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presence of three distinct particle pools. The first pool is rich in POC and shows



elevated fluorescence and beam-c relative to optical backscatter. The second pool is
elevated in both fluorescence and optical backscatter, and is rich in POC relative to
beam-c. The third pool is depleted in POC and shows proportionately elevated
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we created multiple POC — beam-c calibrations, which allowed us to derive high-
resolution POC distributions within the water column. This derived distribution
indicates a decoupling between sediment and carbon in the BBL, and an
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1. Introduction

Upwelling systems are a small but vital part of coastal margins. In Oregon’s
coastal margin, wind-driven upwelling takes place throughout the summer as
alongshore northerly winds cause divergence of water from the coastline. The
resulting Ekman transport moves water from below 200m depth up into the bottom
boundary layer (BBL) of the continental shelf. This cold, dense water mass often
moves upward along the shelf as far as the euphotic zone (Lenz and Trowbridge,
1991; 1998; Perlin et al., 2005), and is rich with nutrients released from the
respiratory degradation of organic matter. When these nutrients reach the surface,
either through direct transport or through turbulent mixing (Hales et al., 2005), they
are quickly utilized by phytoplankton communities.

While only 10% of the world’s oceans are coastal margins, they account for
up to 40% of ocean carbon sequestration (Muller-Karger et al., 2005). Upwelling
systems comprise an even smaller segment of the ocean (1% of the global ocean and
10% of coastal margins), yet they account for up to 10% of global new production
(Chavez and Toggweiler, 1995). New production is based on nitrate, nitrogen that is
newly available for uptake, as opposed to regenerated ammonia (Dugdale and
Goering, 1967). Consequently, new production represents an addition of organic
carbon to the ocean reservoir. Recent incubation studies (Wetz and Wheeler, 2003)
done on Oregon coastal waters show that a significant portion of the organic material
resulting from new production is particulate rather than dissolved form. Given an
appropriate export mechanism, this newly generated particulate organic carbon (POC)
can be removed from the near-surface ocean and sequestered on longer time scales.

The advective dynamics of coastal upwelling systems are complex and may
create transport pathways for the movement of particulate organic carbon (POC) off
of the continental shelf and into the deep ocean potentially sequestering it on a multi-
decadal scale, if not longer (Hales et al., 2006). Upwelling is not a continuous
process; the intensity and rate of upwelling can vary significantly over the course of a

season, and includes relaxation events when upwelling forcing eases or even reverses.



These events occur when the wind driving Ekman transport periodically dies down or
reverses direction, reducing the divergence from the coastline that causes upwelling
and resulting in a down-shelf slumping of the upwelling front (Barth and Wheeler,
2005). Relaxation events could provide a mechanism for particle export off the
continental shelf. Coupled with the dominance of particulate new production, this
implies that a significant portion of new production from the Oregon coastal margin
could be sequestered in the deep ocean during the upwelling season.

In earlier studies, Hales et al. (2006) found high levels of new productivity
based on O, budgets that were consistent with earlier productivity estimates (Dickson
and Wheeler, 1995), and the observed draw-down of NO3" at that time (Hales et al.,
2005). The POC produced during the summer months must either accumulate or be
lost via respiration in the water column, or be exported from the system through
burial or advective transport. Hales et al. (2006) found, however, that burial and
respiration combined do not balance the amount of POC being produced during the
upwelling season, yet there was a net sink of CO, into the coastal water. This
discrepancy in the POC budget (as much as 10 tons of carbon per meter of coastline
(Hales et al., 2006), could be explained by event-driven POC export during periods of
relaxation.

Investigating POC export mechanisms requires a detailed understanding of the
distribution and dynamics of particles within the system. Combining optical and
physical measurements allows us to quantify and characterize the particle content of
the water column. Optical measurements such as beam attenuation (c,) and
backscatter are established proxies for total particle content, and the ratio of
backscatter to c, relates to organic carbon content (Gardner et al., 2001; Boss et al.,
2009). Chlorophyll fluorescence and beam attenuation have also been used to
quantify and characterize phytoplankton biomass (Behrenfeld and Boss, 2003; 2006;
Eisner and Cowles, 2005). Karp-Boss et al. (2004) used the relationship between ¢,
and particulate organic carbon to estimate high-resolution POC concentrations off the

Oregon coast.



While optical properties are effective tools for understanding particle
dynamics, they are limited by the quality and quantity of POC samples available for
calibration. The manual filtration methods most commonly used for discrete POC
sampling are slow and labor intensive. Sampling frequency is limited by the time
required to homogenize, measure, and filter each sample by hand. Due to the
limitations of historically used POC sampling methods, relatively few POC
measurements have been available for comparison to optical properties.

Gardner et al. (2006) compiled samples of POC and c, from a variety of times
and locations around the globe. They examined 4456 data pairs from nine different
locations spanning several years. The authors found that the relationship between the
two properties showed significant spatial variability, with slopes ranging from 25.3 to
52.6, indicating that c; is sensitive to the type of particle pool, as well as to carbon
content. Sullivan et al. (2004) utilized optical properties, in conjunction with particle
size distribution, to discriminate between three distinct particle types within the
coastal ocean. These precedents suggest that combining improved POC sampling
with composite optical measurements could improve our understanding of both the
distribution and characteristics of POC.

To improve our understanding of particle dynamics within the Oregon coastal
upwelling system, we developed a semi-automated filtration system intended for use
in conjunction with a towed/pumping vehicle. Coupling in situ optical measurements
with the resulting high-resolution chemical characterization of particles enables us to
construct a more sensitive set of calibrations between optical properties and organic
carbon content. This in turn allows us to extrapolate carbon distributions within the
water column more precisely than is possible with either chemical analyses or optics
alone, with the ultimate goal of detecting and quantifying POC export off of the

continental shelf of the Oregon coast during an upwelling/relaxation cycle.



2. Methods

2.1. Instrument Design

2.1.1. Hardware

A semi-automated filtration systems (SAFS) was designed to collecting
particulate samples from a pressurized sampling line. Briefly, a computer-controlled
multi-position valve was interfaced with an electronic flow meter whose signal was
continuously logged. Each outlet port of the valve was connected to a filter cartridge.
At specified intervals, a different outlet port was selected, and when a specified
amount of water was passed through that port and filter, the port was isolated. One
port of the valve was reserved as a bypass line, allowing the system to be flushed
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Figure 1 — Schematic depicting the flow of water (blue) and data (green) through
the sampling system.
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continuously when samples were not being collected.

Figure 1 depicts the SAFS, and its components are described below. PEEK
tubing of 1/8 inch diameter was used to connect the system to the flowing seawater
line. We used a MacMillan liquid flow meter, Flo-Sensor Model 101 (available at

www.colepalmer.com, #EW-32703-50) to measure the flow rate coming off the

seawater line. This rotameter-based flow sensor has a 13-100 mL/min range and a
flow-proportional 0-5 volt analog DC output, which was captured and communicated
to the system computer via the analog-digital conversion function of a National
Instruments™ multifunction data acquisition card (available at www.ni.com, #NI
USB-6009). We calibrated each flow sensor with timed, gravimetric flow tests to
generate accurate flow-voltage relationships. A VICI® Cheminert® low pressure 10
position valve with a microelectric actuator, whose position was controlled by serial
signals (available at www.vici.com, # C25-6180EMH), directed the sample flow to
different filter holders connected to the valve ports. We used eight Swinney stainless
13mm filter holders containing Pall glass fiber filters (GF’s) type A/E with a nominal
pore diameter of 1.0 um (both available from www.vwr.com, #28145-295 and
#28150-134). All hardware components of the SAFS were mounted on a sheet of

clear acrylic plastic, and this was installed near a sink or drain in the ship’s

laboratory.

