
AN ABSTRACT OF THE THESIS OF

KEI-LEUNG ALBERT LUN for the MASTER OF SCIENCE
(Name) (Degree)

in Electrical and Electronics Engineering presented on D-ec. l4, 1.972 -
(Major) (Date)

Title: A SYSTEM DESTrAT or A "PC)1:2 TR ANT T-TAR TYW A P COMPILER
Redacted for privacy

Abstract approved:
7 IKProfessor Louis N. Stone

This paper describes the system design of a Fortran hardware

compiler which converts the original code of a source program into

an intermediate code. This code contains features that allow easy

machine code generation. An evaluation is first made on the marketa-

bility of such a system and then a brief discussion on the features of

the intermediate code generated by the hardware compiler.

The system is divided into a number of functional blocks. Each

block consists of a control unit and a set of hardware logic components.

The control unit is realized by Programmable Logic Arrays and all

hardware components are state-of-the-art products. Estimates on

the typical operating speeds of the functional blocks are made. Flow

charts and state diagrams are used to describe the logic flow of the

functional blocks.

System Design of a Hardware Fortran Compiler

by

Kei-Leung Albert Lun

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 1973

APPROVED:

Redacted for privacy

Profie or of Electrical arkfElectronics Engineering
in charge of major

Redacted for privacy

Head of Department of Electrical and Electronics Engineering

Redacted for privacy

De in of 6raduateXchool

Date thesis is presented Dec., eti 1972-

Typed by Susie Kozlik for Kei-Leung Albert Lun

ACKNOWLEDGEMENTS

The author would like to thank Professor L. N. Stone for his

guidance during the preparation of this thesis. He would also like to

thank Dr. Harry Goheen whose advice has been most helpful.

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

Qualitative Evaluation 1

Feasibility Study of Hardware Compiler 3

II SYSTEM CONCEPT OF THE HARDWARE
COMPILER 7

III MAIN COMPUTER AND HC'S RELATION 9

Host Machine's Responsibility 9

Hardward Compiler's Job (Interrupt Request) 10

Description of the Code Generated by the HC 10

IV BLOCK STRUCTURE OF THE HC 17

V HARDWARE IMPLEMENTATION OF A CONTROL
UNIT 21

VI INPUT FUNCTIONAL UNIT 24
Introduction 24
Block Explanation of the Input Control Unit 25
Hardware Components of the Input Unit 27
Detailed Discussion of the Input Control Unit

Particularly Its Handling of Hollerith Input 32

VII HARDWARE IMPLEMENTATION OF THE INPUT
CONTROL UNIT 35

Procedure of Implementation 35
Conversion of the Flow Chart of the ICU

to State Diagrams 35
Skip Record Control Unit 37
Operation of a Control Unit 45
Timing and Operating Speed 48

VIII SCANNER FUNCTIONAL UNIT 51
General Description 51
Description of the Operation of the Scanner

Control Unit 52
Hardware Associated with the Scanner 55
Operating Speed of the Scanner 59
Sub-Units Used by the Scanner 60

Chapter Page

IX SYMBOL TABLE 62

Meaning of Symbol Table 62
SYMTAB of the Hardware Compiler 64
Hardware Implementation of SYMTAB 66
Statement Number Search Unit 73
Time Needed to Search Statement Number 77

X LEXICAL ANALYZER UNITS 79
Background Discussion 79
Arithmetic Lexical Analyzer (ALAU) 80
Time Required to Analyze an Arithmetic

Statement 82
Variable Match Unit 84
Time Required by VMU to Match One Variable 85
Constant Unit 86
DO Lexical Analyzer Unit 87
IF Lexical Analyzer Unit 89

XI SYNTAX ANALYZER UNIT 93
Arithmetic Statement Switching Matrix 94
Hardware Components 96

Push-Down-List Memory 96
Special Character Generator 99
Code Memory (CM) 99
Switching Matrix 99
Auxilliary Registers (A1, A2, A3, A4) 101

General Description of the Syntatic Analysis
of Arithmetic Statements 101

Running Account of the SAU's Handling of
One Arithmetic Statement 102

Operating Time Required by the SA.0 to
Analyze Arithmetic Statement 102

Expansion of Switching Matrix to Include IF
Statements 104

Running Account of the Analysis of One IF
Statement 106

Inclusion of DO Statements 107
Running Account of the Analysis of One DO

Statement 109

XII OUTPUT UNIT 111

XIII SUMMARY AND CONCLUSIONS 112

Chapter

BIBLIOGRAPHY

APPEND IC ES

Page

115

118

LIST OF TABLES

Table

Meaning of words produced by the hardware

Page

1

compiler 12

2 A cross reference between HC's memory modules
and their respective functions 19

3 Internal code vs. character 27

4 Actions associated with each ICU state 36

5 Actions associated with each SKR state 40

6 Transition table of SKR 41

7 Worst case estimate of time needed to input one
character by input control unit 50

8 Estimate of time required to scan a trial statement 59

9 Classification of items in the SYMTAB 62

10 Estimate of time required for a typical statement
number search 78

11 S-code and its meaning 80

12 Estimate of time required to analyze one
arithmetic statement by ALAU 84

13 Estimate of time required to match one variable 86

14 Estimate of operating time of DO lexical analyzer 88

15 Estimate of the operating time of the ILAU 92

16 Running account of the analysis of an arithmetic
statement 103

17 Additional elements for switching matrix to include
IF statement 106

Table Page

18 Running analysis of IF statement 106

19 Extra elements for switching matrix to include
DO statement 108

20 Example of the analysis of DO statement 110

21 Typical operating time of control units 113

LIST OF FIGURES

Figure Page

1 Plot of C
1

and C
2

versus P 4

2 Simplified diagram of the memory organization
of the host machine 12

3 Block diagram of hardware compiler 18

4 Block diagram of TI' s programmable logic array 22

5 Block flow chart of input control unit 26

6 Block diagram of input functional block 28

7 Block diagram of decoder DC 30

8 Example of a simple decoder 31

9 Flow chart of input control unit 33

10 State diagram of ICU 36

11 Flow chart of skip record unit 39

12 State diagram of SKR unit 40

13 Block diagram of binary counter 44

14 Block diagram of a control unit 46

15 Timing diagram of two phase clock 49

16 Flow chart of scanner 53

17 Block diagram hardware of scanner 56

18 Block diagram of command name decoder-encoder 57

19 Block diagram of SHR 58

20 Flow diagram of pack symbol 61

Figure Page

21 Hypothetical SYMTAB of HC 65

22 Block diagram of a search memory using dynamic
recirculating registers 67

23 Block diagram of a search memory using hash
network 69

24 State diagram of search memory 72

25 Flow chart of statement number search unit 76

26 Data flow of statement number search 77

27 Flow chart of ALAU 83

28 Flow chart of DO LAU 90

29 Flow chart of IF LAU 91

30 Code for an arithmetic statement 94

31 Switching matrix of SAU 97

32 Block diagram of a PDL 98

33 Block diagram of hardware components associated
with SAU 100

SYSTEM DESIGN OF A HARDWARE FORTRAN COMPILER

I. INTRODUCTION

Qualitative Evaluation

The throughput of a computing system depends greatly on how

efficient its processing time is being used and how much of it is ac-

tually used on data processing. The fact is that a great deal of the

processing time is spent not on problem solving, but on the various

time-consuming, but essential house-keeping chores. These chores

are usually carried out by an elaborate system program with the sup-

port of many other, equally complex subprograms. Occasionally, the

systems program may call upon the services of one of its compilers

to compile a certain source program. A compiler, basically, is an

information handling process, consequently a large part of its com-

plexity arises from symbol searching, statement analyzing, and code

conversion. Its implementation by sofvtware is ill suited to a conven-

tional computer, the inception of which is to deal with processing data.

As a result, compilation is a slow process.

Many ideas have been suggested to improve the efficiency of ex-

isting software to speed up compilation. However, it is clear that no

matter how elegant software is, its speed is inherently limited by the

speed of the hardware which it uses. A new direction should be taken.

2

When one looks more closely at the somewhat mysterious com-

piling process, behind the facade of terminologies and definitions, one

finds a well defined logical process that offers many interesting pos-

sibilities for hardware implementation. This paper is an exploration

of these possibilities.

Suggestions to bypass software compilation are not new. Baskkow

and associates (1967) have proposed a reasonably detailed logic design

of a small scale computer which modifies only slightly a Fortran

source program by hardware and executes directly the resulting code.

Melbourne and Pugmire have also suggested the construction of a

microprogram control computer, the machine code of which is the

language Fortran itself (Melbourne, 1965).

This paper resembles the above mentioned ideas in its vision

that software compilation is inefficient, and some of its functions,

such as symbol search, statement analyze, and others, are definitely

replaceable by hardware. It is different in its design philosophy which

is to construct with state-of-the-art hardware a hardware compiler

(HC) that can be used by a conventional computer to compile a Fortran

program. The HC converts the source program into a set of inter-

mediate code which is designed to allow easy conversion to any actual

machine codes by software residing in the main computer.

It is the objective of this paper to give a detailed systems design

of the HC, with the design goal that it will be able to serve many

different types of computers. In other words it is not machine de-

pendent. Only the state of the art will be used throughout the paper in

the design of the HC.

Feasibility Study of Hardware Compiler

Any practical design project should begin with a feasibility study

of the product to be designed. Whereas a precise market analysis of

the hardware compiler is complex and out of the realm of this paper,

an insight into its probable market potential can be derived by making

certain reasonable estimates.

Assume that a time-sharing computer system Si is overloaded

and hence yielding poor response time. Two kinds of investments can

be made to improve the system's throughput. First, a faster and

more expensive computer can be used in place of the existing computer

(let the new system thus formed be called S2). Second, a hardware

compiler may be installed to increase the speed of Fortran compila-

tion. The tradeoffs of these two investments may be examined.

Let $X be the leasing cost per month of Si, $Y be that of S2, and

$Z be that of the hardware compiler (HC). Also let

and

speed of S2
speed of Si

Compilation speed of Si with HC
Compilation speed of Si alone b

and let P be the percentage of Sl's load that belongs to compiling.

4

Then, from an investment point of view, the amount of money invested

in compiling using S2 is

Cl Sy x Pa

and the amount of money invested in compiling using Si and HC is

C2 $X + $Z

The curves of these equations as a function of P are drawn in Figure 1.

It shows that if the compilation load exceeds Pc the hardware compiler

is definitely a better investment, owing to the fact that over this re-

gion less money has to be spent on compiling if the hardware compiler

$ invested
in

Compilin

P

Figure 1. Plot of C
1

and C2 versus P

100 P

As an example of a typical computing facility, the Oregon State

University's OS-3 system may be examined. The leasing cost per

5

month of the system is about $35K, $15K of which goes to renting the

CDC-3300, which is the computer of the system. Replacing the CDC-

3300 with CDC-3500 (which leases at $20K per month) and keeping the

existing peripheral facilities would lead to a new system leasing cost

of $40K per month.

It can be safely assumed that

speed of CDC-3500 1.5 .speed of CDC-3300

It can also be safely predicted that

speed of compilation of CDC 3300 with HC
speed of compilation of CDC-3300

Five is a conservative guess in view of the fact that the hardware

compiler takes charge of symbol searching, statement analyzing, and

other time-consuming tasks of compilation, leaving only rather

straight-forward jobs for the main computer. Studies show that at

least 30% of the central processing unit time of OS-3 is being spent

on Fortran compilation. Assuming these values for X, Y, a, and b,

and Pc, the leasing marketable price per month of the HC may be

found:

O 3 O.
3+$40K x < $35K x $Z1.5 5

$Z < $5.9K/month

To approximate the actual marketable price (not the leasing price) of

the hardware compiler, the ratio R between the actual price and rental

6

price per month must be known. Let this ratio be the same as that

for OS-3. It is known that OS-3's actual cost is about $1.5 million.

Hence,

$1.5 x106
R - 40$3.5

Using this value for R, the actual marketable price for the hardware

compiler is:

40 x $5.9K < $236K

This means that the design should shoot for a selling price of no more

than $236K and a compilation speed increase of at least 5 over a con-

ventional software compiler.

7

II. SYSTEM CONCEPT OF THE HARDWARE COMPILER

The hardware compiler should be viewed as a special purpose

processor whose function is to convert a source Fortran program into

an intermediate code (c-code) which is easily convertible by the main

computer's software to its actual machine code. In the design of the

HC, the following design principles are applied:

1. The HC should be able to interface with most word oriented

general purpose computers and still perform it's useful

function as an intermediate code generator.

2. Since this is a preliminary design attempt, system modu-

larity and flexibility rather than elegance are stressed to

enable easy design moderations later.

3. Realizing a complete design project in its detailed glory is

an impossible undertaking for a paper this size, only im-

portant design concepts will be given. Examples will be

used whenever practical to illustrate these concepts and

how they may be implemented,

4. State-of the-art hardware components and concepts are used

as a rule to demonstrate the credibility of the systems struc-

ture.

The discussion of the system design will be in the following logical

sequence:

1. main computer and HC's relation;

2. block structure of the HC and its different functional units;

3. detailed discussion of each functional unit, its control and

its hardware components. (Flow chart and state diagram

description will be used to indicate the logic flow of the

control of each functional unit).

9

III. MAIN COMPUTER AND HC'S RELATION

Host Machine's Responsibility

As far as the system program of the host machine is concerned,

the hardware compiler (HC) is just another peripheral device and

should be treated as such. When a Fortran control statement, one

which requests Fortran compilation, is read, the host machine exe-

cutes the statement by first energizing the specified input device which

contains the source program. It then reads the whole program into

its memory. During reading, the host machine also notes the type of

code with which the program is written, ASCII, BCD, Hollerith, or

others, and inserts end of record (EOR) marks to separate one state-

ment from another.. It also inserts an end of file (EOF) mark when

it reaches the end of the source program. Once this process is done,

the host computer stores the whole program in one of its auxilliary

storage devices.

The host machine then checks with the HC to see if it is free to

operate on the program. If it is free, the host computer will send it

the information concerning the code type of the source program and

which device has the program in store. The HC will then be energized

and left alone to operate on the program. If the HC is found busy

working on another program, the host machine will put the code type

10

and device address information of the source program in its compila-

tion waiting list. It will then resume with its other operations.

