AN ABSTRACT OF THE DISSERTATION OF

Nabil M. Zamel for the degree of Doctor of Philosophy in Computer Science

presented on December 6, 1994.

Title: ELECTRA: Integrating Constraints, Condition-Based Dispatching,

and Feature Exclusion into the Multiparadigm Language Leda

. Eal
Redacted for Privacy
Abstract approved: -y 4 .

Timothy A. Budd

X

H
1%

Multiparadigm languages are languages that are designed to support more than
one style of programming. Leda is a strongly-typed multiparadigm programming
language that supports imperative, functional, object-oriented, and logic program-
ming. The constraint programming paradigm is a declarative style of programming
where the programmer is able to state relationships among some entities and expect
the system to maintain the validity of these relationships throughout program execu-
tion. The system accomplishes this either by invoking user-defined fixes that impose
rigid rules governing the evolution of the entities, or by finding suitable values to
be assigned to the constrained entities without violating any active constraint. Con-
straints, due to their declarative semantics, are suitable for the direct mapping of the
characteristics of a number of mechanisms including: consistency checks, constraint-
directed search, and constraint-enforced reevaluation, among others. This makes
constraint languages the most appropriate languages for the implementation of a
large number of applications such as scheduling, planning, resource allocation, sim-
ulation, and graphical user interfaces.

The semantics of constraints cannot be easily emulated by other constructs
in the paradigms that are offered by the language Leda. However, the constraint
paradigm does not provide any general control constructs. The lack of general con-
trol constructs impedes this paradigm’s ability to naturally express a large number

of problems. This dissertation presents the language Electra, which integrates the

constraint paradigm into the language Leda by creating a unified construct that
provides the ability to express the conventional semantics of constraints with some
extensions. Due to the flexibility of this construct, the programmer is given the
choice of either stating how a constraint is to be satisfied or delegating that task to
the constraint-satisfier. The concept of providing the programmer with the ability to
express system-maintained relations, which is the basic characteristic of constraints,
provided a motivation for enhancing other paradigms with similar abilities. The
functional paradigm is extended by adding to it the mechanism of condition-based
dispatching which is similar to argument pattern-matching. The object-oriented
paradigm is extended by allowing feature exclusion which is a form of inheritance
exception. This dissertation claims that the integration provided by the language
Electra will enable Leda programmers to reap the benefits of the paradigm of con-

straints while overcoming its limitations.

©Copyright by Nabil M. Zamel
December 6, 1994
All Rights Reserved

ELECTRA: Integrating Constraints, Condition-Based Dispatching,

and Feature Exclusion into the Multiparadigm Language Leda

by
Nabil M. Zamel

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed December 6, 1994

Commencement June 1995

Doctor of Philosophy dissertation of Nabil M. Zamel presented on December 6, 1994

APPROVED:

Redacted for Privacy

Major Professor, representing Computer Science

Redacted for Privacy

Chair of Computer Science Department

Redacted for Privacy

Dean of Grad@ School d

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request:

Redacted for Privacy

Nabil M. Zamel, Author

This work is dedicated to
my father Mohammed, my mother Hussah,

and my uncle Ahmed.

Their love, support, and encouragement are what have guided me all along,

without which I would not have gotten this far.

ACKNOWLEDGEMENT

I am especially grateful to my major professor Dr. Timothy Budd for his support,
encouragement, and never ending patience. I deeply appreciate his great considera-
tion and full understanding towards my visual disability. I would also like to express
my appreciation to the other members of my Ph.D. committee, Dr. Bella Bose,
Dr. Curtis Cook, Dr. Sheila Cordray, and Dr. Bruce D’Ambrosio for their helpful
comments, encouragement, and constructive criticisms. I am also grateful to Dr.
Alan Borning (University of Washington) and Dr. Bjorn Freeman-Benson (Carlton
University, Canada).

I owe a tremendous debt to Timothy P. Justice and Rajeev K. Pandey, my
colleagues and friends for their willingness to act as sounding boards and for their
helpful comments on earlier drafts of this dissertation. Working with them has been
more than fun. Timothy P. Justice provided numerous suggestions that helped me
to clarify the ideas presented in this dissertation.

I would also like to thank Dr. Hussein Almuallim who taught me how to do
research, Masami Takikawa who taught me a lot about constraints, ‘a.nd Dr. Leine
Stuart who has been a teacher, an advisor, and a good friend throughout my higher
education.

A very special thanks must be given to Naomi Hiramoto and Ebrahim Buzaboon
who created a perfect, convenient, and comfortable environment, the kind a Ph.D.
student can only dream of. Thank you two for your care and encouragement.

My graduate study was supported by a generous scholarship from ARAMCO
Services Company. I am grateful for this support and would like to express my deep

gratitude to all of my ARAMCO academic advisors.

1

TABLE OF CONTENTS

Introduction

1.1 Programming Language Paradigms
1.1.1 The Imperative-Procedural Programming Paradigm . . .
1.1.2 The Object-Oriented Programming Paradigm
1.1.3 The Functional Programming Paradigm
1.1.4 The Logic Programming Paradigm

1.2 Multiparadigm Languages

1.3 The Leda Programming Language
1.4 The Constraint Paradigm
1.5 Thesis Objectives
1.6 Previous Work o oo
1.6.1 Constraints and Imperative Paradigms
1.6.2 Constraints and Declarative Paradigms
1.6.3 The Electra Difference
1.7 Outline of the Dissertation

Fundamental Concepts of Constraints

2.1 What is a Constraint? e

2.1.1 The Role of Constraints as Consistency Checks
2.1.2 The Role of Constraints in Guiding a Search
2.1.3 Constraint-Driven Reevaluation
2.2 Constraint-Satisfaction Problems
2.3 Approaches to Satisfying Constraints
2.3.1 Generate-and-Test Strategy
2.3.2 Backtrackingo
2.3.3 Consistency Algorithms
2.3.4 Other Approaches and Domains

H~ o N

- Sy >

10
12

13

14
14

15
16
16

17
19

20
21
24
25

3
3.1
3.2
3.3
3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5

5.1
5.2

5.3

Electra Constraint Constructs

Introduction oL oo
A Motivating Example L0
General Characteristics of Constraints
Fixable Constraints

3.4.1 The Assertion Part of a Fixable Constraint

3.4.2 The Fix Part of a Fixable Constraint
3.4.3 The Behavior of Fixable Constraints
Satisfiable Constraints
3.5.1 The Assertion Part of a Satisfiable Constraint
3.5.2 The Behavior of Satisfiable Constraints
3.5.3 Required Versus Preferential Constraints

Class Constraints and Object Constraints

Condition-Based Dispatching

Functioné, Dispatching, and Parametric Overloading
Guarded Functions
Tree Insertion: An Example
Order of Declaration of Guarded Functions

Functional Pattern-Matching

Feature Exclusion

Inheritance, Inheritance Hierarchies, and Inheritance Exceptions

Reasons for the Rise of Inheritance Exceptions
5.2.1 Erroneous Design of Inheritance
5.2.2 The Natural Characteristics of Domain Knowledge

5.2.3 Reuse of Nonmodifiable Classes

Inheritance Exceptions in Electra

27
27
27
29
32

33
33
34

35

36
37
37

39

43
43
44
46
49
52

56
56
58

58
39
61

63

5.4 Exclusion Versus Overriding 65

5.5 The Interaction Between Inheritance and Feature Exclusion . . 66
5.6 The Interaction Between Constraints and Feature Exclusion . . 67
Implementation Approaches and the Electra Compiler 68
6.1 Implementation of Constraints 68
6.1.1 Implementation of Fixable Constraints 69
6.1.2 Implementation of Satisfiable Constraints 74
6.2 Implementation of Guarded Functions 75
6.2.1 Managing Guarded Functions 78
6.2.2 The Transformation Process 79
6.3 Implementation of Feature Exclusion 82
6.4 The Electra Language Compiler 83
Advantages and Examples _ 85
7.1 Constraints and the Enforced Reevaluation 85
7.1.1 Implementing a Scrollable Window 85
7.1.2 Implementing a Screen Saver. 90
7.2 Constraints and Search 91
7.3 Support for Direct Mapping of Problem Specifications 93
7.4 Support for Increasing Software Reusability 95
7.4.1 Support of Feature Exclusion for Software Reuse 95
7.4.2 Support of Constraints for Software Reuse 97
7.5 Support for Expressing Data Abstractions 97
7.6 Support for Expressing Type Extensions 98
7.7 Integrity Constraints 100

7.8 Support for Validation and Debugging 100

8 Summary, Future Work, and Conclusion

8.1 Summary

8.2 Future Work

8.3 Conclusions

Bibliography

Appendices

.................

................

.............

.............

Appendix A The DeltaBlue Constraint Solver

Appendix B

The Electra Language Syntax

102
102
103
104

107

123

124
129

LIST OF FIGURES

Figure Page
2.1. Fahrenheit and Celsius. 15
2.2. An Example Map-Coloring Problem. 18
2.3. Representation of the Map-Coloring Problem as a CSP. 19
2.4. The Behavior of Constraint Solvers. 20
2.5. Appropriate Variable Ordering. 22
2.6. Inappropriate Variable Ordering. 23
3.1. A C Solution to the Map-Coloring Problem. 28
3.2. An Electra Solution to the Map-Coloring Problem. 28
3.3. Constraint Categories Based on Influence. 31
3.4. Constraint Categories Based on Solvability. 31
3.5. Syntax of Fixable Constraints. 32
3.6. Simple Fixable Constraint. e 34
3.7. Syntax of Satisfiable Constraints. 36
3.8. Relations Between Celsius, Fahrenheit, and Kelvin Tempera-

BUFES. . o o o e e e e e e e e e e e 38
3.9. A Network of Satisfiable Constraints. 38
3.10. Declaration of an Object Constraint. 40
3.11. Declaration of an Intra-Instance Class Constraint. 41
3.12. Declaration of an Inter-Instance Class Constraint. 41
3.13. The Behavior of Inter-Instance Class Constraints. 42
4.1. Syntax of Guarded Functions. 45
4.2. Tree Insertion Using C. 47
4.3. Tree Insertion Using Electra’s Guarded Functions. 48

4.4. Description of Behavior Using Conditional Statements. 50

4.5.
4.6.
4.7.
4.8.
4.9.
5.1.
5.2.
5.3.
5.4.
5.9.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
7.1.
7.2.
7.3.
7.4.

7.5.

Description of Behavior Using Guarded Functions.

Improper Ordering of Declarations of Guarded Functions.

Patterns in ML Functions.
An ML Function That Merges Two Lists.
Merging Lists in Electra Using Guarded Functions.
A Class Hierarchy for Various Material Objects.

Redesigning a Class Hierarchy to Remove Exceptions.

Restructuring a Class Hierarchy to Remove Exceptions.

Syntax of Feature Exclusion.
An Example of Feature Exclusion.
Constraint Records and Constrained Variable Records.
Fixable Constraints.

Example of a Fixable Constraint.

Overriding of Some Functions of the Base Constraint Class.

The Compiler-Solver Interface.

Guarded Functions Implementations: An Example.

Converting Guarded Functions to Nested Regular Functions.

Managing Guarded Functions.
Symbol Table Records.
Symbol Table Record of the Global Scope.

A Standard Method that Replaces Every Excluded Method.

Characteristics of Scrollable Windows.
Implementing a Scrollable Window Using Constraints.
Implementing a Screen Saver Using Constraints.

The Definition of the Queen Class With its Location Constraint.

The Mapping of the Specification of GCD into Electra Code.

51
a1
33
54
54
57
60
62
64
64
69
71
12
73
74
76
7
78
80
81
82
87
89
91
92
94

7.6. Constraint and Software Reuse. 98
7.7. Creating a Subrange Class Via a Constraint. 99
A.1. DeltaBlue Code Expressing the Relationship Between C and F. 127

A.2. An Electra Code Expressing the Relationship Between C and F. 128

LIST OF TABLES
Table Page
83

6.1. Differences Between Leda and Electra Compilers.
7.1. Variables and Their Meanings. 88

7.2. The Specification of a Scrollable Window. 88

ELECTRA: Integrating Constraints, Condition-Based Dispatching,

and Feature Exclusion into the Multiparadigm Language Leda

Chapter 1

Introduction

The word “paradigm” was brought into modern usage by the historian of science
Thomas Kuhn in his influential book The Structure of Scientific Revolutions [Kuhn,
1970]. He employed the term to represent a way of organizing knowledge, or a way
of viewing the world. Robert Floyd introduced the term to the field of computer
science in his 1978 ACM Turing Award lecture [Floyd, 1979]. He used the term to
mean a model or an example, where a programming paradigm can be understood
as a way of conceptualizing what it means to perform computation [Budd, 1995].
Since then the term has been used in many disciplines within the field of computer
science. In problem solving and algorithms, for example, the term is used to refer to
problem solving approaches such as divide-and-conquer, hill climbing, and dynamic
programming {Harel, 1992]. The parallel computing researchers associate the term
with models of parallelism such as data parallel, message passing, and shared variable
[Hwang, 1993]. Many researchers in artificial intelligence view connectionism as a
paradigm in Al research [Addanki, 1987]. The term “paradigm” has also been used
in other disciplines such as database, operating systems, and software engineering to
imply different meanings and connotations.

In the context of programming languages, the term “paradigm” has been defined
by Budd [Budd, 1995] as a world view or a way of conceptualizing a computation.
Appleby [Appleby, 1991] defined it as a simple collection of abstract features that
categorize a group of languages. Bal and Grune [Bal and Grune, 1994] view a
paradigm as a cohesive set of methods for solving a certain class of problems. Placer

[Placer, 1988] states the following regarding the definition of the term “paradigm”:

A programming paradigm represents a way of thinking about a problem,
a way of modeling a problem domain. The ontologies represented by
different paradigms are different. For example, the logic paradigm views
the world as composed of predicates and relations while the functional
paradigm models a world of functions, function composition and function
application.
Therefore, within the context of programming languages, a programming paradigm
is a characteristic of a programming language that specifies how the language views

its world and classifies the set of problems that can be naturally and easily expressed

by the language.

1.1 Programming Language Paradigms

The paradigms of programming languages can be divided into two classes of
paradigms: imperative paradigms and declarative paradigms [Ghezzi and Jazayeri,
1987, Wilson and Clark, 1988]. The imperative paradigms assume that the program-
mer will state how the the problem is to be solved as part of the specification of
the problem, whereas the declarative paradigms only need to know what is to be
done without any information regarding how the goal is to be achieved. The terms
imperative and declarative designate the two extreme ends of a continuum where
languages fall somewhere between the two extremes. These two classes can be sub-
divided into more specific subclasses. The following subsections present some of the

most well-studied programming paradigms.

1.1.1 The Imperative-Procedural Programming Paradigm

The imperative programming paradigm views its world as variables and values. A
variable is a named memory cell in which a value is stored. This paradigm facilitates
computation by means of state changes, where the programmer states exactly what
is to be done to every variable. It is sometimes referred to as a statement-oriented

paradigm [Ghezzi and Jazayeri, 1987] due to the dominant role played by imperative

statements such as the assignment statement and other sequencing, repetition, and
conditional statements. The computer acts as a data manager that alters variables
following the directions dictated by the statements of the program. The desired
result of a program is achieved by combining the changes done by the individual
statements. This paradigm contains languages such as FORTRAN [Ellis, 1982],
COBOL [Welland, 1983], and Algol 60 [Andersen, 1964).

1.1.2 The Object-Oriented Programming Paradigm

The world of this paradigm is composed of a set of independent objects. Each object
is responsible for its behavior and structure. Objects can collaborate with each other
by sending or receiving messages from one object to another. A message is a request
to perform certain actions or to provide certain information. Each object has its
own memory and can contain other objects. Classes are used to group objects. Each
object is an instance of some class. A class acts as a repository for the behavior of the
objects it represents. Inheritance is a mechanism via which one can organize classes
in a hierarchical fashion such that a subclass inherits the behaviof and structure
of all its superclasses in addition to its own unique characteristics [Budd, 1991b,
Shriver and Wegner, 1988, Kim and Lochovsky, 1989]. Languages that belong to
this paradigm include: Simula [Birtwistle et al., 1975], Smalltalk [Goldberg and
Robson, 1983] and Beta [Madsen et al., 1993].

1.1.3 The Functional Programming Paradigm

The functional programming paradigm views a drastically different world from the
ones viewed by the previous two paradigms. In this paradigm the world is composed
of a set of functions and computation is accomplished by function application and
function composition. One major difference between this paradigm and the above
two is that computation is not done by incremental modification to the global state,

but rather by transformation. This means that any change to a value transforms

it into a new value which is independent of the original one. This paradigm treats
functions as first class data items. This means that functions can be assigned to
identifiers, and can be passed as arguments to other functions or returned as results of
other functions [Henderson, 1980, Reade, 1989]. This approach towards programming
inspired a number of language designers to design languages that are functional in
nature such as: Standard ML [Milner et al., 1990], Haskel [Hudak and Wadler, 1988],
and Scheme [Abelson et al., 1985, Steele Jr. and Sussman, 1975].

1.1.4 The Logic Programming Paradigm

The idea of using the logic programming approach grew out of research in some
disciplines in artificial intelligence such as automatic theorem proving and natural
language processing. This idea was a significant contribution because, until about
1970, logic was used only as a specification language. However, the work by Kowalski
[Kowalski, 1974] showed that logic has a procedural interpretation as well, making
it possible in principle to use logic as a programming language. The approach taken
by logic programming is to decompose a program into two cornpénents: a logic
component and a control component as explained by Kowalski [Kowalski, 1979]. The
logic component is provided by the programmer and is composed of a set of facts, a
collection of rules, and a query. The programmer does not need to specify how the
query 1s to be answered. The process of figuring out how to answer the query using
the given facts and rules is the job of the control component. The control component
is part of the underlying run-time system and is built as some searching mechanism.
This separation between logic and control makes the logic programming paradigm a
declarative one since the programmer needs only to state what the problem is, and
not how it is to be solved. The first and most popular logic programming language
is Prolog [Clocksin and Mellish, 1987].

Other researchers such as Ambler, Burnett, and Zimmerman [Ambler et al.,

1992], Bal and Grune [Bal and Grune, 1994], Budd [Budd, 1995], Hailpern [Hailpern,

1986}, and Placer [Placer, 1991a] identify additional paradigms including access-
oriented, applicative, constraint, data-structure oriented, parallel, procedural, real-

time, relational, rule-oriented, and the visual programming paradigm.

1.2 Multiparadigm Languages

Theoretically, the solving power of all general purpose programming languages is
equal regardless of the paradigms these languages represent. This is due to the
assumption that these languages are Turing equivalent. This means that if a problem
can be solved using a language of a particular paradigm, then it can also be solved
using another language that belongs to a different paradigm. However, even though
languages are equal in terms of their power, they differ in their suitability for directly
expressing the variety of problem domains as pointed out by Maclennan [MacLennan,
1987], “although it’s possible to write any program in any programming language,
it’s not equally easy to do so.” Budd [Budd, 1995] states the following regarding
the influence of the characteristics of a particular programming language over the
approaches used for solving problems in that language: |

What is true for natural human languages is even more true in the realm

of artificial computer languages. That is, the language in which a pro-

grammer thinks a problem will be solved will color and alter, in a basic

fundamental way, the fashion in which an algorithm is developed.

The recognition that there is a strong influence between the characteris-
tics of the paradigms and their suitability for expressing differing problems led
programming language researchers to propose the development of programming
languages that comprise several programming paradigms. Their justification is
that a single programming paradigm is inadequate to achieve a direct and natu-
ral expression of all aspects of complex problems [Budd, 1991a, Hailpern, 1986,
Placer, 1991b]. The objectives of the multiparadigm language research is summa-

rized in the following quote by Budd [Budd, 1995]:

The basic tenet of multiparadigm programming is that the programmer
should not be forced to solve all problems in a single style; instead, the

programmer should be free to select the programming tools for a problem
that best match the nature of the task being performed.

1.3 The Leda Programming Language

Leda is a strongly-typed compiled programming language that supports the imper-
ative, object-oriented, functional, and logic programming paradigms [Budd, 1995].
The objective of the design of Leda is “to provide the programmer with a system
with which programs cannot only be developed in a number of different styles, but
also one in which algorithms can be expressed in combination of styles” [Budd,
1989]. The evolution of Leda has progressed over a period of five years, resulting
in improving both the syntax and semantics of the language. These improvements
can be observed by comparing the examples presented in this dissertation and in
[Budd, 1995] to those that appeared in previous publications such as [Budd, 1991a,
Budd, 1992, Zamel and Budd, 1993]. This evolution also resulted in the production
of three implementations of the language [Pesch and Shur, 1991, Pandey et al., 1993,
Budd, 1995]. Leda continues to develop, evolve, and grow. This growth is reflected
by the current ongoing research related to Leda which includes Pandey’s development
of a Leda programming environment [Pandey, 1993], Budd, Justice, and Pandey’s
investigation of the suitability of multiparadigm languages for compiler construction
[Justice et al., 1993, Justice et al., 1994], and Justice’s study on the influence of
the characteristics of multiparadigm languages on the design and implementation of

complex applications such as compiler constructions tools [Justice, 1995].

1.4 The Constraint Paradigm

The constraint programming paradigm is a declarative style of programming where
the programmer is able to state relationships among some entities and expect the
system to maintain the validity of these relationships throughout program execu-

tion [Leler, 1988]. The system accomplishes that either by invoking user-defined

fixes that impose rigid rules governing the evolution of the entities, or by find-
ing suitable values to be assigned to the constrained entities without violating
any active constraint. Constraints, due to their declarative semantics, are suit-
able for the direct mapping of the characteristics of a number of mechanisms such
as: consistency checks, constraint-directed search, and constraint-enforced reevalu-
ation, among others {Gore, 1990]. This makes constraint languages the most ap-
propriate languages for the implementation of a large number of applications such
as scheduling [Fox, 1983, Dincbas et al., 1988], planning [Boizumault et al., 1993,
Charman, 1993}, resource allocation [Prosser et al., 1992], simulation [Borning, 1981,
Duisberg, 1986] , and graphical user interfaces [Myers, 1992, Maloney et al., 1989].
The semantics of constraints cannot be easily emulated by other constructs in the
paradigms that are offered by the language Leda. However, the constraint paradigm
does not provide any general control constructs. The lack of general control con-
structs impedes this paradigm’s ability to naturally express a large number of prob-

lems.

1.5 Thesis Objectives

The objectives of our thesis are to integrate the constraint paradigm into Leda and
to enhance the characteristics of some of the paradigms that are provided by Leda.
The objective of integrating constraints into Leda is summarized in the following

points:

o To define a simple yet expressive syntactic construct called constraint that will
aid programmers in stating system-maintained relations. This construct will
be a vehicle for the integration of the constraint paradigm into the language

Leda.

o To provide Leda programmers with the choice of either stating how a constraint

is to be satisfied or delegating that task to an underlying constraint satisfier.

e To make it possible for Leda programmers to express required as well as pref-
erential constraints and to provide them with the ability to define a hierarchy

of preferences.

