which all the energy of mode n will have
propagated away from y = 0, never to return.

Clearly, 75® is a function of [, and the northern extent
Ly. As an example, the time 78 is contoured in units
of days as a function of initial wavenumber /, and
northern extent Ly for typical midlatitude stratification
with H,;, = 150 m and &, = 0 (Fig. 3b).

] = 0. (33)

Yo > _'dcril = (34)

d. Modal departure due to east—west propagation

Determining the effect of an initial finite east—west
extent is simpler than a north—south extent, since C3,
is constant in time for small e. Let the initial east and
west extent from x = 0 be Lg and Ly . For an eastward
propagating wave (k, > 0), the propagation time
7EW for a mode to go from x = Ly to x = 0 is given
by

ew _ Lw _ foLy

TV = TRl
C;" C,,k()

(35)

After time 7E% mode n will no longer contribute to the
solution at x = 0. For a westward propagating wave,
TEY is also given by (35) after replacing Ly, by Lg.
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e. Comparing the timescales

The timescales of inertial beating #, and the time-
scales of propagation 7)° and 75V are useful concepts
that help in understanding the results of the numerical
model. Both of these timescales are functions of the
modal eigenspeed c, that depends on the stratification
and ocean depth. If 7 or 7% are smaller than ¢,, then
mode n will have propagated away horizontally before
the effect of inertial beating involving that mode would
be observed (Fig. 3b).

To summarize the meridional propagation of the
modes and their relative phase difference, we introduce
Fig. 4. The phase difference A¢, = (w, — f )t between
the seven lowest modes and a perfect inertial current,
representative of high modes, is plotted as a function
of time. Solid horizontal lines are drawn at 7 and 3,
where the low modes add destructively to the high
modes; dashed lines are drawn at 27 and 47, where the
modes interfere constructively. The time ¢, is defined
as the time the phase reaches . Superimposed on the
phase plots are the estimated times NS where all the
energy of a mode will have departed, for various values
of Ly. All the estimates were made for (kq, l) = (O,
0). For example, for a small northern extent of 250 km,
we expect that the first mode will propagate away be-
fore beating with f;,, while the second mode will barely
have time to beat before leaving. On the contrary, for
a large northern extent of 1500 km, mode 1 will add
constructively and destructively many times before
leaving.

4. Model resuits

The numerical model was run to determine the ra-
diation of near-inertial motion from the mixed layer for

time / days
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
TR TSN SR NN SES SN SO SVOR N EN DOUU SR S

10n o

A 250km F
0.1% 5 M s00km
& 1000km

@ 1500 km

Phase difference, (o, - f) t / radians

T T i T T

FiG. 4. Phase difference of the seven lowest modes with a perfectly
inertial current, as a function of time with (k,, /o) = (0, 0). Note that
while all modes start in phase, significant phase differences develop.
The intersection with the line denoting a phase difference n defines
the timescale #,. Overlaid on the phase plots are estimates of the
timescale 705, when a mode will have left the area, for different
values of northern extent Ly.
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a range of initial conditions (horizontal wavenumber,
north—south extent) and background properties (strat-
ification, mixed layer depth). The effect of one factor
on the near-inertial propagation is not independent of
the others; however, some notion of the model behavior
can be obtained from a small number of model exper-
iments. The model results are interpreted with the aid
of the wave concepts discussed in section 3. This pro-
motes a physical understanding of the model and will
permit us to predict model results without actually run-
ning the numerical model.

We chose a stratification profile used in G84 given
by

S
H+Hvin—Z’
0, ZZH—Hmixv

Z< H-— Hg;,

N(z) = (36)

where s = 2.5 ms™! and H,;, = 5o/Ny — H.,. This
profile has a peak N, at the base of the mixed layer,
and s, is chosen to fit a typical ocean profile. This ide-
alized N(z) is compared with historical data from the
Pacific and Atlantic Oceans in Fig. 5. Profiles of the
idealized N(z) for a variety of mixed layer depths are
shown in Fig. 6 with the corresponding values of o,
and c,. The dependence of the wave propagation on the
seasonal (mixed layer depth ) and deep stratification are
considered hereafter.

a. Model experiments: f versus 3 plane

Sample results of model experiments on an fand 8
plane are shown in Fig, 7. In these runs L = 3000 km
and H;, = 100 m. The initial wavenumber is consistent
with a storm front moving southward at 20 m s ~'; that
is, [y ~ =25 X 10 m™' = (—400 km) "' and k, = 0.
Aty = 0 (50°N), the vertically integrated horizontal
kinetic energy (HKE) over the entire depth E; (0 to
4000 m), the mixed layer Ey (0 to H;), and the
pycnocline Epc (Hyix to Hpix + 200 m) are shown in
the upper panels (Fig. 7). The middle panels display
the ¥ component of velocity in the mixed layer as a
function of latitude and time. The modeled currents
were complex demodulated around f;, using a boxcar
window four inertial periods long. The phase was back-
rotated in time at the local inertial frequency f;.

