AN ABSTRACT OF THE THESIS OF

KEI-LEUNG ALBERT LUN for the MASTER OF SCIENCE
(Name) (Degree)

in Electrical and Electronics Eng1neer1rg presented on Dec. (4, |97Z
‘(Major) ‘ (Date)

Title: A SYSTEM DESIGN OF A FORTRAN HARNDWARFE COMPILER

Redacted for privacy

/ Professor Louis N. Stone

Abstract approved:

This paper describes the system design of a Fprtran hardware
‘compiler which converts the original code of a source program into
an intermediate code. This code contains features that allow easy
machine code géneration. An evaluation is first made on the marketa-
bility of such a system and then a brief discussion on the features of
the intermediate code generated by the hardware compiler.

The system is divided into a number of functional blocks. Each
block consists of a control unit and a set of hardware logic components.
The control unit is realized by Programmable Logic Arrays and all
hardware components are state-of-the-art products. Estimates on
the typical operating speeds of the functional blocks are made. Flow
charts and state diagrams are used to describe the logic flow of the

functional blocks.

System Design of a Hardware Fortran Compiler
by

Kei-Leung Albert Lun

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1973

APPROVED:

Redacted for privacy

—

Profeséor of Electricdl arfd Electronics Engineering
/ in charge of major

Redacted for privacy

Head of Department of Electrical and Electronics Engineering

Redacted for privacy

Dein of bra‘,ciu;ae g;:hool

Date thesis is presented Dec , 14,) 972

'Typed by Susie Kozlik for Kei-Leung Albert Lun

ACKNOWLEDGEMENTS

The author would like to thank Professor L. N. Stone for his
guidance during the preparation of this thesis. He would also like to

thank Dr. Harry Goheen whose advice has been most helpful.

Chapter

11

IIT

v

VI

VII

VIII

TABLE OF CONTENTS

INTRODUCTION
Qualitative Evaluation
Feasibility Study of Hardware Compiler

SYSTEM CONCEPT OF THE HARDWARE
COMPILER

MAIN COMPUTER AND HC'S RELATION
Host Machine's Responsibility
Hardward Compiler's Job (Interrupt Request)
Description of the Code Generated by the HC

BLOCK STRUCTURE OF THE HC

HARDWARE IMPLEMENTATION OF A CONTROL
UNIT

INPUT FUNCTIONAL UNIT
Introduction
Block Explanation of the Input Control Unit
Hardware Components of the Input Unit
Detailed Discussion of the Input Control Unit
Particularly Its Handling of Hollerith Input

HARDWARE IMPLEMENTATION OF THE INPUT
CONTROL UNIT
Procedure of Implementation
Conversion of the Flow Chart of the ICU
to State Diagrams
Skip Record Control Unit
Operation of a Control Unit
Timing and Operating Speed

SCANNER FUNCTIONAL UNIT
General Description
Description of the Operation of the Scanner
Control Unit
Hardware Associated with the Scanner
Operating Speed of the Scanner
Sub-Units Used by the Scanner

Page

10
10

17

21

24
24
25
27

32

35
35

35
37
45
48

51
51

52
55
59
60

Chapter

IX

X

XI

XI1

X111

SYMBOL TABLE

Meaning of Symbol Table

SYMTAB of the Hardware Compiler
Hardware Implementation of SYMTAB
Statement Number Search Unit

Time Needed to Search Statement Number

LEXICAL ANALYZER UNITS

Background Discussion’

Arithmetic Lexical Analyzer (ALATU)

Time Required to Analyze an Arithmetic
Statement

Variable Match Unit

Time Required by VMU to Match One Variable

Constant Unit

DO Lexical Analyzer Unit

IF Lexical Analyzer Unit

SYNTAX ANALYZER UNIT

Arithmetic Statement Switching Matrix
Hardware Components
Push-Down-List Memory
Special Character Generator
Code Memory (CM)
Switching Matrix
Auxilliary Registers (A], Az, Az, Ay)
General Description of the Syntatic Analysis
of Arithmetic Statements
Running Account of the SAU's Handling of
One Arithmetic Statement
Operating Time Required by the SAU to
Analyze Arithmetic Statement
Expansion of Switching Matrix to Include IF
Statements
Running Account of the Analysis of One IF
Statement
Inclusion of DO Statements
Running Account of the Analysis of One DO
Statement