¢ To create a mechanism for separating the process of satisfying constraints from
the Leda compiler. This means that the constraint satisfier will be a separate
and independent module. This approach should make it possible for Leda
programmers to take advantage of more powerful solvers once they become

available by plugging them into the Leda run-time system.

The idea of providing the programmer with the ability to express system-
maintained relations, which is the basic characteristic of constraints, motivated us
to enhance other paradigms with similar abilities. The enhancement objective can

be expressed as follows:

e To enhance the functional programming paradigm with the ability to express
condition-based dispatching. Condition-based dispatching extends Leda’s func-
tion dispatching process by allowing the programmer to add conditions to a
function’s signature in such a way that dispatching to that function will take
place only if those conditions are met. This gives Leda programmers the ability
to simulate the mechanism of argument pattern-matching which is provided by

most functional programming languages.

e To enhance the object-oriented paradigm by giving the programmer the ability
to exclude features of a superclass from appearing in a subclass. The main
advantage of this capability is that it makes it possible for the programmer to
express inheritance exceptions. This is helpful because it is not always possible

to impose a rigid hierarchical structure on every real world situation.

These extensions and enhancements to the Leda language produce a program-
ming language that we call Flectra. We believe that these extensions and enhance-
ments that are provided by the language Electra will enable programmers to reap

the benefits of the paradigm of constraints while overcoming its limitations.

1.6 Previous Work

Research related to constraints spans a number of fields including, artificial intelli-
gence, operations research, and engineering. In the field of computer science, the
research includes the utilization of constraints in many applications such as: sim-
ulation, manipulation of geometric layouts, graphical user interfaces, and others.
This section concentrates its coverage on research that is related to programming
languages. More extensive presentations and further references can be found in

[Freeman-Benson et al., 1990a, Freeman-Benson, 1991], and [Leler, 1988].

1.6.1 Constraints and Imperative Paradigms

The concept of viewing a constraint as a software component that can be inte-
grated into some system or programming language started with Ivan Sutherland’s
interactive graphical system Sketchpad [Sutherland, 1963a, Sutherland, 1963b].
This system is one of the first interactive graphical interfaces. It was designed
to solve geometric constraints, where relations in the specifications of a prob-
lem are expressed as equations or tables. It utilizes constraint propagation
and relaxation to solve its constraint networks. Lauriere [Lauriere, 1978] devel-
oped a system called ALICE which deals with constraints over finite-domains.
Other pioneering efforts include Steels’s Language CONSTRAINTS [Steele, 1980,
Sussman and Steele, 1980] and ThingLab [Borning, 1979] which will be covered in
the following paragraphs.

ThingLab is a constraint-based laboratory that allows a user to construct sim-
ulations of electrical circuits, mechanical linkages, demonstrations of geometric the-
orems, and graphical calculators using interactive direct manipulation techniques.
It was built on top of Smalltalk-80 [Goldberg and Robson, 1983). ThingLab solves
its constraints by propagating degrees of freedom and relaxation. Borning enhanced
ThingLab by adding constraint hierarchies [Borning et al., 1987, Borning et al., 1988,
Borning et al., 1989] Further improvements to ThingLab resulted in the creation of

10

its successor ThingLab II [Maloney et al., 1989] which adds an incremental plan-
ning algorithm that helps in eliminating the need for recreating the solution plans
every time a constraint is added or removed [Freeman-Benson and Wilson, 1990,
Freeman-Benson et al., 1990a, Freeman-Benson et al., 1992]. It is oriented towards
building user interfaces [Maloney et al., 1989]. The Animus system [Duisberg, 1986)
is an animation system that added temporal constraints to ThingLab.

The constraint imperative paradigm (CIP), which is investigated by Borning
and his group at the University of Washington, aims at integrating constraints with
other imperative paradigms. An instance of this paradigm is the language Kaleido-
scope’90 [Freeman-Benson, 1990, Freeman-Benson and Borning, 1991] and its suc-
cessors Kaleidoscope’91 [Freeman-Benson and Borning, 1992] and Kaleidoscope’93
[Lopez et al., 1994b, Lopez et al., 1994a]. Kaleidoscope allows the programmer to
declare required as well as preferential constraints. Variables can be annotated as
read-only or write-only in the statement of the constraint. This helps in blocking
automatic changes to variables during the constraint satisfaction process.

Leler [Leler, 1986, Leler, 1988] designed a language called Bertrand which is
a constraint language that is based on augmented term rewriting. The language
Siri [Horn, 1992a, Horn, 1992b] combines constraints with object-oriented program-
ming. It uses a graph rewriting model of execution, which is an extension to that of

Bertrand.

1.6.2 Constraints and Declarative Paradigms

Logic Programming is considered the most natural programming paradigm for com-
bining with constraints. In logic programming languages such as Prolog, rules are

stated using the following syntax:

p(t) < QI(t)’ Tty qm(t)'

where p, ¢1, . .., ¢ are predicates, and ¢ denotes a list of terms. Jaffar and Lassez in-

troduced the idea of creating a general scheme for extending logic programming to in-

11

clude constraints [Jaffar and Lassez, 1987). They called this scheme Constraint Logic
Programming (CLP). This scheme represents a family of languages called CLP(D),
where the parameter D is the domain of the constraints. In a CLP language, rules

have the following syntax:

p(t) - ql(t)’ SRR qm(t)’ Cl(t)’ s acn(t)'

where p,qi,...,¢m,t have the same meaning as above and cy,...,c, are constraints
over the domain D. In this scheme the predicates p, qi, .. ., ¢, are called control pred-
icates and the constraints ¢y, ..., ¢, are labeled constraint predicates. The difference
between control predicates and constraint predicates is that constraint predicates are
not allowed to have defining clauses (i.e. are not allowed to appear in the left hand
side of a clause) because it is assumed that their meaning is known and cannot be
altered.

Kowalski [Kowalski, 1979] represented logic programming by the following equa-
tion:

Program = Logic + Control.

Constraint Logic Programming can be viewed as:
Program = Logic + Control + Constraints.
The execution of a CLP program can be summarized as follows:
e The Prolog part of the program will execute in the usual fashion.
¢ As execution proceeds, constraints are accumulated on logic variables.
e Backtracking will occur if unification violates any constraint.

o If it is possible to instantiate all the unknown variables without violating any
constraint, then the program terminates, outputting the values found for the
unknown variables. If it is not possible to bind every unknown variable, then
the output will include a listing of the remaining constraints on the unbound

variables.

12

Several instances of the CLP(D) scheme have been implemented, including
CLP(R) [Heintze et al., 1992, Jaffar et al., 1992], CLP(%*) [Walinsky, 1989], CHIP
[Van Hentenryck, 1991], Prolog 111 [Colmerauer, 1990], and CAL [Satoh and Aiba,
1991].

Wilson and Borning extended the scheme of Constraint Logic Programming by
adding a strength level to each constraint [Wilson and Borning, 1993]. They call this
scheme Hierarchical Constraint Logic Programming (HCLP).

Saraswat proposed a generalization of the CLP scheme by including concurrency,
which resulted in the creation of the cc family of languages [Saraswat, 1993]. A cc
program is decomposed into a set of elements called agents. These agents communi-
cate via the use of a shared area called a constraint store. The basic actions of agents
are telling and asking the constraints. A tell action adds a constraint to the store. If
the store remains consistent then the tell operation returns success, otherwise it fails.
The operation ask is used to check with the constraint store if a certain constraint is
consistent with all other constraints. An example of a cc language is Janus [Saraswat

et al., 1990}, which is a distributed programming language.

1.6.3 The Electra Difference

The approach taken in the design of Electra differs from the above approaches in the

following aspects:

o Electra is an extension to the language Leda, which is designed as a mul-
tiparadigm language incorporating the four major paradigms: imperative,
object-oriented, functional, and logic. This means that Electra’s constraints

can interact with more than a single paradigm.

o Constraints in Electra give the programmer the choice of either stating how a
constraint is to be solved or delegating that task to an underlying constraint

satisfier.

1.7

13

The design of Electra is built on the concept of separating the constraint sat-
isfaction process from the compiler. This makes it possible to take advantage

of any new satisfier.

Outline of the Dissertation

Chapter 2 covers the fundamental concepts of constraints including their defi-

nition, advantages, and approaches for satisfying them.

Chapter 3 presents the syntax, semantics, and general characteristics of Elec-

tra’s constraint constructs.

Chapter 4 provides a description of condition-based dispatching and how it can

be expressed using guarded functions.

Chapter 5 discusses feature exclusions and shows why it is necessary to be able

to express this phenomenon.

Chapter 6 presents the approaches taken for the implementation of Electra’s

enhancements and its compiler.

Chapter 7 lists some advantages of the added constructs and provides some

illustrative examples.

Chapter 8 summarizes the dissertation and presents some directions for further

research.
Appendix A gives a brief introduction to the DeltaBlue constraint solver.

Appendix B lists the BNF grammar of the Electra language.

14

Chapter 2

Fundamental Concepts of Constraints

This chapter defines what constraints are and presents their role as programming
tools. It also describes the concept of constraint-satisfaction problems and shows
how some problems can easily be formulated as constraint-satisfaction problems by
decomposing them into a set of constraints. Finally, it reviews the approaches that

have been taken to build constraint-satisfaction systems.

2.1 What is a Constraint?

A constraint is an expression that states a relation among a set of variables. The va-
lidity of this relation is maintained by the constraint-satisfaction system throughout
the evolution of the related variables. In addition, one can request that the system
find appropriate values for the unknown variables in such a way that none of the
relations are violated. One can view constraints as statements or expressions that
have the objective of narrowing down the domains of the constrained entities. The
history of constraint languages goes as far back as 1963 when Ivan Sutherland created
his constraint graphical system Sketchpad [Sutherland, 1963a, Sutherland, 1963b).
After Sutherland paved the way, many other approaches were proposed [Leler, 1986,
Leler, 1988]. The most popular example used to illustrate the behavior of constraints
is the equation used in the conversion between Fahrenheit and Celsius temperatures.
Two variables C and F maintain temperature such that the variable C measures tem-
perature in Celsius and the variable F' measures it in Fahrenheit. The two variables
are linked so that they measure the same temperature. A change in either variable

is automatically reflected by a change in the other. Figure 2.1 gives a graphical

C = (F-32)*5/9

Figure 2.1. Fahrenheit and Celsius.

representation of the relation between C and F. Notice that each of the entities can
behave as input as well as output. It is the job of the constraint-satisfier to figure
_out which entity is known, and find the value of the unknown.

In programming languages, constraints appear as constructs under different
names and with a variety of functionalities. In terms of functionality, Gore [Gore,

1990] distinguishes the following three categories:
e Consistency Checks.
e Constraint-directed Search.
o Constraint-driven Reevaluation.

The following subsections present a description of each of the categories listed above.

2.1.1 The Role of Constraints as Consistency Checks

As consistency checks, constraints are used as guards rejecting any modification that
violates any of the stated relations. An example of such consistency checks are
the type checking rules of any strongly typed language. A language that provides
explicit constructs for expressing consistency checks is Eiffel [Meyer, 1988, Meyer,
1993]. In Eiffel, consistency checks are done via class invariants. When a constraint

that functions as a consistency check is broken, the underlying constraint checker

16

issues an error message and does not try to invoke any fixes. The primary usage of
these kinds of constraints is as debugging tools that trap errors early on during the

development phase.

2.1.2 The Role of Constraints in Guiding a Search

As tools for constraint-directed search, constraints are used to prune search trees,
eliminating all unnecessary branches. Using constraints for such functionality is
usually done as part of building Artificial Intelligence problem solvers. The problem
solver takes as input a set of rules, a set of facts, and one or more goals. Its objective
is to find a chain of rule applications that link the facts to the goals. The problem is
that as the number of rules increases, the search tree becomes more bushy, assuming
that a rule can be applied at any time and for one or more times. Thus, the search
becomes impractical even for a small number of rules. To remedy the situation,
the problem solver must avoid all useless branches of the search tree. Constraints
have been used as guides to assist the problem solver in achieving this goal. ALICE

[Lauriere, 1978] is an example of a system that is built around this idea.

2.1.3 Constraint-Driven Reevaluation

The evolution of a constrained entity might result in breaking some of the constraints
imposed upon that entity. If a broken constraint is intended to function as a con-
sistency check then, as stated earlier, the constraint satisfier will return an error
message and terminate the execution. However, if the broken constraint is intended
to motivate reevaluation then a constraint fix will be invoked. The job of the con-
straint fix is to bring the system back to a state of balance where all the constraints
are satisfied. As will be detailed later, constraints in this category are normally

implemented as attached procedures.

17
2.2 Constraint-Satisfaction Problems

Constraint-satisfaction is a problem solving methodology in which the objective is
to find globally consistent assignments of values for variables subject to a set of
constraints. A problem that can be naturally solved using this technique is called
a constraint-satisfaction problem (CSP). This class of problems is also known as
Consistent Labeling Problems (CLP).

A constraint-satisfaction problem can be described as a 3-tuple (V, D, C). Where
V is a set of variables V}, V,,...,V,, D is a set of associated domains Dy, D,,...,D,
and C is a set of boolean functions Cy,Cy,...,C,. These functions are called con-
straints. Each constraint C; may be viewed as a predicate over a subset of V. A pred-
icate that returns true is said to be satisfied. A solution to a constraint-satisfaction
problem requires a search for a set of assignments (V; = vy, Vo = vy,...,V, = v,),
where vy € Dy,vy € D,y,...,v, € D, in such a manner that all the constraints are
satisfied. The statement of the problem might ask for a single solution, or it might
require a search for the set of all possible solutions, or it might simply be an inquiry
of whether the set of solutions is empty or not. If the set of solutions is empty then
the constraint-satisfaction problem is said to be unsatisfiable.

In the literature, it is customary to represent a network of binary constraints
by a graph called a constraint graph, where the variables are represented by nodes
and the constraints by arcs. In this presentation, both variables and constraints will
be viewed as nodes in the constraint graph, where the former will be displayed as a
circles and the latter as a rectangles. One of the first comprehensive description of
the formal aspects of constraint-satisfaction problems was presented by Montanari
[Montanari, 1974]. Tsang [Tsang, 1993] gave a rigorous treatment of the topic with
an extensive study of the algorithms that are used to solve constraint-satisfaction
problems.

An example of a problem that can be stated as a constraint-satisfaction problem
is the map-coloring problem. The objective of the problem is to color each region

of a given map such that no two adjacent regions have the same color. Figure 2.2

18

R2
R1

R4
R3

Figure 2.2. An Example Map-Coloring Problem.

shows an example of a map coloring problem. The four regions R1, R2, R3, and
R4 are to be colored in such a way that the color of Ri is not the same as the color
of Ry if Ri and Rj are adjacent regions. If we assume that the value of R: for
1 <7 <4 1s taken from a set of colors then the constraint for this problem can be
expressed as Ri: # Rj. Figure 2.3 depicts the mapping of the map-coloring problem
into a constraint-satisfaction problem formulation. It shows the decomposition of
the map-coloring problem into the five constraints C1, C2, C3, C4, and C5. The
approaches for solving constraint-satisfaction problems will be covered in the next
section, but generally the five constraints can be viewed as a set of equations without
any relation to the map-coloring domain and can be passed to any general constraint
solver to be solved.

The versatility, generality, and power of this approach to problem solving en-
couraged many researchers to try to formulate many problems belonging to a
variety of fields in this mold. A large number of seemingly different applica-
tions can be solved by modeling them as constraint-satisfaction problems. Ap-
plications have included such diverse areas as graph problems [Ullman, 1976,
McGregor, 1979], scheduling [Prosser, 1988, Wallace, 1994, Chamard et al., 1992,
Van Hentenryck, 1993], machine vision [Waltz, 1975, Davis and Rosenfeld, 1981,

19

@ R1 # R2 |« ~(R2
C1
C2| R1 # R3 R1 # R4 R2 £ R4 | C4
C3
R3)« +f R3 £R4 |+ - R4
C5

Figure 2.3. Representation of the Map-Coloring Problem as a CSP.

Mackworth, 1977b], floor-plan design [Eastman, 1972], machine design and manu-
facturing [Frayman and Mittal, 1987], and circuit design [de Kleer and Sussman,

1980].

2.3 Approaches to Satisfying Constraints

In the previous section, we saw how a map-coloring problem was transformed into a
constraint-satisfaction problem by constructing it as a set of five constraints C1, ...,
C5. If this problem were to be solved using a constraint language then the process of
solving the problem can be viewed as feeding the five constraints in addition to some
information about the domains of R1, R2, R3, and R4 to a constraint solver. It is
the job of the constraint solver to find appropriate values for every Ri. This process
is shown in Figure 2.4. The programmer can view the constraint solver as a black-
box and not care about the structure of its design or how it solves the constraints.

However, if the problem were to be solved using a conventional language with a

20

Cl Rl = ..
C2 R2 = ...
C3 Constraint Solver R3 — ..

C4 R4 = ...

C5

Figure 2.4. The Behavior of Constraint Solvers.

traditional paradigm such as Pascal [Jensen and Wirth, 1985], Smalltalk [Goldberg
and Robson, 1983], or LISP [Steele Jr., 1990] then the programmer would have to
figure out how to find values for the variables that will satisfy the constraints because
he or she would have to write the code that emulates the behavior of the constraint
solver. In the following paragraphs we will try to discuss the approaches that have
been taken to build constraint solvers or in other words the algorithms used to solve

constraints.

2.3.1 Generate-and-Test Strategy

In this approach every possible combination of value-variable assignments is gen-
erated and a test is done to see if the generated combination satisfies the given
constraints. If we assume the respective domains Dy, Ds,..., D, of the variables
Vi, Va,...,V, to be all finite discrete domains, then the space of the problem D,
which is defined as D = Dy x Dy x - - - X D,,, is also a finite discrete domain. One can
evaluate the conjunction Cy A C2 A --- A C,, on each element of D. If the objective is
to search for a single answer then what should be done is to stop the process once the
evaluation returns true otherwise the evaluation process should continue collecting

all the elements of D that return a true value upon evaluation. This algorithm is

21

correct but obviously very slow. Actually, its run-time complexity is proportional to

the size of Dy x Dy x +++ x D,,.

2.3.2 Backtracking

The idea of backtracking is to instantiate the variables one at a time and after each
instantiation a check is performed to see if the conjunction C; A C3 A --- A C,, has
been violated. If so, then the process backtracks and chooses another value for
the most recently instantiated variable. If that variable has no more values in its
corresponding domain, then the backtracking proceeds by applying the same process
to the previously instantiated variable, and so forth until a solution is found. If it is
found during the backtracking step that there are no more variables to backtrack to
(i.e. the backtracking have searched the entire domain of each variable), then there
are no more solutions to the problem at hand. This technique was given the name
backtrack by D. H. Lehmer in the 1950’s [Bitner and Reingold, 1975]. The major
efficiency gain from backtracking is that every time a failure is encountered and a
backtrack is performed, a portion of the search tree is pruned. This vtranslates over
time into a large reduction in the search space.

There are administrative strategies that can be utilized to improve both the
forward and backward movements of the backtracking algorithm. The first is called

Variable-Ordering Strategy and the second is Value-Ordering Strategy.

o Variable-Ordering Strategies: One strategy is to instantiate the variables with
smaller domains earlier (i.e. the variables should be ordered in terms of increas-
ing domain size). This will maximize the size of the eliminated subspace due
to a single failure [Kumar, 1992]. Another strategy is to start by instantiating
variables participating in the highest number of constraints. This has the effect

of maximally constraining the rest of the search space [Freuder, 1982].

¢ Value-Ordering Strategies: When a variable is to be instantiated by assigning

to it a value from its respective domain, a fairly good strategy is to choose a

22

Figure 2.5. Appropriate Variable Ordering.

value that will maximize the number of options for future assignments [Dechter

and Pearl, 1987, Haralick and Elliot, 1980].

To illustrate the workings of the variable-ordering strategy, suppose we have two
variables X and Y such that the domain of X is composed of the two values z;
and z; and the domain of Y contains the values y;, y3, y3, and y4. The appropriate
ordering of variable instantiation should start with the variable X because a failure
on z; will eliminate at most four instantiation attempts of the variable Y. Figure 2.5
shows part of the search tree where the first level represents the instantiation of the
variable X with the values z; and z,. It also shows how a failure on z; will result
in pruning that part of the tree.

If the variable instantiation ordering were to start with Y then every failure
on a value y; will only eliminate two future attempts to instantiate the variable X.
Figure 2.6 shows this choice of variable ordering. The inappropriateness of the this
choice of value ordering is indicated by the fact that the size of the pruned search
space is smaller than that of the previous choice.

Once a variable is chosen for instantiation then the question is what value within
that variable’s domain should be selected first. One value-ordering strategy suggests

selecting a value that will maximize the possible selections for other variables. To

23

Figure 2.6. Inappropriate Variable Ordering.

clarify that let us look back into the map-coloring problem. Suppose the domain
of region Rl is the set {RED,GREEN,BLUE} and the domain of R2 is the set
{RED,WHITE}. The variable-ordering strategy suggests that we start by instan-
tiating R2 since it has a smaller domain. If we assign the color RED to R2 then R1
will have only two possible assignments either GREEN or BLUE. This is due to the
required satisfaction of constraint C'1 which states that the color of region R1 should
not be the same as that of region R2. The recommendation of the value-ordering
strategy is to start by assigning to R2 the color W HITE because that will maximize
the possible values for R1.

In spite of the fact that the backtracking approach is strictly better than the
generate-and-test method, yet its run-time complexity for most practical problems
is still exponential. The major reason for this is that backtracking is very often
accompanied by a thrashing behavior. Thrashing is the behavior of a search that
seems to keep on failing in different parts of the search space for the same rea-
sons. Mackworth [Mackworth, 1992] claimed that there is a strong coupling be-
tween backtrack search and thrashing by stating that regardless of the instantia-

tion ordering, a thrashing behavior is almost always observed in backtrack search.

24

A class of algorithms called dependency directed backtracking algorithms or also
known as intelligent backtracking algorithms [Tsang, 1993, Haralick and Elliot, 1980,
Gaschnig, 1977] are designed to reduce or eliminate thrashing. The basic objective
of most intelligent backtracking algorithms can be simply stated as: If condition
C causes the search to fail then instead of backtracking to the last decision point,
backtrack to the first possible point where C no longer holds; otherwise condition C
will be encountered again. More will be said about thrashing in the next subsection.
It is interesting to note that almost all the approaches that were used in the imple-
mentation of the logic programming language Prolog [Clocksin and Mellish, 1987]

relied on some form of backtracking.

2.3.3 Consistency Algorithms

Many researchers have studied the various causes of thrashing behavior in back-
tracking and they have designed algorithms that eliminate those causes [Mackworth,
1977a, Waltz, 1975, Montanari, 1974, Freuder, 1978]. These algorithms are grouped
in a class of algorithms called consistency algorithms [Mackworth, 1977a]. Con-
sistency algorithms prevent against thrashing by eliminating, from the respective
domains, all the values that can cause it. This is done by analyzing the participating
variables, their domains, and the relations between them and imposing certain con-
sistency rules before the search is conducted. These rules include node consistency,
arc consistency, and path consistency. In the following paragraphs we will explain
these rules by reviewing some simple thrashing cases.