On an fplane, the initial wavenumber /, is too small
for effective inertial pumping (Fig. 7a). Hence Ey
decreases slowly during the first 30 days while / re-
mains constant. The decrease in Ey,. is primarily due
to the vertical propagation into the pycnocline as Er
remains relatively constant. The theoretical timescale,
t; = 35 days, for inertial beating is consistent with the
numerical model decrease in Ey, . That the north—
south extent is finite is not important in this case as
7Y is much greater than ¢, : the waves propagate south-
ward, but very slowly.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25
N/cph
0.1 1 10
0 . vl L vy
50
100 —
150 ~

Depth/m
o
(@]
{

o

(@]

o
{

2000

|

3000

l

{

4000

T T T T T T

FiG. 5. The idealized buoyancy frequency profile (solid line) de-
fined by Eq. (36). Shown for comparison are two zonally averaged
profiles (Levitus 1982) from the North Atlantic (A) and the Pacific
(V) Oceans as well as two individual CTD casts from the North
Pacific Ocean (+, from 47.0°N, 135.7°W, and X, from 47.0°N,
171.6°E). Note the change of scale of the vertical axis at 250-m depth.

On the B plane (Fig. 7b) smaller scales develop in
time as suggested by theory (27). Note that inertial
pumping increases as the horizontal scale decreases. By
day 10 the horizontal scale has decreased to 100 km
(wavelength of 600 km) and much of the energy has
left the mixed layer. This decrease in Ey occurs
around time #, and can be explained by the beating
(destructive interference) of mode 1 with the other
modes. At this time Epc increases, indicating vertical
propagation of energy into the pycnocline, largely due
to the contribution from mode 1. By day 13 there ap-
pears to be an exchange of energy from the pycnocline
back to the mixed layer. This phenomena is reminiscent
of the explanation in G84 for an f plane when mode 1
again becomes in phase with f,. However, here on a 8
plane the phase of mode 1 is increasing at an ever in-
creasing rate ~ ¢* and the phase has already reached
47 by day 13. Hence, explaining this subsequent os-
cillation of energy back into the mixed layer is not pos-
sible using this simple argument. Here E; remains
about the same until day 17; the decrease in E; occurs
at time 7 when the final contribution to mode 1 from
1500 km to the north has propagated away from y = O,
never to return. :

The bottom panels of Fig. 7 display the inertial cur-
rents at y = 0 as they evolve with depth and time;
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FiG. 6. (a) Idealized profiles of buoyancy frequency as defined by Eq. (36) for various mixed layer depths.
The corresponding values of (b) modal coefficient o, and (c) modal cigenspeed c, are plotted as a function of
mode number. Note that while variations in the mixed layer depth have a strong effect on o,, values of c, are

virtually unchanged.

contours of amplitude are superimposed on the current
vectors at selected depths, backrotated at f,. Although
the currents propagate vertically from the mixed layer
downward, Ep: is concentrated within the top 40 meters
of the pycnocline (100—140 m) in both fand g planes.
However, in the 3 plane a larger fraction of the HKE
penetrates into the deep ocean by day 30. In fact, at
times when E,,, =~ 0, the HKE is approximately equally
divided between Epc and the deep water.

As the current vectors have been inertially backro-
tated, a change in direction denotes a frequency differ-
ent from f;. On an f plane at a constant depth, the
current vectors rotate very slowly and monotonically
clockwise in time, which indicates that the frequency
is slightly superinertial. However, on a § plane the cur-
rent vectors rotate faster (mostly clockwise), denoting
a higher frequency. The current in the mixed layer is
homogeneous; there is a significant phase jump across
the base of the mixed layer. At times when the ampli-
tude is a minimum in the mixed layer, subinertial fre-
quencies can be identified for a couple of inertial pe-
riods. In the § plane the currents at depth between 140
and 1000 m are mostly in phase, while the phase seems
to change sign below 2000 m; this pattern suggests the
dominance of low modes in determining the deep wave
field.