2.1.2. Software

The system was controlled and operational data collected using a program we
developed with LabView™ software. This program communicates with the valve
actuator and records flow rate, flow volume and other sampling data via the data
acquisition device described above. The basic functionality of the software is
relatively simple: for most of the operational time, the valve was directed to sit in
bypass mode, and water flowed through one designated port and to waste. At user-
specified intervals, the flow was directed to a specified sample port and monitored for

the duration of the filtration period. After either 1) a user-specified time had elapsed;
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2) a total flow-volume had been achieved; or 3) the flow dropped below a specified
minimum level, the valve was directed back to the bypass position until the next
sample was to be collected. The total volume for each sample was calculated by
integrating the flow rate over sampling time.

The number of samples that can be collected in a sequence is user-determined,
but is limited by the number of ports on the valve. We were using a 10-port valve,
with one port assigned to the bypass mode and 9 available for samples. We opted to
only utilize 8 of those ports because it was convenient to store the resulting filters in
8x12 sample trays. Sampling interval duration depended on sample flow conditions
and particle densities, which determined when the automated stopping criteria were
reached. The period in between filtrations can also be user defined, based on the
desired sampling density and time needed to remove samples and load new filters.

We also added controls to accommodate taking replicate samples. When a
replicate sample was requested by the user, the program proceeded immediately from
the first to second filter with no time break. This approach only produced a real
replicate when the source water was not changing within the sampling time period,
otherwise, exact replication was not possible. We also designed additional controls to
allow a run to be manually stopped or a sample to be skipped if necessary.

The SAFS was designed with the intent of coupling it to a towed/pumping
profiling vehicle (e.g., Hales and Takahashi, 2002) that sampled the water column at
relatively high speeds (up to 1.5 m/sec). Therefore, minimizing sampling time was a
priority. Longer sampling intervals would integrate larger portions of the water
column, hindering our ability to determine high-resolution spatial/depth patterns in
POC distributions. Conversely, short sampling periods would result in lower particle
content samples, lowering the analytical signal to noise ratio.

Optimizing the filtration period during sampling was an important objective of
the SAFS design. To that end, parameters were added to allow the program to adapt
to different particle concentrations. The rate of flow through a filter depends not only

on the line pressure, but also on the particle loading of the filter. As such, a decrease



in flow rate should be indicative of substantial particle loading. We designed the
program to take an average of the bypass flow rate (measured once per second) for 20
seconds prior to the beginning of each sample, and then subtract the average flow rate
between the 20th and 30th seconds after the valve switches from bypass to a filter.
We assumed that large differences between these two flow measurements, equivalent
to a drop in flow rate >30%, were indicative of high POC loading. If these conditions
were met, the program automatically decreased the sampling time-interval and flow-
volume criteria for terminating the sampling event. Otherwise, the program
continued to use the primary set of parameters.

The program was designed to log all operational data — time-stamp, flow rate,
current integrated flow-volume, and sample number - at half-second intervals for each
complete sample interval. In addition, processed data for each individual sample—
time-stamp, sample 1D, and total flow-volume—were logged separately. Each
complete sampling sequence produced two time-stamped files, one containing the
raw half-second data, and one containing the processed results, for all individual
samples in arun. Table 1 in Appendix A shows an example of the logged data. All
time-stamps recorded coordinated universal time (UTC), which was used for all other
shipboard and in situ measurements and allowed for the direct comparison of POC

data with all other measurements.

2.2. Sampling Methods — 2008

Once the apparatus was built and the programming was completed, we
performed a series of laboratory and field tests to confirm the reproducibility and
accuracy of samples collected by this method with those collected by traditional
manual filtration. All samples for these tests were collected during the summer of
2008 from different sites along the central Oregon coast. This allowed us to both test

the system and to evaluate the POC concentrations in this region of the Oregon



upwelling system, which we used to determine the volume of water needed to exceed

analytical detection limits.

2.2.1. Setting

The research site for both 2008 and 2009 was on the Oregon coastal margin
between 43.8° and 45.4°N. During the summer, wind-driven upwelling fuels high
levels of production in this region. Upwelled water outcrops within 5-6 km of the
coastline, shoreward of the 50m isobath (Allen et al., 2005; Kirincich et al., 2005).
The bottom boundary later is the primary pathway for upwelled water to reach the
euphotic zone (Perlin et al., 2005) and nutrients supplied to the surface by this
pathway fuel blooms of phytoplankton, primarily diatoms (Barth and Wheeler, 2005,
and references therein). The Oregon coastal system also has periodic relaxation
events throughout the summer, when the northerly winds driving Ekman transport die
down for a few days. Some of these relaxation events are strong enough that Perlin
et al. (2005) found that near-bottom water can move seaward across most of the
continental shelf before the winds reinvigorate upwelling. The bathymetry of this
segment of coastline varies significantly (see Figure 2). At the northern end of the
study area, the shelf is narrow and depth contours are evenly spaced and parallel to
shore. The shelf broadens dramatically southward forming Heceta Bank, an area
characterized by highly variable bathymetry and an abrupt shelf-break with a steep
slope that drops precipitously to depths approaching 1000m.

2.2.2. Laboratory Tests

On June 13 and July 18, 2008 we collected water samples from both the near-
surface and near-bottom waters at several stations on two cross-shelf transects near
(the ‘NH line’) and just north of (the ‘LB line’) Newport, OR (see Figure 2). The
surface samples were collected using a clean bucket, while the near-bottom samples

were collected with Niskin bottles during CTD casts. The water was stored in clean



Nalgene bottles and/or collapsible 10L carboys and stored in the dark in coolers for

transport back to the lab.

In the lab, each sample was
simultaneously filtered using both
manual and automated methods. We used
a peristaltic pump and a recirculation line
from the sample reservoir to create flow
through the SAFS, while we vacuum
filtered the manual samples. The volume
of water filtered varied between the
sampling locations and periods due to
differences in particle concentrations. In
June we filtered 200-500 mL, while July
particle concentrations were sufficiently
high that we only filtered 150-300 mL.
For a given sample, we generally filtered
the comparable volumes of water with

each method.

2.2.3. Field Testing

In September 2008, we deployed
SAFS on a ship (R/V Wecoma) for the

Latitude [*N]

-125 -124.8 -1246 -1244 -1242  -12¢
Longitude [°E]

Figure 2 — Locations of NH and
LB stations off of the Oregon
coast.

first time. The SAFS was coupled to a flow of water pumped to the ship via the

SuperSoar, a towed vehicle that is a modification of the Lamont Pumping SeaSoar,

described in Hales and Takahashi (2002). Briefly, the SuperSoar carries a sampling

pump that delivers water at ~8 L min™ to the shipboard laboratory via a tube in the

core of the tow cable. The vehicle carries a suite of hydrographic sensors (bio-optical

and CTD) for in situ measurements, and actively controls its depth through a

combination of winch control and adjustment of dive planes. We plumbed the SAFS
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to a branch of the shipboard end of the SuperSoar sampling line using 1/8” PEEK
tubing, and found that line pressure was sufficient to drive adequate flow through our
system.

To compare the manual and automated methods during this cruise, we
sampled from the SuperSoar line at a fixed location when the SuperSoar remained at
~50 m depth for over 20 minutes, allowing us to collect multiple automated 100 mL
samples from approximately the same water mass. Simultaneously, we collected a
large volume of water (~ 10 L) from the main SuperSoar flow line. We homogenized
the sample and filtered 185 mL of water manually onto each of eight 13mm filters
under vacuum. All of these samples
were stored frozen until analyzed as
described for the in-lab samples.