Hardware Compiler's Job (Interrupt Request)

As soon as the hardware compiler finishes processing one

Fortran program, it will send an interrupt request to the main com-

puter. The instant the main computer is free to service this request,

it will first check with its compilation waiting list to see if any other

program is waiting to be compiled. If there is, the information con-

cerning its code type and device storage address will be passed to the

HC which will then be energized once again. The main computer's

compilation routine will then be activated to take over the final stage

of the compilation. If there is no program in the waiting list, the HC

will not be reenergized.

Description of the Code Generated by the HC

The C-code generated by the hardware compiler has already

been claimed to be easily convertible to actual machine codes for most

general-purpose, word-oriented computers. This section testifies to

that claim by giving the set of codes that the HC will generate for cer-

tain types of Fortran statements and how the host machine's software

can convert them into actual machine instructions.

11

A sentence generated by the hardware compiler is composed of

words of 16 bits each. These words have two fields, the identifica-

tion field, and the value field. Table 1 gives the meaning of a C-word

and its two fields.

The identification field is 6 bits long and gives the classification

of the word, whether it is a variable, statement number, Fortran

command, constant, or an operator. For symbols like variables,

statement numbers, and constants, their value parts are their ad--

dresses in the symbol table of the hardware compiler. It will be

shown later that since there is an one to one correspondence between

the symbol table of the hardware compiler and that of the host com-

puter, transformation from one symbol table address to another is

direct and simple. For symbols like operators (+, =, -, and so forth)

or command identifiers (GO TO, IF, DO), the 10 bit value field simply

uniquely defines the nature of the operator or command.

Before discussing the C-code produced by the HC, it is proper

to describe the memory organization of the host computer which has

a conventional compiler (this is just an example). Figure 2 is a sim-

plified diagram of the memory organization of such a machine. The

memory is divided into a compiler area (containing the routines that

do the compiling), symbol table area, program area, and the I/O area.

The compiler area contains the software routines of the main computer

of instructions found in the I/O area of the memory. The translated

12

Table 1. Meaning of words produced by the hardware compiler.

Type of word

undefined statement number

defined statement number

DO range number undefined

DO range number defined

simple variable
subscripted variable
simple formal parameter
subscripted formal parameter
subroutine name
constant

operator
relational operator
command name

6 bits
Identification

field

10 bits
Value
field

0 0 address

0 1 address

0 2 address
0 3 address
1 0 address
1 1 address
1 2 address
1 3 address
1 4 address
3 0 address
4 0 internal code

4 1 internal code
5 0 internal code

77777

00000

Compiler

I/O Area

Symbol Table

Program Area

Figure 2. Simplified diagram of the memory organization of the host
machine

13

results are stored in the progzam area which has a pointer, Program

Counter, that addresses the next empty space of the program area.

The symbol table contains the run time address of every symbol used

in the program.

Having discussed briefly what the organization of memory may

be like in the host machine, the following program segment is used to

illustrate the usefulness of the code produced by the HC.

Let the original program segment be

D = 1 ;

C = 2 ;

A = 1.4 ;
12 B=A+C*D

GO TO 12;

The code produced by the HC for the segment of the program looks like/

LE] [c(msd [1] [[;] 1

[c] Lccinsti [zi E :1 [j] 2

LA7 Iccinst [1] ['] [4] L:1 [; 3

[X] [C J [ni [.1] [4] [T [A] [T1J

[B] [T1.] [4

[12] [;
5

The software of the host machine should recognize the following

properties of the above set of code:

1. A, B, C, D are variables.

2. 12 is a defined statement number.

14

3. [const] is a symbol that indicates what follow are digits of

a constant and ":" delimits the constant.

4. The symbol ";" indicates the end of one instruction.

5. The symbol GOTO indicates the instruction being one of the

Fortran commands.

With the above salient features in perspective, the host machine

should treat the generated code of instruction 1 by the following pro-

cedure:

1. input the statement into the I/O area of the memory.

2. perform address transformation S(X) on all statement num-

bers, variables, and constants, where S is the address

transfOrmation and X is the symbol table address generated

by the HC.

3. convert constants into binary representations and store them

in symbol table .

4. generate machine code for the instruction.

Instructions 2 and 3 are handled similarly and at the end of compiling

instruction 3, the memory of the main computer will look like,

Symbol Table Program Area

Address Contents Address Contents

S(D)

0000

0001

0002

LDA S(1)

STA S(D)

LDA S(2)

15

Address Contents Address Contents

0003 STA S(C)

S(1) binary rep. of 1 0004 LDA S(1.4)

0005 STA S(A)

S(C)

S(2) binary rep. of 2

S(A)

S(1.4) binary rep. of 1.4

Instruction 4 is handled differently because it is preceded by a

statement number (12). The host machine's software should

1. find the address transformation S(12),

2. store the contents of the program counter (which equal to

0006 at this time) in S(12)

3. find transformations, S(B), S(C), S(A), S(D), S(T1),

4. generate machine codes,

The following program contents will be augmented to the one shown

above,

Symbol Table Program Area

Address Contents Address Contents

S(12)

S(B)

0006 0006

0007

LDA S(D)

MUA S(C) - - - Multiplication

Address Contents Address Contents

0008 STA S(T1)

S(T1) 0009 LDA S(A)

0010 ADA S(T1) -Addition

0011 STA S(T1)

0012 LDA S(T1)--- Equation

0013 STA S(B)

16

When the main computer's software encounters

GOTO 12 ;

it will do the following,

1. Perform address transformation S(12),

2. Fetch 0006 from S(12),

3. Generate machine code for the instruction.

UJP 0006 (unconditional jump to address 0006).

17

IV. BLOCK STRUCTURE OF THE HC

The block structure of the hardware compiler is shown in Figure

3. It consists basically of five different functional blocks:

1. Input block is responsible for

a. recognizing any illegal characters that may be present

in the source program.

b. converting the external program code, be it ASCII,

BCD, or Hollerith, into an internal code which is recog-

nized by the rest of the functional units.

2. The Scanner is responsible for identifying the statement

type of an instruction and energizing the proper one of the

Lexical Analyzer Units.

3. Lexical Analyzer Units (LAU' s) are responsible for con-

verting every source program into a string of words in the

S-language in which every symbol in the source program is

replaced by its special identifier.

4. The Syntax Analyzer Unit (SAU) takes the string of words

produced by each LAU and generates an intermediate code

for it.

5. The Output Unit transfers the output of the HC, intermedi-

ate code or error messages, to a special storage device and

issues an interrupt request to the host machine.

Statement
Number

Input One
Statement

18

Scan Statement

Statement
Number

Search

If

Respective
Lexical Analyzers

End of
File

Output to
Main Computer

Arithmetic Statement

Arithmetic
Lexical

Analyzer

Syntatic
Analyzer

Figure 3. Block diagram of hardware compiler

1g

Since each functional unit, except for the scanner, comprises

some kind of code conversion process, it is evident that storage has to

be provided for the resulting code. Design modularity implies the use

of separate memory modules for each different resulting code. Table

2 summarizes some of the different memory units that are present

and their respective functions.

Table 2. A cross reference between HC's memory modules and their
respective functions.

Memory Module Function

Input Buffer Memory
(IBM)

Syntax Memory
(SM)

Code Memory
(CM)

Error Message Memory
(EMM)

Input internal code
storage

S-language storage

Intermediate code
storage

Error message and line
number of the instruction
associated with it

In this design semiconductor memory modules are used instead of

more common core memory units because of the following considera-

tions:

1. The speed of semiconductor memory can be up to 5 times

that of a core memory.

2. All the memory modules used in the HC are figured to be

less than 10K bits in capacity. Up to that memory capacity,

20

cost per bit is cheaper when semiconductor memory units

are used (Moore, 1971).

3. Power failure is a great concern for the use of semi-con-

ductor memory, because of the volatile nature of the device.

However, since all memory modules are in fact scratch pad

memories, power failure is not a fatal problem during the

operation of the HC.

In addition to these memory modules, there are other special

hardware components (code converters, shift registers, push-down-

list memory units, etc.) associated with each functional unit. These

components are designed to carry out those operations required of the

functional unit. To control the functioning of these components, there

exists for each functional unit a microprogram control unit. The dis-

cussion of the characteristics of the hardware components and the

control units will form the bulk of the paper.

21

V. HARDWARE IMPLEMENTATION OF A CONTROL UNIT

The control of each functional unit described in the above section

operates in accordance with an algorithm which can also be thought of

as the sequence of steps followed by a finite state machine. Since the

algorithm is complicated, its hardware realization usually involves a

sequential machine of numerous states, inputs and outputs. The

success of producing such a machine depends greatly on the availabil-

ity of inexpensive and fast hardware components. Advanced medium

scale integration (MSI) and large scale integration (LSI) components

have provided such an availability, thus giving more credence to the

belief that most software routines can be replaced by hardware with

good cost and performance results. Such ideas have been expressed

by many researchers and seem to represent the current trend of

thoughts in the computer industry.

The technique used in this paper to implement each control unit

resembles closely microprogramming as understood in the industry

and more closely still one of the hardware implementation approaches

expressed by Thurber et al. (1971).

The building block of a control unit is the Programmable Logic

Array (PLA) currently marketed by Texas Instruments (TI). The

design of each control unit is based on the fact that any algorithm can

be implemented by a finite state machine. It is also observed that all

22

finite state machines are describable by logic equations in their can-

onical form (sums of products). These sums of products may then be

realized by a PLA. Figure 4 is a block structure of a PLA,

Inputs

Inverters

Product Term

Generator

Matrix

Clock

Clock Generator

F. F.
Outputs

K
Product
Terms

V
Sum-of
Products
Generator
Matrix

To F. F.
inputs

Outputs

J-K

Flip-Flops
Reset

Output Buffers

External
Outputs

Figure 4. Block diagram of TI' s programmable logic array

As can be seen in Figure 4, if a logic expression is written in its

canonical form then the PLA has

1. a first programmable matrix to generate the product terms

23

(AND matrix); this matrix can also be thought of as an

address decoder.

2, a second programmable matrix to generate the sum of

products (OR matrix); this matrix can also be thought of as

containing a set of micro-instructions.

3. J-K flip-flops used in feedback loops to permit implementa-

tion of sequential logic.

A detailed description of the concepts and construction of a control unit

is given in Section VII.

24

VI. INPUT FUNCTIONAL UNIT

Introduction

In the design of the input functional unit, it is assumed that the

host machine has the necessary interface facilities to provide inter-

peripheral communication between the HC and any existing auxilliary

storage device that may have a source program in store. All the HC

has to do to initiate inputing a Fortran program from the storage de-

vice is to send the interface the address code of the input device and

the code with which the program is written. The former information

enables the interface to energize the correct storage device and the

latter enables the interface to store serial input from the storage de-

vice in its buffer register until enough bits are accumulated. These

bits will then be transferred in parallel to the input latch of the hard-

ware compiler. In addition, the interface may be inhibited tempor-

arily from reading further from the storage device when it receives a

READ INHIBIT signal from the HC.

A transferral of new information from the interface is accom-

plished by a TRANSMIT READY (TRX) signal which serves to tell the

HC that a new character, is at the output lines of the input latch, and

is ready to be processed. The block flow chart of the input control unit

and the block diagram of the hardware associated with the input unit

25

are shown in Figure 5 and Figure 6 respectively.

Block Explanation of the Input Control Unit

The block diagram of the logic flow of the Input Control Unit is

shown in Figure 5. Since more than one input code of a source pro-

gram is acceptable, the input control unit (ICU) has to convert each

kind of code into one internal character code. Table 3 shows this

character code and its meaning. To do this code conversion, the ICU

energizes one of its code converters.

Looking at Figure 5, it can be seen that the ICU carries out its

job by first sending the interface the information concerning the code

type and storage device of the source Fortran program. It then reads

one character at a time from the interface, does code conversion on

the character, and then checks to see if the character is legal. If it

is legal, the ICU will store its internal character code in the input

buffer memory (IBM). If the character is illegal, the ICU will simply

skip the instruction.

When the ICU reads an end of record (EOR) mark, it will store

the internal code ; in the IBM and considers its job done for the time

being. A more detailed description of the ICU and its way of handling

an input program in Hollerith will be shown in a later section.

26

Send
Code and Device Address

Info to interface

Read One
Character

Code Conversion
Using Appropriate
Code Converter

End of
Record

Store Code in IBM

Energize
Scanner

O.K. Illegal
character

Skip One Instruction

Store Code in IBM

Figure 5. Block flow chart of input control unit

27

Table 3. Internal code vs. character.

code character

00 0
01 1

02

11 9
12 A
13

43
44
45
46
47
50
51
52
53
54
55
56
57

77 illegal

Hardware Components of the Input Unit

The block diagram of the hardware components used by the ICU

is shown in Figure 6. The following is a brief description of the func-

tion of each component:

1. Code converters: There are three code converters, the

ASCII-internal, BCD-internal, and Hollerith-internal code

converters. Each code converter is so designed to convert

28

Input Internal
character Code

Code
Converter

Hardware Compiler

Reset Increment

CIB

Address

Input
Buffer
Memory

Code Decoder

bp

Figure 6. Block diagram of input functional block

29

the set of all illegal characters to 778 (see Table 3). These

code converters are similar to TI's TMS 2603, so their

construction is well within the state of the art.

2. Input buffer memory (IBM): The IBM is a 256 word, 6-bit-

per word, random access, semiconductor memory. The

word size of the IBM is quite arbitrary but the word length

is determined by the number of bits in the internal charac-

ter code, which is six. The word size, set at 256 words,

is chosen because of the observation that this memory size

is common in metal oxide semiconductor (MOS) memories,

and the assumption that no Fortran instruction will have

more than that number of characters. Typical Read/Write

cycle time of such memory units is 600 ns.

3. Input buffer memory register (IBMR): It is a 6 bit register

which contains the word to be written in the IBM preceding

a WRITE operation. It also contains the word read from

the IBM after a READ operation.

4. Counter input buffer (CIB) is an 8 bit binary counter. It can

be incremented and decremented and reset. Its contents is

the binary address of a character in the IBM. Its address

decoder determines which memory cell is to be addressed

during either a READ or a WRITE operation.