b. Understanding the model results: Comparison
with analytical predictions

The model results of vertically integrated HKE as a
function of depth and time for Ly = 250, 500, and 1000
km and H,,;, = 25, 50, 100, and 150 m are shown in
Fig. 8. The initial HKE in J m~*/m of mixed layer is
the same for each value of H,;,. The initial wavenum-
ber in the top four rows is consistent with a storm front
moving southward at 15 ms™' (ko = 0, §y = —0.75
X 10 m™'). In the last row, the initial wavenumber
is set by a storm propagating northward at the same
speed (ko = 0, [, = +0.75 X 10> m™"). The corre-
sponding relative phases, backrotated at frequency f;,
are shown as a function of time at various depths in
Fig. 9.

The decrease in E; can be attributed to horizontal
propagation (Fig. 8). The larger the northern extent Ly,
the longer the time a given mode will contribute at y
= 0. The analytical predictions of timescales 71° as
calculated from (33) are also indicated in Fig. 8. For a
given H,, the decay of the total HKE is faster when
the northern extent Ly is smaller. The first decrease in
E; is coincident with 7)5; this is consistent with the
idea that mode 1 has left y = 0 heading south. For the
smaller extents mode 2 may also leave within the first
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FiG. 7. Example of model results using (a) an f plane and (b) a § plane. Both runs were initialized identically
with a small southward propagating meridional wavenumber /, = (400 km)~'. The top panels display Er
(heavy line), E\qy (light line), and Epc (dotted line), at y = 0, as a function of time. The middle panels display
the u component of mixed layer current as a function of latitude and time. The bottom panel displays inertially
backrotated horizontal current vectors sampled at y = O as a function of depth and time. Superimposed on the
stick diagrams are contours of the horizontal current speed in centimeters per second.

30 days causing an additional decrease in Er. Note that
the waves initially going northward (last row, Fig. 8)
persist for a longer time before finally propagating
away to the south.

The decrease in E,, that is in excess of the decrease
in Ey is the result of vertical propagation. Hence, Epc
increases as E,; decreases. The timescale #, marks
when mode 1 first becomes out of phase with f; and
results in significant vertical propagation. As men-
tioned in section 4a, subsequent oscillations between
E\ and Epc are not easily understood in terms of modal
beating. For the case of Ly = 1000 km the effect of

inertial beating is clearly evident for mode 1. When Ly
= 250 km the timescale ¢, is not relevant as 75 < ¢,;
hence, mode 1 has left and therefore cannot beat with
other modes. However, there is still vertical propaga-
tion of energy, but it cannot be explained by beating.
In this case the vertical propagation can be understood
in terms of the sum of modes. Initially, the sum of
modes below the mixed layer was zero. After mode 1
leaves, the sum can no longer be zero. In the mixed
layer the amplitude of the inertial oscillation was due
to the sum of modes, all in phase. When a mode leaves,
the sum has to be smaller. Thus, the departure of the
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FiG. 8. HKE as a function of time for various model experiments at y = 0. Shown are Er (heavy
line), Eyy (light line), and Epc (dotted line). The initial wavenumber (ko, ly) in the top four rows is
(0, —7.5 X 10~* m™") (southward propagating) and in the bottom row is (0, +7.5 X 107 m™")
(northward propagating). The value of H,,, varies for each row from 150 to 25 m; the northern
extent Ly varies for each column from 1000 to 250 km. The timescales ¢, and 75° (section 3) are
shown for modes 1 and 2. (Note the superscript ‘‘NS’’ has been dropped for clarity.)

low modes resuits in a downward propagation of en- agreement with the changes of HKE due to vertical and
ergy. For southward propagating initial conditions, the horizontal propagation respectively. Similar timescale
analytically predicted values of ¢, and 71 are in good arguments for northward propagating initial conditions
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are reasonable (Fig. 8, bottom), but 7, seems to under-
estimate the mixed layer decay by a few days.

The detailed phase structure is quite complicated
(Fig. 9). The slope of each phase line defines the local
frequency at a certain depth; as the currents are back-
rotated by f;, horizontal lines denote perfectly inertial
currents. Positive slopes represent superinertial fre-
quencies, while negative slopes correspond to subiner-
tial currents. The distance between phase lines denotes
the phase difference with depth, a quantity related to
vertical wavenumber; the temporal change of phase
difference between two depths reveals the change of
vertical structure in time.