On September 10, we connected
the SAFS’s intake to the ship’s surface-
underway sampling line to collect
samples during a 10-hour steam along the
track illustrated in Figure 3. The surface

intake system in the Wecoma draws

Latitude [°N]

water from approximately 5m depth and
is equipped with sensors that measure
salinity and temperature, chlorophyll
fluorescence and optical beam
attenuation (cp). The optical

measurements were averaged across the

time of automated POC sampling to end

-125 -124.8 -1246 -1244 -1242 -124
Longitude [°E]

up with directly comparable data sets.

We sampled during a ~10-hour Figure 3 —The ship track followed

transit on September 10 from 03:20-
12:45. The ship started at 45.35°N and

during the transit on September 10.
Every diamond represents one POC
sample collected.
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headed southwest along the shelfbreak until reaching 44.85°N, at which point it
turned due east and steamed across the shelf towards port. The SAFS was set to
begin collecting a sample every ten minutes. The desired volume to sample was 100
mL, with a maximum sampling time of 2 minutes, and a minimum flow rate of 30
mL/min. At the time of this deployment, we had not yet added the high particle load
protocols to the program, so all samples were collected with the same settings. All
filter samples were frozen and processed in the lab for POC and PN content by the
method described below. During this field deployment, we periodically checked the
flow sensor volumetrically, verifying that it held its calibration throughout this

operation.

2.3. Sampling Methods - 2009

2.3.1. Field Deployment

In May of 2009, we returned to
the same area of the Oregon coast to
collect samples using the SAFS. Over
the course of two weeks, we sampled
from a section of the continental shelf,
bounded on the North and South by the
45° and 43.9°N lines of latitude, and on
the East and West by the shoreline and

Latitude [°N]

the continental shelf break. During these
cruises, we sampled water using a
different towed vehicle, the SuperSucker
(described in Hales et al., 2004; 2005),

125 1248 1246 1244 1242 124
rather than the SuperSoar. The Longitude [°E]

Figure 4 - Map showing the two
transect lines followed during the
May, 2009 cruise.

SuperSucker is designed to operate at
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low speeds under winch-control alone, and gives more precise position control,
desirable for the near-bottom focus of the cruise. All other aspects of the in situ
sensing and sampling of the SuperSucker relevant to the POC collection are the same
as the SuperSoar. The instruments on board the SuperSucker collected a suite of in
situ measurements including temperature, salinity, beam-c, optical backscatter, and
chlorophyll fluorescence.

During this cruise, we performed focused water-column surveys along two
East-West transect lines, one at 45.0° N and one at 43.9°N (Figure 4). During these
transects, the ship towed the SuperSucker at a speed of ~1.5 kts, as the automated
winch control raised and lowered the vehicle through the water column.

Flow through the filtration system was about 100 mL/min. POC
concentrations during this cruise appeared to be relatively low, so we opted to filter
150mL of water per sample, resulting in a sampling interval of about 90 seconds.
This increased the portion of the water column sampled by a single filter, but
decreased the likelihood that samples would be below detection limits after
corrections for filter blanks.

In addition, large volume samples (1000-3000 mL) were collected from both
the ship’s surface intake and the SuperSucker sampling lines. Because of the time
required to manually filter these volumes of water, we collected large volume
samples every hour. These water samples were manually filtered under a vacuum
onto pre-combusted, pre-weighed 47mm GF filters for total suspended sediment
(TSS) and stable isotope analysis. Each sample was rinsed with deionized water after
sampling to minimize increases in mass due to salt retention. The filters were frozen

until they could be analyzed in the laboratory.

2.3.2. Lag Correction
In order to correlate the POC samples we collected with in situ data, we had to
correct the time stamp associated with each sample for the amount of time required

for water to travel through the tubing from the SuperSucker to the filtration system.
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The appropriate correction was found by comparing two time series of salinity, one
measured on the vehicle and one measured in the sample stream aboard the ship
(following Hales and Takahashi, 2002).

The filtration system was significantly up stream of the shipboard instrument
that provided the salinity readings, therefore we had to perform an additional time
correction to account for the sample lag between that sensor and filtration system.
This lag was assumed to be proportional to deviations in the total lag at the shipboard
salinity sensor relative to some minimum lag time for the water to reach the ship. The
additional lag to the SAFS is some fraction of the difference between the total and
minimum lags. Since POC and optical beam attenuation are highly correlated (i.e.
Karp-Boss et al., 2004), we were able to refine the lag correction between the
shipboard sensors and the SAFS by minimizing the variability in the correlation
between the two properties. Once the POC sampling times were corrected for lag, the
data for each of the high-resolution measurements within that interval were averaged

for direct comparison to the POC numbers.

2.4. Analytical Methods

2.4.1. CN Analysis

POC and PN (particulate nitrogen) analyses of filters were performed
according to established methods (e.g., Goni et al., 2003). Briefly, after sampling
filters were placed in 8x5mm silver boats and loaded into a desiccator where they
were exposed to concentrated HCI vapors for 24 hours. The desiccator was vented
for 20-30 minutes after the acid was removed, then loosely covered with aluminum
foil, and placed in a 50°C oven for at least 48 hours. Once the samples were dry, the
silver boats were carefully folded with clean forceps and placed into 8x5mm tin
boats. The tin boats were then folded firmly around the sample to form a small ball.
The folded samples were analyzed for C and N content by high-temperature

combustion in a Thermo Quest EA2500 Elemental Analyzer. Helium gas was used as



14

the carrier while the combustion and reduction ovens were kept at 1030°C and 753°C,
respectively. Varying weights of cystine, atropine, and a low-carbon sediment
standard were used to create a five-point calibration curve every time the instrument
was run. In addition, pre-combusted filter blanks were acidified and wrapped in
silver and tin boats to account for the C and N content of the filters. Tin boat blanks
and filter blanks were also analyzed as an additional check within each EA run.
Particulate organic nitrogen (PON) can be determined from the resulting data by
assuming that all PN associated with POC is PON. A positive intercept in the
relationship can indicate contributions from inorganic nitrogen adsorbed onto

particles and must be corrected for.

2.4.4. TSS and 5"°C Analysis

The large volume filter samples collected manually were used to determine
the concentration of total suspended solids (TSS) and the stable isotopic composition
of the particulate organic matter. All of the 47mm filters were dried in a 60° C oven
for 24 hours. A subset of samples was selected for stable isotope analysis. Each
47mm filter was sub-sampled using a solvent-cleaned hole-punch. Several sub-
samples were taken to obtain sufficient material for isotope analysis. The filter
punches were placed into 8x5mm silver boats. A drop of DI water was added to each
boat to help facilitate acidification. All samples were acidified, dried, and balled
using the same method as described for elemental analysis. Stable carbon isotopic
compositions of organic matter (5°C) collected in filters were determined using a
Carlo Erba Elemental Analyzer interfaced with a Finnigan Mat Delta Plus-XLS
isotope ratio mass spectrometer by a Conflo-I11 system according to Goni et al.
(2005) and reported in the usual & per mil (%o) notation vs. PDB. Isotopic standards
with contrasting isotopic compositions, including cystine, leucine, acetanilide,

sucrose, and ammonium sulfate, were run each day to calibrate the instrument.