30

5. Decoder (DC): The 6 bit to 64 output line decoder is used

extensively by the HC's control units. Its job is to take a 6

bit internal character and to decode it into the output line

which corresponds to the internal code. Figure 7 is a block

diagram of the DC. Some of the DC's output lines are or' ed

together, so that the or' ed output will be known collectively

as digit, letter, or special characters.

Input
Lines 4

Decoder

0
Digit

Letter

Figure 7. Block diagram of decoder DC

> Illegal

MSI decoders using TTL logic currently sold in the market give

inverted outputs. In other words, the output line which corresponds

to the input code will be the only line low while the rest of the output

lines remain high. To illustrate, Figure 8 is an example. Figure 8

shows a 2 line to 4 line decoder with some of its output lines connected

together to perform the required or' ed function.

Decoder

Figure 8. Example of a simple decoder

31

AB+AB

D3AB + AB

6. Line Counter (LNC) is a binary counter which stores the

number of lines that have already been compiled.

7. Counter N (CN) keeps track of the number of characters

that have been input so far.

8. HC Status word register (STWR) contains the information of

the input code and address of storage device sent by the

host computer. There is also a busy bit which indicates

that the HC is busy when it is flagged.

9 Error Message Memory (EMM): The EMM contains error

messages issued by the various control units. Each error

message contained in the EMM is accompanied by its line

number which indicates with which instruction the error

message is associated. The address counter of EMM

32

(C EMM) contains the binary address of the next available

a memory cell of the EMM. The EMM buffer register

(EMMBR) provides the necessary buffer for the EMM during

either a read or write operation.

10. The input latch (INLH) provides temporary storage for one

input character from the interface. Its output will follow the

input data only when the latch enable clock is high.

Detailed Discussion of the Input Control Unit
Particularly Its Handling of Hollerith Input

Figure 9 is the detailed flow chart of the ICU and its way of

handling Hollerith input code (other input code is handled similarly).

Figure 9 shows that the ICU first sends those contents of its status

word register (STWR) concerning the code type and the storage device

address of the source program to the interface of the host computer.

It then waits for the interface to send one character to it (this corres-

ponds to the read operation shown in the flow chart). That happens

when the interface gives out a TRANSMIT READY signal. The ICU

then energizes the Hollerith-internal code converter to convert the

character to its internal code representation (code convert). This

code is stored in the IBMR. To find out what kind of character it is,

the ICU energizes the decoder (DC).

To be acceptable, Hollerith or card input must have the following

features:

Skip One Record

Input
Control

Unit

Send Code and
Address Info. to

Interface

Hollerith

Code Branch

Read Character
Code Convert

Yes

No

Increment Counter
N,Read Character,
Code Convert

No etter

Store Code in
IBM

Increment CIB

Yes

Yes

NI/

ASCII

Error Skip

Read Char
Code Convert

No

Yes

BCD

Yes

Store Code
Increment CIB

Read Char
Code Convert

Store ; in IBM
Reset Counter N

Figure 9. Flow chart of input control unit

33

No

34

1. On an input card, the first column must be either a blank

or contains a number or the letter C. The presence of a

number means that this is the first character of a statement

number. The presence of "C" means that the card is meant

to be a comment card and hence should not be compiled.

2. Only blanks or numbers are allowed to be present in

columns 2 to 6.

The flow chart of the ICU shown in Figure 9 is quite self-explan-

atory. Some examples may help to clarify how that algorithm works.

Assuming card inputs are of the forms:

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Card 1 1 3 A = B FOR

Card 2 C THIS I S C

Card 3 1 2 A

Card 4 A =

The ICU will recognize that card 2 is a comment card and will skip

over it. It will also recognize that card 3 and 4 are not properly con-

structed and will store error messages in the EMM and skip the rest

of the instruction. Only card 1 will be recognized as legal and will be

stored in the input buffer memory in its internal form.

35

VII. HARDWARE IMPLEMENTATION OF
THE INPUT CONTROL UNIT

Procedure of Implementation

The steps which must be taken to implement the ICU or any other

control Lunits by Programmable Logic Array (PLA) are as follows:

1. convert the flow chart description of the control unit into

its state diagram equivalent of a sequential machine;

construct from the state diagram the transition table of the

machine;

3. derive logic equations which are sums of products;

4. program the PLA to generate these sums of products.

(This is a customs fabrication process done by the manu-

facturer.)

Each step will be examined in the following sections.

Conversion of the Flow Chart of the
ICU to State Diagrams

The state diagram of the ICU is shown in Figure 10. The con-

version of the flow chart description of the ICU to the diagram in

Figure 10 is quite straightforward. Each state of the diagram cor-

responds to a processing block in which an ordered sequence of actions

will take place. These actions are actually control pulses that enable

the hardware components to perform their designed functions. The

Ener ize

A
ASCII

Hollerith

Skip Done

C

Blank

TRX

Blank

D CN6

L. CN6

D. CN7

L. CN

TRX

Legends: TRX = TRANSMIT READY signal from the interface
CN6 = (Counter N) less than 6
CN7 = (Counter N) greater than 6
D = digit
L = letter
EOR = end of record mark
Skip done = done signal from the skip record unit

Figure 10. State diagram of ICU

Table 4, Actions associated with each ICU state,

EOR

36

State Actions

0 Idle
1 Transfer storage device address and code info to interface,

Read enable, Set busy bit of (STWR)
2 No operation
3 Enable code converter (ENCC), enable decoder (ENDC)
4 Energize Skip Record Unit (ENSKR)
5 Increment Counter N
6 ENCC, ENDC
7 Store code in IBM, increment CIB, increment Counter N
8 Store code in IBM, increment CIB, increment Counter N
9 ENCC, ENDC

10 Error type to EMBR, (LNC) to EMBR, write EMM
Increment CEMM, energize SKR

11 Increment LNC, energize scanner, inhibit read of interface

37

actions associated with each state is given in Table 4. As can be

seen from Table 4, in state 2 no operation is carried out. State 2 is

then an example of a waiting state in which the machine will idle until

certain input conditions occur (in this case, it is the presence of the

TRANSMIT READY signal issued by the interface). Transition from

one state to the other can be caused by the presence of some input con-

ditions or simply as the next operation of the sequential machine after

a sequence of prescribed actions have taken place.

In state 4, the skip record unit is energized to skip one record.

This control unit functions as a subroutine in conventional program-

ming. Its detailed design description is given in the next section.

Skip Record Control Unit

The skip-record-control unit (SKR) is used extensively by other

control units when the occasions arise that one instruction should be

skipped. When the SKR finishes its job, it issues a DONE signal to

the control unit that has energized it, so that the latter may resume its

next course of actions.

There are two things that the SKR must do. First, it has to read

from the interface until an FOR mark is reached. All the information

thus read will be discarded. Second, it has to erase from the IBM

all the information that has previously been stored. The way it ac-

complishes this is by writing 0' s in the IBM, starting from the current

38

address in counter-input-buffer (CIB), until the counter reaches zero.

Then its job is done.

To demonstrate how a control unit can be implemented by PLA,

the step by step design of the SKR unit is given in the following sec-

tions.

The flow chart of the SKR control unit is shown in Figure 11.

From it, a state diagram of the control unit is constructed which is

shown in Figure 12 and Table 5. Using conventional logic design

method, from the state diagram in Figure 12, the state transition

table of the SKR control unit may be constructed, which is shown in

Table 6.

The transition table is divided into five columns. Each entry

in the input column indicates the kind of input condition being applied

to the present state of the sequential machine or control unit. Each

entry in the timing level column determines which control action has to

take place during the current phase of the present state. This is re-

quired because during any given state, a sequence of actions must

take place in an orderly manner, and some means has to be developed

to insure the right action at the right time. For example, in state 3

the following actions must take place in the order given below:

0 to IMBR, Write (IBMR) in IBM, Decrement CIB.

Therefore, there are three phases to state

39

S KR

Figure 11. Flow chart of skip record unit

40

C)Energize

EDR (CIB) # 0

TRX FOR CIB =O

Figure 12. State diagram of SKR unit

Table 5. Actions associated with each SKR state.

State Operations

0 Idle

1 No operation

2 ENCC, ENDC

3 0 to IMBR, write IBM, decrement CIB (DCIB)

4 No operation,

5 0 to IMBR, write IBM, DCIB
increment LNC, skip done

Table 6. Transition table of SKR. Legend REBC: reset Binary Counter x: Don't care

Timing Level
Code

Input
Code

Present State
Code

Next State Output
Code

x 0 0 0 0 0 0 0 0 0 0 0 No op 0 0 0 0energize

x energize 0 0 1 0 0 0 0 1 0 0 1 No op 0 0 0 0
x TRX 0 1 0 1 0 0 1 1 0 0 1 No op 0 0 0 0
0 TRX 0 1 1 1 0 0 1 2 0 1 0 ENCC 0 0 0 1

1 0 0 1 x 2 0 1 0 2 0 1 0 ENDC 0 0 1 0

2 0 1 0 EOR 1 0 0 2 0 1 0 3 0 1 1 REBC 0 0 0 0
2 0 1 0 EOR 1 0 1 2 0 1 0 1 0 0 1 REBC 0 0 0 0
0 0 0 0 x 3 0 1 1 3 0 1 1 0> IMBR 0 0 1 1

1 0 0 1 x 3 0 1 1 3 0 1 1 write IBM 0 1 0 0

2 0 1 0 3 0 1 1 3 0 1 1 DCIB 0 1 0 1

3 0 1 1 x 3 0 1 1 4 1 0 0 REBC 0 0 0 0
0 0 0 0 (CIB) / 0 1 1 0 4 1 0 0 3 0 1 1 No op 0 0 0 0
0 0 0 0 (CIB) = 0 1 1 1 4 1 0 0 5 1 0 1 0 0 1 1

1 0 0 1 x 5 1 0 1 5 1 0 1 0 1 0 0

2 0 1 0 x 5 1 0 1 5 1 0 1 ILNC 0 1 1 0

3 0 0 1 x 5 1 0 1 5 1 0 1 skip done 0 1 1 1

4 1 0 0 5 1 0 1 0 0 0 0 REBC 0 0 0 0
N1N2N3 Q1Q2Q3 X1X

2
X3 PIP2P Y

1
Y

2
Y

3
Y4

42

Each entry in the present state column indicates what state the

control unit is in. This information together with the input and timing

level information determines what output action has to take place

(shown in output column) and to what state the control unit must go next

(shown under the next state column).

Each entry in the table also contains the binary code for the in-

formation. Three variables N1, N2, N3 are needed to encode each

timing level, three (Q1, Q3, Q3) for each input condition, three (X1,

X2, X3) each present state, three (P1, P2, P3) for each next state,

and four variables (Y1, Y2, Y3) for each output.

From the state transition table logic equations can be written in

their canonical forms and they are shown below:

K1 = N1N2N3 X
1

X
2

X3

J2 = N1N2 Q
1
Q

2
Q3 X1X

2
X3 + N1N2N3 X

1
X

2
X3

K2 = N \T- N x + -sr- \T171. QQQ
2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

x
1 2 3

J2 = N1N2N3 Q1Q2 Q3 5.Z.-
1

X
Z
Tc

3
+ N1N2N3 X1X2X3

Y1 = N
1

1\1
2
N3 X1X2X3 + 1ST

1
N

2
N3 X1X2X3 + N1N2N3

+
1

N
2
N3 X1X2X3 + f\T

1
TV

2
N3

X1X2X3

Y2 =
1
&2N3 X1X2X3 + N1N

+ N1N2N3 X
1

X
2
X3 + N1

Y3 N
1

N
2
N3 X1X2X3 + N1NZN3

+ N
1

N
2
N3 X

1
X

2
X3 + N1N2N3 X

1
X

2
X3 Q1Q2Q3

43

X3

+ KT N 11. X X
1 2 3 1 2

X
3

In the above set of equations that describe the SKR, there are 32 prod-

uct terms. 1 Since TI' s PLA (TMS 2000JC) can generate up to 60

product terms, the implementation of these equations by PLA is within

the state of the art. The equations themselves are sufficient informa-

tion for the manufacturer to fabricate custom PLA. However, extra

hardware components are needed to provide the required input condi-

tions and timing levels to the PLA,

To generate the timing level for each machine state, a 4 bit

binary counter 2 is used. Figure 13 shows the block diagram of such

a counter (TI' s SN 5493). For the counter, if R1 and R2 are high, the

binary counter will be reset and inhibited from further counting.

1 Simplification of logic equations will lead to less product terms.
24 bit counter is standard, even though only 3 bits are actually

needed.

Clock

Counter Logic

Inhibit
Reset

44

Output
Lines

Figure 13. Block diagram of binary counter

45

Since each input condition is actually a clock pulse, it has to be

encoded into its three bit binary representation. A Read Only Memory

encoder may be used for that purpose. The output lines of the encoder

will give the binary representation of the input condition with which it

is fed (see Figure 14 for the block diagram of the input encoder).

Operation of a Control Unit

So far only the sequential machine aspect of the SKR control unit

has been mentioned. This section shows that the PLA control unit can

also be viewed from a microprogram control standpoint.

The block diagram of a PLA control unit is shown in Figure 14.

There it can be seen that the AND matrix of the PLA can be viewed

as an address decoder, the output lines of which address the. OR matrix

which can be viewed as a ROM that contains a set of microinstructions.

Initially, the control unit is in its idle state, which means that

the outputs of the J-K flip-flops are all zero's (see Table 6). This

condition is decoded by ROM1 into a high signal condition for its output

line A. Line A addresses the NO OPERATION AND NO STATE CHANGE

command in ROM2. The function decoder decodes this command into

a BINARY COUNTER RESET/INHIBIT control pulse. Consequently,

the Binary Counter is inhibited from upcounting and its contents will re-

main at zero. At the same time, the J-K flip-flops are unaffected.

Energize

ROM
"or"

Matrix

Reset & Inhibit
Binary

P1 Counter

(increment)

Control Unit

Feedback

ROM 1
"and"

(Decoder)

A

V

B

ROM 2
"or"

Instruction
Storage

J - K
Flip-
Flops

Feedback

Output Buffer

Function Decoder

Control Pulses

v\../

Processors

Figure 14. Block diagram of a control unit

J

46

Reset

47

As a result, the control unit could remain in this idle condition in-

definitely.