Suppose that a variable V; has a unary constraint C; and it draws its values
from the domain D;. Suppose also that the domain D; has a value v; such that the
assignment V; = v; always violates the constraint C;. Thisis a case of thrashing called
node inconsistency [Mackworth, 1977a] because the instantiation of Vi with v; will
always result in a failure. This situation can be fixed by removing the value v; from

the domain D;. In general, node inconsistency can be eliminated by inspecting every

25

variable and removing from its domain any value that violates any unary constraint
that is imposed over that variable.

Another cause of thrashing is the situation where instantiating a variable with
a certain value prevents another variable from being instantiated to any value in
its domain. Revisiting the map-coloring problem, suppose that R2 has the domain
{GREEN,RED,BLUFE} while R4 has the domain {BLUFE}. Instantiating R2
with the value BLUE will prevent R4 from being instantiated to any value, because
of the constraint C'4 which states that B2 # R4. Therefore, every time the above
instantiation occurs, an immediate failure will take place and a backtrack must be
performed. The cause of this kind of thrashing is described as a lack of arc consistency
[Mackworth, 1977a). Arc consistency in a constraint graph is achieved if for every
two variables V; and V; that participate in the constraint C(V;,V;), the following
holds: for every value a in the domain D; of V; there exists a value b in the domain
D; of V; such that the assignments V; = a,V; = b will not violate the constraint

C(V;, V;). The above can be formally stated as follows,
(Va)la € Di] 5 (3b)(b € D) AC(V; = a,V; = b)

Obviously, arc consistency between two variables V; and V; can be obtained by re-
moving from the domain of V; all the values for which the above condition is not
true.

Path consistency is a generalization of the arc consistency rule. There are al-
gorithms for achieving arc and path consistencies. The first such algorithms, AC-1,
AC-2, AC-3, and PC-1, PC-2 were proposed in [Mackworth, 1977a). It is important
to know that the removal of values in order to attain consistency does not eliminate

any possible solution for the constraint satisfaction problem [Kumar, 1992].

2.3.4 Other Approaches and Domains

In the previous paragraphs, we reviewed a number of approaches to solving con-

straints over variables drawn from finite discrete domains. A number of techniques

26

have been developed to solve problems over other types of domains such as the
domain of real numbers or Booleans. In the case of rational numbers or real arith-
metic where we typically have linear equations and inequalities, the Gaussian elim-
ination method can be used to solve a system of linear equations and linear pro-
gramming techniques can be applied to solve a system of inequalities [Nemhasuer et
al., 1989]. It is important to mention that the solutions for problems whose vari-
ables are drawn from infinite domains generally require domain-specific algorithms.
Constraint-satisfaction problems belonging to the domain of Boolean values can be
solved using a variety of Boolean unification algorithms

Term rewriting is an approach that has been used in building constraint-
satisfaction systems and languages such as the Purdue Equational Interpreter
[O’Donnel, 1985] and Wim Leler’s constraint language Bertrand [Leler, 1988]. A
term rewriting system is composed of a set of rules that defines rewriting or reduc-
tion relations between terms. A rewrite is done when a match is found between
the left-hand side of a rule (i.e. rule head) and the contents of an expression or a
subexpression. In general, the process can be defined as the application of a set of

rewrite rules to an expression to transform it into another expression.

27

Chapter 3

Electra Constraint Constructs

3.1 Introduction

This chapter describes the constraint constructs that have been integrated into the
Leda language to define the language Electra. It begins by presenting a motivating
example to show the expressiveness and flexibility of constraints. It follows by giving
a short description of the categories of constraints as viewed by Electra. Finally, it
closes by presenting the characteristics and behavior of fixable and satisfiable con-
straints. The examples used in this chapter are simple because they are presented not
for the sake of emphasizing their usefulness but rather to serve as means to explain
the underlying concepts. More useful and meaningful examples will be presented in

the following chapters.

3.2 A Motivating Example

The declarative nature of constraints makes them very useful constructs that can
aid programmers in expressing solutions to complex problems. As a motivation to
lead to the following discussion of constraints, this section shows two solutions to
the map-coloring problem that was presented in the previous chapter.

As described earlier, the goal of the map-coloring problem is to color each region
of a given map such that no two adjacent regions have the same color. Figure 2.2
illustrates an example of a map with the four regions R1, R2, R3, and R4. Fig-
ure 3.1 displays one way of solving the map-coloring problem in C [Kernighan and
Ritchie, 1988], and Figure 3.2 shows a listing of an Electra solution to the same

problem using the constraint construct. Comparing the two solutions, it is easy

28

enum Region {red, green, blue};
enum Region R1, R2, R3, R4;
int map_coloring()

%
/* Search for possible values for R1, R2, R3, and R4
* such that the desired relation is valid
+f
for (R1 = red ; R1 <= blue ; R1++)
for (R2 = red ; R2 <= blue ; R2++)
for (R3 = red ; R3 <= blue ; R3++)
for (R4 = red ; R4 <= blue ; R4++)
if ((R1 !=R2) && (R1 != R3) && (R1 != R4) &&
(R2 !=R4) && (R3 !=R4))
[* A possible solution is found */
return 1 ;

/¥ No solution is found */
return 0;

}

Figure 3.1. A C Solution to the Map-Coloring Problem.

var
R1, R2, R3, R4 : Region;

constraint Map_Coloring ;
assert

(R1 <> R2) & (R1 <> R3) & (R1 <> R4)
& (R2 <> R4) & (R3 <> R4)

end:

Figure 3.2. An Electra Solution to the Map-Coloring Problem.

29

to see that the approach used to construct the Electra solution produces a shorter
program. The reason for the differences in code size between the two approaches is
that the Electra solution is only listing the desired relations, while the C solution is
listing the relations in addition to the mechanism used to conduct the search (i.e.
the generate-and-test mechanism). This comparison is not intended to emphasize
the differences in code size because shorter programs are not necessarily clearer. For
example, APL [Iverson, 1962] is a language that is notorious for its characteristic
of having compact programs that are not easy to read which lead some researchers
to label it as a write-only language [Budd, 1995]. It is important to note that the
differences between the two solutions are not limited to program size and clarity but
rather include a major semantic difference. In the C version, whenever the function
map_coloring is called, it goes through the four for-loops searching for the first
possible values for the variables R1, R2, R3, and R4 such that the composite rela-
tion R1 !'= R2 && R1 !'= R3 &% R1 != R4 && R2 != R4 &% R3 != R4 is valid. It
returns 1 once the desired values are found, otherwise the function returns 0. Qut-
side this function, there is no enforced restriction that dictates what values can be
assumed by the four variables. This means that the above relation is not guaran-
teed to be valid at all times. Compare that with the Electra solution, where upon
encountering the constraint Map_Coloring a solution is found by the satisfier. If one
of the four variables is to be updated anywhere in the program then the solver will
try to keep the relation valid by altering the values of one or more of the other three
variables. The semantics of Electra constraints seem to reflect the statement of the

map-coloring problem more faithfully.

3.3 General Characteristics of Constraints

The versatility, expressiveness, and generality of the concept of constraints as build-

ing blocks in formulating constraint-satisfaction problems motivated us to create a

30

syntactic construct that captures the behavior of a constraint as a relation linking
entities together. We call this construct a constraint construct.

The Electra language divides constraints into separate categories depending on
two criteria. The first is the type of influence they have and the second is the method
by which they are solved. In terms of influence or types of participants, constraints
are classified into two separate designations. The first are those that declare rela-
tions between objects regardless of what class these objects belong to. For example,
in the context of user interfaces, if we want to have an arrow always pointing to
a specific corner of a particular box, then we can declare a constraint that states
that the coordinates of the arrow’s head are always equal to the coordinates of that
corner. This constraint is relating an arrow to a box which belong to two different
classes. The second designation are constraints that declare assertions relevant to
all instances of a particular class. Let us call the former type object constraints,
the latter class constraints. Class constraints can be further divided into two types,
intra-instance class constraints and inter-instance class constraints. Intra-Instance
class constraints state assertions relevant to every individual instance of a particular
class. They do not express any relationships between the instances. An example of
this type is the constraint that states that no human being can have an age of less
than or equal to zero. It expresses a restriction over the value that can be assumed
by the age of every individual human being, which does not state any relationship
between individual humans. An inter-instance class constraint is concerned with the
relationships between all the instances of the class where it is declared. For exam-
ple, the constraint that states that every employee must have a unique identification
number is considered an inter-instance class constraint since it expresses a relation-
ship among all the employees. Figure 3.3 presents the influence based categorization
of constraints.

In terms of solvability, Electra distinguishes two classes of constraints. We call
the first fizable constraints and the second satisfiable constraints. Fixable constraints

are constructs that declare as part of their structure a component called the fiz.

31

Constraints

Class Constraints Object Constraints

Inter-instance

Intra-instance

Figure 3.3. Constraint Categories Based on Influence.

The functionality of this component is to bring its enclosing constraint back to a

state of consistency whenever that constraint is broken.

satisfiable constraints is totally independent of the Electra compiler and is achieved

The process of solving

by a separate external component called the constraint-satisfaction system. Once a

satisfiable constraint is violated, then the constraint-satisfier is informed and it is up

to the satisfier as to how the situation is handled. The solvability categorization is

shown in Figure 3.4.

Solvability

Fixable

Satisfiable

Figure 3.4. Constraint Categories Based on Solvability.

32

3.4 Fixable Constraints

A fixable constraint is a syntactic structure that declares a relation between a set
of variables. This type of relation is maintained by the Electra compiler once all
the participating variables are defined. In Electra when a variable is declared, it is
classified as being undefined. An undefined variable is a variable that has as a value
the generic object NIL. Any undefined variable can be made defined by assigning it a
legal value from its respective domain. Variables can shift status from being defined
to becoming undefined by assuming the value NIL.

If an assignment to one of the constrained variables results in breaking the stated
assertion then the fix part is invoked. The function of the fix part is to alter the
participants in a manner that brings the assertion expression back to a state of being

valid. Figure 3.5 shows the syntax of fixable constraints.

(fixableConstraint) — (fixableConsHeader)
(fixableConsAssertion)
(fixPart)
end;
(fixableConsHeader) — constraint (id) ;
(fixableConsAssertion) —— assert (expression) ;
(fixPart) — fix(nonReturnStatements)

Figure 3.5. Syntax of Fixable Constraints.

Once a fixable constraint is declared, it becomes active within its scope unit.
Upon activation, a fixable constraint validates its assertion to ensure that all the

variables participating in the assertion expression are satisfying it. If one of the

33

participating variables is not defined yet, then the constraint is considered satisfied.
When a variable that is constrained by a fixable constraint is to be updated then the
new value is checked with the constraining assertion. If the update does not bring
about a violation to the assertion then the update is processed normally; otherwise
the old value of the updated variable is saved before processing the update. The
old value can be accessed using the 01d() operator which takes, as argument, the
name of the updated participating variable and returns its old value. After the
update is performed, the fix part of the constraint is executed. Examples and further
description of the 01d() operator and the behavior of the fix part will be presented

in the following sections.

3.4.1 The Assertion Part of a Fixable Constraint

Any valid Electra Boolean expression can serve as an assert expression in a fixable
constraint. The only restriction is that a variable can only participate in a single
assert expression (i.e. a participant of a fixable constraint is not permitted to par-
ticipate in any other constraint). The reason for this restriction is that permitting
a variable to participate in more than one constraint will make it difficult to decide
which fix to invoke if an update to that variable were to result in violating more
than a single constraint. This restriction does not impose any limitations because
a number of assertion expressions can be conjugated forming a single assertion that
is a conjunction of the basic assertions. Such conjunctions of basic assertions will

appear in some of the examples that will be presented.

3.4.2 The Fix Part of a Fixable Constraint

The fix statement is a statement that is supposed to bring the constraint back to
a state where its assertion is satisfied. Therefore, it is not permitted to terminate
without bringing its constraint’s assertion to a valid state. During run-time, a check

is performed before exiting the fix part to be sure that the cumulative actions of

34

the fix do not violate the constraint’s assertion expression. If a violation is detected
then a run-time error is generated. Inside the fix part, one can take advantage of
the availability of the predicate BrokenBy(). This predicate takes as a parameter
a participating variable and returns true if that variable is the one that violated
the assertion and caused the fix to be invoked, otherwise it returns false. Another
function that is provided for usage inside the fix part is the function 01d (), which

when passed an updated participant, returns its previous value.

3.4.3 The Behavior of Fixable Constraints

The behavior of fixable constraints is explained by analyzing the following simple
yet illustrative example. Suppose that we have the two variables z and y such
that the relation £ = y — 1 between them is to be maintained at all times. If
an update to one of the variables were to result in breaking the above relation,
then the other variable should be altered in such a manner that the validity of the
relation is restored. Figure 3.6 shows an instance of a fixable constraint construct that

expresses the stated relation. The constraint x_y_relation which has the assertion

constraint x_y_relation ;
assert
x=y—1;
fix
if brokenBy(x) then
y:=x+1;
else
if brokenBy('y) then
x:=y-—1;
end;

Figure 3.6. Simple Fixable Constraint.

35

z = y — 1, declaratively reflecting the relation to be maintained. The variables z
and y are referred to as participants of the constraint x_y_relation. Suppose that
the participants z and y are assuming the values 5 and 6 respectively. The current
values of the variables are adhering to the assertion of the constraint linking them.
However, if variable z is to be assigned a new value such as 8 which will result in
violating the assertion then the fix will be invoked. Inside the fix, a check is made
to find out which variable caused the violation. This is done using the predicate
brokenBy (). This check guides the actions taken by the fix to resolve the situation.
In the above case, the action that will be taken is to set the variable y to the value 9
which will satisfy the assertion. The old value of r is stored before the fix is invoked

and it can be retrieved by calling the built-in function 01d() with the parameter z.

3.5 Satisfiable Constraints

A satisfiable constraint is a constraint that is maintained and solved by an underlying
constraint satisfaction system. Finger 3.7 shows the syntax of satisfiable constraints
in Backus-Naur Form. The syntax illustrates that the body of a éatisﬁable con-
straint is composed of three components: a name, a strength, and an assertion. This
type of construct is suitable for expressing a multiple of constraints that form a
network, where the only way to have all the constraints satisfied is to find values
for the constrained variables such that all the relations are simultaneously satisfied.
This process requires a search and cannot be achieved using a simple fix because, as
justified earlier, invoking the fix of one constraint might result in breaking another
constraint in the network. To avoid such cases, the process of satisfying the whole
network of constraints is assigned to an external solver that is designed primarily
for such purpose. The external solver is responsible not only for solving the net-
work of constraints, but also for maintaining the values of their participants. The
Electra compiler does not keep track of the values of the participants of a satisfi-

able constraint but rather delegates that task to the solver. This avoids having to

36

(satisflableConstraint) — (satisfiableConsHeader)
(satisflableConsAssertion)
end;

(satisfiableConsHeader) — constraint (id) : (strength) ;

(satisfiableConsAssertion) — assert(andSatAssertion) ;
(andSatAssertion) —— (satAssertion)
| (andSatAssertion) & (sat Assertion)
(strength) — required
| strong
| medium
| weak

Figure 3.7. Syntax of Satisfiable Constraints.

have duplicate copies of each participant, which might result in jeopardizing their
integrity. Whenever a participant of a fixable constraint is updated, then the satisfier
is informed about the update to keep its symbol table up-to-date, and whenever a

participant is accessed then the satisfier is queried about that participant’s value.

3.5.1 The Assertion Part of a Satisfiable Constraint

Unlike fixable constraints, where any valid Electra boolean expression can be used
as an assertion expression, a satisflable constraint’s assertion must be an expression
that can be understood by the constraint solver. This restriction is not limited to
the constraint’s assertion expression but also every participant must be drawn from
a domain that can be handled by the solver. Therefore the degree of complexity
of the assertion expressions and the generality of the domains are implementation

dependent. This is due to the fact that the Electra language does not state any

37

specifications or restrictions over the characteristics of the satisfier. This approach
is similar to the approach taken by the designers of the language Gédel [Hill and
Lloyd, 1994].

3.5.2 The Behavior of Satisfiable Constraints

Once a satisfiable constraint is encountered, information about its name, strength,
assert expression, and participants is passed to the satisfier. Since the satisfier keeps
track of the participants then their initial values cannot be determined.

Figure 3.8 shows a network of two satisfiable constraints. The constraint CandF
expresses the relation between Fahrenheit and Celsius temperatures and the con-
straint CandK expresses the relation between Celsius and Kelvin temperatures. Once
the compiler parses the aforementioned constraints, it passes them to the solver.
The solver will start by assigning arbitrary values to the participants such that the
two constraints CandF and CandK are valid. The solver is kept informed regarding
any new update to the participants C, F, and K. The two constraints form a network
as shown in Figure 3.9. The satisfier used for the current implementation is the
DeltaBlue satisfier designed by Borning and his group at the University of Wash-
ington [Maloney, 1991]. Appendix A gives a more detailed description covering the

design of the DeltaBlue constraint solver.

3.5.3 Required Versus Preferential Constraints

In some applications it is necessary to state both required and preferential con-
straints. The required constraints must always be satisfied, while the preferential
ones should be satisfied, if possible. If the system is unable to satisfy a preferential
constraint then no error will be generated.

To express this hierarchical structure of constraints in Electra, one can use the

strength level field, where there are four levels of strength: Required, Strong, Medium,

38

var
C integer;
f :integer;
k :integer;

constraint CandF : required;
assert

(f—32)x5=cx9 ;

end;

constraint CandK : required;
assert

k=c—273 ;
end:;

Figure 3.8. Relations Between Celsius, Fahrenheit, and Kelvin Temperatures.

CandK | { CandF
K=C-273 (F-32)*5=C*9

Figure 3.9. A Network of Satisfiable Constraints.

39

and Weak. Required constraints are satisfied first then preferential constraints are

prioritized according to their strength level.

3.6 Class Constraints and Object Constraints

Object constraints, as defined earlier, are constraints that state relations between
objects regardless of what class these objects belong to. The constraints are normally
defined independently and not as part of any class. The objects that participate in
an object constraint do not have to be distinct. Thus, an object constraint could be
used to relate an object to itself. This is useful in stating relations that are relevant
to individual objects.

Figure 3.10 shows the declaration of the classes Point and Line and an example
of an object constraint. The constraint 1inel_Vertical is an object constraint that
constrains the particular instance 1ine1 of class Line to be always vertical. If one of
its points is to be updated then the second will follow and the line will be redisplayed.

A class constraint is considered part of a particular class. It functions as a guard
that imposes a particular restriction on all the instances of its class, or a particular
relation among them. For example, one can create the class VerticalLine which is
a subclass of class Line with the constraint that the x-coordinates of the points are
to be always equal as shown in Figure 3.11

The constraint Vertical is part of the class VerticalLine, and thus, it is
referred to by the name VerticalLine.Vertical. This constraint is automatically
attached to every instance of the class VerticalLine. It is classified as an intra-
instance class constraint since it imposes an assertion over every instance of the class
Verticalline, yet it does not express any relation between the individual instances.

Sometimes, it is necessary to relate instances of one class to each other or to
speak of all instances of a certain class. To achieve that, one can use the built-
in function instances_of () which takes a class name and returns a list of all the

instances of that class and its subclasses. For example, suppose that we are defining

40

class Point;
X @ integer;
y : integer;

end;

class Line;
pl : Point;
p2 : Point;

end;

var
linel : Line;

constraint linel_Vertical;
assert

linel.pl.x = linel.p2.x;
fix
begin
if BrokenBy(linel.pl.x) then
linel.p2.x := linel.pl.x;
else
linel.pl.x := linel.p2.x;

linel.display;
end; // end of fix part

end; // end of constraint body

Figure 3.10. Declaration of an Object Constraint.

a class that describes the concept employee, and we want to express the notion
that every employee must have a unique identification number. Figure 3.12 shows a
possible definition of such a class. Class Employee declares the constraint UniqueID
which is an inter-instance class constraint because it enforces a relation over all the
instances. Every time an instance of class Employee is created, a constraint linking
it to all other instances is attached to the newly created instance. Figure 3.13 shows
how inter-instance class constraints are added as instances are created. In part (a)

there is only one instance of class Employee namely el therefore there is no need

41

class Verticalline of Line ;
constraint Vertical,

assert
pl.x = p2.x;
fix
begin
if BrokenBy(pl.x) then
p2.x := pl.x;
else
pl.x := p2.x;
display();

end; //end of fix
end; // end of constraint
end;

Figure 3.11. Declaration of an Intra-Instance Class Constraint.

class Employee;
name : names;
age : ages;
iD : IDNumbers;
... Other instance vars and methods ...
constraint UniquelD;
assert
forall el in instances_of (Employee)
if el <> self then
el.ID <> ID;

end;
end;

Figure 3.12. Declaration of an Inter-Instance Class Constraint.

42

a)
UniquelD

b) el.ID <> e2.ID
UniquelD

c) el el.ID <> e2.ID e

el.ID < e3.1ID e2.ID < e3.1D

UniquelD UniquelD

Figure 3.13. The Behavior of Inter-Instance Class Constraints.

to enforce the constraint UniqueID. However, once e2 is created as a new instance
of class Employee a copy of UniquelD is created linking instances e1, and e2 and
stating the ID fields of the two objects should be different as shown in part (b). Part
(c) shows the network of three constraints linking three variables upon the creation
of the third instance e3.

Although this approach seems to be too costly, it should be noted that the
programmer would have to do the same kind of checking if ID uniqueness is to be

assured.

43

Chapter 4
Condition-Based Dispatching

This chapter explains the concept of condition-based dispatching, which is a con-
cept that is similar to argument pattern-matching in functional languages. The
chapter begins by reviewing the techniques of functional abstraction and paramet-
ric overloading. After that, it introduces condition-based dispatching and presents
its characteristics with some examples to illustrate the advantages and appropriate
usage of this technique. The guarded function construct is presented as a tool for
expressing condition-based dispatching in the language Electra. The chapter ends by
presenting a comparison between guarded functions and argument pattern-matching
in functional programming, illustrating how guarded functions provide Electra pro-

grammers with the ability to simulate the behavior of argument pattern-matching.

4.1 Functions, Dispatching, and Parametric Overloading

The term function, as understood in the context of programming languages, is an
abstraction technique via which statements and expressions are grouped and can
only be invoked explicitly. An invocation of a function returns flow of control to the
point following the invocation point. A function is invoked by issuing a function call,
which names the particular function and supplies its actual parameters, if any. The
function call starts by searching for the specified routine. Once it is found, execution
control is transferred to the beginning of that routine. This process is called function
dispatching [Bal and Grune, 1994].