The overall frequency changes in time can be un-
derstood somewhat by examining the frequency
changes of each mode. However, the frequency is the
complicated result of adding the contribution from each
mode and depends on both the frequency and magni-
tude of each mode. In general the mixed layer fre-
quency is about 1.005f;, and the frequency increases
with depth, resulting in significant phase changes with
depth.

c. Effects of mixed layer depth on the evolution of the
wave field

The quantitative changes in HKE that are associated
with the timescales ¢, and 755 depend on the relative
modal decomposition of the initial condition, that is,
upon o,. The magnitude of the initial velocity U, does
not affect the time evolution. The values of ¢, and ¢,
for the cases shown in Fig. 5 are presented in Table 1
and Fig. 6 for the five lowest modes.

The fraction of energy initially in mode 1, that is,
o, increases dramatically with mixed layer depth. This
fact can explain much of the model dependence on
H.... As was seen in Fig. 8, at time 7} mode 1 energy
leaves y = 0 causing a decrease in E;. The magnitude
of the decrease is expected to be related to o,,. Specif-
ically from Table 1 for Hy,;, = 25 m, it is expected that
E; would decrease by 7% by 71; for Hy, = 150 m
the decrease would be a substantial 42%. These expec-
tations are verified in Fig. 8.

The magnitude of the decrease in Epyy. due to inertial
beating can also be anticipated from the o, values. By
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time #, when mode 1 is nearly out of phase with all
other modes (destructive interference), it is anticipated
that the current speed in the mixed layer would be re-
duced by 20, significantly reducing Ey, . Hence, this
beating effect is expected to be more dramatic for larger
H,;, as can be seen in Fig. 8. The beating effect is
almost absent in the cases of small Ly where 71 < ¢,
as mode 1 has left before significant beating occurred.

Note that while changes in the seasonal stratification
have a profound effect on ¢, the effect on c, is rather
small (Fig. 6, Table 1). Mixed layer variation from 25
to 150 m results in changes of ¢, of 20% and less than
5% for higher modes. This is a significant result be-
cause it means that the timescale of the wave evolution
is not a strong function of mixed layer depth, while the
magnitude of the decrease is.

d. Effects of deep stratification on the wave evolution

In addition to the mixed layer depth (seasonal strat-
ification) the variations in the deep stratification affect
wave propagation. Since we have found that some of
the features of the numerical model results can be ex-
plained by analytical wave propagation, we will assess
the role of deep stratification without exphcltly solving
the numerical model.

Vertical profiles of zonally averaged temperature
and salinity for the Atlantic and Pacific Oceans were
obtained from Levitus (1982). Assuming a 50-m
mixed layer in all cases, N(z) was calculated and
values of ¢, and o, were estimated by modal de-
composition for various latitude bands (Tables 2 and
3, Fig. 10).

In most of these profiles o, has a maximum at a mode
greater than 1. At 47.5°N in the Atlantic Ocean, modes
4 and 5 are more energetic than modes 1, 2, and 3
combined. This behavior of ¢, is not found in the ide-
alized N(z) profile (35). For waves propagating in
these average stratifications, the model will behave as
discussed above, but mode 1 will have proportionately
less impact on the solution than with the idealized
N(z), since the relative importance of each mode is
given by o,,.

The values of ¢, also vary with stratification. The
weaker deep stratification toward the poles leads to

TaBLE 1. Values of eigenspeed ¢, and modal coefficient o, for the first five modes,
calculated for the idealized stratification profiles shown in Fig. 6.

H,.=25m H,.=50m H., =100 m H,.,=150m
Mode ¢, (ms™") o, ¢, (ms™" On ¢, (ms™") o, ¢, (ms™") o,
1 2.35 0.07 2.45 0.15 2.63 0.30 2.82 0.42
2 1.28 0.08 1.34 0.15 1.42 0.21 1.47 0.21
3 0.87 0.08 0.90 0.12 0.94 0.12 0.95 0.10
4 0.66 0.07 0.67 0.09 0.69 0.07 0.70 0.06
5 0.53 0.06 0.54 0.07 0.54 0.05 0.55 0.03
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TaBLE 2. Values of eigenspeed ¢, and modal coefficient o, for the first five modes, calculated for zonally averaged
stratification profiles from the Atlantic Ocean.

