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Appendix.

A1. Variance of Py (R). The variance of Py (R) is
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Now, a host of subgraphs can be formed by the intersection of two copies
of R. The number of intersected vertices can range from 0 to p — 1. Let us
consider, that for number of vertices in intersection as k (k = 1,...,(p—1)),
the number of graph structures that can be formed is g, and we represent
that graph structure by Wj, where, j =1,..., gy. Thus,
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A2. Proof of Theorem 3.1.

Proor. (i) Now, let us try to try to find the expectation of Pbl(R)
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under the sampling distribution conditional on the given data G.
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So, we have,
Ey[Pp1(R)|G] = Ey[ P (R)|G] = P(R)
(ii) Given G,
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Now, the formula for Vary|[Py; (R)] from Al we get that
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Vany [p Pa(R)] = O (p ?;9) e (W>
- o) o)

where, W = SUS’, py = |[V(W)]| and ey = |[E(W)].

(iii) Here, we use properties of the underlying model. Let us condition on
& ={&,...,&} and the whole graph G separately. Now, conditioning
on &, we get the main term of P(R) to be,
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So,

We shall use the same decomposition as used in [1] of (p,*Pp1(R) —
P(R)) into

(P2 “Pp1(R) — P(R)) = p,° (Pp1— [P (R)|G))

+p,¢ (P(R) —E(P(R)[€))

+E(P(R)|€)p,* — P(R)

Let us define,

Us = E(P(R)€)p,° — P(R)
Uy = p,° (P(R) E(P(R)¢))
U, = p;e(PBl—Eb[PM( )’G])

Now, it is easy to see that

Var(p™“Ppi(R)) = E(Var(p™“Pp1(R)|G)) + Var(E(p™“ Pp1(R)|G))
= E(Var(p~“Ppi(R) — P(R)|G) + Var(P(R))
= E(Var(U1|G)) + E(Var(P(R)[€)) + Var(E(P(R)[€))
= E(Var(U;|G)) + E(Var(Uz|€)) 4+ Var(Us)

We shall try to see the behavior of Var(U|G) = Vary[p~¢Pg1(R)|G].
From (ii) we get that, Vary, [p;eﬁbl(R)] =0 ( Lo v %) Similarly,

mPp
Covy[p;¢Pyi(R), pyPy1(R)] = O(L) for acyclic and k-cycle R follow-
ing similar steps as variance in Appendix Al. If we consider the uni-
form probability for bootstrap to be «, then, B = O(ynP). Note that,
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if E(Hy) N E(Hy) = ¢, then, Covy(Py(R), Py1(R)) = 0. The number
of pairs such that E(Hy) N E(Hy) # ¢ is O(m?y?n?>™=2). Also, the
number of edges for the leading term in the covariance is equal to or
more than 2e. So,

E(Vary[p~“Pp1(R)|G]) = O <B(1> 0 <WW>

mPps A m) my2n2m

=0 (g * 1) =0 (Fomm) 07

The second equality follows since we have m/n — 0 as n — oo. So,
since, B(mPp¢ A m) > O(n), we have, E(Var(U;|G)) = o(n™1).
Now, by proof of Theorem 1 in [1], we have,

Var(Us) = o(n™)
Var(U3) = o(n™h)

So, we get, Var(p 6PBl(R)) = o(n~!). Since, we already know /n-
consistency of (pneP( ) — P(R) ) this proves the y/n-consistency of
pn°Pp1(R) to p,°P(R).

O

A3. Proof of Theorem 3.2. For variance calculation, we also need the
joint inclusion probability of two items, S, S" € S, which are subgraphs of

G induced by the set of vertices {w1,...,wp} and {w}, ..., w,} respectively,
where, we take that w;1 > w; and wj | = wj, i=1,...,p— 1. So,
mss = Inclusion Probability of S and S’ = P[(wy,...,w,) is selected
and (w}, ..., w),) is selected]
- T [T ()™
Zld

d=1 d=1

where,

I 1(wg = w)y), ford=1
e 1((wa, wg—1) = (wg,wy_4)), ford=2,....p

P 1(wq # W), ford=1
2 (g, waon) # (whywly ), ford=2,....p
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We know that Pyy(R) is a Horvitz-Thompson estimator with inclusion
probability of each population unit to be m = ngl qq- So, according
to the sampling theory [2], Py(R) is an unbiased estimator of P(R)
given the network G, if P(Py(R) = 0|P(R)) — 0 as n — oo. Now,
P(Py(R) = 0|P(R)) < (1 — gg)* for all d = 1,...,p. For all d =
L...,p, (1 —qq)* — 0if \,qq — 0. So, under the condition, \,gs00
and gg — 0 as n — 0o, we have, PbQ(R) is an asymptotically unbiased
estimator of P(R).