Overloading is the ability to bind one name to more than a single object. How-

ever, since names are used to identify objects, it is natural to conclude that overload-

44

ing will cause an ambiguity. Therefore, in order for overloading to be useful, enough
information must be provided to resolve any ambiguities. Budd [Budd, 1991b] defines

parametric overloading as:

Overloading of function names in which two or more procedure bodies

are known by the same name in a given context, and are disambiguated

by the type and number of parameters supplied with the procedure call.
Thus in the traditional notion of method invocation, when a generic function is
invoked, the dispatcher determines which function body to dispatch to simply by
checking the number and type of the actual arguments. Electra extends the disam-
biguation procedure performed by the dispatcher by adding conditions to the formal
arguments list. With this extension, the function dispatched to is selected by check-
ing if the values of the actual arguments satisfy the conditions imposed over the
formal arguments. We call this type of parametric overloading condition-based dis-
patching. This technique is similar to the process of argument pattern-matching that
is provided by a number of functional programming languages [MacLennan, 1990,

Field and Harrison, 1988, Peyton Jones, 1987]

4.2 GGuarded Functions

The technique of condition-based dispatching can be expressed in Electra using a
construct called the guarded function. A guarded function differs from a regular
function in that its name can be overloaded by defining multiple guarded functions
with the same name. and that its signature has another component called the func-
tion guard. A function guard can be viewed as a necessary precondition for executing
the particular function body which it guards.

The syntax of guarded functions is shown in Figure 4.1. The signature of a
guarded function is similar to that of a regular function. The difference between the
two is that the signature of a guarded function starts with the keyword guarded and
ends with a guard expression. Any Electra boolean expression can serve as a guard

expression. The name of a guarded function can refer to more than a single function

45

body. Each body is referred to as an instance of the guarded function. When a
guarded function is called, the guard for the first declared instance is evaluated. If
the evaluation results in a true value then the dispatcher dispatches to that instance;
otherwise the guard of the next instance is evaluated. The process of evaluating
guards continues until an evaluation returns true or all the instance functions are

exhausted.

(functiondeclaration) — (guardedFuncHeadAndGuard)
(declarations)
(body) ;
(guardedFuncHeadAndGuard) — (guardedFuncHead) (guard) ;
(guardedFuncHead) — (guardedFuncName) (valueArguments)
(optReturnType) ;
(guardedFuncName) — guarded function (id) (typeArguments)
(guard) — [(expression)]

Figure 4.1. Syntax of Guarded Functions.

The mechanism of condition-based dispatching provides a number of advantages:

o It offers an alternative to using some complicated or deeply nested conditional

statements.

o It serves as a design aid in helping the programmer to consider all possible

inputs to a function.

e It provides a mechanism for direct mapping of specifications to actual code.

46

e It can be viewed as an approach to make code more readable and thus easier

to maintain and enhance.

The benefits of condition-based dispatching become more apparent when more than
two alternatives are to be considered, especially in cases where each alternative con-
stitutes a large number of actions which result in having the condition statement
body spreads over a number of pages. This approach to decomposing functions is
generally concise and readable. Contrast this approach with the approach of using
conditional statements which often requires nested if-then—else statements and is

consequently less easy to read, comprehend, and modify.

4.3 Tree Insertion: An Example

Figure 4.2 shows a tree insertion example exactly as presented by Kernighan and
Ritchie [Kernighan and Ritchie, 1978]. The function tree() is part of a word count-
ing program and is called to insert a new word into a binary tree, or increment the
count of an existing word. It is invoked with the root node to find where to insert
the word that is passed to it. The process continues by comparing that word to the
one residing in the current node. The new word is percolated down to either the
left or the right subtree. If the new word is found to be already in the tree then a
counter reflecting the number of occurrences of the word is incremented, otherwise
a new node is created to host the newly inserted word. The function talloc() is
a user-defined function that is designed to create storage for a new node. Similarly,
the function strsave() is used to copy the new word.

The behavior of the function tree() can be expressed by the following equation:

create node(w) if p = NULL

increment p—=>count if p>word = w
tree(p,w) = ¢

tree(p—>left, w) if p>word < w

| tree(p->right, w) otherwise

The above equation shows that the expression on the right hand side is dependent

47

struct tnode xtree(p, w) /xinstall w at or below p /
struct tnode xp;
char *w;
{
struct tnode =talloc();
char *strsave();
int cond,;

if (p == NULL) { /* a new word has arrived */
p = talloc(); /x make a new node #/
p—word = strsave(w);
p—count = 1;
p—eft = p—right = NULL;

} else if ((cond = stremp(w, p—word)) == 0)
p—count++; /« repeated word ¥/

else if (cond < 0) /« lower goes into left subtree
p—left = tree(p—left, w);

else [+ greater into right subree */
p—right = tree(p—right, w);

return(p);

Figure 4.2. Tree Insertion Using C.

on the four listed conditions. This motivates another approach to solving the tree
insertion problem that is based on condition-based dispatching. Figure 4.3 lists an
Electra solution to the tree insertion problem. The problem is decomposed into four
cases. Fach case is represented by an instance of the guarded function tree().

When a call is issued to the guarded function tree(), the dispatcher will test
the guards one at a time and dispatch to the first instance whose guard expression
evaluates to true. Note that the last instance has a catch-all guard expression namely
the expression [true] which always evaluates to true.

Substituting guarded functions for conditional statements in the representation
of a problem is sometimes a better alternative, especially in cases where the descrip-

tion of the problem is composed of a large number of complex or nested conditions.

48

guarded function tree (p: TreeNode; w:String) — TreeNode;

[p = NILJ

begin
p := TreeNode();
p.word := w;
p.count := 1;
p.left := NIL;
p.right := NIL;
return p;

end;

guarded function tree (p: TreeNode; w:String) — TreeNode;
[pword = w];
begin
p.count := p.count + 1;
return p;
end:

guarded function tree (p: TreeNode; w:String) — TreeNode;
[p.word < w |;
begin
p.left := tree(p.left, w);
return p;
end;

guarded function tree (p: TreeNode; w:String) — TreeNode;
[true];
begin
p.right := tree(p.right, w);
return p;
end;

Figure 4.3. Tree Insertion Using Electra’s Guarded Functions.

49

For example, an important part of any windowing system is the code that describes
the behavior of the system when a mouse button is clicked. The action to be taken
when an event such as this occurs depends on many factors. Before a decision is

made as to what action to take, a number of questions must be answered such as:
o Which mouse button is clicked?
e Which window is the cursor on?
e Was the Shift or Control keys simultaneously pressed?
o What is the status of the system?

There could also be other ‘questions related to the characteristics of that particu-
lar system. Figure 4.4 shows a fragment of code that uses conditional statements
to implement the behavior of a windowing system when a mouse button is clicked.
Figure 4.5 utilizes guarded functions to implement the same behavior. Decomposing
behavior into smaller components aids the programmer not only in easily compre-
hending the code, but also in effortlessly enhancing it, since adding a new func-
tionality to the system only requires creating a small segment that implements the
specification of the new enhancement and usually does not involve altering existing

code.

4.4 Order of Declaration of Guarded Functions

When a call is issued to a function that is defined as a guarded function, the dis-
patcher checks the alternative definitions sequentially starting with the earliest de-
fined one. Once a particular guard evaluates to true, that instance of the guarded
function is chosen and invoked. Since guard conditions are checked sequentially by
the dispatcher, it is reasonable to wonder if there is any significance to the ordering
of declaration of guarded function instances. If the guard conditions are mutually
exclusive (i.e. values that satisfy one guard’s condition will not satisfy any other con-

dition), then it does not matter in which order the guarded functions are declared.

50

function mouse_click(location : Locations; button : Buttons)
begin
if (button = 1) then
begin
if (location = root) then

else if (location = windowl) then
else if (location = window2) then
begin
if (shift = true) then
else
g
else if (location = FontMenu) then
end

else if (button = 2) then

end;

Figure 4.4. Description of Behavior Using Conditional Statements.

However, if the conditions overlap, then the order of declarations is crucial. The
best approach for figuring out the proper ordering of declarations of instances of a
guarded function is to arrange the instances such that the ones with more specific
guard conditions appear first. The example shown in Figure 4.6 has an inappropriate
ordering of instances because any value that is less than ten is not guaranteed to be
less than 3. Therefore, the second instance will never be dispatched to. The guarded

function instance with the condition x < 3 should be declared first.

o1

guarded function mouse_click(location : Locations; button : Buttons)
[(button = 1) & (location = root) |;

begin

end.;“

guarded function mouse_click(location : Locations; button : Buttons)
[(button = 1) & (location = windowl)];

begin

end.;”

guarded function mouse_click(location : Locations; button : Buttons)
[(button = 1) & (location = window2) & (shift = true)];

begin

end.;“

guarded function mouse_click(location : Locations; button : Buttons)
begin

end;

Figure 4.5. Description of Behavior Using Guarded Functions.

guarded function foo(x integer);
[x<10];

begin

end.;...

guarded function foo(x integer);
[x<3];

begin

end;

Figure 4.6. Improper Ordering of Declarations of Guarded Functions.

52

4.5 Functional Pattern-Matching

Most functional programming languages, such as Hope [Bailey, 1990], Haskell [Hudak
and Wadler, 1988, Davie, 1992], Miranda [Turner, 1985, Turner, 1986}, and Standard
ML [Milner et al., 1990], provide a mechanism called argument pattern-matching.
Argument pattern-matching is a technique that provides the programmer with the
ability to define a function based on the patterns of its parameters. Therefore, a
function can be constructed by displaying all the patterns that its arguments may
have and describing what value to return in each case. For example, let us consider

the following ML function:

fun not true = false

| not false = true;

The above function defines the characteristics of the boolean operator not () which
takes a single argument. The definition states that if the argument matches the value
true, then the action to take is to return false. Similarly if the argtiment matches
the value false then the function will return true.

Patterns are not limited to constants, as in the case above. They can be ex-
pressions with variables. When a pattern expression matches an argument, the
variables of the pattern are assigned the values in the actual arguments. These
variables can then be used in the definition of the function [Wikstrom, 1987,

Ullman, 1994]. The following shows an ML function that has expression patterns:

fun reverse nil = nil
| reverse [item] = [item]

| reverse [front :: rest] = (reverse rest) @ [front]

The function reverse() defines the procedure needed to reverse a list. If the list is

empty, then the first pattern is matched and a nil is returned. If the list has only

a3

one item then the second pattern is matched and the same list is returned, otherwise
the third pattern is matched and the reversal is done according to its expression.
Note that the operator @ is a built-in ML operator that perform the appending of
two lists. The general template for stating function patterns is shown in Figure 4.7

The integration of guarded functions into the Electra language provides the
programmer with a mechanism that helps in simulating the characteristics of pattern-
matching. Figure 4.8 shows the ML function merge() that merges two lists. The
function merge() employs pattern-matching to achieve its task. Figure 4.9 shows an
Electra function that achieves the same task. The Electra version of the function
merge () uses guarded functions to simulate the behavior of pattern-matching in the

ML version of the merge () function.

fun <function-name> <pattern-1> = <function-body-1>

<function-body-2>

I <function-name> <pattern-2>

I <function-name> <pattern-N> = <function-body-N>;

Figure 4.7. Patterns in ML Functions.

Note that the ML patterns do not permit the appearance of relational or logical

expressions. Thus the following is disallowed and would produce an error message.

fun foo (x = y) = "Arguments are the same. "

fun merge(L1,nil) = L1

| merge(nil,L2) = L2

| merge(Ll as x::xs, L2 as y:iys) =
if (x:int) <y then x::merge(xs,L2)
else y::merge(L1,ys);

Figure 4.8. An ML Function That Merges Two Lists.

guarded function merge(L1, L2 : List)—List;

[L2 = NIiL];
begin

return L1;
end;

guarded function merge(L1, L2 : List)—List;

[L1 = NIL];
begin

return L2;
end;

guarded function merge(L1, L2 : List)—List;
[L1.head < L2.head |;
begin

return List(L1.head, merge(L1.rest, L2));
end;

guarded function merge(L1, L2 : List)—List;
[true];
begin

return List(L2.head, merge(L1, L2.rest));
end;

Figure 4.9. Merging Lists in Electra Using Guarded Functions.

%)

However, guard expressions in Electra would permit any boolean expression. There-

fore, the following is valid in Electra:

guarded function foo(x,y :integer);
[x=y}:
begin
print("Arguments are the same.\n");

end;

Disallowing relational and logical expressions to be included in a pattern expression
forced the ML version of the function merge() to be limited to three patterns. On
the other hand, the flexibility of the guard expressions permits the Electra version
to achieve even finer decomposition of the problem by splitting the third pattern
into two possible cases. Therefore, the Electra solution displays four possible cases

instead of three.

56

Chapter 5

Feature Exclusion

This chapter begins by presenting the concepts of inheritance and inheritance hier-
archies prior to introducing inheritance exceptions. It follows by listing the reasons
that induce inheritance exceptions and shows approaches for eliminating them. Sub-
sequently, it shows how Electra uses the construct of feature exclusion to represent
inheritance exceptions. The chapter closes by describing the interaction between

feature exclusion, inheritance, and constraints.

5.1 Inheritance, Inheritance Hierarchies, and Inheritance Exceptions

Inheritance, as defined in most object-oriented languages, typically extends the in-
terface of a superclass by adding new features in the subclass definition. A superclass
might have inherited its structure from another class therefore creating a hierarchy of
superclasses and subclasses. Figure 5.1 shows a part of an inheritance hierarchy that
was presented by Budd [Budd, 1991b]. This hierarchy of inheritances states relations
between classes and superclasses. For example, it states that an artist is a human,
a human is a mammal, a mammal is an animal, and an animal is a material object.
This abstraction structure is known as an inheritance hierarchy or a taxonomic hier-
archy. Inheritance, in this fashion, represents the Is-a relationship [Brachman, 1983,
Budd, 1991b]. This means that it imposes an implicit assumption that every property
attributed to a superclass is automatically carried by all of its subclasses. There-
fore, since a shopkeeper is a human being then all the characteristics of a human are

automatically assumed by all shopkeepers.

57

Material Object

/’\ -

Mammal Flower

A

Animal

Dog Human
® [J
Shopkeeper Artist Dentist

Figure 5.1. A Class Hierarchy for Various Material Objects.

Unfortunately, it is not always possible to impose such a rigid hierarchical struc-
ture on every real world situation. For instance, chickens, ostriches; and penguins
are all birds that do not fly. A non-profit organization is an enterprise for which
profit is a meaningless concept, and a parking structure is a building with no rooms.
Other examples include countries with two capital cities or countries with no capital
city. Therefore, it is difficult, or even impossible, to use this type of hierarchical
inheritance in the construction of an abstraction that describes properties valid for
all specializations. Some specializations represent objects with exceptional charac-
teristics, for which it is not enough to extend the descriptions of the superclass but
rather it is necessary to cancel some of its attributes [Brachman, 1985]

This limitation of the rigid structure of hierarchical inheritance is one of the most
difficult problems in knowledge representation. Aspects of its theoretical character-
istics have been a topic of great interest to many researchers [Etherington, 1987,

Lenzerini et al., 1991, Touretzky, 1986, Etherington and Reiter, 1983, Fox, 1979].

58

This characteristic of hierarchical inheritance is known as partial inheritance [Kim
and Lochovsky, 1989], and in the field of knowledge representation it is called inher-

ttance exceptions.

5.2 Reasons for the Rise of Inheritance Exceptions

When an exception appears in an inheritance hierarchy, in most cases the exception
can be removed by restructuring the original inheritance hierarchy to produce a new
hierarchy that does not contain any exceptions. However, this restructuring might
not be possible due to limited access to source code such as the case in reusable soft-
ware libraries. Even if the source code is fully accessible, this restructuring might not
be desirable because the result might be an unnatural or excessively larger hierarchy.
This section presents some causes that often induce the appearance of exceptions in
an inheritance hierarchy. The need to exclude superclass features in the construction

of a subclass may be a result of one of the following:
¢ Erroneous design of the inheritance hierarchy.

e The natural characteristics of the taxonomy at hand dictates the need for some

cancellation of features anywhere in the hierarchy.

o The need to reuse existing classes that should not or cannot be modified.

5.2.1 Erroneous Design of Inheritance

Inheritance exceptions often appear in an inheritance hierarchy due to bad decisions
during the design or enhancement of that hierarchy. Figure 5.2 shows the placement
of a houseboat class in an inheritance hierarchy. Part (a) shows the Houseboat class
as a subclass of class House. This hierarchical structure causes the appearance of
inheritance exceptions because a house has certain characteristics that are not appli-

cable to a houseboat. These characteristics include the nature of having permanent

59

location such as an address which is not valid in the case of a houseboat and there-
fore must be removed. Part (b) shows a more appropriate inheritance hierarchy that
does not induce any exceptions. The creation of some additional classes in part (b)
is justifiable because it resulted in a better reflection of the relations between a house

and a houseboat.

5.2.2 The Natural Characteristics of Domain Knowledge

Every domain has its own agreed upon characteristics that cannot be altered to fit
some logical taxonomy. For example when the word “bird” is mentioned, it conjures
an image of a flying feathery creature. However, there are birds such as ostriches that
do not fly. Part (a) of Figure 5.3 shows an inheritance hierarchy in which the class Os-
trich inherits the properties of the class Bird. This seems reasonable since an ostrich
is a bird. However, if the class Bird has the instance variable Average_Flight_Speed
which indicates the average speed of a bird when flying, then this instance variable
does not make any sense for instances of class Ostrich and therefore should not ap-
pear in it. Part (b) of the same figure shows a restructuring of the hierarchy by
separating birds that fly from birds that do not fly. The problem with this restruc-
turing is that it adds another class that makes the hierarchy slightly unnatural. The
relation between domain knowledge and inheritance hierarchies is depicted in the

following quote by David Touretzky|[Touretzky, 1986]:

Mandatory inheritance of properties is too inflexible for representing real-
world knowledge. The real world contains exceptions to almost every
generalization. Although most people’s ideal elephant is a gray, four-
legged, peanut-eating jungle dweller, there are non-gray elephants, three-
legged elephants, elephants who do not eat peanuts, and elephants who
do not live in jungles. If we require an abstraction to hold true for all
members of a class, very few properties could be placed there.

This process of enforcing hierarchical inheritance over domain knowledge by creating

additional classes is not always appealing especially when it results in the creation

60

House

Houseboat

a) Inheritance exceptions due to bad design

Dwelling
o

PermanentDwelling MobileDwelling

House Houseboat

b) An inheritance hierarchy without exceptions

Figure 5.2. Redesigning a Class Hierarchy to Remove Exceptions.

61

of an unnatural hierarchical structure. Therefore, sometimes it is necessary to ex-
plicitly exclude certain features of a superclass from appearing in the structure of a

subclass.

5.2.3 Reuse of Nonmodifiable Classes

Object-oriented techniques provide mechanisms for the separation between the
interface and the implementation of software modules, as well as mechanisms
for inheriting and expanding the characteristics of existing modules. Thus, us-
ing object-oriented approaches helps in the construction of easily reusable soft-
ware components [Meyer, 1987]. The suitability of object-orientation for the cre-
ation of reusable components led Brad Cox to compare these components to in-
tegrated circuits and call them software IC’s [Cox, 1986, Cox and Hunt, 1986,
Ledbetter and Cox, 1985]. However, it is not feasible to create a library of reusable
objects that cover every possible future requirement [Johnson and Rees, 1992].
Therefore, users are forced to alter or extend the behavior of the reusable classes
to suit their needs.

For example, suppose the class BAG is given in a standard library. This class
defines the structure and behavior of a bag — an unordered collection of ob jects with
the possibility of having the same object occurring more than once. The method
Occurrences() is provided in the protocol of that class and is used to evaluate the
number of occurrences of a particular object in a bag. The concept of a set is similar
to that of a bag except that every element in a set can occur at most once. Thus,
a set is a special kind of bag. In order to create a set, one can reuse the provided
class BAG and subclass it to create the subclass SET, overriding a number of the
provided methods. The problem now is that the method Occurrences() is totally
meaningless to a set. Therefore, conceptually it should not be part of the protocol of
a set since it is not part of its behavior. Instead, class SET should have the predicate

Member () that returns true if the specified element is in the set. This indicates that

62

Animal

Bird

N

Ostrich Pigeon

a) An inheritance hierarchy with exceptions

Animal
o

NonFlyingBird NzlyingBird

Ostrich Pigeon

b) An inheritance hierarchy without exceptions

Figure 5.3. Restructuring a Class Hierarchy to Remove Exceptions.

63

sometimes it is necessary to exclude features when subclassing an existing class for
reuse. Alan Snyder [Snyder, 1986b] has the following view regarding the exclusion

of features for the sake of reuse:

Most object-oriented languages promote inheritance as a technique for
specialization and do not permit a class to “exclude” an inherited opera-
tion from its own external interface. However, if inheritance is viewed as
an implementation technique, then excluding operations is both reason-
able and useful.

5.3 Inheritance Exceptions in Electra

It is possible to express inheritance exceptions in Electra using a construct that
we call feature ezclusion. It is defined as a mechanism via which one can exclude
features' of a superclass from appearing in the protocol of one of its subclasses.
Similar mechanisms for removing a feature of a superclass when subclassing exist in
other languages such as CommonObjects [Snyder, 1986a], and Trellis/Owl [Schaffert
et al., 1986].

In Electra, feature exclusion is expressed using the ezclude statevﬁent inside the
excluding class. Figure 5.4 shows the syntax of the exclude statement. This state-
ment must appear before any declaration statement in the excluding class, and it
lists all the features that are to be excluded. Once a feature is excluded, it is no
longer visible as a feature in the excluding class or its subclasses. An excluded fea-
ture is not removed but merely masked. When a class that excludes some features
is instantiated then every excluded instance variable is assigned the value NIL, and
every excluded method is assigned a standard excluded method body.

Figure 5.5 shows an example of how features are excluded using the ex-
clude statement. Class Bird declares the instance variable Average_Flight_Speed

which is excluded in the subclass Ostrich. Due to this exclusion the instance

'The term feature is borrowed from Eiffel [Meyer, 1993] where it is used to refer to

both methods and instance variables.

64

(classdeclaration) —— (classheading)
(excludeStatement)
(declarations) end;
(excludeStatement) —— €
| exclude (idlist) ;
(idlist) — (id)
| (idlist) , (id)

Figure 5.4. Syntax of Feature Exclusion.

variable Average_Flight_Speed is no longer considered part of the protocol of
the class Ostrich. When class Ostrich is instantiated, the instance variable

Average_Flight_Speed is assigned the value NIL by the compiler.

class Bird;
Average_Flight_Speed : real;

end;

class Ostrich of Bird;
exclude Average_Flight_Speed;

end;

Figure 5.5. An Example of Feature Exclusion.