When an ENERGIZE signal is received (for the SKR this signal

could have come from the ICU) by the ROM input encoder, output line

B of the ROM1 will be pulled high. Line B addresses a command in

the ROM2 of the form:

0 0 0 0 0 0 0 0 0 1

microinstruction feedback

The feedback input portion of this command will change the J-K flip-

flops to state 1, which is the first active state of the control unit. The

microinstruction portion of the command still indicates an inhibit con-

dition for the binary counter. When the ROM input encoder receives

the TRX signal, line C of the ROM2 will become high this time. Line

C addresses a command in the ROM2 of the form:
J3 K3 J2 K2 J1 K

1

ENCC 0 0 0 1

microinstruction. feedback

The feedback portion of this command will cause the J-K flip-flops to

go to state 2. The microinstruction portion of the command will be

decoded by the function decoder into some gating pulse other than the

BINARY COUNTER INHIBIT/RESET pulse. Hence, the next clock

pulse to the BC will be counted as the first timing level, and its binary

information will be fed to ROM1. This information together with the

encoded input condition and the state information will be decoded by

48

ROM' into another address line, which will then determine the next

command to be carried out.

Timing and Operating Speed

From the discussion of the previous section, it can be seen that

a control unit in fact operates in two cycles, the fetch and the execu-

tion cycle. The fetch cycle marks the change of the contents of the

binary counter and of the internal J-K flip-flops. At the end of the

fetch cycle a new microinstruction should appear in the output buffer

register of the PLA. The execution cycle marks the decoding of the

microinstruction and the generation of the required control pulse.

Allowing inherent delays in flip-flop operations and the access time of

the PLA, the fetch cycle should last about 100 nanoseconds. The same

length of time is also given to the execution cycle of the control unit.

All microoperations can take place within one complete set of fetch

and execution cycle of the control unit except for those regarding

memory referencing. Current semiconductor memory has typical

cycle time of 600 nanoseconds, which means that a time period equal

to 3 sets of fetch and execution cycle time are required to accomplish

a memory reference operation.

To provide for this timing scheme, a two phase clock must be

used. The pulse width of such a clock is typically 25 nanoseconds,

allowing 75 nanoseconds separation time between the two phase pulses.

49

Figure 15 shows the timing diagram of the two phase clock. Thus,

P1 enables the J-K flip-flops and increments the binary counter of the

control unit and P2 enables the function decoder.

P1

P2

Tim e

Figure 15. Timing diagram of two phase clock

Using this information on the fetch and execute cycle time of the

control unit, a determination of the typical operating time required to

input a statement of N characters may be made. From Figure 10, the

state diagram of the input control unit, it can be seen that data trans-

mission from the interface and the cycle operation of the control unit

proceed in parallel. Since data rate is at best one transmission per 3

p.sec and the time requ.i.red by the control unit to input one char-

acter is at worst 1.8 sec as shown in Table 7, the operating time

required to input the statement depends only on the transmission rate.

In Table 7, time is calculated by assuming that each microinstruction

takes 0.2 psec, each memory reference 0.6 p.sec, and an additional

0.2 psec is required for state transition. Hence, time required to

input the statement can be found by

N T

50

where N is the number of characters in the statement and T is the

period of transmission.

Table 7. Worst case estimate of time needed to input one character
by input control unit.

State Action Time (p.sec)

6

7

Total
Time

ENCC, ENDC 0. 6

Write (IBM)
In. CIB, In. CN 1.2

1.8

Legend:
In: increment

51

VIII. SCANNER FUNCTIONAL UNIT

General Description

The purpose of the scanner is to identify to what statement type

the instruction under examination belongs and hence the correct lexi-

cal analyzer be energized. The set of statements allowed by the HC

is a subset of FORTRAN IV.

The algorithm used to identify statement types is suggested by

John A. Lee (1967). He observes that every Fortran instruction can be

classified as either arithmetic or non-arithmetic. Once it is deter-

mined that an instruction is non-arithmetic, an identification by the

scanner of certain key words will serve uniquely to identify the state-

ment type of an instruction. He also points out that an arithmetic

statement has certain features that completely set it apart from non-

arithmetic statements.

An arithmetic statement must have an 1-1 sign as its first special

character or else the "=" sign must be the first special character

following the right parenthesis. Also, it must not have a comma ap-

pearing before a left parenthesis. Therefore, during the first analy-

sis phase the scanner will take the following examples as arithmetic

statements.

52

A = B*C ; (the first special character is an =)

A(1, 2) = B*C (the first special character after RP is =)

The following examples violate those rules of an arithmetic statement

and hence will not be taken as such.

DO 123 1=1,2,3; (comma precedes left parenthesis)

DIMENSION A(1, 2); (first special character after right paren-

thesis is not =).

Once it is determined that an instruction is non-arithmetic, the

first non-statement-number symbol (DO or DIMENSION, in the above

examples) will be packed and stored in the shift register (SHR). Sym-

bol packing means that the first five characters of a symbol are ex-

tracted and stored in the SHR. For example, in the case of the symbol

DIMENSION, the characters D, I, M, E, and N will be extracted and

stored in the shift register. Once symbol packing is accomplished, the

scanner can identify the specific statement type of the instruction by

comparing the contents of the SHR with the set of Fortran command

names.

Description of the Operation of
the Scanner Control Unit

Figure 16 is the flow chart of the scanner control unit. The

first decision the scanner makes is whether or not the first non-blank

symbol in statement is a statement number. If it is, the statement

Test

Clear (SAR) Read
Character

Search

St. Numb Unit

4,

Store Code in SM

Pack Symbol
Set Define

Unit

SAR

441

(SAR)-->CIB

NI/

Pack Symbol
Unit

Yes Yes

Read
Character

Search
Command

DO

DO
Lexical

Other

LP or ;

(SAR)-÷CIB

Others
Read Character

Read
Character

Yes

DO

Error

Arithmetic
Lexical
Analyzer

Yes

(SAR)-->CIB

4,

Pack Symbol
Unit

Respective
Lexical
Analyzers

Figure 16. Flow chart of scanner

53

54

number is packed into the SHR, the define flag is set to indicate to the

statement number search unit of this nature of the statement number,

and the search unit is energized. Having taken care of the possible

presence of a statement number, the scanner has to determine whether

the statement is arithmetic or non-arithmetic.

If it sees a comma or a ";" as the first special character in the

instruction, it can already be certain that the statement can neither be

a DO nor an arithmetic statement. It can identify the exact nature of

the statement by energizing the command-decoder-encoder (see sec-

tion on hardware of scanner for explanation of command-decoder-en-

coder).

If the scanner sees that the first special character following the

right parenthesis (RP) is an "=", it can be sure that the instruction is

meant to be an arithmetic statement. If that character is not an "=",

it can again be certain that the instruction is non-arithmetic.

If it sees an "=" sign as its first special character, the possi-

bility is narrowed down to either a DO or an arithmetic statement. It

then reads more of the statement. If the first special character it

encounters this time is a comma, then it can assume that the statement

must be meant to be a DO. The scanner packs the first non-statement-

number symbol into the SHR and energizes the command-decoder-en-

coder to test to that effect. If it is not a DO, an error has occurred in

the structuring of that statement.

55

However, if the first special character it sees after the "=" sign

is either a left parenthesis or a ";", it will assume that the statement

is in fact an arithmetic assignment statement. It will then energize

the arithmetic lexical analyzer. The state diagram of the control unit

and the actions associated with each state is shown in Appendix A.

Hardware Associated with the Scanner

The block diagram of the hardware components used by the scan-

ner is shown in Figure 17. Some of these components are used by the

ICU and have been previously described. This section describes the

other components.

1. Command-decoder-encoder: The identification of command

names is by means of a 30 bit to M bit ROM code converter.

In actual fact, the code converter is made up of two ROM

units. The first is a 30 -line-to-N-line decoder (AND matrix).

N is the number of Fortran commands allowed by the HC and is

left undefined in this paper. The second unit is an N-line-

to-16-line encoder. The encoder is necessary because the

code that stands for each command name in the S-language

(see Table 10) differs from the original internal character

code. The choice of the 30-bit-input to the command-de-

coder-encoder is due to the suggestion of Lee. He observes

that in order to save memory space the identification of

Increment

Reset

Counter
Input-

Buffer

V V

Input
Buffer

Memory

It Clear

SAR

Save
Register

Increment

Reset

Counter
Syntax
Memory

Syntatic
Memory

Input
Memory
Register

Write

Parallel in
1

1

1

Shift Register

Decode

> Digit

> Variable
> L.P.
> '

4,-- Data Flow

Control

SM

Register

Shift

Command
Name

Decoder-
Encoder

56

IF

16 lines

DO

S-code for
the command

name

Figure 17. Block diagram hardware of scanner

57

certain key characters in a Fortran command name is suf-

ficient to determine its exact type. In this paper it is ob-

served that the first 5 characters of a command name is

sufficient to differentiate all the command names, hence the

choice of 30 bits. In order to find out if a symbol is one of

the command names, the symbol (the first five characters

of the symbol) is packed into the shift register (SHR), and

the command-decoder-encoder is energized. Figure 18 is

the block diagram of the command-decoder-encoder.

SHR

30 bits

ROM

Decoder

N Lines
If

Dimensibn ROM

Encoder

16 bits S-Code
of the

Command
Name

V 1 Y
Input to Scanner

Control Unit

Figure 18. Block diagram of command name decoder-encoder

58

2. Shift register (SHR): The SHR is a 30 bit parallel in, paral-

lel out, right shift register. It is used to store the charac-

ters of a symbol that have been packed. It has its own

control logic that allows a 6 bit right shift of its contents

when it receives a shift command from one of the control

units. The choice of 30 bits for the SHR is due to the fact

that the internal code of the HC is 6 bits long and a maxi-

mum of 5 characters may be used to form one symbol. Only

its first 6 bits are connected externally to other registers

for parallel input. All output lines, however, are used to

transfer data to other data to other registers. Figure 19 is

the block diagram of the SHR.

Shift

Input

Input

II I I "-Output 11

Figure 19. Block diagram of SHR

3. Save register (SAR): The SAR is an 8 bit register, used

mainly to save addresses.

59

Operating Speed of the Scanner

The exact time required for the scanner to determine whether a

statement is arithmetic or not depends on the nature of the statement.

But using the statement

A = B+C*D;

as a test example, one can roughly estimate the typical operating time

required to scan one statement. Table 8 summarizes, according to

the state diagram of the scanner in Appendix A, the actions the scan-

ner must take to scan the test example. Occasionally, the same state

is visited several times and the first column of the table gives how

many times that state has been visited during the operation of the scan-

ner.

Table 8. Estimate of time required to scan a trial statement.

No. of Visits State Operation (p.sec) (p.sec)
Time/visit Total Time

1 0 idle 0.2 0.2

1 1 Clear (SAR)
RIBM, ICIB

1.4 1.4

ENDC

1 5 No Op 0.2 0. 2

5 6 RIBM
ICIB, ENDC 1.4 7.0

1 10 (SAR)--IF CIB 0.6 0. 6
ENALAU

Operating Time 9.4

60

Sub-Units Used by the Scanner

Looking at Figure 16, the flow chart of the scanner control unit,

it can be seen that there is a number of control subunits which the

scanner energizes in order to complete its job. The pack symbol

(PSYM) control unit is designed to extract the first five characters of

a symbol and store them in the shift register (SHR). Therefore, a

symbol can be longer than five characters, however only its first five

characters will be used internally to identify the symbol. The rest of

the characters are discarded. The PSYM also returns with the first

character of the next symbol in the IBMR. Counter N which was men-

tioned earlier as a hardware component used by the ICU is now used

to keep track of the number of characters that have been packed.

After the unit is finished, a DONE signal will be issued to the calling

control unit. The flow chart of the PSYM control unit is shown in

Figure 20. Its state diagram and the actions associated with each

state of the control unit are shown in Appendix B.

The other sub-unit used by the scanner is the statement number

search unit. Since the concepts of symbol searching and the construc-

tion of symbol table are very important, a whole section is devoted to

describing it. Appendix B shows that the time required to pack a sym-

bol of n characters is

T = ax 3 p,sec

61

(Pack
Symbol

(IMBR)--)SHR
Increment CN
Read next CHAR

Yes

Blank
CN = 5? Read Character

Other
Digit or
Letter

Shift SHR
Clear CN

Blank Others

Digit or
Letter

Read Next
Character

Figure 20. Flow diagram of pack symbol

62

IX. SYMBOL TABLE

Meaning of Symbol Table

The symbol table of a conventional compiler contains informa-

tion that is essential to the compilation of each source statement. An

item (or word) in the symbol table (SYMTAB) is divided into a key and

a value part. The key of an item is the name which the source pro-

gram must use to address the item itself. The value part contains

information on the type of item that is stored in that particular slot of

the SYMTAB. This information will classify the item according to the

following table (Table 9).

Table 9. Classification of items in the SYMTAB.

1. statement number

2. variable

defined
undefined
DO range number

simple variable
subscripted variable
simple formal parameter
subscripted formal parameter

3. function name name of subroutine

4. constant

With the exception of the constant, the value part of an item in

the SYMTAB also contains the actual run time address of the symbol.

For example, in the case of a statement number its value part will also

63

contain the actual address of the instruction to which the statement

number refers. The following example may clarify these concepts.

In a segment of a program,

GO TO 12

12 A = 1.1

after a conventional compiler is done with the last program instruc-

tion, the memory of a hypothetical computer may look like the follow-

ing:

Memory Address Instruction

Program Area 00000 UJP 0021
00001

00021 LDA 10002
00022 STA 10001

07777

Key Value

SYMTAB area 10000 12 D. SN 00021

10001 A S. V 10001

10002 floating point representa--
tion of 1.1

Legend D. SN: defined statement number
S. V. : simple variable

......,

64

The execution of this program will lead to an unconditional jump to

memory address 0021. Then the accumulator will be loaded with the

contents of memory address 10002, which is the floating point repre-

sentation of the number 1.1. And finally the contents of the accumu-

lator will be stored in memory address 10001. From this example,

it is clear that the construction of the SYMTAB is an essential part of

the compilation process. To create the SYMTAB and to make use of it,

conventional compilers use elaborate search routines the execution of

which is time-consuming.