The variance of pr(R) coming from the bootstrap sampling only is
given by

P 1 ([1—m
Vary, [p,“Pa(R)| = 3 { - > 1(S=R)
S€eS,
2
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where,
N =g (Z) Lso(R)

From the formula of Vary[Pyy(R)|G], we see that, the covariance terms
vanishes when mgsr = 2. Now, if q1 = 1, then, mgs = 72 if E(S) N
E(S") = ¢. The number of pairs such that E(S) N E(S") # ¢ is
O(p*n?r=2),

Now, the condition of g; = 1 is a bit restrictive. In stead, if we have
g1 — 1 as n — oo, then, the highest order term of covariance term
comes from the case when E(S) N E(S") # ¢ but the root nodes are
same that is wy = w). So, for some constant C' > 0,

1 Tgg — w2 -~ -
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Now, for the variance term to vanish we need the conditions q; = 1 or
g1 — 1 and ¢4 — 0 and A\,qq — oo for d = 2,...,p as n — 00. Since,
we know that O(1) < A\,0(n), we get ngg — oo for d = 2,...,p as

n — 00. So, we have
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(iii) We shall use the same decomposition as used in [1] of (p,“Pga(R) —
P(R)) into

(P Pra(R) = P(R)) = p,° (P2 — Es[Pra(R)|G)
+0, (P(R) — E(P(R)[€))
+E(P(R)[€)p," — P(R)

Let us define,

Us = E(P(R)€)p,“ — P(R)
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U, = (PBz—]Eb[ (R )|G])

Now, it is easy to see that
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Now, since the bootstrap samples for subgraph sampling are selected
independently, we have that,

E (Vary |p,“Ppa2(R)]) = O <(i - 1) %) +0 <Bnp;fp+1 dﬁ2 Al )

q1 nqd

Now, under the condition % (q% — 1) —0,qs > 0foralld=1,...,p

and BI[)_5qd > ﬁ, we have
E(Var(U1|G)) = E (Vary[p,,“ P2 (R)|G]) = o(n™")
Now, by proof of Theorem 1 in [1], we have,

Var(Uy) = o(n™1)
Var(Us) = o(n™1)

So, we get, Var(p_ef’Bg(R))~ = o(n™1). Since, we already know /n-
consistency of (pfl ‘P(R) — P(R))), this proves the \/n-consistency of
prn°Ppa(R) to p,“P(R).

B1. Proof of Proposition 6.

o*(R; p) = Var [p~“P(R)]
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If R is a connected subgraph, then, we can write,
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o(Ry. Bai p) = Cov (o= P(Ra). p~ P(Ry))
1
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If R is a connected subgraph, then, we can write,
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B2. Proof of Lemma 7. Let us define
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where, y = (1 - %)
Now,
I V/ E[ . 01_@;261@ P(RY
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B Var (p;EP(R)) B xp;, 2Var (p(R)> B e
- (-2 (1-x) o (Var (en"P(R)

= Var (p;ep(R)) — 0 (Var (p,;ep(R)))

Similarly, we get,
E[5(R1, Ry)] = Cov (p,“* P(R1), p,** P(R2)) — 0 (Cov (p, ' P(R1), p,** P(R2)))

Now, from the Theorem 1(a) in [1], we know that as \,, — oo, if p,, = %
as defined in (2.6),

So, using the estimate p,, we get that,

7%(R) p 6(R1,R2) p

— 1, —1
o?(R; p) o(R1, Ra; p)
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B3. Proof of Lemma 8. Given G,

E [0%:(R)|G]
_ ¥ (5 () Is0(R)|)

2
W=suT,8,7=~R, (1 — ) ( ]Iso(R |)
|SNT|=1,p

2 [p,*°Pgi(R)*|G]
(1—-x)

E [Pgi(W)|G]—

(A5 (2 )| Iso(R)|) 2py*P(R)? Var (Tsi(R))

= SP(W)—
WSU%,TNR, (1-=x) ( e )]Iso(R)D W) (1—x) 1—x
|SNT|=1,p
xVar (T i(R
= 6°(R) — 1(—3.7;()) = 6*(R) — 0 (6*(R))

where the last inequality follows since x = O (%) and Theorem 3.1 and
Theorem 3.2 for ¢ =1, 2.
Similarly, we get,

E [65i(R1, R2)|G] = 6(R1, Ry) — 0 (6*(R))
So using Lemma 7, we have that,

2 o~
QBl(R) B, pillh, Ra) Bl fori=1,2
a (Rvp) O(RlaRQ;p)
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