65

5.4 Exclusion Versus Overriding

One way of excluding undesirable inherited methods is by overriding them with a seg-
ment of code that returns a diagnostic message when the excluded method is called,
indicating that this method is not part of the receiver’s protocol. One advantage of
overriding undesirable methods is that overriding adheres to a typing system prin-
ciple called the principle of substitutability. The principle of substitutability states
that an instance of a subtype can always be used in any context in which an in-
stance of a supertype is expected [Wegner and Zdonik, 1988]. Another advantage of
overriding is that it does not generate any conflicts with dynamic binding. However,
a disadvantage is the creation of meaningless parts in the protocol of the subclass.
In addition, the purpose of this overriding is to exclude a feature, not to alter it.
Thus, it is preferable to equip the language with a construct that conveys the user’s
intent of excluding undesirable inherited features and let the compiler automatically
generate the needed overrides. For example, the definition of class SET should look
something like:
class SET of BAG;

exclude Occurrences;

end;
If the message Occurrences() is sent to an instance of type SET then an error mes-
sage will be generated indicating that Occurrences() is not part of SET’s interface.
The statement:

exclude Occurrences;

can be viewed as expressing the relation:

SET = BAG - Occurrences() + ...

This relation states that a set is a bag with the feature Qccurrences removed, and
that there could be some more features. The system maintains this relation by pro-

viding the appropriate overrides. This approach of providing constructs for explicit

66

specification of exclusion of features is both cleaner and clearer. It makes it easier to
map the specification of the simulated model. Another disadvantage of overriding is

that it cannot be used to exclude instance variables.

5.5 The Interaction Between Inheritance and Feature Exclusion

Most object-oriented languages permit a subclass to extend the definition of its su-
perclass and prohibit the removal of any features of the superclass when subclassing.
The reason for this restriction is that these languages do not distinguish between in-
heritance and subtyping. In a typing system, T} is a subtype of T if every instance
of T is also an instance of T, [Cardelli and Wegner, 1985]. This implies that an
instance of T} can be used whenever an instance of T} is expected. This is what is
called the principle of substitutability.

An object-oriented language that views subclassing as subtyping cannot permit
the removal of superclass features in a subclass because that would violate the prin-
ciple of substitutability. To remedy the situation, some languages such as Sather
[Szypersky et al., 1993] separate the type/subtype hierarchy from the class/subclass
hierarchy. In Electra excluded features are not removed but rather masked and as-
signed the generic value NIL. The following refers to the classes Bird and Ostrich
that were presented earlier. Let us suppose that we have the following declarations:

b : Bird;

o : Ostrich;

o := Ostrich(); { Instantiate class Ostrich }

b:=o;
The definition of Ostrich excludes the feature Average_Flight_Speed. Therefore,
accessing the variable o.Average_Flight_Speed should produce an error message

during compile time. The feature Average_Flight_Speed is not removed from the

67

definition of class Ostrich, it is merely inaccessible as a feature of that class. After
assigning the variable o of type Ostrich to the variable b of type Bird, the feature
can be accessed as b.Average_Flight_Speed and it has an undefined value (i.e. the

value NIL).

5.6 The Interaction Between Constraints and Feature Exclusion

A constraint that is declared by a class is inherited by all of its subclasses. A subclass
is permitted to exclude any of the features that it inherits from its superclass. A
reasonable question to ask is “What happens to a constraint that is inherited by
a subclass that excludes one or more of that constraint’s participants?” Since an
excluded feature is not removed but merely masked and assigned the the value NIL
and since a constraint does not get activated until all of its participants are defined
then an inherited constraint that has at least one excluded participant will never be
activated.

It is important to note that the current definition of the language Electra pro-
hibits the exclusion of any variable that participate in a satisfiable constraint. The
reason for this restriction is that every participant of a satisfiable constraint is main-

tained by the underlying satisfier.

638

Chapter 6

Implementation Approaches and the Electra Compiler

This chapter presents the approaches taken to implement Electra’s added constructs.
It begins by covering how fixable and satisfiable constraints are implemented. After
that it presents the approach taken to implement guarded functions which are used to
express condition-based dispatching. A discussion of the implementation of feature
exclusion is also presented. The chapter closes by illustrating the differences between

Leda and Electra compilers.

6.1 Implementation of Constraints

Chapter three presents the syntax and semantics of both fixable and éatisﬁa.ble con-
straints. This section describes the implementation of fixable and satisfiable coﬁ—
straints in the Electra compiler. It begins by presenting data structures that are
common to both types of constraints then it covers the implementation aspects of
each type separately.

Two new lists were added to the symbol table of every scope level in order to
keep track of the declared constraints and their participating variables. The first
is called constraint list and the second is constrained variables list. The constraint
list is composed of constraint records where each record represents a constraint, and
the constrained variables list contains constrained variable records that keep infor-
mation relevant to every constrained variable. Figure 6.1 illustrates the structure
of constraint records and constrained variable records. Whenever a constraint is
encountered a constraint record is created for it containing its name, type of solv-

ability (i.e. fixable or satisfiable), and appropriate pointers to its participants. A

69

Name Name

Type Type

Participants Constrained-By:
Constraint Record Constrained Variable Record

Figure 6.1. Constraint Records and Constrained Variable Records.

constrained variable record is also created for every participant. That record con-
tains the participant’s name, type of solvability, and pointers to the constraints it
is participating in. The Electra language supports two types of constraints: fixable
constraints and satisfiable constraints. In the following paragraphs, we will describe

the approaches taken to implement each type.

6.1.1 Implementation of Fixable Constraints

A fixable constraint contains its own fix. The fix section of a constraint is composed
of a set of nonreturn statements. This section of code is invoked whenever the
constraint is broken. A check is automatically added at the bottom of the fix to
verify that at the end of the fix the assertion is satisfied. A fixable constraint gets
activated when all its participants are defined. A variable that participates in a
fixable constraint is not permitted to participate in any other constraint.

In terms of implementation, fixable constraints can be viewed as procedural at-
tachments. The concept of procedural attachments (Brachman, 1979] has its roots in
frame languages like KRL [Bobrow and Winograd, 1977], FRL [Roberts and Gold-
stein, 1977], and KL-One [Brachman, 1979, Brachman, 1977). This concept is also

known as access oriented programming [Stafik et al., 1986]. The idea is that a generic

70

function containing both the assertion and the fix of the constraint is created and
attached to the constrained object in such a way that it is invoked whenever the con-
strained object is accessed for an update. The constraint condition is then checked.
If the condition is not met then the constraint is not being maintained and, as a
reaction, the fix part is executed.

Every fixable constraint is implemented as a subclass of a predefined class called
FixableConstraints which has a structure that is depicted by Figure 6.2. The
class FixableConstraints is composed of two instance variables and five member
functions. The instance variables breaker and oldVal serve as repositories for the
participant that violated the constraint and its old value respectively. The member
function brokenBy () takes a participant as an argument and returns a boolean value
indicating whether the given participant is the one that violated the constraint. The
function 01d() takes no arguments and returns the old value of the participant
that violated the constraint if it has an old value otherwise it returns NIL. The third
function checkAssertion() is overridden during the parsing of the actual constraint.
It is constructed in such a way that it will return true if all the participants of its
constraint are defined and the assertion of that constraint is violated otherwise it
returns false. The function fixPart () is another function that is overridden during
the processing of its constraint. It contains the body of the fix part of its constraint,
as indicated by its name. The most important part of the satisfaction process is
performed by the function checkValidity(). It is invoked whenever a participant
is updated. Its job is to check if the assertion is broken. If so, then it invokes the
fix and checks the assertion again after the invocation of the fix to be sure that the
constraint has been satisfied. If the assertion is still invalid then the program is
terminated with an error message stating that the fix did not satisfy the assertion.

A simple example of a fixable constraint is shown in Figure 6.3 that will help
in explaining the process of activation, maintenance, and satisfaction of a fixable
constraint. Once the constraint foo is parsed, a constraint record is created for it

and i1s inserted into the constraint list of its scope. Also, constrained variable records

71

class FixableConstraints;
var

breaker, oldVal : integer;

function brokenBy(x : integer)—boolean;
begin
if (x == breaker) then
return true
else
return false;
end;

function old()—integer;
begin
if defined(oldVal) then
return oldVal
else
return NIL;
end;

function checkAssertion ()— boolean;
begin end;

function fixPart();
begin end;

function checkValidity();
begin
if (checkAssertion()) then
begin
fixPart();
if (checkAssertion()) then
begin
print("The fix does not satisfy the assertion. \n");
cfunction Leda_prog_exit();
end;
end;
end;

end; { of class FixableConstraints declaration }

Figure 6.2. Fixable Constraints.

72

var
d, e : integer;

constraint foo;

assert
d=e+1;
fix
if brokenBy(d) then
e=d-1
else
d:=e+1;
end;

Figure 6.3. Example of a Fixable Constraint.

are created for the variables d and e. A subclass of the class FixableConstraints is
created with the name constraint_foo. The new subclass overrides the functions
checkAssertion() and fixPart (). The new bodies for the overridden functions are
shown in Figure 6.4. The final step of initializing and activating this éonstraint is to
instantiate the class constraint_foo with an instance named foo. The process of
initializing and activating any fixable constraint can be summarized in the following

steps:

1. Create a constraint record for the new constraint and insert it into the con-

straint list.

2. Create a constrained variable record for every participant and store the created

records in the constrained variable list.

3. Create a subclass of the class FixableConstraints to represent the new con-

straint.

4. Override the functions checkAssertion() and fixPart () with the appropriate
bodies.

73

function checkAssertion ()— boolean;
begin
if defined (e) & defined(d)& (~(d =e + 1)) then
return true
else
return false;
end;

function fixPart();

begin
if brokenBy(d) then
e:=d -1
else
d:=e+ 1;
end;

Figure 6.4. Overriding of Some Functions of the Base Constraint Class.

5. Instantiate the newly created subclass.

If a variable that is constrained by a fixable constraint is to be updated then a
search is performed to locate the constraint that is constraining it. Once that con-
straint is found then its instance variables are set to the proper values and its member
function checkValidity() is invoked. For instance, in the previous example, if the

variable d were to be updated then the following operations are performed:
1. Search for the constraint foo.
2. Set foo.0ldVal to the old value of d.
3. Set foo.breaker to the new value of d.
4. Invoke the function foo.checkValidity().

The function foo.checkValidity() will invoke the fix if necessary.

74

6.1.2 Implementation of Satisfiable Constraints

A satisfiable constraint is a constraint that is totally maintained by the constraint
solver. Every variable that participates in a satisfiable constraint is represented by
a single copy that is kept by the solver. The Electra compiler is separate from
the solver and has no knowledge of its characteristics. All the communication be-
tween the compiler and the constraint satisfier is done through an interface called
the compiler-solver interface. This approach of separating the compiler from the
constraint satisfier makes it possible to use different solvers depending on the nature
of the declared constraints and the capabilities of the available solvers. Figure 6.5

illustrates the interface between the compiler and the satisfier.

The
The Leda > The Solver < Constraint
Compiler < Interface > Solver

Figure 6.5. The Compiler-Solver Interface.

When a satisfiable constraint is encountered then it is the job of the interface
to check that the constraint assertion is understandable by the satisfier and that all
the participating variables belong to domains that can be handled by the current
satisfier. Once the assertion and the respective domains are deemed to be valid,
then the interface passes the constraint’s name, its strength, its assertion, and its

participants to the solver. Every access or update to any of the participating variables

75

is converted to an Electra cfunction call which is part of the interface to the solver.

The interface provides the following services to the Leda compiler:
1. Insert variable into the solver’s symbol table.
2. Remove variable from the solver’s symbol table.
3. Insert constraint into the solver’s symbol table.
4. Remove constraint from the solver’s symbol table.
5. Enforce constraint.
6. Relax constraint.
7. Get value of a variable.

8. Set value of a variable.

6.2 Implementation of Guarded Functions

The syntax and semantics of guarded functions are presented in chapter four. The
approach taken for the implementation of guarded functions in Electra is to create an
enclosing function and view all instance functions as subfunctions of the enclosing
function. The body of the enclosing function is composed of a nested if-then-else
statement where the conditions are the guard expressions and the statements are
calls to the corresponding instance functions.

Figure 6.6 shows an Electra program that has the two functions foo() and
bar(). The function bar() is a guarded function and there are three instances of
it. The instance functions have the guard expressions x > y, x = y,and x < y,
respectively. Figure 6.7 shows the same example with the guarded functions trans-
formed into a single enclosing function with all the instance functions appearing as
subfunctions of that enclosing function. The subfunctions are given new names ac-

cording to their order of appearance. Note that the function foo() remains intact

76

since it is not a guarded function. The declarations of the instance functions do not
have to be grouped together but rather can be interleaved by other declarations such
as the case of having the declaration of the function foo() appears between the first

and second instances of the guarded function bar().

guarded function bar(x, y : integer);
[x>vy]
begin
.... body of first instance of the guarded function bar
end;

function foo();
begin

.... body of function foo
end;

guarded function bar(x, y : integer);
[x=y]
begin
.... body of second instance of the guarded function bar
end;

guarded function bar(x, y : integer);
[x<vy]
begin
.... body of third instance of the guarded function bar
end;

begin
.... body of the main program ...
end;

Figure 6.6. Guarded Functions Implementations: An Example.

7

function foo();
begin
.... body of function foo
end;
function bar(x, y : integer);

function bar_1_();
begin

.... body of first instance of the guarded function bar
end;

function bar_2_{();
begin

.... body of second instance of the guarded function bar
end;

function bar__3_();
begin
.... body of third instance of the guarded function bar

end;
begin
if (x >y) then
bar_1_();
else if (x =y) then

bar_2_();
else if (x <y) then

bar_3_();

end;

begin
.... body of the main program ...
end,

Figure 6.7. Converting Guarded Functions to Nested Regular Functions.

78

6.2.1 Managing Guarded Functions

Every instance function is represented by a record called the instance guarded func-
tion record. This record contains the new name given to the instance and the in-
stance’s guard expression. Whenever an enclosing function is created a corresponding
enclosing function record is instantiated for that function. This type of record keeps
information related to the name of the represented guarded function, the number of
instance functions it has, a list of the names of these instance functions and their
guard expressions, and some other bookkeeping information. Figure 6.8 illustrates
the structure of instance guarded function records and enclosing function records.
A new entry is added to the symbol table of every scoping level. This entry is
called guardsinfo. It contains a pointer to a list containing information about the
guarded functions within that scope. Each guarded function is represented by an

enclosing function record that is inserted into the guardsInfo list in its scope level.

{ N
Name {
Occurnces (-
ValueReturning (
GuardConditionList Name
SymbolTableRecord Guard Condition

\)

Enclosing Function Record Instance Gurded Function Record

Figure 6.8. Managing Guarded Functions.

79

6.2.2 The Transformation Process

This section describes the process of transforming guarded functions into nested
regular functions. When an instance of the guarded function bar() is encountered
a check is made to see if it is the first instance of that guarded function. If it is,
then an enclosing function is created with the name bar(). An enclosing function
record is created for it and inserted into the guardsInfo list of the containing scope.
The encountered instance function is given the new name bar__1__() and made as
a subfunction of the enclosing function. The name of this function (i.e. bar__1__()
) and its guard expression are added to the enclosing function record of bar (). If the
encountered instance is not the first instance, then the existing enclosing function
record for bar() is fetched and the encountered instance function is given a new
name and inserted as a subfunction of bar(). The enclosing function bar() still has
an empty body. Its body will be created just before the enclosing scope is exited. All
the information needed to create its body can be found in its record that resides in
the guardsInfo list. Figure 6.9 shows the symbol tables for the three scoping levels:
global, function foo (), and function bar(). The symbol table for the function £ao O
shows that this function has no subfunctions and its guardsInfo list is empty since
it does not contain any guarded functions. The symbol table for the function bar()
shows that it has three subfunctions: bar__1__(), bar__2__(), and bar__3__().
Figure 6.10 takes a closer look at the symbol table of the global scope level. It shows
that the global scope has two functions. The first is foo() and it is not guarded, while
the second is bar() which is guarded, The guardsInfo list of the global scope has
one entry related to the only guarded function in that scope. This entry shows that
this guarded function has three instances and it gives their names and their guard
conditions. This information is used to create the nested if-then-else statement that

constitutes the body of the function bar().

80

_]—> Global
CE—
Type]
Functions foo() bar)
GuardsInfo NonGuarded Guarded
----- bar()
R
Ema———
Type function: foo()
Functions
GuardsInfo
.....
function: bar()
I
Type
Functions bar__1__() P> bar_2_() bar_3_ ()
GuardsInfo NonGuarded NonGuarded NonGuarded
.....

Figure 6.9. Symbol Table Records.

81

Global
M
Type
Functions foo() bar()
GuardsInfo NonGuarded Guarded
.....
Name bar()
Occurnces 3
ValueReturning None
GuardConditionList Name tbar__1_ ()
SymbolTableRecord ___ Guard Condition :(x>y)
bar() Name :bar_2_ ()
Guard Condition :(x=y)
Name sbar__3__ ()
Guard Condition :(x<y)

Figure 6.10. Symbol Table Record of the Global Scope.

82

6.3 Implementation of Feature Exclusion

The behavior, syntax, and semantics of the exclude statement is presented in chapter
five. Every feature that appears in an exclude statement is marked as excluded. An
excluded instance variable cannot be accessed in the excluding class or its subclasses.
Since a default value of NIL is assigned to every variable upon creation by the com-
piler, and since an excluded instance variable cannot be updated then every excluded
instance variable has the value NIL. The body of an excluded method is replaced by
a call to the standard method excludedMethodBody() passing it the name of the
excluded method. Figure 6.11 lists the method excludedMethod Body(). The job
of this method is to indicate that an excluded method has been called and terminate
the program. The actions of this method can be altered to reflect the programmer’s

wishes. If a value-returning method is excluded then a NIL is returned.

function excludedMethodBody(s:string);
var

temp : boolean;
begin
print("An attempt to call an excluded method: ");
print(s);
print(*\n");
temp := cfunction
Leda_prog_exit()—boolean;
end;

Figure 6.11. A Standard Method that Replaces Every Excluded Method.

83

6.4 The Electra Language Compiler

A compiler for the language Electra has been built by integrating the above described
implementation approaches into the latest Leda compiler. Electra’s compiler sup-
ports all the added features as described in this dissertation. The only limitation is
that it does not support class constraints. The reason for this limitation is that the
current implementation of Leda does not support the declaration of a class inside
another class.

Table 6.1 shows what the Electra’s enhancements added to the Leda compiler

in term of size, production rules, keywords, and abstraction constructs. The table

Table 6.1. Differences Between Leda and Electra Compilers.

Language or Compiler Aspect Leda | Electra | Difference
Run-time system size 219795 | 278528 58733
Number of non-terminal symbols 48 67 19
Number of keywords 22 31 9
Number of abstraction constructs 3 4 1

indicates that the size of the compiler has increased by about one fourth which is rea-
sonable since Electra adds a new paradigm to the four paradigms that are supported
by Leda. The larger proportional increase in the number of non-terminal symbols
and keywords is due to the fact that Electra supports two types of constraints in
addition to its enhancements of the functional and object-oriented paradigms. In
terms of keywords, Leda has seventeen additional keywords that represent the tex-

tual names for operator symbols. The abstraction constructs that are supported by

84

Leda are: the function abstraction, the relation abstraction, and the class abstrac-
tion. Electra supports one additional abstraction construct which is the constraint
abstraction.

The Leda compiler groups all predefined types, classes, functions, and variables
into an include file called std.led that can be customized by programmers. The
Electra compiler takes the same approach by grouping all predefined entities that
are relevant to constraints, condition-based dispatching, and feature exclusion into a

single include file called constraints.led.

85

Chapter 7

Advantages and Examples

This chapter examines some of the advantages and capabilities that can be attributed
to constraints, condition-based dispatching, and feature exclusion. It begins by show-
ing how constraints can be used in implementing the technique of enforced reevalua-
tion and how their declarative style can help in hiding the intricate details of search.
After that, it illustrates how condition-based dispatching can be a great aid in the
direct mapping of problem specification into Electra code. It then shows how fea-
ture exclusion and constraints can help in increasing the degree of software reuse
that is normally provided by inheritance. An illustration is provided as to how the
expressiveness of data abstraction and the versatility of type extensions can benefit
from the availability of the constraint construct. The chapter closes by showing how

constraints can help in insuring data integrity and validating code correctness.

7.1 Constraints and the Enforced Reevaluation

It is often necessary to create a linkage between two entities in such a way that if
one is changed then the change is reflected on the other. This means that when one
entity changes a reevaluation is enforced upon the other one. This section presents
two examples that shows how enforced reevaluation is used in implementing scrollable

windows and screen savers utilizing the constraint construct.

7.1.1 Implementing a Scrollable Window

A scrollable window is a window that is normally used to view a text file by scrolling

it up or down. Each scrollable window has one or more scroll bars associated with it.

86

Figure 7.1 shows a scrollable window and a scroll bar. The scroll bar is composed of
two buttons and a thumb. The scrollable window maintains two constraints between
the displayed text and the orientation of the scroll bar. These constraints are as

follows:

1. The first constraint states that the relation between the scrolled portion of the
viewed file and the total length of the file must be the same as the relation
between the length of the part of the scroll bar above the thumb and the whole
length of the scroll bar. This constraint can be expressed using the following
equation:

sp _ spb

fl bl
2. The second constraint states that the relation between the length of the viewed
part of the text file and the total length of the file must be the same as the
relation between the length of the thumb and the whole length of the scroll

bar. The second constraint can be expressed using the equation:

wl tl

170

Table 7.1 lists the variables used in the two equations that represent the con-
straints maintained by the scrollable window along with a description of their pur-
pose, and Table 7.2 displays the specifications of a scrollable window by listing the
possible actions and their associated reactions.

A reasonable way to correctly implement a scrollable window is to create an
accessor function for each variable involved in the two equations. The need for the
accessor functions is justified because an update to any variable requires a check to
validate the integrity of the two equations. A better approach is to use the technique
of enforced reevaluation by implementing the scrollable window using constraints.

Figure 7.2 shows the specification for an Electra constraint that expresses
the behavior of a scrollable window. The assertion expression of the constraint

ScrollableWindow lists the two equations that express the relations that must be

87

sp

Scroll-up Button

Thumb

Text file Scroll Bar

wl

Scroll-down Button

Scrollable window
A
spb ¥
1
bl
Y
v

Figure 7.1. Characteristics of Scrollable Windows.

88

Table 7.1. Variables and Their Meanings: This table lists the variables used in the
scrollable window example along with their meaning.

Variable Name | Description
sp Length of the scrolled part of the viewed file.
il Total length of the viewed file.
wl Length of the scrollable window.
bl Length of the scroll bar.
tl Length of the thumb.
spb Length of the part of the scroll bar above the thumb.