SYMTAB of the Hardware Compiler

Since the HC assumes no knowledge of the structure of the host

machine, it cannot assign the actual address to a symbol (for example

10001 for A). This has to be left to the software of the host machine.

What it can and does do is to set up its own SYMTAB which is a true

image of the SYMTAB of the host machine, and replaces each symbol

in the program with its identifier and address in this SYMTAB. This

will eliminate any symbol search by the host machine software. For

example, in the following program segment:

A = B-C

12 D = 1.1

The BC's SYMTAB hypothetically may look like Figure 21.

65

SYMTAB
ADDRESS Key Value

....
005 A S. V. 005

010 B S. V. 010

....
015 C S. V. 015

....
021 D S. V. 021

022 1.1 Cons. 022

023 12 D. St. 023

......

Figure 21. Hypothetical SYMTAB of HC

As can be seen in Figure 21, the value part of an item stored

in HC's symbol table is exactly the same as that of the host machine's

SYMTAB. The only exception is that in HC's SYMTAB, constants are

not converted into their binary representation before they are stored

in it. The reason for this is given in a later section.

The specific code for the value part of an item stored in the

SYMTAB is shown in Table 11 (which is the word code table of the S-

language). Basically, the S-code is a 16 bit code, the first six bits

identify what type of statement symbol it is, and the last ten bits con-

tain the address of the symbol in the symbol table.

66

Hardware Implementation of SYMTAB

The symbol table (SYMTAB) of the hardware compiler is a

search memory. With the improvement of circuit technology, there is

a growing interest in the development of hardware search memories.

Presently there are three popular ways by which search memory may

be built:

1. content addressable memory using LSI technology.

2. recirculating memory built by dynamic shift registers.

3. content addressable memory built with conventional random

access memory (RAM) with read only store (ROS) control

and a hash coding network.

In method 1, the whole memory is fabricated on a single chip

(currently a 12 word, 8 bit-per-word, chip can be found in the market).

The chip contains built-in circuitry that performs any of the functions

of read, write, or interrogate in one cycle time (2 p.sec). However,

at this stage of the technology, such memory chip is still expensive,

running close to $1.5 per storage bit. It is not practical to build a

large search memory with these chips.

In method 2, the search scheme is depicted in Figure 22. It is

composed of M N-bit dynamic recirculating shift registers operating

in parallel to store information. N defines the number of words in the

memory and M the number of bits per word. An item to be searched

67

Shift

M Recirculating Registers

N-bit

Same

Name Register Comparator

Figure 22. Block diagram of a search memory using dynamic
recirculating registers

in the memory is first stored in the name register (NR) and is then

compared with the base of the recirculating memory. If they are the

same the item has been located. If not, the shift registers will be

shifted end round (recirculated) and again comparisons are made be-

tween the base of the memory and the contents of the NR. This is

continued until either a match occurs or the whole set of memory con-

tents have been searched. Dynamic shift registers can operate at a

very high shifting frequency (4 Mhz). Such a search memory can be

68

quite fast. However, a large search memory is still hard to be im-

plemented by this method.

Within the state of the art, method 3 proves to be a very eco-

nomical and efficient way of constructing a search memory. It has

merits, that the above two methods lack, that of providing a large

search memory (40 K bits or more) with reasonable cost. In the de-

sign of the HC, it is felt that cost is the over-riding design constraint,

owing to the fact that even if HC is slow, it still serves to free the cen-

tral processing unit (CPU) of the main computer and is still a good

product.

This scheme of constructing a search memory was introduced

by King (1971) and is shown in Figure 23. This search algorithm

involves the transformation of the key of an item by some calculation

(hash function) into an address. The contents of the addressed mem-

ory cell is fetched and compared with the original key. If they are

equal, the item has been located. If they are not the same a collision

has occurred. There are several ways for resolving collisions, ran-

dom probing, direct chaining, and linear probing. Both random prob-

ing and direct chaining are more efficient than linear probing at the

cost of more complicated search algorithms. Morris (1968) estimates

that for a load factor of a,
ka =
N

where k is the number of items in the table and N

is the size of the table,

69

the average number E of probes for linear probing necessary to look

up an item in the table is

as compared with

for random probing, and

L

ROS

Control

Address
Register

Hash
Network

Name Register

E = (1 -
a)/(1 - a)

E = 1. log (1 - a)

aE = 1 + 2 for direct chaining.

Random Access
Memory

> Memory

irItem to be
Searched

Compa
ator

Figure 23. Block diagram of a

Key
Register

Value

Note: data flow

control flow

search memory using hash network

70

In this paper, it is felt that linear probing, even though less efficient,

offers the best features for hardware implementation because of its

simplicity. And it can be seen that all three methods has comparable

values for E if the load factor a is less than .5 .

The maximum number of symbols present in a program can be

assumed to be no greater than 500. If a RAM of 1K word capacity is

used, the load factor can be assured of no greater than 0.5. Assuming

this range of operations, linear probing is no less efficient than the

other methods. Presently memory modules of about 10 cents per bit

can be purchased, which means that a search memory of about 40K

bits may cost about

$46K x . 1 = $4. 6K.

The use of linear probing and hash coding scheme to implement

a search memory as proposed by King (1971) is shown in Figure 23.

Figure 23 shows that the search memory is controlled by a control

unit implementable with the same techniques already discussed. The

name register (NR) is used to hold the name of the item to be read or

stored just as the address register is used in a conventional memory.

King did not specify how the hash network may be constructed.

However, it is observed here that since the hash network is in fact a

code converter, ROM customs converters may be used to do that job.

The advantage of using such a code converter is speed. Conventional

ROM can operate at a speed of 60 n sec. Many well-known hashing

71

methods can be implemented thus (Morris, 1968). No details will be

given here for the exact logic design. Suffice it to say that detailed

design should be taken at a later stage.

The sequence of operations to search one item is

1. Transfer the item to the name register.

2. Hash item into its address code and enter it into Address

Register (AR).

3. The word addressed by AR is fetched and stored in the

Memory Register (MR).

4. If MR contains all zeros, it means that an empty memory

slot exists. Item is not in the memory. If the contents of

NR and MR are the same, then the item has been found.

The job is done.

5. If they are not the same, increment AR by one and go to

step 4.

In Figure 23, the RAM which serves as the storage of the

SYMTAB is organized as a 1K, 46 bit per word memory. The first

30 bits of a word form the key and the last 16 bits the value of the item.

Semiconductor memory RAM is used because:

1. its access time is fast.

2. the HC SYMTAB is a scratch pad.

3. it is cheap, 10 cents per bit.

The state diagram of the search memory is shown in Figure 24.

72

State

0

1

2

3
4
5

6

Action

idle
(SHR))NR, Energize Hash Network
Fetch, Decode (MR)
Compare (MR) with (NR)
1" AR
Found
Not Found

Figure 24. State diagram of search memory

The response time of such a search memory assuming a nominal

load factor of 0.5 can be estimated. The expected number of probes

required to get the right result from the search memory is

E = (1 - '2) (1 0.5)

= 1.5

For worst case consideration, let E be 2. Figure 24 shows that the

number of microinstructions required to complete one probe is at

worst 6, plus the fetch microinstruction which takes 0. 6 ilsec. Re-

sponse time of the search memory is approximately

2 x (1.2 + .6) p.sec = 3.6 p.sec.

73

Statement Number Search Unit

The statement number search unit is energized whenever a

statement number is encountered in an instruction, so that its S-equi-

valent may be found. There are four different types of statement

numbers each requiring a different set of treatments by the search

unit. Hence, before energizing the search unit, an appropriate flip-

flop has to be set to indicate whether the statement number is being

defined, not being defined, appearing as an undefined DO range, or as

a defined DO range. A statement number is being defined if it is used

as in
14 A = B ;

In the above instruction 14 is a defined statement number. Before

energizing the statement number search unit (SNSU), the DF flip-flop

has to be set.

A statement number is not being defined if it is used as in

GO TO 14 ;

14 is not being defined by the above statement, hence the DF flip-flop

must be reset.

A statement number is a DO range when it appears in a DO state-

ment, as in

DO 14 I= 1, 4;

In this case, the DO flip-flop should be set before the SNSU is ener-

gized. If later, statement number 14 is used in the label field in

another statement, as in 14 A =C;

74

the statement number 14 becomes a defined DO range.

The statement number search unit performs its job according to the

following sequence:

1. Transfer the statement number to the name register (NR)

of the search memory.

2. Energize the control of the search memory.

3. If the item is found,

a. If the defined (DF) flip-flop is on,

i. if the value part of the word in MR, i. e. (MR),

indicates that the statement number has already

been defined (value is 01 XXX or 03 XXX) a

multiple defined error has occurred. Go to an

error routine.

ii. if the value part of (MR) indicates an undefined

statement number, the value of (MR) is changed to

"defined" (from 00 to 01). The new (MR) is stored

back in the symbol table and also transferred to the

syntax memory register (SMR).

iii. if the value is a DO range (02), the contents of MR

is changed to a defined DO range (03). The new

(MR) is stored back in the symbol table and is also

transferred to the SMR.

75

b. if the DO flip-flop is on,

i. if the value part of the (MR) is 02 indicating

a DO range, (MR) can be transferred to the SMR.

ii. otherwise, an error has occurred, energize an

error unit.

c. if neither DO nor DF flip-flop is on, the contents of MR,

i. e. (MR), are simply transferred to the SMR.

4. If the statement number is not found, one of the sets of code

00, 01, 02, or 03 is transferred to the first six bits of the

value part of the MR. The contents of the address register

AR are transferred to the last 10 bits of the AR, and (NR)

are transferred to the key of memory register. The new

contents of the MR are written in. the symbol table, and

transferred to the SMR.

The flow chart description of the search unit's operations is shown in

Figure 25 and Figure 26 illustrates the data flow of the statement num-

ber search process. The state diagram of the search unit is shown in

Appendix C.

76

Yes

Statement

Number--> NR

Not Found

Found

Write in SYMTAB
(MR)--). SMR

(MR) = 01
or = 03

(MR) = 02 R)=0

Yes

Multiple
Defined
Error

(MR) = 00
(MR)--> SMR

Change 02 to 03

Change 00 ,01

Write in
Symbol Table
(MR) +SMR

Legend: DF = Define Flag
D = DO Flag

Figure 25. Flow chart of statement number search unit

Hash
Network

NR

Search Memory

Compare

Transfer (NR)

Key Value

Address
Register

30 Tbits 16 bits

MR

SMR

Figure 26. Data flow of statement number search

Time Needed to Search Statement Number

10 bits

77

The time required by the statement number search unit to work

on one statement number depends on how long the number is and what

kind of statement number it is. Table 10 shows the typical value for

this time. As can be seen, the execution of a statement number search

typically takes 6 p.sec.

78

Table 10. Estimate of time required for a typical statement number
search.

State Action Time (p.sec)

0 Idle 0. 2

1 Energize Search Memory 3.8

2 Test DF 0. 4

3 Test Value (MR) 0. 4

5 change (MR) to 01
write SYMTAB
(MR))-+SMR 1. 2

Total Time 6. 0

79

X. LEXICAL ANALYZER UNITS

Background Discussion

The number of lexical analyzer units is left undefined. However,

one statement that can be made is that more lexical analyzer units

(LAU's) can be added modularly, depending on how many Fortran state-

ment types are desired to be processed. In this paper only a few

LAU's are described.

According to R. Hopgood (1969), whose compiling technique is

adopted in this paper,

The aim of the lexical analysis phase of the compiler is to take

the input program, which is presented to the compiler in some arbi-

trary form, and translate this into a string of characters which will be

called the S-string. This is the input to the syntax analyser. "

This S-string is a grammatically correct sentence which can be

analyzed by the parser provided in the syntax analysis phase. The

characteristics of the S-string is summarized as follows:

1. statement numbers and variables will be replaced by their

equivalents, which are their special identifiers and their

addresses in the SYMTAB.

2. constants will be unchanged, but will be preceded by their

addresses in the SYMTAB.

80

3. special statement identifiers will be used to precede any

non-arithmetic statements.

Table 11 shows the code in the S-language and its individual meaning.

Table 11. S-code and its meaning.

Type of item
6 bits
Code

10 bits

undefined statement number
defined statement number
DO range

simple variable
subscripted variable
simple formal parameter
subscripted formal param
subroutine name
constant

operator

identifier of command

defined DO range

00 Address

01 Address

02 Address

10 Address

11 Address

12 Address

13 Address

20 Address

30 Address

in

in

in

in

in

in

in

in

in

SYMTAB

SYMTAB

SYMTAB

SYMTAB

SYMTAB

SYMTAB

SYMTAB

SYMTAB

SYMTAB

4 _ _

5X code for the command

03 Address in SYMTA.B

The S-code generated by the LAU' s are stored in the SYNTAX memory

(S memory). The S-memory has a buffer register (SMR) and an add-

ress counter (CSM).

Arithmetic Lexical Analyzer (ALAU)

The arithmetic lexical analyzer unit is energized to produce the

S-string equivalent of an arithmetic statement. In the S-code every

0 0 1 0 0 0 Address in SYMTAB

81

variable in an arithmetic statement will be replaced by the following

word,

6 bits 10 bits

for a simple variable, or

6 bits 10 bits

16 bit word

0 0 1 0 1 0 Address in SYMTAB

for a subscripted variable.

Constants will remain unchanged but will be preceded by the following

special code,

6 bits 10 bits

0 1 1 0 0 0 Address in SYMTAB

The ALAU is usually energized by the scanner, but may also be

energized by the IF lexical analyzer. In the latter case, the ALAU

considers its job done when it comes to a right parenthesis. The rea-

son is that in an IF statement

IF (arithmetic statement) n1, n2, n3;

the right parenthesis is the delimiter for the arithmetic expression.

The IF flag should be raised if the IF lexical analyzer energizes the

ALAU. Treatment of most characters that may appear in an arithmetic

statement is straightforward, however extra care has to be taken with

regards to treating exponentiation and relation operators.

82

Exponentiation in Fortran is denoted by **, so when a * is encountered

by ALAU it must check the next character to see if it is also a *. If it

is the exponentiation identifier 578 should be stored in the S-memory.

If not, multiplication identifier can be stored.