3. Results

3.1. —2008 Tests

3.1.1. Laboratory Tests

POC concentration of
surface samples (Figure 5a) filtered
manually ranged from 8.94-55.0 uM
with standard errors ranging from
0.57-3.7 uM. The samples collected
using the semi-automated system
ranged from 4.33-49.7 uM, with
uncertainty of 0.087-1.4 uM . The
near-bottom (Figure 5b) manually
filtered samples ranged from 10.9-
21.3 pM with 0.27-3.4 uM
uncertainty. The automatic samples
ranged from 6.10-25.7 uM with
0.36-4.5 uM uncertainty. These
results show strong correlation
(slope = 0.97+0.07, R*= 0.93)
between the two sampling
approaches, with a possible
systematic offset around 2 uM
(Figure 6). Analysis of replicates
indicates that the samples collected
by the automated system have

analytical uncertainty that is similar
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Figure 5 — July results for manual versus
automatic samples taken on the LB and NH
sampling lines at both the surface (a) and
the near-bottom (b).
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to manually collected samples. Both methods captured the same cross-shelf and
surface to bottom trends, indicating that the semi-automated system is a viable

method for collecting particulate organic carbon samples over a range of conditions.

3.1.2. Field Tests

We performed additional testing during a field experiment in September 2008
based on manually and automatically drawing and filtering samples from the ship’s
surface intake line, and from the sample stream delivered by a pumping/profiling
sampling vehicle. In the first case, we collected several replicate samples by each
filtering approach while the towed vehicle was at a fixed depth in the water column.
Real variability in the sample stream combined with temporal mismatches in the two
sampling approaches made it difficult to sample true replicates by the two different
methods, but average concentrations and dynamic ranges were quite similar. POC
concentrations in the manual samples ranged 13.8-17.0 uM, with a mean of 14.8+0.4
MM (n =8). The automatically collected samples had POC concentrations ranging
from 12.6-18.6 uM, with a mean of 14.5£1.0 uM (n = 6). In each case, the observed
variability was similar to expected analytical uncertainty. We performed an ANOVA
on this data, and found no statistical differences between the manual and semi-
automatic filtration methods.

In the second case, we collected multiple samples from the ship’s surface
intake line as we steamed first to the SSW along the shelfbreak, and then across the
shelf to the nearshore (Fig. 4). The data for this transit are summarized in Figures 7-9
and Appendix C. The POC data show that during the first two hours of the transit we
crossed a strong gradient in surface POC concentrations, which decreased from ~80
MM to 10 uM (Figure 7a). This drop in POC corresponds with a proportional
decrease in chlorophyll fluorescence (1.268 to 0.300 V, Figure 7b) and beam
attenuation coefficient, cp (2.6 to 0.8 m™, Figure 7c). Subsequent to the decline in
particle load in the water, smaller features present in the cp and fluorescence signals

are also detectable in the POC data. Both POC and optical measurements remained
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low until the last two hours of the transit, at which time all values began to increase
again near shore. These data show highly significant, positive, linear correlations

between both optical measurements and POC (Figure 8).
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Figure 7 — Distribution of surface-water (a) POC [uM] (b) chlorophyll
fluorescence (uncalibrated sensor voltage, V), and (c) beam attenuation
coefficient, ¢, [m™], plotted against time during the September 10 transit.
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Figure 8 — POC concentration [AM] versus chlorophyll fluorescence [V] and
beam attenuation coefficient (c,) during the September 10 transit.

Examination of the temperature and salinity data along the transect line
(Figure 9) show that the ship moved through a variety of water masses along the
transit. Initial conditions consisted of relatively salty and cool water, indicative of
upwelling-influenced shelf water. We subsequently crossed through warmer fresher
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Figure 9 — Distribution of (a) salinity (PSU) and (b) temperature (°C) against time
during the September 10 transect.

waters, and then through warmer waters with relatively high salinity, suggesting
interaction with modified Columbia River plume and offshore North Pacific surface
waters. Upon turning to the East and steaming across the shelf, surface waters
became dramatically colder and saltier, indicative of upwelled source waters in the
nearshore. Coincident with the T, S signatures of upwelled source waters were high
POC, fluorescence, and c, values, consistent with elevated contributions of
phytoplankton biomass resulting from upwelling-driven production. As the ship
moved offshore and out of the colder water mass, POC, fluorescence and c, abruptly
decreased to values of 10 uM, 0.2 V, and 0.75 m™ respectively (Figures 7 and 9),

indicative of low algal biomass.
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3.2. Field Results - 2009

3.2.1. POC profiles

During late spring of 2009, we operated the SAFS interfaced with the SuperSucker
towed profiling sampling vehicle described in Hales et al. (2005; 2006). We present
here results from two cross-shelf sections from a region of simple bathymetry and
narrow shelf width at 45°N, and a broad-shelf region of complicated bathymetry at
43.9°N. On the southern transect, we collected 239 particulate organic carbon
samples over a 22-hour period, while on the northern transect we collected 100
samples over an 8-hour period. For comparison, collection of a similar number of
samples would have required hourly deployment and sampling of a 12-bottle CTD
rosette along these sections to yield similar sampling density. In the south,
concentrations ranged from 0.417 to 116 uM, while in the northern section the
dynamic range was smaller, ranging from 0.836 to 38.8 uM. Once the POC data was

correlated with the in situ data, we plotted cross-sections of the results (Figure 10).
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Figure 10 — POC distributions along 43.9° and 45°N transects in late May 20009.

Since there are still relatively few individual measurements, we did not use any type
of gridding to interpolate the data, and the location of each sample is based on the

average depth and longitude over the sampling period. Appendix C contains a table
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of all the POC results and corresponding in situ measurements, as well as cross-
section plots depicting the full range of water column sampled.

The POC distributions show elevated concentrations of organic carbon in the
surface water of both transects, with peak POC concentrations just seaward of the
upwelling pycnocline, consistent with previously observed surface productivity
patterns (e.g. Small and Menzies, 1981; Hill and Wheeler, 2002; Karp-Boss et al.,
2005; Hales et al., 2006). In addition, slightly elevated POC concentrations were
measured in a few mid-water and bottom boundary layer samples, which were clearly

different from areas of elevated surface concentrations (see Appendix C.2.).

3.2.2. Optical Results

Cross-shelf distributions of in situ optical measurements (Figure 11) show
consistent patterns. Beam-c shows elevated values in surface waters, with an
additional slight elevation in the bottom boundary layer. Chlorophyll fluorescence is
also elevated in the surface, but low in the rest of the water column with no
corresponding BBL enhancement. The chlorophyll and ¢, signals indicate an
abundance of phytoplankton in the surface that is strongest near shore and extends
seaward to the 200m isobath, echoing the POC results shown in Figure 10. Optical
backscatter, nominally related to total particle abundance, also shows elevated signals
in near surface and near-bottom waters, but the near-bottom signals are higher in
comparison to the surface values relative to what was observed for the other two
optical proxies. Structure in these optical properties is similar for each transect,
although surface signals are smaller at 45°N than at 43.9°N. (Plots of the temperature

and salinity profiles are in Appendix C.3.).
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Figure 11 — High-resolution optical measurements from 45°N and 43.9°N
transects, a-b) optical beam attenuation (cp), c-d) chlorophyll fluorescence, and
e-f) optical backscatter.
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3.2.3. POC-optical correlations

The trends in measured POC are coherent with the optical beam attenuation
data. The POC samples from the 43.9°N transect correlate strongly to c, (R? = 0.90),
with a slope of 50+2 (Figure 12b), in agreement with the findings of Karp-Boss et al.,
(2004). The samples from 45°N have a dynamic range that is about 1/3 of the 44°N
samples for both measurement, and consequently the correlation is not as strong (R* =
0.60, slope = 39+4), but still significant (Figure 12a).
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Figure 12 — POC concentrations plotted again optical beam attenuation for a) the
45°N transect and b) the 43.9°N transect.