Table 7.2. The Specification of a Scrollable Window: This table shows the speci-
fications of a scrollable window by listing the possible actions and their associated
reactions. '

External Action Reaction of Scrollable Window

File length increased Move thumb up and reduce its length
File length decreased Move thumb down and increase its length
Thumb moved down Increase scroll part of file

Update window

Thumb moved up Decrease scroll part of file

Update window

Scroll part of file increased | Move thumb down

Scroll part of file decreased | Move thumb up

Window length increased | Increase length of thumb

Window length decreased | Decrease length of thumb-

89

constraint ScrollableWindow;
assert

((sp/fl = spb/bl) &
(wi/ft =tl/bl)) ;
fix
begin
if brokenBy(sp) then
spb := (sp * bl)/fl;
else if brokenBy(spb) then
sp := (' spb = fl)/bl;
else if brokenBy(fl) then
begin
spb := ('sp * bl)/fi;
tl:= (wl = bl)/fl;
end;
else if brokenBy(wl) then
tl := ((wl % bl)/fl;

RefreshWindow(CurrentWindow);
end;
end;

Figure 7.2. Implementing a Scrollable Window Using Constraints.

maintained by the scrollable window. The fix part states the actions that are to be
taken when the involved variables are changed. There are four possible actions that
can result in violating the constraint ScrollableWindow. The following list summa-
rizes the behavior of the fix part by listing its reaction to each of these four possible

actions.

1. Scrolled part of file has changed
Update the location of the thumb.

2. The location of the thumb has changed
Update the length of the scrolled part of the file.

90

3. The length of the file has changed
Update the location of the thumb and its length.

4. The length of the window has changed
Update the length of the thumb.

Once the appropriate action is taken, the current window is redisplayed.

7.1.2 Implementing a Screen Saver

A screen saver is a software utility that has the advantage of prolonging the life-span
of a monitor screen by blanking it whenever it is not being used. Upon activation, a
screen saver continuously monitors certain system events such as keyboard strokes,
mouse operations, or screen updates. Once a certain interval of time is elapsed
without encountering any of the above events, the screen saver blanks the screen. If
one of the aforementioned events occurs while the screen is blanked by the screen
saver, the screen is refreshed and the screen saver continues its monitoring of events.
Figure 7.3 shows an Electra implementation of a screen saver using- the constraint
ScreenSaver.

The assert expression of the constraint ScreenSaver states that the constraint
is satisfied as long as no new event has taken place and the time limit has not been
exceeded since the last event. The variable event is a boolean that is set to true by
the system whenever a keystroke, mouse operation, or screen update is to take place.
If an event were to occur or if the time limit where to expire then the fix would be
invoked. The fix part checks for the reason the constraint was violated and performs
the appropriate reactions. If the violation was due to an event then the action to
take is to refresh the screen if it is blanked and to update the starting time. If the
violation occurred due to time limit expiration or a change in the length of the time

limit then the screen is blanked and the starting time is set to a large value.

91

constraint ScreenSaver;
assert

(~event) &
(clock < (startTime + interval));
fix
if brokenBy(event) then
begin
if (activeSS) then
begin
activeSS := false;
refreshScreen();
end;
startTime := clock;
end;
else if (brokenBy(clock) | brokenBy(interval)) then
begin
activeSS := true;
blankScreen();
{Set startTine to the largest possible integer.}
startTime := Maxint — interval;
end;
end;

Figure 7.3. Implementing a Screen Saver Using Constraints.

A constraint is a natural approach for expressing the technique of enforced reeval-
uation. Enforced reevaluation can be used for stating the specification of many prob-

lems in diverse domains such as simulation of physical systems and user interfaces.

7.2 Constraints and Search

Chapter two showed how a problem such as the map-coloring problem can be con-
verted into a constraint-satisfaction problem by decomposing its specification into
a set of constraints. The map-coloring problem can easily be solved by feeding the

obtained constraints to a constraint-satisfier. This shows how the declarative nature

92

class Queen
X, y : integer;
constraint Location;
assert
forall q in instances_of(Queen)
if @ <> self then
g.x <>xand q.y <>y
and q.x + x <> q.y +y
and q.x — x <> q.y —y;
end;
end;

Figure 7.4. The Definition of the Queen Class With its Location Constraint.

of constraints can help in relieving the programmer from worrying about the intricate
details of the search process since that task is delegated to the constraint-satisfier.
This section shows another example of how constraints can help in hiding the
search implementation. A good example of a search problem is the 8-Queens problem.
The object of the 8-Queens problem is to place eight queens on a chess board in such
a way that none of the queens can attack any of the others. In other words, in order
to satisfy the requirements of the problem, no two queens can share a row, a column,
or a diagonal. Cull and Pandey present further discussion and very comprehensive
bibliography related to the N-Queen problem [Cull and Pandey, 1994]. Figure 7.4
shows how the specifications of the problem (i.e. the restrictions imposed on every
queen) can be declared as a constraint inside the class Queen. It lists the declaration
of the class Queen with the z and y coordinates of its location. The constraint
Location is imposed on every instance of the declared class. Every time an instance
is created, the satisfier tries to find appropriate values for its £ and y coordinates.
This might result in changing the coordinates of one or more of the previously created

instances.

93

The advantage of this approach is that the restrictions on every queen are clearly
stated inside its class and are not buried between a large number of lines of code.
Additionally, the programmer does not have to worry about how search is done.

A similar approach can be taken in solving many search problems. Another
example of a search problem is the cryptoarithmetic problem. In cryptoarithmetic
problems, the objective is to find appropriate assignments of digits to letters in order
to meet a certain mathematical statement [Newell and Simon, 1972, Simon, 1981].

For example:

S E N D
+ M O R E
M O NEY

The above cryptoarithmetic problem can be solved by taking each column and con-

vert it into an equation, producing the following set of equations:
D+ E =Y mod 10

(Y div 10) + N + R = (E mod 10)

(E div 10) + E + O = (N mod 10)

(N div 10) + S + M = (O mod 10)
Odiv10)=M

The above equations are then converted into constraints and passed to a constraint-
satisfier with the additional constraint that every variable must assume a unique

value.

7.3 Support for Direct Mapping of Problem Specifications

Hoare [Hoare, 1987] introduced and presented a selection of formal methods for the

process of software specifications. He used, as an example, the process of computing

94

the greatest common divisor of two positive numbers. He presented the following as

the functional specification for the process of finding the greatest common divisor:

ged(z,y) == if z=y
ged(z,y) = ged(z — y, y) if 2>y
ged(z,y) = ged(y, z) if <y

He also said the following regarding the choice of an implementation language:

It is obviously sensible to use for final coding a language which is as close
as possible to that of the original specification, so that the number of
steps in the design process is kept small.

Figure 7.5 shows how the above specifications of finding a greatest common divisor
can be mapped directly into Electra code by representing each line as a separate

instance of the guarded function gcd(). It is obvious that the same behavior can

guarded function ged(x,y :integer)—integer;
[x=y]
begin
return x;
end;

guarded function ged(x,y :integer)—integer;
[x>y]
begin
return gcd(x — vy, y);
end;

guarded function gcd(x,y :integer)—integer;
[x<y]
begin
return ged(y , x);
end;

Figure 7.5. The Mapping of the Specification of GCD into Electra Code.

95

be achieved by combining the bodies of the instances of the gcd() guarded function
into a single regular function and use some conditional statements to get to the
appropriate actions. However, this approach of defining behavior by a group of
independent functions provides the programmer with the ability to incrementally
define the specifications and characteristics of that behavior. This way, the evolution
of the function is more localized instead of being lost within the branches of a case

or 1f-then-else statements.

7.4 Support for Increasing Software Reusability

Biggerstaff and Perlis [Biggerstaff and Perlis, 1989] defined software reuse in the

following quote:

Software reuse is the reapplication of a variety of kinds of knowledge
about one system to another similar system in order to reduce the ef-
fort of development and maintenance of that other system. This reused
knowledge includes artifacts such as domain knowledge, development ex-
perience, design decisions, architectural structures, requirements, designs,
code, documentation, and so forth.

This section concentrate on code reuse and shows how the constructs of feature

exclusion and constraints help in increasing the degree of software reuse that is

normally obtained by using inheritance.

7.4.1 Support of Feature Exclusion for Software Reuse

Through inheritance we can build new software modules on top of an existing hier-
archy of modules. Adding feature exclusion to inheritance will enable programmers
to start with more comprehensive and general classes, and be able to focus behavior
and structure via constraining the basic types. This will increase the level of code
sharing (and hence, reusability). Snyder [Snyder, 1991] defines two meanings for the
term inheritance. The first refers to a classification hierarchy of classes. This mean-

ing defines a type of inheritance sometimes called specification inheritance which

96

often relates to the type model used in type checking. The other meaning is as a
mechanism that allows new classes to be defined as incremental modifications to old
ones. This meaning defines a type of inheritance called implementation inheritance
and is intended to support modularity and code reuse. Following that, he indicated
that it is necessary to separate the two notions. Regarding the relation between im-
plementation inheritance and inheritance exceptions, Snyder [Snyder, 1986b] states:
“... if inheritance is viewed as an implementation technique, then excluding opera-
tions is both reasonable and useful.” In the same article, he gave an example of the
abstraction of a stack and a deque, where he defined a stack as a queue that permits
elements to be added or removed from one end, and a deque as a queue that permits
elements to be added or removed from either end. Therefore the external interface
of a deque is a superset of the external interface of a stack because a deque has two
additional operations for adding and removing elements from the other end.
Regarding the implementation of these two data structures, Snyder proposed the

following:

The simplest way to implement these two abstractions (at least for pro-
totyping purposes) is to define the class stack to inherit from the class
deque, and exclude any extra operations. Stack inherits the implementa-
tion of deque, but is not a specialization of deque, as it does not provide
all the deque operations.

Inheritance provides an approach of implementing Is-a relationships. However,
when combined with the construct of feature exclusion then one is able to express
a new kind of relationships which we call Is-a-kind-of relationships 2. For instance,
a set is a kind of bag with the constraint that each element occurs only once, a

three-legged elephant is a kind of elephant, and a circle is a kind of ellipse. Being

able to express this kind of relationship (i.e., is-a-kind-of relationship) increases the

?It is important to note that some researchers such as Wirfs-Brock, Wilkerson and
Wiener [Wirfs-Brock et al., 1990] use the term “Is-kind-of” to refer to what we call

“Is-a” relationship.

97

chances of being able to reuse a class, because the set of entities conforming to an

1s-a relationship is a subset of the set of entities conforming to the new relationship.

7.4.2 Support of Constraints for Software Reuse

Constraints can be a useful tool in increasing the degree of software reuse that is
normally provided by inheritance, especially in cases where the subclass adds certain
structural or behavioral restrictions over those features appearing in its superclass.
Examples of such characteristics are often faced when constructing classes that de-

scribe geometrical shapes. Such examples include:
e A square is a rectangle where all sides having equal length.
o A trapezoid is a quadrilateral with two parallel sides.
o A right triangle is a triangle with one 90° angle.
o A circle is an ellipse with its two foci residing at the same point.

Figure 7.6 shows the declaration of a Rectangle class and subclassing it to create the
Square class with the addition of the constraint EqualSides. This constraint states
that the length and height of a square must always be equal. Every operation that
is applicable on a rectangle is also applicable on a square as long as the constraint

EqualSides is maintained valid.

7.5 Support for Expressing Data Abstractions

The availability of constraints provides support for the task of abstraction in data
typing because they enhance the mapping between implementation and specification
which makes the former a better reflection of the latter. Thus, they help the pro-
grammer express the semantics of an abstract data type as directly as possible, and

hence, they help in constructing more complete and correct data types. For instance,

when one is creating an employee class with the feature EMPLOYEE-NUMBER, it

98

class Rectangle of Shape;
length : integer;
hieght : integer;

some methods such as Area()
end.;-

class Square of Rectangle;
constraint EqualSides: required;
assert
length = height;
end;
end;

Figure 7.6. Constraint and Software Reuse.

is difficult to express the fact that every employee has a unique number if one does

not have a construct that can express this kind of constraint.

7.6 Support for Expressing Type Extensions

A number of languages such as Ada [US Department of Defense, 1983, Barnes, 1994],
Modula-2 [Wirth, 1985], and Pascal [Jensen and Wirth, 1985] support a mechanism
to define a type as a subtype of another type. In particular, they provide the pro-
grammer with the ability to define subranges of the integer type. For example, in
Pascal it is possible to define a subrange of integer as follows:
Type
Digits : 0 .. 9;
Any variable that is declared of type Digits can assume any value between 0 and
9 inclusively, and cannot be assigned any value outside that range. Any attempt to

violate this restriction would generate a compile-time error (a run-time error in the

99

case of computable values). With the exception of this restriction, variables of this
type can be treated exactly like integer variables. Electra does not support creating
subranges of the integer type for reasons of simplicity. However, it is possible to
create a class with an intra-instance class constraint that simulate the behavior of
the subrange type. Figure 7.7 lists the class Digits which provides a generalized
approach for simulating the behavior of the Pascal subrange that is declared above.
If the instance variable val is to be assigned a value out of the range 0..9 then the
fix of the constraint Boundary is invoked. The fix will send an error message and
set the instance variable val to NIL. The reason we claim that this is a generalized
approach is that the programmer has total control as to how the situation is resolved
when an attempt is made to assign a value out of the permitted range. Compare
this to the Pascal version where an assignment of an out of range value will generate

an error message and terminate the program.

class Digits;
val : integer;

constraint Boundary;

assert
(val >=10) & (val <=9);
fix
begin
print("Value out of range, set to NIL. \n");
val := NIL;
end;
end;

end;

Figure 7.7. Creating a Subrange Class Via a Constraint.

100

7.7 Integrity Constraints

Integrity constraints of any system, especially that of a database system, are con-
cerned with the maintenance of the correctness and consistency of the data. Im-
plementation of such integrity rules can be an error-prone and complicated process.
Thus, there is a need for constructs that assist in directly expressing relationships
among objects. For instance, domain integrity rules which maintain the correctness
of attribute values in a relational database can be directly mapped to simple con-
straints. An example of a domain integrity rule is the rule needed to state that the
attribute COST must have a positive value. Another example is the rule needed to
express the fact that the value stored in the field HOURS-PER-WEEK must not
be negative and must not exceed the maximum number of hours possible per week.
Another type of integrity rule is known as an intrarelation integrity rule, which is
used to express the functional dependencies between attributes. For example, in a
relation such as FATHER(X,Y), a rule is needed to express the fact that a person
can never be a father to himself (i.e., X and Y should be constrained not to have
the same value). Therefore, constraint constructs can be a very useful mechanism
to implement integrity constraints that are associated with objects or their instance

variables.

7.8 Support for Validation and Debugging
There are several types of validation:
o The validation that the design of a system reflects the stated specifications.

e The validation that the written code behaves according to the designer’s in-

tention.

The process of software validation is a desirable, yet complicated process. Some
languages provide constructs to support the process of code correctness validation

such as the “assert()” construct in ANCI C [Plauger, 1992], and Eiffel’s “require” and

101

“ensure” constructs [Meyer, 1993]. Since constraints provide the programmer with
more control over what is provided by simple assertions, we feel that they can provide
more assistance and be more effective in influencing the second type of validation.
The advantages of having constraints, condition-based dispatching, and feature
exclusion are not limited to the above list but rather include expressiveness, ease
of use, and reduction of checks that otherwise would have to be performed at var-
lous points throughout the program. In particular, the availability of constraints
with their declarative style assists the programmer in expressing relations without

worrying about their maintenance or satisfaction.

102

Chapter 8

Summary, Future Work, and Conclusion

This chapter begins by presenting a short summary of this dissertation. After that,
it lists some of the anticipated future directions of this research. Finally, the chapter

closes by providing some concluding remarks.

8.1 Summary

This dissertation presents the design and implementation aspects of the language
Electra. Electra extends the language Leda by integrating the constraint paradigm
into it. It also enhances the functional and object-oriented paradigms of Leda by
adding condition-based dispatching to the former and feature exclusions to the latter.
The dissertation begins by providing a general meaning of the term “paradigm” and
its connotation in the context of programming languages. After that, it describes the
four paradigms that are provided by Leda and presents Electra’s added constructs.
The second chapter covers the fundamental concepts of constraints including their
definition, advantages, and approaches for satisfying them. It also illustrates how
constraints can provide a natural approach for expressing the solutions to a class
of problems called constraint-satisfaction problems. The following chapter presents
Electra’s constraint constructs. The presentation includes the syntax, semantics,
and general characteristics. In chapter four a description is provided regarding the
technique of condition-based dispatching and how it can be expressed using guarded
functions. Additionally, it shows how condition-based dispatching can be used to
simulate the behavior of argument pattern-matching which is a technique that is

provided by most functional languages. Chapter five discusses feature exclusions

103

and shows why it is necessary to be able to express this phenomenon. The Electra
compiler and the approaches it took in implementing the added constructs is covered
in chapter six. Finally, the dissertation lists some advantages of the added constructs

and provides some illustrative examples.

8.2 Future Work

The following lists some of the planned and anticipated work and directions for the

future of our research:

¢ A need for a closer look into the implementation of Electra in order to improve

the performance of the compiler and the quality of the generated code.

o A further investigation of the syntax and semantics is needed to insure a

smoother blending with other constructs and paradigms in Electra.

e In order to increase the generality of Electra’s constraint constructs, the design
of the compiler-solver interface must be enhanced to be able to accommodate
communication with multiple solvers that have varying capabilities. Addition-
ally, the interface should have the ability to select the appropriate satisfier for
each constraint network, depending on the domain and characteristics of that

constraint network.

e There is a need to study the interactions between constraints and other
paradigms and see how the existence of constraints can help in increasing the
utility of other paradigms. Therefore it is necessary to design and implement
some large applications that utilize the added constructs along with some of the
constructs of the existing paradigms. These applications will provide a vehicle
that assists in the process of evaluating how constraints can take advantage of
the characteristics of the other paradigms and how the other paradigms can

benefit from the existence of constraints.

104

e The incorporation of Electra’s added constructs into the Leda programming
environment that is being developed by Pandey [Pandey, 1993]. It will be
necessary to extend the programming environment by adding some constraint

debugging tools such as a hierarchical constraint graph viewer.

e In the dissertation, we stated that constraint constructs are better suited for
expressing constraint-satisfaction problems than any other construct in the
portfolio of the Leda language. We feel that using constraint constructs in
programs that solve such problems should make these programs easier to un-

derstand and therefore maintain or enhance.

A comprehensibility experiment is in the design stage. The objective of this
experiment is to provide an empirical study that will aid in determining the
influence of the usage of constraint constructs on program comprehension. The
crux of the experiment is to select a number of constraint-satisfaction problems
and construct two solution for each problem. The first solution should use
constraint constructs while the second should utilize other types of constructs.
The experiment is to test how easy it is to comprehend each solution. We
hope that the results of this experiment will help in validating our hypothesis
that the inclusion of the constraint constructs will make it easier for novice or

intermediate programmers to comprehend programs written in Electra.

8.3 Conclusions

The creation of a single programming paradigm that is adequately equipped to nat-
urally express all aspects of complex problems seems to be improbable, at least in
the near future. This indicates that multiparadigm languages will be given great
attention by language researchers.

The constraint paradigm gives the programmer the ability to declare system-
maintained relationships. The semantics of constraints provide a natural and conve-

nient way for expressing a class of problems called constraint-satisfaction problems.

105

A problem in this class can be solved by decomposing it into a set of constraints,
then feeding these constraints to a constraint-satisfier. Solutions to problems in this
class cannot be easily expressed using the paradigms that are offered by Leda. The
relation between the representation of a problem and its solvability is depicted in the

following quote by Freeman-Benson [Freeman-Benson, 1991]:

It has been argued that solving a problem is simply a matter of repre-
senting it so that the solution is transparent [Polya, 1945, Simon, 1981].
Although there are many problems for which the solution will never be
“transparent,” the way a problem is represented has a major influence
on our understanding and ability to solve it. Or, from the other side of
the problem, the language in which one writes shapes the way that one
views the world.
Therefore, we feel that integrating the constraint paradigm into the language Leda
will increase its generality since it will be able to naturally express a wider range
of problems. Additionally, constraints are suitable for the direct mapping of the
characteristics of a number of mechanisms such as: consistency checks, constraint-
directed search, and constraint-enforced reevaluation, among others.

The idea of providing the programmer with the ability to state system-
maintained relationships is an appealing one. This motivated us to extend other
paradigms with similar capabilities. The functional programming paradigm, as pre-
sented in Leda, is extended with the ability to express condition-based dispatching.
This gives Leda programmers the ability to simulate the mechanism of argument

pattern-matching which is provided by most functional programming languages. The

advantages of the mechanism of condition-based dispatching include the following:

o It offers an alternative to using some complicated or deeply nested conditional

statements.

o It serves as a design aid in helping the programmer to consider all possible

inputs to a function.

e It provides a mechanism for direct mapping of specifications to actual code.

106

e It can be viewed as an approach to make code more readable and thus easier

to maintain and enhance.

The object-oriented paradigm is extended by giving the programmer the ability
to exclude features of a superclass from appearing in a subclass. This technique
represents a form of inheritance exceptions. The main usage of feature exclusion is
that it provides the programmer with the ability to express inheritance exceptions.
This is helpful because it is not always possible to impose a rigid hierarchical structure
on every real world situation. Feature exclusion is also useful in increasing the degree
of software reuse that can normally be obtained via the use of inheritance.

The expressiveness and power of the paradigm of constraints as presented in this
dissertation is difficult to simulate by any other paradigm. Thus, we are convinced
that integrating these concepts into a multiparadigm language should provide the

programmer with a new and powerful tool to express his or her objectives.

107

BIBLIOGRAPHY

[Abelson et al., 1985] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
Structure and Interpretation of Computer Programs. MIT Press, Cambridge, Mas-
sachusetts, 1985.

[Addanki, 1987] S. Addanki. Connectionism. In Stuart C. Shapiro, editor, Ency-
clopedia of Artificial Intelligence, pages 200-205. John Wiley & Sons, New York,
1987.

[Ambler et al., 1992] Allen L. Ambler, Margaret M. Burnett, and Betsy A. Zimmer-
man. Operational Versus Definitional: A Perspective on Programming Paradigms.
IEEE Computer, 25(9):28-43, September 1992.

[Andersen, 1964] Christian Andersen. An Introduction to Algol 60. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1964.

[Appleby, 1991] Doris Appleby. Programming Languages Paradigms and Practice.
McGraw-Hill, Inc., New York, 1991.

[Bailey, 1990] R. Bailey. Functional Programming With HOPE. Ellis Horwood Lim-
ited, Chichester, England, 1990.

[Bal and Grune, 1994] Henri E. Bal and Dick Grune. Programming Language FEs-
sentials. Addison-Wesley Publishing Company Inc., Wokingham, England, 1994.

[Barnes, 1994] J. G. P. Barnes. Programming in Ada, Plus an Querview of Ada 9X,
4th Edition. Addison-Wesley Publishing Company, Reading, Massachusetts, 1994.

[Biggerstaff and Perlis, 1989] Ted J. Biggerstaff and Alan J. Perlis, editors. Software
Reusability. Addison Wesley, Reading, Massachusetts, 1989.

[Birtwistle et al., 1975] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard.
Simula Begin. Petrocelli Charter, New York, 1975.

108

[Bitner and Reingold, 1975] James R. Bitner and Edward M. Reingold. Backtrack
Programming Techniques. Communications of the ACM, 18(11):651-656, Novem-
ber 1975.

