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ABSTRACT

A technique for solving efficiently the catenary problem encountered in surveyingwith

tapes is presented. The theory of the catenary solution is outlined, and our technique is shown

to solve correctly the catenary for all conditions. Analysis of error that compared the catenary
correction to the more commonly used parabolic correction indicated that for slopes over 10

degrees and taped distances greater than 200 feet, systematic error inherent in the parabola
may preclude the accuracy required for second- or even third-order surveys. An analysis of
tension-gauge bias on taping errors is similar, but here the error is found to depend almost
entirely upon taping distance.
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INTRODUCTION

Taping, like all forms of measurement, is inexact. An important responsibility of the
surveyor is to know the sources of errors that influence his measurements and to be familiar
with procedures necessary for maintaining a required precision in the presence of such errors.
We know that accidental errors in surveying are unimportant compared with systematic errors.
For each measurement, the magnitude and algebraic sign of accidental errors are matters of
chance and therefore cannot be computed [2 ]. Fortunately, such errors are also unbiased and
thus tend to be compensating. Systematic errors are consistent and, therefore, noncompensat-
ing. Such errors always follow definite mathematical laws, however, and corrections can be
determined and applied.

Procedures for correcting most systematic errors are straightforward and have been well
documented. When error is introduced by the sag of a tape supported at the ends or at
intervals rather than along its full length, however, the appropriate correction is not generally
understood and has not been fully documented. When a tape sags between supports, it takes
the form of a catenary [ 1, 2, 4, 71. Thus, the measured distance is that of a catenary arc; the
actual distance, that of the subtended chord. For the purpose of determining the difference
between the arc and its chord, the assumption is usually made that the arc can be closely
approximated by a parabola.

Recent work by Wood [7] suggests that although the parabolic correction gives
reasonable results on level ground, it can lead to significant systematic errors when a slope is
measured. Admittedly, recent advances in electronic equipment have resulted in decreased use
of tapes for measuring distances precisely [3]. Many smaller surveying companies continue to
use tapes, however, and higher order surveys commonly form an important part of their
business. Wood [7] proposed that the catenary itself be solved whenever higher order surveys
are conducted by tape, particularly in areas of steep terrain. His paper also compared several
catenary solutions and the corresponding parabolic solutions, and he discussed the systematic
error inherent in the latter. He did not document the mathematical procedure for solving the
catenary, however, nor did he discuss the physical difficulties in such a solution.

METHODS

We have recently developed a computer program that is used by students in the Forest
Engineering Department at Oregon State University to solve catenary problems for higher
order surveys.

The Catenary with Level Supports

The simplest application of the catenary occurs when the supports at the two ends of the
tape are level (Figure 1). In general, a catenary is fully defined by the parameter m (see Figure
1), which is numerically equal to the vertical distance from the origin of the x-axis (called the
directrix) to the lowest point on the catenary [5]. By convention, the y-axis is usually taken
to pass through this minimum point. The entire weight of the tape between supports (ws,
where w is the unit weight of the tape, and s is the measured tape distance between supports)
may be envisioned as being concentrated at the lowest point on the catenary. Thus, a
free-body diagram of the tape shows that the tension (T) applied tangentially to the tape at
one of the supports may be resolved into an unknown horizontal component (To) and a
known vertical component equal to one-half of the total weight of the tape between supports
(ws/2). When some known value of T is applied to the tape, its horizontal component can be
computed by means of the Pythagorean theorem:
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T. = [T' -(w'S'/4)] /

For m = T. /w, the catenary equation for length takes the simple form [41:

s/2 = m sinh HD/2m,
where HD = horizontal distance between supports.

1

Solving this expression for HD, we have

HD = 2m sinh-' s/2m. 2

For the catenary with level supports, the solution may therefore be found directly by means of
equations I and 2.

The Catenary with Supports Not Level

Texts in engineering mechanics are generally content to cover only the solution of
catenaries with level supports. The catenary with supports not level is somewhat more
complicated and is shown diagrammatically in Figure 2. As before, we know the values of the
parameters T, s, and w; in addition, we have measured the slope angle, 0. Here, however, the
center of gravity of the tape is no longer at the minimum point of the catenary. In fact, as
illustrated in Figure 2, the tape may not even intersect the minimum point of the catenary at
all. Therefore, we do not have an expression for the vertical component of T and thus have no
straightforward way of calculating To. Furthermore, we have two primary unknowns: DE
(difference in elevation between supports) and HD. In the previous problem, DE was known to
be zero.