Property-property plots of beam attenuation versus optical backscatter clearly
show two distinct particle pools (Figure 13, on the following page). One pool is rich
in POC and shows elevated beam-c and fluorescence (see Appendix C) relative to
optical backscatter, while the other is depleted in POC and shows proportionately
elevated backscatter. Smaller inorganic particles have proportionately higher
backscatter signatures relative to beam attenuation due to a combination of size and
refractive index (Boss et al., 2001; 2004; Gardner et al., 2001). This suggests that the
latter pool is highly degraded and may be remnant of winter-source material, while
the former is probably recently produced phytoplankton-derived material.
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Figure 13 — Plots of optical properties from a) the 45°N transect and b) the 43.9°N
transect. POC concentrations are shown as the color scale in both figures.

The two pools distinguished by the backscatter-c, relationship appear to be
consistent from one transect to another. Looking at the correlation statistics in Table
1, the most obvious difference is the change in slope from one surface pool to
another. However, there is a large amount of uncertainty in the 45°N surface pool
slope, driven by the reduced dynamic range and small number of samples compared
to 44°N. There is a slight difference between the slopes of the two BBL pools,
although those relationships are more tightly correlated and have much narrower

confidence intervals.

Slope [V*m] Intercept [V] R?
459N Surface 0.08+£0.03 0.031£0.01 0.62
45°N BBL 0.190+0.005 0.0273%0.0006 0.99
43.99N Surface 0.051+0.004 0.036+0.0035 0.93
43.92N BBL 0.218+0.008 0.025+0.002 0.95

Table 1 — Slopes, intercepts, and R2 of the correlations between backscatter
and beam-c seen in Figure 13, with 95% confidence intervals.
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3.2.6. Optical Ratios

Optical ratios were calculated from unit-normalized values of fluorescence,
optical backscatter, and beam-c. Each measurement was transformed from the
absolute observed ranges in either raw voltage (in the case of fluorescence and optical
backscatter) or beam-c to relative scales from 0-1 by subtracting the minimum value
from each sensor, and dividing that blank-corrected value by the sensor’s dynamic
range. Noise levels were determined for each instrument by calculating the standard
deviation signal observed during instances of relatively constant, near-zero readings.
Ratios were only calculated when absolute measurements that were greater than five
standard deviations above the minimum observed value for both fluorescence and
backscatter. We raised the threshold for beam-c measurements to ten times the noise
level because that term was used primarily in the denominator of our ratios and we
wanted to avoid interpretation of large signals that may have been the result of
dividing by numbers near zero. In addition, during the 44N transect, the high
chlorophyll levels maxed the fluorometer’s response at SV. Since these data are not
meaningful for optical ratios, we also eliminated data within the noise threshold of the
fluorometer maximum. The resulting high-resolution distributions are plotted in
figure 14.

These plots show areas of elevated fluorescence and backscatter relative to ¢,
(> 2.0 for both measurements) distinct from either surface or BBL pools, suggesting
a unique mid-water particle mass. Fluorescence:c, is also elevated within surface
waters (> 1.0), as expected for photosynthetically-active phytoplankton assemblages,
and low within the bottom boundary layer (<0.5). Conversely, backscatter is depleted
relative to c, (bp:cp<1.0) in surface waters and somewhat elevated (between 1.0 and

3.0) in the bottom boundary layer.
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In order to compare these optical ratios to POC concentrations, ratios were
also calculated using the same methods described above for each POC sample (see
Appendix C for cross-section plots). Combining the optical ratios with the POC-c,
relationship (Figure 15) yields segregations of several particle pools within the water
column. The BBL pools are clearly distinguished by very low levels of fluorescence
to ¢, (Figure 15a&b), while the surface pool shows low backscatter relative to ¢,
(Figure 15c&d). A third pool can be distinguished as having elevated values of
fluorescence, backscatter, and POC relative to ¢, measurements.
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3.2.4. Blank Considerations

Due to the small amount of material collected on each filter, the POC data
have a low signal to noise ratio, warranting extra consideration of the blank for each
sample. Sampling a wide variety of water masses containing dramatically different
particle pools makes determining an appropriate blank correction difficult. Here we
consider two primary factors relevant to the sampling method used: 1) the carbon
content of the glass fiber filter, and 2) DOC adsorption onto the filter.

Consistently accounting for the carbon content of combusted GF filters for the
samples from 2009 took some consideration, given the large number of samples to be
analyzed. There is inherent variability in the carbon content of glass fiber filters, but
in addition, the filter used were combusted at different times and stored in multiple
glass vials. 8-16 blanks were stored and frozen in every sample tray during the
cruise. In order to capture blank variability, 57 blank filters were analyzed as samples
in the EA for carbon content. A few filters were analyzed from each of the different
sample trays. In addition, we analyzed two blank filters with every 35 samples
analyzed. The average carbon content of the 108 blank filters analyzed was
0.28+0.10 umoles C, and this value was used to blank correct all of the samples from
May 2009 (Table 2 contains a summary of the GF and DOC blank correction values
discussed here). These values are significantly above the analytical detection limit of
our instrument (0.04 pumoles C), allowing us to confidently constrain the carbon
contribution from the filters themselves. Given the amount of variability within filter
blanks, our detection limit is 2 standard deviations above the average, or 0.48 pmoles
C . Of the 339 samples collected during the May transects, only 16 fall below 0.48
pmoles C/GF. All of the samples have been corrected for the average carbon content
of a blank filter (0.28 pmoles C).

Due to the minimal amount of particulate collected for most samples, PN
values were at or below detection limits for the majority of our samples.

Consequently, we do not report any PN or (OC:N)a data for these transects.
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Source Values
25mm GF 13mm GFF
umoles C umoles/GF mg/GF
GF Blank
GF Blank Average 0.28+0.10 0.0034+0.0012
Anayltlca‘l Petectlon 048 0.0054
Limit
DOC Adsorption
Menzel (1966) 1.7-2.1 0.46-0.57 0.0055-0.0068
Moran et al. (1999) 2.0 0.54 0.0065
Laboratory Test 1.8-2.0 0.48-0.53 0.0060-0.0064
POC to ¢, Correlation 0.37 0.10 0.0012

Table 2 — Approximate carbon content due to GF blank and DOC adsorption.

Correcting appropriately for DOC adsorption to glass fiber filters is difficult
under the best circumstances. POC studies in the past have used a variety of
approaches for approximating a DOC correction (Loder and Hood, 1972; Moran et
al., 1999; Gardner et al., 2003). Due to the large number of samples collected,
stacking a second filter for each sample, as in Loder and Hood (1972), was
impractical from both a logistical and analytical standpoint. Alternatively, in late
August we acquired 10L of surface water from within the area we sampled earlier in
the summer. This water was thoroughly homogenized, then filtered through 13mm
GF filters by manual filtration. We collected the filtrate in clean glass containers,
homogenized it, and filtered this “particle free” water through clean 13mm GFs at
volumes ranging from 50-600mL. All of these samples were frozen prior to analysis.
The filters were acidified and analyzed by the same method described in section

2.4.1. The GF filtrate results show that between 100 — 150 mL, the range of volumes
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of nearly all our field samples, between 0.48-0.53 pumoles adsorbed to the filters
(Table 2).