[Bobrow and Winograd, 1977) D. G. Bobrow and T. Winograd. An Overview of
KRL, a Knowledge Representation Language. Cognitive Science, 1(1), 1977.

[Boizumault et al., 1993] Patrice Boizumault, Yan Delon, and Laurent Péridy. Solv-
ing a Real-Life Planning Exams Problem Using Constraint Logic Programming.
In Manfred Meyer, editor, Constraint Processing: Proceedings of the International
Workshop at CSAM’93, St. Petersburg, July 1993, Research Report RR-93-39,
pages 107-112, DFKI Kaiserslautern, Germany, August 1993.

[Borning, 1979] Alan Borning. ThingLab-A Constraint-Oriented Simulation Labo-
ratory. PhD thesis, Department of Computer Science, Stanford University, March
1979. A revised version is published as Xerox Palo Alto Research Center Technical
Report SSL-79-3 (July 1979).

[Borning, 1981] Alan Borning. The Programming Language Aspects of ThingLab, A
Constraint-Oriented Simulation Laboratory. ACM Transactions on Programming
Languages and Systems, 3(4):353-387, October 1981.

[Borning et al., 1987] Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel
Kramer, and Michael Woolf. Constraint Hierarchies. In OOPSLA 87, Proceedings
of the 1987 Conference on Object-Oriented Progamming Systems, Languages, and
Applications, pages 48-60, Orlando, Florida, October 1987.

[Borning et al., 1988] Alan Borning, Michael Maher, Amy Martindale, and Molly
Wilson. Constraint Hierarchies and Logic Programming. Technical Report 88-11-
10, University of Washington, Seattle, November 1988.

[Borning et al., 1989] Alan Borning, Michael Maher, Amy Martindale, and Molly
Wilson. Constraint Hierarchies and Logic Programming. In Giorgio Levi and
Maurizio Martelli, editors, ICLP’89: Proceedings of the 6th International Confer-
ence on Logic Programming, pages 149-164, Lisbon, Portugal, June 1989. MIT
Press.

[Brachman, 1977] Ronald J. Brachman. What’s in a Concept: Structural Foun-
dations for Semantic Networks. International Journal of Man-Machine Studies,
9:127-152, 1977.

109

[Brachman, 1979] Ronald J. Brachman. On The Epistemological Status of Semantic
Networks. In N. Findler, editor, Associative Networks: The Representation and
Use of Knowledge By Computers. Academic Press, 1979.

[Brachman, 1983] Ronald J. Brachman. What IS-A Is and Isn’t: An Analysis of
Taxonomic Links in Semantic Networks. IEFE Cimputer, 16(10):30-37, 1983.

[Brachman, 1985] Ronald J. Brachman. “I Lied about the Trees” or, Defaults and
Definitions in Knowledge Representation. The Al Magazine, 6(3):80-93, 1985.

[Budd, 1989] Timothy A. Budd. Data Structures in LEDA. Technical Report 89-60-
17, Department of Computer Science, Oregon State University, Corvallis, Oregon,
1989.

[Budd, 1991a] Timothy A. Budd. Blending Imperative and Relational Program-
ming. [EEFE Software, 8(1):58-65, 1991.

[Budd, 1991b] Timothy A. Budd. An Introduction to Object Oriented Programming.
Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1991.

[Budd, 1992] Timothy A. Budd. Multiparadigm Data Structures in Leda. In Pro-
ceedings of the 1992 International Conference on Computer Languages, pages 165—
173, Oakland, CA, April 1992.

[Budd, 1995] Timothy A. Budd. Multiparadigm Programming In Leda. Addison-
Wesley Publishing Company Inc., Reading, Massachusetts, 1995.

[Cardelli and Wegner, 1985] Luca Cardelli and Peter Wegner. On Understanding
Types, Data Abstractions, and Polymorphism. Computing Surveys, 17(4):471-
522, 1985.

[Chamard et al., 1992] André Chamard, Frédéric Deces, and Annie Fischler. Apply-
ing CHIP to a Complex Scheduling Problem. In Krzysztof Apt, editor, JICSLP’92:
Proceedings Joint International Conference and Symposium on Logic Program-
ming, Washington, DC, November 1992. MIT Press.

[Charman, 1993] Philippe Charman. Solving Space Planning using Constraint Tech-
nology. In Manfred Meyer, editor, Constraint Processing: Proceedings of the In-
ternational Workshop at CSAM’93, St. Petersburg, July 1993, Research Report
RR-93-39, pages 159-172, DFKI Kaiserslautern, Germany, August 1993.

110

[Clocksin and Mellish, 1987) W. F. Clocksin and C. S. Mellish. Programming in
Prolog. Springer-Verlag, Berlin, third, revised and extended edition, 1987.

[Colmerauer, 1990] Alain Colmerauer. An Introduction to Prolog III. Communica-
tions of the ACM, 33(7):69-90, July 1990.

[Cox, 1986] Brad J. Cox. Object Oriented Programming: An Evolutionary Approach.
Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1986.

[Cox and Hunt, 1986] Brad J. Cox and B. Hunt. Objects, Icons, and Software-1C’s.
Byte Magazine, 11(8):161-176, 1986.

[Cull and Pandey, 1994] Paul Cull and Rajeev K. Pandey. Isomorphism and the
N-Queens Problem. SIGCSE Bulletin, 26(3):29-36, 44, September 1994. Also
published as Technical Report 94-20-02, Department of Computer Science, Ore-
gon State University, Corvallis OR.

[Davie, 1992] Antony J. T. Davie. An Introduction to Functional Programming Sys-
tems Using Haskell. Cambridge University Press, Cambridge, England, 1992.

[Davis and Rosenfeld, 1981] A. L. Davis and A. Rosenfeld. Cooperating Processes
for Low-Level Vision: A Survey. Artificial Intelligence, 17:245-263, 1981.

[de Kleer and Sussman, 1980] J. de Kleer and G. J. Sussman. Propagation of Con-
straints Applied to Circuit Synthesis. Circuit Theory and Applications, 8:127-144,
1980.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl. Network-based Heuristics for
Constraint-satisfaction Problems. Artificial Intelligence, 34:1-38, 1987.

[Dincbas et al., 1988] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving
Large Scheduling Problems in Logic Programming. In EURO-TIMS Joint In-
ternational Conference on Operations Research and Management Science, Paris,
July 1988.

[Duisberg, 1986] R. Duisberg. Constraint-Based Animation: The Implementation of
Temporal Constraints in the Animus System. PhD thesis, Department of Com-
puter Science and Engineering, University of Washington, Seattle, Washington,
1986. Also published as University of Washington Computer Science Technical
Report 86-09-01 (September 1986).

111

[Eastman, 1972] C. Eastman. Preliminary Report on a System for General Space
Planning. Communications of the ACM, 15:76-87, 1972.

[Ellis, 1982] T. M. R. Ellis. A Structured Approach to Fortran 77 Programming.
Addison-Wesley Publishing Company Inc., Wokingham, England, 1982.

[Etherington, 1987] David Etherington. More on Inheritance Hierarchies With Ex-
ceptions Default Theories and Inferential Distance. In AAAI-87: Proceedings
of the Tth National Conference on Artificial Intelligence, pages 352-357, Seattle,
Wash., August 1987. American Association for Artificial Intelligence.

[Etherington and Reiter, 1983] D. Etherington and R. Reiter. An Inheritance Hier-
archies With Exceptions. In AAAI-83: Proceedings of the National Conference on
Artificial Intelligence, Washington, DC, August 1983. American Association for
Artificial Intelligence.

[Field and Harrison, 1988] Anthony J. Field and Peter G. Harrison. Functional Pro-
gramming. Addison-Wesley Publishing Company, Reading, Massachusetts, 1988.

[Floyd, 1979] Robert W. Floyd. The Paradigms of Programming. Communications
of the ACM, 22(8):455-460, August 1979.

[Fox, 1979] Mark S. Fox. On Inheritance in Knowledge Representation. In IJCAI’79:
Proceedings of the International Joint Conference on Artificial Intelligence, vol-
ume 1, Tokyo, Japan, August 1979.

[Fox, 1983] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop
Schedualing. PhD thesis, Carnegie-Mellon University, 1983.

[Frayman and Mittal, 1987] F. Frayman and S. Mittal. COSSACK: A Constraint-
Based Expert System for Configuration Tasks. In D. Sriram and R. A. Adey,
editors, Knowledge-Based Ezpert Systems in Engineering: Planning and Design.
Computational Mechanics, Billerica, Massachusetts, 1987.

[Freeman-Benson, 1990] Bjorn N. Freeman-Benson. Kaleidoscope: Mixing Objects,
Constraints, and Imperative Programming. In Norman Meyrowitz, editor, OOP-

SLA/ECOOP’90, pages T7-88, Ottawa, Canada, October 1990. ACM Press.

[Freeman-Benson, 1991] Bjorn Freeman-Benson. Constraint Imperative Program-
ming. PhD thesis, University of Washington, Department of Computer Science

112

and Engineering, Seattle, Washington, July 1991. Published as Department of
Computer Science and Engineering Technical Report 91-07-02.

[Freeman-Benson and Borning, 1991] Bjorn N. Freeman-Benson and Alan Borning.
The Design and Implementation of Kaleidoscope’90: A Constraint Imperative
Programming Language. In Proceedings IEEE Computer Society International
Conference on Computer Languages, pages 174-180, San Fransisco, April 1991.

[Freeman-Benson and Borning, 1992] Bjorn N. Freeman-Benson and Alan Borning.
Integrating Constraints with an Object-Oriented Language. In ECOOP’92: Pro-
ceedings of the European Conference on Object-Oriented Programming, pages 268
286, Utrecht, Netherlands, 1992.

[Freeman-Benson et al., 1990a] Bjorn Freeman-Benson, John Maloney, and Alan

Borning. An Incremental Constraint Solver. Communications of the ACM,
33(1):54-63, January 1990.

[Freeman-Benson et al., 1990b] Bjorn Freeman-Benson, John Maloney, and Alan
Borning. The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver.
Technical Report 89-08-06, Department of Computer Science and Engineering,
University of Washington, February 1990.

[Freeman-Benson and Wilson, 1990] Bjorn Freeman-Benson and Molly Wilson. DeltaS-
tar: A General Algorithm for Incremental Satisfaction of Constraint Hierarchies.
Technical Report 90-05-02, University of Washington, Seattle, May 1990.

[Freeman-Benson et al., 1992] Bjorn N. Freeman-Benson, Molly Wilson, and Alan
Borning. DeltaStar: A General Algorithm for Incremental Satisfaction of Con-
straint Hierarchies. In Proceedings 11th IEEE Phoeniz Conference on Computers
and Communications, Scottsdale, Arizona, March 1992.

[Freuder, 1978] E. C. Freuder. Synthesizing Constraint Expressions. Communica-

tions of the ACM, 21:958-966, 1978.

[Freuder, 1982] E. C. Freuder. A Sufficient Condition of Backtrack-free Search.
Journal of the ACM, 29(1):24-32, 1982.

[Gaschnig, 1977] J. A. Gaschnig. A General Backtrack Algorithm that Eliminates
Most Redundant Tests. In IJCAI’77: Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Cambridge, Massachusetts, August 1977.

113

[Ghezzi and Jazayeri, 1987] Carlo Ghezzi and Mehdi Jazayeri. Programming Lan-
guage Concepts. Wiley & Sons, New York, 1987. Second Edition.

[Goldberg and Robson, 1983] Adele Goldberg and David Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

[Gore, 1990] Jacob Vadim Gore. Constraint-Driven Programming in a Strongly-
Typed Object-Oriented Language. PhD thesis, Department of Computer Science,
Northwestern University, Evanston, IL., 1990.

[Hailpern, 1986] Brent Hailpern. Multiparadigm Languages and Environments.
IEEE Software, 3(1):6-9, January 1986.

[Haralick and Elliot, 1980] R. M. Haralick and G. L. Elliot. Increasing Tree Search
Efficiency for Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313,
1980.

[Harel, 1992] David Harel. Algorithmics: The Spirit of Computing. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1992. Second Edition.

[Heintze et al., 1992] Nevin C. Heintze, Joxan Jaffar, Spiro Michaylov, Peter J.
Stuckey, and Roland H. C. Yap. The CLP(R) Programmer’s Manual. IBM T. J.
Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, September
1992.

[Henderson, 1980] Peter Henderson. Functional Programming: Application and Im-
plementation. Prentice Hall International, Englewoods Cliffs, New Jersey, 1980.

[Hill and Lloyd, 1994] Patricia Hill and John Lloyd. The Gédel Programming Lan-
guage. MIT Press, Cambridge, Massachusetts, 1994.

[Hoare, 1987] C. A. R. Hoare. An Overview of Some Formal Methods of Program
Design. IEEE Computer, 20(10):30-37, 1987.

[Horn, 1992a] Bruce Horn. Constraint Patterns as Bases for Object-Oriented Con-
straint Programming. In OOPSLA’92: Proceedings of The 1992 ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, Van-
cover, British Colombia, October 1992.

114

[Horn, 1992b] Bruce Horn. Properties of User Interface Systems and the Siri Pro-
gramming Language. In Brad Myers, editor, Languages for Developing User In-
terfaces, pages 211-236. Jones and Bartlett, Boston, 1992.

[Hudak and Wadler, 1988] P. Hudak and P. Wadler. Report on the Functional Pro-
gramming Language Haskell. Technical Report YALEU/DCS/RR-627, Depart-
ment of Computer Science, Yale University, New Haven, CT, November 1988.

[Hwang, 1993]) Kai Hwang. Advanced Computer Architecture: Parallelism, Scalabil-
ity, Programmability. McGraw-Hill, Inc., New York, 1993.

[Iverson, 1962] K. E. Iverson. A Programming Language. Wiley & Sons, New York,
1962.

[Jaffar and Lassez, 1987) Joxan Jaffar and Jean-Louis Lassez. Constraint logic pro-
gramming. In POPL’87: Proceedings 14th ACM Symposium on Principles of
Programming Languages, pages 111-119, Munich, 1987. ACM.

[Jaffar et al., 1992] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland
H. C. Yap. An Abstract Machine for CLP(R). In PLDI’92: Proceedings ACM
SIGPLAN Symposium on Programming Language Design and Implementation,
pages 128-139, San Francisco, CA, June 1992. ,

[Jensen and Wirth, 1985] Kathleen Jensen and Niklaus Wirth. Pascal User Manual
and Report. Springer-Verlag, New York, third edition, 1985.

[Johnson and Rees, 1992] Paul Johnson and Ceri Rees. Reusability Through Fine-
g
grain Inheritance. Software—Practice and Ezperience, 22(12):1049-1068, December
1992.

[Justice, 1995] Timothy P. Justice. Applicability of multiparadigm programming to
compiler construction tools. Ph.D. Proposal, Department of Computer Science,
Oregon State University, 1995. To be presented to the Ph.D. committee early
1995.

[Justice et al., 1993] Timothy P. Justice, Rajeev K. Pandey, and Timothy A. Budd.
Compiler Implementation in the Multiparadigm Language Leda. Technical Report
93-60-20, Department of Computer Science, Oregon State University, Corvallis,
Oregon, December 1993.

[Justice et al., 1994] Timothy P. Justice, Rajeev K. Pandey, and Timothy A. Budd.

115

A Multiparadigm Approach to Compiler Construction. SIGPLAN Notices,
29(9):29-37, September 1994.

[Kernighan and Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. The C Program-
ming Language. Prentice Hall, Englewoods Cliffs, New Jersey, 1978.

[Kernighan and Ritchie, 1988] B. W. Kernighan and D. M. Ritchie. The C Program-
ming Language, Second Edition. Prentice Hall, Englewoods Cliffs, New Jersey,
1988.

[Kim and Lochovsky, 1989] Won Kim and Frederick H. Lochovsky, editors. Object-
Oriented Concepts, Databases, and Applications. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1989.

[Kowalski, 1974] R. Kowalski. Predicate Logic as a Programming Language. In
Proceedings of the IFIP 7/, pages 569-574, 1974.

[Kowalski, 1979] R. Kowalski. Algorithn = Logic + Control. Communication of the
ACM, 22(7):424-431, July 1979.

[Kuhn, 1970] Thomas S. Kuhn. The structure of Scientific Revolutions. The Uni-
versity of Chicago Press, Chicago, IL, 1970. Second Edition. '

[Kumar, 1992] Vipin Kumar. Algorithms for Constraint-Satisfaction Problems: A
Survey. A.I. Magazine, 13(1):32—44, Spring 1992.

[Lauriere, 1978] Jean-Louis Lauriere. A Language and A Program for Stating and
Solving Combinatorial Problems. Artificial Intelligence, 10(1):29-127, February
1978.

[Ledbetter and Cox, 1985] L. Ledbetter and Brad J. Cox. Software-IC’s. Byte Mag-
azine, 10(6):307-316, 1985.

[Leler, 1986] Wim Leler. Specification and Generation of Constraint Satisfaction
Systems Using Augmented Term Rewriting. PhD thesis, Department of Computer
Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
1986.

[Leler, 1988] Wim Leler. Constraint Programming Languages: Their Specification
and Generation. Addison-Wesley, Reading, Massachusetts, 1988.

116

(Lenzerini et al., 1991] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, edi-
tors. Inheritance Hierarchies in Knowledge Representation and Programming Lan-

guages. John Wiley & Sons, Chichester, West Sussex, England, 1991.

[Lopez et al., 1994a] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Imple-
menting Constraint Imperative Programming Languages: The Kaleidoscope’93.
In OOPSLA’94: Proceedings of the 199/ Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 259-271, Portland, Oregon,
October 1994. ACM.

[Lopez et al., 1994b] Guy Lopez, Bjorn Freeman-Benson, and Alan Borning. Kalei-
doscope: A Constraint Imperative Programming Language. In B. Mayoh,
E. Tyugu, and J.Penjaam, editors, Constraint Programming: Proceedings 1993
NATO ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages 305~
321. Springer-Verlag, 1994.

[Mackworth, 1977a] Alan K. Mackworth. Consistency in Networks of Relations. Ar-
tificial Intelligence, 8(1):99-118, 1977.

[Mackworth, 1977b] Alan K. Mackworth. On Reading Sketch Maps. In Proceed-
ings Sth International Joint Conference on Artificial Intelligence, pages 598-606,
August 1977.

[Mackworth, 1992] Alan K. Mackworth. Constraint Satisfaction. In Stuart C.
Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 285-293, New York,
1992. John Wiley & Sons.

[MacLennan, 1987] Bruce J. MacLennan. Principles of Programming Languages.

Holt, Rinehart and Winston, New York, 1987.

[MacLennan, 1990] Bruce J. MacLennan. Functional Programming Practice and
Theory. Addison-Wesley Publishing Company, Reading, Massachusetts, 1990.

[Madsen et al., 1993] Ole Lehermann Madsen, Birger Mgller-Pederson, and Kris-
ten Nygaard. Object-Oriented Programming in the Beta Programming Language.
Addison-Wesley Publishing Company Inc., Wokingham, England, 1993.

[Maloney, 1991] John Harold Maloney. Using Constraints for User Interface Con-
struction. PhD thesis, Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, Washington, 1991. Also published as Technical
Report 91-08-12.

117

[Maloney et al., 1989] John Maloney, Alan Borning, and Bjorn Freeman-Benson.
Constraint Technology for User-Interface Construction in ThingLab II. In Pro-
ceedings of the 1989 ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 381-388, New Orleans, Louisiana, October
1989. Also published as University of Washington Computer Science Technical
Report 89-05-02 (May 1989).

[McGregor, 1979] J. McGregor. Relational Consistency Algorithms and their Ap-
plication in Finding Subgraph and Graph Isomorphisms. Information Sciences,
19:229-250, 1979.

[Meyer, 1987] Bertrand Meyer. Reusability: The Case for Object-Oriented Design.
IEEE Software, 4(2):50-64, March 1987.

[Meyer, 1988] Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall International, Englewoods Cliffs, New Jersey, 1988.

[Meyer, 1993] Bertrand Meyer. Eiffel the Language. Prentice Hall International,
Hertforshire, England, 1993.

[Milner et al., 1990] R. Milner, M. Tofte, and R. Harper. The Deﬁnztzon of Standard
ML. MIT Press, Cambridge, Massachusetts, 1990.

[Montanari, 1974] Ugo Montanari. Networks of Constraints: Fundamental Proper-
ties and applications to Picture Processing. Information Sciences, 7(2):95-132,

April 1974.

[Myers, 1992] Brad A. Myers. State of the Art in User Interface Software Tools.
Technical Report CMU-CS-92-114, School of Computer Science, Carnegie Mellon
University, February 1992.

[Nemhasuer et al., 1989] G. L. Nemhasuer, A. H. G. Rinnooy Kan, and M. J. Todd.
Optimization. Elsevier Science Publishing Co., Amsterdam, Holland, 1989.

[Newell and Simon, 1972] Allen Newell and Herbert Alexander Simon. Human Prob-
lem Solving. Prentice Hall, Englewoods Cliffs, New Jersey, 1972.

[0’Donnel, 1985] M.J. O’Donnel. FEgquational Logic as a Programming Language.
MIT Press, Cambridge, Massachusetts, 1985.

118

[Pandey, 1993] Rajeev K. Pandey. Sparta: A Programming Environment for the
multiparadigm Language Leda. Ph.D. Proposal, Department of Computer Science,
Oregon State University, May 1993.

[Pandey et al., 1993] Rajeev Pandey, Wolfgang Pesch, Jim Shur, and Masami
Takikawa. A Revised Leda Language Definition. Technical Report 93-60-02,
Department of Computer Science, Oregon State University, Corvallis, Oregon,
January 1993.

[Pesch and Shur, 1991] Wolfgang Pesch and Jim Shur. A Leda Language Defini-
tion. Technical Report 91-60-09, Department of Computer Science, Oregon State
University, Corvallis, Oregon, September 1991.

[Peyton Jones, 1987] Simon L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall International, Englewoods Cliffs, New Jer-
sey, 1987.

[Placer, 1988] John R. Placer. G: A Language Based On Demand-Driven Stream
Fuvaluation. PhD thesis, Department of Computer Science, Oregon State Univer-
sity, Corvallis, Oregon, November 1988.

[Placer, 1991a] John Placer. Multiparadigm Research: A New Direction in Language
Design. ACM SIGPLAN Notices, 26(3):9-17, March 1991.

[Placer, 1991b] John Placer. The Multiparadigm Language G. Computer Language,
16(3/4):235-258, 1991.

[Plauger, 1992] P. J. Plauger. The Standard C Library. Prentice Hall, Englewoods
Cliffs, New Jersey, 1992.

[Polya, 1945] G Polya. How To Solve It. Princeton University Press, Princeton, New
Jersey, 1945. Second Edition.

[Prosser, 1988] Patrick Prosser. Reactive Factory Scheduling as a Dynamic Con-
straint Satisfaction Problem. Technical Report AISL-31-88, University of Strath-
clyde, August 1988.