47.5°N 27.5°N 32.5°S 67.5°S
Mode ¢, (ms™") o, c, (ms™") O, c, (ms™") o, ¢, (ms™) o,
1 2.79 0.07 3.78 0.09 3.61 0.07 1.02 0.05
2 1.40 0.05 1.65 0.11 1.76 0.08 0.53 0.26
3 0.92 0.08 1.20 0.17 1.19 0.07 0.30 0.14
4 0.68 0.12 0.94 0.12 093 0.13 0.24 0.04
5 0.56 0.13 0.74 0.06 0.75 0.11 0.20 0.06

lower values of c,. However, the dependence of ¢, on
mode remains nearly proportional to n~".

Both frequency and group velocity of the waves are
functions of c2f ;'. At high latitudes, weaker stratifica-
tion and high f; cause the vertical and horizontal propa-
gation of energy to be much slower than the idealized
midlatitude case examined above. This is seen in esti-
mates of ¢, and 7 (Fig. 11a). In contrast, at lower lat-
itudes stronger stratification and smaller f; result in faster
wave propagation and shorter timescales (Fig. 11b).
Hence, it appears that variations in both deep stratification
and latitude can be equally responsible in determining the
evolution timescales of the wave field.

e. Conditions for a two-dimensional approximation

It has been a common practice in past modeling ef-
forts to conmsider only two-dimensions: depth and one
horizontal dimension. The reasons for using a two-di-
mensional model are obvious: both the analytical and
the numerical relations are simpler and the numerical
schemes are easier to run. Price (1983) and Kundu and
Thomson (1985) used f planes and aligned the x axis
with the direction of propagation of the atmospheric
front. This simplification is always possible and exact
in an f plane.

In a g plane the two-dimensional assumption is made
by neglecting k, the zonal component of the wavenum-
ber (e.g., G84; D’ Asaro 1989). This is often reasonable
since k, is often small and k is constant in time. In
contrast, [ increases as §t; so no matter how small [, is,
{ will eventually be large enough to generate significant
vertical propagation.

To determine the conditions for which k can be ne-
glected, we first consider the effect of k on the fre-
quency given by the dispersion relation (21). We com-
pare the frequency w,, for k = 0, with the frequency
wy for k = k,. These two frequencies will be consid-
ered to be sufficiently close for times less than f,, where
1, is defined when the phase difference between the two
frequencies reaches #/4, that is, where (w,o — W),
= /4. Since we are in the parameter range where k is
small, we assume ¢ is small and use (30) to estimate
t, explicitly as

T _Jo
2 k%’

Note that ¢, is independent of /, and depends only on
ko, stratification, and f;. If we consider the full disper-
sion relation (21) (e # 0), t, varies slowly with ;.
Since mode 1 always has the highest frequency, for a
given ko, the zonal dependence can be neglected in the
model for times less than ¢,. Figure 12 shows #, as a
function of k, for the idealized N(z) profile at midlat-
itudes (50°N), as well as the extreme cases of zonal
averages of N(z) at low latitudes (27.5°N) and high
latitudes (67.5°S). For the midlatitude case, at ko
=107 m™' (a scale of 100 km), ¢, = 3 days, and k
dependence can be neglected only for times less than
3 days. However, at a larger scale of ko =2 X 10 * m™"
(scale of 500 km), #, = 70 days.

t, =

(37)

5. Summary and conclusions

A time-varying wind stress generates current oscil-
lations in the upper ocean. Significant generation often

TaBLE 3. Values of eigenspeed ¢, and modal coefficient o, for the first five modes, calculated for zonally averaged
stratification profiles from the Pacific Ocean.

47.5°N 27.5°N 32.5°S 57.5°S
Mode ¢, (ms™") O ¢, (ms™") o, c, (ms™) O c, ms™" o,
1 2.94 0.09 4.11 0.11 3.66 0.08 2.56 0.06
2 1.52 0.14 1.98 0.11 1.80 0.14 1.26 0.04
3 1.05 0.14 1.34 0.12 1.26 0.06 0.84 0.06
4 0.80 0.08 1.01 0.09 0.93 0.06 0.64 0.06
5 0.63 0.04 0.81 0.07 0.75 0.09 0.51 0.08
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Fic. 10. As in Fig. 6 but for historical hydrographic profiles with an imposed 50-m mixed layer. Note that
there are significant variations in the relative weights of the low modes. Significant variations in eigenspeed
are correlated with the overall strength of the deep stratification: high stratification results in high eigenspeeds.

occurs with the passing of a storm front that locally
lasts for hours; generation can persist over a large area
before the front weakens. After the storm event, the
oscillations created in the upper ocean can radiate ver-
tically and horizontally as near-inertial gravity waves.