Moran et al. (1999) performed tests for DOC content by collecting a large
volume of water from one oceanic site and filtering that homogenized sample at
increasing volumes. The positive intercept from the resulting relationship between
carbon content per filter and volume sampled is indicative of the DOC content of the
filters. They performed this test on water samples from around the world. Their
results indicated that a DOC blank of ~2 pmole C was typical for small volume (100-
600mL) samples filtered onto a 25mm GF. This corroborates findings by Menzel
(1966). These results are summarized above in Table 2. Literature results were
normalized to a 13mm diameter filter for comparison to our results.

Given the linear relationship typically observed between POC and ¢, (e.g.,
Karp-Boss et al., 2004), it follows that a positive intercept in the trend line may also
be an indication of an average DOC blank within the sample set. In our data set from
the 44°N transect, the correlation between POC and c;, yields a positive carbon
intercept at ¢, = 0 of 0.6501 pM, with a 95% confidence interval ranging from -
0.3962 to 1.696 uM (Figure 13b). This value is a concentration, however, so we
convert it to a quantity of carbon per filter using the amount of water filtered
(150mL), giving 0.10 pumoles C/GF.

Applying any of these test-derived DOC values to our entire data set has a
significant inherent problem: the samples collected represent a wide range of different
water masses, and were collected at different times and locations than either the
literature values or laboratory test. For this reason, the POC data presented here is
not corrected for a DOC blank. However, interpretation of extremely low carbon
content samples (< 0.50 umoles/GF, or ~3.5 uM) must reflect the potential influence
of both variability in the GF blank and DOC adsorption.
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3.2.5. Isotopes

Filters from the 43.9°N transect were sub-sampled and analyzed for §°C
composition. During each transect, samples were collected from both the surface
intake and SuperSucker simultaneously. The surface samples range from -17.5 to -
22.6 %o. Sub-surface samples, taken from various depths in the water column, range
from -19.8 to -24.3 %o. The range in surface values varies with distance from shore;
near-shore samples are significantly enriched in **C relative to those collected farther
from the upwelling front, or from those collected in the sub-surface (Figure 16). The
45°N transect, however, shows no significant gradient in the surface samples, which
range from -19.9 to -21.1 %o. Subsurface values have values similar to 43.9°N, -21.0
to -24.5 %eo.
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Figure 16 — Distribution of 613C values within both the 45° and 43.9°N transect.
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4. Discussion

4.1. Carbon characterization

The optical properties observed during this study can provide insight into the
characteristics of the particulate carbon throughout the water column. Variations in
optical measurements are used to quantify a wide variety of particle properties, from
phytoplankton physiology (Fennel and Boss, 2003; Eisner and Cowles, 2005;
Behrenfeld and Boss, 2006) to particle size and composition (Boss et al., 2001; 2009;
Loisel et al., 2007; Whitmire et al., 2007; Snyder et al., 2008), in addition to simple
quantity abundances. Previous studies (Gardner et al., 2001) have also found distinct
surface and bottom boundary layer particle pools distinguished by variations in
optical beam attenuation and backscatter.

There is clear evidence of at least three distinct particle pools within our
sample set (Figure 15), which can be roughly divided between the surface, mid-water,
and bottom boundary layer. The surface water is dominated by large, fluorescent,
carbon-rich particles, as evident by the elevated c, and chlorophyll fluorescence. This
pool, with carbon concentrations reaching 120 pM, is probably recently produced
phytoplankton-derived material produced by large coastal diatoms (Small and
Menzies, 1981). The mid-water column particles are small, as indicated by extremely
low c, signals and comparatively high backscatter and fluorescence. Particles in the
bottom boundary layer are not as small as those in the mid-water, although
backscatter is still elevated relative to c,, but are extremely poor in both carbon
content and chlorophyll fluorescence. The lack of chlorophyll and elevated
backscatter suggest that this last pool is degraded and is dominated by inorganic
particulate material (Boss et al., 2001; 2009), indicating that it may be remnant of the
winter bottom boundary layer.

The stable carbon isotope composition of the surface particle pool further
supports primary-production as the dominant source of POC. There is a strong off-

shore gradient in isotopic composition, with enriched carbon near shore, which is
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typical of high productivity (Figure 16). Laws et al. (1997) and Woodworth et al.
(2004) investigated the relationship between carbon fractionation (gp) and the ratio of
inorganic carbon demand to supply in the laboratory and in the field respectively.
Laws et al. (2004) found that the two properties are inversely related. In other words,
under COyagp-limiting conditions, or at high phytoplankton growth rates, fixed carbon
will be less fractionated and therefore enriched in *C. Woodworth et al. (2004)
investigated the isotopic composition of organic carbon in sediment trap samples
collected from multiple depths in the Cariaco Basin over three years. They found a
direct correlation between the isotopic composition of POC and upwelling strength,
which is consistent with Laws et al. (1997), and indicates lesser fractionation during
conditions of very high production. The isotopic gradient we find moving seaward of
the upwelling front along the 43.9°N transect is consistent with a decrease in
photosynthetic production, likely due to a decrease in nutrient availability.

In addition, Woodworth et al. (2004) found no significant isotopic
fractionation in sinking particulate organic material. This implies that the isotopic
composition is an indicator of source material rather than a result of degradation.
Assuming that similar processes occur in the Oregon upwelling system, the relative
isotopic compositions of the sub-surface POC samples are controlled primarily by the
upwelling strength at the time that the carbon was fixed, several days prior to
sampling.

4.2. Quantifying water column POC from ¢,

Although the primary relationship between POC and ¢, is consistent with
previously reported relationships for this region (Karp-Boss et al., 2004), there is
significant variability in the correlation, particularly at low values of POC (<40 uM)
and ¢, (<0.5 m™). The correlation between POC and c, is dominated by signals from
surface waters enriched in freshly produced phytoplankton material, which only
comprise one of these particle pools. The three particle pools described in this study

have distinct optical and particle properties, therefore applying the primary POC-c,
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correlation to the entire water column is not an accurate reproduction of POC
distribution, and could result in erroneous estimates of the overall carbon content of
the water column. Using optical ratios as defining parameters (Table 3), it is possible
to segregate data into the different particle pools, and then apply an appropriate POC-
Cp calibration to each, thereby producing a more accurate reconstruction of POC
distribution. Applying these criteria (Table 2) to POC data collected from 43.9°N, we
get three distinct POC-c, relationships (figure 17) with dramatically different slopes.
We can then divide the high-resolution in situ optical data by the same method and
apply the three calibrations described in Table 3. The resulting reconstruction of
POC distribution has features that are distinct from a similar reconstruction using one

simple c;, calibration (Figure 18).

BBL Mid-Water Surface Combined
fl:cp <0.325 >0.325 >0.625 --
bp:Cp >1 >2.25 <1 --
Slope 9.70 98.3 47.8 50.0
Intercept 1.55 2.08 6.58 0.650

Table 3 — Optical ratio limits used to define three particle pools for both
determining POC-cp calibrations and segregating high-resolution measurements,
and resulting calibration information for each pool. Also included is the
calibration used for the simple POC reconstruction (Figure 20b).