OUTPUT UNIT

SUMMARY AND CONCLUSIONS

Page

62
62
64
66
73
7

79
79
80

82
84
85
86
87
89

93
94
96
96
99
99
99
101
101
102
102
104

106
107

109
111

112

Chapter

BIBLIOGRAPHY

APPENDICES

Table

10

11

12

13
14
15

16

17

LIST OF TABLES

Meaning of words produced by the hardware
compiler

A cross reference between HC's memory modules
and their respective functions

Internal code vs. character

Actions associated with each ICU state
Actions associated with each SKR state
Transition table of SKR

Worst case estimate of time needed to input one
character by input control unit

Estimate of time required to scan a trial statement
Classification of items in the SYMTAB

Estimate of time required for a typical statement
number search

S-code and its meaning

Estimate of time required to analyze one
arithmetic statement by ALAU

Estimate of time required to match one variable
Estimate of operating time of DO lexical analyzer
Estimate of the operating time of the ILAU

Running account of the analysis of an arithmetic
statement

Additional elements for switching matrix to include
IF statement

Page

12

19
27
36
40

41

50

59

62

78

80

84
86
88

92

103

106

Table
18

19

20

21

Running analysis of IF statement

Extra elements for switching matrix to include
DO statement

Example of the analysis of DO statement

Typical operating time of control units

108

110

113

Figure

10
11
12
13
14
15
16
17
18
19

20

LIST OF FIGURES

Plot of Cl and C2 versus P

Simplified diagram of the memory organization
of the host machine

Block diagram of hardware compiler

Block diagram of TI's programmable logic array
Block flow chart of input control unit

Block diagram of input functional block

Block diagram of decoder DC

Example of a simple decoder

Flow chart of input control unit

State diagram of ICU

Flow chart of skip record unit

State diagram of SKR unit

Block diagram of binary counter

Block diagram of a control unit

Timing diagram of two phase clock

Flow chart of scanner

Block diagram hardware of scanner

Block diagram of command name decoder-encoder
Block diagram of SHR

Flow diagram of pack symbol

Page

12
18
22
26
28
30
31
33
36
39
40
44
46
49
53
56
57
58

61

Figure
21

22

23

24
25
26
27
28
29
30
31
32

33

Hypothetical SYMTAB of HC

Block diagram of a search memory using dynamic
recirculating registers

Block diagram of a search memory using hash
network

State diagram of search memory

Flow chart-of statement number search unit
Data flow of statement number search

Flow chart of ALAU

Flow chart of DO LAU

Flow chart of IF LAU

Code for an arithmetic statement

Switching matrix of SAU

Block diagram of a PDL

Block diagram of hardware components associated
with SAU

69
72
76
77
83
90
91
94
97

98

100

SYSTEM DESIGN OF A HARDWARE FORTRAN COMPILER

I. INTRODUCTION

Qualitative Evaluation

The throughput of a computing system depends greatly on how
efficient its processing time is being used and how much of it is ac-
tually used on data processing. The fact is that a great deal of the
processing time is spent not on problem solving, but on the various
time-consuming, but essential house-keeping chores. These chores
are usually carried out by an elaborate system program with the sup-
port of many other, equally complex subprograms. Occasionally, the
systems program may call upon the services of one of its compilers
to compile a certain source program. A compiler, basically, is an
information handling process, consequently a large part of its com-
plexity arises from symbol searching, statement analyzing, and code
conversion. Its implementation by software is ill suited to a conven-
tional computer, the inception of which is to deal with processing data.
As a result, compilation is a slow process.

Many ideas have been suggested to improve the efficiency of ex-
isting software to speed up compilation. However, it is clear that no
matter how elegant software is, its speed is inherently limited by the

speed of the hardware which it uses. A new direction should be taken.

.

When one looks more closely at the somewhat mysterious com-
piling process, behind the facade of terminologies and definitions, one
finds a well defined logical process that offers many interesting pos-
sibilities for hardware implementation. This paper is an exploration
of these possibilities.

Suggestions to bypass software compilation are not new. Baskkow
and associates (1967) have proposed a reasonably detailed logic design
of a small scale computer which modifies only slightly a Fortran
source program by hardware and executes directly the resulting code.
Melbourne and Pugmire have also suggested the construction of a
microprogram control computer, the machine code of which is the
language Fortran itself (Melbourne, 1965).