[Prosser et al., 1992] Patrick Prosser, Chris Conway, and Claude Muller. A Con-
straint Maintenance System for the Distributed Resource Allocation Problem. In-
telligent Systems Engineering, pages 76-83, Autumn 1992.

119

[Reade, 1989] Chris Reade. Elements of Functional Programming. Addison-Wesley
Publishing Company Inc., Wokingham, England, 1989.

[Roberts and Goldstein, 1977] R. B. Roberts and 1. Goldstein. The FRL Primer.
Technical Report AIM-408, Artificial Intelligence Laboratory, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts, April 1977.

[Sannella et al., 1993] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and
Alan Borning. Multi-Way Verses One-Way Constraints in User Interfaces: Expe-
rience With the DeltaBlue Algorithm. Technical Report 92-07-05a, Department
of Computer Science and Engineering, University of Washington, February 1993.
It is a slightly revised version of Technical Report 92-07-05, July 1992.

[Saraswat, 1993] Vijay A. Saraswat. Concurrent Constraint Programming. MIT
Press, 1993.

[Saraswat et al., 1990] Vijay A. Saraswat, Kenneth M. Kahn, and Jacob Levy.
Janus: A Step Towards Distributed Constraint Programming. In Proceedings
North American Conference on Logic Programming, Austin, Texas, October 1990.

[Satoh and Aiba, 1991] Ken Satoh and Akira Aiba. Computing Soft Constraints by
Hierarchical Constraint Logic Programming. Technical Report TR-610, Institute
for New Generation Computer Technology, Tokyo, January 1991.

[Schaffert et al., 1986] C. Schaffert, T. Cooper, B. Bullis, M. Killian, and C. Wilpot.
An Introduction to Trellis/Owl. In OOPSLA ’86: Proceedings of the 1986 Con-
ference on Object-Oriented Progamming Systems, Languages, and Applications,
Portland, Oregon, October 1986. Published as ACM SIGPLAN Notices, 21(11),
November, 1986.

[Shriver and Wegner, 1988] Bruce Shriver and Peter Wegner, editors. Research Di-
rections in Object-Oriented Programming. MIT Press, Cambridge, Massachusetts,
1988.

[Simon, 1981] Herbert Alexander Simon. The Sciences of the Artificial. MIT Press,
Cambridge, Massachusetts, 1981.

[Snyder, 1986a] Alan Snyder. CommonObjects An Overview. In Proceedings of
the Object Oriented Programming Workshop, October 1986. Published as ACM
SIGPLAN Notices 21(10), October, 1986.

120

[Snyder, 1986b] Alan Snyder. Encapsulation and Inheritance in Object-Oriented
Programming Languages. In OOPSLA ’86: Proceedings of the 1986 Conference
on Object-Oriented Progamming Systems, Languages, and Applications, Portland,
Oregon, October 1986. Published as ACM SIGPLAN Notices 21(11), November,
1986.

[Snyder, 1991] Alan Snyder. Inheritance in Object Oriented Programming Lan-
guages. In Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors, In-
heritance Hierarchies in Knowledge Representation and Programming Languages,
chapter 10, pages 153-171. John Wiley & Sons, Chichester, West Sussex, England,
1991.

[Stafik et al., 1986] Mark J. Stafik, Daniel G. Bobrow, and Kenneth M. Kahn. Inte-
grating Access-Oriented Programming into a Multi-paradigm Environment. IEEE
Software, January 1986.

[Steele, 1980] Guy Lewis Steele. The Definition and Implementation of a Computer
Programming Language Based on Constraints. PhD thesis, Massachusetts Insti-
tute of Technology, August 1980. Also published as MIT Artificial Intelligence
Laboratory Technical Report 595 and as MIT VLSI Memo 80-32.

[Steele Jr., 1990] Guy Lewis Steele Jr. Common LISP The Language, Second Edi-
tion. Digital Press, Bedford, Massachusetts, 1990.

[Steele Jr. and Sussman, 1975] Guy Lewis Steele Jr. and Gerald G. Sussman.
Scheme: An Interpreter for the Extended Lambda Calculus. Technical Report
Memo 349, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, April 1975.

[Sussman and Steele, 1980] G. Sussman and Guy Lewis Steele. CONSTRAINTS-A
Language for Expressing Almost-Hierarchical Descriptions. Artificial Intelligence,
14(1):1-39, January 1980.

[Sutherland, 1963a) Ivan Sutherland. Sketchpad: A Man-Machine Graphical Com-
munication System. In Proceedings of the Spring Joint Computer Conference,
pages 329-345. IFIPS, 1963.

[Sutherland, 1963b] Ivan E. Sutherland. SKETCHPAD: A Man-Machine Graphi-
cal Communication System. PhD thesis, Department of Electrical Engineering,
Massachusetts Institute of Technology, January 1963.

121

[Szypersky et al., 1993] Clemens Szypersky, Stephen Omohundro, and Stephan
Murer. Engineering a Programming Language: The Type and Class System of
Sather. Technical Report TR-93-064, International Computer Science Institute,
University of California, Berkeley, November 1993.

[Touretzky, 1986] D. Touretzky. The Mathematics of Inheritance System. Morgan
Kaufmann, Los Altos, Ca., 1986.

[Tsang, 1993] E. Tsang. Foundations of Constraint Satisfaction. Academic Press
Limited, London, England, 1993.

[Turner, 1985] David. A. Turner. Miranda: A Non-Strict Functional Language With
Polymorphic Types. In Proceedings of the IFIP International Conference on Func-
tional Programming Languages and Computer Architecture, pages 1-16, Nancy,
France, September 1985. Springer Verlag. Published as Springer Lecture Notes in
Computer Science, vol. 201.

[Turner, 1986] David. A. Turner. An Overview of Miranda. ACM SIGPLAN No-
tices, 21(12):158-166, December 1986.

[Ullman, 1976] J. R. Ullman. An Algorithm for Subgraph Isomorphlsm J. ACM,
23:31-42, 1976.

[Ullman, 1994] Jeffrey D. Ullman. ML Programming. Prentice Hall, Englewoods
Cliffs, New Jersey, 1994.

[US Department of Defense, 1983] US Department of Defense. Ada Programming
Language. Technical Report ANSI/MIL-STD-1815A, American National Stan-
dards Institute, Washington DC, January 1983.

[Van Hentenryck, 1991} Pascal Van Hentenryck. Constraint Logic Programming.
Knowledge Engineering Review, 6(3):151-194, September 1991.

[Van Hentenryck, 1993] Pascal Van Hentenryck. Scheduling and Packing in the Con-
straint Language cc(FD). Technical Report CS-93-02, Department of Computer
Science, Brown University, January 1993.

[Walinsky, 1989] Clifford Walinsky. CLP(X*): Constraint Logic Programming with
Regular Sets. In Giorgio Levi and Maurizio Martelli, editors, ICLP’89: Proceed-
ings 6th International Conference on Logic Programming, pages 181-196, Lisbon,
Portugal, June 1989. MIT Press.

122

[Wallace, 1994] Mark Wallace. Applying Constraints for Scheduling. In B. Mayoh,
E. Tyugu, and J.Penjaam, editors, Constraint Programming: Proceedings 1993
NATO ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages 161~
180. Springer-Verlag, 1994.

[Waltz, 1975] D. Waltz. Understanding Line Drawings of Scenes With Shadows. In
P. H. Winston, editor, The Psychology of Computer Vision, pages 19-91. McGraw-
Hill, Cambridge, Mass., 1975.

[Wegner and Zdonik, 1988] P. Wegner and S. Zdonik. Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn’t Like. In ECOOQOP ’88: Proceed-
ings of the European Conference on Object Oriented Programming, Oslo, Norway,
August 1988. Springer Verlag.

[Welland, 1983] R. C. Welland. Methodical Programming in COBOL. Pitman, Lon-
don, England, 1983.

[Wikstrom, 1987] Ake Wikstrém. Functional Programming Using Standard ML.
Prentice-Hall International, Englewoods Clifts, New Jersey, 1987.

[Wilson and Borning, 1993] Molly Wilson and Alan Borning. Hierarchical Con-
straint Logic Programming. Journal of Logic Programming, 16(3):277-318, July
1993. (Also published as Technical Report 93-01-02 from the University of Wash-
ington, Seattle).

[Wilson and Clark, 1988] Lesily B. Wilson and Robert G. Clark, editors. Compara-
tive Programming Languages. Addison Wesley, Reading, Massachusetts, 1988.

[Wirfs-Brock et al., 1990] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.
Designing Object-Oriented Software. Prentice Hall, Englewoods Cliffs, New Jersey,
1990.

[Wirth, 1985] Niklaus Wirth. Programming in Modula-2, 3rd Corrected Edition.
Springer-Verlag, Berlin, Germany, 1985.

[Zamel and Budd, 1993] Nabil M. Zamel and Timothy A. Budd. Integrating Con-
straints into a Multiparadigm Language. In Proceedings of InfoScience ’93, pages
402-409, Seoul, Korea, October 1993.

123

APPENDICES

124

Appendix A
The DeltaBlue Constraint Solver

This appendix gives a brief introduction to the DeltaBlue constraint solver. It begins
by describing the characteristics of this algorithm and how it solves its constraints.
It then covers how the algorithm can be used by listing its services and showing an
example that uses the algorithm to solve some constraints. The appendix closes by
showing how Electra hides all the unnecessary details of the algorithm to simplify
the declaration of constraints.

DeltaBlue is an incremental multi-way constraint-satisfaction algorithm [Mal-
oney, 1991, Freeman-Benson et al., 1990b, Sannella et al., 1993]. It was originally
devised by Bjorn Freeman-Benson [Freeman-Benson et al., 1992, Freeman-Benson et
al., 1990a). The first implementation of DeltaBlue was done in Smalltalk, but later it
was reimplemented in Lisp, C, and C++ by Borning and his group at the University
of Washington. This algorithm solves systems of constraints using a technique known
as local propagation. Local propagation simply means that once a value of a variable
is determined then it is propagated along the constraint network for the purpose
of utilizing it in finding solutions for other constraints that have that variable as a
participant. This technique requires that each constraint must provide methods for
determining the values of its participants. For example, the constraint:

A+B=C

must provide methods for determining the value of each variable if the other two are
known. The methods that are needed for the above constraint are:

e If the variables A and B are known then the method to use is

C—A+B

e If the variables A and C are known then the method to use is

B—~C-A

o If the variables B and C are known then the method to use is

A«—~C-B

125

If the values of the variables A or B were to be changed then the system could
maintain the above constraint by executing the first method yielding a new value for
the variable C. If the variable C were participating in another constraint such as the
constraint

C+D=FE

then the new value of the variable C' would be propagated to this constraint in order
to calculate a new value for the variable D, and this process would continue until
the change had propagated through the constraint network.

Solvers that are built using the local propagation technique are limited in their
capabilities. They cannot solve all possible sets of constraints, especially those that
represent simultaneous equations. However, they have the advantage of being easy
to build, efficient, and general. Their generality stems from the fact that the defined
methods for determining variable values can perform arbitrary computation.

DeltaBlue solves its constraints incrementally. This means that whenever there
is a change in the set of constraints the algorithm does not start its satisfaction
from scratch but rather it takes advantage of previous computations. This allows for
increasing the frequency of changing the set of constraints without enormous delays in
response time. This is a very useful capability especially for interactive applications
that require frequent changes and fast response time such as user interfaces.

The DeltaBlue algorithm has two limitations:

¢ It cannot handle cycles of constraints. When a cycle is discovered, the algorithm
signals an error asking the user for assistance. To resolve the situation, the user
might have to remove one or more constraints to eliminate the cycle.

¢ It only permits methods with a single output variable. This limits its ability
to interact with more powerful constraint solvers.

The DeltaBlue interface provides the following functions:
e Create variable.

e Create constant.

e Destroy variable.

e Print variable.

e Create constraint.

Destroy constraint.
¢ Print constraint.

These functions can be combined to create more complicated functions.
Figure A.1 shows a listing of the C function TempertureConverter() which we
extracted from the file TestDeltaBlue.c. This file is provided with the DeltaBlue

126

package. The purpose of the listed function is to express the relationship between
Celsius and Fahrenheit temperatures. Its behavior can be summarized in the follow-
ing points:

1.

-
I

13.
14.
15.
16.
17.
18.
19.
20.

S e B A B S

. Create the constraint t1

Initialize DeltaBlue.

Create a variable named C and set it to zero.

Create a variable named F and set it to zero.

Create a temporary variable named t1 and set it to one.
Create a temporary variable named t2 and set it to one.
Create the constant number 9.

Create the constant number 5.

Create the constant number 32.

9 * C, and set its strength to be required

Create the constraint t1

t2 * 5, and set its strength to be required

. Create the constraint F = t2 + 32, and set its strength to be required

Print the values of the variables C and F after the above constraints have been
inserted.

Change the value of the variable C to 0.
Print the values of the variables C and F.
Change the value of the variable F to 212.
Print the values of the variables C and F.
Change the value of the variable F to -40.
Print the values of the variables C and F.
Change the value of the variable F to 70.

Print the values of the variables C and F.

In order to increase the degree of declarativeness that is expressed by the con-

straint construct, the compiler-solver interface that is provided by Electra relieves
the programmer from worrying about tedious details such as initializing DeltaBlue
and the creation of variables and constraint components. Figure A.2 lists an Electra
program that performs the same functionality as the one performed by the DeltaBlue
C code. Notice how the constraint CandF declaratively expresses the conversion re-
lation.

127

void TempertureConverter()

{

Variable celcius, fahrenheit, t1, t2, nine, five, thirtyTwo;
Constraint addC, multCl, multC2;

InitDeltaBlue();

celcius = Variable_Create("C", 0);

fahrenheit = Variable_Create("F", 0);

tl = Variable_Create("t1", 1);

t2 = Variable_Create("t2", 1);

nine = Variable_CreateConstant(""*const*", 9);

five = Variable_CreateConstant("'*const*", 5);
thirtyTwo = Variable_CreateConstant("*const*", 32);

multCl = MultiplyC(celcius, nine, t1, S_required);
multC2 = MultiplyC(t2, five, t1, S_required);
addC = AddC(t2, thirtyTwo, fahrenheit, S_required);

Variable_Print(celcius); printf(" = ");
Variable_Print(fahrenheit); printf(*\n\n");

printf("Changing celcius to 0:\n ");
Assign(celcius, 0);

Variable_Print(celcius); printf(" = ");
Variable_Print(fahrenheit); printf("\n\n");

printf("Changing fahrenheit to 212:\n ");
Assign(fahrenheit, 212);
Variable_Print(celcius); printf(" = ");
Variable_Print(fahrenheit); printf("\n\n");

printf("Changing celcius to -40:\n ");
Assign(celcius, —40);
Variable_Print(celcius); printf(" = ");
Variable_Print(fahrenheit); printf(*\n\n");

printf("Changing fahrenheit to 70:\n ");
Assign(fahrenheit, 70);
Variable_Print(celcius); printf(" = ");
Variable_Print(fahrenheit); printf("\n\n");

Figure A.1. DeltaBlue Code Expressing the Relationship Between C and F.

128

var
C, F: integer;

constraint CandF : required;
assert

end;

begin
print(" c ", C , "= F U, F , Il\nu);

print("Changing Celcius to 0. \n");

’

Pfint(" C "' C , = F "’ F , ll\nu);

print("Changing Fahrenheit to 212. \n");
F := 212,
print(" C "' C s "= F "' F , ll\nu);

print("Changing Celcius to -40. \n");
C .= —40;
printf("¢c ", C,"=F", F, "\n");

print("Changing Fahrenheit to 70. \n");
F:=70;

print(" c ", C L= F u' F , n\nn);

end;

Figure A.2. An Electra Code Expressing the Relationship Between C and F.

129

Appendix B
The Electra Language Syntax

The following is a listing of the grammer that describes the syntax of the Electra
language:

(program) — (declarations) begin (statements) end;

(declarations) — ¢

(declarations) (declaration)

(declaration) — (constdeclarations)
| (vardeclarations)
| (typedeclarations)
| (functiondeclaration)
| (classdeclaration)
| include (SCONSTANT) ;

| (constraintdeclaration)
(constdeclarations) —— const (constantDefinitions)

(constdefinitions) -— (constdefinition)

| (constdefinitions) (constdefinition)
(constdefinition) — (id) :=(expression) ;
(vardeclarations) — var (variableDefinitions)

(variableDefinitions) — (variableDefinition)

| (variableDefinitions) (variableDefinition)

(variableDefinition)

(idlist)

(typedeclarations)

(typeDefinitions)

(typeDefinition)

(type)

(opttypelist)

(typelist)

(functiondeclaration)

(guardedFuncHead AndGuard)

(functionHead)

(guardedFuncHead)

(idlist) : (type) ;

(id)
| (idlist) , (id)

type (typeDefinitions)

(typeDefinition)
| (typeDefinitions) (typeDefinition)

(id) : (type) ;

(id)

| (id) [(typelist)]

| function (opttypelist)

| function (opttypelist) -> (type)

0O
| ((typelist))

(storageForm) (type)
| (typelist) , (storageForm) (type)

{functionHead) (declarations) (body) ;

| (guardedFuncHead AndGuard)
(declarations)

(body) ;
(guardedFuncHead) (guard) ;

(functionname) (valueArguments)

(optReturnType) ;

(guardedFuncName) (valueArguments)

(optReturnType) ;

130

(guardedFuncName)
(functionname)
(guard)

(typeArguments)

(argumentList)

(storageForm)

(valueArguments)

(optReturnType)

(returnType)

(classdeclaration)

(classheading)

(classQualifications)

(classStart)

131
guarded function (id) (typeArguments)
function (id) (typeArguments)

[(expression)]

€
[(argumentList)]

(storageForm) (idlist) : (type)
(argumentList) , (storageForm) (idlist) : (type)

€
| byName
| byRef

O
| ((argumentlist))

€
| (returnType)

-> (type)

(classheading)
(excludeStatement)

(declarations) end;
(classQualifications)

| (classQualifications) of (id) ;
| (classQualifications) of (id) [(typelist)] ;

(classStart) (typeArguments)

class (id)

(excludeStatement)

(constraintdeclaration)

(fixableConstraint)

(fixableConsHeader)
(fixableConsAssertion)
(fixPart)

(satisfiableConstraint)

(satisfiableConsHeader)
(satisfiableConsAssertion)

(andSatAssertion)

(satAssertion)

(satExpression)

(satTerm)

132

€
| exclude (idlist) ;

{fixableConstraint)
| (satisfiableConstraint)

(fixableConsHeader)
(fixableConsAssertion)
(fixPart)
end;

constraint (id) ;

assert (expression) ;

fix (nonReturnStatements)

(satisfiableConsHeader)
(satisfiableConsAssertion)
end;

constraint (id) : (strength) ;

assert (andSatAssertion) ;

(satAssertion)
| (andSatAssertion) & (satAssertion)

((satAssertion))
| (satExpression) (RelationalOP) (satExpression)

(satTerm)
| (satExpression) + (satTerm)

| (satExpression) - (sat Term)

(satFactor)

(satFactor)

(strength)

(body)

(statements)

(nonReturnStatements)

(statement)

133

| (satTerm) * (satFactor)
| (satTerm) / (satFactor)
| - (satFactor)

((satExpression))

| (id)
| ({ICONSTANT)

required
| strong
| medium
| weak

begin (statements) end

| beginend

(statement) ;

| (statements) (statement) ;

(nonReturnStatement) ;
| (nonReturnStatements)

(nonReturnStatement) ;

(reference) : = (expression)
| return
| return (expression)
| begin end
| begin (statement) end
| if (expression) then
(statement)
| if (expression) then
(statement)
else (statement)
| while (expression) do (statement)
| for (expression) do (nonReturnStatement)

| for {expression) to (expression)

(nonReturnStatement) —

134

do (nonReturnStatement)

| for (reference) : = (expression)
to (expression)
do (statement)

| (procedureCall)

| e

(reference) := (expression)

| return

| return (expression)

| begin end

| begin (nonReturnStatement) end

| if (expression) then
(nonReturnStatement)

| if (expression) then
(nonReturnStatement)

else (nonReturnStatement)

| while (expression) do (nonReturnStatement)

| for (expression) do (nonReturnStatement)

| for (expression) to (expression)
do (nonReturnStatement)

| for (reference) : = (expression)
to (expression)
do (nonReturnStatement)

| (procedureCall)

| e

(optexpressionList) — €

(expressionList) —

(expression) —

| (expressionList)

(expression)

| (expressionList) , {expression)

(andExpression}

| (expression) | (andExpression)

(andExpression) —

(notExpression) —

(relationalExpression) —

(binaryExpression) —»
(plusExpression) —
(timesExpression) —
(procedureCall) —

{functionCall)

135

(notExpression)

| (andExpression) & (notExpression)

(relational Expression)

| ~ (notExpression)

| (reference) is (id)

| (reference) is (id) ((idlist))

(binaryExpression)

| (binaryExpression) < (binaryExpression)

| (binaryExpression) <= (binaryExpression)

| (binaryExpression) > (binaryExpression)

| (binaryExpression) >= (binaryExpression)

| (binaryExpression) = (binaryExpression)

| (binaryExpression) <> (binaryExpression)

| (binaryExpression) == (binaryExpression)

| (binaryExpression) ~= (binaryExpression)

| (reference) <~ (binaryExpression)

(plusExpression)

| (binaryExpression) (BINARYOP)
(plusExpression)

(timesExpression)

| (plusExpression) + (timesExpression)

| (plusExpression) - (timesExpression)

{functionCall)

| (timesExpression) * (functionCall)

| (timesExpression) / (functionCall)

| (timesExpression) % (functionCall)

| = (functionCall)

{functionCall) ((optexpressionList))

| cfunction (id) ((optexpressionList))

(basicExpression)

(basicExpression) —

(reference) —

(functionExpressionHead) —
(id) —

(alphanumeric) —

(digit) —_—

(ICONSTANT) —

(RCONSTANT) —

136

| defined ((expression))
| (functionCall) ((optexpressionList))
| cfunction (id) ((optexpressionList))

(reference)
| (ICONSTANT)
| (RCONSTANT)
| (SCONSTANT)
| ({expression))
| {functionExpressionHead)
(declaration)
(body)
| (basicExpression) [(typelist)]
| [(expressionList)]

(id)
| (id) : (type)
| (functionCall) . (id)

function (valueArguments) (optReturnType)
(letter) (alphanumeric)

(letter)
| (digit)
| (alphanumeric) (letter)
| (alphanumeric) (digit)

0|1|2]3]4
5|6|7]|8|9

(digit)
| (digits) (digit)

(digits) . (digits)
| (digits) . (digits) E (sign) (digits)

(sign)

(digits)

(letter)

(SCONSTANT)

—

-1+

(digit)
| (digits) (digit)

A|B|C|D|E|F|G|H|I|J
|K{L|M|N|O|P[Q|R[S|T
|u|viw{x|Y]|Z
lalv|cldle|f|g|h|i]]
|k|1|m|nlo|plqlr]s]|t

|ufv]w|[x|y|z

¢ ¢ (alphanumeric) ’’

137