To solve this problem we will use the following catenary relations from Meriam [4]

ws
2
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0

X

16 H D Figure 1. Catenary with Level supports.



T = wm cosh x/m, 3

y = m cosh x/m, 4

s = m sinh x/m. 5

First we derive an expression for sin terms of x, , in, and HD:

S= s, -Sr

s = m sinh x, /m - m sinh x2 /m

s = m sinh x, /m - m sinh (x, /m - HD/m).

Solving this expression for HD, we have

HD = m [(x, /m) - sinh -' (sinh (x, /m) - s/m)]. 6

To solve equation 6, we will require an expression for x, /m. Noting that the tension T is
applied at x, and using equation 3 we have

T = wm cosh x, /m,

and therefore

x, /m = cosh-' T/wm. 7

0L
Figure 2. Catenary with supports not level. 0
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Next we need an. expression for DE. From Figure 2,

DE=y, -Y2-

But from equation 4,

y, = m cosh x, /m.

Combining this expression with equation 3, we have

y1 = T/w.

Now we can write

DE = T/w - y,.

Using equation 4, we have

y, = m cosh (x, /m - HD/m).

Therefore,

DE = T/w - m cosh (x, /m - HD/m). 8

Equations 6, 7, and 8 give us a means of finding the unique solution to the catenary problem
with supports not level, if we know T, s, w, and 0. Notice, however, that all three of these
equations show the catenary parameter m on the right-hand side. As the value of m is
unknown, the problem will have to be solved by successive approximations.

Our method solves for the catenary by the secant method, a technique common for
solving problems in numerical analysis [6]. The secant method is a two-point iteration
method; that is, it extrapolates or interpolates to find an estimate of the solution value based
upon two previous estimates. The procedure used in this application may be summarized as
follows:

1. Initialize Total = T, and To (2) = T cos ¢. These initial values are arbitrary; they were
chosen simply because they can be determined easily. Our experience, however, suggests that
they provide good initial estimates.

2. Compute m, =Total/w,m,, =Tot2 /w.

3. Compute x, /m, and x, /m, by means of equation 7.

4. Compute HD, and HD2 from equation 6.

5. Compute DE, and DE, from equation S.

6. Compute the error associated with the two estimates of To as follows:

Ei = DE;/HD; - tan 0 (for i = 1 and 2).
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If IE21 < e, where a is some small constant that represents the accuracy desired, then the
solution is complete (that is, we have found the unique catenary solution for HD and DE,
given T, s, w, and 0), and we stop. Otherwise, we go on to step 7.

7. Determine a new estimate of To :

To(3) =To(2) - [(To(2)-To(1))/(E2 -E,)] E2.

Then, replace To (1) with To"), and To (2) with To (3) ; go back to step 2.

Computational experience with this procedure indicates that convergence to an e = 10-8
usually occurs within 5 to 10 iterations. Although most surveyors likely would not have the
patience to work through these seven steps ten times for each leg of a traverse, the
computational burden that this represents for a computer or even for many small,
programmable calculators is insignificant.

Other Catenary Problems

The methodology described above was formulated to solve the catenary problem when
the supports are not level and both supports are on the same side of the y-axis, as in Figure 2.
Consider the slightly different problem posed in Figure 3, where the supports are on both sides
of the y-axis. The question that has to be answered here is whether our procedure is general
enough to solve this problem correctly without reformulation. Thus,

s=s, +s2

s = in sinh x, /m + m sinh x2 /m, 9

so that s is computed from a sum rather than from a difference as before. However, we note
that because x2 < 0, we still have

x2 = x, - HD

because x, < HD. Therefore x2 /m < 0 and equation 9 may be rewritten as

s=in sinhx,/m-in sinh1x2/mI.

This is computationally equivalent to the expression we derived earlier when the supports
were not level and both supports were on the same side of the y-axis. Therefore our procedure
is sufficiently general to solve both problems.

All of our work to this point has assumed that the known tension is applied to the tape at
the upper support. This is not always true. With level supports, tension at the two supports is
equal. From equation 3, however, obviously this is not true if the supports are at different
elevations. Then, tension at the lower support is related to tension at the upper support by the
catenary relation.'