This paper resembles the above mentioned ideas in its vision
that software compilation is inefficient, and some of its functions,
such as symbol search, statement analyze, and others, are definitely
replaceable by hardware. It is different in its design philosophy which
is to construct with state-of-the-art hardware a hardware compiler
(HC) that can be used by a conventional computer to compile a Fortran
program. The HC converts the source program into a set of inter-
mediate code which is designed to allow easy conversion to any actual
machine codes by software residing in the main computer.

It is the objective of this paper to give a detailed systems design

of the HC, with the design goal that it will be able to serve many

different types of computers. In other words it is not machine de-
pendent. Only the state-of the art will be used throughout the paper in

the design of the HC.

Feasibility Study of Hardware Compiler

Any practical design project should begin with a feasibility study
of the product to be designed. Whereas a precise market analysis of
the hardware compiler is complex and out of the realm of this paper,
an insight into its probable market potential can be derived by making
certain reasonable estimates.

Assume that a time-sharing computer system Sl is overloaded
and hence yielding poor response time. Two kinds of investments can
be made to improve the system's throughput. First, a faster and
more expensive computer can be used in place of the existing computer
(let the new system thus formed be called S2). Second, a hardware
compiler may be installed to increase the speed of Fortran compila-
tion. r.]."he tradeoffs of these two investments may be examined.

Let $X be the leasing cost per month of S1, $Y be that of S2, and

$Z be that of the hardware compiler (HC). Also let

speed of S2 -4
speed of Sl

and Compilation speed of S1 with HC
Compilation speed of Sl alone

=b

and let P be the percentage of Sl's load that belongs to compiling.

4

Then, from an investment point of view, the amount of money invested
in compiling using S2 is

P
C1—$Yxa

and the amount of money invested in compiling using Sl and HC is

CZ:$X—1§+$Z

The curves of these equations as a function of P are drawn in Figure 1.
It shows that if the compilation load exceeds Pc the hardware compiler
is definitely a better investment, owing to the fact that over this re-

gion less money has to be spent on compiling if the hardware compiler

$ invested

in
Compiling

$Z

o]

Figure 1. Plot of C1 and C2 versus P

As an example of a typical computing facility, the Oregon State

University's OS-3 system may be examined. The leasing cost per

month of the system is about $35K, $15K of which goes to renting the
CDC-3300, which is the computer of the system. Replacing the CDC-
3360 with CDC-3500 (which leases at $20K per month) and keeping the
existing peripheral facilities would lead to a new system leasing cost
of $40K per month.

It can be safely assumed that

speed of CDC-3500 , 1.5
speed of CDC-3300 T

It can also be safely predicted that

speed of compilation of CDC 3300 with HC
speed of compilation of CDC-3300

25

Five is a conservative guess in view of the fact that the hardware
compiler takes charge of symbol searching, statement analyzing, and
other time-consuming tasks of compilation, leaving only rather
straight-forward jobs for the main computer. Studies show that at
least 30% of the central processing unit time of OS-3 is being spent
on Fortran compilation. Assuming these values for X, Y, a, and b,
and Pc’ the leasing marketable price per month of the HC may be
found:

0.3

0.3
$40K x T2 < $35K X + $Z

. $Z< $5.9K/month

To approximate the actual marketable price (not the leasing price) of

the hardware compiler, the ratio R between the actual price and rental

price per month must be known. Let this ratio be the same as that
for OS-3. It is known that OS-3's actual cost is about $1.5 million.

Hence,

o ab
_$1.5 x 10

R = $3.5 103

40

Using this value for R, the actual marketable price for the hardware
compiler is:

40 x $5.9K < $236K
This means that the design should shoot for a selling price of no more
than $236K and a compilation speed increase of at least 5 over a con-

ventional software compiler.

II. SYSTEM CONCEPT OF THE HARDWARE COMPILER

The hardware compiler should be viewed as a special purpose
processor whose function is to convert a source Fortran program into
an intermediate code (c-code) which is easily convertible by the main
computer's software to its actual machine code. In the design of the
HC, the following design principles are applied:

l. The HC should be able to interface with most word oriented
general purpose computers and still perform it's useful
function as an intermediate code generator.