Relation operators are GT, LS, EQ, and others. They must be

delimited on both sides by periods. For example,

IF (A. GT. B) GO TO 2 ;

Hence, in the program when a period is encountered by the ALAU, the

succeeding symbol is packed and the command-encoder-decoder has to

be energized to check for the persence of relation operators. If the

symbol is not one of the relation operators, it has to be a digit. Other-

wise, an error has occurred.

When the ALAU uncounters the end of statement sign ";" its job

is completed and it will issue an ENERGIZE signal to the syntax anal-

yzer unit. If it encounters a right parenthesis and the IF flag is on,

its job is also completed, and a DONE signal will be issued to the IF

lexical energizer unit. The flow chart of the ALAU control is shown

in Figure 27.

Time Required to Analyze an Arithmetic Statement

To give a rough picture on how much time is needed by the ALAU

to analyze one statement, the arithmetic statement

A B + C *D;

Read IBM
Test Character

? if fla

Yes Yes Yes Yes

Read IBM Read IBM Constant Store

Decode Decode Unit R. P in SM

Store
Constant

Pack
Symbol

Check
Relations
Operators

Digit

Read IBM
Decode

Yes

Store
Code in SM

Store Operator
Equivalent in

SM

Store in
SM

Yes

Figure 27. Flow chart of ALAU

83

84

is again used as a text example. Table 12, derived from the state

diagram of the ALAU shown in Appendix D summarizes the actions of

the ALAU as it analyzes the test example.

Table 12. Estimate of time required to analyze one arithmetic state-
ment by ALAU.

No. of
Visits State Action

Time/visit
(p.sec)

Total Time
(p.sec)

1 0 idle 0.2 0.2

8 1 RIBM, ICIB, ENDC 1.2 9.6

4 2 Pack Symbol 1 4.0

4 3 Variable Search 3.8 15.2

4

3

4 Write SM, ICSM,
11 Operator code to SM

1.0 4.0

Write SM, ICSM
1.2 3.6

1 13 Code to SM, RCSM 1 1.0

Total Operating Time 37.6

According to Table 12 the execution time of the ALAU is roughly 37. 6

psec.

Variable Match Unit

The purpose of the variable match unit (VMU) is to find the S-

equivalent for a given variable. There are two types of variables to

be distinguished, subscripted and simple variables. If a variable is

known to be subscripted, before the VMU is energized the subscripted

85

variable flip-flop has to be set first. The VMU then performs its job

by:

1. transferring the variable name from the shift register to the

name register of the search memory

2. energizing the search memory,,

3. if the variable is found then transfer the value part of the

MR to the SMR. The process is finished.

4. if the variable is not found ,

a. transfer (NR) to (MR)0-29

i. if it is a simple variable, transfer (10) to (MR) 30

ii. transfer (11) to (MR)30-35' if it is a subscripted

variable.

b. transfer contents of AR to (MR)36-45

c. write (MR) into symbol table and transfer (MR) to SMR.

The state diagram of the VMU can be similarly constructed as

the one for the statement number search unit. It is shown in Appendix

D.

Time Required by VMU to Match One Variable

Assuming the VMU has to handle a variable which has so far not

been used in the program, in other words the VMU will not find it in

the SYMTAB. Table 13 then summarizes the actions the VMU will

take to treat a variable of this kind and the time required.

86

Table 13. Estimate of time required to match one variable.

State Action Time (p.sec)

0 Idle 0.2
1 Energize Search Memory 3.8

3 (NR)-+(MR)0_29, Variable Code -3(MR)30-35 1 . 4
Write (MR), (MR)--+SMR

Total Time 5.4

Table 13 is derived from the state diagram shown in Appendix D

and it shows that the time required by the VMU to treat one variable is

typically 5.4 1.1.sec.

Constant Unit

A constant in the S-string is preceded by the S-word

30 I address of constant in SYMTAB I

The constant unit performs its job by the following algorithm:

1. Pack the first six digits of the constant into the shift regis-

ter.

2. transfer the contents of the SHR to the NR,

3. energize the search memory,

4. if the word is found,

a. increment AR by one and fetch a new word from the

search memory,

87

b. if the contents of MR are not all zeros, go back to 4. a.

c. if the contents of the MR are all zeros,

i. transfer (NR) to (MR)0_29,

ii. transfer 308 to (MR)30-35'

iii. transfer (AR) to (MR)36-451

iv. write (MR) into the symbol table and transfer (MR)

to SMR.

5. If the word is not found, transfer (NR) to (MR) transfer0-29'

308 to (MR)30-35' transfer (AR) to (MR)36-45, write (MR)

into the symbol table, and transfer (MR) to SMR.

The state diagram that describes these actions of the constant unit is

shown in Appendix E.

The exact operating time required depends on the nature of the

constants to be treated. However, it is safe to assume that the typi-

cal operating time required by the constant unit is about the same as

the variable match unit which takes about 5 ilsec.

DO Lexical Analyzer Unit

The DO lexical analyzer unit (DLAU) is energized to convert a

DO statement of the form

DO (statement number) I = nl' n2, n3 '

into its S-string representation. The S-string of a DO statement is of

the form

88

DO 02SYMTAB10SYMTAB
adirez address

=
30SYMTAB

address
n CNDL 9

30 SYMTAB
add-pegs n2 CNDL

30 SY MTAB

address
n3 CNDL ;

Preceding the DO string is the DO token which identifies that the state-

ment is a DO. There is no error check included in the design of the

DLAU. This job is relegated to the syntax analysis phase of the 1-IC.

The flow chart of the DLAU is shown in Figure 28 and its state diagram

in Appendix G.

Table 14 summarizes the sequence of states that the DLAU must

take to analyze a statement of the form
DO 14 I = 1, 4, 1;

It then estimates the operating time needed for the DLAU to analyze

the above statement. It shows that the DLAU takes about 34.2 p.sec

to complete its job.

Table 14. Estimate of operating of DO lexical analyzer.
No. of
visits

State Time /visit
(p.sec)

Total Time
(p.sec)

1 0 0. 2 0. 2
1 1 1.4 1.4
1 2 1.0 1.0
1 3 3.8 6.0
8 4 1.2 4.8
3 5 1.0 3.0
1 6 5. 4 5.4
1 7 2. 0 2.0
3 8 5.4 16.2
1 9 1.4 1.4

Total Time 36.4 p,sec

89

IF Lexical Analyzer Unit

The IF lexical analyzer unit (ILAU) is energized to produce the

S-string of an IF statement. It first stores the IF token in the syntax

memory. It then sets the IF flag and energizes the ALAU. After it

receives the DONE signal from the ALAU, it goes on to convert the

rest of the IF statement according to the following:

1. If the first non-blank is a letter, it energizes the scanner

to determine what statement type is following the right

parenthesis. For example, IF (A . GT. C) GO TO 3;

2. If the first non-blank symbol is a numeral the ILAU will

treat it as a statement number. Henceforth, only numerals

or commas will be acceptable. When the ILAU sees a ";",

its job is done and it will energize the syntax analyzer. The

flow chart of the ILAU is shown in Figure 27 and its state

diagram is shown in Appendix H.

The flow chart of the ILAU control is shown in Figure 29.

To illustrate what the typical operating time can be expected

from the ILAU, the following test example is used.

IF (A-B) 1 2,3;

Table 15 is constructed from Appendix H. It shows all the states of

the ILAU associated with analyzing the particular IF statement, and

the approximate operating time as a result of cycling through these

states.

90

DO

Store DO

D Error

Set DO flag

Statement
Number Search

Yt

Store Code

Const. Unit

4,

Store Constant

OperatorASMR
CIB

Read IBM

Operator

Pack Variable

Search Variable

Store Code

Syntax
Analyzer

Figure 28. Flow chart of DO LAU

91

Start

Store IF Code

Set IF flag

Arith St.
Lex. An.

Pack St. Numb

Search St. Numb

Code to SMR
f CIB

Read IBM

Store Code

Store Code

Exit

Scanner

Figure 29. Flow chart of IF LAU

92

Table 15. Estimate of the operating time of the ILAU.

State No. of
Visits

Actions Time/visit Total Time
p.sec

0 1 idle

1 1 IF*SMR
Write SM, ISMC
Set IF flag
Energize ALAU

2 6 ICIB, Read IBM
ENDC

3 3 Pack Symbol

4 3 Energize
Statement Number
Search Unit

0. 2 0. 2

16.4 16. 4

6. 0

2.4

3.0

18. 0

5 5 Write SM 0.8 4.0

6 2 , --*SMR 0.4 0.8

8 1 , *SMR, Write SM 1. 4 1. 4
ISMC, done

Total Time of ILAU 46. 2

Table 15 shows that it takes about 46.2 p.sec, for the ILAU to analyze

the IF statement.

93

XI. SYNTAX ANALYZER UNIT

The purpose of the syntax analyzer unit (SAU) is to take the

S-string produced by the various LAU' s, and to use some parsing

algorithm to verify that the string is in fact a legally structured string

in the S-language. In addition, it will be required to output an inter-

mediate machine code which will allow easy actual machine code gen-

eration. It is this code that will be transferred to the main computer

for the final stage of compilation.

There are many well known parsing algorithms in existence and

more can be expected forthcoming. To name a few, there are, the

Floyd production method, the top-down analysis, the bottom-up analy-

sis, the operator precedence analysis, and the analysis by a switching

matrix. All these methods have their relative merits, however from

the standpoint of LSI implementation, parsing by means of a switching

matrix contains inherent logic blocks that make it subject to easy hard-

ware implementation.

Since the method is well known and documented, no attempts will

be made here to show its derivation. Only a general explanation of

how the method works, including its flow chart description and its

hardware implementation, will be given.

94

Arithmetic Statement Switching Matrix

To lead eventually to the explanation of a complete switching

matrix, it is felt that a switching matrix to handle only arithmetic

statements should first be explained.

The interpretation of an arithmetic statement is subject to a set

of precedence rules and conventions. Hence, the need to generate a

parenthesis and precedence free arithmetic string is imperative.

For an expression, such as

A =B+C*D;
it is known by precedence rules that multiplication should be performed

first, then addition, and finally equating. The code generated by the

syntax analyzer unit allows just that. Figure 30 shows the resulting

code that is stored in the code memory.

CM. CM
i+1

CM
i+2

CM i+3
Code memory address

i=0

i=4

i=8

i=12

C D T
1

T1 T1

A T1 T1

Figure 30. Code for an arithmetic statement

95

The code means simply to perform the arithmetic operation

found in CM. on the next two words and to store the result in a tempor-
).

ary address T. Another example is given below, this time involving

subscripted variable.

A(2, 3) B C * D;

Resulting code looks like:

CM CM
i+1 CM i+2 CM

i+3
CMi+4 CM

i+5
CM

i+6
CM

i+7

i=0

i=8

i=16

i=24

token 2 CNDL token 3 CNDL T1
const const

4' A T1 T1 * C D T1

T1 T1 T1 T1 T1

The special symbol Nk is an operator that instructs the software of the

host computer to do matrix address calculation in order to assign the

exact address to the subscripted variable. As can be seen, constants

are preceded by their tokens(which also contain their address in the

SYMTAB). CNDL delimits every constant that appears in the instruc-

tion. T' is a temporary address that will contain the calculated

address of a subscripted variable.

Note: In the main computer's memory, there will be special

storage addresses that provide temporary storage for

96

results of calculation on an arithmetic statement. T ,

T ' stand for these temporary locations.m

In order to generate this arithmetic code, the SAU uses, in

addition to the switching matrix, three push-down-lists, 3 one to store

operators (R), one to store operands (RN), and one to store constants.

The algorithm used to analyze arithmetic statements are described in

full in Appendix K. The switching matrix used to analyze an arith-

metic statement is shown in Figure 31. The way to consult the switch-

ing matrix is by using the top item of the operator push-down-list

(RPDL) to locate the correct row of the matrix and by the type of item

just read from the S-string to locate the correct column of the switch-

ing matrix. The column-row intersection contains the information on

what operations to be carried out. In other words, which control sub-

units to be energized.

Hardware Components

Push-Down-List Memory

The hardware implementation of a push-down-list memory has

been demonstrated by William King (1971). The following is a brief

description of that design.

3 These push-down-lists are known as RPDL (operator PDL),
RNPDL (operand PDL), and CNPDL (constant PDL).

RN ; 4_ , * / t r

EO

4-

or.

/

f

ES

SRN U U LP
S S SS SSS CSSS SS
S S S S S S S

C C C C S S S C C
C C C C S S S C C
C CC C C C S C C
C CC C C C S C C
C C C C C C C C C

S S S SS S S RP S
C CCCC CC

C CCCCC CCC
S S S S S S

LA

97

Legend:

RN = operand
r = relational operators (=, , <, >)
ES = expecting statement
EO = expecting operand
ES, EO, f, and are special operators generated by the analyzer.
C = code generator

U = unary operator
S = stack operator
SRN = stack operand

LA = label or assignment statement
D = done

RP = right parenthesis
LP = left parenthesis

Figure 31. Switching matrix of SAU

98

A left-right shift register, with serial input and output has the

same characteristics as a push-down-list (PDL). If one assumes data

entering and leaving at the left end of the register (see Figure 32), a

stack operation simply means shifting the register one bit right and

transferring data into the register. The unstack operation is just the

reverse of the above process and is corresponding to shifting the

register one position left.

Shift Right

Shift Left

<)

upcount

Down
Count

n-digit Counter

List full (store inhibit)

List empty (read inhibit)

Figure 32. Block diagram of a PDL

In order to avoid stacking on an already full list, and also to

give an indication if the list has become empty, an .n -digit binary

counter is used for a 2n bit shift register. A shift right signal also

increments the counter by one while a right shift command would decre-

ment it by one. If after a stack operation the counter's content be-

comes 0, it means that the list is full and a stack inhibit signal will

99

be issued. Conversely, if the counter shows a 0 after an unstack

operation, it means that the list is now empty. In order to build a

PDL of m bits per item, m shift registers may be put in parallel under

the control of one common counter. Figure 31 is the block diagram

of a PDL.

Special Character Generator

This code generator is in the form of an encoder which generates

all the special characters that are necessary during the syntax analy

sis operation.