'Note that if Ttower and Tupp01 could both be measured accurately in the field, then DE (and consequently
HD) could be computed directly from this relation.
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Figure 3. Supports on both sides

of the y-axis.

Tlo w e r= Tu p p er - (w)(DE).

Therefore, if the known tension is applied at the lower support as illustrated in Figure 4, then
the resulting catenary will be different than if the same tension were applied at the upper
support (for identical values of s, w, and 0). Typically, the head chainman is instructed to apply
a known tension at his end of the tape. On any given traverse, he is likely to be at the uphill
support some of the time and at the downhill support some of the time. Thus our procedure
must be capable of computing both catenaries. When the known tension is at the downhill
support,

S = sq - S,.

Carrying this relation through to its equivalent of equation 8, we find

HD = m [(x, /m) - sinh-1(sinh (x, /m) + s/m)). 10

Therefore, a convenient way of handling the problem when the known tension is at the lower
support is to insert a logical check into the algorithm at step 4. If the known tension is at the
uphill support (signalled in our computer program by a positive sign on the slope angle 0, then
HD is computed from equation 6. On the other hand, if the known tension is at the downhill
support (signalled by a negative sign on 0), then HD is computed from equation 10.

Our earlier discussion shows that this procedure is sufficiently general to solve the
problem with known tension at the lower support with supports on both sides of the y-axis.
The proof is similar to that advanced in the first part of this section and is not covered here
because of limited space.

Before concluding our discussion of the general catenary formulation for taping, we
should note that our supports-not-level algorithm will also solve the catenary when the
supports are level. If the algorithm is to be implemented on a computer, however, coding the
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Figure 4. Known tension at the
lower support.

supports-level formulation separately is usually worthwhile because of the significant saving in
computing time that results from that formulation whenever the slope is flat. If the
implementation is to be done on a small, programmable calculator with limited memory space,
coding only the supports-not-level algorithm may be necessary.

ANALYSIS OF ERROR

Having developed the technique outlined above, we programmed it to operate on the
Oregon State University CDC 3300 computer, on a Hewlett-Packard Model 9830 pro-
grammable calculator operated by the OSU Forest Engineering Department, and on a
Hewlett-Packard Model 65 hand-held programmable calculator2'3. We discuss briefly the
implications of tests we have made using these programs.

Catenary Compared with Parabolic Correction

Table I is a summary of systematic errors that would result from the application of no
correction and the parabolic correction, for representative values of 0 and s. We have used
equations presented by Colcord and Chick [ 1 ] to compute the parabolic corrections for slope
taping. Table 1 confirms Wood's [7] hypothesis that the parabolic correction on steeper slopes
introduces systematic errors that may preclude higher order traverses. The effect is more
pronounced for longer distances, which are often dictated by practical considerations in steep
topography, and when the known tension is at the upper support. For taping on level ground,

2lnterested readers may obtain a listing of the FORTRAN program (for the CDC3300), the BASIC program
(for the HP.9830), or the HP-65 machine-language program by writing to Dennis P. Dykstra, Forest
Engineering Department, Oregon State University, Corvallis, Oregon 97331.

'The use of trade names in this paper is for information only and does not constitute endorsement by Oregon
State University.



Table 1. Comparison of Systematic Taping Errors Introduced by Sag
(T = 20 lbs, w = 0.015 lbs/ft).

0

Deg

s

Ft

No correction
HD error
Ft Ft

Parabolic Cat
correction

lcorr
error I HD

Ft

nary
ction

DE

Ft

0 300.00 300.00 1/500 299.37 1/66,500 299.36 0
10 300.00 295.44 1/500 294.84 1/10,200 294.81 51.98
20 300.00 281.91 1/500 281.38 1/5,900 281.34 102.40
30 300.00 259.81 1/600 259.40 1/4,800 259.34 149.73

0 200.00 200.00 1/1,100 199.81 1/333,000 199.81 0
10 200.00 196.96 1/1,100 196.78 1/36,400 196.78 34.70
20 200.00 187.94 1/1,100 187.78 1/21,300 187.77 68.34
30 200.00 173.21 1/1,300 173.08 1/17,000 173.07 99.92