2. Since this is a preliminary design attempt, system modu-
larity and flexibility rather than elegance are stressed to
enable easy design moderations later.

3. Realizing a complete design project in its detailed glory is
an impossible undertaking for a paper this size, only im-
portant design concepts will be given. Examples will be
used whenever practical to illustrate these concepts and
how they may be implemented,

4. State-of the-art hardware components and concepts are used
as a rule to demonstrate the credibility of the systems struc-
ture.

The discussion of the system design will be in the following logical

sequence:

main computer and HC's relation;

block structure of the HC and its different functional units;
detailed discussion of each functional unit, its control and
its hardware components. (Flow chart and state diagram
description will be used to indicate the logic flow of the

control of each functional unit).

III. MAIN COMPUTER AND HC'S RELATION

Host Machine's Responsibility

As fér as the system program of the host machine is concerned,
the hardware compiler (HC) is just another peripheral device and
should be treated as such. When a Fortran control statement, one
which requests Fortran compilation, is read, the host machine exe-
cutes the statement by first energizing the specified input device which
contains the source program. It then reads the whole program into
its memory. During reading, the host machine also notes the tYpe of
code with which the program is written, ASCII, BCD, Hollerith, or
others, and inserts end of record (EOR) marks to separate one state-
ment from another.. It also inserts an end of file (EOF) mark when
it reaches the end of the source program. Once this process is done,
the host computer stores the whole program in one of its auxilliary
storage devices.

The host machine then checks with the HC to see if it is free to
operate on the program. If it is free, the host computer will send it
the information concerning the code type of the source program and
which device has the program in store. The HC will then be energized
and left alone to operate on the program. If the HC is found busy

working on another program, the host machine will put the code type

10
and device address information of the source program in its compila-

tion waiting list. It will then resume with its other operations.

Hardware Compiler's Job (Interrupt Request)

As soon as the hardware compiler finishes processing one
Fortran program, it will send an interrupt request to the main com-
puter. The instant the main computer is free to service this request,
it will first check with its compilation waiting list to see if any other
program is waiting to be compiled. If there is, the information con-
cerning its code type and device storage address will be passed to the
HC which will then be energized once again. The main computer's
compilation routine will then be activated to take over the final stage
of the compilation. If there is no program in the waiting list, the HC

will not be reenergized.

Description of the Code Generated by the HC

The C-code generated by the hardware compiler has already
been claimed to be easily convertible to actual machine codes for most
general-purpose, word-oriented computers. This section testifies to
that claim by giving the set of codes that the HC will generate for cer-
tain types of Fortran statements and how the host machine's software

can convert them into actual machine instructions.

11

A sentence generated by the hardware compiler is composed of
words of 16 bits each. These words have two fields, the identifica-
tion field, and the value field. Table l gives the meaning of a C-word
and its two fields.

The identification field is 6 bits long and gives the classification
of the word, whether it is a variable, statement number, Fortran
command, constant, or an operator. For symbols like variables,
statement numbers, and constants, their value parts are their ad-
dresses in the symbol table of the hardware compiler. It will be
shown later that since there is an one to one correspondence between
the symbol table of the hardware compiler and that of the host com-
puter, transformation from one symbol table address to another is
direct and simple. For symbols like operators (+, =, -, and so forth)
or command identifiers (GO TO, IF, DO), the 10 bit value field simply
uniquely defines the nature of the operator or command.

Before discussing the C-code produced by the HC, it is proper
to describe the memory organization of the host computer which has
a conventional compiler (this is just an example). Figure 2 is a sim-
plified diagram of the memory organization of such a machine. The
memory is divided into a compiler area (containing the routines that
do the com;piling), symbol table area, program area, and the I/O area.
The compiler area contains the software routines of the main computer

of instructions found in the I/O area of the memory. The translated

12

Table 1. Meaning of words produced by the hardware compiler.

6 bits 10 bits
Type of word Identification Value

field field
undefined statement number 0 0 address
defined statement number 0 1 address
DO range number undefined 0 2 address
DO range number defined 0 3 address
simple variable 1 0 address
subscripted variable 1 1 address
simple formal parameter 1 2 address
subscripted formal parameter 1 3 address
subroutine name 1 4 address
constant 3 0 address
operator 4 0 internal code
relational operator 4 1 internal code
command name 5 0 internal code

77777 Compiler

1/0 Area

Symbol Table

e e e e it e e e e e

Program Area

00000

Figure 2. Simplified diagram of the memory organization of the host
machine

13
results are stored in the program area which has a pointer, Program
Counter, that addresses the next empty space of the program area.
The symbol table contains the run time address of every symbol usedA
in the program.