Code Memory (CM)

The CM, as has been mentioned before in Section IV, provides

storage for the intermediate code generated by the S.A.U. It is a 2K,

16 bit-per-word, semiconductor memory. The CM has its own ad-

dress counter (CMAC) and buffer register (CMBR).

Switching Matrix

The hardware implementation of the switching matrix shown in

Figure 31 is by means of a ROM decoder with 32 input bits. Its block

diagram is illustrated in Figure 33. The first 16 bits of the decoder

are connected to the output lines of the RPDL, and the rest of the input

bits are tied to the CMBR. The choice of 16 bits for each set of inputs

is due to the fact that the S-code (Table 11) is a 16 bit code. The out-

put line that becomes high as a result of decoding the input information

determines which set of actions is to take place.

100

CMAC

Output Data Bus

CMBR

Code Memory

Figure 33. Block diagram of hardware components associated with
SAU

101

Auxilliary Registers (A1, A2, A3, A4)

There are 4 such registers all of which are 16 bits long. They

are used to provide temporary storages for items poped from the push-

down-lists during the code generation process.

The use of these components may be more clear by the descrip-

tion of the SAU's algorithm in the next section.

General Description of the Syntatic
Analysis of Arithmetic Statements

It should be recalled that the S-string generated by the ALAU is

stored in the syntax memory (SM). To analyze this string, the SAU

first stacks the symbol ";" and then the special symbol "ES" in the

operator push-down-list (RPDL). It then clears the code memory

address register (CMAC) and resets the counter N. After this initializ-

ing procedure, the SAU is ready to examine the S-string.

The SAU first fetches one item from the string (reads one word

from the syntax memory) and transfers it to the code memory buffer

register (CMBR). Using the contents of the CMBR and those of the top

item of the RPDL as inputs to the switching matrix decoder (SWMDC),

the SAU can energize the SWMDC to obtain the set of actions that it has

to perform next. The flow charts describing the actions of the SAU

are shown in Appendix J.

102

Running Account of the SAUf s Handling
of One Arithmetic Statement

Table 16 illustrates the step by step analysis of the arithmetic

statement
A = B * C + (ID + E) ;

The first column of the table contains the information on the nature of

the top item of the RPDL, the second column that of the item just read

from the S-string. The third column indicates which set of actions

must take place, while the forth column describes the exact nature of

these actions.

As can be seen from the Table the resulting code becomes

BC T1 + D E T + T1 T2 T1 + A T

After the SAU is finished with a statement, it will energize the input

unit to accept a new Fortran instruction.

Operating Time Required by the SAU
to Analyze Arithmetic Statement

The operating time required by the SAU to deal with the arith-

metic statement given in the above section can be approximated by

counting how many microoperatio.ns have to take place during the

analysis process. Assuming again that each non-memory-reference

operation takes 0.2 Eisec and each memory reference operation 0.6

p.sec, one can find from the running analysis given in the above section

Table 16.

103

Running account of the analysis of an arithmetic statement.

RPDL Item Action Detailed description of actions

initial SR ;, SR ES, read.
ES A LA Pop R, SR EO, process.
EO A SRN SRN A, Pop R, read.

SR SR SR EO, read.
EO B SRN SRN B, Pop R, read.

SR SR *, SR EO, read.
EO C SRN SRN C, Pop R, read.

EO

SR

LP

generate code in C memory
I* [13;C: T1 1

SRN Ti, process.
SR +, SR EO, read.
Pop R, SR (, SR EO, read.

EO D SRN SRN D, Pop R, read.
(+ SR SR +, SR EO, read.

EO E SRN SRN E, Pop R, read.
+) C generate code in C memory.

+ ; D; E T2 I
SRN T2, process.

RP Pop R, read.
generate code in C memory.
+ :T1! T2; T31
SRN T1, process.

C generate code in C memory
A vt Ti; T1

SRN Ti, process.
D done. Energize input unit.

Notations used in Table 16:
SR : stack an item on RPDL

SRN : stack an item on RNPDL
Pop R: remove top item from RPDL

104

that the time taken by the SAU is roughly

(non-memory reference)
(microoperation)

Tsl =(40 x 0. 2) + (40 x 0. 6)

(memory reference)

= 32. 0 psec

The above figure is a very rough estimate, only serves to give a ball-

park indication of the speed of the SAU in analyzing an arithmetic state-

ment.

Expansion of Switching Matrix
to Include IF Statements

To include non-arithmetic statements in the analysis, an expan-

sion of the switching matrix can be carried out. This section demon-

strates how such an expansion may be carried out to include one type

of IF statement analysis.

There are four types of IF statements allowed in Fortran IV.

Here the analysis of only one of them is examined,, leaving the under-

standing that other forms of IF statements may be handled similarly.

The IF statement type chosen represents the most commonly used in

programming,

IF (arithmetic statement) n1, n2, n1, 2, 3,

An example of this type of IF statement is

IF (A - B) 1, 2, 3;

105

The code generated by the HC for this IF statement type is

A B T1 IF T1
1

1 , T1 , T1 3 ;

The interpretation of this code is

1. subtract B from A and store results in T
1 '

2. If T1 is less than zero jump to address 1 ;

3. If T1 is equal to zero jump to address 2 ;

4. If T1 is greater than zero jump to address 3.

Table 17 shows the extra elements that must be added to the original

switching matrix to generate such a code for the IF statement.

Table 17, Additional elements for switching matrix to include IF
statement.

IF (R) SN Item just read

ES

ELP
ILP

ESN

IF

ELP

SIP

SR ESN

IFC

IFC IFC

SR DONE

Top of
RPDL

The description of the exact actions of SIP, SR, ELP, ESN, S,

IFC, SR, and DONE are given in Appendix K.

Pop RN.

106

Running Account of the Analysis
of One IF Statement

To clarify the concepts of analyzing an IF statement presented

in the previous section, Table 18 presents the step by step analysis of

IF (A - B) 1, 2, 3;

Table 18. Running analysis of IF statement.

RPDL Item Action Detailed description of actions

Initial SR ;, SR ES, read.
ES IF ELP Pop R, SR ELP, read.
ELP (SIP Pop R, SR ILP, SR EO, read.
EO A SRN Pop R, SRN A, SR EO, read.
ILP SR SR -, SR EO, read.
EO B SRN SRN B, Pop R, read.

) C generate code in C memory

- A B

SRN T1, Process.
ILP ESN Pop R, SR ESN, read,
ESN l S SRN 1, Pop ESN, read.
IF IFC generate IF code in C memory

ESN 2

IF T1 1

SRN T1, Process.
SR SR, ", SR ESN, read.
S SRN 2, Pop R, read
IFC generate IF code in C memory

, Ti I 2 I

SRN T1, Process.
SR SR ", ", SR ESN, read.

ESN 3 S SRN 3, Pop R, read.
IFC generate IF code in C memory

Tit 3 1

SRN Ti, Process.
Done Pop R, ; to C memory

Pop RN.

107

The operating time TIF needed to syntax analyze this statement

can be approximated by

TIF = Number of microinstructions x 0.2 p.sec

+ number of memory references X. 6 psec

35x 0.2 p.sec + 30 x O. 6 p.sec

= 7.0 p.sec +18 psec

= 25 p.sec

Inclusion of DO Statements

A DO statement in its source form is

DO (statement number) I = d1, d2, d3;

For example, DO 123 I = 1, 4, 1;

The lexical analyzer converts this DO statement into the following S

form:

DO
SYMTA1301

02 address
L

]SYIVITAE

address
I

s SY.MTAE

address
I

1
CNDL

.

. .

It is desired that a C-string be produced by the syntax analyzer, such

that conversion from this code to any machine code by software can be

done with ease. The following string is such an example

..=. I Const. 1 CNDL I Const. 1 CNDL

I - I Const. 4 CNDL T1 DO T1 123

*CNDL is a special symbol that delimits constants.

108

The interpretation of this code briefly is

1. assign 1 to 13

2. add 1 to I ,

3. subtract 4 from I and store results in T1 ,

4. jump to 123 if T1 is positive, if not perform the next in-

struction in the program,.

Table 19 shows the extra elements that must be added to the original

switching matrix to analyze DO statements.

Table 19. Extra elements for switching matrix to include DO state-
ment.

DO SN RN

ES DESN

ESN SEO

EO SRN

DO SR SRD DC1

DC1

DO1 SR DC3

DC2

DONE

The meaning of DESN, ESN, SEO, SRD, DC1, DC2, D3 is shown in

Appendix L.

109

Running Account of the Analysis
of One DO Statement

To clarify the concepts of analyzing a DO statement presented

in the previous section, Table 20 presents the step by step analysis of

DO 123 I = 1, 4, 2;

As can be seen from the examples of expanding the switching matrix

to analyze statements in their S-Forms, there is virtually no limit to

the power of analyzing statements by switching matrix. If more state-

ments are to be incorporated, all one needs to do is to expand the

switching matrix elements. All expansions are carried out in a simi-

lar fashion as the ones that have been described. And it is felt that no

additional examples are needed to prove the versatility of the switching

matrix.

The hardward implementation of the SAU control unit can be

carried out in the exact manner that has been previously described

and will not be dealt with here.

110

Table 20. Example of the analysis of DO statement.

RPDL Item Action Detailed description of actions

Initial SR :, SR ES, read.

ES DO DESN Pop R, SR Do, SR ESN, read.

ESN 123 SEO SRN 123, Pop R, SR EO, read.

EO I SRN SRN I, Pop R, read.

DO = SR SR =, SR EO, read.

EO 1 SRN SRN 1, Pop R, read.

_ DC1 generate DO code3 I (A)

DO SR

I const. 1

Process.
SR DO1, SR EO, read.

EO 4 SRN SRN 4, Pop R, read.

DO1 SRDO SR ", ", SR EO, SRN (I), read.

EO 2 SRN SRN 2, read.

DC2 generate DO code

DO1 DC3

DO DC1

DONE

+ I 2 const. I :

SRN (4) Process.

generate
I iconst. 4

SRN T, Process.
DO T 1231

The operating time required for syntax analyzing the given DO state-

ment is given by
TDO

= (approximate no. of non-memory microoperation) +(appr.
no. of memory reference microoperationE)

1: 25 x 0.2 + 35 x 0.6 p.sec
= 28.0 p.sec.

111

XII. OUTPUT UNIT

The function of the output unit is quite straightforward, and its

implementation can be undertaken in the manner already discussed and

hence will not be elaborated here. The output unit transfers the C-

code produced by the HC to some auxilliary storage device and issues

an interrupt request to the main computer to inform it that a half com-

piled program is waiting to go through the final stage of compilation.

However, if errors have been found associated with the program,

the output unit will abort the C-code transferral. Instead, it will

transfer all the error messages to the auxilliary storage device and

gives out an error interrupt request to the main computer. This in-

terrupt informs the main computer that it need not perform the final

compilation of the program. It should, however, print out all the

error messages that have been found in the original program.

112

XIII. SUMMARY AND CONCLUSIONS

A preliminary study on the possibility of implementing a Fortran

compiler with hardware has been presented. The marketability of

such a product has been demonstrated and has been found to be con-

vincing. In the typical usage environment of a computer system, up

to 30% of the CPU time can be spent on Fortran compiling.

The control of the hardware compiler is realized by program-

mable logic arrays (PLA). The advantage of PLA control over soft-

ware stored program is a tremendous gain in speed. The PLA has a

response time of 60 nsec, compared with about 1 ilsec for the fastest

RAM storage of software routines. Table 21 summarizes the typical

operating time that can be expected from the operation of each of the

control units of the hardware compiler. It should be noted the time

given is only a very rough indication of the speed of the hardware

compiler.

Some of the design discussions given are admittedly sketchy in

certain areas. They are intended for setting ground works for further

detailed design projects.

Further works to improve the design of the system are obviously

needed. Speed may increase by some form of parallelism in the oper-

ations of the functional units of the hardware compiler. In other words,

the operations of the functional units need not be sequential. For

113

Table 21. Typical operating time of control units.

Unit Function Operating Time (p.sec)

ICU input statements number of characters x
period of data trans-
mission

scanner identify arithmetic
from non-arithmetic
statements

9 . 4

SKR skip one record

VMU variable match 5.4

SNS statement number search 6. 0

A.LAU arithmetic lexical analyse 37.0

CNSU constant unit 5

DLAU DO lexical analyze 36.4

IFLAU IF lexical analyze 46.2

SATJ arithmetic statement 32.0
DO statement 28.0
IF statement 25

114

example, the input of another source instruction does not have to

happen after the preceding instruction has been completely processed.

A master control unit should probably be installed to sequence the

operations of each control unit and allow independent ones to occur

simultaneously.

To optimize the cost-performance ratio of the design, a more

careful selection of hardware components may be taken. Other studies

should be made towards a more detailed estimate of system cost, whether

it meets projected marketable price, and which parts of it may be

streamlined to obtain a better cost/performance ratio.

When the project was first undertaken, the author's knowledge

of the mechanism of the compiler and the extent of its complexity was

minimal. Having studied more the features of the compiler, he is

convinced that a complete take over by hardware of the compiling

process is impractical and impossible. The goal of designing a hard-

ware compiler that can interface with more than one type of machines

has generated a great deal of difficulties and headaches in the course

of the design. The conclusion reached is that such a hardward com-

piler can be built but it simply cannot have all the elegant features

a conventional compiler allows. A suggestion for further investigation

is to utilize the ideas presented in this paper and aim at building a

hardware compiler that will serve only one known machine.

115

BIBLIOGRAPHY

Barsamian, H. 1970. Firmware sort processor with LSI components.
In: Proceedings of Spring Joint Computer Conference of
American Federation of Information Processing Societies,
Atlantic City. Vol. 36. Montvale, AFIPS. p. 183-190.

Barton, R. S. 1961. A new approach to the functional design of a
digital computer. In: Proceedings of West Joint Computer
Conference, Los Angeles. Vol. 19. Glendale, Griffin-Patterson,
p. 393-396.

Bashkow, T. R. 1964. A sequential circuit for algebraic statement
translation. IEEE Transactions on Computers C-13:102-105.

Bashkow, T. R. , A. Sasson, A. Kronfeld. 1967. System Design of a
Fortran Machine. IEEE Transactions on Computers C-16:485-
499.