The goal of this paper is to characterize the radiation
of near-inertial waves from the mixed layer that is con-
sistent with linear, inviscid dynamics on a § plane (sec-
tion 2). We find, by comparing a numerical model with
analytical theory, that predictions of some features of the
wave evolution can be made without the need to run the
numerical model. Specifically we investigate the time-
scales and magnitude of energy propagation as a function
of initial conditions and background properties.

The numerical model is patterned after the initial-
value problem introduced by G84, where vertical
modes are used to represent the vertical structure. The
numerical model differs from the one developed in G84
by

¢ adding the third spatial dimension, thereby per-
mitting zonal gradients,

¢ limiting the horizontal extent of the storm to an
arbitrary scale, and

¢ setting the initial condition in the mixed layer to
be consistent with the passing of a fast moving front.

The propagation of modes at distinct frequencies and
horizontal group speeds results in vertical propagation

of energy that can be explained by two mechanisms:
modal interference and modal departure.

When the horizontal extent of the initial mixed layer
currents is large, the vertical propagation of energy may
be explained by the interference of modes oscillating
at different frequencies—a phenomenon known as in-
ertial beating (G84). The timescale ¢, is defined as the
time mode n becomes out of phase (beats) with higher
modes, which oscillate at a frequency closer to f. The
beating of mode 1 at #, marks the first time effective
vertical propagation of energy occurs. The value of ¢,
depends greatly on the initial wavenumber of the cur-
rents in the mixed layer. The S effect causes a signifi-
cant difference in 7, between an initially northward or
southward propagating front; inertial beating occurs
sooner for a southward going front (Fig. 3a). The depth
of the mixed layer is not a significant variable in de-
termining ¢, (Fig. 6) as ¢, varies little with mixed layer
depth.

For initial conditions of finite horizontal extent, ver-
tical propagation of energy may also be explained by
the successive departure of modes from the generation
area. To describe this process, we have defined the
timescales 7),° and 7EV, representing the times when
mode n leaves y = 0 due to north—south and east—west
extent respectively. These timescales are a function of
the horizontal extent of the storm as well as the initial
wavenumber (Fig. 3b). For example, when mode 1
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Fic. 11. Contours of timescales 7, and 7\ in days, calculated for the extreme stratification
profiles in Fig. 10 at 67.5°S (top panels) and at 27.5°N (bottom panels). The format is the same

as in Fig. 3.

leaves, the total energy is reduced, but the reduction is
not uniform throughout the water column.

Beside the initial wavenumber all the timescales are
affected by the modal eigenspeeds c, and the value of
Jo- Hence, variations in deep stratification and latitude
will affect the timescales. Some examples from cli-
matological averages show that the timescales that
characterize the evolution of the near-inertial wave
field vary from a few days at low latitudes to several
weeks at high (Fig. 11).

While the quantities #,, 75°, and 75" determine the
timescales of vertical propagation, the quantitative ef-
fect of the inertial beating and modal departure is de-
termined by the modal composition of the wave field
o,. For example, if mode 1 is a large fraction of the
total energy (o, large), then the vertical propagation
that occurs by #, will be significant. The modal com-
position varies with stratification—the deeper the
mixed layer the larger the mode 1 contribution. Hence,
the energy transfers at times #, and 7} are more dra-
matic for deeper mixed layers (Fig. 8). This modal
description is most useful when the low modes domi-
nate. As the partition of energy among modes becomes
more uniform, the energy transfers that occur at ¢, and
7N will smear into a continuum.

From the two processes described by the model, it is
modal interference that may be associated with ob-
served energy oscillations between the mixed layer and
pycnocline. When modal departure is the dominant
mechanism of downward propagation of energy, en-
ergy leaving the mixed layer does not return.

This analysis also permits us to develop criteria for
which the model can be simplified. The zonal depen-
dence can be neglected for sufficiently small k,,
thereby reducing the problem to two dimensions
(Fig. 12).

The linear, numerical model developed here pro-
vides us with the confidence to use analytical theory to
describe some aspects of the evolution of the inertial
wave field generated by a large, fast storm propagating
at any direction. However, to assess the usefulness of
this model, comparisons with oceanic observations are
needed. One such comparison is made using observa-
tions from Ocean Storms in Levine and Zervakis
(1995).
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