Having discussed briefly what the organization of memory may
be like in the host machine, the following program segment is used to
illustrate the usefulness of the code produced by the HC.

Let the original program segment be

D=1;
C=2;
A=1.4;

12 B=A+C=*%D
GO TO 12 ;

The code produced by the HC for the segment of the program looks like,

] D] Jeonst] [1] [:] [i]
=]] [eomst] [2] [:] [5] - .- 2
1]
]]

;A—_\ |const | [1} [‘ [4
[x] [c] [0} [[+
-]] [m] [ed[:] «.0vn.. 4
cord [17 [; T s

—l

The software of the host machine should recognize the following
properties of the above set of code:

1. A, B, C, D are variables.

2. 12 is a defined statement number.

14

3. [const] is a symbol that indicates what follow are digits of
a constant and '":'" delimits the constant.

4. The symbol ;" indicates the end of one instruction,

5. The symbol GOTO indicates the instruction being one of the
Fortran commands.

With the above salient features in perspective, the host machine
should treat the generated code of instruction 1 by the following pro-
cedure:

1. input the statement into the I/O area of the memory.

2. perform address transformation S(X) on all statement num-
bers, variables, and constants, where S is the address
transformation and X is the symbol table address generated
by the HC.

3. convert constants into binary representations and store them
in symbol table .

4. generate machine code for the instruction.

Instructions 2 and 3 are handled similarly and at the end of compiling

instruction 3, the memory of the main computer will look like,

Symbol Table | Program Area
Address | Contents Address Contents
........ _ e 0000 ILDA S5(1)
................. 0001 STA S(D)
S(D) 0002 ILDA S(2)

15

Address Contents Address Contents
.............. 0003 STA S(C)
S(1) binary rep. of 1 0004 ILDA S(1.4)
................... 0005 STA S(A)
S(C)

S(2) binary rep. of 2

s(a)y) ...,

S(1. 4) binary rep. of 1.4

Instruction 4 is handled differently because it is preceded by a

statement number (12).

1.

2.

4.

find the address transformation S(12),

The host machine's software should

store the contents of the program counter (which equal to

0006 at this time) in S(12)

find transformations, S(B), S(C), S(A), S(D), S(T1),

generate machine codes,

The following program contents will be augmented to the one shown

above,

Symbol Table

Program Area

Address Contents Address Contents
S(12) 0006 0006 LDA S(D)
S(B) 0007 MUA S(C)..-.Multiplication

16

Address Contents | Address Contents
0008 STA S(T1)

S(T1) 0009 LDA S(A)
0010 ~ADA S(T1) --Addition
0011 STA S(T1)
0012 LDA S(T1)--- Equation
0013 STA S(B)

When the main computer's software encounters
GOTO 12

it will do the following,
1. Perform address transformation S(12),

2. Fetch 0006 from S(12),

3. Generate machine code for the instruction.

UJP 0006 (unconditional jump to address 0006).

17

IV. BLOCK STRUCTURE OF THE HC

The block structure of the hardware compiler is shown in Figure

3. It consists basically of five different functional blocks:

1.

Input block is responsible for

a. recognizing any illegal characters that may be present
in the source program.

b. converting the external program code, be it ASCII,
BCD, or Hollerith, into an internal code which is recog-
nized by the rest of the functional units.

The Scanner is responsible for identifying the statement

type of an instruction and energizing the proper one of the

Lexical Analyzer Units.

Lexical Analyzer Units (LAU's) are responsible for con-

verting every source program into a string of words in the

S-language in which every symbol in the source program is

replaced by its special identifier.

The Syntax Analyzer Unit (SAU) takes the string of words

produced by each LAU and generates an intermediate code

for it.

The Output Unit transfers the output of the HC, intermedi-

ate code or error messages, to a special storage device and

issues an interrupt request to the host machine.