The three-pool derivation of POC is different from the one-pool c, derivation
in two important ways. First, POC concentrations in the bottom boundary layer are
significantly lower than those found using the one-pool method. Low POC
concentrations coincident with elevated backscatter and c, indicate a decoupling
between particles and carbon in the BBL, particularly in comparison to those freshly
produced in surface waters. Second, the mid-water column has areas of elevated
POC, particularly off of Heceta bank. This suggests that the mid-water may be an
area for advective transport of POC off the shelf.
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Figure 18).
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The significance of the differences between the two forms of derivation is
clearly illustrated using the three particle pools to derive a POC inventory (g C) for

each area of the water column (Table 4). These inventories were calculated by

assuming that the volume of
water within the 43.9°N

1 Particle Pool | 3 Particle Pools
BBL 25x10°gC 7.0x10°gC
MID 1.3x10°gC 3.9x10°gC
TOP 1.1x10°gC 1.1x10°gC

transect (at 1m width) is

approximately 9.0x10° m?

and by assuming that the Table 4 — POC standing stock of the water column

BBL, mid-water, and divided between three particle areas. Carbon content
derived first using the single particle pool c,

surface pools constitute relationship, second using the three pool relationship.

~20%, ~55%, and ~25%

of the total water volume respectively. The POC of the BBL as found using three
particle pools is less than 1/3 of that of the same water mass derived using one
particle pool. Conversely, in the case of the mid-water, the POC inventory calculated
using the three-pool approach is 3 times higher than with the one-pool approach. The
POC inventory of the surface does not change significantly from one method of
derivation to the other. These results show that the distribution of POC within the
water column during the May cruise differs significantly from the distribution implied
by a simple linear relationship between POC and optical beam attenuation.
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5. Conclusions

We developed a filtration system (SAFS) that allows us to sample particulate
organic carbon at a higher resolution than was previously possible. SAFS collects
particulate samples on 13mm GF filters from a continuously flowing water stream at
user-designated time intervals. Testing performed during the summer of 2008 shows
that SAFS collects samples that are comparable to samples collected by manual
filtration, but does so more efficiently. This allows us to collect discrete samples at a
high enough resolution to capture gradients in water masses that otherwise would
only be seen in optical measurements. Furthermore, the variability seen within the
POC samples corresponds to the physical and optical properties of changing water
masses.

SAFS was deployed during the summer of 2009 alongside a suite of other
chemical and optical measurements in order to better constrain the dynamics of
carbon cycling within the coastal Oregon upwelling system. By combining POC
samples with optical measurements, we find that three distinct particle pools can be
discerned within the water column, corresponding with photo-productive surface
waters, varied sub-surface waters, and dense bottom boundary layer water. Through
the use of optical ratios, it is possible to segregate these three particle pools and
determine POC-c, calibrations for each pool, enabling us to derive a more accurate
distribution of POC from in situ optical measurements. From this new distribution
(Figure 18), we find a decoupling of sediment and carbon in the bottom boundary
layer, and a previously undetected relative elevation in mid-water POC. Both of
these features have implications for quantifying carbon content and for understanding
transport dynamics.
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Appendix A

Figure Al - Image of the semi-automated filtration system mounted on the lab bench
in R/'V Wecoma’s wet lab.
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Figure A2 - Image of the user interface for the LabView software controlling the
semi-automated filtration system.




45

Table A1 — Example of data output recorded by LabView software. Output includes

flow rate (mL/min), raw flow data (V), filter number, total volume (mL), date/time,

and Julian Day.

80.442214
80.769689
81.370058
80.605952
80.551373
80.278477
80.387635
80.442214
80.605952
81.097163
80.824268
81.370058
80.988005
81.206321
81.097163
80.988005
80.605952
79.787266
79.623529
79.241475
79.241475
79.623529

79.56895
79.732687
80.005582
80.769689
80.824268
80.933426
80.824268
80.387635
80.223898
79.678108
79.623529
79.241475
79.296054
79.459791
79.023159
79.186896

3.668966
3.684262
3.712307
3.676614
3.674064
3.661317
3.666416
3.668966
3.676614
3.699559
3.686812
3.712307

3.69446
3.704658
3.699559

3.69446
3.676614
3.638372
3.630723
3.612877
3.612877
3.630723
3.628174
3.635822

3.64857
3.684262
3.686812
3.691911
3.686812
3.666416
3.658768
3.633273
3.630723
3.612877
3.615427
3.623075
3.602679
3.610328

0.670352
1.343433
2.021516
2.693233
3.364494
4.033481
4.703378
5.37373
6.045446
6.721256
7.394792
8.072875
8.747775
9.424495
10.100305
10.775205
11.446921
12.111815
12.775344
13.43569
14.096035
14.759565
15.422639
16.087078
16.753792
17.426872
18.100408
18.774853
19.448389
20.118286
20.786818
21.450802
22.114332
22.774677
23.435478
24.097643
24.756169
25.41606

5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:05
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06
5/31/2005 00:06

152.004058
152.004059
152.004064

152.00407
152.004076
152.004082
152.004088
152.004093
152.004099
152.004105
152.004111
152.004116
152.004122
152.004128
152.004134

152.00414
152.004145
152.004151
152.004157
152.004163
152.004169
152.004174

152.00418
152.004186
152.004192
152.004197
152.004203
152.004209
152.004215
152.004221
152.004226
152.004232
152.004238
152.004244

152.00425
152.004255
152.004261
152.004267
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Table B1. - Table and plot of results of July 2008 in-lab comparison of manual vs.

automatic filtration methods.

0 POC  Standard % 0 POC  Standard %
(UM) Error Error (UM) Error Error

Surface Manual Filtration Auto Filtration
LB15 3 55.013 0.362 0.007 | 3 49.665 0.087 0.002
LB30 3 19.764 1.309 0.066 | 3 18.576 1.711 0.092
LB50 3 19.514 1.049 0.054 | 3 18.848 1.360 0.072
LB70 3 21.755 3.658 0.168 | 3 13.617 0.554 0.041
LB100 3 10.051 0.603 0.060 | 3 8.144 0.305 0.037
NH1 3 14.525 1.584 0.109 | 3 11.239 1.171 0.104
NH3 3 9.366 0.565 0.060 | 3 8.535 0.203 0.024
NH5 3 8.940 1.267 0.142 | 3 4.331 0.229 0.053
NH10 3 12.770 1.010 0.079 | 3 11.334 0.300 0.026
Near-
bottom
LB15 2 21.268 2.938 0.138 | 3 25.659 4532 0.177
LB30 3 21.270 3.381 0.159 | 3 20.469 2.538 0.124
LB50 2 14.768 1.099 0.074 | 3 13.513 0.392 0.029
LB70 3 11.741 0.273 0.023 | 2 8.879 0.357 0.040
LB100 3 13.695 1.200 0.088 | 3 10.915 0.928 0.085
NH1 2 13.129 0.422 0032 | 3 6.856 0.563 0.082
NH3 2 13.352 2.589 0.194 | 3 8.827 0.834 0.094
NH5 2 10.873 0.904 0.083 | 3 6.100 0.577 0.095
NH10 3 12.965 1.917 0.148 | 3 9.458 0.465 0.049




Table B2. - A table and plots of the manual/automatic comparison results from
WO0809A

POC (mg/L)
Manual Automatic

13.994 12.555
13.761 12.702
17.024 12.876
14.409 14.553
14.540 15.612
13.934 18.644
14.873
15.865

Mean 14.800 14.490

Standard

Error 0.396 0.967

% Error 2.68% 6.68%
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Figure B1. — Bar and whisker plot of the manual/automatic comparison results from
WO0809A.

MWanual SAFS



Table B.3. —Table of results from the Sept. 10, 2008 under way sampling.