-10 300.00 295.44 1/500 294.83 1/12,200 294.86 51.99
-20 300.00 281.91 1/600 281.37 1/6,400 281.42 102.43
-30 300.00 259.81 1/700 259.39 1/5,100 259.44 149.79

-10 200.00 196.96 1/1,100 196.78 1/41,900 196.79 34.70
-20 200.00 187.94 1/1,300 187.78 1/22,100 187.79 68.35
-30 200.00 173.21 1/1,500 173.08 1/17,800 173.09 99.93

Note: the errors listed in this table were computed from horizontal
distances carried to four decimal places.

dictated by practical considerations in steep topography, and when the known tension is at the
we have little motivation to use the catenary correction rather than the more easily computed
parabolic correction.

Readers familiar with the paper by Wood [7] may note that although Table 1 is based
upon the identical conditions considered in that article, our results for HD and DE with the
catenary correction agree with his results only at 0 = 0. Our tests indicate that Wood used a
catenary formulation that assumes

DE = HD sin 0 11

where HD, = the horizontal distance between supports that would be computed by applying
the catenary correction when the supports are level. This procedure easily can be shown to give
incorrect results for 0 # 0. As an example, for Course 4 in Wood's paper (T = 20 lbs, w = 0.015
lbs/ft, s = 300.00 ft, and 0 = -30 degrees' ), DE was found to be 149.68 ft, and HD, 259.4953
ft. Therefore DE/HD = 0.57681, which should be equal to tan 30°. But tan 30° = 0.57735,
and the solution is obviously in etror. The fault in this formulation is that equation 11
constrains the solution in an unnatural way. The methodology presented in our paper uses the
known value of 0 to converge on the correct values of HD and DE and thus does not suffer
from this defect.

4Although no mention is made of it in his paper, all of Wood's solutions are for known tension at the lower
support.
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Table 2. Errors Introduced by a 1-pound Error in
Applied Tension at the Upper Support (Prescribed
Tension is 20 ibs, w = 0.015 lbs/ft).

Error when Error when
s actual T=19 lbs actual T=21 lbs

peg Ft
10 100.00 1/39,800 1/46,300
20 100.00 1/42,800 1/50,000

'30 100.00 1/49,500 1/57,800

10 200.00 1/9,700 1/11,200

20 200.00 1/10,200 1/11,900
30 200.00 1/11,600 1/13,600

10 300.00 1/4,200 1/4,900

20 300.00 1/4,300 1/5,000
30 300.00 1/4,800 1/5,600

Tension-Gauge Bias

Our experience has been that the tension gauges commonly used in taping are often
poorly calibrated. To investigate the influence of a biased tension gauge on distance errors, we
computed the error in horizontal distance that would result, after the catenary correction is
applied, from a 1-pound error in applied tension at the upper support. This analysis is
summarized in Table 2. Note that, unlike the error that results from failure to apply the
catenary correction (Table 1), error from bias in the tension gauge depends most strongly upon
s rather than 0. In fact, as the slope increases, the error is reduced. Note also that theeffect of
tension bias is nonlinear; a positive I-pound error has a smaller effect than a negative error of
the same magnitude. Bias in either direction could destroy the precision necessary for higher
order surveys when longer tape distances are necessary or desirable. Thus, insuring that tension
gauges have been properly calibrated and are being used correctly is essential.

Combined Corrections

As a final comment, we note that whenever corrections for several effects are to be
applied simultaneously, they must be made before determining the catenary correction for sag.
Higher order surveys commonly require, for example, that corrections be applied for
standardization, temperature, tension, and occasionally alignment and wind [ I ]. All of these
corrections affect the measured length, s, along the catenary. Thus, if they are not applied
before calculation of the catenary correction, the wrong s will be used, and it follows that the
wrong catenary will be computed.

CONCLUDING REMARKS

This paper has presented a technique that efficiently solves the catenary' problem
encountered when surveying with tapes. Although the difference between the catenary

.9
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correction and the commonly used parabolic correction may be significant for higher order
surveys, we do not anticipate a full-scale rush to employ the catenary correction on ordinary
surveys. We have taken the trouble to develop this methodology because we feel it can be of
some importance in certain applications. In addition, our presentation is also intended to
encourage an appreciation of catenary problems in general.
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