Input One
Statement

18

.
. Arithmetic Statement
Scan Statement o
7
e g
i
Statement ! GO
Number ; It TO
Vi
l ‘ i
| Stat t
emen Respective Arithmetic
Number . .
Lexical Analyzers Lexical
l Search
| Analyzer
(End of
File
/
Output to Syntatic
Analyzer

t Main Computer
|
i

Figure 3. Block diagram of hardware compiler

19
Since each functional unit, except for the scanner, comprises
some kind of code conversion process, it is evident that storage has to
be provided for the resulting code. Design modularity implies the use
of separate memory modules for each different resulting code. Table
2 summarizes some of the different memory units that' are present
and their respective functions.

Table 2. A cross reference between HC's memory modules and their
respective functions.

Memory Module Function
Input Buffer Memory Input internal code
(IBM) storage
Syntax Memory S-language storage
(SM)
Code Memory Intermediate code
(CM) storage
Error Message Memory Error message and line
(EMM) number of the instruction

associated with it

In this design semiconductor memory modules are used instead of
more common core memory units because of the following considera-
tions:
1. The speed of semiconductor memory can be up to 5 times
that of a core memory.
2. All the memory modules used in the HC are figured to be

less than 10K bits in capacity. Up to that memory capacity,

20

cost per bit is cheaper when semiconductor memory units
are used (Moore, 1971).

3. Power failure is a great concern for the use of semi-con-
ductor memory, because of the volatile nature of the device.
However, since all memory modules are in fact scratch pad
memories, power failure is not a fatal problem during the
operation of the HC.

In addition to these memory modules, there are other special
hardware components (code converters, shift registers, push-down-
list memory units, etc.) associated with each functional unit. These
components are designed to carry out those operations required of the
functional unit. To control the functioning of these components, there
exists for each functional unit a microprogram control unit. The dis-
cussion of the characteristics of the hardware components and the

control units will form the bulk of the paper.

21

V. HARDWARE IMPLEMENTATION OF A CONTROL UNIT

The control of each functional unit described in the above section
operates in accordance with an algorithm which can also be thought of
as the sequence of steps followed by a finite state machine. Since the
algorithm is complicated, its hardware realization usually involves a
sequential machine of numerous states, inputs and outputs. The
success of producing such a machine depends greatly on the availabil-
ity of inexpensive and fast hardware components. Advanced medium
scale integration (MSI) and large scale integration (LSI) components
have provided such an availability, thus giving more credence to the
belief that most software routines can be replaced by hardware with
good cost and performance results. Such ideas have been expressed
by many researchers and seem to represent the current trend of
thoughts in the computer industry.

The technique used in this paper to implement each control unit
resembles closely microprogramming as understood in the industry
and more closely still one of the hardware implementation approaches
expressed by Thurber et al. (1971).

The building block of a control unit is the Programmable Logic
Array (PLA) currently marketed by Texas Instruments (TI). The
design of each control unit is based on the fact that any algorithm can .

be implemented by a finite state machine. It is also observed that all

22

finite state machines are describable by logic equations in their can-

onical form (sums of products).

These sums of products may then be

realized by a PLA. Figure 4 is a block structure of a PLA,

Clock

Inputs
> Product Term
Generator Clock Generator
Matrix
F. F.
OQutputs |
Inverters <:
J-K
Product
Terms Flip-Flops
Sum=of inputs
Products
Generator
Matrix

; Reset

Outputs

Output Buffers

External

Ou;fuff :

Figure 4. Block diagram of TI's programmable logic array"

As can be seen in Figure 4, if a logic expression is written in its

canonical form then the PLA has

a first programmable matrix to generate the product terms

23

(AND matrix); this matrix can also be thought of as an
address decoder.

2. a second programmable matrix to generate the sum of
products (OR matrix); this matrix can also be thought of as
containing a set of micro-instructions.

3. J-K flip-flops used in feedback loops to permit implementa-
tion of sequential logic.

A detailed description of the concepts and construction of a control unit

is given in Section VIIL

24

VI. INPUT FUNCTIONAL UNIT

Introduction

In the design of the input functional unit, it is assumed that the
host machine has the necessary interface facilities to provide inter-
peripheral communication between the HC and any existing auxilliary
storage device that may have a source program in store. All the HC
has to do to initiate inputing a Fortran program from the storage de-
vice is to send the interface the address code of the input device and
the code with which the program is written. The former information
enables the interface to energize the correct storage device and the
latter enables the interface to store serial input from the storage de-
vice in its buffer register until enough bits are accumulated. These
bits will then be transferred in parallel to the input latch of the hard-
ware compiler. In addition, the interface may be inhibited tempor-
arily from reading further from the storage device when it receives a
READ INHIBIT signal from the HC.