Beelitz, H. R. , S. Y. Levy, R. J. Linhart. 1970. System archi-
tecture for large scale integration. In: Proceedings of Fall
Joint Computer Conference of the American Federation of
Information Processing Societies, Anaheim, 1967. Vol. 31.
Thompson Books, Washington, D. C. p. 185-200.

Bernay R. A. 1972. An MSI concept for a binary search scanner.
Computer Design 6:65-75.

Chu, Y. 1962, Digital computer design fundamentals. New York,
McGraw-Hill. 481 p.

Joseph, E. C. 1967. Impact of large scale integration on aerospace
computers. IEEE Transactions on Computers EC-16:558-561,

King, W. K. 1971. Design of an associative memory. IEEE Trans-
actions on Computers C20:671-674.

Hansk, A. A. , B. A. Dent. 1968. Burroughs B6500/137500 stack
mechanism. In: Proceedings of Spring Joint Computer Con-
ference of the American Federation of Information Processing
Societies, Atlantic City. Vol. 33. Thompson, Washington, D.C. ,
p. 245-251.

Hopgood, F. R. A. 1969. Compiling techniques. London,
MacDonald. 126 p.

116

Husson, S. .S. 1970. Microprotramming principles and practices.
Englewood Cliffs, Prentice-Hall. 614 p.

Lee J. A. N. 1967. The anatomy of a compiler. New York,
Reinhold. 275 p.

Led ley, R. S. 1962. Programming and utilizing digital computers.
New York, McGraw-Hill. 567 p.

Levy, S. T. , R. J. Linhardt, H. S. Miller, R. D. Sidnam. 1967.
System utilization of L. S. I. IEEE Transactions on Computers
EC-16:562-566.

Melbourne, A. J. , J. M. Pugmire. 1965. A small computer for
the direct processing of Fortran statements. Computer Journal
1:24-27,

Moore, G. E. 1971. Semiconductor RAMS- a status report. Com-
puter. IEEE Computer Society, Vol. 4, No. 2, Mar. -Apr.
p. 6-10.

Morris, R. 1968. Scattered storage techniques. Communications
of ACM. 11:38-44.

Pullin, A. 1964. A. Fortran to ALGOL translator. Computer
Journal 1:24-26.

Rosen, S. 1968. Hardware design reflecting software requirements.
In: Proceedings of Fall Joint Computer Conference of the
American Federation of Information Processing Societies San
Francisco. Vol. 33. Thompson, Washington, D. C. p. 1443-
1449.

Rudenberg, H. G. 1969. Large-scale integration: Promises versus
accomplishments - The dilemma of our industry. Proceedings
of Fall Joint Computer Conference of the American Federation
of Information Processing Societies, Houston. Vol. 35.
Montvale, AFIPS, p. 359-367.

117

Thurber, K. J. , R. 0. Berg. 1971. Universal logic modules im-
plemented using LSI memory techniques. In: Proceedings of
the Fall Joint Computer Conference of the American Federation
of Information Processing Societies, Las Vegas. Vol. 39.
Montvale, AFIPS, p. 177-194.

Tonik, A. B. 1967. Development of executive routines, both hard-
ware and software. In: Proceedings of Fall Joint Computer
Conference of the American Federation of Information Process-
ing Societies, Anaheim. Vol. 31. Thompson, Washington, D. G.
p. 395-408.

Vimari, D. C. 1970. Field-programmable read only memories
and applications. Computer Design 12:49-54.

White H. J. , E. K. C. Yu. 1970. Use of read only memory in
ILLIAC IV. Proceedings of Spring Joint Computer Conference
of the American Federation of Information Processing Societies,
Atlantic City. Vol. 36. Montvale, AFIPS, p. 197-205.

APPENDICES

118

APPENDIX A

STATE DIAGRAM OF SCANNER

Energize Digit w Done Done

Letter
or

Blank

, or ;

State

0 Idle

Action

1 Clear (SAR), Read IBM (RIBM), -tCIB, ENDC

2 Energize Pack Symbol Unit

3 Set DF, Energize Statement Number Unit
4 Store (SMR), ICSM, (CIB)-->SAR, RIBM, CIB, ENDC

5 No op.

6 RIBM, TCIB, ENDC

7 (SAR)--,CIB, Pack Symbol

8 Search Command

9 Energize DO Unit

10 (SAR)-÷CIB, Pack Symbol Unit, Search Command
11 R IBM, ENDC

12 (SAR)-+CIB, Pack Symbol Unit, Search Command
13 Energize Respective LAU

119

APPENDIX B

STATE DIAGRAM OF PACK SYMBOL UNIT
Digit or

Letter
Energize (CN).±

(CN) <5

Others

Others

State Action

0 Idle

1 (IMBR)--3SHRJCN, Read IBM

2 Energize. DC

3 Shift SHR

4 Read IBM, ENDC

5 Clear CN, DONE

6 Energize DC

7 Read IBM, ENDC

APPENDIX C

STATE DIAGRAM OF STATEMENT NUMBER SEARCH

Value (MR)

Found DF A Defined

120

State

0 Idle

Action

1 Energize Search Memory
2 Test DF

3 Test Value (MR)

4 Error
5 Change Value (MR) to 01, Write in SYMTAB, (MR) -*SMR

6 Test Value (MR)

7 Change Value (MR) to 03, Write in SYMTAB, (MR) -SMR

8 (MR) SMR

9 (NR) + Code + (AR)-4-MR
Write in SYMTAB, (MR) SMR

APPENDIX D

STATE DIAGRAM CF ALAU

State

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14

Action

Idle
Read IBM, ENDC
Pack Symbol
Energize Variable Match Unit (VMU)
Store in SM tCSM
Read IBM,

SMR
Read IBM,
Pack Symb

CIB, ENDC

ENDC
of

Energize Command-Encoder-Decoder
Read IBM, ICIB, ENDC
S-Code-4SMR, Store SM, tCSM
Energize Constant Unit
S-Code-*SMR, Reset CSM

C IB

121

APPENDIX E

STATE DIAGRAM OF VARIABLE MATCH UNIT

Found

Not
Found

State Action

0 Idle

1 (SHR)-+NR, Energize Search Memory
2 Value (MR)-÷SMR

3 (NR)--->(MR)0-29' Variable Code- -)(MR)30-35
Write (MR), (MR)--*SMR

122

123

State

0

1

APPENDIX F

STATE DIAGRAM OF CONSTANT UNIT
Zeros

Energize ^ Found Zeros

Action

Idle

(SHR)-+NR, Energize Search Memory
2 TAR, Fetch, Test (MR)
3 (NR)--).(MR)0-29' 30

8
-OMR) 30-35' (AR)y(MR) 36-45

4 Write in Search Memory, (SAR).+CIB
5 Read IBM, ENDC

6 (IBMR) -*SMR, Write SHR, TCIB, tCSM
7 (IBMR) ->SMR, Write SHR, tCIB

APPENDIX G

STATE DIAGRAM OF DO LEXICAL ANALYZER

Digit Done

O
Done

124

Done

1C)
Done

State Action

1 DO Code--*SMR, Store SM)tCSM, ENDC
2 Pack Symbol, DO flag

3 Search Statement Number
4 Write (SMR), tCSM, ENDC
5 Pack Symbol

6 Search Statement Number
7 Operator Code- -)SMR, Write (SMR), tCSM, Read IBM,

tCIB
8 Constant Unit

9 ;-3SMR, Write (SMR), Clear GIB, Clear CSM

125

APPENDIX H

STATE DIAGRAM OF IF LAU

Ener Done Digit 1, Done >C) Done >0

State

0 Idle

Action

1 IF Code4SMR, Write SM, tCSM, Set IF flag
Energize ALAU

2 ICIB, Read IBM, ENDC

3 Pack Symbol
4 Search Statement Number
5 Write SM

6 ,-+SMR

7 Energize Scanner
8 ;--)SMR, Write SM, ISMC, Done

126

APPENDIX I

Go To Lexical Analyzer Unit (GOTO LAU)

There are two kinds of GO TO statement which are allowed by

the hardware compiler.

GO TO "statement number" ;

GO TO (ni, n2,) i ;

The first type of GO TO statement allows unconditional jump to the

statement labeled by the statement number. The second type of GO

TO, also known as COMPUTE GO TO, allows conditional control

transferral to one of the statements labeled by the list of statement

numbers found within the parentheses, depending on the value of the

integer variable.

The GOTO LAU is energized by the scanner when it has detected

that a non-arithmetic statement is a possible GO TO because it has

the command GO as its first non-blank symbol. The first thing that

the GTLAU does is to check the next symbol of the source statement

to see if it is a TO. If it is not, an error condition has arisen. If it

is indeed a TO, there is a good chance that this is meant to be a GOTO

statement, unless the programmer has inadvertently made a mistake.

The GTLAU will go on reading each character of the instruction,

converting each digit group into statement number equivalent, each

comma and parenthesis by its syntax code. Finally when it reaches

127

the ;, it knows that it has come to the end of the statement. After

storing the S-code for it issues a signal to energize the SYNTAX

ANALYZER. The flow chart and the state diagram of the GOTO LAU

are shown in I. 1 and I. 2 respectively.

128

Next

GO TO token
---> SMR
Store SM

Digit?

Variable comma

Yes

Pack Symbol
Search Statemert

Number

Pack Symbol
Variable Match

Yes
> Store Code in

SM

emi -col

Syntax
Analyzer Next

Appendix Table I. 1. Flow chart of GOTO LAU

129

State

0 Idle

Action

1 Decode Character
2 Pack Symbol, Check Command Table
3 Decode

4 Pack Symbol, Statement Number Search

5 Store in SM,+ CSM

6 Pack Symbol, Variable Match
7 Comma --->SMR, 1- CIB, Read (IBM)

8 ; Reset CSM, Energize Syntax Unit

Appendix Figure I. 2. State Diagram of GOTO LAU

130

APPENDIX J

DIMENSION LAU

An example of a DIMENSION statement is

DIMENSION X1 (d1, d2, dn), X2 (d1, dn) ;

The purpose of a Dimension statement is to define variables as

n-dimensional arrays. DIMENSION statements must always appear

before any executable statements in a program.

The DIM LAU first stores the S-code for DIMENSION in the

S-memory. Then it flags the "subscript flag" when it encounters a

variable to inform the variable match unit that the variable is being

defined as a subscripted variable. When it encounters a constant, it

energizes the constant unit. However, when it reads a parenthesis,

or a comma, it just simply stores the S-code for the symbol in the S-

memory. When it reads a semi-colon, it's job is done and will ener-

gize the SYNTAX Analyze Unit.

Yes

131

Start

Letter

DIM-+SMR
Write

V

Pack Variable
Flag Subscript

1

Variable Match

Read
Character

V

Yes

No

Constant Unit

Store Code in
S-Memory

Yes

V

Store Code in
S-Memory

Error

Syntax
Analyzer

Appendix Figure J. 1. Flow chart DIMENSION LAU

132

Ener ize

Command
Or

Parenthesis

State

0 Idle

Action

1 DIM-->SHR, Write SM Decode.

2 Pack Variable Flag Subscript Flip-Flop
Energize Variable Match,

3 Constant Unit.
4 (IBMR)-4SMR READ IBM, 1CIB
5 Store Code in SM)tCSM
6 Store Code in SM, Reset SMC Energize Syntax Unit,

Appendix Figure J. 2. State Diagram of DIM LAU

133

APPENDIX K

MICRO-OPERATIONS OF THE SAU'S DEALING
WITH ARITHMETIC STATEMENTS

Clear CMAC
Reset (CN)

D

Stack ; in R
Stack ES in R

Fetch one item
from S-string

1

Consult switching matrix

II V V

LP SR RP SRN LA

Figure K. 1. Flow chart of SA.0

S-Code of
Constant-02N

Constant
CNPDL

Item--)RN
Pop R

Item -.*RN
Pop R

-+ R. E0-+R

Item RN
Pop R

E0

Figure K. 2. Flow chart of SRN

134

RjoA 1
RN -,A2
RN 3

A 1--)CMC

not
constan

Constant

Constant
Store Unit

Constant
Store Unit

T

T-3 RN

CMi

Trr> RN

Process

Appendix Figure K. 3. Flow chart of code generator

Next

CNDL

CNDL Item.*
CM.

1

Appendix Figure K. 4. Flow chart of constant store unit

E0.-*R

Stack 0
on RN
Opet.

-4- R

Appendix Figure K. 5

Pop

RPDL

U:
Unary

Operator

135

This unit is to take care of unary operators +, or -, when they
are used in C = -A or D = (-A x C) + E.

Appendix Figure K. 6. Flow Chart for DONE

136

SR (stack operator): Item--/. R

E0-4 R, Go to Next

LP (left parenthesis):

Pop R; Item- R, E0-0- R; Go to Next

RP (right parenthesis):

Pop R, Go to Next

LA: Pop R, E0-,° R, Go to Next

Appendix Figure K. 7

137

APPENDIX L

MICRO-OPERATIONS OF IF SYNTAX ANALYSIS

ELP: Pop R push-down-list, Stack ELP in RPDL, read next word

from syntax memory.

SIP: Pop RPDL, stack ILP in RPDL, SR EO, read next word.

IFC: RPDL to Code Memory, RNPDL to code memory, RNPDL to

code memory, stack T in RNPDL .

138

APPENDIX M

THE MICRO-OPERATIONS ASSOCIATED WITH
DO SYNTAX ANALYSIS

DESN : Pop item from Operator push-down-list (RPDL)5stack item

DO in RPDL, stack ESN in RPDL, read next word from

syntax memory.

SEO: Stack an item in operand push-down-list, pop top item from

RPDL, stack EO in RPDL, read next word.

RNPDLRPDL to CM., NPDL to A register, (A) to CM i+1' RNPDL

to CMi+z, process.

SRD: Stack DO1 in RPDL, stack EO in RPDL, read next word.

SRDO: Stack "," in RPDL, stack EO in RPDL, Stack (A) in RNPDL,

read next word.

DC2: RPDL RNPDLto CM., NPDL to CMi+1, RNPDL to CMi+2,
1

energize constant store unit. (A) to code memory.

DC3: - to CM,, Pop RPDL, RNPDL, to CMi+i, RNPDL to CMi+2,

T to CM i+3' stack T in RNPDL, process.