49

Date/Time Latitude  Longitude SI\(/I: N pM (O)C;N Fl[tjl?r Cp S[Eg'SnL'Jt]y T[%g]p
9/10/08 3:19 45.326 -124.230 82.06 11.14 7.4 1.27 2.58 32.12 12.11
9/10/08 3:29 45.327 -124.233 80.53 11.65 6.9 1.18 2.08 32.10 12.27
9/10/08 3:39 45.310 -124.242 70.44  10.09 7.0 1.19 1.86 32.16 11.79
9/10/08 3:49 45.293 -124.253 58.28 8.35 7.0 1.07 1.60 32.27 11.74
9/10/08 3:59 45.277 -124.264 41.60 6.12 6.8 0.86 1.50 32.11 12.29
9/10/08 4:09 45.261 -124.274 46.82 7.85 6.0 1.01 1.55 32.09 12.33
9/10/08 4:19 45.244 -124.285 35.93 5.64 6.4 0.76 1.40 32.02 13.18
9/10/08 4:29 45.228 -124.296 19.97 3.66 5.5 0.49 1.12 31.90 13.53
9/10/08 4:39 45.212 -124.306 15.25 2.70 5.7 0.39 1.00 31.86 13.99
9/10/08 4:49 45.195 -124.317 23.38 461 5.1 0.33 0.81 31.74 14.31
9/10/08 4:59 45.179 -124.327 12.37 1.96 6.3 0.27 0.95 31.62 14.81
9/10/08 5:09 45.163 -124.338 10.55 2.40 4.4 0.27 0.81 31.58 14.88
9/10/08 5:19 45.147 -124.349 15.96 2.40 6.6 0.25 0.80 31.52 14.90
9/10/08 5:30 45.128 -124.361 12.42 2.74 4.5 0.27 0.81 3151 14.77
9/10/08 5:40 45111 -124.371 12.15 191 6.4 0.31 0.82 31.61 14.63
9/10/08 5:50 45.094 -124.383 12.46 281 4.4 0.32 0.84 31.64 14.63
9/10/08 6:04 45.070 -124.398 12.65 2.03 6.2 0.29 0.81 31.64 14.81
9/10/08 6:14 45.054 -124.408 10.29 2.54 4.0 0.26 0.75 31.60 15.00
9/10/08 6:24 45.037 -124.419 13.21 2.20 6.0 0.27 0.76 31.57 15.01
9/10/08 6:34 45.021 -124.430 15.67 2.79 5.6 0.27 0.76 31.64 15.02
9/10/08 6:45 45.003 -124.441 16.97 2.26 7.5 0.27 0.75 31.69 15.03
9/10/08 6:54 44.989 -124.450 16.52 2.82 5.9 0.26 0.75 31.73 15.04
9/10/08 7:05 44971 -124.461 17.14 2.49 6.9 0.29 0.76 31.72 15.03
9/10/08 7:15 44.954 -124.472 15.23 2.75 55 0.28 0.74 31.73 15.07
9/10/08 7:25 44.938 -124.482 12.50 2.33 5.4 0.22 0.65 31.89 15.25
9/10/08 7:36 44.920 -124.495 11.91 1.59 7.5 0.17 0.58 31.98 15.42
9/10/08 7:45 44.905 -124.502 12.47 2.10 5.9 0.18 0.58 32.07 15.32
9/10/08 7:55 44.904 -124.503 12.55 211 5.9 0.19 0.58 32.09 15.30
9/10/08 8:05 44.904 -124.503 20.85 3.56 5.9 0.19 0.57 32.08 15.32
9/10/08 8:16 44.904 -124.503 13.95 2.22 6.3 0.18 0.56 32.08 15.32
9/10/08 8:25 44.903 -124.502 14.71 2.69 55 0.18 0.57 32.08 15.31
9/10/08 8:35 44.891 -124.501 10.73 2.09 5.1 0.19 0.56 32.09 15.31
9/10/08 8:45 44.875 -124.497 9.86 1.69 5.8 0.15 0.54 32.01 15.42
9/10/08 8:55 44.859 -124.494 11.28 1.90 5.9 0.15 0.56 31.91 15.24
9/10/08 9:07 44.849 -124.482 10.36 1.86 5.6 0.21 0.60 31.73 14.93
9/10/08 9:17 44.850 -124.462 10.44 2.10 5.0 0.23 0.62 31.64 14.87
9/10/08 9:37 44.849 -124.417 13.58 2.39 5.7 0.31 0.73 31.84 14.04
9/10/08 9:47 44.849 -124.394 14.47 2.42 6.0 0.40 0.78 31.95 14.10
9/10/08 9:57 44.849 -124.372 13.10 2.23 5.9 0.33 0.74 32.00 13.40
9/10/08 10:08  44.849 -124.347 16.68 2.75 6.1 0.48 0.82 32.09 12.71
9/10/08 10:18  44.849 -124.325 13.86 2.49 5.6 0.42 0.70 32.11 12.67
9/10/08 10:28  44.849 -124.303 14.07 2.27 6.2 0.38 0.65 32.11 12.75
9/10/08 10:38  44.849 -124.280 12.77 2.26 5.7 0.34 0.61 32.13 12.46
9/10/08 10:48  44.849 -124.257 12.30 211 5.8 0.30 0.58 32.16 12.04
9/10/08 10:58  44.849 -124.234 14.36 2.66 5.4 0.37 0.63 32.27 10.85



Table B.3. (continued)

Date/Time Latitude Longitude SI\(/I: N uM (O)C;N Fl[gl?r Cp S[Ia:,d'SnL'Jt]y T[?,g]p
9/10/08 11:08  44.849 -124.212 21.01 3.63 5.8 0.45 0.71 32.47 10.24
9/10/08 11:18 44.849 -124.189 17.61 3.06 5.8 0.35 0.61 32.53 9.91
9/10/08 11:31 44.850 -124.159 31.64 5.59 5.7 0.66 0.88 32.83 9.47
9/10/08 11:41 44.850 -124.135 40.19 6.83 5.9 0.82 1.01 3291 9.03
9/10/08 11:51  44.849 -124.111 23.19 4.16 5.6 0.45 0.69 33.00 8.39
9/10/08 12:21  44.814 -124.115 10.70 2.04 5.2 0.12 0.63 33.75 8.65
9/10/08 12:31 44,781 -124.118 24.93 4.35 5.7 0.11 0.70 33.76 9.17
9/10/08 12:41 44.747 -124.120 37.61 6.45 5.8 0.77 1.15 33.62 8.90



Appendix C

Figure C.1. — Cross-sections of both the 45° and 43.9°N transect depicting the
smearing of each POC sample.
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Figure C2. — Plots of POC concentrations within both transects with a forced color

scale to show

Depth [m]

Depth [m]

low-concentration variability within each cross-section.
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Figure C3. — Cross-sections of high-resolution temperature and salinity measurements

from both 45° and 44°N overlaid with contours of constant density.
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Figure C4. — Cross-section plots of POC resolution optical ratios.
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Table C1. — Raw POC data from W0905B transects at 45°N and 43.9°N. Relevant in

situ measurements are included. The solid line on page 60 indicates the transition

from 45°N to 43.9°N data.
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Table C1. (continued)
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Table C1. (continued)
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Table C2. - Raw TSS and 8**C data from W0905B transects at 45°N and 43.9°N.
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luded. The solid line on page 71 ind

InC

transition from 45°N to 43.9°N data.
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Table C2. (continued)
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Appendix D

Figure D1. — Separation of water column into three particle pools, with by:c, overlaid

in color..
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Figure D2. — Separation of water column into three particle pools, with by:c, overlaid

in color.
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Figure D3. — Separation of water column into three particle pools, with reconstructed
POC [uM] overlaid in color.
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