A transferral of new information from the interface is accom-
plished by a TRANSMIT READY (TRX) signal which serves to tell the
HC that a new character, is at the output lines of the input latch, and
is ready to be processed. The block flow chart of the input control unit

and the block diagram of the hardware associated with the input unit

25

are shown in Figure 5 and Figure 6 respectively.

Block Explanation of the Input Control Unit

The block diagram of the logic flow of the Input Control Unit is
shown in Figure 5. Since more than one input code of a source pro-
gram is acceptable, the input control unit (ICU) has to convert each
kind of code into one internal character code. Table 3 shows this
character code and its meaning. To do this code conversion, the ICU
energizes one of its code converters.

Looking at Figure 5, it can be seen that the ICU carries out its
job by first sending the interface the information concerning the code
type and storage device of the source Fortran program. It then reads
one character at a time from the interface, does code conversion on
the character, and then checks to see if the character is legal. If it
is legal, the ICU will store its internal character code in the input
buffer memory (IBM). If the character is illegal, the ICU will simply
skip the instruction.

When the ICU reads an end of record (EOR) mark, it will store
the internal code ; in the IBM and considers its job done for the time
being. A more detailed description of the ICU and its way of handling

an input program in Hollerith will be shown in a later section.

Send

Code and Device Address

Info to interface

Read One
Character

Code Conversion
Using Appropriate
Code Converter

Skip One Instruction

e
End of O. K. Illegal
Record character
m
l
Store Code in IBM Store Code in IBM

Energize
Scanner

Figure 5. Block flow chart of input control unit

26

27

Table 3. Internal code vs. character.

code character
00 0
01 1
02 2
11 9
12 A
13 B
43 Z
44
45 ,
46 =
47 +
50 -
51 s«
52 /
53 (
54)
55 ;
56
57
77 illegal

Hardware Components of the Input Unit

The block diagram of the hardware components used by the ICU
is shown in Figure 6. The following is a brief description of the func-
tion of each component:

1. Code converters: There are three code converters, the

ASCII-internal, BCD-internal, and Hollerith-internal code

converters. Each code converter is so designed to convert

Interface

Reset Increment

i

CIB

Address

Input
Buffer

1 > Memory

Input Internal
character Code
—_—
~

. Code
! Converter o
8 N
.| 3 s

- &
-

=]

= —
] bu

b}

B
\ oy

00

1)
. -2

-“

&

-

)

Hardware Compiler

Figure 6.

Block diagram of input functional block

Code Decoder

&

Digit

Variable &—

<____
<__

Tilegal
character

RECORD

END OF

28

29
the set of all illegal characters to 778 (see Table 3). These
code converters are similar to TI's TMS 2603, so their
construction is wéll within the state of the art.

Input buffer memory (IBM): The IBM is a 256 word, 6-bit-
per word, random access, semiconductor memory. The
word size of the IBM is quite arbitrary but the word length
is determined by the number of bits in the internal charac-
ter code, which is six. The word size, set at 256 words,
is chosen because of the observation that this memory size
is ' common in metal oxide semiconductor (MOS) memories,
and the assumption that no Fortran instruction will have
more than that number of characters. Typical Read/Write
cycle time of such memory units is 600 ns.

Input buffer memory register (IBMR): It is a 6 bit register
which contains the word to be written in the IBM preceding
a WRITE operation. It also contains the word read from
the IBM after a READ operation.

Counter input buffer (CIB) is an 8 bit binary counter. It can
be incremented and decremented and reset. Its contents is
the binary address of a character in the IBM. Its address
decoder determines which memory cell is to be addressed

during either a READ or a WRITE operation.

30
5. Decoder (DC): The 6 bit to 64 output line decoder is used
extensively by the HC's control units. Its job is to take a 6
bit internal character and to decode it into the output line
which corresponds to the internal code. Figure 7 is a block
diagram of the DC. Some of the DC's output lines are or'ed
together, so that the or'ed output will be known collectively

as digit, letter, or special charact